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Abstract

We introduce a new quantification of nonuniform ellipticity in variational prob-
lems via convex duality, and prove higher differentiability and 2d-smoothness re-
sults for vector valued minimizers of possibly degenerate functionals. Our frame-
work covers convex, anisotropic polynomials as prototypical model examples—in
particular, we improve in an essentially optimal fashionMarcellini’s original results
(Marcellini in Arch Rat Mech Anal 105:267–284, 1989).
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1. Introduction

Motivated by the regularity theory for elliptic systems driven by differential
operators that are homogeneous polynomials in the derivative symbols obtained by
Douglis and Nirenberg [28], Ladyzhenskaya and Ural’tseva [56], and Morrey [68],
we introduce a new class of autonomous variational integrals of the type

W1,p
loc (�,RN ) � w �→ F (w;�) :=

∫
�

F(∇w)dx, (1.1)

governed by a nonuniformly elliptic integrand F ∈ C2(RN×n) in the sense that the
related ellipticity ratio

RF (z) := highest eigenvalue of F ′′(z)
lowest eigenvalue of F ′′(z)

might blow up on large values of the derivative variable. We obtain higher differ-
entiability and low-dimensional smoothness results for local minimizers, whose
standard definition reads as follows:
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Definition 1.1. A map u ∈ W1,p
loc (�,RN ) is a local minimizer of functional F if

for any open subset�′ � � it satisfiesF (u;�′) <∞ andF (u;�′) ≤ F (w;�′)
for all w ∈ u +W1,p

0 (�′,RN ).

More precisely, we focus on a large class of convex integrands satisfying so-called
(p, q)-growth conditions, according to Marcellini’s foundational works [59,61,
63],

|z|p � F(z) � |z|q + 1 (1.2)

for all z ∈ R
N×n , and some exponents 2 ≤ p ≤ q < ∞, including anisotropic

convex polynomials as model example. This family of integrands is characterized
by a potentially wild behavior of the ellipticity ratio at infinity, and the rate of blow
up of RF as |z| → ∞ is measured in terms of the stress tensor, i.e.:

RF (z) � 1+ |F ′(z)| q−p
q−1 , 2 ≤ p ≤ q. (1.3)

We shall refer to functionals as (1.1) with integrands satisfying (1.2), (1.3) as
Legendre (p, q)-nonuniformly elliptic integrals, terminology justified since (1.3)
comes as the quantification of the interaction between F and its Fenchel conjugate
F∗, the strong convexity of F , and the (p, q)-growth conditions in (1.2), see Sect. 3
for more details, and [29,71] for the abstract convex analytic setting. We also stress
that by convexity, in our local setting, the pointwise definition of functional F
in (1.1) coincides with its Lebesgue-Serrin-Marcellini extension [55,59,62]. The
class of nonuniformly elliptic problems we propose falls into the (slightly larger)
realm of functionals with controlled (p, q)-growth, first studied by Marcellini [59,
61,63] in connection to some delicate issues of compressible elasticity including
the phenomenon of cavitation [2,59,62]. Roughly speaking, variational integrals
with (p, q)-growth are driven by possibly anisotropic integrands satisfying the
unbalanced growth condition (1.2), whose ellipticity ratio can at most be controlled
via

RF (z) � 1+ |z|q−p. (1.4)

By convexity, (1.2) and (1.3), it follows that Legendre (p, q)-nonuniform ellipticity
(1.3) implies the usual (p, q)-nonuniform ellipticity (1.4). The crucial aspect of
these problems is the subtle, quantitative relation existing between the rate of blow
up of the ellipticity ratio and the regularity of minima: in fact, Marcellini [60,63]
and Giaquinta [38] exhibited examples of (p, q)-nonuniformly elliptic functionals
with unbounded minimizers provided that the exponents (p, q) violate a closeness
condition of the type

q < p + o(n), (1.5)

where o(n)↘ 0 as n→∞. It is then natural to relate the regularity of minima to
the possibility of slowing down the rate of blowupof the ellipticity ratio by choosing
p and q not too far apart, cf. (1.5): in a nutshell, this wasMarcellini’s approach [61]
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to local Lipschitz continuity for scalar minimizers of certain anisotropic energies
such as

