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Abstract

We consider a periodic, linear elastic laminate with a brittle crack, evolving
along a prescribed path according to Griffith’s criterion. We study the homoge-
nized limit of this evolution, as the size of the layers vanishes. The limit evolution
is governed again by Griffith’s criterion, in terms of the energy release (of the ho-
mogenized elastic energy) and an effective toughness, which, in general, differs
from the weak∗ limit of the periodic toughness. We provide a variational character-
ization of the effective toughness and, by the energy identity, we link the toughening
effect (in the limit) to the micro-instabilities of the evolution (in the periodic lami-
nate). Finally, we provide a couple of explicit calculations of the effective toughness
in the anti-plane setting, showing, in particular, an example of toughening by elastic
contrast.

1. Introduction

From the mathematical point of view, the homogenization of evolution equa-
tions is not a simple development of the (well established) homogenization theory
for elliptic equations. A remarkable example was presented by Tartar in [23]. Con-
sider a Cauchy problem of the form{

u̇ε(x, t) + aε(x)uε(x, t) = f (x, t)

uε(x, 0) = u0(x).

If aε
∗
⇀ a0 (which is the case in homogenization), then, up to subsequences,

uε ⇀ u0, where u0 solves an evolution equation of the form

u̇0(x, t) + a0(x)u0(x, t) +
∫ t

0
K (x, t − τ)u(τ ) dτ = f (x, t).
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Therefore, a memory effect (in time) appears in the limit, as a consequence of
the heterogeneity (in space) of the coefficients. This example was studied also in
[15, Section 3.5.2] from a different perspective: setting the problem in spaces of
measures, Mielke showed that different limit evolution may occur, as the system
is endowed with different energy-dissipation structures. For instance, if aε(x) =
a(x/ε) and f = 0, then suitable choices of energy and dissipation lead to the
following limit equations:

u̇0(x, t) + (min a) u0(x, t) = 0, u̇0(x, t) + (max a) u0(x, t) = 0

(clearly, different subsequences are extracted from uε). In [15] this example is
presented in the context of evolutionary �-convergence, which gives a notion of
convergence for a class of doubly non-linear parabolic evolutions of the form{

∂vRε(uε(x, t), u̇ε(x, t)) = −∇Eε(uε(x, t)),

uε(0, x) = uε(x),

usually when Eε �-converge to E0 (for the general theory of �-convergence we
refer to the book of Dal Maso [10]). When the dissipation is simply of the form
Rε(u, v) = 1

2‖v‖2, the abstract results of Sandier and Serfaty [22] provide suffi-
cient conditions which guarantee the (weak) convergence of uε to the solution u0
of the parabolic problem{

u̇0(x, t) = −∇E0(u0(x, t)),

u0(0, x) = u0(x).

For instance, under suitable regularity assumptions, convergence holds if the initial
data is well-prepared, that is, if uε ⇀ u0 and Eε(uε) → E0(u0), and if

‖∇E0‖(u) � �- lim inf
ε→0

‖∇Eε‖(u).

In the rate-independent setting, similar conditions are sufficient also for the conver-
gence of balanced (or vanishing) viscosity evolutions; see for example [19]. The
conditions in [22] are actually far more general, and include the case of ε-depending
norms

‖∇E0‖0(u) � �- lim inf
ε→0

‖∇Eε‖ε(u), (1)

which will be relevant also in our context. Finally, consider a family of minimizing
movement (or implicit Euler) schemes of the form

uε((k + 1)τε) ∈ argmin
{
Eε(u) + 1

2τ−1
ε ‖u − uε(kτε)‖2

}
,

where τε → 0 as ε → 0. For when the energy Eε is independent of ε, it is well
known that (the interpolation of) the above time-discrete evolutions converge, as
ε → 0, to the gradient flow of Eε. However, by virtue of the examples provided in
Braides [8], the limit evolution will, in general, depend on the relationship between
ε (which parametrizes the family of energies) and the time step τε.



Arch. Rational Mech. Anal.          (2024) 248:85 Page 3 of 51    85 

From the mechanical point of view our work is motivated by experimental and
numerical results on the effective toughness of brittle composites (see for instance
[13,24] and the references therein). In general, when dealing with a periodically
arranged composite, with a very fine microstructure, it is natural to introduce also an
homogenized material reflecting “in average” the mechanical behavior of the com-
posite. For instance, the equilibrium configuration (in terms of displacement, stress
and energy) of a linear elastic composite can be approximated by the equilibrium
configuration of a homogeneous linear elastic material, obtained with “suitable
averages” of the stiffness tensors of the underlying constituents.

For quasi-static fracture propagation, the mechanical behavior is instead de-
scribed by the crack set, at time t , together with the equilibrium configuration of
the body, given the crack at time t ; furthermore, the propagation is governed by
a rate-independent evolution law for the crack (Griffith’s criterion), together with
momentum balance (an elliptic pde). For the latter, (static) homogenization is suit-
able, and several mathematical approaches are available in the literature; see for
example [5,9,17] and the references therein. For the former, that is, Griffith’s crite-
rion, there is a need instead to develop some kind of “evolutionary homogenization”
or, better, an “evolutionary convergence” for rate-independent systems (specified
hereafter). In practice, see for instance [13,24], the goal would be to find an effec-
tive “averaged” toughness in such a way that the quasi-static evolution of a crack
in the brittle composite is approximated by the quasi-static evolution of a crack
in a brittle homogeneous material characterized by the (static) homogenization of
the stiffness tensors together with the effective toughness. In §2.8, we provide an
example of a laminate with explicit computations of effective toughness and ho-
mogenized stiffness. This example highlights some peculiar features: the effective
toughness depends on the volume fraction of the layers, on their toughness, and
also on the coefficients of their stiffness matrices, furthermore, it can be larger than
the toughness of the single brittle layers, and larger than the weak∗ limit of the
periodic toughness. These properties are qualitatively consistent with the numeri-
cal and experimental results of Hossain et al. [13], where toughening (that is, the
macroscopic increase in toughness) occurs as a result of the microscopic elastic and
toughness heterogeneities. In mechanics, most of the interest is indeed driven by
the toughening and the strengthening effects of composites [6]. In general, tough-
ening is also due to several microscopic “geometrical features” of the crack, such
as micro-cracking, branching, debonding and tortuosity; a mathematical result on
toughening by the homogenization of highly oscillating crack paths is given in [4],
where Barchiesi employs a modified �-convergence framework in order to take
into account the irreversibility constraint. In the context of Coulomb friction, a
characterization of the effective friction coefficient (depending on both elastic and
friction coefficients of the layers) is provided in [3].

Let us turn to our results. We consider a brittle crack which propagates horizon-
tally in a linear elastic laminate composed by n periodic layers; each layer is made
of a layer of material A and B with volume ratio λ and 1 − λ, respectively. We dis-
tinguish between vertical [13] and horizontal layers: in the former setting, the crack
crosses the layers, while in the latter it lays in the interface between two layers.
We do not consider a “surfing boundary condition” [13], but a Dirichlet boundary
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condition u = f (t)g for the displacement u on a portion ∂D� of the boundary. For
technical reasons, and making reference to the experimental and numerical results
of [13], we confine a priori the geometry of the crack to a straight line, even if, in
general, the crack may deflect at interfaces; see the well-known [12], which leads
to (macroscopic) anisotropic toughness in layered materials [7].

We begin with the more delicate case, which is that of vertical layers. We denote
the toughness by Gc

n(l) and the energy release by Gn(t, l), where t is time and l
indicates the position of the crack tip. Note that Gc

n depends on l and that it is
periodic. On the contrary, Gn(t, ·) is not periodic and, to the best of our knowledge,
it is not known if it is defined at the interfaces between the two materials; for this
reason, we actually employ the right lower semi-continuous envelope, which is
indeed the natural choice for Griffith’s criterion (see Remark 2). By linearity, the
dependence on time is much easier, since we can write Gn(t, l) = f 2(t)Gn(l),
where Gn is computed with boundary condition u = g, that is, for f (t) = 1.
Denoting by 	n(t) the position of the tip at time t , the quasi-static propagation is
governed by Griffith’s criterion:

(i) Gn(t, 	n(t)) � Gc
n(	n(t)),

(ii) if Gn(t, 	n(t)) < Gc
n(	n(t)) then 	̇+

n (t) = 0 (that is, the right time derivative
vanishes).

It is well known, see for example [18,21], that, in general, there are different solu-
tions satisfying Griffith’s criterion, and that these solutions may be discontinuous
(in time). Discontinuities are basically due to the fact that Griffith’s criterion is
rate-independent (that is, invariant under time reparametrization). From the mathe-
matical point of view, the behavior in the discontinuities characterizes the different
notions of evolution; see [18]. Here, we denote by J (	n) the set times where 	n
jumps, and following [21], we require, besides (i) and (ii), that

(iii) if t ∈ J (	n) then Gn(t, l) � Gc
n(l) for every l ∈ [	−

n (t), 	+
n (t)).

This condition means that the transition between the equilibria 	−
n (t) and 	+

n (t) is
unstable (or catastrophic). Notice that, for l = 	−

n (t), the above conditions, put
together, imply that Gn(t, 	−

n (t)) = Gc
n(	

−
n (t)), therefore both stable and unstable

propagation occurs once the critical value is attained. Evolutions satisfying (i), (ii),
and (iii) can be obtained also by a vanishing viscosity approach [14], taking the limit
of continuous solutions of rate-dependent models. As observed in the numerical
simulations [13], discontinuities often occur at those interfaces where the crack
passes from the material with higher to that with lower toughness. Therefore, in
our evolution 	n , we should expect many of these “microscopic jumps” in the
order n of the number of layers; these discontinuities, which “disappear” in the
homogenized limit, will produce the toughening effect.

At this point, let us describe the homogenized limit. Denote by Ghom(t, l) the
energy release of the homogenized elastic energy. By Helly’s theorem we know
that 	n → 	 pointwise (upon extracting a subsequence). The goal is to define an
effective toughness Gc

eff in such a way that the limit 	 satisfies Griffith’s criterion:

(i) Ghom(t, 	(t)) � Gc
eff (	(t)),

(ii) if Ghom(t, 	(t)) < Gc
eff (	(t)) then 	̇+(t) = 0 (that is, the right time derivative

vanishes),
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(iii) if t ∈ J (	) then Ghom(t, l) � Gc
eff (l) for every l ∈ [	−(t), 	+(t)).

Notice that, in general, Ghom(t, ·) is neither the pointwise nor the �-limit of Gn(t, ·)
(an explicit example is given in Section 2.8). However, a variational convergence
in the spirit of (1) holds. Indeed, writing again that Ghom(t, l) = f 2(t)Ghom(l), the
effective toughness is defined in such a way that

Ghom(l)

Gc
eff (l)

= �- lim inf
n→∞

Gn(l)
Gc

n(l)
. (2)

First of all, note that, in general, Gc
eff may depend on l and, through the energy

release, on several other parameters of the problem, in particular, it does not depend
only on the toughness of material A and B; in mechanical terms, it is an R-curve
(see for example [2]). At the current stage, it is hard to guess if Gc

eff should always
be a constant. In our examples it is so, on the contrary, in the experimental measures
of [6], the effective toughness is surely not constant. What is clear is the fact that
the effective toughness depends on the elastic contrast and it can be higher than
the toughness of the underlying materials. Indeed, in the explicit calculations of
Section 2.8, we show that (under suitable assumptions)

Gc
eff = λ max

{
Gc

A , Gc
B

μB,1

μA,1

}
+ (1 − λ) max

{
Gc

A

μA,1

μB,1
, Gc

B

}
,

where Gc
A and Gc

B are the toughness, while μA,1 and μB,1 are the components of the
stiffness matrix in the anti-plane setting. Moreover, independently of this example,
if Gn converge uniformly to Ghom, then Gc

eff = max{Gc
A ,G

c
B}.

Finally, let us compare (2) with (1). In the context of fracture, the energy release
Gn plays the role of the slope ‖∇En‖; the ratio Gn/Gc

n is instead some sort of energy
release with respect to the dissipation metric induced by the toughnessGc

n , and plays
the role of ‖∇En‖n ; in these terms, the effective toughness plays the role of the norm
‖ · ‖0 in (1) or, more precisely, of the smallest norm which makes (1) true, and for
this reason in the definition of Gc

eff an equality is needed.
In the case of horizontal layers with an interface crack the picture is much

simpler. Indeed, the toughness Gc is constant and independent of n, and moreover
the energy release Gn is well defined and converges locally uniformly to Ghom; this
is enough to prove that the evolutions 	n converge to an evolution 	 which satisfies
Griffith’s criterion with energy release Ghom and toughness Gc

eff = Gc.

2. Vertical Layers with Horizontal Crack

Let � = (0, L) × (−H, H) be the (uncracked) reference configuration. For
l ∈ (0, L] let Kl = [0, l] × {0} be the crack; in the presence of a crack Kl the
reference configuration is then �\Kl . We denote by ∂D�, independently of l, the
union of the sets {0}× (−H, 0)∪ (0, H) and {L}× (−H, H). Let g ∈ H1/2(∂D�).
To fix the ideas,

g(x) =

⎧⎪⎨
⎪⎩

−1 x ∈ {0} × (−H, 0),

1 x ∈ {0} × (0, H),

0 x ∈ {L} × (−H, H)
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Fig. 1. An example of vertical layers and horizontal crack (along the mid line)

is an admissible function (see also Fig. 1). By abuse of notation we still denote
by g a lifting of the boundary datum. Given l ∈ (0, L], the spaces of admissible
displacements and admissible variations are, respectively,

Ul = {u ∈ H1(�\Kl) : u = g in ∂D�}, Vl = {v ∈ H1(�\Kl) : v = 0 in ∂D�}.
Note that Ul 	= ∅, since g ∈ H1/2({L} × (−H, H)). Clearly, if l1 < l2, then
Ul1 ⊂ Ul2 , and thus Ul ⊂ UL ⊂ H1(�\KL) for every l ∈ (0, L]. All the spaces Vl

and the sets Ul are endowed with the H1(�\KL)-norm. Splitting �\KL into the
disjoint union of �+ = (0, L) × (0, H) and �− = (0, L) × (−H, 0), a uniform
Poincaré inequality holds: there exists CP > 0 such that, for every l ∈ (0, L] and
v ∈ Vl , ∫

�\Kl

|v|2 dx � CP

∫
�\Kl

|∇v|2 dx .

The conditions given above are independent of the periodic structure and hold
throughout the paper, for both abstract results and explicit computations. Actually,
some of the results hold under more general conditions, depending on the specific
setting. For instance, the abstract results hold also in the plane-strain setting, see
Section 2.6.1, however, in this context we do not have any explicit example; for this
reason and for the sake of simplicity, we consider the antiplane setting presented
above.

2.1. Energy and Energy Release

In this section we assume that � is a composite, made of n ∈ N\{0} periodic
vertical layers of thickness ln = L/n; each layer itself is composed of a vertical
layer of material A with thickness λln , for λ ∈ (0, 1), and a vertical layer of material
B with thickness (1 − λ)ln . More precisely, let ln,k = k ln for k = 0, . . . , n and
ln,k+λ = ln,k + λln = (k + λ)ln for k = 0, . . . , n − 1; the layers of materials A
are of the form (ln,k, ln,k+λ) × (−H, H) while those of material B are of the form
(ln,k+λ, ln,k+1) × (−H, H). For later convenience, we also introduce the notation

n = {l ∈ [0, L] : l = ln,k or l = ln,k+λ} so that the interfaces between material
A and B (in the sound material) are of the form {l} × (−H, H) for l ∈ 
n\{0, L}.
We will also employ the notation �n,k = (ln,k, ln,k+1) × (−H, H) and

�n,A =
n−1⋃
k=0

(ln,k, ln,k+λ) × (−H, H), �n,B =
n−1⋃
k=0

(ln,k+λ, ln,k+1) × (−H, H).
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We define in a similar way the crack sets Kn,k = (ln,k, ln,k+1)×{0}, and then Kn,A

and Kn,B .
We assume that A and B are elastic brittle materials. We denote by CA the

stiffness matrix of material A, of the form

CA =
(

μA,1 0
0 μA,2

)
, μA,i > 0 for i = 1, 2,

and we denote by Gc
A > 0 the toughness of A; we employ a similar notation for

material B. Let Cn : �\(
n × (−H, H)) → {CA,CB} be the periodic stiffness
matrix and let Gc

n : [0, L]\
n → {Gc
A ,G

c
B} be the periodic toughness.

The linear elastic energy Wl,n : Ul → R is given by

Wl,n(u) = 1
2

∫
�\Kl

∇u Cn∇uT dx .

Denote by ul,n ∈ Ul the (unique) minimizer of the energy Wl,n ; clearly ul,n is also
the (unique) solution of the variational problem∫

�\Kl

∇u Cn∇vT dx = 0 for every v ∈ Vl .

