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Abstract

We study first- and second-order linear transport equations, as well as flows for
ordinary and stochastic differential equations, with irregular velocity fields satisfy-
ing a one-sided Lipschitz condition. Depending on the time direction, the flows are
either compressive or expansive. In the compressive regime, we characterize the
stable continuous distributional solutions of both the first and second-order noncon-
servative transport equations as the unique viscosity solution, and we also provide
new observations and characterizations for the dual, conservative equations. Our
results in the expansive regime complement the theory of Bouchut et al. (Ann Sc
Norm Super Pisa Cl Sci (5) 4:1–25, 2005), and we develop a complete theory for
both the conservative and nonconservative equations in Lebesgue spaces, as well
as proving the existence, uniqueness, and stability of the regular Lagrangian flow
for the associated ordinary differential equation. We also provide analogous results
in this context for second order equations with degenerate noise coefficients that
are constant in the spatial variable, as well as for the related stochastic differential
equation flows.
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1. Introduction

For a fixed, finite time horizon T > 0 and a velocity field b : [0, T ]×R
d → R

d ,
we study the linear transport equation

∂t u + b(t, x) · ∇u = 0 in [0, T ] × R
d , (1.1)

along with the dual, continuity equation

∂t f + div(b(t, x) f ) = 0 in [0, T ] × R
d , (1.2)

and the associated ordinary differential equation (ODE) flow

∂tφt,s(x) = b(t, φt,s(x)), (s, t, x) ∈ [0, T ] × [0, T ] × R
d , φs,s = Id . (1.3)
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The goal of the paper is to analyze the three problems, and the relations between
them, for vector fields b satisfying the one-sided Lipschitz condition

⎧
⎪⎨

⎪⎩

(b(t, x) − b(t, y)) · (x − y)

≥ −C(t)|x − y|2 for a.e. (t, x, y) ∈ [0, T ] × R
d × R

d

for some nonnegative C ∈ L1([0, T ]).
(1.4)

When b is Lipschitz continuous in the space variable, the ODE flow (1.3) admits
a unique global solution, and, through the method of characteristics, (1.1) and (1.2)
are uniquely solved for any given smooth initial or terminal data. Moreover, the flow
is a diffeomorphism, and therefore the solution operators for either the initial value
problem (IVP) or terminal value problem (TVP) for (1.1) and (1.2) are continuous
on L p

loc for any p ∈ [1,∞].
Under the assumption (1.4), the time direction plays a nontrivial role, and there

is a fundamental difference between the solvability of the flow (1.3) forward versus
backward in time. Indeed, b need not even be continuous, and (1.4) is equivalent
to

∇b(t, ·) + ∇b(t, ·)T
2

≥ −C(t) Id in the sense of distributions.

In particular, the distribution divb is a signed measure that is bounded from below,
but not in general absolutely continuous with respect to Lebesgue measure. Thus,
when t < s, the flow (1.3) is expected to concentrate at sets of Lebesgue measure
zero, while the formation of vacuum is witnessed for t > s.

A general study of transport equations and ODEs with irregular velocity fields,
motivated by nonlinear problems in fluid dynamics, was initiated by DiPerna and
the first author [40], who introduced the notion of renormalized solutions to prove
the well-posedness for (1.1) and (1.2) and the almost-everywhere solvability of the
flow (1.3) for b with Sobolev regularity. The DiPerna–Lions theory was extended to
equations where only Sym(∇b) ∈ L1 [28], to Vlasov equations with BVloc velocity
fields [20], and to two-dimensional problems with a Hamiltonian structure [2–
4,21,45]. Using deep results from geometric measure theory, the renormalization
property was extended to the very general case where b ∈ BVloc and div b ∈ L1

by Ambrosio [5], who also provided a new, measure-theoretic viewpoint on the
relationship between uniqueness of nonnegative solutions of (1.2) and the unique
solvability of the flow (1.3) through the idea of superposition. Further developments
include equations with velocity fields having a particular structure allowing for
less regularity [31,50] and velocity fields belonging to SBD (i.e. Sym(∇b) is a
signed measure with no singular Cantor-like part) [12]. Fine regularity properties of
DiPerna-Lions flows were established in [13,36], and the study of so-called “nearly
incompressible flows” [14] led to the resolution by Bianchini and Bonicatto [19]
of Bressan’s compactness conjecture [26,27]; see also [47] for related results. For
many more details and references, we refer the reader to the surveys [6–8,10].

In the majority of these works, the divergence div b is assumed to be bounded,
or at least absolutely continuous with respect to Lebesgue measure. This is not the
case in general for velocity fields satisfying (1.4), and so the equations (1.1) and
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(1.2) do not even have a sense as distributions, because the products (div b)u and
b f are ill-defined for general u ∈ L1

loc or measures f . The DiPerna-Lions theory
does not, therefore, cover this situation. Moreover, the choice of an appropriate
function space of solutions is very sensitive to whether the equations are posed as
initial or terminal value problems.

The problems (1.1)–(1.3) for velocity fields with a one-sided Lipschitz con-
dition have been approached with a variety of methods [22,25,29,33,59–61], a
primary motivation being the study of pressureless gases and scalar conservation
laws, which, when posed as nonlinear transport equations, involve velocity fields
whose divergence is not absolutely continuous [23,24,43,44]. Our main purpose
is to complement these works, and in particular the theory of Bouchut, James, and
Mancini [25], by providing complete characterizations of the stable solutions to all
three problems in both the compressive and expansive regimes. We also provide
some results on the corresponding parabolic equations with a degenerate, second-
order term, as well as the SDE analogue of (1.3) for both the velocity field b and
−b.

1.1. Main Results

We relegate a full description of the results, discussions, and examples to the
body of the paper. Here, we briefly outline the different sections and the types of
results proved within them, and we compare them to the existing literature.

1.1.1. TheCompressiveRegime In Sect. 2, we record properties of the backward
Filippov flow for (1.3), as well as for its Jacobian Jt,s(x):= det(∇φt,s(x)), which
is well-defined in L∞ for a.e. t ≤ s and x ∈ R

d . We employ measure-theoretic
arguments to make sense of the right-inverse of the flow in an almost-everywhere
sense, as a preliminary step to understanding the forward, regular Lagrangian flow,
and prove several properties, the most important of which is its almost-everywhere
continuity.

In Sect. 3, we turn to the study of the nonconservative equation1

∂t u − b(t, x) · ∇u = 0 in (0, T ) × R
d , u(T, ·) = uT , (1.5)

for which the uniqueness of continuous distributional solutions fails in general. We
introduce a new PDE characterization of the “good” (stable) solution of (1.5) as the
unique viscosity solution, in the sense of Crandall, Ishii, and the first author [35].
This is done by proving a comparison principle for sub and supersolutions. The
viscosity solution characterization coincides with the selection of “good” solutions

1 For a consistent presentation throughout the paper, and in order to emphasize the dual
relationship between the two equations, the transport equation (1.1) will always be posed as
a terminal value problem, and the continuity equation (1.2) as an initial value problem. The
compressive and expansive regimes will be distinguished by the choice of sign in front of
the velocity field b.



Arch. Rational Mech. Anal.          (2024) 248:86 Page 5 of 61    86 

by other authors in particular settings [22,25,33,59–61], allows for robust stabil-
ity statements, and, moreover, generalizes to the setting of degenerate parabolic
problems (see the discussion below).

The “usual” viscosity solution theory must be modified due to the lack of global
continuity of b. In view of the evolution nature of the equations, the L1-dependence
in time does not present a problem, and the equations can be treated with the
methods of [46,55,57,58]. To deal with the discontinuity of b in space, sub and
supersolutions must be defined with appropriate semicontinuous envelopes of b
in the space variable. The direction of the one-sided Lipschitz assumption (1.4)
accounts for the beneficial inequalities in the proof of the comparison principle.

The nonuniqueness of distributional solutions is explored through examples of
the form b(x) = sgn x |x |α . We also introduce further conditions on the velocity
field b and terminal data uT that ensure uniqueness of arbitrary continuous distri-
butional solutions. In particular, the interplay between the regularity of b and uT
plays an important role: if b ∈ Cα and uT ∈ Cβ , then distributional solutions are
unique if α + β > 1, while uniqueness may fail in general if α + β ≤ 1, as can be
seen from our counterexamples.

The latter half of Sect. 3 deals with the study of the dual problem to (1.5),
namely,

∂t f − div(b(t, x) f ) = 0 in (0, T ) × R
d , f (0, ·) = f0. (1.6)

Even if f0 ∈ L1
loc, the concentrative nature of the flow causes the measure f (t, ·)

to develop a singular part, and therefore we are led to seek measure-valued so-
lutions. This prevents the duality solution of (1.6) from being understood in the
distributional sense, due to the lack of continuity of b. Nevertheless, we prove that,
if b is continuous, or if it happens that f (t, ·) is absolutely continuous with respect
to Lebesgue measure on the time interval [0, T ], then the notions of duality and
distributional solutions are equivalent.

An important feature of the continuity equation (1.6) is the failure of renor-
malization; that is, if f is a duality solution, the measure | f | may fail to be a
distributional solution, and may even violate conservation of mass. We once again
study examples of the form b(x) = sgn x |x |α , 0 ≤ α < 1. Note that, for this
example, when α > 1, b has the Sobolev regularity b ∈ W 1,p for p < 1/α, and
so our counterexample is constructed to ensure that the duality solution f satisfies
f ∈ Lq only for q outside the range for which the DiPerna-Lions commutator
lemma holds. This contrast with the DiPerna-Lions theory is a direct consequence
of the compressive nature of the backward flow, which can lead to cancellation of
the positive and negative parts of f . A related phenomenon is the nonuniqueness of
distributional solutions of the continuity equation (1.2) with the reverse sign (see
below).

1.1.2. The Expansive Regime In Sect. 4, we reverse the sign on the velocity
field, and study the corresponding problems

∂t u + b(t, x) · ∇u = 0 in (0, T ) × R
d , u(T, ·) = uT (1.7)

and
∂t f + div(b(t, x) f ) = 0 in (0, T ) × R

d , f (0, ·) = f0. (1.8)
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In view of the lower bound on the divergence of b, we are motivated to seek an
L p-based theory for both equations, based on a priori estimates, or equivalently, on
the fact that the characteristic flow (the forward ODE (1.3)) does not concentrate
on sets of measure zero.

The initial value problem for the continuity equation (1.8) was studied in [22,
25], where a large part of the analysis is based on the fact that locally integrable
distributional solutions are not unique in general.2 The same setting is studied
in [29], where the existence and uniqueness of the forward Filippov flow for (1.3)
is established for a.e. x ∈ R

d .
In the first part of Sect. 4, we identify a unique “good” distributional solution,

and prove that the resulting solution operator is continuous on L p
loc for all p ∈

[1,∞], and stable with respect to regularizations. This coincides with the notion
of reversible solution in [22,25].

We then obtain strong stability results for the Bouchut–James–Mancini duality
solutions of the nonconservative problem (1.7) in all L p-spaces, which allow us to
prove the renormalization property. Moreover, we introduce a PDE characterization
of this duality solution in terms of regularization by ess inf- and ess sup-convolution.
An important ingredient in establishing this characterization is the propagation of
almost-everywhere continuity, which, in turn, follows from the renormalization
property and the almost-everywhere continuity of the forward flow proved in Sect. 2.

As a consequence of this new characterization, we give a PDE-based proof
of the fact that nonnegative distributional L p-solutions of (1.8) are unique, which
was established in [29] using the superposition principle. This result, along with the
renormalization property for (1.7), allows us to establish the existence, uniqueness,
and stability of the forward regular Lagrangian flow for the ODE (1.3) identified
in [29]. As a byproduct, this also provides a full characterization of the Bouchut-
James-Mancini notion of “good” (reversible) solution as the pushforward of f0 by
the forward flow. Moreover, a distributional solution f is a reversible solution if
and only if | f | is also a distributional solution (cf. [25, Proposition 3.12], which
operates under the criterion that f be a so-called “Jacobian” solution).

1.1.3. SDEs and Second Order Equations This paper also contains various
results regarding second order versions of (1.1) and (1.2), as well as stochastic dif-
ferential equation (SDE) flows. SDEs and degenerate second-order Fokker-Planck
equations have been studied from many perspectives, using both the DiPerna-Lions
theory and adaptations of the superposition principle, by many authors, including
Le Bris and Lions [51], Figalli [41], Trevisan [64], and Champagnat and Jabin [32];
see also the book [52]. Just as in the first-order setting, the fact that the measure
div b may contain a singular part prevents the application of these theories to the
present situation.

2 Note that in [25], the velocity field a takes the role of −b in (1.4), while the time-
directions of (1.7) and (1.8) are switched, so their setting corresponds to the expansive
regime discussed here.
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In the compressive regime, we extend the viscosity solution theory of Sect. 3
to the second order equation

−∂t u+b(t, x) ·∇u− tr[a(t, x)∇2u] = 0 in (0, T )×R
d , u(T, ·) = uT , (1.9)

where b satisfies the one-sided Lipschitz condition (1.4) and a is a regular, but
possibly degenerate, symmetric matrix. This equation, as well as the dual problem

∂t f −div(b(t, x) f )−∇2 ·(a(t, x) f ) = 0 in (0, T )×R
d , f (0, ·) = f0, (1.10)

can be related to the SDE

dt�t,s(x) = −b(t,�t,s(x))dt + σ(t,�t,s(x))dWt , t > s, �s,s(x) = x,
(1.11)

which is the SDE analogue of the backward flow for (1.3). Here W is a given
Brownian motion and a = 1

2σσ T . We establish the existence and uniqueness, for
every x ∈ R

d , of a strong solution in the Filippov sense, and we show that, with
probability one, �t,s is Hölder continuous for any exponent less than 1.

The situation is more complicated in the expansive regime, namely, for the
equations

−∂t u−b(t, x) ·∇u− tr[a(t, x)∇2u] = 0 in (0, T )×R
d , u(T, ·) = uT (1.12)

and

∂t f +div(b(t, x) f )−∇2 ·(a(t, x) f ) = 0 in (0, T )×R
d , f (0, ·) = f0. (1.13)

In the first-order setting, the characterization of the “good” distributional solution
of the continuity equation (1.8) relies on the Lipschitz continuity of the backward
ODE flow. Adapting similar methods for the second order equation (1.13) involves
establishing Lipschitz continuity of a stochastic flow like (1.11) with certain time-
reversed coefficients (see (4.30) below). While it is well-known that flows of the
form (1.11) are Hölder continuous for any exponent less than 1, even in more
general contexts (see [62]), it is an open question as to whether it is Lipschitz
with probability one. We relegate a general study of (1.12) and (1.13), and of the
stochastic regular Lagrangian flow for

dt�t,s(x) = b(t,�t,s(x))dt+σ(t,�t,s(x))dWt , t > s, �s,s(x) = x, (1.14)

to future work. The exception is when σ is constant in the R
d -variable.3 In this

case, we prove that a suitable stochastic flow of the form (1.11) can be inverted,
leading, as in the deterministic case, to the existence and uniqueness of a strong
solution to (1.14) for a.e. x ∈ R

d , and a corresponding solution theory for the PDEs
(1.12) and (1.13).

3 Another case of interest is when the diffusion matrix a is nondegenerate in which case
very general results can be obtained even for locally bounded b; see [41].
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1.2. Applications and Further Study

While interesting in their own right, linear transport equations and ODEs with
nonregular velocity fields arise naturally in several equations in fluid dynamics, in
which the velocity fields depend nonlinearly on various other physical quantities
that are coupled with the transported quantity. Since these equations must be posed
a priori in a weak sense, this leads to velocity fields with limited regularity. The
DiPerna-Lions and Ambrosio theories have been successfully applied to a number
of such situations; see [9,11,15,16,37,48,53,67]. As mentioned above, the one-
dimensional Bouchut-James theory of reversible solutions for transport equations
with semi-Lipschitz velocity fields has been successfully applied in applications to
conservation laws and pressureless gasses; see [23,24,43,44].

Nonlinear transport equations also arise in certain models for large population
dynamics, specifically mean field games (MFG). In [49], the first author and Lasry
introduced a forward-backward system of PDEs modeling a large population of
agents in a state of Nash equilibrium. The evolution of the density f of players is
described by a continuity equation (1.8) (or Fokker-Planck equation (1.13)), where
the velocity field b is given by

b(t, x) = −∇pH(t, x,∇u(t, x)). (1.15)

Here, H is a convex Hamiltonian, and u is the solution of the terminal value problem

−∂t u − tr[a(t, x)∇2u] + H(t, x,∇u(t, x)) = F[ f (t, ·)] in (0, T ) × R
d ,

u(T, ·) = G[ f (t, ·)], (1.16)

which is a Hamilton–Jacobi–Bellman equation encoding the optimization problem
for a typical agent, and whose influence by the population of agents is described by
the coupling functions F and G. The velocity field (1.15) is the consensus optimal
feedback policy of the population of agents at a Nash equilibrium.

When a is degenerate, or even zero, the function u has limited regularity, and
is no better than semiconcave in the spatial variable in general. Therefore, even if
H is smooth, the velocity field (1.15) may satisfy at most

b ∈ BVloc and (div b)− ∈ L∞. (1.17)

This falls just outside the DiPerna-Lions-Ambrosio regime, since the measure
(div b)+ may still fail to be absolutely continuous in general. In fact, the well-
posedness of a suitable notion of solution for the transport and ODE problems
under the general assumptions (1.17) remains an open problem.

Many simple but useful MFG models involve a linear-quadratic Hamiltonian
of the form

H(t, x, p) = A(t, x)|p|2 + B(t, x) · p + C(t, x)

for smooth, real-valued A, B,C with A > 0. In this case, it is easy to see that
(1.15) satisfies the half-Lipschitz condition (1.4). This situation was studied by
Cardaliaguet and Souganidis [29] for first-order, stochastic mean field games sys-
tems with common noise. In particular, it is proved there that the uniqueness of
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probability density solutions of (1.7) gives rise, through the superposition princi-
ple, to the uniqueness of optimal trajectories for the probabilistic formulation of
the MFG problem, and, moreover, the solution of the stochastic forward-backward
system can be used to construct approximate Nash equilibria for the N -player game.
Our analysis for the Fokker-Planck equation (1.13) may therefore be expected to
yield similar results for stochastic MFG systems with common noise and degen-
erate, spatially-homogenous, idiosyncratic noise, a special case of the equations
considered by Cardaliaguet, Souganidis, and the second author in [30].