W1,2
loc (�) � w �→

∫
�

|∇w|2 +
n∑

i=1
|∇iw|qdx, (1.6)

where

2 ≤ q <
2n

n − 2
if n ≥ 3, 2 ≤ q <∞ if n = 2, (1.7)

or more generally [63,64],

W1,p
loc (�) � w �→

∫
�

|∇w|p +
n∑

i=1
|∇iw|qi dx (1.8)

for exponents

2 ≤ p ≤ q1 ≤ · · · ≤ qn < p + 2p

n
. (1.9)

After Marcellini’s initial success, (p, q)-nonuniformly elliptic functionals have
been the object of intensive investigation: considerable attention has been focused
on full regularity [4–6,8–12,15,17,20,23–25,30–32,46,74], boundary regularity
[1,13,19,26,49,51,52], nonlinear potential theoretic results [3,5,8,19,22,24–27]
and partial regularity [22,27,34,42,44,57,73,75–77], see also [58] for a reasonable
survey - recently, (p, q)-nonuniformly elliptic regularity theory found interesting
applications to nonlinear homogenization [21,72]. Note in particular that Mar-
cellini’s variational approach, originally designed to handle polynomial rates of
nonuniformity, turns out to fit also more general, possibly nonautonomous prob-
lems whose ellipticity ratio blows up faster than powers; see [65] for the very first
results on functionals at fast exponential growth, [5,24] for more recent progress,
and [33] for applications to weak KAM theory. Back to (p, q)-nonuniform ellip-
ticity, it is worth mentioning that the optimal value of the threshold to impose on
the ratio q/p guaranteeing gradient regularity is known in the autonomous setting
only in the scalar case [46,63]. It covers boundedness of minima, leaving open
the delicate matter of gradient regularity. In this respect, at first Marcellini [61]
determined two bounds on the size of q/p for Lipchitz continuity of minima: first,
(1.7), formulated for the model (1.6), that in its general form reads as

2 ≤ p ≤ q <
np

n − 2
if n ≥ 3 and 2 ≤ p ≤ q <∞ if n = 2,

(1.10)

which was found in [63,64] for minima belonging to higher energy classes (e.g.
W1,q -minimizers), and second, the more restrictive (1.9), that allows deriving gra-
dient boundedness forW1,p-minimizers. Actually, this second setting is the natural
framework to investigate, as given the growth/coercivity prescribed in (1.2) it is
only possible to prove the existence of minima in W1,p. The constraint given by
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(1.9) is far from being optimal: under natural growth conditions and in the vec-
torial case, Carozza et al. [17] obtained gradient higher differentiability and as a
consequence that minima belong to W1,q

loc , provided that

q < p + p

n − 1
,

by means of convex duality methods. The earlier results did not use duality theory
and required stronger natural growth conditions, see in particular [31]. When con-
sidering Lipschitz continuity of W1,p-minima in the scalar case, a first, substantial
improvement is due to Bella and Schäffner [6,8] in the genuine controlled growth
(p, q)-setting, updating (1.9) to

q < p + 2p

n − 1
, (1.11)

by using a refinement of De Giorgi’s iteration technique via optimization on radial
cut-off functions, leading to the application of Sobolev inequality on spheres rather
than on balls. Under Legendre (p, q)-growth conditions, we are able to further
relax these bounds, both with regard to obtaining higher differentiability results
and to proving Lipschitz regularity in the scalar case. More precisely, for W1,p-
minimizers of Legendre (p, q)-nonuniformly elliptic integrals we allow a faster
blow-up rate of the ellipticity ratio, quantifiable in terms of exponents (p, q) as

2 ≤ p ≤ q <
p(n − 1)

n − 3
if n ≥ 4, 2 ≤ p ≤ q <∞ if n ∈ {2, 3}.

(1.12)

We remark that this constraint had previously been obtained by Bella and Schäffner
[6] provided the minimizer is a priori assumed to be of class W1,q . Our approach is
based on the duality between the gradient of minima and the related stress tensors,
a technique that in this context finds its roots in [17]. This is at the heart of the
main result of this paper, which is gradient higher differentiability for minimizers
of variational integrals satisfying Legendre (p, q)-growth.