Note that the above bi-linear form is coercive and continuous, uniformly with
respect to l ∈ (0, L] and n ∈ N. In the sequel we will often employ the condensed
(or reduced) elastic energy En : (0, L] → R given by

En(l) = Wl,n(ul,n) = min{Wl,n(u) : u ∈ Ul}.
The following lemma contains the fundamental properties of this energy (for n
fixed):

Lemma 1. The energy En is decreasing, continuous, and of class C1((0, L)\
n).
In particular, if l ∈ (ln,k, ln,k+λ) the derivative takes the form

E ′
n(l) =

∫
�\Kl

∇ul,nCnE∇uTl,n φ′dx where E =
(−1 0

0 1

)
, (3)

while φ ∈ W 1,∞(0, L), supp(φ) ⊂ (ln,k, ln,k+λ), φ(l) = 1 and, by abuse of
notation, φ′ = ∂lφ(x1). A representation like (3) holds also for l ∈ (ln,k+λ, ln,k+1).

Remark 1. Note that En is not periodic, unless it is constant. Note also that the
support of the auxiliary function φ shrinks when n → ∞.

Proof. We provide a short proof, following [20]. For l1 < l2 we have Ul1 ⊂ Ul2 and
thus En(l1) � En(l2). If lm → l, then En(lm) → En(l) and ulm ,n → ul,n strongly
in H1(�\KL).

Let us compute the derivative of the energy En(l) for l 	∈ 
n . For h  1 let
�h(x) = (x1 + hφ(x1), x2) be a diffeomorphism of �\Kl onto �\Kl+h . Note that
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�h(x) = x out of the layer (ln,k, ln,k+λ) × (−H, H). Using the change of variable
w = u ◦ �h the energy Wl+h,n : U l+h → R reads as

Wl+h,n(u) = W l,h,n(w) = 1
2

∫
�\Kl

∇w Cn(I + hMhφ
′)∇wT dx,

where

Mh =
(−(1 + hφ′)−1 0

0 1

)
.

If ul+h,n ∈ argmin {Wl+h,n(u) : u ∈ U l+h}, then wl,h,n = (ul+h,n ◦ �h) ∈
argmin {W l,h,n(w) : w ∈ U l} and En(l + h) = W l,h,n(wl,h,n). Hence,

E ′
n(l) = lim

h→0

En(l + h) − En(l)
h

= lim
h→0

W l,h,n(wl,h,n) − Wl,n(ul,n)

h
.

Writing the variational formulations for wl,h,n and ul,n , we have∫
�\Kl

∇wl,h,n Cn(I + hMhφ′)∇vT dx =
∫
�\Kl

∇ul,n Cn∇vT dx = 0 for every v ∈ Vl .

Then, being that (wl,h,n − ul,n) ∈ Vl , we can re-write the energies as

W l,h,n(wl,h,n) = 1
2

∫
�\Kl

∇wl,h,n Cn(I + hMhφ
′)∇uTl,n dx,

Wl,n(ul,n) = 1
2

∫
�\Kl

∇wl,h,n Cn∇uTl,n dx .

Hence,

W l,h,n(wl,h,n) − Wl,n(ul,n)

h
= 1

2

∫
�\Kl

∇wl,h,n CnMh∇uTl,n φ′ dx .

As h → 0, Mh → 2E in L∞(�;R2×2) and wl,h,n ⇀ ul,n in H1(�\Kl), therefore
we obtain (3).

If lm → l and ln,k < l < ln,k+λ we can choose φ to be independent of m
(sufficiently large). Moreover, ∇ulm ,n → ∇ul,n in L2(�\KL ,R2). Therefore, by
the representation (3) we get E ′

n(lm) → E ′
n(l). ��

By virtue of the above Proposition, for every l 	∈ 
n , we can define the energy
release

Gn(l) = −∂+
l En(l) = −∂lEn(l). (4)

In the sequel it will be convenient to extend the toughness and the energy release
to 
n (even if in general the energy is not differentiable in 
n). We define

Gn(l) = lim inf
s→l+

Gn(s) if l 	= L and Gn(L) = 0. (5)

With this definition the function Gn : [0, L] → [0,+∞] is right lower semi-
continuous. In Remark 2 we will see that for l 	= L this extension is actually the
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only one compatible with Griffith’s criterion; for l = L it is instead suggested by
technical convenience (strictly speaking, the right derivative of the reduced energies
En do not make sense for l = L). Note that Gn may possibly take the value +∞ in

n . In a similar manner, we define

Gc
n(l) = lim

s→l+
Gc

n(s) if l 	= L and Gc
n(L) = Gc

A . (6)

Clearly, Gc
n : [0, L] → {Gc

A ,G
c
B} is right continuous.

2.2. Quasi-Static Evolution by Griffith’s Criterion

In this subsection we provide a notion of quasi-static propagation, following
[14,18,21]. We consider a time depending boundary datum of the form f (t)g where
f ∈ C1([0, T ]) with f (0) = 0 and f ′ > 0 (non-monotone boundary conditions
are considered in Section 4). Let L0 ∈ (0, L) be the initial crack. For l ∈ [L0, L]
the space of admissible displacement is

Ut,l = {u ∈ H1(�\Kl) : u = f (t)g in ∂D�} = f (t)Ul .

We denote by En and Gn the corresponding condensed elastic energy and energy
release. For t = 0 we simply have that En(0, ·) = Gn(0, ·) = 0, since u = 0 on
∂D�. If t > 0, by linearity, we can write

En(t, l) = f 2(t) En(l), Gn(t, l) = f 2(t) Gn(l).
The latter equality makes sense in generalized form also in the case Gn(l) = +∞. In
particular, En(·, l) is of class C1([0, T ]) while, by Lemma 1, En(t, ·) is decreasing,
continuous and of classC1((0, L)\
n). The energy release rateGn(·, l) is instead of
classC1([0, T ]) if Gn(l) < +∞ (for example if l 	∈ 
n), otherwiseGn(·, l) = +∞
for t > 0 (in this case we will say that Gn(·, l) is continuous, with extended values).
Finally, Gn(t, ·) is right lower semi-continuous in [0, L).

The following proposition provides our formulation of Griffith’s criterion for
the quasi-static propagation of a crack in a brittle material with periodic vertical
layers:

Proposition 2. There exists a unique non-decreasing, right continuous function
	n : [0, T ) → [L0, L]which satisfies the initial condition 	n(0) = L0 andGriffith’s
criterion in the form

(i) Gn(t, 	n(t)) � Gc
n(	n(t)) for every time t ∈ [0, T );

(ii) if Gn(t, 	n(t)) < Gc
n(	n(t)) then 	n is right differentiable in t and 	̇+

n (t) = 0;
(iii) if t ∈ J (	n) then Gn(t, l) � Gc

n(l) for every l ∈ [	−
n (t), 	n(t)),

where J (	n) denotes the set of discontinuity points of 	n.

Before proving Proposition 2 let us make a few comments. The uniqueness
is true, thanks to the monotonicity of the boundary condition together with the
right continuity of the evolution. The discontinuity points t ∈ J (	n) correspond
to instantaneous non-equilibrium transitions of the system between the equilibria
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	−
n (t) and 	n(t) = 	+

n (t). Often discontinuities are tailored to the layers: roughly
speaking, the crack jumps through the layer with smaller toughness, reaching the
closest interface, where it “re-nucleates” before advancing in the layer with higher
toughness. In this case the non-equilibrium condition Gn(t, l) � Gc

n(l) may not
hold for l = 	+

n (t) ∈ 
n . For instance, it may happen that Gn(t, l) > Gc
A for

l ∈ (ln,k, ln,k+λ) while Gn(t, ln,k+λ) < Gc
B . For this reason condition (ii) holds

with the right derivative 	̇+
n (t); however, out of interfaces the full time derivative

	̇n(t) can be used (see Corollary 4). However, this is neither a general rule for the
evolution neither an a-priori assumption in our analysis; in some cases the crack may
as well cross multiple layers in a single discontinuity, depending on the parameters.

Strictly speaking, right continuity is not necessary for Griffith’s criterion, how-
ever it is also not a restrictive since 	n turns out to be the (only) right continuous
representative of any evolution λn which satisfies Griffith’s criterion. More pre-
cisely, we have the following result, whose proof is postponed after Corollary 4:

Corollary 3. If λn : [0, T ] → [L0, L] is non-decreasing, satisfies λn(0) = L0 and
Griffith’s criterion, that is,

(i) Gn(t, λn(t)) � Gc
n(λn(t)) for every time t ∈ [0, T ];

(ii) if Gn(t, λn(t)) < Gc
n(λn(t)) and t < T then λn is right differentiable in t and

λ̇+
n (t) = 0;

(iii) if t ∈ J (λn) then Gn(t, l) � Gc
n(l) for every l ∈ [λ−

n (t), λ+
n (t)),

then the right continuous representative of λn coincides with 	n in [0, T ).

In other terms, {t ∈ [0, T ] : λn(t) 	= 	n(t)} ⊂ J (	n) = J (λn). Roughly
speaking, if λn(t) 	= 	n(t), then t is a jump point, where λn(t) = 	−

n (t) and
λ+
n (t) = 	n(t).

Proof of Proposition 2. The proof is based on the following explicit representation
of the evolution:

	n(t) = inf{l ∈ [L0, L] : Gn(t, l) < Gc
n(l)}. (7)

Note that the set {l ∈ [L0, L] : Gn(t, l) < Gc
n(l)} is not empty because, by

definition, Gn(t, L) = 0. Thus 	n is well defined and takes values in [L0, L]. We
will check that the function 	n given by (7) is indeed the unique solution.

Clearly 	n satisfies the initial condition because Gn(0, L0) = 0.
Let us check monotonicity. Since the function f is increasing and Gn is non-

negative, for every 0 � t1 < t2 < T , it holds that Gn(t1, l) = f 2(t1)Gn(l) �
f 2(t2)Gn(l) = Gn(t2, l), and hence

{l ∈ [L0, L] : Gn(t1, l) < Gc
n(l)} ⊃ {l ∈ [L0, L] : Gn(t2, l) < Gc

n(l)} .

Taking the infimum yields that 	n(t1) � 	n(t2).
Next, we show that 	n is right continuous. Since in generalGn(·, l) is continuous

(with extended values) only in (0, T ), we distinguish between t = 0 and t > 0. In
the former case, let L0 < l with l 	∈ 
n . Then as τ → 0 we have Gn(τ, l) → 0 <

Gc
n(l). Hence, (7) implies 	n(τ ) � l for τ > 0 sufficiently small. By monotonicity
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	+
n (0) � l and thus 	+

n (0) � L0 by the arbitrariness of l. Let t > 0. By monotonicity
	+
n (t) � limτ→t+ 	n(τ ). Let us prove the opposite inequality. If limτ→t+ 	n(τ ) =
L0 there is nothing to prove. Otherwise, let L0 � l∗ < limτ→t+ 	n(τ ) with l∗ 	∈ 
n

(remember that 
n is a discrete set). By monotonicity, l∗ < 	n(τ ) for every τ > t ,
and thus, applying the definition (7) to 	n(τ ), we know that Gn(τ, l∗) � Gc

n(l
∗)

for every τ > t . Passing to the limit as τ → t+ by the continuity of Gn(·, l∗) it
follows that Gn(t, l∗) � Gc

n(l
∗) for every L0 � l∗ < limτ→t+ 	(τ) with l∗ 	∈ 
n .

Hence 	n(t) = inf{l ∈ [L0, L] : Gn(t, l) < Gc
n(l)} � l∗. Taking the supremum

in the right hand side for L0 � l∗ < limτ→t+ 	(τ) with l∗ 	∈ 
n , we get 	n(t) �
limτ→t+ 	(τ).

Let us check (i). If 	n(t) < L then by (7) there exists a sequence lm ↘ 	n(t)
such that Gn(t, lm) < Gc

n(lm) and lm 	∈ 
n . By the right lower semi-continuity of
Gn(t, ·) and the right continuity of Gc

n it follows that

Gn(t, 	n(t)) � lim inf
m→∞ Gn(t, lm) � lim

m→∞Gc
n(lm) = Gc

n(	n(t)). (8)

If 	n(t) = L there is nothing to prove since, by definition, 0 = Gn(t, L) < Gc
n(L).

Next we check (ii). Again, we consider separately t = 0 and t > 0. If t = 0 we
have Gn(0, L0) < Gc

n(L0). If 	n(τ ) = L0 for some τ > 0 then 	n is constant up to
τ and thus 	̇+

n (0) = 0. On the contrary, assume that 	n(τ ) > L0 for every τ > 0.
By (7) we know that Gn(τ, l) � Gc

n(l) for every τ > 0 and every L0 � l < 	n(τ ).
Hence f 2(τ )Gn(l) � min{Gc

A ,G
c
B}, and thus

f 2(τ )
(En(L0) − En(	n(τ )

) = f 2(τ )

∫ 	n(τ )

L0

Gn(l) dl � (	n(τ ) − L0) min{Gc
A ,G

c
B}.

As a consequence

lim
τ→0+

	n(τ ) − 	n(0)

τ
� lim

τ→0+
f 2(τ ) − f 2(0)

τ

En(L0) − En(	n(τ ))

min{Gc
A ,G

c
B}

= 0,

where we used the continuity of the energy En and the fact that f ∈ C1([0, T ]) with
f (0) = 0. Now, consider t > 0. If Gn(t, 	n(t)) < Gc

n(	n(t)) then by continuity
of Gn(·, l) we get Gn(τ, 	n(t)) < Gc

n(	n(t)) for τ in a (sufficiently small) right
neighborhood of t . By (7) it follows that 	n(τ ) � 	n(t); by monotonicity 	n is
constant in a right neighborhood of t .

Let us consider (iii). Let t ∈ J (	n). By right continuity 	n(t) > L0. By def-
inition 	n(t) = inf{l ∈ [L0, L] : Gn(t, l) < Gc

n(l)}, hence Gn(t, l) � Gc
n(l) for

every L0 � l < 	n(t) and in particular for l ∈ [	−
n (t), 	n(t)).

To conclude, let us prove uniqueness. Assume, by contradiction, that there exists
another right continuous evolution 	∗ 	= 	n which satisfies Griffith’s criterion. First,
we claim that there exists a time t 	∈ J (	∗) such that 	∗(t) 	= 	n(t); indeed, if
{t ∈ [0, T ] : 	∗(t) 	= 	n(t)} ⊂ J (	∗) then by right continuity of 	∗ and 	n we
would get 	∗ = 	n everywhere in [0, T ). So, let t > 0 be a continuity point of 	∗
with 	∗(t) 	= 	n(t).

If 	∗(t) > 	n(t), then, by the definition (7) of 	n , there exists l∗ ∈ (	n(t), 	∗(t))
with l∗ 	∈ 
n such that Gn(t, l∗) < Gc

n(l∗). Then, by continuity of the energy
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release, there exists a neighborhood [l ′, l ′′] of l∗, with L0 � l ′ and l ′′ < 	∗(t),
such that Gn(t, l) < Gc

n(l) for every l ∈ [l ′, l ′′]. Let us see that this interval is a
“barrier” for the evolution 	∗. First, note that, by monotonicity in time, Gn(τ, l) �
Gn(t, l) < Gc

n(l) for every τ � t and every l ∈ [l ′, l ′′]. Moreover, 	∗ takes all
the values in the interval [l ′, l ′′], indeed if l ∈ [	−∗ (τ ), 	∗(τ )) for some τ � t
and some l ∈ [l ′, l ′′] then, by condition (iii) of Griffith’s criterion, Gn(τ, l) �
Gc

n(l), which stands in contradiction with Gn(τ, l) < Gc
n(l). Therefore we can

define t1 = inf{τ : l ′ � 	∗(τ )} and t2 = sup{τ : 	∗(τ ) � l ′′}. It follows that
Gn(τ, 	∗(τ )) < Gc

n(l) for every τ ∈ [t1, t2) and thus, by condition (ii) of Griffith’s
criterion, 	∗ is constantly equal to l ′ in [t1, t2). If t2 = t then (being t a continuity
point) we get 	∗(t) = l ′ < 	∗(t) . If t2 < t then 	−∗ (t2) = l ′ while 	+∗ (t2) � l ′′ and
thus t2 ∈ J (	∗), this is again a contradiction since Griffith’s criterion implies that
Gn(t2, l) � Gc

n(l) for every l ∈ [l ′, l ′′).
Let 	∗(t) < 	n(t). By the definition of 	n we know that Gn(t, l) � Gc

n(l) > 0
for every l ∈ [	∗(t), 	n(t)). By monotonicity Gn(τ, l) > Gc

n(l) for every τ > t
and every l ∈ [	∗(t), 	n(t)). If τ → t+ then 	∗(τ ) → 	∗(t) and thus 	∗(τ ) ∈
[	∗(t), 	n(t)) for every time τ sufficiently close to t ; then we have Gn(τ, 	∗(τ )) >

Gc
n(	∗(τ )), which is a contradiction with Griffith’s criterion. ��

In order to prove the energy identity we will need also the following corollary,
which refines condition (ii) for 	n(t) 	∈ 
n :

Corollary 4. If 	n(t) 	∈ 
n and Gn(t, 	n(t)) < Gc
n(	n(t)) then 	n is constant in a

(sufficiently small) neighborhood of t .