The second application of nonlinear transport equations in mean field games
is involved with the master equation for a MFG with a finite state space. These
equations generally take the form

∂t u + b(t, x, u) · ∇u = c(t, x, u) in (0, T ) × R
d , (1.18)

where u, b, and c all take values in R
d ; coordinate-by-coordinate, (1.18) is written

as

∂t u
i + b j (t, x, u)∂x j u

i = ci (t, x, u), i = 1, 2, . . . , d.

Therefore, (1.18) is a nonconservative hyperbolic system, whose general well-
posedness is a difficult question in general; note that, when d = 1, (1.18) becomes
a scalar conservation law.

We do not discuss (1.18) here, but, in the paper [56], we study a particular
regime of equations taking the form (1.18), using a new theory for linear transport
equations with velocity fields b that are increasing coordinate by coordinate, that
is, ∂x j b

i ≥ 0 for i �= j .
The extension to infinite dimensions, of both the linear problems (1.1)–(1.2),

as well as the nonlinear equation (1.18), remains an interesting question, with
numerous applications, including the study of mean field game master equations
on the Hilbert space of square-integrable random variables. We aim to study these
situations in future work.

1.3. Notation

Given a function space X (Rd), or X (�) for an appropriate subdomain of Rd ,
X loc denotes the space of functions (or distributions) f such that φ f ∈ X for all
φ ∈ C∞

c (Rd). If X is a normed space, the same is not necessarily true for X loc, but
it inherits the topology of local X -convergence. For example, limn→∞ fn = f in
L p

loc(R
d) means that limn→∞ ‖ fn − f ‖L p(BR) = 0 for all R > 0. We denote by

L p
+([0, T ]) the subset of L p([0, T ]) consisting of nonnegative functions.

Unless otherwise specified, Banach or Fréchet spaces of functions are endowed
with the strong topology. For a function space X , the subscripts Xw and Xw-	
indicate the weak (resp. weak-	) topology.

For 1 ≤ p < ∞, Pp is the space of Borel probability measures μ, with∫ |x |pμ(dx) < ∞, which becomes a complete metric space for the p-Wasserstein
distance Wp defined for μ, ν ∈ Pp by

Wp(μ, ν) = inf
γ∈�(μ,ν)

∫∫

Rd×Rd
|x − y|pdγ (x, y),
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where � is the set of couplings of μ and ν, that is, measures γ on the product space
R
d × R

d such that γ (A × R
d) = μ(A) and γ (Rd × A) = ν(A) for all Borel

measurable A ⊂ R
d .

The transpose of a matrix σ is denoted by σ T , and, if σ is a square matrix,
its symmetric part is denoted by Sym(σ ):= 1

2 (σ + σ T ). The symbol Id stands for
either the identity map or the identity matrix, the precise meaning being clear from
context.

2. The ODE Flow

This section is focused on the solvability and properties of the flow associated
to a velocity field b satisfying that

⎧
⎪⎨

⎪⎩

for some C0,C1 ∈ L1+([0, T ]) and for all t ∈ [0, T ] and x, y ∈ R
d ,

|b(t, x)| ≤ C0(t)(1 + |x |) and

(b(t, x) − b(t, y)) · (x − y) ≥ −C1(t)|x − y|2.
4 (2.1)

Because b(t, ·) is not necessarily continuous, the ODE must be interpreted in
the Filippov sense [42], that is, abusing notation, we denote by b(t, x) the convex
hull of all limit points of b(t, y) as y → x . For s ∈ [0, T ], we seek absolutely
continuous solutions t �→ φt,s(x) of the problem

{
∂tφt,s(x) ∈ b(t, φt,s(x)), t ∈ [0, T ],
φs,s(x) = x .

(2.2)

Remark 2.1. If Ẋ(t) ∈ b(t, X (t)),

X̃(t):= exp

(∫ t

0
C1(s)ds

)

X (t) and

b̃(t, x):= exp

(∫ t

0
C1(s)ds

)

b

(

t, exp

(

−
∫ t

0
C1(s)ds

)

x

)

,

so that ˙̃X ∈ b̃(t, X̃(t)), then b̃ satisfies (2.1) withC1 ≡ 0 and a possibly differentC0.
In other words, with a change of variables, one may always assume b is monotone
without loss of generality.

We will use the following characterization and properties of half-Lipschitz
maps; see [25, Lemma 2.2 and Remark 2.4].

4 The linear growth assumption is a standard way to ensure that the a priori estimates for
solutions do not blow up. Otherwise, the results of the paper would need a corresponding
local theory, as for example in [17].
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Lemma 2.1. A vector field B : Rd → R
d satisfies

(B(x) − B(y)) · (x − y) ≥ −C |x − y|2 for some C ≥ 0 and all x, y ∈ R
d

if and only if Sym(∇B) ≥ −C Id in the sense of distributions. We then also have
B ∈ BVloc(R

d), and

Sym(∇B) − (tr ∇B) Id ≤ (d − 1)C Id .

The fact that B belongs not only to the space BDloc(R
d) of bounded deforma-

tions (the space of vector fields B : Rd → R
d such that the symmetric part of the

distribution ∇B is a locally bounded Radon measure [63]), but more particularly
to BVloc(R

d), is a consequence of the analysis in [1], where we refer the reader for
many more fine geometric properties of (semi-)monotone functions.

We fix a family of regularizations such that
{

(bε)ε>0 ⊂ L1([0, T ],C0,1(Rd)), lim
ε→0

bε = b a.e. in [0, T ] × R
d , and

bε satisfies (2.1) uniformly in ε > 0.
(2.3)

For example, we may take bε(t, ·) = b(t, ·) ∗ ρε for ρε = ε−dρ(·/ε), with ρ ∈
C∞+ (Rd), supp ρ ∈ B1, and

∫
ρ = 1.

2.1. The Backward Flow

We begin the analysis with the backward flow, that is, (2.2) for t < s. This
is the time-direction for which the one-sided Lipschitz condition (2.1) yields a
unique, Lipschitz flow. We record its properties here and refer to [33,42,59,60] for
the proofs; see also the work of Dafermos [38] for the connection to generalized
characteristics of conservation laws.

Lemma 2.2. For every (s, x) ∈ [0, T ] ×R
d , there exists a unique solution φt,s(x)

of (2.2) defined for (t, x) ∈ [0, s] × R
d , satisfying the Lipschitz bound

|φt,s(x) − φt,s(y)| ≤ exp

(∫ s

t
C1(r)dr

)

|x − y| for all 0

≤ t ≤ s ≤ T and x, y ∈ R
d . (2.4)

Moreover, there exists a constant C > 0 depending only on T and C0 from (2.1)
such that

|φt,s(x)| ≤ C(|x | + 1) for all 0 ≤ t ≤ s ≤ T and x ∈ R
d , (2.5)

and ⎧
⎪⎨

⎪⎩

|φt1,s(x) − φt2,s,x | ≤ C(1 + |x |)|t1 − t2| and

|φt,s1(x) − φt,s2(x)| ≤ C(1 + |x |)|s1 − s2|
for all t1, t2 ∈ [0, s], s2, s2 ∈ [t, T ], and x ∈ R

d .

(2.6)

For all 0 ≤ r ≤ s ≤ t ≤ T , φr,s ◦ φs,t = φr,t . If (bε)ε>0 are regularizations satis-
fying (2.3), then the corresponding backward flows φε converge locally uniformly
as ε → 0 to φ.
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Remark 2.2. The a priori local boundedness and time-regularity estimates (2.5) and
(2.6), depending only onC0 and notC1, do not require the half-Lipschitz assumption
on b(t, ·), and are therefore satisfied for any limiting solutions of the ODE when b
satisfies the first condition in (2.1). On the other hand, the half-Lipschitz assumption
is crucial for the Lipschitz continuity of the flow (2.4), as well as the uniqueness of
the solution.

Remark 2.3. Consider the backward flow in R corresponding to b(t, x) = b(x) =
sgn x , which is given, for x ∈ R and s < t , by

φs,t (x) =
⎧
⎨

⎩

x + (t − s) if x < −t − s,
0 if |x | ≤ t − s, and
x − (t − s) if x > t − s.

(2.7)

This demonstrates that, in general, the trajectories of the backward flow may con-
centrate on sets of measures 0, in particular, where b has jump discontinuities.

We will often consider the examples b(x) = sgn x in subsequent parts of the
paper in order to illustrate certain general phenomena and to present counterex-
amples. Note that, by Remark 2.1, one can consider similar examples for arbitrary
C1 ∈ L1+([0, 1]).

2.2. The Jacobian for the Backward Flow

In view of the Lipschitz regularity (2.4), ∇xφt,s ∈ L∞ for t ≤ s, and so we can
define the Jacobian

Jt,s(x):= det(∇xφt,s(x)) for 0 ≤ t ≤ s ≤ T and a.e. x ∈ R
d . (2.8)

Lemma 2.3. Let J be defined as in (2.8). Then J ≥ 0,
{
J·,s ∈ L∞([0, s] × R

d) ∩ C([0, s], L1
loc(R

d)) ∀s ∈ [0, T ] and

Jt,· ∈ L∞([t, T ] × R
d) ∩ C([t, T ], L1

loc(R
d)) ∀t ∈ [0, T ], (2.9)

∥
∥Jt,s

∥
∥
L∞ ≤ exp

(

d
∫ s

t
C1(r)dr

)

for all 0 ≤ t ≤ s ≤ T, (2.10)

and, for all R > 0, there exists a modulus of continuity ωR, which depends on b
only through the constants C0 and C1 in (2.1), such that

{ ∥
∥Jt1,s − Jt2,s

∥
∥
L1(BR)

≤ ωR(|t1 − t2|) for all t1, t2 ∈ [0, s] and
∥
∥Jt,s1 − Jt,s2

∥
∥
L1(BR)

≤ ωR(|s1 − s2|) for all s1, s2 ∈ [t, T ]. (2.11)

If (bε)ε>0 are as in (2.3), (φε)ε>0 are the corresponding solutions of (2.2), and,
for ε > 0, J ε = det(∇xφ

ε), then

lim
ε→0

J ε·,s = J·,s weak- 	 in L∞([0, s] × R
d) and

lim
ε→0

J ε
t,· = Jt,· weak- 	 in L∞([t, T ] × R

d). (2.12)
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Proof. It suffices to prove all statements about J·,s on [0, s]. The arguments are
exactly the same for the other halves using the fact that s �→ φt,s is the forward
flow corresponding to the velocity −b.

The convergence (2.12) goes through by compensated compactness arguments
for determinants; see the Appendix of [25]. The nonnegativity of J now follows,
because J ε ≥ 0 for all ε.

For fixed ε > 0 and (s, x) ∈ [0, T ] × R
d , we have

∂t J
ε
t,s(x) = divx b

ε(t, φε
t,s(x))J

ε
t,s(x) for t ∈ [0, s].

Then (2.3) implies ∂t J ε
t,s(x) ≥ −dC1(t)J ε

t,s(x), and so

∂

∂t

(
J ε
t,s(x)e

−d
∫ s
t C1(r)dr

)
≥ 0.

In particular, for t1 < t2 ≤ s and R > 0,
∫

BR

|J ε
t2,s − J ε

t1,s | ≤ e
∫ t2
t1

C1(r)dr
∫

BR

J ε
t2,s −

∫

BR

J ε
t1,s

+
(

e
∫ t2
t1

C1(r)dr − 1

)∫

BR

J ε
t2,s .

Identifying the modulus of continuity ωR in the statement of the Lemma then
reduces to proving the uniform-in-ε continuity of

[0, s] � t �→
∫

BR

J ε
t,s(x)dx;

note that
∫

BR
J ε
s,s(x)dx = |BR |, so this will also imply that

∫

BR
J ε
t,s(x)dx is

bounded uniformly in ε.
In view of the uniform-in-ε L∞-boundedness of J ε, it suffices to prove the

uniform-in-ε continuity in t of
∫

f (x)J ε
t,s(x)dx for any f ∈ Cc(R

d). The change
of variables formula gives

∫

f (x)J ε
t,s(x)dx =

∫

f (φε
s,t (x))dx .

Note that ∂tφ
ε
s,t (x) = −bε(t, φε

s,t (x)), and the Lipschitz constant in t of φε
s,t (x)

depends only on an upper bound for |x | and the constant C0 in (2.1), and, therefore,
is independent of ε. ��

When d = 1, the L∞-weak-	 convergence of J ε = ∂xφ
ε to J can be strength-

ened via an Aubin-Lions type compactness result.

Proposition 2.1. Assume d = 1, and let J ε and J be as in Lemma 2.3. Then

lim
ε→0

J ε·,s = J·,s strongly in L1
loc([0, s] × R)

and

lim
ε→0

J ε
t,· = Jt,· strongly in L1

loc([t, T ] × R).
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Proof. Fix t ∈ [0, T ] and R > 0. Lemma 2.2 implies that there exists M indepen-
dent of ε such that |φε

t,s(x)| ≤ M for all s ∈ [t, T ] and x ∈ [−R, R]. Upon redefin-
ing b outside of [0, T ] × [−2R, 2R], we find that φt,s(x), and therefore Jt,s(x), is
unchanged, and therefore, in order to prove the L1-convergence in [t, T ]×[−R, R],
we may assume without loss of generality that b is bounded uniformly. Applying the
transformation φ̃t,s(x) = φt,s(x) − ∫ s

t C(r)dr for an appropriate C ∈ L1+([0, T ])
depending on C0 from (2.1), we may also assume b ≥ 1.

For (s, x) ∈ [t, T ] × R, set f ε(s, x) = J ε
t,s(x). Then f ε solves the continuity

equation

∂s f
ε + ∂x

(
bε(s, x) f ε

) = 0 in [t, T ] × R and f ε(t, ·) = 1.

For a standard mollifier ρ ∈ C∞
c ([−1, 1]), let ρn = nρ(·/n) and f ε,n = ρn ∗t f ε

be the mollification of f ε only in the time variable. We then have

∂s f
ε,n + ∂x

[
ρn ∗t (bε f ε)

] = 0 in

[

t + 1

n
, T

]

× R

and, for any R > 0,

sup
s∈[t+1/n,T ]

∥
∥∂x

[
ρn ∗t (bε f ε)

]
(s, ·)∥∥L1([−R,R])

≤ sup
s∈[t+1/n,T ]

∥
∥∂s f

ε,n(s, ·)∥∥L1([−R,R]) ≤ n
∥
∥ρ′∥∥

L1(R)
ωR

(
1

n

)

,

where ωR is as in (2.11). It follows that, for fixed n ∈ N, (ρn ∗t (bε f ε))ε>0 is
precompact in L1([t, T ] × [−R, R]), and so, because

lim
n→∞ ρn ∗t (bε f ε) = b f

in L1([t, T ]×[−R, R]), uniformly in ε, we conclude that (bε f ε)ε>0 is precompact
in L1([t, T ] × [−R, R]). This implies that, as ε → 0, bε f ε converges strongly in
L1([t, T ] × [−R, R]) to b f .

Fix any subsequence (εn)n≥0 approaching zero as n → ∞. Then there exists a

further subsequence such that f εnk bεnk
k→∞−−−→ f b almost everywhere, and therefore

f εnk
k→∞−−−→ f a.e. in [t, T ] × [−R, R] because b ≥ 1 and

f ε(s, x) − f (s, x) = b(s, x) f ε(s, x) − b(s, x) f (s, x)

b(s, x)

= bε(s, x) f ε(s, x) − b(s, x) f (s, x)

b(s, x)

+ (b(s, x) − bε(s, x)) f ε(s, x)

b(s, x)
.

The convergence of f εnk to f in L1([t, T ] × [−R, R]), and therefore the conver-
gence of the full family ( f ε)ε>0 to f , is a consequence of the Lebesgue dominated
convergence theorem. ��
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Remark 2.4. The one-dimensional structure is important in the proof of Propo-
sition 2.1, in particular, in deducing from the equicontinuity of J ε in time that
(bε J ε)ε>0 belongs to a precompact subset of L1. It is not immediately clear whether
this argument can be extended to multiple dimensions.

2.3. The Forward Flow as the Right-Inverse of the Backward Flow

We next investigate the solvability of (2.2) forward in time. This is done by
analyzing the Jacobian J from the previous subsection in order to invert the back-
ward flow. Similar methods are used in [29], and, by including the Jacobian in the
analysis, we obtain additionally the almost-everywhere continuity of the inverse.

We will revisit this topic in Sect. 4 when we analyze the forward flow, which
will arise from the theory of renormalized solutions of the appropriate transport
equation.

Proposition 2.2. For t ≤ s, there exists a set Ats ⊂ R
d of full measure such that,

for all y ∈ Ats , φ
−1
t,s ({y}) is a singleton, which we denote by

{
φs,t (y)

}
. Moreover,

there exists a version of the map φs,t : Rd → R
d such that φs,t is continuous a.e.

As an intermediate step, we first prove the following:

Lemma 2.4. Assume 0 ≤ t ≤ s ≤ T and K ⊂ R
d is nonempty, compact, and

connected. Then φ−1
t,s (K ) is nonempty, compact, and connected.

Proof. For r > 0, define Kr :=⋃
y∈K Br (y). Fix a sequence (bn)n∈N satisfying

(2.3)5, and let φn
t,s denote the corresponding backward flow from the previous

subsections.
We first show that

φ−1
t,s (K ) =

⋂

r>0

⋃

n∈N

⋂

k≥n

(φk
t,s)

−1(Kr ). (2.13)

Suppose x ∈ φ−1
t,s (K ). Then y = φt,s(x) ∈ K . Setting yn :=φn

t,s(x), we have
limn→∞ yn = y by Lemma 2.2, which means that, for all r > 0, there exists n ∈ N

such that, for all k ≥ n, φk
t,s(x) ∈ Br (y) ⊂ Kr . This proves the ⊂ direction of

(2.13).
Now suppose x belongs to the right-hand side of (2.13). Then, for all r > 0, there

exists n ∈ N such that x ∈ (φk
t,s)

−1(Kr ) for all k ≥ n. Set yk :=φk
t,s(x), so that we

have yk ⊂ Kr for all k ≥ n. We have y:= limk→∞ yk = limk→∞ φk
t,s(x) = φt,s(x)

by Lemma 2.2. On the other hand, we also have y ∈ Kr , and so

φt,s(x) ⊂
⋂

r>0

Kr = K .

Thus, the ⊃ direction of (2.13) is established.

5 That is, we abuse notation and suppose that bn = bεn for (bε)ε>0 satisfying (2.3) and
some (εn)n∈N satisfying limn→∞ εn = 0.
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The continuity of φt,s and the compactness of K imply that φ−1
t,s (K ) is closed.