Theorem 1.2. Under assumptions (1.12), and (2.1), (2.2), let u ∈ W1,p
loc (�,RN )

be a local minimizer of functional F . Then,

Vμ,p(∇u), V1,q ′(F
′(∇u)) ∈W1,2

loc (�,RN×n)

and
n∑

s=1
〈∂s F ′(∇u), ∂s∇u〉 ∈ L1

loc(�), (1.13)

the second inclusion in (1.13) holding in the nondegenerate case μ > 0 in (2.1)3.
In particular, if B � � is any ball with radius less than one,

∫
−
B/2
|∇Vμ,p(∇u)|2 + |∇V1,q ′(F ′(∇u))|2 dx ≤ c

(∫
−
B
F(∇u)+ 1 dx

)b

(1.14)

holds true with c ≡ c(n, N , L , Lμ, p, q), and b ≡ b(n, p, q).
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We immediately refer to Sect. 2.2 for the precise description of our assumptions
and of the various quantities mentioned above. The main building block in the
proof of Theorem 1.2 and the possibility of enlarging the ellipticity of F by means
of convex duality arguments in such a way that it quantitatively controls both
gradient of minima and stress tensor, is granted by our Legendre (p, q)-growth,
thus yielding essentially optimal results, [60]. As a consequence of the boost of
integrability earned via Sobolev embedding from Theorem 1.2, we also derive a
lower order regularity result in the spirit of Campanato [14, Theorem 1.IV].

Corollary 1.3. Under assumptions (1.12), and (2.1), (2.2), let u ∈ W1,p
loc (�,RN )

be a local minimizer of functional F . The following holds:

(i.) if p > n − 2 and n ≥ 3, then u ∈ C
0,1− n−2

p
loc (�,RN );

(ii.) if in addition

2 ≤ p ≤ q ≤ np

n − 2
if n ≥ 3 and 2 ≤ p ≤ q <∞ if n = 2,

(1.15)

then ∇u ∈ Lq
loc(�,RN×n);

(iii.) if n = 2 thenu ∈ C0,β0
loc (�,RN )∩W1,m

loc (�,RN )and F ′(∇u) ∈ Lm
loc(�,RN×n)

for all β0 ∈ (0, 1), m ∈ [1,∞).

The higher differentiability granted by Theorem 1.2 allows deriving full regularity
in two ambient space dimensions.

Theorem 1.4. In ambient space dimension n = 2, suppose that (1.12), and (2.1),
(2.2) are in force. Then, any local minimizer u ∈W1,p

loc (�,RN ) of functionalF has
locally Hölder continuous gradient. In particular, on all balls B � �, the L∞-Lp

type estimate

‖∇u‖L∞(B/8) ≤ c

(∫
−
B
F(∇u)+ 1 dx

)b

(1.16)

holds with c ≡ c(N , L , Lμ, p, q) and b ≡ b(p, q). Moreover, given any two
open subsets �2 � �1 � � with dist(�2, ∂�1) ≈ dist(�1, ∂�), there ex-
ists t ≡ t(N , L , Lμ, p, q,F (u;�1), dist(�2, ∂�1)) > 1 such that Vp(∇u),

V1,q ′(F ′(∇u)) ∈W1,2t(�2,R
N×2) and the reverse Hölder type inequality

(∫
−
B/8
|∇Vμ,p(∇u)|2t + |∇V1,q ′(F ′(∇u))|2t dx

) 1
2t ≤ c

(∫
−
B
F(∇u)+ 1 dx

)b

,

(1.17)

is verified for any ball B � �2, with c ≡ c(N , L , Lμ, p, q,F (u;�1), dist(�2,

∂�1)), b ≡ b(p, q). Finally,

• if μ > 0 in (2.1), then the gradient of minima is locally Hölder continuous up
to any exponent less than one;
• if μ > 0 in (2.1), and integrand F is real analytic, then u is real analytic.
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Theorems 1.2–1.4 and Corollary 1.3 cover a large number of models, including
(1.6)–(1.8), and more generally, convex polynomials. Actually, restating Corollary
1.3 and Theorem 1.4 for vector-valuedminimizers of functionals driven by strongly
convex, even polynomials, we extend to the nonuniformly elliptic framework early
results of Morrey [67,68].

Theorem 1.5. Let u ∈W1,p
loc (�,RN ) be a local minimizer of functionalF , where

the integrand F is a convex, even polynomial with nonnegative homogeneous com-
ponents, lowest homogeneity degree larger or equal than p, and satisfying the lower
bound in (2.13). The following holds:

(i.) in three space dimensions n = 3, minima are locally (p − 1)/p-Hölder
continuous;
(ii.) in two space dimensions n = 2, if μ > 0 in (2.1)3 then minima are real
analytic.