Proof. Let	n(t) ∈ (ln,k, ln,k+λ). The energy En is of classC1 in [0, T ]×(ln,k, ln,k+λ)

and thus the energy releaseGn is continuous. Moreover,Gc
n is constant in (ln,k, ln,k+1).

Hence, there exists δ > 0 (sufficiently small) such that Gn(τ, l) < Gc
n(l) whenever

|τ − t | < δ and |l − 	n(t)| < δ. By condition (iii) in Proposition 2 it follows that
t 	∈ J (	n). By continuity of 	n let us choose τ ′ < t such that |τ ′ − t | < δ and
|	n(τ ′) − 	n(t)| < δ. Then, Gn(τ, 	n(τ

′)) < Gc
n(	n(τ

′)) for every τ ∈ [τ ′, t]. By
Proposition 2 it follows that 	n(τ ) = 	n(t) is the unique solution for τ ∈ [t, t + δ].
The same argument applies if 	n(t) ∈ (ln,k+λ, ln,k+1). ��
Proof of Corollary 3. By uniqueness it is enough to check that the right continuous
representative of λn , here denoted by λ̂n , satisfies Griffith’s criterion, in the sense
of Proposition 2.

Arguing by contradiction it is easy to check that λn is right continuous in 0;
indeed, if limτ→0+ λn(τ ) > L0 then 0 ∈ J (λn) and thus Gn(0, l) � Gc

n(l) > 0,
however Gn(0, l) = 0. Hence λ̂n(0) = L0.

Let us check condition (i). For t = 0 there is nothing to prove. For t > 0 we
have Gn(τ, λn(τ )) � Gc

n(λn(τ )) for every τ > t and thus the regularity of energy
release and toughness imply that

Gn(t, λ̂n(t)) � lim inf
τ→t+

Gn(τ, λn(τ )) � lim
τ→t+

Gc
n(λn(τ )) = Gc

n(λ̂n(t)).

Let us consider (iii). Clearly, J (λn) = J (λ̂n) and λ̂±
n (t) = λ±

n (t). Hence the
condition Gn(t, l) � Gc

n(l) for every l ∈ [λ̂−
n (t), λ̂+

n (t)) holds.
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Finally, let us check (ii). If t 	∈ J (λn) = J (λ̂n) then λn(t) = λ̂n(t) and λ̇+
n (t) =

0 coincides with the right derivative of λ̂n(t), hence there is nothing to check.
If t ∈ J (λn) = J (λ̂n) we argue in the following way. We have Gn(t, λ̂n(t)) <

Gc
n(λ̂n(t)), then for ε > 0 sufficiently small there exists a sequence lk ↘ λ̂n(t)

such that lk 	∈ 
n , Gc
n(lk) = Gc

n(λ̂n(t)) is constant and

Gn(t, lk) � Gc
n(lk) − ε for every k ∈ N.

Writing Gn(t, lk) = f 2(t)Gn(lk), by time continuity for every 0 < ε′ < ε there
exists δ > 0 such that

Gn(τ, lk) < Gc
n(lk) − ε′ for every k ∈ N and every τ ∈ (t, t + δ).

Since lk 	∈ 
n the energy release Gn is continuous, and thus for every k ∈ N there
exists l�k < lk < l�k < lk+1 such that

Gn(τ, l) < Gc
n(l) for every l ∈ (l�k, l

�
k) and every τ ∈ (t, t + δ).

As in proof of Proposition 2 the evolution λn cannot take value in the intervals
(l�k, l

�
k) for τ ∈ (t, t + δ). Indeed, there are no jumps, moreover, if λn(τ

′) ∈ (l�k, l
�
k)

then condition (ii) implies that the right derivative vanishes and thus λn is constant
in (τ ′, t+δ). Hence by monotonicity λn(τ ) � l�k for every k and every τ ∈ (t, t+δ);

in conclusion λ̂n(τ ) � inf l�k = λ̂n(t) for every τ ∈ (t, t + δ). ��
Remark 2. For l ∈ 
n , the extension (6) of the toughness seems the most natural,
since

Gc
n(l) = lim

s→l+
Gc

n(s).

The extension (5), that is,

Gn(l) = lim inf
s→l+

Gn(s),

turns out to be the only one compatible with Griffith’s criterion. In principle, since
the existence of ∂+

l En(l) is not known when l ∈ 
n any value Gn(l) with

lim inf
s→l+

En(s) − En(l)
s − l

� −Gn(l) � lim sup
s→l+

En(s) − En(l)
s − l

(9)

could be a good candidate for the extension. To fix the ideas assume that L0 ∈ 
n

and let G̃n(L0) be another extension of Gn in L0. First of all, (9) implies that
G̃n(L0) � Gn(L0), indeed, by the mean value theorem we have

Gn(L0) = lim inf
s→L+

0

Gn(s) � lim inf
s→L+

0

−En(s) − En(L0)

s − L0

= − lim sup
s→L+

0

En(s) − En(L0)

s − L0
� G̃n(L0).
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Let us consider

G̃n(L0) > Gn(L0) = lim inf
s→L+

0

Gn(s).

Clearly, this condition makes sense only when lim infs→L+
0
Gn(s) < +∞. Hence

0 < G̃n(L0) � +∞. Let

G̃n(0, L0) = 0, G̃n(t, L0) = f 2(t) G̃n(L0) for t > 0.

Hence G̃n(t, L0) > Gn(t, L0) for t > 0. Assume that there exists a quasi-static
evolution 	̃n which satisfies Griffith’s criterion with G̃n and Gc

n . We denote by t∗
and t∗ the points t∗ = max {t � 0 : G̃n(t, L0) � Gc

n(L0)} and t∗ = max {t �
0 : Gn(t, L0) � Gc

n(L0)}. We have t∗ < t∗. Fix t ′ ∈ (t∗, t∗). By the definition of
Gn(L0) there exists lm ↘ L0 such that lm 	∈ 
n and Gn(lm) → Gn(L0) < G̃n(L0).
Upon extracting a subsequence, not relabeled, we can assume that there exists
tm < t ′ such that either 	̃n(tm) = lm for every m ∈ N or lm ∈ [	̃−

n (tm), 	n(tm)) for
every m ∈ N.

In the former case, for every t ∈ (tm, t ′), we have

Gn(t, lm) � Gn(t
′, lm) → Gn(t

′, L0) < Gc
n(L0) = Gc

n(lm).

Hence for m � 1 we have Gn(t, lm) < Gc(lm) for every t ∈ (tm, t ′). As a
consequence 	̃n(t) = lm in (tm, t ′). Repeating the argument for lm+1 leads to
	̃n(t) = lm+1 in (tm+1, t ′) which is a contradiction since tm+1 < tm and lm+1 	= lm .

In the other case, that is, when lm ∈ [	̃−
n (tm), 	n(tm)) for every m ∈ N, we

argue as follows. As above,

Gn(tm, lm) � Gn(t
′, lm) → Gn(t

′, L0) < Gc
n(L0) = Gc

n(lm)

and thus for m � 1 we have Gn(tm, lm) < Gc(lm) which contradicts condition
(iii).

In summary, the right lower semi-continuity of the energy release Gn is neces-
sary for the existence of a quasi-static evolution in the sense of Proposition 2.

Finally, note that the representation (7) is independent of the extension of Gn
and Gc

n in 
n\{L}; indeed, (7) can also be written as

	n(t) = inf{l ∈ [L0, L]\
n or l = L : Gn(t, l) < Gc
n(l)}.

2.3. Energy Identity

In the sequel the energy balance will be crucial to explain toughening. To this
end, we introduce the potential energy F : [0, T ] × [L0, L] → R given by

Fn(t, l) = En(t, l) + Dn(l),

where Dn : [L0, L] → R is the dissipated energy given by

Dn(l) =
∫ l

L0

Gc
n(s) ds.

Note that the energy Fn(·, l) is differentiable in [0, T ] while Fn(t, ·) is differentiable
only in [L0, L]\
n .
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Corollary 5. Let 	n be the quasi-static evolution provided by Proposition 2. For
every t ∈ [0, T ) the following energy identity holds:

Fn(t, 	n(t)) =
∫ t

0
∂t Fn(τ, 	n(τ )) dτ +

∑
τ ∈ J (	n)∩[0,t]

�Fn(τ, 	n(τ ))�. (10)

Where �Fn(τ, 	n(τ ))� = Fn(τ, 	n(τ )) − Fn(τ, 	−
n (τ )) � 0.

We recall that Fn(0, L0) = 0. The energy identity (10) can be written also as

En(t, 	n(t)) =
∫ t

0
Pn(t, 	n(t)) dt − Dn(	n(t)) +

∑
τ ∈ J (	n)∩[0,t]

�Fn(τ, 	n(τ ))�, (11)

where Pn(t, 	n(t)) = ∂t F(t, l) = ∂t E(t, l) is the power of “external forces”.
Therefore, part of the energy (supplied by the work of external forces) is stored
in the elastic energy, part is dissipated by the crack, while part is dissipated in the
discontinuity points. In this respect, we recall that the rate-independent evolutions
	n can be obtained also from rate-dependent evolutions (see for example [14]) by
vanishing viscosity; in this approach, the energy dissipated in the jumps turns out
to be the limit of the energy dissipated in the rate-dependent processes.

Clearly, by right continuity the energy identity holds also in every time interval
[t1, t2], in the form

Fn(t2, 	n(t2)) = Fn(t1, 	n(t1))+
∫ t2

t1
∂t Fn(τ, 	n(τ )) dτ +

∑
τ ∈ J (	n)∩(t1,t2]

�Fn(τ, 	n(τ ))�.

Proof. In general the energy Fn(t, ·) is not differentiable in 
n , thus the idea is
to consider the sub-intervals in which the evolution takes values in [L0, L]\
n ,
taking care of the possible discontinuities. In this way we also make reference to
the stick-slip and re-nucleation effect at the interfaces, see [13].

Let ln,k = kln = kL/n. Let k0 and kI such that

ln,k0 � L0 < ln,k1 , ln,kI−1 < sup 	n � ln,kI .

If I = 0 we have 	n(t) ≡ L0, thus the energy identity (10) boils down to

Fn(t, 	n(t)) =
∫ t

0
∂t Fn(τ, 	n(τ )) dτ,

which is clearly true by the time regularity of the energy. If I > 0, consider the
points ln,k ∈ 
n for k = k0, . . . , kI and define the times

tn,k0 = sup{t : 	n(t) � L0}, t�n,kI
= sup{t : 	n(t) < ln,kI }, t�n,kI

= T,

t�n,ki
= sup{t : 	n(t) < ln,ki }, t�n,ki

= inf{t : 	n(t)> ln,ki } for 0< i < I (if any).

In this way we have a finite partition of [0, T ] given by

0 < tn,k0 � t�n,k1
� t�n,k1

� · · · � t�n,kI
� t�n,kI

= T ;
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note that some of these points may coincide. We will prove (10) by induction, for
i = 0, . . . , I .

In the interval [0, tn,k0) we have 	n(t) = L0 . Thus for every t ∈ [0, tn,k0) we
can write

Fn(t, 	n(t)) =
∫ t

0
∂t Fn(τ, 	n(τ )) dτ.

Passing to the limit as t ↗ tn,k0 we get

Fn(tn,k0 , 	
−
n (tn,k0)) =

∫ tn,k0

0
∂t Fn(τ, 	n(τ )) dτ,

and then, by right continuity,

Fn(tn,k0 , 	n(tn,k0)) =
∫ tn,k0

0
∂t Fn(τ, 	n(τ )) dτ + �Fn(tn,k0 , 	n(tn,k0))�. (12)

If t�n,k1
> tn,k0 then 	n(t) ∈ (L0, ln,k1) ⊂ (ln,k0 , ln,k1) for t ∈ (tn,k0 , t

�
n,k1

). In

the interval (L0, ln,k1) the elastic energy En(t, ·) is of class C1 while the dissipated
energy Dn is affine, since Gc

n is constant. Thus in every subinterval tn,k0 < t ′ <

t < t�n,k1
we can apply the chain rule in BV to get

Fn(t, 	n(t)) = Fn(t
′, 	n(t ′))+

∫ t

t ′
∂t Fn(τ, 	n(τ )) dτ +

∫ t

t ′
∂l Fn(τ, 	n(τ )) dLC	n(τ )

+
∑

τ∈J (	n)∩(t ′,t]
�Fn(τ, 	n(τ ))�,

where dLC	n denotes the sum of the absolutely continuous and Cantor part of the
measure d	n . Note that dLC	n is concentrated on the set of continuity points of 	n .
We claim that ∫ t

t ′
∂l Fn(τ, 	n(τ )) dLC	n(τ ) = 0.

Indeed, for l ∈ (L0, ln,k1) we have ∂l Fn(τ, l) = −Gn(τ, l)+Gc
n(l). By Proposition

2 we known thatGn(τ, 	n(τ )) � Gc
n(	n(τ )). If equality holds then ∂l Fn(τ, 	n(τ )) =

0. If Gn(τ, 	n(τ )) < Gc
n(	n(τ )) then by Corollary 4 it follows that 	n is constant in

a neighborhood of τ , and thus dLC	n(τ ) = 0. The claim is proved. Now, passing
to the limit as t ′ → tn,k0 and using (12) we get

Fn(t, 	n(t)) = Fn(tn,k0 , 	(tn,k0)) +
∫ t

tn,k0

∂t Fn(τ, 	n(τ )) dτ

+
∑

τ∈J (	n)∩(tn,k0 ,t]
�Fn(τ, 	(τ ))�

=
∫ t

0
∂t Fn(τ, 	n(τ )) dτ +

∑
τ∈J (	n)∩[0,t]

�Fn(τ, 	(τ ))�.

(13)
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Passing to the limit as t → t�n,k1
and taking into account the possible jump in t�n,k1

yields

Fn(t
�
n,k1

, 	n(t
�
n,k1

)) =
∫ t�n,k1

0
∂t Fn(τ, 	n(τ )) dτ +

∑
τ∈J (	n)∩[0,t�n,k1

]
�Fn(τ, 	(τ ))�.

(14)

If t�n,k1
= tn,k0 there is nothing to prove since the previous identity boils down to

(12).
If t�n,k1

< t�n,k1
then 	n = ln,k1 in the interval (t�n,k1

, t�n,k1
), thus for every

t ∈ (t�n,k1
, t�n,k1

) we can write

F(t, 	n(t)) =
∫ t

0
∂t Fn(τ, 	n(τ )) dτ +

∑
τ∈J (	n)∩[0,t]

�Fn(τ, 	(τ ))�. (15)

If t�n,k1
= t�n,k1

then (14) holds replacing t�n,k1
with t�n,k1

. We proceed in this way up
to any time t < T . ��

2.4. Compactness and Convergence of Evolutions

By Helly’s Theorem it is well known that up to non-relabeled subsequences the
evolutions 	n converge to a certain limit 	. The goal of the next proposition is to
provide a first characterization of the limit 	 independently of the convergence of
the energies.

Proposition 6. Let 	n be the sequence of quasi-static evolutions given by Proposi-
tion 2. There exists a subsequence (not relabeled) such that 	n → 	 pointwise in
[0, T ). For t ∈ [0, T ) the right continuous representative of the limit 	 is charac-
terized by

	+(t) = inf

{
l ∈ [L0, L] : �- lim inf

n→∞
Gn
Gc

n
(l) <

1

f 2(t)

}
, (16)

where 1/ f 2(0) = +∞.

Proof. We recall that

�- lim inf
n→∞

Gn
Gc

n
(l) = inf

{
lim inf
n→∞

Gn(ln)
Gc

n(ln)
: ln → l

}
.

For the theory of �-convergence we refer the reader to [10].
Let t > 0. By Proposition 2 we know that Gn(t, 	n(t)) � Gc

n(	n(t)), hence
Gn(t, 	n(t)) is finite. Writing Gn(t, 	n(t)) = f 2(t)Gn(	n(t)) we get

1

f 2(t)
� Gn(	n(t))

Gc
n(	n(t))

.
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The above inequality holds also in generalized sense for t = 0. Since 	n(t) → 	(t)
pointwise for every t ∈ [0, T ) we have

1

f 2(t)
� lim inf

n→∞
Gn(	n(t))
Gc

n(	n(t))
� inf

{
lim inf
n→∞

Gn(ln)
Gc

n(ln)
: ln → 	(t)

}

= �- lim inf
n→∞

Gn
Gc

n
(	(t)).