We note also that (φk
t,s)

−1 = φk
s,t satisfies (2.5) uniformly in k, because the bound

only depends on the constant C0 in the linear growth bound of (2.1), which is also
satisfied by −bk . This along with (2.13) implies that φ−1

t,s (K ) is bounded, and thus
compact.

We now show that φt,s is surjective. Using again the bound (2.5) satisfied
uniformly in k for φk

s,t , we set xn :=(φn
t,s)

−1(y) = φn
s,t (y) and note that (xn)n∈N is

bounded. Passing to a subsequence, we have limk→∞ xnk = x for some x ∈ R
d ,

and then y = φ
nk
t,s(xk), so that y = limk→∞ φ

nk
t,s(xk) = φt,s(x).

Finally, we show φ−1
t,s (K ) is connected. For each k ∈ N, (φk

t,s)
−1(Kr ) is con-

nected, and therefore so is the intersection
⋂

k≥n(φ
k
t,s)

−1(Kr ) for each n. These
sets are nested in n, so taking the union in n ∈ N yields a connected set. Taking the
intersection over r > 0 gives the connectedness of φ−1

t,s (K ). ��
Remark 2.5. The fact that the approximate backward flows converge uniformly to
φt,s is used in the second-to-last paragraph of the proof, in order to show that φt,s

is surjective.

Proof of Proposition 2.2. We identify the set by

At,s =
{
y ∈ R

d : there exists x ∈ φ−1
t,s ({y}) such that

φt,s is differentiable at x and Jt,s(x) �= 0
}
.

We first check that At,s has full measure. Its complement consists of

R
d\Ats =

{
y ∈ R

d : Jt,s = 0 at the points of differentiability of φt,s on φ−1
t,s ({y})

}

∪
{
y ∈ R

d : φt,s is not differentiable anywhere in φ−1
t,s ({y})

}
.

The fact that φt,s is differentiable a.e. and the change of variables formula then
give

|Rd\At,s | =
∫

Rd
1{φt,s(x) ∈ R

d\At,s}Jt,s(x)dx = 0.

It remains to show that φ−1
t,s ({y}) is a singleton for all y ∈ At,s . By Lemma 2.4,

φ−1
t,s ({y}) is nonempty, compact, and connected. Suppose x, x̃ ∈ φ−1

t,s ({y}) are such
that Jt,s(x) �= 0. A Taylor expansion gives

y = φt,s(x̃) = φt,s(x) + ∇xφt,s(x) · (x − x̃) + o(|x − x̃ |)
= y + ∇xφt,s(x) · (x − x̃) + o(|x − x̃ |).

The invertibility of ∇xφt,s(x) then implies that, if |x̃ − x | is sufficiently small, then
x̃ = x , or, in other words, x is an isolated point. But then the connected set φt,s({y})
must be equal to {x}, and we call x = φs,t (y).

For y ∈ At,s , we then have (φt,s ◦ φs,t )(y) = y. Since φ−1
t,s ({y}) is nonempty

for any y ∈ R
d , we may define a version of φs,t on all of Rd by imposing that
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φs,t (y) ∈ (φ−1
t,s )({y}) for any y ∈ At,s . For this version, we have φt,s ◦ φs,t = Id

everywhere on R
d . Suppose now that y ∈ At,s and limn→∞ yn = y for some

sequence (yn)n∈N ⊂ R
d . Then

lim
n→∞(φt,s ◦ φs,t )(yn) = (φt,s ◦ φs,t )(y).

We have

(φs,t (yn))n∈N ⊂
⋃

n∈N
(φt,s)

−1({yn}),

which implies by Lemma 2.4 that (φs,t (yn))n∈N is bounded. Letting z be a limit point
of this set, we have, by continuity of the backward flow, that y = limn→∞ yn =
φt,s(z), and therefore z = φs,t (y). ��
Remark 2.6. We shall see in Sect. 4 that the forward flow is always BV in space.
Therefore, the “forward Jacobian” Jt,s for t > s can only be understood as a mea-
sure. Indeed, returning to the example b(t, x) = sgn x onR, the right inverse φt,s of
φs,t given by (2.7) is φt,s(x) = x + (sgnx)(t − s) for s ≤ t , which is discontinuous
only at 0. The backward Jacobian is given by Js,t (x) = 1 {|x | ≥ t − s}, and the
forward one is Jt,s = 1 + 2(t − s)δ0.

Remark 2.7. The formula φs,t ◦ φt,s = Id makes sense a.e. if s < t , because φs,t is
Lipschitz and φt,s is measurable. On the other hand, φt,s is not also a left-inverse,
since the formula φt,s ◦ φs,t does not make sense. In the above example, φs,t (x) is
equal to 0, for |x | ≤ t − s, and 0 is a point of discontinuity for φt,s . In general, the
concentration of φs,t on sets of measure 0 forbids applying φt,s as a left-inverse.

2.4. Compressive Stochastic Flows

We now fix a matrix-valued map

� ∈ L2([0, T ],C0,1(Rd ;Rd×m)), (2.14)

and assume that

W : � × [0, T ] → R
m is a standard Brownian motion

on a given probability space (�,F ,P,E). (2.15)

In order to extend the results in the preceding subsections, and, in particular, to
bypass the difficulties of the backward time direction, we consider forward SDEs
with drift satisfying the opposite of (2.1), that is,

B : [0, T ] × R
d → R

d , −B satisfies (2.1), (2.16)

and consider the flow
{
ds�s,t (x) = B(s,�s,t (x))ds + �(s,�s,t (x))dWs, s ∈ [t, T ],
�t,t (x) = x .

(2.17)
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Once again, (2.17) must be understood in the Filippov sense, which means, for
s ∈ [t, T ],

�s,t (x) = x +
∫ s

t
αr dr +

∫ s

t
�(r,�r,t (x))dWr , αs ∈ B(s,�s,t (x)), (2.18)

and we remark that our assumptions will allow us to always consider probabilis-
tically strong solutions; that is, we solve (2.18) path by path for almost every
continuous W with respect to the Wiener measure. Depending on the context in
later sections (in particular, the time direction of solvability for the transport and
continuity equations), we consider different examples for B and � for which these
assumptions are satisfied.

Lemma 2.5. For every (t, x) ∈ [0, T ] × R
d and P-almost surely, there exists a

unique strong solution �s,t (x) of (2.17) defined on [t, T ] × R
d . Moreover, for all

p ∈ [2,∞), there exists a constantC = Cp > 0 depending only on the assumptions
(2.1) and (2.14) such that

E|�s,t (x) − �s,t (y)|p ≤ C |x − y|p for all 0 ≤ t ≤ s ≤ T and x, y ∈ R
d ,

(2.19)

E|�s,t (x)|p ≤ C(|x |p + 1) for all − 0 ≤ t ≤ s ≤ T and x ∈ R
d ,

(2.20)

and {
E|�s1,t (x) − �s2,t (x)|p ≤ C(1 + |x |)|s1 − s2|p/2

for all t ∈ [0, T ], s1, s2 ∈ [t, T ], and x ∈ R
d .

(2.21)

With probability one, for all 0 ≤ r ≤ s ≤ t ≤ T , �t,s ◦ �s,r = �t,r . If (bε)ε>0
are regularizations satisfying (2.3), then, with probability one, the corresponding
stochastic flows �ε converge locally uniformly as ε → 0 to �.

Proof. For ε > 0, let Bε be the convolution of B in space by a standard mollifier (so
that bε:=−Bε satisfies (2.3)), and let �ε

t,s denote the corresponding stochastic flow.
Itô’s formula, the one-sided Lipschitz assumption, and the Lipschitz continuity of
� yield, for any p ≥ 2 and some C ∈ L1+([0, T ]),

∂

∂t
E|�ε

t,s(x) − �ε
t,s(y)|p ≤ C(t)E|�ε

t,s(x) − �ε
t,s(y)|p,

which, along with Grönwall’s inequality, leads to the first statement. The other two
estimates are proved similarly, with constants independent of ε > 0.

In view of (2.19) and (2.21), the Kolmogorov continuity criterion then yields,
for any R > 0, p ≥ 2 and δ ∈ (0, 1), a constant C = CR,p,δ > 0 such that, for all
s ∈ [0, T ], λ ≥ 1 and ε > 0,

P

(

sup
x,y∈BR

sup
r,s∈[s,T ]

|�ε
t,s(x) − �ε

r,s(y)|
|x − y|1−δ + |t − s| 1

2 (1−δ)
> λ

)

≤ C

λp
.
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It follow that the probability measures on C([s, T ] × R
d;Rd) induced by the

random variables (�ε·,s)ε>0 are tight with respect to the topology of locally uniform
convergence, and therefore converge weakly along a subsequence as ε → 0 to a
probability measure that gives rise to a weak (in the probabilistic sense) solution
of (2.17), for which the estimates in the statement of the lemma continue to hold.

A similar computation to the one above reveals that, for a fixed probability space
and almost every Brownian path W , the solution of (2.17) is unique. The pathwise
uniqueness then implies, by a standard argument due to Yamada and Watanabe [66],
that there is a unique strong solution for every x ∈ R

d . ��

Remark 2.8. It is an open question whether �t,s is Lipschitz continuous, even if B
is Lipschitz. When B is Lipschitz and � ∈ C1,α for some α ∈ (0, 1], it turns out
the flow �t,s is C1,α′

for any α′ ∈ (0, α), but it is not clear how to extend this to
the case where −B satisfies the one-sided Lipschitz bound from below.

As a consequence, an understanding of the Jacobian det(∇x�t,s(x)), or of the
stability with respect to regularizations of B, is considerably more complicated in
the stochastic case. The results of Sect. 4, where we discuss the expansive regime,
are therefore constrained to the first-order case, and we relegate the second-order
analysis to future work. One exception is when � is independent of the spatial
variable, in which case a change of variables relates the SDE to an ODE of the form
(2.2) with a random b.

2.5. Small Noise Approximations

We return to the backward flow φt,s , 0 ≤ t ≤ s ≤ T , from Lemma 2.2. Recall
that the backward flow also corresponds to the forward flow for −b; that is,

∂

∂s
φt,s(x) = −b(s, φt,s(x)), s ≥ t, φt,t (x) = x . (2.22)

For ε > 0, let φε
t,s(x) denote the following stochastic flow

dsφ
ε
t,s(x) = −b(s, φε

t,s(x))ds + εdWs s ≥ t, φε
t,t (x) = x, (2.23)

where W is now a d-dimensional Brownian motion. We note that (2.17) falls under
the assumptions of Lemma 2.5, but in fact (2.23) admits a unique strong solution
as soon as b is merely locally bounded [39,65]. In general, the limiting solutions
as ε → 0 are not unique; however, we immediately have the following as a conse-
quence of Lemma 2.5.

Proposition 2.3. For every ε > 0, there exists a unique strong solution of (2.23).
Moreover, as ε → 0, φε converges locally uniformly to φ.

If J ε = det(∇xφ
ε), then, as ε → 0, J ε converges weak-	 in L∞([s, T ] × R

d)

and weakly in C([s, T ], L1
loc(R

d)) to J .



   86 Page 20 of 61 Arch. Rational Mech. Anal.          (2024) 248:86 

2.6. Some Bibliographical Remarks

We conclude this section by placing the above results in the context of the ex-
isting literature. As has been mentioned, the well-posedness and properties of the
backwards flow in Sect. 2.1 are well studied, and date back to at least the work of
Filippov [42]. For the particular properties of the Jacobian stated in subsection 2.2,
especially the weak-	 convergence in L∞, we expand on arguments from the Ap-
pendix of [25]. Our result on strong convergence when d = 1 relies on arguments
as for Aubin-Lions compactness Lemmas [18,54].

Meanwhile, the forward flow in Sect. 4.3 is comparatively less studied. Our
approach to uniquely identifying the forward flow as the right-inverse of the back-
ward flow is similar to that in the appendix of [29], with the argument expanded so
as to prove the almost-everywhere continuity, which was not previously known. As
mentioned, we further expand the properties of the forward flow in Sect. 4 below.

As in the ODE case, the theory for compressive SDE flows such as those con-
sidered in Sect. 2.4 is well-understood. For instance, in [62], this situation is studied
in a still more general setting (the constant C1 in (2.1) is allowed to depend ad-
ditionally on x and y, with some integrability assumptions), and, similarly as in
Sect. 3.2 below, this allows for a theory of measure-valued solutions of the Fokker–
Planck equation (3.4). By contrast, degenerate stochastic regular Lagrangian flows
and degenerate Fokker-Planck equations with (div b)− ∈ L∞ and divb /∈ L1 are
far less studied, and, as far as we know, our results in Sect. 4.5 below (which rely
on the properties of compressive flows established in this section) are the first in
this direction.

3. The Compressive Regime

In this section, we consider the transport and continuity equations in the so-
called compressive regime. That is, for velocity field b satisfying (2.1), we study
the TVP for the nonconservative equation

−∂u

∂t
+ b(t, x) · ∇u = 0 in (0, T ) × R

d and u(T, ·) = uT in R
d , (3.1)

and the IVP for the conservative equation

∂ f

∂t
− div(b(t, x) f ) = 0 in (0, T ) × R

d and f (0, ·) = f0. (3.2)

We recall that div b is bounded from below, and therefore, the direction of time for
(3.1) and (3.2) does not allow for a solution theory in Lebesgue spaces, due to the
concentrative nature of the backward flow analyzed in the previous section. The
TVP (3.1) will be solved in the space of continuous functions, while (3.2) is solved
in the dual space of Radon measures.

We also obtain analogous results for the second-order equations

−∂u

∂t
− tr[a(t, x)∇2u] + b(t, x) · ∇u = 0 in (0, T ) × R

d and u(T, ·) = uT
(3.3)
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and

∂ f

∂t
− div

[
div(a(t, x) f ) − b(t, x) f

] = 0 in (0, T ) × R
d and f (0, ·) = f0,

(3.4)
where a = 1

2σσ T for σ : [0, T ] × R
d → R

d×m , satisfying that

sup
x∈Rd

|σ(·, x)|
1 + |x | + sup

y,z∈Rd

|σ(·, y) − σ(·, z)|
|y − z| ∈ L2([0, T ]). (3.5)

3.1. The Nonconservative Equation

3.1.1. Representation Formula When interpreting (3.1) in the distributional
sense, we are constrained to seek solutions that are continuous. Indeed, the distri-
bution

b · ∇u = div(bu) − (div b)u

pairs the solution u with div b, which is a measure in general. The other motivating
factor is the formal representation formula for the solution of the TVP (3.1), which
is given in terms of the backward flow:

u(t, x) = uT (φt,T (x)) for (t, x) ∈ [0, T ] × R
d . (3.6)

This formula and the Lipschitz continuity of φt,T given in Lemma 2.2 suggest that
the solution operator for (3.1) should preserve continuity. In fact, the formula (3.6)
defines a distributional solution, which is uniquely obtained from limits of natural
regularizations of the equation.

Theorem 3.1. If uT ∈ C(Rd), then the functionu in (3.6) is a distributional solution
of (3.1). Moreover, if (bε)ε>0 satisfy (2.3) and uε is the corresponding solution of
(3.1) with velocity field bε, then, as ε → 0, uε converges locally uniformly to u.

Proof. The unique solutionuε for the regularized velocity field is given byuε(t, ·) =
uT ◦ φε

t,T , where φε is the flow corresponding to bε. By Lemma 2.2, as ε → 0,
φε converges locally uniformly to φ, and so the local-uniform convergence to u
follows from the continuity of u0.

Multiplying the equation for uε by some ψ ∈ C1
c ((0, T ) ×R

d) and integrating
by parts gives

∫ T

0

∫

Rd
uε(t, x)

(
∂tψ(t, x) − bε(t, x) · ∇ψ(t, x) + (div bε(t, x))ψ(t, x)

)
dxdt = 0.

As ε → 0, bε → b almost everywhere and div bε ⇀ div b weakly in the sense of
measures, and so the fact that u is a distributional solution follows. ��
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Turning next to the second-order equation (3.3), we identify a solution candidate
with the appropriate stochastic flow. We do so by changing the time direction in b
and σ and considering the SDE

{
ds�s,t (x) = −b(s,�s,t (x))ds + σ(s,�s,t (x))dWs, s ∈ [t, T ],
�t,t = Id,

(3.7)

where W is as in (2.15). Note that (3.7) is of the type in (2.17) and thus falls within
the assumptions of Lemma 2.5. In particular, if uT is continuous, then, in view of
(2.19)-(2.21), the formula

u(t, x) = E[uT (�T,t (x))] (3.8)

defines a continuous function. Moreover, if uT is Lipschitz, then u(t, ·) is Lipschitz
for all t > 0, and 1/2-Hölder continuous in time. Note that, in this case, the
distribution tr[a∇2u] = div(a∇u) − (div a) · ∇u makes sense, because ∇u and
div a both belong to L∞.

The following is proved exactly as for Theorem 3.1, with the use of the estimates
in Lemma 2.5.

Theorem 3.2. Let uT ∈ C(Rd) be uniformly continuous and define u by (3.8). If
(bε)ε>0 satisfy (2.3) and uε is the corresponding solution of (3.3) with velocity bε,
then, as ε → 0, uε converges locally uniformly to u. Moreover, if uT ∈ C0,1, then

sup
(t,x,y)∈[0,T ]×Rd×Rd

|u(t, x) − u(t, y)|
|x − y| + sup

(r,s,z)∈[0,T ]×Rd

|u(r, z) − u(s, z)|
|r − s|1/2(1 + |z|) < ∞,

and u is a distributional solution of (3.3).

As a special case, we consider, for ε > 0, the “viscous” version of (3.1), that is

−∂t u
ε − ε2

2
�uε + b(t, x) · ∇uε = 0 in (0, T ) × R

d , uε(T, ·) = uT . (3.9)

This uniformly parabolic equation has a unique classical solution for any uni-
formly continuous uT : R

d → R, which, moreover, is given by uε(t, x) =
E[uT (φε

t,T (x))], where now φε denotes the solution of the SDE (2.23) from the
previous section. Arguing just as in Theorem 3.1 and invoking Proposition 2.3
immediately gives the following:

Theorem 3.3. As ε → 0, the solution uε converges locally uniformly to the function
u given by (3.6).
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3.1.2. Viscosity Solutions Although (3.6) and (3.8) are the distributional solu-
tions that arise uniquely through regularization (either of b or through vanishing
viscosity limits), it turns out that distributional solutions are not unique in general
(see Sect. 3.1.3 below). It is then a natural question as to whether the “good” solu-
tions can be characterized other than as limits of regularizations, or by the explicit
formulae. For example, this is done for the one-dimensional problem in [59] by
introducing a sort of entropy condition.