It is worth highlighting that convex, even polynomials with nonnegative homoge-
neous components automatically satisfy ourLegendre (p, q)-nonuniformellipticity
condition,1 see Sect. 3.1—in particular, Theorem 1.5 holds with no restriction on
the degree of the polynomial. In the scalar setting, combining Theorem 1.2 with a
homogenised Moser iteration argument, we obtain Lipschitz regularity of minima.

Theorem 1.6. Under Assumptions (1.12), and (2.1), (2.2), let u ∈ W1,p
loc (�) be a

local minimizers of functional F . Then, u ∈ W1,∞
loc (�). In particular, whenever

B � � is a ball with radius r ∈ (0, 1], the Lipschitz bound

‖∇u‖L∞(B/8) ≤ c

(∫
−
B
F(∇u)+ 1 dx

)b

(1.18)

holds with c ≡ c(n, L , Lμ, p, q) and b ≡ b(n, p, q).

We remark that if p = 2, the bound in (1.12) corresponds precisely to the one
violated by the counterexample in [63, Theorem 6.1]. This highlights the sharpness
of our results for polynomial-type integrals with quadratic growth from below.
Notice further that in the vectorial case, and when the ambient space dimension n
is larger than two, minimizers need not be locally Lipschitz. In fact, this is already
the case when the integrand is smooth and uniformly elliptic, as shown by Šverák
and Yan [79] for dimensions n ≥ 3, N ≥ 5. More recently, Mooney and Savin [66]
gave an example of a smooth and uniformly elliptic integrand on 2×3 matrices, so
dimensions n = 3, N = 2, such that the corresponding variational integral admits
a minimizer that is Lipschitz but not C1. It seems likely that their approach can be
adapted to give examples of non-Lipschitz minimizers also in those dimensions.
The remainder of the section is devoted to a description of some key technical
points appearing throughout the paper that we believe could be of wider use. We
end with a quick outline of the structure of the paper.

1 Specifically, for polynomials p denotes the ellipticity exponent in (2.13), while q indi-
cates the degree.
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1.1. Techniques

From the technical point of view, themain contribution of this paper is threefold.
First, we introduce a new way to control the rate of blow up of the ellipticity ratio
for superlinear, possibly degenerate functionals, that we refer to as the Legendre
(p, q)-nonuniformellipticity condition (1.3).As alreadymentioned, (1.3) is slightly
more restrictive than the genuine (p, q)-nonuniform ellipticity (1.4), nonetheless
it covers the same models, i.e. convex polynomials or anisotropic energies, under
essentially optimal bounds on exponents (p, q), cf. (1.12)—in particular, in two
and three space dimensions the ellipticity ratio is allowed to blow up arbitrarily
fast, meaning for polynomials that no upper bound on the degree is required. Our
results crucially rely on a subtle interplay between the gradient of minima and the
stress tensor, that can be handled via convex duality. This is a natural strategy, and
convex duality tools have already been employed by Zhikov et al. [50] in connec-
tion to homogenized elasticity theory, by Seregin [78] in the theory of plasticity,
and by Carozza et al. [16], and Koch and Kristensen [53] on the validity of the
Euler-Lagrange system. The key aspect in our approach is the duality between the
gradient of minima and the related stress tensor that, via (1.3) and rather elementary
convex duality arguments, can be made quantitative, so that the ellipticity ratio of
the integrand F is enlarged as a natural consequence of the combination between
convexity and extremality conditions—in particular, primal and dual problems can
be handled simultaneously. The second main novelty consists in a streamlining
of Bella and Schäffner’s optimization trick [6], that allows us to work directly on
spheres rather than on solid balls and eventually leads to the (surprisingly simple)
proof of gradient higher differentiability of W1,p-minimizers under the constraint
(1.12). This brings us to the account of the third main novelty of this paper, that is
a new proof of full regularity for vector-valued minimizers of possibly degenerate,
nonuniformly elliptic functionals in two space dimensions, obtained by means of
a monotonicity argument in the spirit of Frehse [36], or via a renormalized version
of classical Gehring–Giaquinta and Modica Lemma [37,39], following the useful
point of view introduced by Beck and Mingione [5]. This is a well-known issue in
the multidimensional Calculus of Variations, handled for p-Laplacian type prob-
lems via Gehring–Giaquinta and Modica Lemma applied right after differentiating
the Euler–Lagrange system of F , see previous contributions by Nečas [69], Gi-
aquinta and Modica [39], and Campanato [14]. The corresponding 2d-smoothness
result for nondegenerate, genuinely (p, q)-nonuniformly elliptic integrals, is amore
recent achievement of Bildhauer and Fuchs [9], whose strategy strongly relies on
the existence in L2 of second derivatives—a distinctive feature of minima of non-
degenerate integrals that dramatically fails already for the degenerate p-Laplacian
[81]. For this reason, Theorem 1.4 comes by no means as an adaptation of the
arguments in [9], and covers degenerate problems. In this respect, we offer two
independent proofs of 2d-smoothness. The first one follows the arguments out-
lined in the proof of Theorem 1.2 to derive a monotonicity formula resulting in
a logarithmic Morrey-type decay for the L2-norm of certain nonlinear functions
of the gradient, eventually implying C1-regularity of minima. The second one is
based on a quantitative version of Gehring–Giaquinta and Modica lemma [37,39],
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applied to the differentiated Euler-Lagrange system after bounding the ellipticity
ratio via a power of the L∞-norm of the gradient, so that it becomes uniformly
elliptic—constants are then carefully tracked at each stage of the proof. Both our
arguments are inspired by the principle that a suitable control on the rate of blow up
of the ellipticity ratio associated to nonuniformly elliptic functionals gives access
to a technical toolbox that has classically been employed in the Lipschitz regularity
theory for uniformly elliptic structures, such as De Giorgi’s level sets technique
[5,8,24–26], homogenized Moser’s iteration [23] and now monotonicity formula
and Gehring–Giaquinta and Modica lemma. Notice that after minor modifications,
Theorem 1.4 embraces also genuine (p, q)-nonuniformly elliptic integrals, cf. Re-
mark 5.3 below.