Let τ > t ∈ [0, T ). By the monotonicity of f we can write

1

f 2(t)
>

1

f 2(τ )
� �- lim inf

n→∞
Gn
Gc

n
(	(τ )).

Hence

	(τ) ∈
{
l ∈ [L0, L] : �- lim inf

n→∞
Gn
Gc

n
(l) <

1

f 2(t)

}
for every τ > t

and then

	+(t) � inf

{
l ∈ [L0, L] : �- lim inf

n→∞
Gn
Gc

n
(l) <

1

f 2(t)

}
.

Let us prove the opposite inequality. If 	+(t) = L0 there is nothing to prove.
Otherwise, let L0 � l < 	+(t) � 	(τ) for τ > t . Let τn ↘ t+ such that 	n(τn) →
	+(t) and let ln be a “recovery sequence” for l, that is, ln → l and

lim inf
n→∞

Gn(ln)
Gc

n(ln)
= �- lim inf

n→∞
Gn
Gc

n
(l).

From the representation (7) of the evolution 	n we know that

	n(τn) = inf{l ∈ [L0, L] : Gn(τn, l) < Gc
n(l)}

= inf

{
l ∈ [L0, L] : 1

f 2(τn)
>

Gn(l)
Gc

n(l)

}
.

Being ln < 	n(τn) for n � 1 (since l < 	+(t)) the above representation implies
that

1

f 2(τn)
� Gn(ln)

Gc
n(ln)

.

Taking the liminf as n → ∞ and remembering that ln is a recovery sequence, we
get

1

f 2(t)
� lim inf

n→∞
Gn(ln)
Gc

n(ln)
= �- lim inf

n→∞
Gn
Gc

n
(l).

Thus, every l < 	+(t) does not belong to the set{
l ∈ [L0, L] : �- lim inf

n→∞
Gn
Gc

n
(l) <

1

f 2(t)

}
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and then

	+(t) � inf

{
l ∈ [L0, L] : �- lim inf

n→∞
Gn
Gc

n
(l) <

1

f 2(t)

}
,

which concludes the proof. ��
Remark 3. The characterization (16) seems to be the natural choice combined with
the pointwise convergence of a subsequence (extracted in Proposition 6) of the
quasi-static evolutions 	n . However, if there exists

�- lim
n→∞

Gn
Gc

n
(l), (17)

then the whole sequence 	n
∗
⇀ 	 in BV (0, T ). Indeed, each function 	n is mono-

tone and bounded in [L0, L], hence the sequence 	n is weakly* pre-compact in
BV (0, T ). Given any subsequence 	nk of 	n there exists a further subsequence,
denoted by 	ni , converging to some limit 	 weakly in BV (0, T ) and pointwise in
(0, T ). By Proposition 6 the limit 	 (possibly depending on the subsequence) is
characterized by

	+(t) = inf

{
l ∈ [L0, L] : �- lim inf

n→∞
Gni
Gc

ni

(l) <
1

f 2(t)

}

= inf

{
l ∈ [L0, L] : �- lim

n→∞
Gn
Gc

n
(l) <

1

f 2(t)

}
.

Therefore, the evolution 	 is actually independent of the subsequence 	nk . Clearly,
this argument requires the existence of the �-limit in (17) while the �-liminf in
(16) is always defined.

2.5. Homogenization of the Elastic Energy

In this section we will first recall a few results on the homogenization of the
elastic energy. Let us introduce the homogenized stiffness matrix Chom given by

Chom =
(

μhom,1 0
0 μhom,2

)
,

where 1/μhom,1 = λ/μA,1 + (1−λ)/μB,1 is the weak* limit of 1/μn,1 and μhom,2 =
λμA,2 + (1 − λ)μB,2 is the weak* limit of μn,2. Note that the coefficients μhom,i

are constant and independent of l ∈ (0, L). We denote by Wl,hom the homogenized
elastic energy and by Ehom its static condensation. By classical results on the ho-
mogenization of elliptic problems (see Appendix A) and on the energy release (see
for example [20] and the references therein) we infer the following proposition.

Proposition 7. If ln → l then En(ln) → Ehom(l). The energy Ehom is of class
C1(0, L).
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Thanks to the regularity of Ehom we can define the energy release

Ghom(l) = −∂+
l Ehom(l) = −∂lEhom(l) for l ∈ (0, L), Ghom(L) = 0,

which is continuous in (0, L). We remark that in general Ghom is neither the almost
everywhere limit nor the �-liminf of Gn (an example is given in §2.8). However,
thanks to the regularity and the convergence of the energies we have the following
results, which will be useful in the sequel.

Lemma 8. Let Gni be a subsequence of Gn. For almost everywhere l ∈ (0, L) it
holds

lim inf
i→∞ Gni (l) � Ghom(l)

(Note that the set where the above estimate holds may depend on the subsequence).

Proof. Let 0 < l1 < l2 < L . By Proposition 7 and by the regularity of the energies
we can write∫ l2

l1
Gni (s) ds = Eni (l1) − Eni (l2) → Ehom(l1) − Ehom(l2) =

∫ l2

l1
Ghom(s) ds.

Hence, by Fatou’s Lemma we also have∫ l2

l1
lim inf
i→∞ Gni (s) ds � lim inf

i→∞

∫ l2

l1
Gni (s) ds =

∫ l2

l1
Ghom(s) ds,

which proves the lower inequality by the arbitrariness of l1 and l2. ��
Lemma 9. For every l ∈ (0, L) there exist a sequence l�n → l+ such that Ghom(l) �
lim supn→∞ Gn(l�n).
Proof. By the continuity of Ghom, for every δ > 0 there exists ε > 0 such that
Ghom(s) < Ghom(l) + δ for every s ∈ [l, l + ε).

We claim that there exists m ∈ N such that for every n > m we can find
ln ∈ (l, l + ε) with Gn(ln) < Ghom(l) + δ; from the claim the existence of l�n
follows. By contradiction, assume that for every m ∈ N there exists nm > m such
that Gnm (s) � Ghom(l) + δ for every s ∈ (l, l + ε), then we can find a subsequence
such that lim infm→∞ Gnm (s) � Ghom(l) + δ > Ghom(s) in (l, l + ε), which is a
contradiction with Lemma 8. ��

From the previous lemma we get the following corollary.

Corollary 10. If Ghom � �- lim infn→∞ Gn then Ghom = �- limn→∞ Gn.
Proof. By Lemma 9 for every l ∈ (0, L) we have

�- lim sup
n→∞

Gn(l) � lim sup
n→∞

Gn(l�n) � Ghom(l) � �- lim inf
n→∞ Gn(l),

which concludes the proof. ��
As in the previous sections we consider the energy Ehom(t, l) = f 2(t)Ehom(l).

Most important, we define Ghom(t, l) = ∂l Ehom(t, l) = f 2(t)Ghom(l) for every
t ∈ [0, T ] and l ∈ (0, L); note that Ghom(l) is finite for l ∈ (0, L). Finally, we
define Ghom(t, L) = 0 for every t ∈ [0, T ].
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2.6. Effective Toughness and Homogenization of Griffith’s Criterion

The aim of this section is to provide an effective toughness Gc
eff in such a way

that the limit evolution 	 (given by Proposition 6) satisfies Griffith’s criterion for
Ghom and Gc

eff . Formally, regardless of the regularity of the energies involved, we
may define Gc

eff as the function which makes the following identity true:

Ghom

Gc
eff

(l) = �- lim inf
n→∞

Gn
Gc

n
(l). (18)

More precisely, we define Gc
eff : [0, L] → [0,+∞] as

Gc
eff (l) =

⎧⎪⎪⎨
⎪⎪⎩

Ghom(l)

�- lim inf
n→∞

Gn
Gc

n
(l)

if Ghom(l) 	= 0,

+∞ if Ghom(l) = 0.

(19)

In the above definition we assume Gc
eff (l) = +∞ when �- lim inf

n→∞
Gn
Gc

n
(l) = 0; by

the proof of Lemma 11 (see below) it follows that �- lim inf
n→∞

Gn
Gc

n
(l) < +∞. As far

as Griffith’s criterion is concerned, the definition of Gc
eff (l) when Ghom(l) = 0 is

in some sense arbitrary, indeed, if the evolution takes, at time t , a value l where
Ghom(l) = 0 then the inequality Ghom(τ, l) � Gc

eff (l) is satisfied for every τ � t and
every non-negative value of Gc

eff , further, the evolution will be constantly equal to
l for τ � t (see Remark 5 for a different definition of Gc

eff when Ghom vanishes).
Note that Gc

eff is independent of time and of the evolution, however in principle
it may depend on every parameter and every datum of the problem; in mechanical
terms, Gc

eff is an R-curve (R standing for resistance, see for example [2]). In §2.8 we
will give an example in which Gc

eff is actually a constant, depending on the volume
fraction λ, the ratio between the shear moduli μA,i and μB,i and the toughness Gc

A

and Gc
B . Before proceeding, we provide this lemma.

Lemma 11. The effective toughness Gc
eff is upper semi-continuous (and thus Borel

measurable). Moreover, Gc
eff � min{Gc

A ,G
c
B}.

Proof. It is enough to consider the set {Ghom 	= 0} since, by continuity, the set
{Ghom = 0} is closed. The upper semi-continuity follows from the continuity of
Ghom and the lower semi-continuity of the �- lim inf. Next, write

�- lim inf
n→∞

Gn
Gc

n
(l) = inf

{
lim inf
n→∞

Gn(ln)
Gc

n(ln)
: ln → l

}

� 1

min{Gc
A ,G

c
B}

inf
{

lim inf
n→∞ Gn(ln) : ln → l

}

� �- lim infn→∞ Gn(l)
min{Gc

A ,G
c
B}

.

By Lemma 8 we infer
�- lim inf

n→∞ Gn(l) � Ghom(l) (20)
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and thus

�- lim inf
n→∞

Gn
Gc

n
(l) � Ghom(l)

min{Gc
A ,G

c
B}

. (21)

Hence, Gc
eff (l) � min{Gc

A ,G
c
B}. ��

A local upper bound for Gc
eff is given in Corollary 14, as a byproduct of the

following theorem:

Theorem 12. Let 	 be the limit evolution given by Proposition 6. Then 	+(t) =
	hom(t), where 	hom : [0, T ) → [L0, L] is the unique non-decreasing, right con-
tinuous function which satisfies the initial condition 	hom(0) = L0 and Griffith’s
criterion:

(i) Ghom(t, 	hom(t)) � Gc
eff (	hom(t)) for every time t ∈ [0, T );

(ii) if Ghom(t, 	hom(t)) < Gc
eff (	hom(t)) then 	hom is right differentiable in t and

	̇+
hom(t) = 0;

(iii) if t ∈ J (	hom) then Ghom(t, s) � Gc
eff (s) for every s ∈ [	−

hom(t), 	hom(t)).

Proof. First, we check that for every t ∈ [0, T ) we have

{l ∈ [L0, L] : Ghom(t, l) < Gc
eff (l)} =

{
l ∈ [L0, L] : �- lim inf

n→∞
Gn
Gc

n
(l) <

1

f 2(t)

}
.

(22)

If t = 0 then Ghom(0, l) = 0 and thus by Lemma 11 we have Ghom(0, l) <

min{Gc
A ,G

c
B} � Gc

eff (l) for every l ∈ [L0, L]. By (21) we can write

�- lim inf
n→∞

Gn
Gc

n
(l) < +∞ = 1

f 2(0)

for every l ∈ [L0, L]. If t > 0 we write Ghom(t, l) = f 2(t)Ghom(l). If Ghom(l) 	= 0,
using the definition of Gc

eff we get

Ghom(t, l) < Gc
eff (l) ⇔ f 2(t) <

1

�- lim inf
n→∞

Gn
Gc

n
(l)

.

If Ghom(l) = 0 then Ghom(t, l) = 0 and thus Ghom(t, l) < min{Gc
A ,G

c
B} � Gc

eff (l).
Moreover by (21) we have

�- lim inf
n→∞

Gn
Gc

n
(l) = 0 <

1

f 2(t)
.

By (22) we can now invoke Proposition 6 which gives the representation

	+(t) = inf{l ∈ [L0, L] : Ghom(t, l) < Gc
eff (l)}. (23)

At this point it is enough to follow the proof of Proposition 2, with a few minor
differences, in order to show that the function 	+ defined by (23) satisfies Griffith’s
criterion. The proof is concluded. ��
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Remark 4. In general, the limit evolution 	 does not satisfy Griffith’s criterion in
terms of the energy release Ghom, of the homogenized energy Ehom, and the ho-
mogenized toughness Gc

hom = λGc
A + (1 − λ)Gc

B . Starting from the (16), which
is independent of the limit energies, there are actually different ways to proceed.
In our approach we define an effective toughness Gc

eff in such a way that the limit
	 satisfies Griffith’s criterion for Ghom and Gc

eff . This idea seems very natural in
terms of convergence of the energies and is consistent with the approach followed
in mechanics, see for example [13]. On the other hand it could be interesting also to
fix Gc

hom and define an effective energy release Geff taking the limit of Gn . However,
even if Gn has a “nice” integral representation (see Lemma 1) it seems difficult
to study its limit, the main issue being the fact that the support of the auxiliary
functions φ shrinks with n. In §3.4 we will consider a different setting in which the
representation of Gn holds for a function φ independent of n (see Lemma 21); in
that case the limit of Gn can be computed, and actually equals Ghom.

2.6.1. Plane-Strain Setting The definition (19) of effective toughness and the
convergence result of Theorem 12 can be easily extended to the plane strain setting
with minor changes in the proofs. On the contrary, the generalization of the exam-
ple and of the results provided in §2.8 and §3 is not straightforward, indeed, the
computations provided in that sections are tailored to the anti-plane setting, being
based on the specific form of the homogenized energy and of the energy release.

We give a brief outline. Consider the same geometry for the reference do-
main, the cracks and the layers. Consider a boundary condition of the form f (t)g
where g ∈ H1(∂D�;R2). The condensed elastic energy En is again of class
C1((0, L)\
n), thus, as in Proposition 2, there exists a unique, right-continuous
evolution 	n which satisfies Griffith’s criterion and which can be characterized by
	n(t) = inf{l ∈ [L0, L] : Gn(t, l) < Gc

n(l)}. The regularity of the energy En
follows from an integral representation of the energy release, as that of Lemma 1,
see for example [20].

Next, by classical results on H-convergence, see for example [11], the linear
elastic energy En converge to a linear elastic energy Ehom with constant coefficients,
in particular the condensed (or reduced) energy Ehom is of class C1(0, L).

By Helly’s Theorem, upon extracting a subsequence, there exists a limit evolu-
tion 	. After defining the effective toughness, as in (19), and arguing as in Theorem
12 it follows that 	+ = 	hom, where 	hom is again the unique right-continuous
evolution which satisfies Griffith’s criterion.

2.6.2. Evolutionary �-Convergence In this section we give a slight generaliza-
tion of Theorem 12, in order to provide an evolutionary �-convergence result for
our rate independent system, in the spirit of [15]. To this end, let us introduce the
rate independent dissipation functionals

Rn(l, l̇) =
{
Gc

n(l) l̇ l̇ � 0,

+∞ otherwise,
Reff (l, l̇) =

{
Gc

eff (l) l̇ l̇ � 0,

+∞ otherwise.

We refer the reader to Appendix 4 for the notion of balanced viscosity solution for
the rate independent system (En,Rn), in the language of [16]; actually (see again
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Appendix 4), these solutions coincide with the quasi-static evolutions of Corollary
3. Therefore the right continuous representative of any balanced viscosity solution
of the rate independent system (En,Rn) coincides with 	n , that is, the unique right
continuous evolution provided by Proposition 2.

Corollary 13. The rate independent systems (En,Rn) evolutionary �-converge to
(Ehom,Reff ).

Proof. By [15, Definition 2.10] the above statement is equivalent to the following:
let Ln ∈ (0, L) such that Ln → L0 ∈ (0, L) and let γn be a solution of the rate
independent system (En,Rn) with intial condition Ln , then γn converge to γhom

where γhom is a solution of the rate independent system (Ehom,Reff ) with initial
condition L0.

By Helly’s Theorem there exists a subsequence (not relabeled) such thatγn → γ

pointwise in [0, T ). In order to characterize the limit γ it is not restrictive to consider
the convergence of the sequence 	n of the right continuous representatives of γn . At
this point, in order to apply Theorem 12 it is enough to “fix the initial condition”.
There are at least a couple of alternatives. The first is to follow, step by step, the
proof of Theorem 12 employing the explicit representation

	n(t) = inf{l ∈ [Ln, L] : Gn(t, l) < Gc
n(l)}.