We give a different characterization here using the theory of viscosity solu-
tions [35], which covers both the first- and second-order problems. We present the
results here only in the second-order case, which includes the first-order equations
when a = 0.

We define, for (t, x, p) ∈ [0, T ] × R
d × R

d ,

b(t, x, p) = lim inf
z→x

b(t, z) · p and b(t, x, p) = lim sup
z→y

b(t, z) · p.

For fixed (t, x) ∈ [0, T ] × R
d , b(t, x, ·) and b(t, x, ·) are Lipschitz continuous on

R
d , and, for fixed (t, p) ∈ [0, T ], b(t, ·, p) and b(t, ·, p) are respectively lower

and upper semicontinuous.
The following definition of viscosity (sup, super) solutions closely resembles

the one in [55]:

Definition 3.1. An upper-semicontinuous (resp. lower-semicontinuous) function u
is called a subsolution (resp. supersolution) of (3.3) if, for all ψ : [0, T ] ×R

d that
are C1 in t and C2 in x , it holds that

− d

dt
max
x∈Rd

{u(t, x) − ψ(t, x)}

≤ inf
{

tr[a(t, y)∇2ψ(t, y)] − b(t, y,∇ψ(t, y)) : y ∈ arg max{u(t, ·) − ψ(t, ·)}
}

(resp.

− d

dt
min
x∈Rd

{u(t, x) − ψ(t, x)}

≥ sup
{

tr[a(t, y)∇2ψ(t, y)] − b(t, y,∇ψ(t, y)) : y ∈ arg min{u(t, ·) − ψ(t, ·)}
} )

.

If u ∈ C([0, T ] × R
d) is both a sub and supersolution, we say u is a solution.

The comparison principle is proved by doubling the space variable. In particular,
we have the following lemma, which follows exactly by methods as in [34,57,58].
For (t, x, y) ∈ [0, T ] × R

d × R
d , we define the nonnegative matrix

A(t, x, y):=
(

σ(t, x)
σ (t, y)

)
(
σ(t, x)T σ(t, y)T

)
.
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Lemma 3.1. Assume u and v are respectively a sub and supersolution of (3.3).
Then w(t, x, y) = u(t, x) − v(t, y) is a subsolution of

−∂tw − tr[a(t, x, y)∇2
(x,y)w] + b(t, x,∇xw) − b(t, x,−∇yw) ≤ 0.

We may now state and prove the comparison principle.

Theorem 3.4. If u and v are respectively a sub and supersolution of (3.3) such
that

sup
(t,x)∈[0,T ]×Rd

u(t, x)

1 + |x | + sup
(s,y)∈[0,T ]×Rd

−v(s, y)

1 + |y| < ∞,

then t �→ supx∈Rd {u(t, x) − v(t, x)} is nondecreasing.
Proof. Define w(t, x, y):=u(t, x) − v(t, y), fix δ, ε > 0, and define �δ,ε(x, y) =
1
2δ

|x− y|2 + 1
2ε

(|x |2 +|y|2). In view of the growth of u and v in x , for all t ∈ [0, T ],
the map w(t, ·, ·)−�δ,ε(x, y) attains a maximum on R

d ×R
d . Moreover, standard

arguments from the theory of viscosity solutions (see for instance [35, Lemma 3.1])
imply that there exist ρδ > 0 and λε such that limδ→0 ρ2

δ /δ = limε→0 ελ2
ε = 0,

and

|x − y| ≤ ρδ and |x | + |y| ≤ λε for all (x, y) ∈ arg max
{
w(t, ·, ·) − �δ,ε

}
, t ∈ [0, T ].

Therefore, if t ∈ [0, T ] and (x, y) ∈ arg max
{
w(t, ·, ·) − �δ,ε

}
, we have, for some

C ∈ L1+([0, T ]),
tr[a(t, x, y)∇2

(x,y)�δ,ε(x, y)]
= tr

[(
1

δ

(
Id − Id

− Id Id

)

+ ε

(
Id 0
0 Id

))(
σ(t, x)
σ (t, y)

)
(
σ(t, x)T σ(t, y)T

)
]

≤ C(t)

(
ρ2

δ

δ
+ ελ2

ε

)

and

− b
(
t, x,∇x�δ,ε(x, y)

) + b
(
t, y,−∇y�δ,ε(x, y)

)

= lim sup
(z,w)→(x,y)

{

−b(t, z) ·
(
x − y

δ
+ βx

)

+ b(t, w) ·
(
x − y

δ
− βy

)}

= lim sup
(z,w)→(x,y)

{

−(b(t, z) − b(t, w)) · z − w

δ
− b(t, z) · βz + b(t, w) · βw

}

≤ C(t)

(
ρ2

δ

δ
+ ε + ελε

)

.

It now follows from Definition 3.1 and Lemma 3.1 that, for someCδ,ε ∈ L1+([0, T ])
satisfying lim(δ,ε)→(0,0) Cδ,ε = 0 in L1([0, T ]),

t �→ sup
(x,y)∈Rd×Rd

{
w(t, x, y) − �δ,ε(x, y)

} −
∫ T

t
Cδ,ε(s)ds

is nondecreasing. The result follows upon sending δ and ε to 0. ��
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As a consequence of the comparison theorem, the “good” distributional solution
of (3.3) can be uniquely characterized.

Theorem 3.5. Assume uT : Rd → R is uniformly continuous and uT ·(1+|·|−1) ∈
L∞. Then (3.8) is the unique viscosity solution of (3.3).

Proof. The fact that (3.8) defines a viscosity solution is due to Theorem 3.2 and the
stability properties of viscosity solutions.6 In view of Lemma 2.5 and the growth
of uT , we may appeal to Theorem 3.4 to conclude that (3.8) is the only viscosity
solution of the terminal value problem (3.3). ��

3.1.3. (Non)equivalence of Distributional and Viscosity Solutions For x ∈ R,
set b(t, x) = sgn x and uT (x) = |x |. Using the formula (2.7) for the backward
flow, the solution (3.6) becomes

u(t, x) = (|x | − (T − t))+. (3.10)

However, the Lipschitz function

v(t, x) = |x | − (T − t) (3.11)

is another distributional solution (and in fact satisfies the equation a.e.). It can also
be checked directly that (3.11) does not give a viscosity solution of (3.1). Indeed,
note that v(t, x)− t attains a global minimum at any (t, 0) ∈ [0, T ]×R. Applying
the supersolution definition with φ(t, x) = t yields the contradictory −1 ≥ 0.

The uniqueness of distributional solutions fails even if b is continuous. Indeed,
if 0 < α < 1 and b(t, x) = sgn x |x |α and uT (x) = |x |1−α , then, arguing similarly
as in the above example,

u(t, x) =
(
|x |1−α − (1 − α)(T − t)

)

+ (3.12)

and

v(t, x) = |x |1−α − (1 − α)(T − t) (3.13)

are two distributional solutions, and (3.12) is the one corresponding to (3.6). Once
again, (3.13) can directly be seen to fail the viscosity supersolution property.

In the first example above, uT is Lipschitz while b is discontinuous, and, while
b is continuous in the second example, we take uT to be non-Lipschitz. This should
be compared with the following sufficient criterion for equivalence.

Theorem 3.6. If b ∈ C([0, T ]×R
d) satisfies (2.1) and uT ∈ C0,1(Rd), then there

exists a unique distributional solution u ∈ C([0, T ],C0,1(Rd)), and it is given by
(3.6).

6 Note that smooth solutions of the equation corresponding to bε satisfying (2.3), or of
the viscous equation (3.9), are viscosity solutions in the sense of Definition 3.1.
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Proof. Letρ ∈ C∞
c be a standard mollifier and, for ε > 0, setρε(x) = ε−dρ(ε−1x).

Let u ∈ C([0, T ],C0,1(Rd)) be a distributional solution of (3.1) and define uε =
u ∗ ρε. Then

−∂t uε + b · ∇uε = rε in (0, T ) × R
d , (3.14)

where

rε(t, x) =
∫

Rd
(b(t, y) − b(t, x)) · ∇u(t, y)ρε(x − y)dy.

Note that rε ∈ C([0, T ] × R
d), and uε solves (3.14) in the sense of viscosity

solutions. Moreover, the continuity of b and boundedness of ∇u imply that rε
ε→0−−→

0 locally uniformly. Standard stability results from the theory of viscosity solutions
then imply that the limit u of uε is the unique viscosity solution of (3.1). ��

The above result can be extended by studying the interplay between regularity
of b and u.

Theorem 3.7. Suppose that α, β ∈ (0, 1] satisfy α + β > 1, b satisfies (2.1) and
supt∈[0,T ][b(t, ·)]Cα < ∞, and u is a distributional solution of (3.1) such that
supt∈[0,T ][u(t, ·)]Cβ < ∞. Then u is the unique viscosity solution of (3.1).

Remark 3.1. The condition on α+β, and, in particular, the strict inequality, is sharp,
as the example above with b(x) = sgn x |x |α and uT (x) = |x |1−α shows.

Proof of Theorem 3.7. Arguing similarly as for Theorem 3.6, it suffices to prove
that

rε = (b · ∇u) ∗ ρε − b · ∇(u ∗ ρε)
ε→0−−→ 0 locally uniformly,

where ρε is a standard mollifier. We note that rε = Mε[b(t, ·), u(t, ·)], where the
bilinear operator Mε is defined, for sufficiently regular (B,U ) : Rd → R

d × R,
by

Mε[B,U ] =
∫

Rd
(B(y) − B(x)) · ∇U (y)ρε(x − y)dy.

Standard interpolation arguments give, for some C > 0 depending on α and β, for
all (B,U ) ∈ Cα × Cβ ,

|Mε[B,U ]| ≤ Cεα+β−1[B]Cα [U ]Cβ .

Therefore |rε(t, x)| ≤ C[b(t, ·)]Cα [u(t, ·)]Cβ εα+β−1, and we conclude upon send-
ing ε → 0. ��
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3.2. The Conservative Equation

3.2.1. Duality Solutions For either of the two conservative equations (3.2) and
(3.4), the tendency of the backward flow to concentrate on sets of Lebesgue measure
zero implies that, even if f0 is absolutely continuous with respect to the Lebesgue
measure, f (t, ·) may develop a singular part for t > 0.

This presents an obstacle in defining solutions in the sense of distributions,
since the product of the discontinuous vector field b with a singular measure f
may not be well-defined. This same issue arose in the works [22,25], and also in
studying the the nonconservative equation (4.2) in Lebesgue spaces (see Sect. 4
below). The approach in these works was to define solutions through duality with
the dual equation, for which particular distributional solutions could be defined in
a stable, unique way. In this compressive regime, we do the same for (3.2), and
directly define solutions in duality with the nonconservative equation.

Definition 3.2. A map f ∈ C([0, T ],Mloc,w) is called a solution of (3.2) if, for
all t ∈ [0, T ] and g ∈ Cc(R

d),
∫

g(x) f (t, dx) =
∫

g(φ0,t (x)) f0(dx).

Remark 3.2. For g ∈ Cc(R
d) and t ∈ [0, T ], (s, x) �→ g(φs,t (x)) is the solution of

the transport equation (3.1) in [0, t]×R
d with terminal value g at time t , and, hence,

f is called the duality solution of (3.2). Equivalently, f (t, ·) is the pushforward by
φ0,t of the measure f0. When f0 is a probability measure, this means that f (t, ·) is
the law at time t of the stochastic process φ0,t (X0), where X0 is a random variable
with law f0.

Remark 3.3. The notion of duality solution can be equivalently formulated in rela-
tion to nonconservative equations with a right-hand side7, that is, for g ∈ L1([0, T ],
C(Rd)),

−∂t u + b(t, x) · ∇u = g(t, x) in (0, T ) × R
d . (3.15)

With this perspective, although the object div(b f ) does not make sense as a classical
distribution, the equation can still be applied to particular singular test functions,
namely, solutions of equations like (3.15). Then the pairing

∫

Rd
u(T, x) f (T, dx) −

∫

Rd
u(0, x) f0(dx)

+
∫ T

0

∫

Rd
[−∂t u(t, x) + b(t, x) · ∇u(t, x)]
︸ ︷︷ ︸

=g(t,x)

f (t, dx) = 0 (3.16)

has a sense, because the singular terms collapse into a continuous function, which
may be paired with f (t, ·).

7 The theory of viscosity solutions of the terminal value problem for (3.15) can be formu-
lated following the theory of the previous subsection with little change.
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Remark 3.4. When d = 1, the theory for (3.2) can be connected to that for the
nonconservative equation (4.2) in Sect. 4 below, in that (4.2) is (up to a time change
of b) a primitive of (3.2). Using this relationship, Bouchut and James [22, Theorem
4.3.4] are able to give meaning to the distributional product b f (or b∂xu in the next
section). More precisely, it is shown that the duality solution in either setting has
the following reformulation: there exists b̂ : [0, T ] ×R → R such that b̂ = b a.e.,
and f (resp. u) is a distributional solution of (3.2) (resp. (4.2)) with b replaced by b̂.
Extending this concept to multiple dimensions, in which case the direct relationship
between (3.2) and (4.2) is not present, seems to be rather difficult.

Theorem 3.8. There exists a unique duality solution f of (3.2). If, for ε > 0, f ε is
the solution corresponding to bε as in (2.3), then, as ε → 0, f ε converges weakly
in the sense of measures to f . If 1 ≤ p < ∞, f0, g0 ∈ Pp, and f and g are the
corresponding duality solutions, then, for some C > 0 depending on p and the
constants in (2.1),Wp( ft , gt ) ≤ CWp( f0, g0).

Proof. The existence and uniqueness of duality solutions is a direct consequence of
the definition. Moreover, the duality solution identity implies that, for any R > 0
and for some C > 0 depending on the constants in (2.1), ‖ f (t, ·)‖T V (BR) ≤
‖ f0‖T V (BR+C ). For 0 ≤ s < t ≤ T and g ∈ Cc(R

d), we apply the duality formula
with the test function g ◦ φs,t and obtain the identity

∫

Rd
g(x) f (t, dx) =

∫

Rd
g(φs,t (x)) f (s, dx).

Then, by Lemma 2.2, for some modulus of continuity ω depending on the modulus
of continuity for g,

∣
∣
∣
∣

∫

Rd
g(x) [ f (t, dx) − f (s, dx)]

∣
∣
∣
∣ ≤ ω(|t − s|) ‖ f0‖Bsupp g+C

,

and we conclude that f ∈ C([0, T ],Mloc,w).
For R > 0, define f0,R := f01BR , and denote by fR and f ε

R the duality solutions
of (3.2) with respectively b and bε and initial condition f0,R . It then suffices to
prove that, for fixed R > 0 as ε → 0, f ε

R ⇀ fR in the sense of measures. Then,
in view of Lemma 2.2, for any t ∈ [0, T ] and g ∈ Cc(R

d) for sufficiently large
support,

∫

Rd
g(x) fR(t, dx) =

∫

BR

g(φ0,t (x)) f0(dx) =
∫

Rd
g(φ0,t (x)) f0(dx)

=
∫

Rd
g(x) f (t, dx),

and similarly for f ε.
Let then g ∈ Cc(R

d) and t ∈ (0, T ] be fixed, and assume without loss of
generality that f0 has compact support in BR for some R > 0. Then, for ε > 0,

∫

Rd
g(x) f ε(t, dx) =

∫

g(φε
0,t (x)) f0(dx).
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so that ‖ f ε‖T V ≤ ‖ f0‖T V . Moreover, if supp g ⊂ R
d\BR+C for some C > 0

sufficiently large and independent of ε > 0, again by Lemma 2.2,
∫

Rd
g(x) f ε(t, dx) = 0.

We may then take a weakly convergent subsequence of f ε, with limit point F ∈
L∞([0, T ],M), and, sending ε → 0, we obtain that F satisfies the duality solution
identity, and therefore F = f .

Choose h1, h2 ∈ Cc(R
d) such that, for all x, y ∈ R

d , h1(x)+h2(y) ≤ |x− y|p.
Then, if γ is any coupling between f0 and g0, we compute, using the duality identity
and Lemma 2.2,
∫

h1(x) f (t, dx) +
∫

h2(y)g(t, dy) =
∫∫

(
h1(φ0,t (x)) + h2(φ0,t (y))

)
γ (dx, dy)

≤ C
∫∫

|x − y|pγ (dx, dy).

Taking the infimum over such γ and supremum over such h1, h2, and using the
dual formulation of the p-Wasserstein distance, we arrive at the estimate for the
Wasserstein distances. ��
Remark 3.5. The final estimate can also be proved using the characterization of f
and g as laws of certain stochastic processes (see Remark 3.2) and the characteri-
zation of the Wasserstein metric in terms of random variables.

We may repeat the above analysis for the second-order conservative equation
(3.4), the only difference being the lack of a finite speed of propagation. Therefore,
all measures are taken to have finite mass over Rd . Below, �t,0 is the stochastic
flow satisfying (3.7).

Definition 3.3. A map f ∈ C([0, T ],Mw) is called a solution of (3.4) if, for all
t ∈ [0, T ] and g ∈ Cb(R

d),
∫

g(x) f (t, dx) =
∫

E[g(�t,0(x))] f0(dx).

Remark 3.6. Once again, such solutions are called duality solutions because E[g ◦
�t,0] is the solution of (3.3) with terminal value g at time t . If f0 is a probability
measure, then f (t, ·) is the law of the stochastic process �t,0(X0), where X0 is a
random variable with law f0, independent of the Wiener process W .

The following may be proved exactly as for Theorem 3.8, now invoking the
properties of the stochastic flow described by Lemma 2.5.

Theorem 3.9. There exists a unique duality solution f of (3.4). If, for ε > 0, f ε is
the solution corresponding to bε as in (2.3), then, as ε → 0, f ε converges weakly
in the sense of measures to f . If 1 ≤ p ≤ ∞, f0, g0 ∈ Pp, and f and g are the
corresponding duality solutions, then, for some C > 0 depending on p and the
constants in (2.1),Wp( ft , gt ) ≤ CWp( f0, g0).
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3.2.2. On the Failure of Renormalization In view of the formula (3.6), it is
immediate that (viscosity) solutions of (3.1) satisfy the renormalization property,
that is, if u is a viscosity solution and β : R → R is smooth, then β ◦ u is also a
solution. This is related to the existence and uniqueness of the Lipschitz backward
flow; indeed, note that, coordinate by coordinate, φt,T (x) is the unique viscosity
solution of (3.1) with terminal value x at time T .

We contrast this with the renormalization property for the forward, conservative
problem (3.2). If b is smooth, then classical computations show that f is a solution
if and only if | f |, f+, and f− are all solutions. Because f (t, ·) is the pushforward
by f0 of the flow φ0,t , this can be viewed as a generalized form of injectivity for the
flow. For b satisfying (2.1), the backward flow is not guaranteed to be injective, and
may in fact concentrate at null sets. We therefore cannot expect renormalization to
hold in general.

As a concrete example, take again b(x) = sgn x on R, and f0 = 1
2δ1 − 1

2δ−1.
Then, for t > 0, f (t, ·) = 1

2δ(1−t)+ − 1
2δ−(1−t)+ , which means that f (t, ·) ≡ 0 for

t ≥ 1. However, the solution F of (3.2) with F0 = | f0| = 1
2δ1 + 1

2δ−1 is equal to
F(t, ·) = 1

2δ(1−t)+ + 1
2δ−(1−t)+ , so that F(t, ·) = δ0 for t ≥ 1. Thus Ft �= | ft | for

t ≥ 1; indeed, | ft | does not even conserve mass.
The failure of renormalization holds even if we impose f0 ∈ L1 ∩ L∞. For

such f0 and for b(x) = sgn x , we have

f (t, dx) = [ f0(x + t)1 {x > 0} + f0(x − t)1 {x < 0}] dx +
(∫

[−t,t]
f0

)

dδ0(x).

Therefore, renormalization fails whenever f0 is nonzero and odd.
We present one more counterexample to renormalization in which b ∈ C and

f ∈ L1 (as the previous example shows, even if f0 ∈ L1, f (t, ·) may not be
absolutely continuous with respect to Lebesgue measure due to the concentration
of the flow). Take b(t, x) = 2sgn x |x |1/2. The backward flow is given by φ0,t (x) =
sgn x(|x |1/2 − t)2+ for (t, x) ∈ [0, T ] × R. For f0 ∈ L1, the duality solution is
given by

f (t, dx) =
(∫

[−t2,t2]
f0

)

δ0(dx) + f0
(

sgn x(|x |1/2 + t)2
) |x |1/2 + t

|x |1/2 dx .

We then take the odd density f0(x) = sgn x |x |1/21[−1,1](x), and the duality solution
takes values in L1:

f (t, x) = sgn x
(|x |1/2 + t)2

|x |1/2 1[−(1−t)2+,(1−t)2+](x). (3.17)

On the other hand, | f | is not the duality solution, or even a distributional solu-
tion, since mass is not conserved. The unique duality solution with initial density
| f0(x)| = |x |1/21[−1,1](x) in this case is given by

F(t, dx) = 4t3

3
δ0(dx) + (|x |1/2 + t)2

|x |1/2 1[−(1−t)2+,(1−t)2+](x)dx .
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Remark 3.7. One consequence of the commutator lemma of DiPerna and Lions [40,
Lemma II.1] is that, if f ∈ L p and b ∈ W 1,q with 1

p + 1
q ≤ 1, then the renormal-

ization property is satisfied. The previous example therefore indicates that these
conditions cannot be weakened in general. Indeed, even though f0 ∈ L1 ∩ L∞, the
solution f (t, ·) given by (3.17) belongs to L p only for p ∈ [1, 2) when t > 0, and
the same is true for ∂xb.

3.2.3. Equivalence of Duality and Distributional Solutions We finish this sec-
tion by studying the setting where b f can be understood as a distribution, and,
therefore, distributional solutions of (3.2) can be considered.

Theorem 3.10. Assume either that b is continuous, or that f (t, ·) ∈ L1
loc for all

t ∈ [0, T ]. Then f is a distributional solution of (3.2) if and only if f is the unique
duality solution.

Proof. Suppose f is the unique duality solution. Let (bε)ε>0 be as in (2.3) and let
f ε be the corresponding solution of (3.2). For φ ∈ C1

c ((0, T ) × R
d), integrating

by parts yields
∫∫

(0,T )×Rd
f ε(t, x)

(−∂tφ(t, x) + bε(t, x) · ∇φ(t, x)
)
dtdx = 0.

In the case that b ∈ C , we may choose regularizations bε that converge locally
uniformly to b. By Theorem 3.8, as ε → 0, f ε converges weakly in the sense of
measures to f , and so we may take ε → 0 above to obtain

∫∫

(0,T )×Rd
f (t, dx) (−∂tφ(t, x) + b(t, x) · ∇φ(t, x)) dt = 0.

Otherwise, if f ∈ L1
loc, it follows that f ε converges weakly in L1

loc, and therefore
the same is true for bε f ε by the dominated convergence theorem. We may then
take ε → 0 in this case as well.

Assume now that f is an arbitrary distributional solution. We aim to show the
duality equality in Definition 3.2, and, by a density argument, it suffices to do so for
g ∈ Cc(R

d)∩C0,1(Rd). Let ρε be a standard mollifier as before and set fε = f ∗ρε.
Then fε satisfies

∂t fε − div(b fε) = div rε,

where rε = (b f ) ∗ ρε − b fε. For t ∈ (0, T ], let u be the unique Lipschitz viscosity
solution of the terminal value problem

−∂su + b · ∇u = 0 in (0, t) × R
d , u(t, ·) = g.

By the theory in Sect. 3.1, u(s, x) = g(φs,t (x)) and is Lipschitz continuous with
compact support. We then compute

∂s

∫

fε(s, x)u(s, x)dx = −
∫

rε(s, x) · ∇u(s, x)dx,
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so that
∫

fε(t, x)g(x)dx −
∫

( f0 ∗ ρε)(x)g(φ0,t (x))dx

= −
∫ t

0

∫

Rd
rε(s, x) · ∇u(s, x)dxds.

We may then conclude by proving that rε
ε→0−−→ 0 in L1

loc.
If f ∈ L1

loc, this is immediate because, as ε → 0, both (b f ) ∗ ρε and b fε
converge in L1

loc to b f . If b ∈ C , then, as ε → 0, both (b f ) ∗ ρε and b fε converge
locally in total variation to b f . It follows that rε converges locally in total variation
to 0, but, because rε ∈ L1 for all ε > 0, the convergence in L1

loc is established. ��
Remark 3.8. Even in the context of Theorem 3.10, the renormalization property
can fail. Indeed, this is the case for the final example in the previous section, where
both b ∈ C and f ∈ L1.

4. The Expansive Regime

We continue our analysis of transport and continuity equations with vector fields
b satisfying (2.1), and in this section we study the expansive regime. Reversing the
sign appearing in front of the velocity field b, the initial value problem for the
continuity equation becomes

∂t f + div(b(t, x) f ) = 0 in (0, T ) × R
d and f (0, ·) = f0, (4.1)

and the corresponding dual terminal value problem for the non-conservative trans-
port equation is

∂t u + b(t, x) · ∇u = 0 in (0, T ) × R
d and u(T, ·) = uT . (4.2)

Equivalently, we are studying the time-reversed versions of (3.1) and (3.2) (in
this case, b is replaced with b(T − t, ·)). As such, the relevant direction of the flow
(2.2) changes in this context: whereas in the previous section, the compressive,
backward flow gave rise to the dual solution spaces C and M, here, the expansive,
forward flow allows to develop a theory for both (4.1) and (4.2) in Lebesgue spaces.
This can also be seen from formal a priori L p estimates for (4.1) and (4.2), which
follow immediately from the lower bound on div b.

The regime for these equations matches those studied by Bouchut et al. [25],
in which emphasis is placed on the fact that distributional solutions f ∈ C([0, T ],
L∞

w-	(R
d)) of (4.1) are not unique in general. Our approach to these equations is

similar, in that we use a particular solution of (4.1) to study, by duality, the transport
equation (4.2) and the forward ODE flow to (2.2). We extend the results of [25]
by identifying a “good” solution (reversible solution, in the terminology of [25])
of (4.2) for any f0 ∈ L p

loc, where the continuous solution operator on L p is stable
under regularizations in the weak topology of C([0, T ], L p

loc(R
d)).
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The terminal value problem (4.2) is then understood both in the dual sense
and through the lens of renormalization theory. It is this theory that allows, as
in [40], to make sense of the forward ODE flow (2.17) as the right-inverse of the
backward flow, completing the program initiated in Sect. 2. As a consequence, we
then also obtain the uniqueness of nonnegative distributional solutions of (4.1),
and, by extension, a characterization of the reversible solution of [25].

We finish the section by making some remarks about the second-order analogues
of (4.1) and (4.2). Unlike in the previous section, we do not have a full solution
theory for general second-order equations, unless the ellipticity matrix is uniformly
positive (the case which has already been covered by Figalli in [41]) or is degenerate
but independent of the space variable.

4.1. The Conservative Equation

The starting point for the study of the conservative equation (4.1) is that solutions
in the sense of distributions are not unique (see also [22], [25, Section 6]). We
revisit the example, when d = 1, b(t, x) = sgn x . Then f (t, x):=sgn x1|x |≤t is a
nontrivial distributional solution of (4.1) belonging to L1 ∩ L∞ with f (0, ·) = 0.
The uniqueness can be seen as a consequence of the compressive nature of the
backward flow (2.2), which allows for positive and negative mass to be “cancelled”
at time 0, only to appear immediately for t > 0. The same phenomenon is what
leads to the failure of renormalization for the compressive regime for the continuity
equation in Sect. 3.2. In either case, we remark that this particular b belongs to
BV (R), while ∂xb is not absolutely continuous with respect to Lebesgue measure,
and so the condition in the work of Ambrosio [5] that div b ∈ L1

loc cannot indeed
be weakened in general, if one is to hope for renormalization or uniqueness for the
continuity equation.

One strategy is to define solutions of (4.1) by duality with the transport equation
(3.1) from the compressive setting. With the theory of Sect. 3, for g ∈ C0,1

c (Rd),
we may define a Lipschitz viscosity solution of the initial value problem

∂tv + b(t, x) · ∇v = 0 in (0, T ) × R
d , v(0, ·) = g

(because ṽ(t, x):=v(T − t, x) solves the corresponding terminal value problem
(3.1) with velocity b̃(t, x) = b(T − t, x)), and then, formally, for t > 0,

∫
f (t, x)

v(t, x)dx = ∫
f0(x)g(x)dx .

The main problem with this approach is that duality does not define unique
solutions, again due to the concentration effect of the backward flow. Taking once
more b(t, x) = sgn x , we have, by (3.6),

v(t, x) =
{
g(x − (sgn x)t), |x | ≥ t,
g(0), |x | ≤ t.

Therefore, the duality equality fails to give sufficient information to identify f in
the cone {|x | ≤ t}, in which v is always constant, regardless of the initial data
g. Indeed, the two distributional solutions f ≡ 0 and f (t, x) = sgn x1{|x | ≤ t}
differ in exactly this cone, in which the Jacobian of the backward flow vanishes.
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It is exactly this observation that lead to the notion of “exceptional” solutions of
(3.1) and the exceptional set in [25].

Inspired by the work of [25], we instead identify a “good” solution operator
acting on all f0 ∈ L p

loc, 1 ≤ p ≤ ∞, by extending the solution formula in the
smooth case, which depends on the backward flow studied in Sect. 2, as well as
the corresponding Jacobian. In particular, the “good solution” is distinguished by
vanishing whenever the Jacobian does. Though our notion of solution turns out to be
equivalent to the reversible solutions, our approach differs slightly from that of [25],
who work with a general class of “transport flows” that generalize the backward
ODE flow. One advantage of our analysis is that we can directly appeal to the
various topological properties of the backward flow proved in Sect. 2. Let us also
draw analogy with the approach of Crippa and De Lellis [36], in which the regular
Lagrangian flow and its properties are studied directly, leading to information about
the associated PDEs, although in our setting, we still require PDE techniques to
glean further properties of the ODE flow.

4.1.1. Representation Formula If b is Lipschitz, then the solution of (4.1) is
given by

f (t, x) = f0(φ0,t (x))J0,t (x), (4.3)

where φ0,t (x) is the reverse flow defined in Sect. 2 and J0,t (x) = det(∇xφ0,t (x))
is the corresponding Jacobian. One way to derive this formula is through the
Feynman–Kac formula for the reversed time equation

−∂t f̃ + b(T − t, x) · ∇ f̃ + divx b(T − t, x) f̃ = 0 in (0, T ) × R
d ,

f̃ (T, ·) = f0,

which gives

f (t, x) = f̃ (T − t, x) = f0(φ0,t (x)) exp

(

−
∫ t

0
div b(s, φ0,s(x)ds

)

, (4.4)

and then J0,t (x) = exp
(− ∫ s

0 div b(s, φ0,s(x)ds
)
.

In the general case where b satisfies (2.1), the formula (4.3) makes sense for
arbitrary f0 ∈ L p

loc, 1 ≤ p ≤ ∞. We may then use the various results in Sect. 2
to analyze the stability properties of the solution operator defined by the formula
(3.6). We remark in particular that the stability results of Lemma 2.3 depend on
the determinant structure of the Jacobian, which is somewhat disguised by the
exponential expression in (4.4).

Theorem 4.1. Let 1 ≤ p ≤ ∞, assume that f0 ∈ L p
loc(R

d), and define f by (4.3).
Then f is a distributional solution of (4.1). If 1 ≤ p < ∞, f ∈ C([0, T ], L p(Rd)),
and if p = ∞, f ∈ C([0, T ], L∞

w-	(R
d)). There exists a constant C > 0 depending

only on the assumptions in (2.1) such that, for all R > 0,

‖ f (t, ·)‖L p(BR) ≤ C ‖ f0‖L p(BR+C ) . (4.5)

If (bε)ε>0 are as in (2.3) and ( fε)ε>0 are the corresponding solutions of (4.1),
then, as ε → 0, fε converges to f weakly in C([0, T ], L p

loc(R
d)) if 1 ≤ p < ∞,

and weak-	 in L∞ if p = ∞.
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Proof. When p = ∞, the bound (4.5) follows from the L∞ bounds for the flow
and Jacobian in Lemmas 2.2 and 2.3. We prove the bound when p < ∞ for the
solutions fε of the equation with bε as in (2.3), for a constant independent of ε, and
then the estimate for f follows after proving the weak convergence result.

For a constant C > 0 independent of ε, by Lemmas 2.2 and 2.3, we have
|J ε

0,t | ≤ C and |φε
0,t (x)| ≤ R + C for |x | ≤ R. Then

∫

BR

| f ε(t, x)|pdx =
∫

Rd
| f0(φε

0,t (x))|p J ε
0,t (x)

pdx

≤ ∥
∥J0,t

∥
∥p−1

∞
∫

BR

| f0(φε
0,t (x))|p J ε

0,t (x)dx

≤ C
∫

BR+C

| f0(x)|pdx .

It suffices to prove the weak convergence of f ε when p < ∞ for f0 ∈ Cc. In
the general case, if f̃0 is continuous with compact support and we let f̃ ε be the
solution with bε and f̃0, we have

∥
∥
∥ f ε − f̃ ε

∥
∥
∥
C([0,T ],L p(BR))

≤ C
∥
∥
∥ f0 − f̃0

∥
∥
∥
L p(BR+C )

,

and we may then choose f̃0 arbitrarily close to f0 in L p
loc.

By Lemma 2.2, as ε → 0, φε → φ uniformly in [0, T ]×R
d , and therefore f0 ◦

φε
0,t ) converges uniformly to f0 ◦φ0,t . In view of Lemma 2.3, f ε converges weakly

in the sense of distributions (and therefore, in the sense of locally bounded Borel
measures) to f . Since f ε is bounded in L∞([0, T ], L p

loc(R
d)), the convergence is

actually weak in L∞([0, T ], L p
loc(R

d)).
If p = ∞, then, in particular, f ε ∈ C([0, T ], L p

loc(R
d)) for p < ∞, uniformly

in ε, and we have the convergence as ε → 0 in the sense of distributions to f . In
this case, f ∈ L∞

loc([0, T ] × R
d), and so the convergence is weak-	 in L∞

loc.
Given g ∈ C1

c ((0, T ) × R
d), integrating by parts gives

∫∫

[0,T ]×Rd
f ε(t, x)

[
∂tφ(t, x) + bε(t, x) · ∇φ(t, x)

]
dxdt = 0.

As ε → 0, the bracketed expression converges a.e. to ∂tφ(t, x)+b(t, x) ·∇φ(t, x),
and so converges weakly in Lq for all 1 ≤ q < ∞ by the dominated conver-
gence theorem. We may therefore send ε → 0, using the weak convergence of
f ε, to deduce that f is a distributional solution. This implies in particular that
f ∈ C([0, T ], L p

w(Rd)), or C([0, T ], L∞
w-	(R

d)) if p = ∞.
To show that f ∈ C([0, T ], L p(Rd)) when p < ∞, we may again consider

f0 ∈ Cc(R
d)) without loss of generality. Then f0 ◦ φ0,· ∈ C([0, T ] × R

d), while
J0,· ∈ C([0, T ], L1

loc(R
d)) by Lemma 2.3, and the result follows. ��

Remark 4.1. In view of the stability results of Theorem 4.1 above, this “good”
solution coincides with the notion of reversible solutions in [22,25]. We refer to it
in the sequel as the BJM solution.
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The following is immediately obtained from the formula (4.3):

Corollary 4.1. If f is a BJM solution of (4.1), then so is | f |.
Corollary 4.1 is in direct contrast to the continuity equation in the compressive

setting of the previous section, where renormalization fails. Its proof depends on
the formula for the BJM solution; indeed, despite the weak stability result in Theo-
rem 4.1, this renormalization property cannot be proved by regularization, since we
only have the weak convergence as ε → 0 of fε to f . At present, we do not know
whether the convergence is strong in L p . This turns out to be equivalent to the strong
convergence in L1

loc of the Jacobians, and therefore, in view of Proposition 2.1, we
have the following when d = 1.

Theorem 4.2. Assume d = 1, f0 ∈ L p
loc(R) for p < ∞, (bε)ε>0 is as in (2.3), and

f ε is the corresponding solution of (4.1). Then, as ε → 0, f ε converges strongly
in C([0, T ], L p

loc(R)) to f .