The second chance is instead to employ the change of variable ψn : [0, L] → [0, L]
given by

ψn(l) =
{
l L0/Ln l < Ln,

(l − Ln)(L − L0)/(L − Ln) + L0 l � Ln,

and then consider the evolutions 	̃n(t) = ψn ◦ 	n(t), which satisfy 	̃n(0) = L0.
The (tedious) check of convergence is omitted. ��

2.6.3. An Upper Bound Thanks to Griffith’s criterion, we can provide also a
simple on a posteriori estimate on the effective toughness.

Corollary 14. Assume that sup{	hom(t) : t ∈ [0, T )} > L0. Then, the effective
toughness Gc

eff is locally bounded, more precisely,

Gc
eff (l) � f 2(T )Ghom(l)

max{Gc
A ,G

c
B}

min{Gc
A ,G

c
B}

for every l ∈ co 	hom([0, T )), the convex envelope of the range 	hom([0, T )).

Proof. The convex envelope coincides with the set {l ∈ [L0, L] : l � 	hom(t) for
some t ∈ [0, T )} and is used to “fill the gaps” in the discontinuity points.

If l ∈ [	−
hom(t), 	hom(t)) for some t ∈ J (	hom) then Gc

eff (l) � Ghom(t, l) �
f 2(T )Ghom(l).

Otherwise, let L0 < l ′ < 	hom(t) for some t ∈ (0, T ). For any sequence l ′n → l ′,
we argue as follows. Clearly, l ′n < 	n(t) for n � 1. Remember that 	n(t) = inf{l ∈
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[L0, L] : Gn(t, l) < Gc
n(l)}, hence Gn(t, l ′n) � Gc

n(l
′
n) � min{Gc

A ,G
c
B} and thus

Gn(l ′n) � min{Gc
A ,G

c
B}/ f 2(t). As a consequence,

�- lim inf
n→∞

Gn
Gc

n
(l ′) = inf

{
lim inf
n→∞

Gn(l ′n)
Gc

n(l
′
n)

: l ′n → l ′
}

� 1

max{Gc
A ,G

c
B}

inf
{

lim inf
n→∞ Gn(l ′n) : l ′n → l ′

}

� min{Gc
A ,G

c
B}

f 2(t) max{Gc
A ,G

c
B}

.

It follows that

Gc
eff (l

′) � max{Gc
A ,G

c
B} f 2(t)Ghom(l ′)

min{Gc
A ,G

c
B}

� f 2(T )Ghom(l ′)max{Gc
A ,G

c
B}

min{Gc
A ,G

c
B}

.

We proved the inequality for any l ′ ∈ (L0, sup{	hom(t) : t ∈ [0, T )}). We conclude
by the upper semi-continuity of Gc

eff . ��
In §2.8 we will see an example in which the effective toughness is strictly

greater than max{Gc
A ,G

c
B}.

Remark 5. Joining the lower bound of Lemma 11 and the upper bound of Corollary
14 it is clear that the set co 	hom([0, T )) and the set {Ghom = 0} are disjoint. There-
fore, to the purpose of proving Theorem 12 it is enough to define Gc

eff in the set
{Ghom 	= 0}. In other terms, we could provide alternative definitions of Gc

eff , which
still makes Griffith’s criterion true. For instance, let

Gc∞(l) = Ghom(l)

�- lim inf
n→∞

Gn
Gc

n
(l)

be defined for l ∈ [L0, L] such that Ghom(l) 	= 0. Then we could employ as effective
toughness the function G̃c

eff (l) = inf{Gc(l)} where the infimum is taken over all
the upper semi-continuous functions Gc : [L0, L] → R with Gc � Gc∞ in the set
{Ghom 	= 0}.

2.6.4. Effective Toughness Under Convergence of the Energy Release In this
subsection we consider a couple of cases in which the energy release Gn converge
(in a suitable sense) to the energy release Ghom and, as a consequence, the effective
toughness Gc

eff is computed explicitly and equals the maximum between Gc
A and

Gc
B .

Corollary 15. Assume that Gn → Ghom locally uniformly in (0, L). If Ghom(l) 	= 0
then

Gc
eff (l) = max{Gc

A ,G
c
B}.
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Proof. We recall that

Gc
eff (l) = Ghom(l)

�- lim inf
n→∞

Gn
Gc

n
(l)

.

By uniform convergence Gn(ln) → Ghom(l) for every ln → l, hence

�- lim inf
n→∞

Gn
Gc

n
(l) = inf

{
lim inf
n→∞

Gn(ln)
Gc

n(ln)
: ln → l

}

= Ghom(l) inf
{

lim inf
n→∞

1

Gc
n(ln)

: ln → l
}

= Ghom(l)

max{Gc
A ,G

c
B}

,

which concludes the proof. ��

The previous result can be slightly generalized as follows:

Corollary 16. Let Ghom(l) 	= 0. Assume that Ghom(l) � �- lim infn→∞ Gn(l) and
that there exists a “joint recovery sequence” for Ghom(l) and Gc

eff (l), that is, ln → l
such that

lim sup
n→∞

Gc
n(ln) = max{Gc

A ,G
c
B}, lim sup

n→∞
Gn(ln) = Ghom(l).

Then Gc
eff (l) = max{Gc

A ,G
c
B}.

Proof. Clearly Gc
n � max{Gc

A ,G
c
B} and Ghom(l) = �- limn→∞ Gn(l) by Corollary

10. Hence

�- lim inf
n→∞

Gn
Gc

n
(l) � 1

max{Gc
A ,G

c
B}

inf
{

lim inf
n→∞ Gn(ln) : ln → l

} = Ghom(l)

max{Gc
A ,G

c
B}

.

By �-convergence we know that Gn(ln) → Ghom(l). Hence

�- lim inf
n→∞

Gn
Gc

n
(l) � lim inf

n→∞
Gn(ln)
Gc

n(ln)
= Ghom(l)

max{Gc
A ,G

c
B}

.

Hence,

Ghom(l)

max{Gc
A ,G

c
B}

= �- lim inf
n→∞

Gn
Gc

n
(l),

which concludes the proof. ��
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2.7. Energy Identity

Given (19) the effective dissipated energy is defined by

Deff (l) =
∫ l

L0

Gc
eff (s) ds

and the potential energy by F(t, l) = Ehom(t, l) + Deff (l). By Corollary 14 it turns
out that Deff ∈ AC(L0, 	hom(T )). Note that Gc

eff is Borel measurable since it is
upper semi-continuous.

Corollary 17. For every t ∈ [0, T ) the following energy identity holds:

F(t, 	hom(t)) =
∫ t

0
∂t F(τ, 	hom(τ )) dτ +

∑
τ ∈ Jhom∩[0,t]

�F(τ, 	hom(τ ))�. (24)

There Jhom = J (	hom) and �F(τ, 	hom(τ ))� = F(τ, 	hom(τ )) − F(τ, 	−
hom(τ )) � 0.

Proof. In this case we cannot employ the proof of Corollary 5. Clearly, if 	hom(t) ≡
L0 the proof is trivial by time regularity. As 	hom ∈ BV (0, T ) we can write

d	hom = 	̇homdτ + dC	hom + dJ 	hom,

where 	̇hom ∈ L1(0, T ) denotes the density of the absolutely continuous part (with
respect to the Lebesgue measure dτ ), dC	 denotes the Cantor part, while

dJ 	hom =
∑

τ∈Jhom

�	hom(τ )� δτ .

For convenience, denote dLC	hom = 	̇homdτ + dC	.
Being Ehom of class C1 by the chain rule in BV , see for example [1], it follows

that

Ehom(t, 	hom(t)) = Ehom(0, 	hom(0)) +
∫ t

0
∂t Ehom(τ, 	hom(τ )) dτ

+
∫ t

0
∂l Ehom(τ, 	hom(τ )) dLC	hom +

∑
τ ∈ Jhom∩[0,t]

�Ehom(τ, 	hom(τ ))�.

(25)

By Griffith’s criterion, it remains to prove that a similar representation holds also
for the effective dissipated energy, i.e,

Deff (	hom(t)) = Deff (	hom(0)) +
∫ t

0
Gc
eff (	hom(τ )) dLC	hom +

∑
τ ∈ Jhom∩[0,t]

�D(τ, 	hom(τ ))�.

(26)

Remember that Deff is not of class C1, however, by definition we can write

Deff (l2) = Deff (l1) +
∫ l2

l1
Gc

eff (l) dl, (27)
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for every 0 < l1 < l2 < L . Hence

Deff (	hom(t)) =
∫ 	hom(t)

L0

Gc
eff (l) dl =

∫ 	hom(t)

L0

Gc
eff (l) dl|R +

∫ 	hom(t)

L0

Gc
eff (l) dl|U ,

where R = 	hom([0, T )) while U = co 	hom([0, T ))\R. We will check that

∫ 	hom(t)

L0

Gc
eff (l) dl|U =

∑
τ ∈ Jhom∩[0,t]

�D(	hom(τ ))� (28)

and that ∫ 	hom(t)

L0

Gc
eff (l) dl|R =

∫ t

0
Gc

eff (	hom(τ )) dLC	hom, (29)

which, put together, imply (26).
By the right continuity of 	hom

U =
⋃

τ∈Jhom

Uτ , (30)

where Uτ denotes an interval of the form (	−
hom(τ ), 	hom(τ )) or [	−

hom(τ ), 	hom(τ ))

(the fact that 	hom(τ ) is excluded is due to the right continuity of 	hom). Note that
the sets Uτ are pairwise disjoint and remember that Jhom is a countable set. Then

∫ 	hom(t)

L0

Gc
eff (l) dl|U =

∑
τ∈Jhom∩[0,t]

∫ 	hom(τ )

	−
hom(τ )

Gc
eff (l) dl

=
∑

τ∈Jhom∩[0,t]
D(	hom(τ )) − D(	−

hom
(τ )).

In order to prove (29), we will first check that dl|R = d �
LC	hom, where d �

LC	hom
denotes the push forward of the measure dLC	hom; then, by the change of variable
formula for the push-forward, see for example [1], we get

∫ 	hom(t)

L0

Gc
eff (l) dl|R =

∫ 	hom(t)

L0

Gc
eff (l) d �

LC	hom =
∫ t

0
Gc

eff (	hom(τ )) dLC	hom.

Note that both dl|R and d�
LC	hom are Borel measure which do not contain

atoms. Thus, it is enough to check that they coincide on closed intervals [l1, l2] ⊂
co 	hom([0, T )).

To evaluate the push-forward measure of [l1, l2] we should compute the
(dLC	hom)-measure of the set (	hom)−1([l1, l2]). If (	hom)−1([l1, l2]) = ∅ the mea-
sure vanishes. Otherwise, by monotonicity of 	hom it turns out that (	hom)−1([l1, l2])
is again an interval; more precisely, it is of the form [t1, t2) or [t1, t2], where
t1 = min{(	hom)−1([l1, l2])} and t2 = sup{(	hom)−1([l1, l2])}. Note that the point t1
is always included by the right continuity of 	hom, moreover, the dLC	hom-measure
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of [t1, t2) or [t1, t2] actually coincides with the (dLC	hom)-measure of the open
interval (t1, t2) since dLC	hom = 	̇homdτ + dC	hom does not contain atoms. Then

dLC	hom(t1, t2) = d	hom(t1, t2) − dJ 	hom(t1, t2)

= 	−
hom(t2) − 	hom(t1) −

∑
τ ∈ Jhom∩ (t1,t2)

�	hom(τ )�. (31)

Let us turn to the measure dl|R . If (	hom)−1([l1, l2]) = ∅ then [l1, l2] ⊂ U and
thus its dl|R-measure vanishes. Otherwise, by (30) we can write

dl|R[l1, l2] = (l2 − l1) − dl|U [l1, l2] = (l2 − l1) −
∑

τ∈Jhom

|Uτ ∩ [l1, l2]|.

Let us study the measure |Uτ ∩ [l1, l2]| as a function of τ ∈ Jhom. Note that τ > 0
since 	hom is right continuous.

If τ < t1 then 	hom(τ ) < l1 and thus |Uτ ∩ [l1, l2]| = 0. If τ > t2 then
	−

hom(τ ) � l2 (since 	hom(t) > l2 for t2 < t < τ ) and thus |Uτ ∩ [l1, l2]| = 0.
If τ = t1 then l1 � 	hom(t1) � l2 while 	−

hom(t1) � l1 (since 	hom(t) < l1 for
any t < t1). It follows that |Ut1 ∩ [l1, l2]| = 	hom(t1) − l1. Hence, we can write

−l1 − |Ut1 ∩ [l1, l2]| = −	hom(t1).

If τ ∈ (t1, t2) then l1 � 	hom(t1) � l2 while 	−
hom(τ ) � l1 (since 	hom(t) � l1

for t1 � t < τ ).
Hence [	−

hom(τ ), 	hom(τ )] ⊂ [l1, l2] and |Uτ ∩ [l1, l2]| = �	hom(τ )�.
If τ = t2 and t2 	∈ (	hom)−1([l1, l2]) then 	hom(t2) > l2 while l1 � 	−

hom(t2) � l2
(since l1 � 	−

hom(t) � l2 for every t ∈ [t1, t2)). Then |Ut2 ∩ [l1, l2]| = l2 − 	−
hom(t2)

and we can write

l2 − |Ut2 ∩ [l1, l2]| = 	−
hom(t2).

If τ = t2 and t2 ∈ (	hom)−1([l1, l2]) then 	hom(t2) = l2; indeed, assume by
contradiction that 	hom(t2) < l2 � 	hom(T ) then t2 < T and (by right continuity)
	hom(t) < l2 in a sufficiently small right neighborhood of t2. Since l1 � 	−

hom(t2) �
l2 (as above) we get again

l2 − |Ut2 ∩ [l1, l2]| = 	−
hom(t2).

In conclusion

dl|R[l1, l2] = 	−
hom(t2) − 	hom(t1) −

∑
τ∈Jhom∩(t1,t2)

�	hom(τ )�. (32)

By (32) and (31) the measures dl|R and d�
LC	hom do coincide. ��
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2.7.1. Toughening and Micro-instabilities In this section we study the tough-
ening effect resulting from our convergence result. As we will see toughening turns
out to be the macroscopic effect of microscopic instabilities in the evolutions 	n .

Let Gc
hom = λGc

A + (1 − λ)Gc
B be the homogenized (or averaged) toughness,

that is the weak∗ limit of Gc
n .

For simplicity, let us consider a time interval [ta, tb] such that 	hom(ta) <

	hom(tb) and J (	hom) ∩ [ta, tb] = ∅. We will show that

Gc
hom � Gc

eff (l) for every l ∈ [	hom(ta), 	hom(tb)].
Let us rewrite the energy identity for 	n in the form

En(t, 	n(t)) +
∫ 	n(t)

L0

Gcn(l) dl =
∫ t

0
∂t Fn(τ, 	n(τ )) dτ + dJ Fn([0, t]), (33)

where we used the shorthand notation

dJ Fn([0, t]) =
∑

τ∈J (	n)∩[0,t]
�Fn(τ, 	n(τ ))�.

Thus, for every ta � t1 < t2 � tb we can write

En(t2, 	n(t2)) − En(t1, 	n(t1)) −
∫ t2

t1
∂t Fn(τ, 	n(τ )) dτ

= −
∫ 	n(t2)

	n(t1)
Gc

n(l) dl + dJ Fn((t1, t2]). (34)

Since 	n → 	hom pointwise in [0, T ) by Proposition 7 we get

En(ti , 	n(ti )) → Ehom(ti , 	hom(ti )) for i = 1, 2.

Remember that ∂t Fn(τ, l) = 2 f (τ ) ḟ (τ ) En(l), hence ∂t Fn(τ, 	n(τ )) →
∂t F(τ, 	hom(τ )) and by dominated convergence we get∫ t2

t1
∂t Fn(τ, 	n(τ )) dτ →

∫ t2

t1
∂t Fhom(τ, 	hom(τ )) dτ.

In summary, the left hand side of (34) converges to

Ehom(t2, 	hom(t2)) − Ehom(t1, 	n(t1)) −
∫ t2

t1
∂t Fhom(τ, 	n(τ )) dτ

= −
∫ 	hom(t2)

	hom(t1)
Gc

eff (l) dl,

where the identity follows from Corollary 17 and from the assumption J (	hom) ∩
[ta, tb] = ∅.

As a consequence the right hand side of (34) converges, that is,∫ 	n(t2)

	n(t1)
Gcn(l) dl + dJ Fn((t1, t2]) →

∫ 	hom(t2)

	hom(t1)
Gceff (l) dl.
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As Gc
n

∗
⇀ Gc

hom = λGc
A + (1 − λ)Gc

B ,∫ 	n(t2)

	n(t1)
Gc

n(l) dl →
∫ 	hom(t2)

	hom(t1)
Gc

hom(l) dl.

Hence

dJ Fn((t1, t2]) →
∫ 	hom(t2)

	hom(t1)
Gchom(l) − Gceff (l) dl.

Since dJ Fn((t1, t2]) � 0 and it follows that∫ 	hom(t2)

	hom(t1)
Gc

hom(l) − Gc
eff (l) dl � 0.

By the arbitrariness of t1 and t2 it follows that Gc
hom(l) � Gc

eff (l) almost ev-
erywhere in [	hom(ta), 	hom(ta)]. Since Gc

hom is constant and Gc
eff is upper semi-

continuous the inequality actually holds everywhere in [	hom(ta), 	hom(tb)].

2.8. An Explicit Computation of the Effective Toughness

In this section we consider a specific case which highlights some peculiar fea-
tures of the effective toughness, and in particular its dependence on the data. Besides
the hypotheses of the previous section, we assume that μB,1 μB,2 = μA,1 μA,2. No
further assumptions are made on the toughness, thus it may occur Gc

A 	= Gc
B or

Gc
A = Gc

B . These assumptions include for instance the case in which material A is
anisotropic and material B is obtained by a π

2 rotation of material A.
For convenience, let us recall the results of Proposition 7 and a few notations.

The homogenized stiffness matrix is given by

Chom =
(

μhom,1 0
0 μhom,2

)
,

where 1/μhom,1 = λ/μA,1 + (1 − λ)/μB,1 and μhom,2 = λμA,2 + (1 − λ)μB,2.
The (condensed) elastic energy Ehom is of class C1(0, L) and the energy release is
denoted by Ghom(l). We will prove that

Gc
eff = λ max

{
Gc

A , Gc
B

μB,1

μA,1

}
+ (1 − λ) max

{
Gc

A
μA,1

μB,1
, Gc

B

}
. (35)

In particular, the effective toughness is constant and depends also on the elastic
contrast μA,1/μB,1. More precisely, we will prove that Gc

eff takes the above value
where Ghom 	= 0, which is enough for our purpose in the light of Remark 5.

Example 1. Assume that μB,1 < μA,1 and Gc
B � Gc

A . Then

Gc
eff = λGc

A + (1 − λ)Gc
A

μA,1

μB,1
> λGc

A + (1 − λ)Gc
A = Gc

A = max{Gc
A ,G

c
B}.

Next theorem states the main convergence result.
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Theorem 18. Let 	n be the quasi-static evolutions given by Proposition 2. Then

	n
∗
⇀ 	hom in BV (0, T ), where 	hom is the unique non-decreasing, right continuous

function which satisfies the initial condition 	hom(0) = L0 and Griffith’s criterion
in the following form:

(i) Ghom(t, 	hom(t)) � Gc
eff for every time t ∈ [0, T );

(ii) if Ghom(t, 	hom(t)) < Gc
eff then 	hom is differentiable in t and 	̇hom(t) = 0;

(iii) if t ∈ J (	hom) then Ghom(t, l) � Gc
eff for every l ∈ [	−

hom(t), 	hom(t)).

Note that in the above statement it is not necessary to extract any subsequence
of 	n . As the effective toughness is constant, the effective dissipated energy boils
down to Deff (l) = Gc

eff (l − L0); by Corollary 5 we get the energy identity for
F(t, u) = Ehom(t, u) + Deff (l), stated hereafter.

Corollary 19. For every t ∈ [0, T ), the following energy identity holds:

F(t, 	hom(t)) =
∫ t

0
∂t F(τ, 	hom(τ )) dτ +

∑
τ ∈ Jhom∩[0,t]

�F(τ, 	hom(τ ))�. (36)

Remark 6. Note that the limit energy F(t, ·) does not coincide with the �-limit of
the energies Fn(t, ·) = En(t, ·) + Dn(·), which is given by

Fhom(t, l) = Ehom(t, l) + Gc
hom(l − L0) where Gc

hom = λGc
A + (1 − λ)Gc

B .

Before proceeding we state, for the reader’s convenience, the following ele-
mentary change of variable, which will be often used in the sequel:

Lemma 20. Let O be an open set in R
2 and C ∈ R

2×2. Let � : O → Ô be a
bi-Lipschitz map. For z ∈ H1(O) denote ẑ = (z ◦ �−1) ∈ H1(Ô), then∫

O
∇z C ∇zT dx =

∫
Ô

∇ ẑ Ĉ∇ ẑT d x̂ where Ĉ = (D�)C(D�)T (detD�)−1.

(37)
In particular, if �(x1, x2) = (αx1, βx2) and C = μ1ê1 ⊗ ê1 + μ2ê2 ⊗ ê2 then

Ĉ =
(

μ1α/β 0
0 μ2β/α

)
.

Proof of Theorem 18. The Theorem follows from

Ghom(l)

�- lim
n→∞

Gn
Gc

n
(l)

= λ max

{
Gc

A , Gc
B

μB,1

μA,1

}
+ (1 − λ) max

{
Gc

A

μA,1

μB,1
, Gc

B

}
, (38)

for Ghom(l) 	= 0, after employing Remark 3 and Remark 5.
I. Let α = μB,1/μA,1. For S = λLα + (1−λ)L let �̂ = (0, S)× (−H, H). We

consider a bi-Lipschitz piecewise affine map�n : � → �̂of the form�n(x1, x2) =
(φn(x1), x2) where

φn(x1) =
∫ x1

0
αn ds and αn =

{
α in Kn,A

1 in Kn,B .
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We employ the notation �̂n,A to denote the set �n(�n,A) and similarly for all
the sets introduced in §2.1. We denote ĝn = g ◦ �−1

n and consider the spaces

Ûs = {û ∈ H1(�̂\Ks) : û = ĝn in ∂D�̂} for s ∈ (0, S].
Let s = φn(l). For u ∈ Ul and û = u ◦ �−1

n ∈ Ûs we have and

Wl,n(u) = Ŵs,n(û) = 1
2

∫
�̂\K̂s

∇û Ĉn∇ûT dy.

Under the assumption μB,1 μB,2 = μA,1 μA,2 and with the above choice of α =
μB,1/μA,1, it turns out that Ĉn is constant in �̂; indeed we have

Ĉn =
(

α μA,1 0
0 μA,2/α

)
=

(
μB,1 0

0 μB,2

)
in �̂A,n, Ĉn =

(
μB,1 0

0 μB,2

)
in �̂B,n .

Note also that Ĉn is actually independent of n; therefore in the sequel we will
skip the dependence on n in the notation. The reduced energy Ê is then of class
C1(0, S); in particular the energy release Ĝ is continuous in (0, S). Clearly, by the
change of variable,

Ê(φn(l)) = En(l) and thus Ĝ(φn(l)) φ′
n(l) = Gn(l) for l ∈ (0, L)\
n . (39)

II. Let αhom = αλ + (1 − λ). Let � : � → �̂ be the linear map �(x1, x2) =
(φ(x1), x2) for φ(x1) = αhomx1. With this change of variable, for s = φ(l) = αhoml,
we write

Wl,hom(u) = Ŵs,hom(û) = 1
2

∫
�̂\K̂s

∇û Ĉhom ∇ûT dy,

where

Ĉhom =
(

αhom μhom,1 0
0 μhom,2/αhom

)
.

As expected, Ĉhom = Ĉ; indeed,

1

μhom,1
= λ

μA,1
+ 1 − λ

μB,1
= λμB,1 + (1 − λ)μA,1

μA,1μB,1
, αhom = μB,1

μA,1
λ + (1 − λ)

= λμB,1 + (1 − λ)μA,1

μA,1
,

and thus αhom μhom,1 = μB,1, moreover, recalling that μB,1 μB,2 = μA,1 μA,2,

μhom,2 = λμA,2 + (1 − λ)μB,2, αhom = μA,2

μB,2
λ + (1 − λ) = λμA,2 + (1 − λ)μB,2

μB,2
,

and then μhom,2/αhom = μB,2. In conclusion,

Ê(φ(l)) = Ehom(l) and thus Ĝ(φ(l))αhom = Ghom(l) for l ∈ (0, L). (40)



   85 Page 34 of 51 Arch. Rational Mech. Anal.          (2024) 248:85 

III. By (39) we can write

Gn(l)
Gc

n(l)
= Ĝ(φn(l)) φ′

n(l)

Gc
n(l)

.

Note that φn → φ uniformly in [0, L]. Then, being Ĝ continuous, Ĝ ◦ φn → Ĝ ◦ φ

locally uniformly in (0, L). As a consequence

�- lim
n→∞

Gn
Gc

n
(l) = Ĝ(φ(l)) �- lim

n→∞
φ′
n

Gc
n
(l). (41)

Writing, explicitly,

φ′
n(l)

Gc
n(l)

=
{

α/Gc
A in Kn,A,

1/Gc
B in Kn,B,

we get �- limn→∞
φ′
n

Gc
n
(l) = min{α/Gc

A , 1/Gc
B}. If Ghom(l) 	= 0, then Ĝ(φ(l)) 	= 0,

and by (40) and (41),

Gc
eff (l) = Ghom(l)

�- lim
n→∞

Gn
Gc

n
(l)

= αhom Ĝ(φ(l))

Ĝ(φ(l)) min{α/Gc
A , 1/Gc

B}

= (
αλ + (1 − λ)

)
max{Gc

A/α,Gc
B}

= λ max

{
Gc

A , Gc
B

μB,1

μA,1

}
+ (1 − λ) max

{
Gc

A

μA,1

μB,1
, Gc

B

}
.

The proof of (38) is concluded. ��
Remark 7. In general Ghom is neither the pointwise nor the �-limit of Gn . Indeed,
by (39) and (40) we have

Ĝ(φn(l)) φ′
n(l) = Gn(l) and Ĝ(φ(l))αhom = Ghom(l).

We know that Ĝ ◦φn → Ĝ ◦φ locally uniformly but the pointwise limit of φ′
n does

not exists. Moreover, �- limn→∞ φ′
n(l) = min{α, 1}, while αhom = λα+ (1−λ) =

min{α, 1} if and only if α = 1; the latter case is trivial, since μB,1 = μA,1 and
μB,1 μB,2 = μA,1 μA,2 imply that the stiffness matrix Cn is constant.

3. Horizontal Layers with Horizontal Crack

3.1. Energy and Energy Release

As in the previous section we assume that the uncracked reference configuration
is the set � = (0, L)×(−H, H) and that the crack set is of the form Kl = [0, l]×{0}
for l ∈ (0, L]. On the contrary, here we assume that � is made periodic horizontal
layers of thickness hn = H/n for n ∈ 2N (the fact that n is even implies that Kl



Arch. Rational Mech. Anal.          (2024) 248:85 Page 35 of 51    85 

Fig. 2. An example of geometry in the case of an interfacial crack with horizontal layers

is contained in the interface between two layers). For λ ∈ (0, 1) each layer is itself
made of a horizontal layer of material A, with thickness λhn , and an horizontal
layer of material B, with thickness (1 − λ)hn (see Fig. 2). In this geometry crack
may actually propagate along the interface or penetrate into the layer [12]. The
convergence result presented in the sequel holds only in the former case, since the
latter is still out of reach in our analysis.

For functional spaces, boundary condition, energies and energy release we em-
ploy the same assumptions and notation of the previous section, apart from tough-
ness which here is simply denoted by Gc, since it is independent of n.

Following the proof of Lemma 1 it not difficult to show

Lemma 21. En : [0, L] → R is decreasing and continuous. Moreover, it is of class
C1(0, L) and

E ′
n(l) =

∫
�\Kl

∇ul,nCnE∇uTl,n φ′dx for E =
(−1 0

0 1

)
, (42)

where φ ∈ W 1,∞(0, L) with supp(φ) ⊂ (0, L), 0 � φ � 1 and φ(l) = 1.

Remark 8. Comparing with Lemma 1 note that here φ is independent of n, in
particular its support does not shrink with n. Finally, note that En is of class C1 in
the whole (0, L).

3.2. Quasi-Static Evolution by Griffith’s Criterion

Following the proofs of Proposition 2 and Corollary 5 we obtain the following
results:

Proposition 22. There exists a unique non-decreasing, right continuous function
	n : [0, T ) → [L0, L]which satisfies the initial condition 	n(0) = L0 andGriffith’s
criterion, in the following form:

(i) Gn(t, 	n(t)) � Gc for every time t ∈ [0, T );
(ii) if Gn(t, 	n(t)) < Gc then 	n is differentiable in t and 	̇n(t) = 0;
(iii) if t ∈ J (	n) then Gn(t, l) � Gc for every l ∈ [	−

n (t), 	n(t)).
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Corollary 23. If Gn(t, 	n(t)) < Gc then 	n is constant in a neighborhood of t .

Corollary 24. For every t ∈ [0, T ) the following energy identity holds:

Fn(t, 	n(t)) =
∫ t

0
∂t Fn(τ, 	n(τ )) dτ +

∑
τ∈J (	n)∩[0,t]

�Fn(τ, 	n(τ ))�. (43)

3.3. Homogenization of Griffith’s Criterion

Here the homogenized stiffness matrix is

Chom =
(

μhom,1 0
0 μhom,2

)
,

where μhom,1 = λμA,1 + (1 − λ)μB,1 is the weak* limit of μn,1 while 1/μhom,2 =
λ/μA,2 + (1 − λ)/μB,2 is the weak* limit of 1/μn,2.

Accordingly, we introduce the homogenized elastic energy Wl,hom and the re-
duced homogenized energy Ehom. Arguing as in Lemma 1, it turns out that the energy
Ehom is of class C1(0, L), and hence the energy release Ghom(l) = −∂lEhom(l) is
well defined in (0, L). We set Ghom(L) = 0.

In this setting it turns out that Gc
eff = Gc; indeed, we have the following result:

Theorem 25. Let 	n be the quasi-static evolutions given by Proposition 22. There
exists a subsequence (not relabeled) such that 	n → 	 pointwise in [0, T ). Then
	+ = 	hom, where 	hom is the unique non-decreasing, right continuous function
which satisfies the initial condition 	hom(0) = L0 and Griffith’s criterion:

(i) Ghom(t, 	hom(t)) � Gc for every time t ∈ [0, T );
(ii) if Ghom(t, 	hom(t)) < Gc then 	̇hom(t) = 0;
(iii) if t ∈ J (	hom) then Ghom(t, l) � Gc for every l ∈ [	−

hom(t), 	hom(t)).

Corollary 26. For every t ∈ [0, T ) the following energy identity holds:

Fhom(t, 	hom(t)) =
∫ t

0
∂t Fhom(τ, 	hom(τ )) dτ +

∑
τ∈J (	hom)∩[0,t]

�Fhom(τ, 	hom(τ ))�.

(44)

The proof of Theorem 25 is a consequence of Corollary 15 and Remark 5,
together with the following result on the convergence of the energy release:

Theorem 27. Gn converge to Ghom locally uniformly in (0, L).

The proof of this theorem is contained in the next subsection.
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3.4. Convergence of the Energy Release

Lemma 28. Gn is uniformly bounded in C 0,1/2([L ′, L ′′]) for every 0 < L ′ < L ′′ <

L.

Proof. By minimality Wl,n(ul,n) � Wl,n(g) � C where C is independent of n.
Hence, by uniform coercivity, ‖∇ul,n‖L2 � C for every l ∈ [0, L].

Now, following [20] we prove that there exists C > 0 such that, for every
0 � l1 < l2 � L and every n ∈ 2N, it holds that

‖∇ul1,n − ∇ul2,n‖L2 � C |En(l1) − En(l2)|1/2. (45)

By the variational formulation we have∫
�\Kl1

∇ul1,n Cn∇vT1 dy = 0 for every v1 ∈ Vl1 ,∫
�\Kl2

∇ul2,n Cn∇vT2 dy = 0 for every v2 ∈ Vl2 .

Since (ul1,n − ul2,n) ∈ Vl2 , we get∫
�\Kl2

∇ul2,n Cn∇(ul1,n − ul2,n)
T dy = 0.

Then, by monotonicity and uniform coercivity of the energy, we get

|En(l1) − En(l2)| = En(l1) − En(l2)
= 1

2

∫
�

∇ul1,n Cn∇uTl1,n − ∇ul2,n Cn∇uTl2,n dy

= 1
2

∫
�

∇(ul1,n + ul2,n)Cn∇(ul1,n − ul2,n)
T dy

= 1
2

∫
�

∇ul1,n Cn∇(ul1,n − ul2,n)
T dy

= 1
2

∫
�

∇(ul1,n − ul2,n)Cn∇(ul1,n − ul2,n)
T dy

� C‖∇ul1,n − ∇ul2,n‖2
L2 .

Next, we show that given 0 < L ′ < L ′′ < L there exists C > 0 s.t.

Gn(l) � C for every l ∈ [L ′, L ′′] and every n ∈ 2N.

Let φ ∈ C∞
c (0, L) with 0 � φ � 1 and φ = 1 in [L ′, L ′′] such that

E ′
n(l) =

∫
�

∇ul,n CnE ∇uTl,n φ′ dy for E =
(−1 0

0 1

)
.