Proof. Just as in the proof of Theorem 4.1, we may assume without loss of gener-
ality that f0 ∈ Cc(R). In that case, f ε is bounded in L1 and L∞, and so the strong
L p convergence reduces to the strong convergence of J ε

0,· to J0,· in L1
loc([0, T ]×R)

from Proposition 2.1. ��
4.1.2. Vanishing Viscosity Approximation The BJM solution above also arises
from vanishing viscosity limits, that is, the limit as ε → 0 of solutions of

∂t f
ε − ε2

2
� f ε +div(b(t, x) f ε) = 0 in [0, T ]×R

d and f ε(0, ·) = f0, (4.6)

which has as its unique solution

f ε(t, x):=E[ f0(φε
0,t (x))J

ε
0,t (x)], (4.7)

where now φε and J ε denote respectively the stochastic flow and Jacobian from
(2.23), corresponding to Proposition 2.3.

The proof of the following result follows from Proposition 2.3, and is proved
almost exactly as for Theorem 4.1.

Theorem 4.3. The function f ε defined by (4.6) belongs to C([0, T ], L p
loc(R

d)) if
1 ≤ p < ∞ and C([0, T ], L∞

w-	(R
d)) if p = ∞, and, as ε → 0, f ε converges

weakly in those spaces to f .

4.2. The Nonconservative Equation

The next step is the study of the terminal value problem (4.2). Unlike the trans-
port equation (3.1) with velocity −b, which was solved in the space of continuous
functions, we cannot define L p solutions in the distributional sense, as the product
b · ∇u = div(bu) − (div b)u does not make sense when div b is merely a measure.
Instead, we initially characterize solutions by duality with (4.1), which can be seen
as a way of restricting the class of test functions to deal with the singularities in b
(see Remark 3.3).
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4.2.1. L p and BV Estimates We will first prove a priori L p and BV estimates
for the solution of (4.2), assuming all the data and solutions are smooth. The BV
estimates in particular are crucial to establishing the strong convergence in L p of
regularized solutions to a unique limit, which will be the duality solution, adjoint to
the equation (4.1). The BV estimate appears already in [25, Lemma 4.4]. We present
an alternate proof here, which is similar to the one for second-order equations we
prove later.

Lemma 4.1. Assume b is smooth and satisfies (2.1), and let u be a smooth solution
of (4.2). Then, for all 1 ≤ p ≤ ∞, there exist C = Cp,R ∈ L1+([0, T ]) and CR > 0
depending only on the bounds in (2.1) such that, for all 0 ≤ t ≤ T ,

‖u(t, ·)‖L p(BR) ≤ exp

(∫ t

0
C(s)ds

)

‖uT ‖L p(BR+C )

and

‖u(t, ·)‖BV (BR) ≤ exp

(∫ t

0
C(s)ds

)

‖uT ‖BV (BR+C ) .

Proof. We assume that uT has compact support, and, therefore, in view of the finite
speed of propagation property, so does u. The general result for L p

loc and BVloc is
proved similarly.

The L∞ bound is a consequence of the maximum principle. For p < ∞, we
compute

∂

∂t

∫

Rd
|u(t, x)|pdx =

∫

Rd
div b(t, x)|u(t, x)|pdx ≥ −C0(t)d

∫

Rd
|u(t, x)|pdx,

and the L p bound follows from Grönwall’s inequality.
Now, for t ≤ T and x, z ∈ R

d , set w(t, x, z) = ∇u(t, x) · z. Then w satisfies

−∂tw + b · ∇xw + (z · ∇)b · ∇zw = 0.

Since b and w are smooth, the renormalization property holds for this transport
equation, and so a simple regularization argument shows, in the sense of distribu-
tions,

∂t |w| + b · ∇x |w| + (z · ∇)b · ∇z |w| = 0.

Define φ(z) = e−|z|2 . Then
∫∫

Rd×Rd φ(z)b(t, x) · ∇x |w(t, x, z)|dxdz
= − ∫∫

Rd×Rd φ(z)div b(t, x)|w(t, x, z)|dxdz
and

∫∫

Rd×Rd
φ(z)(z · ∇)b(t, x) · ∇z |w(t, x, z)|dxdz

= −
∫∫

Rd×Rd
[∇φ(z) · (z · ∇b(t, x)) + φ(z)div b(t, x)] |w(t, x, z)|dxdz.
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Therefore, by Lemma 2.1,

∂t

∫∫

Rd×Rd
|w(t, x, z)|φ(z)dxdz

=
∫∫

Rd×Rd
[∇φ(z) · (z · ∇b(t, x)) + 2φ(z)div b(t, x)] |w(t, x, z)|dxdz

=
∫∫

Rd×Rd
2e−|z|2 [div b(t, x) − ∇b(t, x)z · z] dxdz

≥ −2(d − 1)C0(t)
∫∫

Rd×Rd
e−|z|2 |w(t, x, z)|dxdz.

The result follows from Grönwall’s lemma and the fact that
∫∫

Rd×Rd
e−|z|2 |w(t, x, z)|dxdz = c0

∫

Rd
|∇u(t, x)|dx,

where the constant c0 = ∫

Rd e−|z|2 |ν · z|dz is independent of the choice of |ν| = 1
by rotational invariance. ��
4.2.2. Duality Solutions Proceeding by duality with the conservative forward
equation, and using the BV -estimates above, then gives the following.

Theorem 4.4. Assume 1 ≤ p ≤ ∞ and uT ∈ L p
loc. Then there exists a unique

function u ∈ C([0, T ], L p
loc(R

d)) (or in C([0, T ], L∞
w-	(R

d)) if p = ∞) such that,
if (bε)ε>0 is as in (2.3) and uε denotes the corresponding solution of (4.2), then,
as ε → 0, uε converges strongly in C([0, T ], L p(Rd)) for p < ∞ and weak-	
in L∞ to u. Moreover, the solution map uT �→ u is linear, order-preserving, and
continuous in L p

loc(R
d)). If s ∈ [0, T ), fs ∈ L p′

(Rd) and f ∈ C([s, T ], L p′
(Rd))

(or C([s, T ], L∞
w-	(R

d)) if p = 1) is the BJM solution of (4.1) with initial data
f (s, ·) = fs , then

∫

Rd
u(s, x) fs(x)dx =

∫

Rd
uT (x) f (T, x)dx .

Remark 4.2. The function u corresponds with the notion of duality solution pre-
sented in [25] whenever uT (and therefore u(t, ·) for t < T ) belongs to BVloc.

Proof. By Lemma 4.1, (uε)ε>0 is bounded uniformly in C([0, T ], L p
loc(R

d)), and
so, along a subsequence, converges weakly as ε → 0 to some u satisfying the same
bounds.

In order to see that the convergence is strong, note that it suffices, by the L p-
boundedness of solution operator implied by Lemma 4.1, to assume that uT ∈
Cc(R

d). We then have uε bounded in L∞([0, T ], BV (Rd)) independently of ε.
The identity ∂t uε = −bε · ∇uε then implies that, for any t1 < t2 ≤ T and R > 0,

∥
∥uε(t1, ·) − uε(t2, ·)

∥
∥
L1(BR)

≤ ‖b‖L∞(BR) sup
t∈[0,T ]

∥
∥∇uε

∥
∥
L1(BR)

|t1 − t2|.

This, along with the uniform BV estimates, implies that (uε)ε>0 is precompact
in C([0, T ], L1

loc(R
d)), and, because of the uniform L∞-bound, precompact in
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C([0, T ], L p
loc(R

d)) for any p ∈ [1,∞). It therefore follows that any weakly con-
vergent subsequence actually converges strongly.

If f ε is the solution of (4.1) with f ε(s, ·) = fs , then classical computations
involving integration by parts give

∫

Rd
uε(s, x) fs(x)dx =

∫

Rd
uT (x) f ε(T, x)dx .

Sending ε → 0 along a subsequence and using the weak convergence of f ε and
strong convergence of uε shows that any limit point u must satisfy the duality
identity with f , and is therefore unique. We conclude that the full sequence con-
verges strongly. As before, when p = ∞, we obtain the same result since then also
u ∈ C([0, T ], L p

loc(R
d)) for any p < ∞. ��

Remark 4.3. If uT ∈ BVloc, then the duality solution u of (4.2) satisfies ∇u ∈
L∞([0, T ],Mloc(R

d)). Note, however, that this is still not enough to make sense
of u as a distributional solution, unless b is continuous; see also Remark 3.4.

4.2.3. Renormalization In Sect. 3, the renormalization property for solutions of
the transport equation (3.1) followed from the formula (3.6). We prove a similar
renormalization property for the transport equation (4.2) in the expansive regime.
Here, it depends on the strong convergence in L p of regularizations.

Theorem 4.5. Let1 ≤ p ≤ ∞anduT ∈ L p
loc(R

d), and let u ∈ C([0, T ], L p
loc(R

d))

be the duality solution of (4.2). Assume β : R → R is smooth and satisfies
|β(r)| ≤ C(1 + |r |α) for some C, α > 0. Then β ◦ u = C([0, T ], L p/α

loc (Rd)) is the
duality solution of (4.2) with terminal value β(u(T, ·)) = β ◦ uT .

Proof. The proof is an easy consequence of regularization of b as in (2.3), and the
passage to the limit follows from the strong convergence of uε to u. ��

4.3. The Forward ODE Flow

We finally return to the study of the flow (2.2), in particular for the forward
direction. A candidate for the object φt,s(x), t > s, a.e. x was already identified in
Proposition 2.2 as the right inverse of the backward flow—note that the full measure
set of x ∈ R

d depends on s and t . We now connect this right-inverse with the
transport equation (4.2), and exploit the renormalization property to identify φt,s(x)
as a regular Lagrangian flow, that is, for a.e. x ∈ R

d , an absolutely continuous
solution of the integral equation for (2.2) with control on the compressibility.

4.3.1. Properties of the Right Inverse We first record more properties of the
right-inverse of the backward flow identified in Proposition 2.2. From now on, for
0 ≤ s ≤ t ≤ T , we always denote by φt,s the version of the right-inverse of φs,t

which is continuous almost everywhere (such a version is guaranteed to exist by
Proposition 2.2).
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Theorem 4.6. For any t ∈ (0, T ], [0, t] × R
d � (s, x) �→ φt,s(x) is (coordinate-

by-coordinate) the duality solution of (4.2) with terminal value x at time t. For all
1 ≤ p < ∞,

φ·,s ∈ C([s, T ], L p
loc(R

d)) and φt,· ∈ C([0, t], L p
loc(R

d)),

and there exists a constant C > 0 such that, for all 0 ≤ s ≤ t ≤ T and x ∈ R
d ,

|φt,s(x)| ≤ C(1 + |x |) and
∥
∥φt,s

∥
∥
BVloc

≤ C.

Finally, if (bε)ε>0 is as in (2.3) and φε
t,s is the corresponding forward flow, then,

for all 1 ≤ p < ∞,

lim
ε→0

φε·,s = φ·,s strongly in C([s, T ], L p
loc(R

d))

and

lim
ε→0

φε
t,· = φt,· strongly in C([0, t], L p

loc(R
d)),

and the convergence also holds in the weak-	 sense in L∞
loc.

Proof. For ε > 0 and (bε)ε>0 as in (2.3), it is standard that, for t ∈ (0, T ], the
vector-valued solution of

∂uε

∂s
+ bε · ∇uε = 0 in (0, t) × R

d , uε(t, x) = x

is given by uε(s, x) = φε
t,s(x) for s ∈ [0, t], where φε is the flow corresponding to

bε. By Theorem 4.4, we have the given convergence statements, as ε → 0, of φε

to the vector valued duality solution u of (4.2) in [0, t] × R
d with terminal value

u(t, ·) = x .
The flow property for smooth bε yields, for 0 ≤ s ≤ t ≤ T and x ∈ R

d ,
φε
s,t (φ

ε
t,s(x)). By Lemma 2.2 and the above strong L p-convergence statement, we

may take ε → 0 to obtain φs,t (u(s, x)) = x , and then, by Proposition 2.2, we must
have u(s, x) = φt,s(x). The other statements now follow immediately in view of
Theorem 4.4. Note that we are using that, for s ∈ [0, T ), the map [s, T ] × R

d �
(t, x) �→ φt,s(x) is the duality solution of the initial value problem

∂ ũ

∂t
− b(t, x) · ∇ũ = 0 in [s, T ] × R

d , ũ(s, x) = x,

whose theory can be treated exactly as for (4.2). ��
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4.3.2. The Regular Lagrange Property We now observe that there is a repre-
sentation formula for the duality solution of the transport equation (4.2).

Theorem 4.7. Let 1 ≤ p ≤ ∞. Then there exists a constant C > 0 depending
only on p and the constant in (2.1) such that, for all F ∈ L p

loc ∩ C, R > 0, and
0 ≤ s ≤ t ≤ T , ∥

∥F ◦ φt,s
∥
∥
L p(BR)

≤ C ‖F‖L p(BR+C ) . (4.8)

In particular, for any A ⊂ R
d with finite Lebesgue measure,

∣
∣
{
x : φt,s(x) ∈ A

}∣
∣ ≤ C |A|. (4.9)

If uT ∈ L p
loc(R

d), then the duality solution of (4.2) is given by

u(t, x) = uT (φT,t (x)). (4.10)

If uT has a version which is continuous almost everywhere, then, for t < T , u(t, ·)
also has a version that is continuous almost everywhere.

Remark 4.4. When uT is not continuous, then (4.10) must be interpreted as the
continuous extension of the operator uT �→ uT ◦ φT,t to uT ∈ L p

loc, which is
well-defined in view of the estimate (4.8).

Remark 4.5. The estimate (4.9) is called the regular Lagrange property. It reinforces
the fact that φt,s does not concentrate in sets of measure zero.

Remark 4.6. The propagation of almost-everywhere continuity is a consequence of
the same property for the forward flow (Proposition 2.2). Note that it is not true
in general that a function u ∈ BVloc(R

d) is continuous almost everywhere, unless
d = 1.

Proof of Theorem 4.7. For continuous uT , the representation formula is an imme-
diate consequence of the renormalization property Theorem 4.5 and Theorem 4.6.
The estimate (4.8) then follows from Theorem 4.4, and (4.9) is obtained by taking
p = 1 and F = 1A.

For the claim about almost everywhere continuity, define

A:=
{
y ∈ R

d : uT is not continuous at y
}

.

Then |A| = 0, and then (4.9) gives, for 0 ≤ t < T ,
∣
∣
∣

{
x ∈ R

d : uT is not continuous at φT,t (x)
}∣
∣
∣ = 0.

It follows that uT is continuous at φT,t (x) for a.e. x . By Proposition 2.2, φT,t is
continuous almost everywhere, and the result follows. ��

Recalling the duality relationship between (4.1) and (4.2) from Theorem 4.4,
we then have

Corollary 4.2. For any 1 ≤ p ≤ ∞ and f0 ∈ L p
loc(R

d), the BJM reversible
solution f of (4.1) is given at time t > 0 by φ#

t,0 f0.
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Remark 4.7. The regular Lagrange property says that the measure φ#
t,0 f0 is well-

defined and absolutely continuous with respect to Lebesgue measure, with a density
in L p

loc. If f0 is the density for a probability measure, that is, f0 ∈ L1+(Rd) and∫
f0 = 1, then f (t, ·) is the law at time t of the stochastic process φt,0(X), where

X is a random variable with density f0.

A consequence of renormalization and the regular Lagrange property is the fact
that the forward flow φt,s solves the ODE (2.2) for a.e. initial x ∈ R

d . A first step
is the following lemma.

Lemma 4.2. For all p ∈ [1,∞) and s ∈ [0, T ), {(t, x) �→ b(t, φt,s(x))} ∈
L1([0, T ], L p

loc(R
d)). If (bε)ε>0 is as in (2.3) and (φε)ε>0 is the corresponding

flow, then, for all R > 0,

lim
ε→0

∫ T

s

∥
∥bε(t, φε

t,s) − b(t, φt,s)
∥
∥
L p(BR)

dt = 0.

Proof. The first claim follows from (4.8): there exists C > 0 independent of s and
R such that, for all t ∈ [0, T ], ∥∥b(t, φt,s)

∥
∥
L p(BR)

≤ C ‖b(t, ·)‖L p(BR+C ).
For δ > 0 and 0 ≤ s ≤ t ≤ T , we write
∥
∥bε(t, φε

t,s) − b(t, φt,s)
∥
∥
L p(BR)

≤ ∥
∥bε(t, φε

t,s) − bδ(t, φε
t,s

∥
∥
L p(BR)

+ ∥
∥bδ(t, φε

t,s) − bδ(t, φt,s
∥
∥
L p(BR)

+ ∥
∥bδ(t, φt,s) − b(t, φt,s

∥
∥
L p(BR)

.

By (4.8), for some C > 0 independent of δ, ε, s, and t ,
∥
∥bε(t, φε

t,s) − bδ(t, φε
t,s)

∥
∥
L p(BR)

≤ C
∥
∥bε(t, ·) − bδ(t, ·)∥∥L p(BR+C )

and
∥
∥bδ(t, φt,s) − b(t, φt,s)

∥
∥
L p(BR)

≤ C
∥
∥bδ(t, ·) − b(t, ·)∥∥L p(BR+C )

.

The smoothness of bδ implies that, for all t ∈ [s, T ], as ε → 0, bδ(t, φε
t,s) converges

a.e. to bδ(t, φt,s). Sending ε → 0 and using dominated convergence, we thus have

lim sup
ε→0

∫ T

s

∥
∥bε(t, φε

t,s) − b(t, φt,s)
∥
∥
L p(BR)

dt

≤ C
∫ T

s

∥
∥bδ(t, ·) − b(t, ·)∥∥L p(BR+C )

dt.

The proof of the claim is finished upon sending δ → 0 and again using dominated
convergence. ��
Theorem 4.8. Fix 1 ≤ p < ∞ and s ∈ [0, T ). Then

{
(t, x) �→ φt,s(x)

} ∈ L p
loc(R

d ,W 1,1([0, T ])),
and, for a.e. x ∈ R

d , [s, T ] � t �→ φt,s(x) is an absolutely continuous solution of

φt,s(x) = x +
∫ t

s
b(r, φr,s(x))dr.
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If (bε)ε>0 satisfy (2.3) and φε is the corresponding flow, then, for all R > 0,

lim
ε→0

∥
∥φε·,s − φ·,s

∥
∥
L p(BR ,W 1,1([s,T ]) = 0.

For all 0 ≤ r ≤ s ≤ t ≤ T , φt,r = φt,s ◦ φs,r a.e.

Remark 4.8. The fact that ∂tφt,· ∈ L1 is due to the fact that we are assuming the
weakest possible integrability of b in the time variable. If b ∈ Lq for some q > 1,
then the forward flow belongs to W 1,p for any p ≤ q.

Remark 4.9. The composition φt,s ◦ φs,r is made sense of due to (4.8) and the fact
that the forward flow takes values in L p

loc(R
d).

Proof of Theorem 4.8. For ε > 0, we have ∂tφ
ε
t,s(x) = bε(t, φε

t,s(x)). By Lemma 4.2,
sending ε → 0, we see that the distribution ∂tφt,s(x) satisfies, in the distributional
sense, ∂tφt,s(x) = b(t, φt,s(x)), and therefore, for all R > 0,

∥
∥
∥
∥

∫ T

s
|φt,s |dt

∥
∥
∥
∥
L p(BR)

≤
∫ T

s

∥
∥φt,s

∥
∥
L p(BR)

dt < ∞.

The convergence claim and the solvability of the ODE follow immediately in view
of the fact that φε

s,s(x) = φs,s(x) = x for all ε > 0 and x ∈ R
d .

To prove the last claim, we note that the equality φr,t ◦ φt,r = Id holds as
functions in L p

loc, and, in view of the flow property of the backward flow,

φr,t ◦ (φt,s ◦ φs,r ) = φr,s ◦ φs,t ◦ φt,s ◦ φs,r = φr,s ◦ φs,r = Id .

It follows from Proposition 2.2 that φt,r = φt,s ◦ φs,r a.e., as desired. ��
We recall that Proposition 2.2 implies that any right-inverse of the backward

flow is determined uniquely almost everywhere. We remark here that this property
actually follows from the duality between the transport and continuity equations.

Theorem 4.9. Assume ψ ∈ C([0, t], L p
loc(R

d)) satisfies φs,t (ψs(x)) = x for all
s ∈ [0, t], for a.e. x ∈ R

d . Then ψ = φt,·.
Proof. It suffices to show that u(t, x) = ψs(x) is the unique (vector-valued) duality
solution of (4.2) with terminal data equal to x at time t .

Fix g ∈ Cc(R
d). For a.e. x ∈ R

d , if y = ψt (x), we have φs,t (y) = x by
assumption. Therefore, the change of variables formula yields

∫

Rd
g(x)ψt (x)dx =

∫

Rd
g(φs,t (y))y Js,t (y)dy =

∫

Rd
f (t, y)ydy,

where f is the BJM solution of the forward continuity equation with initial condition
g at time s. ��
Remark 4.10. A corresponding result characterizing φ·,s on [s, T ] follows in exactly
the same way, by considering the duality between the IVP and TVP for, respectively,
an appropriate transport and continuity equation.

Remark 4.11. The uniqueness result above demonstrates that the right-inverse prop-
erty is a crucial property of the forward flow. In other words, it implies that φt,s

solves the ODE, that it solves the transport PDE in the duality sense, and that it has
the regularity properties laid out in Theorems 4.7 and 4.8.
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4.4. Characterizations

We now present alternative ways to characterize the solutions of the forward
continuity and backward transport equations identified above. Although the PDE
(4.2) does not make sense as a distribution, we nevertheless can characterize solu-
tions in a PDE sense through the use of sup- and inf-convolutions. The propagation
of almost-everywhere continuity proved in Theorem 4.7 is a crucial ingredient.

By using this characterization in duality with the conservative equation, we then
show that nonnegative distributional solutions of (4.1) are unique, and therefore
equal to the solution identified by the formula (4.3). As a consequence, we finally
conclude with the uniqueness of regular Lagrangian flows, forward in time, of the
ODE (2.2).

4.4.1. TheNonconservativeEquation: sup and inf Convolutions We now iden-
tify those regularizations that will lead to a PDE characterization for solutions of
the equation (4.2). Given δ > 0 and u ∈ L∞(Rd), we define the sup- and inf-
convolutions

uδ(x):= ess sup
y∈Rd

{

u(y) − 1

2δ
|x − y|2

}

and

uδ(x):= ess inf
y∈Rd

{

u(y) + 1

2δ
|x − y|2

}

.

These regularizations are common in the theory of viscosity solutions, or generally
for equations satisfying a maximum principle in spaces of continuous functions.
The supremum and infimum must be essential, because u is only defined almost
everywhere.

Lemma 4.3. Assume that u ∈ L∞(Rd) is continuous almost everywhere. Then, for
all δ > 0, uδ, uδ are globally Lipschitz with constant

(ess sup u − ess inf u)1/2δ−1/2,

and

uδ ≤ u ≤ uδ a.e.

As δ → 0, uδ decreases to u and uδ increases to u a.e. Finally, the ess sup and
ess inf in the definitions of uδ and uδ can be restricted to respectively y ∈ BRδ(x)(x)
and BRδ(x)(x), where

Rδ(x) = 2(u2δ(x) − uδ(x))1/2δ1/2

and

Rδ(x) = 2(uδ(x) − u2δ(x))
1/2δ1/2.
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Proof. Fix x ∈ R
d and r > 0. We thus have

uδ(x) ≥ ess sup
y∈Br (x)

u(y) − r2

2δ
.

Sending r → 0, we see that uδ(x) ≥ u(x) whenever u is continuous at x , and
therefore uδ ≥ u a.e. Similarly, uδ ≤ u a.e.

We now observe that, if R > (ess sup u−ess inf u)1/2, then, for a.e. y /∈ BRδ1/2 ,

u(y) − |x − y|2
2δ

≤ ess sup u − R2 < ess inf u ≤ uδ(x).

By also using a similar argument for uδ , we see that

uδ(x):= ess sup
|y−x |≤Rδ1/2

{

u(y) − 1

2δ
|x − y|2

}

and

uδ(x):= ess inf
|y−x |≤Rδ1/2

{

u(y) + 1

2δ
|x − y|2

}

.

It is then straightforward to see that uδ and uδ are respectively decreasing and
increasing pointwise as δ decreases to 0, and converge whenever u is continuous
at x (and thus a.e.) to u(x).

For fixed x ∈ R
d , δ > 0, and η > 0, define

Aδ,η(x):=
{

y ∈ BRδ1/2(x) : u(y) − |x − y|2
2δ

> uδ(x) − η

}

.

Then, by definition, Aδ,η(x) is nonempty, and in fact has nonzero Lebesgue mea-
sure. Therefore, for any x ′ ∈ R

d and y ∈ Aδ,η(x), we have

uδ(x) − uδ(x ′) ≤ |x ′ − y|2
2δ

− |x − y|2
2δ

+ η ≤ R

δ1/2 |x ′ − x | + |x ′ − x |2
δ

+ η.

Switching the roles of x and x ′ and using the fact that η was arbitrary, we see that,
for all x ∈ R

d ,

lim sup
x ′→x

|uδ(x ′) − uδ(x)|
|x ′ − x | ≤ R

δ1/2 .

We may then let R decrease down to (ess sup u − ess inf u)1/2, and the same proof
for uδ holds.

For any η > 0 and a.e. y ∈ Aη
δ ,

u2δ(x) ≥ u(y) − |x − y|2
4δ

> uδ(x) + |x − y|2
2δ

− η,

and so

|y − x | ≤ 2(u2δ(x) − uδ(x) + η)1/2δ1/2.
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Therefore, for a.e. y such that |y−x | > Rδ(x), we must have u(y)−|x−y|2
2δ

< uδ(x),
and the statement about restricting the ess sup follows. The corresponding result
for uδ is proved in the same way. ��

A formal calculation using the one-sided Lipschitz condition on b suggests
that, if u solves (4.2), then the sup- and inf-convolutions of u in the spatial variable
are approximate sub- and supersolutions of (4.2). The following result not only
establishes this property rigorously, but also proves that it in fact characterizes the
unique duality solution of (4.2). The result is proved by using the duality property
in relation to a nonnegative distributional solution of (4.1), and we use exactly the
same methods to prove the uniqueness of nonnegative distributional solutions in
Theorem 4.11 below.

Theorem 4.10. Assume u ∈ C([0, T ], L1
loc(R

d))∩ L∞([0, T ]×R
d) is continuous

almost everywhere and u(T, ·) = uT ∈ L∞(Rd). Then u is the duality solution of
(4.2) if and only if there exist r δ, rδ ∈ L1

loc([0, T ] × R
d)) such that limδ→0 r δ =

limδ→0 rδ = 0 in L1
loc, and the sup- and inf-convolutions

uδ(t, x):= ess sup
y∈Rd

{

u(t, y) − 1

2δ
|x − y|2

}

and

uδ(t, x):= ess inf
y∈Rd

{

u(t, y) + 1

2δ
|x − y|2

}

satisfy in the sense of distributions on [0, T ] × R
d the inequalities

∂uδ

∂t
+ b(t, x) · ∇uδ ≤ r δ(t, x) and

∂uδ

∂t
+ b(t, x) · ∇uδ ≥ −rδ(t, x).

Proof. Assume first that the sup- and inf-convolutions have the stated properties.
For standard mollifiers (ρη)η>0 on R, define uδ

η(t, x) = (uδ(·, x) ∗t ρη)(t) and
uδ,η(t, x) = (uδ(·, x) ∗t ρη)(t). Then, by Lemma 4.3, uδ

η and uδ,η are Lipschitz
continuous on [0, T ] × R

d , and satisfy a.e. in [0, T ] × R
d

∂uδ
η

∂t
+ b(t, x) · ∇uδ

η ≤ r δ
η(t, x) and

∂uδ,η

∂t
+ b(t, x) · ∇uδ,η ≥ −rδ,η(t, x),

where

r δ
η(t, x) = (r δ(·, x) ∗t ρη)(t) +

∫

R

(b(t, x) − b(s, x)) · ∇uδ(s, x)ρη(s − t)ds

and

rδ,η(t, x) = (rδ(·, x) ∗t ρη)(t) +
∫

R

(b(t, x) − b(s, x)) · ∇uδ(s, x)ρη(s − t)ds.

The (local) boundedness of b, ∇uδ , and ∇uδ then allows us to invoke the dominated
convergence theorem to say that, for fixed δ, limη→0 r δ

η = r δ and limη→0 rδ,η = rδ
in L1

loc.
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Now let f0 ∈ Cc(R
d) be nonnegative and let f be the BJM solution of (4.1). In

view of the nonnegativity of J , f given by (4.3) is nonnegative on [0, T ]×R
d , and

the bounds for the backward flow in Lemma 2.2 imply that f has compact support
in [0, T ] × R

d . By Theorem 4.1, f is a distributional solution, and therefore
∫

Rd
f (T, x)uδ

η(T, x)dx −
∫

Rd
f0(x)u

δ
η(0, x)dx

=
∫ T

0

∫

Rd
f (t, x)

[
∂t u

δ,η(t, x) + b(t, x) · ∇uδ,η(t, x)
]
dxdt

≤
∫ T

0

∫

Rd
f (t, x)r δ

η(t, x)dxdt.

Sending first η → 0 and then δ → 0, using Lemma 4.3 and the dominated conver-
gence theorem, we conclude that

∫

Rd
f (T, x)uT (x)dx ≤

∫

Rd
f0(x)u(0, x)dx .

Arguing similarly with uδ,η as a test function, we achieve the opposite inequality.
By linearity, the duality identity holds for any f0 ∈ L∞ with bounded support, and
we conclude that u is the unique duality solution.

Assume now conversely that u is the duality solution. Let (bε)ε>0 be as in (2.3),
let uε be the corresponding solution, and define

uε,δ(t, x):= sup
y∈Rd

{

uε(t, y) − 1

2δ
|x − y|2

}

and

uε
δ(t, x):= inf

y∈Rd

{

uε(t, y) + 1

2δ
|x − y|2

}

.

By Lemma 4.3, for fixed δ > 0, uε,δ and uε
δ are Lipschitz continuous in the space

variable, uniformly over [0, T ] × R
d and ε > 0. Moreover, the sup and inf are

actually a max and min, and may be restricted to

|y − x | ≤ (max u0 − min u0)
1/2δ1/2

(note that we have used the maximum principle for the transport equation to control
the maximum and minimum of uε and uε). We may alternatively restrict the y for
which the maximum in the definition of uε,δ(t, x) is attained to satisfy

|y − x | ≤ 2(uε,2δ(t, x) − uε,δ(t, x))1/2δ1/2, (4.11)

and the minimum in the definition of uε
δ is attained by y satisfying

|y − x | ≤ 2(uε
δ(t, x) − uε

2δ(t, x))
1/2δ1/2. (4.12)
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Standard properties of envelopes then give the identities, for any (t, x) ∈ [0, T ] ×
R
d ,

∂uε,δ

∂t
(t, x) = ∂uε

∂t
(t, y) and ∇uε,δ(t, x) = ∇uε(t, y) = y − x

δ

for some y satisfying (4.11). Therefore

∂t u
ε,δ(t, x) = −bε(t, y) · ∇uε,δ(t, x),

from which we deduce that uε,δ is uniformly Lipschitz continuous in the time
variable over [0, T ] × BR for any R > 0, independently of ε. Further developing
the equality gives

∂uε,δ

∂t
(t, x) + bε(t, x) · ∇uε,δ(t, x) = ∂uε

∂t
(t, y) + bε(t, x) · ∇uε(t, y)

= −(bε(t, x) − bε(t, y)) · x − y

δ

≤ C0(t)
|x − y|2

δ

≤ 4C0(t)(u
ε,2δ(t, x) − uε,δ(t, x)). (4.13)

We similarly have that uε
δ is Lipschitz continuous in the time variable, locally in

space, uniformly over ε > 0, and

∂uε
δ

∂t
(t, x) + bε(t, x) · ∇uε

δ(t, x) ≥ −4C0(t)(u
ε
δ(t, x) − uε

2δ(t, x)). (4.14)

We now claim that, as ε → 0, uε,δ and uε
δ converge pointwise to respectively

uδ and uδ , and then, by the uniform-in-ε Lipschitz regularity, the convergence is
locally uniform. To see this, fix x ∈ R

d and η > 0, and let A ⊂ R
d be a set of

positive measure such that

uδ(t, x) ≤ u(t, y) − |x − y|2
2δ

+ η.

We then have, for all y ∈ A,

uδ,ε(t, x) ≥ uε(t, y) − |x − y|2
2δ

.

For at least one such y, we then have uε(t, y)
ε→0−−→ u(t, y), and we thus have

lim sup
ε→0

(
uδ(t, x) − uδ,ε(t, x)

) ≤ η.

It follows that lim supε→0
(
uδ(t, x) − uδ,ε(t, x)

) ≤ 0 since η was arbitrary.
Now, there exists a full measure set B ⊂ R

d such that, for all y ∈ B,

uδ(t, x) ≥ u(t, y) − |x − y|2
2δ

and lim
ε→0

uε(t, y) = u(t, y).
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In view of the continuity of uε(t, ·), there exists a bounded (independently ε) se-
quence (yn)n∈N ⊂ B such that

ρn :=uδ,ε(t, x) −
{

uε(t, yn) − |x − yn|2
2δ

}

satisfies limn→∞ ρn = 0. Therefore, for all n,

uδ,ε(t, x) − uδ(t, x) ≤ uε(t, yn) − u(t, yn) + ρn .

Sending ε → 0 gives lim supε→0(u
δ,ε(t, x) − uδ(t, x)) ≤ ρn , and the proof of

pointwise convergence is finished upon sending n → ∞. The exact same argument
can be used for the pointwise convergence of uε

δ to uδ .
It then follows that, for fixed δ, as ε → 0, ∇uε,δ and ∇uε

δ converge weak-	 in
L∞ to ∇uδ and ∇uδ respectively, while bε converges in L1

loc to b. We may then
take ε → 0 in (4.13) and (4.14) to obtain the distributional inequalities

∂uδ

∂t
(t, x) + b(t, x) · ∇uδ(t, x) ≤ 4C0(t)(u

2δ(t, x) − uδ(t, x))=:r δ(t, x)

and

∂uδ

∂t
(t, x) + b(t, x) · ∇uδ(t, x) ≥ −4C0(t)(uδ(t, x) − u2δ(t, x))=: − rδ(t, x).

By Lemma 4.3 and the almost-everywhere continuity of u, the right-hand sides of
both inequalities converge a.e. to 0 as δ → 0, and, by the uniform boundedness in
δ of uδ and uδ and the dominated convergence theorem, r δ and rδ both converge in
L1

loc to 0 as δ → 0. ��

4.4.2. The Conservative Equation: Uniqueness of Nonnegative Solutions We
observe that, in the first implication in the proof of Theorem 4.10, it was proved
that u was a duality solution by proving the duality identity relative to a “good”
nonnegative solution, i.e. the reversible BJM solution we have been working with
above. However, it was only explicitly used that f was a distributional solution.
Therefore, after having proved the equivalence in Theorem 4.10, we arrive at the
following:

Theorem 4.11. Suppose that f ∈ C([0, T ], L p
loc(R

d)) is a distributional solution
of (4.1) and f ≥ 0. Then f (t, x) = f (0, φ0,t (x))J0,t (x).

Proof. Fix t > 0 and v ∈ Cc(R
d), and letu ∈ C([0, t], L1

loc(R
d))∩L∞([0, t]×R

d)

be the duality solution of (4.2) with terminal data v at time t . Then, by Theorem 4.7,
u is continuous almost everywhere in [0, t] × R

d . Arguing exactly as in the first
part of Theorem 4.10, using the nonnegativity of f , we arrive at the equality

∫

Rd
f (t, x)v(x)dx =

∫

Rd
f (0, x)u(0, x)dx .

Since v was arbitrary, it follows from the definition of duality solutions that f (t, x)
must be given by (4.3). ��
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We then have the following corollary about characterizing the BJM solution
even when f is signed:

Corollary 4.3. A function f ∈ C([0, T ], L p
loc(R

d)) is the unique reversible solu-
tion of (4.1) in the sense of [25] if and only if f and | f | are both solutions in the
sense of distributions.

Proof. That this property is satisfied by the good solution was already pointed out
(Corollary 4.1). Suppose now that f and | f | are both distributional solutions. It
follows that f+ = 1

2 ( f + | f |) and f− = 1
2 (| f | − f ) are distributional solutions,

and, since f+ ≥ 0 and f− ≥ 0, they are both BJM reversible solutions. Therefore
f = f+ − f− is a reversible solution by linearity. ��

4.4.3. Uniqueness of Regular Lagrangian Flows We can finally establish the
uniqueness for the forward flows of the ODE (2.2)

Theorem 4.12. For every s ∈ [0, T ] and almost every x ∈ R
d , φt,s(x) is the unique

absolutely continuous solution of (2.2).