Hence Gn(l) � C (note that C depends on φ′ and thus on L ′ and L ′′). It follows
that the energies En are uniformly Lipischitz continuous in [L ′, L ′′] and thus, by
(45),

‖∇ul1,n − ∇ul2,n‖L2 � C |l1 − l2|1/2.
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As a consequence, using the integral representation of Gn = −E ′
n we get

|Gn(l1) − Gn(l2)| � C |l1 − l2|1/2,

which concludes the proof. ��
By Ascoli-Arzelà Theorem, with the aid of a diagonal argument, Lemma 28

implies

Corollary 29. There exists a subsequence (non relabeled) and a limit G such that
Gn → G locally uniformly in (0, L).

We claim that G = Ghom. To this end, we will need a couple of lemmas on the
local convergence of the energy.

Lemma 30. For 0 < a < b < L, let �(a,b) = (a, b) × (−H, H). Then∫
�(a,b)\Kl

∇ul,n Cn∇uTl,n dx →
∫

�(a,b)\Kl

∇ul,hom Chom∇uTl,hom dx .

Proof. For ε > 0 let θε ∈ C∞
c (0, L) with 0 � θε � 1, θε = 1 in (a, b), and such

that∫
�\Kl

∇ul,hom Chom∇uTl,homθε dx � ε +
∫

�(a,b)\Kl

∇ul,hom Chom∇uTl,hom dx .

Then, by the properties of θε and since ul,nθε ∈ Vl by the variational formulation
we can write∫

�(a,b)\Kl

∇ul,n Cn∇uTl,n dx �
∫

�\Kl

∇ul,n Cn∇uTl,nθε dx

=
∫

�\Kl

∇ul,n Cn
(∇(ul,nθε) − ul,n∇θε

)T dx

= −
∫

�\Kl

∇ul,n Cn∇θTε ul,n dx .

As Cn∇uTl,n ⇀ Chom∇uTl,hom in L2(�\Kl;R2) and sinceul,n → ul,hom in L2(�\Kl)

the last term converge to

−
∫

�\Kl

∇ul,hom Chom∇θTε ul,hom dx =

= −
∫

�\Kl

∇ul,hom Chom
(∇(ul,homθε) − ∇ul,homθε

)T dx

=
∫

�\Kl

∇ul,hom Chom∇uTl,homθε dx

� ε +
∫

�(a,b)\Kl

∇ul,hom Chom∇uTl,hom dx .
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Hence

lim sup
n→∞

∫
�(a,b)\Kl

∇ul,nCn∇uTl,n dx � ε +
∫

�(a,b)\Kl

∇ul,hom Chom∇uTl,hom dx .

For ε > 0 let ψε ∈ C∞
c (0, L) with 0 � ψε � 1, ψε = 0 in (0, L)\(a, b), and

such that∫
�\Kl

∇ul,hom Chom∇uTl,homψε dx � −ε +
∫

�(a,b)\Kl

∇ul,hom Chom∇uTl,hom dx .

Then, arguing as above,∫
�(a,b)\Kl

∇ul,nCn∇uTl,n dx �
∫

�\Kl

∇ul,nCn∇uTl,nψε dx,

where the last term converges to∫
�\Kl

∇ul,hom Chom∇uTl,homψε dx � −ε +
∫

�(a,b)\Kl

∇ul,hom Chom∇uTl,hom dx .

Hence

lim inf
n→∞

∫
�(a,b)\Kl

∇ul,nCn∇uTl,n dx � −ε +
∫

�(a,b)\Kl

∇ul,hom Chom∇uTl,hom dx .

We conclude by the arbitrariness of ε > 0. ��
Lemma 31. For 0 < a < b < L, let �(a,b) = (a, b) × (−H, H). Then∫

�(a,b)\Kl

μn,1 |∂x1ul,n|2 dx →
∫

�(a,b)\Kl

μhom,1 |∂x1ul,hom|2 dx . (46)

Proof. We employ a change of variable. Let �̂ = (0, L) × (−S, S) where S =
H

(
λ/μB,1 + (1 − λ)/μA,1

)
. Denote by �n,A the projection of �n,A on the verical

axis, that is,

�n,A = {x2 ∈ (−H, H) : (x1, x2) ∈ �n,A for x1 ∈ (0, L)},
and similarly for �n,B . Let �n : � → �̂ be the bi-Lipschitz piecewise affine map
�n(x1, x2) = (x1, φn(x2)) where

φn(x2) =
∫ x2

0
βn ds and βn =

{
1/μB,1 in �n,A,

1/μA,1 in �n,B .

Denote ĝn = g ◦ �−1
n and

Ûl,n = {û ∈ H1(�̂\Kl) : û = ĝn in ∂D�̂} V̂l = {v̂ ∈ H1(�̂\Kl) : v̂ = 0 in ∂D�̂}.
For u ∈ Ul and û = (u ◦ �−1

n ) ∈ Ûl,n we have

Wl,n(u) = Ŵl,n(û) = 1
2

∫
�̂\Kl

∇û Ĉn∇ûT dy
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where (see Lemma 20)

Ĉn =
(

μ̂n,1 0
0 μ̂n,2

)
with μ̂n,1 = μA,1 μB,1 and μ̂n,2 =

{
μA,2/μB,1 in �̂n,A,

μB,2/μA,1 in �̂n,B .

Note that μ̂n,1 is constant and independent of n ∈ 2N. We denote μ̂A,2 = μA,2/μB,1
and μ̂B,2 = μB,2/μA,1. Note that the relative size of the layers �̂n,A and �̂n,B is,
respectively,

λ̂ = λ/μB,1

λ/μB,1 + (1 − λ)/μA,1
= λμA,1

λμA,1 + (1 − λ)μB,1
, (1 − λ̂) = (1 − λ)μB,1

λμA,1 + (1 − λ)μB,1
.

Therefore, by Proposition 32, the homogenized stiffness matrix in the rescaled
domain �̂ is given by

Ĉhom =
(

μ̂hom,1 0
0 μ̂hom,2

)
,

where μ̂hom,1 = μA,1 μB,1, while

1

μ̂hom,2
= λ̂

μ̂A,2
+ 1 − λ̂

μ̂B,2
= μA,1 μB,1

λμA,1 + (1 − λ)μB,1

(
λ

μA,2
+ (1 − λ)

μB,2

)
.

Next, let � : � → �̂ be the bi-Lipschitz affine map �(x1, x2) = (x1, φ(x2)),
where

φ(x2) = βx2 for β = λ/μB,1 + (1 − λ)/μA,1 = λμA,1 + (1 − λ)μB,1

μA,1μB,1
.

Note that βn
∗
⇀ β. With this change of variable the stiffness matrix Chom becomes

Ĉhom, indeed (see Lemma 20),

μhom,1 = λμA,1 + (1 − λ)μB,1 and
1

μhom,2
= λ

μA,2
+ (1 − λ)

μB,2
,

and thus μhom,1/β = μA,1 μB,1 = μ̂hom,1 and

1

βμhom,2
= μA,1 μB,1

λμA,1 + (1 − λ)μB,1

(
λ

μA,2
+ (1 − λ)

μB,2

)
= 1

μ̂hom,2
.

Since βhom is the weak∗ limit of βn , φn → φ uniformly. Let ĝ = g ◦ �−1. Note
that ĝn is a bounded sequence in H1(�̂\KL), moreover, ĝn → ĝ in L2(∂D�̂).

Let ûl,n ∈ argmin{Ŵl,n(û) : û ∈ Ûl,n} and ul,hom ∈ argmin{Wl,hom(u) : u ∈
Ul}. We know that ûl,n ⇀ ûl,hom in H1(�̂\Kl). Since μ̂n,1 = μ̂hom,1 = μA,1 μB,1
we get∫

�̂(a,b)\Kl

μ̂hom,1 |∂y1 ûl,hom|2 dy � lim inf
n→∞

∫
�̂(a,b)\Kl

μ̂n,1 |∂y1 ûl,n|2 dy,
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where �̂(a,b) = (a, b) × (−S, S). Clearly, ûl,n = ul,n ◦ �−1
n , where ul,n ∈

argmin{Wl,n(u) : u∈Ul} and ûl,hom =ul,hom◦�−1 whereul,hom ∈ argmin{Wl,hom(u) :
u ∈ Ul}. Therefore, applying the changes of variable we get∫

�(a,b)\Kl

μhom,1 |∂x1ul,hom|2 dx � lim inf
n→∞

∫
�(a,b)\Kl

μn,1 |∂x1ul,n|2 dx .

Using a different change of variable we can apply the above argument in such a
way that∫

�(a,b)\Kl

μhom,2 |∂x2ul,hom|2 dx � lim inf
n→∞

∫
�(a,b)\Kl

μn,2 |∂x2ul,n|2 dx .

By Lemma 30 we have∫
�(a,b)\Kl

μn,1 |∂x1ul,n|2 + μn,2 |∂x2ul,n|2 dx

which converges to∫
�(a,b)\Kl

μhom, 1 |∂x1ul,hom|2 + μhom, 2 |∂x2ul,hom|2 dx,

and thus

lim sup
n→∞

∫
�(a,b)\Kl

μn,1 |∂x1ul,n|2 dx

=
∫

�(a,b)\Kl

μhom, 1 |∂x1ul,hom|2 + μhom,2 |∂x2ul,hom|2 dx

− lim inf
n→∞

∫
�(a,b)\Kl

μn,2 |∂x2ul,n|2 dx

�
∫

�(a,b)\Kl

μhom,1 |∂x1ul,hom|2 dx .

The proof is concluded. ��
Proof of Theorem 27. It is enough to show that Gn → Ghom pointwise in (0, L).

Let r > 0 such that 0 < 2r < l < L − 2r . Let φr : [0, L] → [0, 1] be the
Lipschitz map defined by φr = 0 in (0, r) and in (L−r, L), φr = 1 in (2r, L−2r),
φr is affine in (r, 2r) and in (L − 2r, L − r). By Lemma 21 we can write

E ′
n(l) =

∫
�\Kl

∇ul,nCnE∇uTl,n φ′
rdx for E =

(−1 0
0 1

)
= I +

(−2 0
0 0

)
,

where I denotes the identity matrix; a similar representation holds also for Ghom.
Then, splitting E as above,

Gn(l) = −E ′
n(l) = −

∫
�\Kl

∇ûl,n Cn∇ûTl,n φ′
r dx + 2

∫
�\Kl

μn,1|∂x1ul,n|2φ′
r dx .
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By the definition of φr , we can write

∫
�\Kl

∇ul,n Cn∇uTl,n φ′
r dx = r−1

∫
�(r,2r)\Kl

∇ul,n Cn∇uTl,n dx

− r−1
∫

�(L−2r,L−r)\Kl

∇ul,n Cn∇uTl,n dx .

Hence by Lemma 30 we get

∫
�\Kl

∇ul,n Cn∇uTl,n φ′
r dx →

∫
�\Kl

∇ul,hom Chom∇uTl,hom φ′
r dx .

In the same way we get

∫
�\Kl

μn,1|∂x1ul,n|2φ′
r dx →

∫
�\Kl

μhom,1|∂x1ul,hom|2φ′
r dx .

Hence Gn(l) → Ghom(l). ��

4. Non-monotone Boundary Condition

Consider a Dirichlet boundary condition of the type f (t)gwhere f ∈ C1([0, T ])
with f (0) = 0 ( f is not necessarily monotone). We will provide an existence and
convergence result.

Let 	̂n and 	̂hom be the unique solutions obtained with the monotone boundary
condition u = sg and s ∈ [0, S], where S = max{| f (t)| : t ∈ [0, T ]}. By Theorem
12 we know that 	̂n → 	̂ pointwise in [0, S) and that 	̂+ = 	̂hom.

Following [18, Section 12] we introduce the non-decreasing function f̄ (t) =
max{| f (τ )| : τ ∈ [0, t]} and we define 	n = 	̂n ◦ f̄ . We will prove that

(1) 	n is a quasi-static evolution in the sense of Proposition 2, that is, 	n : [0, T ) →
[L0, L] is non-decreasing, right continuous, satisfies the initial condition 	n(0) =
L0 and Griffith’s criterion, in the following form:
(i) Gn(t, 	n(t)) � Gc

n(	n(t)) for every time t ∈ [0, T );
(ii) if Gn(t, 	n(t)) < Gc

n(	n(t)) then 	n is right differentiable in t and 	̇+
n (t) =

0;
(iii) if t ∈ J (	n) then Gn(t, l) � Gc

n(l) for every l ∈ [	−
n (t), 	n(t));

2) 	n = 	̂n ◦ f̄ converge to 	 = 	̂ ◦ f̄ pointwise in [0, T ) (up to subsequences);
the evolution 	 is non-decreasing, satisfies the initial condition and Griffith’s
criterion, in the following form:
(i) Ghom(t, 	(t)) � Gc

eff (	(t)) for every time t ∈ [0, T );
(ii) if Ghom(t, 	(t)) < Gc

eff (	(t)) then 	 is right differentiable in t and 	̇+(t) =
0;

(iii) if t ∈ J (	) then Ghom(t, l) � Gc
eff (l) for every l ∈ [	−(t), 	+(t)).
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Let us prove (1). Clearly 	n is non-decreasing, since both 	̂n and f̄ are non-
decreasing, and 	n(0) = 	̂n ◦ f (0) = 	̂n(0) = L0. The right continuity of 	̂n
together with the monotonicity and continuity of f̄ imply the right continuity of 	n .
It remains to check Griffith’s criterion, but in this case the representation formula
(7) does not hold. Before proceeding, note that for s = f̄ (t) we have

	̂−
n (s) � 	−

n (t) � 	+
n (t) � 	̂n(s). (47)

(i) We know thatGn(s, 	̂n(s)) � Gc
n(	̂n(s)) for every s ∈ [0, S); writing s = f̄ (t)

and 	n = 	̂ ◦ f̄ yields

f̄ 2(t)Gn(	n(t)) = f̄ 2(t)Gn(	̂n ◦ f̄ (t))=Gn( f̄ (t), 	̂n ◦ f̄ (t))�Gc
n(	̂n ◦ f̄ (t))

= Gc
n(	n(t)).

Since f 2 � f̄ 2 we get

Gn(t, 	n(t)) = f 2(t)Gn(	n(t)) � f̄ 2(t)Gn(	n(t)) � Gc
n(	n(t)).

(ii) If | f (t)| = f̄ (t) then Gn(t, 	n(t)) < Gc
n(	n(t)) reads as

f̄ 2(t)Gn(	̂n ◦ f̄ (t)) = f 2(t)Gn(	̂n ◦ f̄ (t)) < Gc
n(	̂n ◦ f̄ (t))

which, for s = f̄ (t), gives Gn(s, 	̂n(s)) < Gc
n(	̂n(s)). Since f̄ is continuous

and monotone non-decreasing, it turns out that

0 � 	̇+
n (t) � lim

h→0+
	̂n(s + h) − 	̂n(s)

h
= 0.

If | f (t)| < f̄ (t) then f̄ (t) = f (t∗) for some t∗ < t . Moreover, by the
continuity of f there exists δ > 0 such that f̄ (t ′) = f (t∗) for every |t ′−t | < δ.
Hence 	n(t ′) = 	̂n ◦ f̄ (t ′) = 	n ◦ f (t∗) for every |t ′ − t | < δ; hence 	n is
constant in a neighborhood of t .

(iii) Let t ∈ J (	n). First, note that f̄ (t) = | f (t)|; indeed, if f̄ (t) > | f (t)| then,
repeating the argument above, 	n would be constant in a neighborhood of t and
thus t 	∈ J (	n). By (47) it turns out that s ∈ J (	̂n). Hence, Gn(s, l) � Gc

n(l)
for every l ∈ [	̂−

n (s), 	̂+
n (s)); the substitution s = f̄ (t) and (47) lead to

Gn(t, l) = f 2(t)Gn(l) = f̄ 2(t)Gn(l) = Gn(s, l) � Gc
n(l)

for every l ∈ [	−
n (t), 	+

n (t)).

Let us prove 2). Before proceeding, note that in general 	+ = (	̂ ◦ f̄ )+ 	=
	̂+ ◦ f̄ = 	̂hom ◦ f̄ , therefore we cannot employ directly the properties of 	̂hom.
Instead, we first check Griffith’s criterion for 	̂. We know that 	̂+ = 	̂hom and
thus J (	̂) = J (	̂hom), moreover 	̂−(s) = 	̂−

hom(s) and 	̂+(s) = 	̂hom(s) for every
s ∈ J (	̂), while 	̂(s) = 	̂hom(s) for every s ∈ [0, S)\J (	̂).