Proof. This is a consequence of Theorem 4.11 and the superposition principle of
Ambrosio [6, Theorem 3.1]. ��

4.5. Some Remarks for Second Order Equations

We next investigate the second-order analogues of (4.1) and (4.2). As mentioned
earlier, we are not able to treat the most general case in which σ is a regular function
of x . This is due to the fact that Lemma 2.5 only gives regularity of the backward
stochastic flow in C0,1−ε for 0 < ε < 1. As a consequence, defining the Jacobian
and using it to analyze the right-inverse of the flow is not possible at present with
our methods. Our results in this case are limited to stochastic flows for which the
coefficient σ in front of the Wiener process is constant in the space variable. The
generalization to regular but nonconstant σ will be the subject of future work.

4.5.1. The Expansive Stochastic Flow with Constant Noise Coefficient The
stochastic analogue of the forward flow (2.2) is

dt�t,s(x) = b(t,�t,s(x))dt + σ(t,�t,s(x))dWt , t ∈ [s, T ], �s,s(x) = x,
(4.15)

where σ : [0, T ] ×R
d → R

d×m is some matrix-valued map. As we shall see, this
general setting is out of the reach at the moment, and we thus assume

σ ∈ L2([0, T ],Rd×m) (4.16)

is constant in the space variable. We then consider the forward stochastic flow

d�t,s(x) = b(t,�t,s(x))dt + σt dWt , t ∈ [s, T ], �s,s(x) = x . (4.17)
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Formally defining

�̃t,s(x):=�t,s(x) −
∫ t

s
σr dWr

︸ ︷︷ ︸
:=Mt−Ms

leads to the random ODE

∂t�̃t,s(x) = b
(
t, �̃t,s(x) + Mt − Ms

)
, t ∈ [s, T ], �̃s,s(x) = x . (4.18)

We now invoke the theory of the previous subsections to obtain the following:

Theorem 4.13. For every s ∈ [0, T ), with probability one, there exists a unique
�·,s ∈ C([s, T ], L p

loc(R
d)) ∩ L p

loc(R
d ,C([s, T ])) such that, for a.e. x ∈ R

d ,

�t,s(x) = x +
∫ t

s
b(r,�r,s(x))dr +

∫ t

s
σr dWr .

If (bε)ε>0 are as in (2.3) and �ε is the unique stochastic flow solving (4.17) with
drift bε, then, with probability one, as ε → 0, �ε converges in C([s, T ], L p

loc(R
d))

and in L p
loc(R

d ,C([s, T ])) to �.

Proof. This follows upon applying the results of Theorems 4.8 and 4.12 to the
random ODE (4.18). ��

4.5.2. A Priori Estimates for the Second-Order Nonconservative Equation
We next relate the forward stochastic flow from the previous subsection to the
terminal value problem for a certain second-order, nonconservative equation. This
will be done with the use of a priori L p and BV estimates, which lead to useful
compactness results, just as for the first order case.

We begin with the more general problem

−∂t u−tr[a(t, x)∇2u]+b(t, x)·∇u = 0 in (0, T )×R
d , u(T, ·) = uT , (4.19)

where

a(t, x) = 1

2
σ(t, x)σ (t, x)T , σ ∈ L2([0, T ],C1,1(Rd ,Rd×m)); (4.20)

notice that, although we allow σ to be nonconstant here, we require more regularity
for σ than in Sect. 3.

Lemma 4.4. There exists C ∈ L1+([0, T ]) depending only on the C1,1 norm of σ

such that, if u is a smooth solution of

−∂t u − tr[a(t, x)∇2u] = 0 in (0, T ) × R
d , u(T, ·) = uT ,

then

‖u(t, ·)‖BV (Rd ) ≤ exp

(∫ T

t
C(s)ds

)

‖uT ‖BV (Rd ) .
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Proof. For (t, x, z) ∈ [0, T ] × R
d × R

d , set w(t, x, z) = ∇u(t, x) · z. Then w

solves the parabolic PDE

∂w

∂t
− tr[A(t, x, z)∇2

(x,z)w] = 0 in (0, T ) × R
2d ,

where

A(t, x, z) = 1

2

(
σ(t, x)

z · ∇σ(t, x)

)
(
σ(t, x)T z · ∇σ(t, x)T

)
.

After a routine regularization argument, using the convexity of w �→ |w|, we find
that

∂|w|
∂t

− tr[A(t, x, z)∇2
(x,z)|w|] ≤ 0 in (0, T ) × R

d × R
d . (4.21)

For some m > d + 1, let φ ∈ C∞+ ([0,∞)) be such that, for some universal C > 0,

φ(r) = 1

rm
for r ≥ 1 and r |φ′(r)| + r2|φ′′(r)| ≤ Cφ(r) for all r ≥ 0.

(4.22)
We multiply (4.21) by φ(|z|) and integrate in (x, z) ∈ R

d × R
d . Then (4.20) and

(4.22) imply that for some C ∈ L1+([0, T ]),

− d

dt

∫∫

Rd×Rd
|w(t, x, z)|φ(|z|)dxdz ≤ C(t)

∫∫

Rd×Rd
|w(t, x, z)|φ(|z|)dxdz.

The proof is then finished by Grönwall’s lemma and the fact that

∫∫

Rd×Rd
|w(t, x, z)|φ(z)dxdz = c0

∫

Rd
|∇u(t, x)|dx,

where c0:=
∫

Rd |ν · z|φ(|z|)dz is finite and independent of |ν| = 1. ��
We have already proved an exponential propagation of the BV bounds when

a = 0 in Lemma 4.1. It is a classical fact for evolution PDEs that, upon using a
splitting scheme, that these estimates can be combined, and we immediately have
the following:

Lemma 4.5. There exists a constant C ∈ L1+([0, T ]) depending only on the con-
stants in (2.1) and (4.20) such that, if u is a smooth solution of (4.19), then

‖u(t, ·)‖L p ≤ exp

(∫ t

0
C(s)ds

)

‖uT ‖L p

and

‖u(t, ·)‖BV ≤ exp

(∫ t

0
C(s)ds

)

‖uT ‖BV .
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Just as in the first-order case, it is not possible to define L p-distributional so-
lutions of (4.19), and the utility of Lemma 4.5 is that it allows to obtain strongly
convergent subsequences in C([0, T ], L p(Rd)) after regularizing the velocity field
b.

The main question is whether such limiting solutions are unique. This unique-
ness was achieved in the first-order case through duality with the conservative
equation, and the solution was further characterized with a formula involving the
forward flow. In the second-order case, we are constrained to work with constant
noise coefficients:

−∂t u − tr[a(t)∇2u] + b(t, x) · ∇u = 0 in (0, T ) ×R
d , u(T, ·) = uT , (4.23)

where a = 1
2σσ T as before.

Theorem 4.14. For 1 < p < ∞ and t ∈ [0, T ], the map
Cc(R

d) � uT �→ E[uT ◦ �T,t ]
extends to a continuous, linear, order-preserving map on L p(Rd), and the function

u(t, x):=E[uT (�T,t (x))] (t, x) ∈ [0, T ] × R
d (4.24)

belongs toC([0, T ], L p(Rd)), and, if uT ∈ BV (Rd), thenu ∈ L∞([0, T ], BV (Rd)).
If (bε)ε>0 is as in (2.3) and uε is the corresponding solution of (4.23), then, as

ε → 0, uε converges strongly to u in C([0, T ], L p(Rd)).

Proof. Assume that uT ∈ C2(Rd)∩Cc(R
d). For bε and uε as in the statement of the

theorem, we have the standard representation formula uε(t, x) = E[uT (�ε
T,t (x))],

where �ε corresponds to the flow (4.17) with drift bε. By Theorem 4.13, for any
t ∈ [0, T ], with probability one, uT ◦ �ε

T,t → uT ◦ �T,t a.e. in R
d . On the other

hand, by Lemma 4.5, (uε)ε>0 is precompact in C([0, T ], L p(Rd)), and therefore
the full sequence converges to u given by (4.24). The L p-bounds and the extension
to uT ∈ L p(Rd) now follow from the L p a priori estimates in Lemma 4.5. ��
4.5.3. Representation Formula for the Fokker–Planck Equation We turn next
to the Fokker-Planck equation

∂t f −∇2 ·(a(t, x) f )+div(b(t, x) f ) = 0 in (0, T )×R
d , f (0, ·) = f0, (4.25)

where once again a = 1
2σσ T with σ as in (4.20).

The existence of solutions in C([0, T ], L p(Rd)) is straightforward; we include
the proof for convenience.

Theorem 4.15. For any f0 ∈ L p(Rd), 1 ≤ p ≤ ∞, there exists a distributional
solution f ∈ C([0, T ], L p

w(Rd)) if 1 ≤ p < ∞, or f ∈ L∞ if p = ∞. More-
over, there exists C ∈ L1+([0, T ]) depending only on p, C0(t) from (2.1) and the
L2([0, T ],C1,1(Rd)) norm of a8 such that

‖ f (t, ·)‖L p ≤ exp

(∫ t

0
C(s)ds

)

‖ f ‖L p .

8 In fact, only an upper bound for ∇2 · a = ∂i j ai j is needed.
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Proof. We do this with the use of a priori estimates, assuming all the data is smooth.
The computations may be made rigorous by regularizing b, adding a small ellipticity
to a, and extracting weakly convergent subsequences.

We then compute

∂t | f |p − ∇2 · (a(t, x)| f |p) + div(b(t, x)| f |p)
≤ (p − 1)

(
∇2 · a(t, x) − div b(t, x)

)
| f |p,

and so ∂t
∫ | f (t, ·)|p ≤ C(t)

∫ | f (t, ·)p for some C as in the statement of the
Theorem. The result now follows from Grönwall’s lemma. ��

We now explore the possibility of obtaining a formula for the solution, similar
to (4.3) for the first order equation (4.1). To do so, it is convenient to reverse time
and consider, for fixed t ∈ (0, T ], the equation satisfied by g(t)(s, x):= f (t−s, x):

−∂sg
(t) − ∇2 · (a(t − s, x)g(t)) + div(b(t − s, x)g(t)) = 0 in (0, t) × R

d ,

g(t)(t, ·) = f0.

For (s, x, ξ) ∈ [0, t] × R
d × R, define G(t)(s, x, ξ) = g(t)(s, x)ξ . Then

⎧
⎪⎪⎨

⎪⎪⎩

− ∂sG
(t) − tr[A(t)(s, x, ξ)∇2

x,ξG
(t)]

− B(t)(s, x) · ∇G(t) − C (t)(s, x)ξ∂ξG
(t) = 0 in (0, t) × R

d+1,

G(t)(t, x, ξ) = f0(x)ξ,

(4.26)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

A(t)(s, x, ξ) = 1

2
�(t)(s, x, ξ)�(t)(s, x, ξ)T , �(t)(s, x, ξ) =

(
σ

ξdiv σ

)

,

B(t)(s, x) = −b + (σ · ∇)σ T , and

C (t)(s, x) = −div (b − div a)

= −div b + tr[(σ · ∇)(∇ · σ)] + 1

2
|div σ |2 + 1

2
tr[∇σ∇σ T ];

(4.27)
for brevity, we have suppressed the arguments for a, σ , and b, which are all (t−s, x).

For an m-dimensional Wiener process W on [0, t] and a fixed s ∈ [0, t], we are
led to consider the SDE, for r ∈ [s, t],

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dr

(
�

(t)
r,s(x, ξ)

�
(t)
r,s(x, ξ)

)

=
(

B(t)(r,�(t)
r,s(x, ξ))

C (t)(r,�(t)
r,s(x, ξ))�

(t)
r,s(x, ξ)

)

dr

+ �(t)(r,�(t)
r,s(x, ξ),�(t)

r,s(x, ξ))dWr ,
(

�
(t)
s,s(x, ξ)

�
(t)
s,s(x, ξ)

)

=
(
x
ξ

)

.

(4.28)

Itô’s formula, (4.26), and (4.28) then yield that, for any (s, x, ξ) ∈ [0, t)×R
d ×R,

r �→ G(t)(r,�(t)
r,s(x, ξ),�(t)

r,s(x, ξ))
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is a martingale on [s, t] with respect to the filtration (Fr )r∈[0,t] generated by the
Wiener process W , and so, for all r ∈ [s, t],

E

[
G(t)(r,�(t)

r,s(x, ξ),�(t)
r,s(x, ξ)) | Fs

]
= G(t)(s, x, ξ). (4.29)

Observe that �
(t)
r,s is independent of ξ , while �

(t)
r,s can be written as �

(t)
r,s(x, ξ) =

J (t)
r,s (x)ξ for some scalar quantity J (t)

r,s (x), and so (4.28) reduces to the two SDEs

⎧
⎪⎨

⎪⎩

dr�
(t)
r,s(x) = −

[
b(t − r,�(t)

r,s(x)) − (σ · ∇)σ T (t − r,�(t)
r,s(x))

]
dt

+σ(t − r,�(t)
r,s(x))dWr , r ∈ [s, t],

�
(t)
s,s(x) = x

(4.30)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr J
(t)
r,s (x) =

[

− div b + tr[(σ · ∇)(∇ · σ)] + 1

2
|div σ |2

+ 1

2
tr[∇σ∇σ T ]

]

(t − r,�(t)
r,s(x))J

(t)
r,s (x)dr

+ divσ(t − r,�(t)
r,s(x))J

(t)
r,s (x)dWr , r ∈ [s, t],

J (t)
s,s (x) = 1.

(4.31)

Standard but tedious computations involving Itô’s formula reveal that J (t)
r,s (x) =

det ∇x�
(t)
r,s(x).

Taking r = t and ξ = 1 in (4.29), we thus arrive at

E

[
f0(�

(t)
t,s(x))J

(t)
t,s (x) | Fs

]
= g(s, x),

and so, because g(0, x) = f (t, x), we obtain the representation for solutions of
(4.25):

f (t, x) = E

[
f0(�

(t)
t,0(x))J

(t)
t,0 (x)

]
. (4.32)

Let us note that �(t)
t,0 has the same law as (�t,0)

−1, where �t,s is the stochastic flow
from (4.15). We can see this by duality with the nonconservative equation. Indeed,
if u is the solution of (4.19) with u(t, ·) = g for some given g, then

∫

f0(x)u(0, x)dx =
∫

f (t, x)g(x)dx .

On the other hand, by (4.24) and (4.32),
∫

f0(x)u(0, x)dx = E

∫

f0(x)g(�t,0(x))dx

and
∫

f (t, x)g(x)dx = E

∫

f0(�
(t)
t,0(x))g(x)J

(t)
t,0 (x)dx,
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so, using the change of variables formula and the fact that f0 is arbitrary, we have
E[g(�t,0(x))] = E[g([�(t)

t,0]−1(x))] for all g : Rd → R and x ∈ R
d .

We now note that the SDE (4.30) falls under the assumptions of Lemma 2.5,
and therefore, for every 0 ≤ s < t ≤ T , there exists a unique solution �

(t)·,s with
the properties laid out by that result. However, the main difficulty is that we do not
know whether �

(t)
t,0 is Lipschitz continuous on R

d (see Remark 2.8). This prevents

us from bounding J (t)
t,0 uniformly in L∞ and passing to weak distributional limits.

This is a major obstacle in using the formula (4.32) to identify the unique limiting
distributional solution of (4.25), as we did for the first order equation (4.1).

The exception is when σ is independent of x . In that case, (4.30) and (4.31)
become

dr�
(t)
r,s(x) = −b(t − r,�(t)

r,s(x))dr + σ(t − r)dWr , r ∈ [s, t], �(t)
s,s(x) = x

(4.33)
and

∂r J
(t)
r,s (x) = − div b(t − r,�(t)

r,s(x))J
(t)
r,s (x), r ∈ [s, t], J (t)

s,s (x) = 1. (4.34)

The SDE (4.34) is in fact an ODE with random coefficients. In particular, J (t)·,s has
a deterministic bound.

We then characterize uniquely the limiting distributional solution of

∂t f − ∇2 · (a(t) f ) + div(b(t, x) f ) = 0 in (0, T ) ×R
d , f (0, ·) = f0. (4.35)

Theorem 4.16. For 1 ≤ p < ∞, the formula (4.32), where �
(t)·,s and J (t)·,s are spec-

ified by respectively (4.33) and (4.34), extends continuously to any f0 ∈ L p(Rd).
If f0 ∈ L p(Rd) and (bε)ε>0 are as in (2.3) and f ε is the corresponding solution of
(4.35), then, as ε → 0, f ε converges weakly in C([0, T ], L p

w(Rd)) to f . If f0 ≥ 0,
then there exists a unique nonnegative distributional solution of (4.35), which is
given by (4.32).

Proof. Let (bε)ε>0 and f ε be as in the statement of the theorem, and assume
f0 ∈ C2

c (R
d). Let uε be the solution of (4.23) with velocity bε and with terminal

data u(t, ·) = g ∈ C2
c (R

d) for some fixed t ∈ [0, T ]. Then integration by parts
yields

∫

f ε(t, x)g(x)dx =
∫

f0(x)u
ε(0, x)dx .

By Theorem 4.14, as ε → 0, uε converges strongly in L p′
(Rd) to the function

u defined uniquely by u(s, x) = g(�t,s(x)). Therefore, any C([0, T ], L p
w(Rd))-

weak limit f of f ε as ε → 0 must satisfy
∫

f (t, x)g(x)dx =
∫

f0(x)u(0, x)dx,

and it follows that there is a unique such limiting function f .
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On the other hand, for ε > 0,

f ε(t, x) = E

[
f0

(
�

(t),ε
t,0 (x)

)
J (t),ε
t,0 (x)

]
,

where �
(t),ε·,s and J (t),ε·,s are as in respectively (4.33) and (4.34) with b replaced every-

where by bε. For fixed t ∈ [0, T ], uniformly in ε, �(t),ε
t,0 is Lipschitz continuous on

R
d , and so J (t),ε

t,0 = det ∇x�
(t),ε
t,0 is bounded in L∞. By exactly the same arguments

as in Lemma 2.3 and Theorem 4.1, we see that, as ε → 0, E f0
(
�

(t),ε
t,0

)
J (t),ε
t,0 con-

verges weakly in L p to E f0
(
�

(t)
t,0

)
J (t)
t,0 . It follows that f must be given by (4.32).

The fact that the formula extends to arbitrary f0 ∈ L p(Rd) now follows from the
a priori L p bounds in Theorem 4.15.

The uniqueness of nonnegative distributional solutions is then a consequence
of the uniqueness of the forward flow established in Theorem 4.13, as well as
the generalization of superposition to second-order Fokker–Planck equations (see
Figalli [41, Lemma 2.3]). ��
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