(iii) By Griffith’s criterion for 	̂hom, if s ∈ J (	̂hom) = J (	̂) then Ghom(s, l) � Gc
eff (l)

for every l ∈ [	̂−
hom(s), 	̂hom(s)) = [	̂−(s), 	̂+(s)).
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(ii) If Ghom(s, 	̂(s)) < Gc
eff (	̂(s)) then either s 	∈ J (	̂) or s ∈ J (	̂) and 	̂(s) =

	̂hom(s) (otherwise the opposite inequality would hold). In both the cases 	̂(s) =
	̂hom(s) and their right derivatives coincide. Therefore, 	̂ is right differentiable
in s and its right derivative vanishes.

(i) We employ the definition of Gc
eff . If Ghom(	̂(s)) = 0 or Gc

eff (	̂(s)) = +∞ there
is nothing to prove. Otherwise, by pointwise convergence

Ghom(s, 	̂(s))

Gc
eff (	̂(s))

� lim inf
n→∞

Gn(s, 	̂n(s))

Gc
n(	̂n(s))

� 1,

which implies that Ghom(s, 	̂(s)) � Gc
eff (	̂(s)) for every s ∈ [0, S).

At this point, employing the change of variable s = f̄ (t) and arguing as in
point (1) it follows that Griffith’s criterion holds for 	 = 	̂ ◦ f̄ .
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Appendix A: Balanced Viscosity Solutions and Griffith’s Criterion

For sake of completeness, we provide the notion of balanced viscosity solutions for the
rate independent system (En,Rn), making reference to [16] with a few differences due to
irreversibility and lack of regularity in 
n . Moreover we briefly show that the evolution
	n (provided by Proposition 2) is a balanced viscosity solution and, vice versa, that each
right continuous balanced viscosity solution satisfies Griffith’s criterion. A similar reasoning
applies to 	hom.
Following [16] a right continuous evolution γn is a balance viscosity evolution for the
rate independnent system (En,Rn) if it satisfies the following conditions for every time
t ∈ [0, T ]:

∂l ′Rn(γn(t), 0) + ∂l En(t, γn(t)) � 0 (48)

En(t, γn(t)) = En(0, L0) +
∫ t

0
Pn(t, γn(t)) dt − Varfn (γn; [0, t]). (49)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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We recall that the state dependent dissipation Rn : [L0, L] × R → [0, +∞] is given by

Rn(l, l
′) =

{
Gc
n(l) l

′ l ′ � 0,

+∞ l ′ < 0.

We denote by ∂l ′Rn the subdifferential of the dissipation Rn(l, ·) and by ∂l En(t, l) the
partial derivative of the reduced elastic energy. Then ∂l ′Rn(l, 0) = (−∞,Gc

n(l)] while
∂l En(t, l) = −Gn(t, l), if l 	∈ 
n . If l ∈ 
n the energy En is not differentiable, therefore
following (5) we set ∂l En(t, l) = −Gn(t, l).
Next, let us introduce the dissipation “distance” distn : [L0, L]×[L0, L] → [0, +∞] given
by

distn(l0, l1) = inf

{∫ 1

0
Rn(l(r), l

′(r)) dr : l ∈ AC(0, 1), l(0) = l0, l(1) = l1

}

and the Finsler dissipation cost �fn : [0, T ] × [L0, L] × [L0, L] → [0, +∞] given by

�fn (t, l0, l1) = inf

{∫ 1

0
fn(t, l(r), l

′(r)) dr : l ∈ AC(0, 1), l(0) = l0, l(1) = l1

}
,

where

fn(t, l(r), l
′(r)) = Rn(l(r), l

′(r)) + dist
(−∂l E(t, l(r)), ∂l ′Rn(l(r), 0)

)|l ′(r)|.
Finally, let us introduce the notation

Varfn (γn; [0, t]) = Vardistn (γn; [0, t]) − Jmpdistn (γn; [0, t]) + Jmpfn (γn; [0, t]),
where

Vardistn (γn; [0, t]) = sup

⎧⎨
⎩
m−1∑
i=0

distn(γn(ti+1), γn(ti )) : 0 = t0 � · · · � tm = t

⎫⎬
⎭ ,

Jmpdistn (γn; [0, t]) =
∑

τ∈J (γn)∩[0,t]
distn(γn(τ ), γ −

n (τ )),

Jmpfn (γn; [0, t]) =
∑

τ∈J (γn)∩[0,t]
�n(τ, γn(t), γ

−
n (t)),

(remember that here γn is right continuous).
First, let us check that the evolution 	n provided by Proposition 2 is a balanced viscosity
solution. The inequality Gn(t, 	n(t)) � Gc

n(	n(t)) reads as

−∂En(t, 	n(t)) ∈ (−∞,Gc
n(	n(t))] = ∂l ′Rn(	n(t), 0),

which is (48). Next, let us check that the energy identity (11) implies (49), showing that

Varfn (	n; [0, t]) = Vardistn (	n; [0, t]) − Jmpdistn (	n; [0, t]) + Jmpfn (	n; [0, t]),
= Dn(	n(t)) −

∑
τ ∈ J (	n)∩[0,t]

�Fn(τ, 	n(τ ))�.

First of all, note that in our irreversible setting it is not restrictive to consider l ′ � 0 in the
definition of both distn and �fn . By explicit computations, it is easy to check that

distn(l0, l1) =
{
Dn(l1) − Dn(l0) if l0 � l1,

+∞ otherwise.



   85 Page 46 of 51 Arch. Rational Mech. Anal.          (2024) 248:85 

As a consequence, by monotonicity and right continuity of 	n ,

Vardistn (	n; [0, t]) = Dn(	n(t)),

Jmpdistn (	n; [0, t]) =
∑

τ∈J (	n)∩[0,t]
distn(	n(t), 	−

n (t)) =
∑

τ∈J (	n)∩[0,t]
�Dn(	n(τ ))�.

Next, note that

dist
(−∂l E(t, l), ∂l ′Rn(l, 0)

) = [G(t, l) − Gc
n(l)]+

By condition (iii) of Griffith’s criterion for τ ∈ J (	n) we have Gn(τ, l) − Gc
n(l) � 0 for

every l ∈ [	−
n (τ ), 	n(τ )), and thus

fn(τ, l(r), l
′(r)) = Gn(τ, l(r)) l

′(r)

for every monotone l ∈ AC(0, 1) with l(0) = 	−
n (τ ) and l(1) = 	n(τ ). It follows easily

that

�n(τ, 	n(τ ), 	−
n (τ )) = −�En(τ, 	n(τ ))�,

and thus

Jmpfn (	n; [0, t]) =
∑

τ∈J (	n)∩[0,t]
−�En(τ, 	n(τ ))�.

Conversely, let γn be a (right continuous) balanced viscosity solution. If γn satisfies (48)
then

(−∞,Gc
n(γn(t))] − Gn(t, γn(t)) � 0,

that is Gn(t, γn(t)) � Gc
n(γn(t)). Let us check that Gn(τ, l) � Gc

n(l) for τ ∈ J (γn) and
every l ∈ [γ −

n (τ ), γn(τ )]. In the interval [τ − δ, τ + δ] (for some δ > 0) the energy identity
(49) reads as

En(τ + δ, γn(τ + δ)) − En(τ − δ, γn(τ − δ)) =
∫ τ+δ

τ−δ
Pn(t, γn(t)) dt

−Varfn (γn; [τ − δ, τ + δ]).

Hence, taking the limit as δ → 0+, we get

En(τ, γ
−
n (τ )) − En(τ, γn(τ )) =

∫ γn(τ )

γ −
n (τ )

Gn(τ, s) ds = lim
δ→0+ Varfn (γn; [τ − δ, τ + δ]).

(50)
It is easy to check that

lim
δ→0+ Varfn (γn; [τ − δ, τ + δ]) = �(τ, γ −

n (τ ), γn(τ ))

=
∫ γn(τ )

γ −
n (τ )

Gc
n(s) + [Gn(τ, s) − Gc(s)]+ds.

Hence, by (50),

∫ γn(τ )

γ −
n (τ )

Gn(τ, s) − Gc
n(s) ds =

∫ γn(τ )

γ −
n (τ )

[Gn(τ, s) − Gc(s)]+ds,
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which in turn implies Gn(τ, s) − Gc
n(s) � 0 for almost everywhere s ∈ (γ −

n (τ ), γn(τ )).
By the regularity of energy release and toughness we conclude that Gn(τ, s) � Gc

n(s) holds
for every s ∈ [γ −

n (τ ), γn(τ )). It remains to show that Gn(τ, γn(τ )) < Gc
n(γn(τ )) implies

γ̇ +
n (τ ) = 0. Let us first assume that 	n(τ ) 	∈ 
n . Then, by continuity of Gn and Gc

n it
follows that Gn(t, l) < Gc

n(l) for every (t, l) such that |τ − t | < δ and |l − 	n(τ )| < δ.
By right continuity we can further assume that |γn(t) − γn(τ )| < δ for t ∈ (τ, τ + δ). The
fact that Gn(t, l) < Gc

n(l) implies that there are no jumps in t ∈ (τ, τ + δ), otherwise (iii)
(which we already proved) would be violated. Hence for t ∈ (τ, τ + δ) the energy identity
reads as

En(t, γn(t)) = En(τ, γn(τ )) +
∫ t

τ
Pn(t, γn(t)) dt − Vardistn (γn; [τ, t])

Writing

En(t, γn(t)) − En(τ, γn(τ )) =
∫ t

τ
∂t En(t, γn(t)) dt +

∫ t

τ
∂l En(t, γn(t)) dγn(t)∫ t

τ
Pn(t, γn(t)) dt =

∫ t

τ
∂t En(t, γn(t)) dt

Vardistn (γn; [τ, t]) =
∫ t

τ
Gc
n(γn(t)) dγn(t),

it follows that ∫ t

τ
Gn(t, γn(t)) dγn(t) =

∫ t

τ
Gc
n(γn(t)) dγn(t).

This is a contradiction with Gn(t, γn(t)) < Gc
n(γn(t)) unless dγn = 0, which implies the

thesis. It γn(τ ) ∈ 
n then there exists a sequence lm ↘ γn(τ ) such that lm 	∈ 
n and
Gn(τ, lm) → Gn(τ, γn(τ )) < Gc

n(γn(τ )) = Gc
n(lm). Since lm 	∈ 
n , arguing as above

it follows that γn(t) < lm in a right neighborhood of τ , uniformly with respect to m ∈ N.
Hence, taking the infimum with respect to m ∈ N, we get γn(t) � γn(τ ); by monotonicity,
γn is constant in a right neighborhood of τ .

A. Homogenization of Displacement, Stress, and Energy

This section contains classic results on the homogenization of Dirichlet energies (see for
example [17] or [9] and the references therein). We provide a short proof, adapted to the
case of horizontal layers. We recall that

Chom =
(

μhom,1 0
0 μhom,2

)
,

where 1/μhom,1 = λ/μA,1 + (1−λ)/μB,1 and μhom,2 = λμA,2 + (1−λ)μB,2. For l ∈ [0, L]
we denote

ul,n ∈ argmin {Wl,n(u) : u ∈ Ul }, ul,hom ∈ argmin {Wl,hom(u) : u ∈ Ul }.

Proposition 32. Let l ∈ [0, L]. Then ul,n ⇀ ul,hom in H1(�\Kl ) and Cn∇uTl,n ⇀

Chom∇uTl,hom in L2(�\Kl ;R2).
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Proof. By uniform coercivity ul,n is a bounded sequence in H1(�\Kl ) and thus Cn∇uTl,n
is a bounded sequence in L2(�\Kl ;R2). Then, up to non-relabeled subsequences, ul,n ⇀

ul,∞ in H1(�\Kl ) while Cn∇uTl,n ⇀ σ l,∞ in L2(�\Kl ;R2). We will prove that

σ l,∞ = Chom∇uTl,∞. (51)

From this identity it follows that ul,∞ = ul,hom; indeed, ul,∞ ∈ Ul and, passing to the limit
in the variational formulation∫

�\Kl

∇v Cn∇uTl,n dx = 0 for every v ∈ Vl ,

we easily get that ul,∞ is the unique solution of the variational problem∫
�\Kl

∇v Chom∇uTl,∞ dx = 0 for every v ∈ Vl .

The idea to prove (51) is to show that (σ l,∞)i = μhom,i ∂xi ul,∞ for i = 1, 2, by passing to
the limit in the constitutive relation, that is, (σ l,n)i = μn,i ∂xi ul,n for i = 1, 2.
I. Let i = 1. For every ϕ ∈ C∞

c (�\Kl ) we have∫
�\Kl

(σ l,n)1ϕ/μn,1 dx =
∫
�\Kl

(∂x1ul,n)ϕ dx .

By weak convergence we can pass to the limit in the right hand side, getting∫
�\Kl

(∂x1ul,n)ϕ dx →
∫
�\Kl

(∂x1ul,∞)ϕ dx .

Let us prove that∫
�\Kl

(σ l,n)1ϕ/μn,1 dx →
∫
�\Kl

(σ l,∞)1ϕ/μhom,1 dx . (52)

Let I = (−H, 0) ∪ (0, H) and write∫
�\Kl

(σ l,n)1ϕ/μn,1 dx =
∫
(0,L)

( ∫
I
(σ l,n)1(x1, x2)ϕ(x1, x2) dx2

)/
μn,1(x1) dx1

=
∫
(0,L)

sn(x1)/μn,1(x1) dx1, (53)

where we have introduced the auxiliary function sn given by

sn(x1) =
∫
I
(σ l,n)1(x1, x2)ϕ(x1, x2) dx2, for almost everywhere x1 ∈ (0, L).

We claim that sn → s∞ strongly in L1(0, L), where

s∞(x1) =
∫
I
(σ l,∞)1(x1, x2) ϕ(x1, x2) dx2

from which (52) follows from (53) because 1/μhom,1 is the weak∗ limit of 1/μn,1 in
L∞(0, L).
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Denote by σn the (vector valued) function σn(x1) = (σ l,n)1(x1, ·); since σ n is bounded in
L2(�\Kl ), it turns out that σn is bounded in L2(0, L; L2(I )). We claim that σ ′

n is bounded
in L2(0, L; H−1(I )). Let us start writing

‖σ ′
n‖L2(0,L;H−1(I )) = sup

∫
(0,L)

〈σ ′
n, z〉 dx1,

where the supremum is taken over all the (vector valued) functions z with
‖z‖L2(0,L;H1

0 (I )) � 1 and 〈·, ·〉 denotes the duality between H−1(I ) and H1
0 (I ). The

set of functions of the form z = φψ for φ ∈ C∞
c (0, L) and ψ ∈ C∞

c (I ) is dense in
L2(0, L; H1

0 (I )). For any such z we can write∫
(0,L)

〈σ ′
n, z〉 dx1 =

∫
(0,L)

〈σ ′
n, ψ〉φ dx1 = −

∫
(0,L)

〈σn, ψ〉φ′ dx1

= −
∫
(0,L)

∫
I
σn(x1, x2)ψ(x2)∂x1φ(x1) dx2 dx1

= −
∫
�\Kl

σ l,n∂x1 z dx � ‖σ l,n‖L2(�\Kl )
.

Then, by Schauder’s theorem and Aubin-Lions lemma there exists a subsequence (not rela-
beled) such that σn → σ∞ (strongly) in L2(0, L; H−1(I )). As the stresses are L2 functions,
writing

sn(x1) =H−1(I )〈σn(x1), ϕ(x1, ·)〉H1
0 (I ) and s∞(x1) =H−1(I )〈σ∞(x1), ϕ(x1, ·)〉H1

0 (I )

it follows that sn → s in L1(0, L).
II. Let i = 2. Since μn,2 is independent of x2, for every ϕ ∈ C∞

c (�\Kl ) we have∫
�\Kl

(σ l,n)2 ϕ dx =
∫
�\Kl

(∂x2 (μn,2ul,n))ϕ dx = −
∫
�\Kl

μn,2ul,n∂x2ϕ dx .

We have μn,2 ∂x2ϕ
∗
⇀ μhom,2 ∂x2ϕ in L∞(�\Kl ) and ul,n → ul,∞ in L1(�\Kl ) (by

compact embedding), therefore

−
∫
�\Kl

μn,2ul,n∂x2ϕ dx → −
∫
�\Kl

μhom,2ul,hom∂x2ϕ dx

=
∫
�\Kl

μhom,2(∂x2ul,hom)ϕ dx

=
∫
�\Kl

(σ l,hom)2ϕ dx .

The proof is concluded. ��
By Proposition 32 and standard arguments it follows the convergence of the reduced energies,
that is, En → Ehom pointwise in [0, L]. Further, it is not difficult to also prove the following
result:

Corollary 33. Let ln ∈ [0, L] such that ln → l. Then ∇uln ,n ⇀ ∇ul,hom and Cn∇uTln ,n ⇀

Chom∇uTl,hom in L2(�;R2). Moreover En(ln) → Ehom(l).

As by-product of the previous Corollary the energy En converge uniformly to Ehom in [0, L].
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