Outline of the paper In Sect. 2 we describe our notation and collect a number
of auxiliary results that will be helpful at various stages of the paper. In Sect. 3 we
derive several important consequences of our Legendre (p, q)-growth via convex
duality arguments, and provide examples of integrands satisfying it, notably in the
form of even, convex polynomials. In Sect. 4 we establish higher differentiability
and higher integrability results for a suitable nonlinear function of the gradient
of minima, and of the related stress tensor. Section 5 contains the proof of full
regularity in the two-dimensional case, while finally Sect. 6 contains the proof of
Lipschitz regularity in the scalar setting.

2. Preliminaries

In this sectionwedisplay our notation, describe themain assumptions governing
the functionalF , and collect some basic results that will be helpful throughout the
paper.

2.1. Notation

In this paper,� ⊂ R
n , n ≥ 2, will always be an open domain. We denote by c a

general constant larger than one, possibly depending on various parameters related
to the problem under investigation. We will still denote by c distinct occurrences
of the constant c from line to line. Specific instances will be marked with symbols
c∗, c̃ or the like. Significant dependencies on certain parameters will be outlined by
putting them inparentheses, i.e. c ≡ c(n, p)means that c dependsonn and p. Some-
times we shall employ symbols "�", "≈" or "�" to indicate that an inequality holds
up to multiplicative constants depending on basic parameters governing our prob-
lem. By Br (x0) := {x ∈ R

n : |x− x0| < r}we indicate the open ball with center in
x0 and radius r > 0, while Qr (x0) :=

{
x ∈ R

n : maxi∈{1,··· ,n}|xi − x0;i | < r
}
de-

notes the open cubewith half-side length equal to r -when clear from the context,we
shall avoid specifying radius or center, i.e., B ≡ Br ≡ Br (x0), Q ≡ Qr ≡ Qr (x0);
this happens in particular with concentric balls or concentric cubes. In particular,
with B being a given ball with radius r and γ being a positive number, we denote
by γ B the concentric ball with radius γr and by B/γ := (1/γ )B. For a number
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t ∈ [1,∞], its conjugate exponent t ′ ∈ [1,∞] is defined as t ′ := (1 − 1/t)−1
if t > 1, t ′ := ∞ if t = 1, and t ′ = 1 if t = ∞, while, given n ∈ N, its n-
dimensional Sobolev exponent, and its n-dimensional "lower" Sobolev exponent
are given by t∗n := nt/(n − t) if 1 ≤ t < n and t∗n := any number larger than t
if t ≥ n, and t∗;n := max{1,nt/(n + t)} respectively - here, n will be either
chosen as n = n or n = n − 1. Moreover, if A ⊂ R

n is a measurable set with
bounded positive Lebesgue measure |A| ∈ (0,∞), and g : A → R

d , d ≥ 1, is
a measurable map, we set (g)A ≡ −

∫
A g(x)dx := |A|−1

∫
A g(x)dx to indicate its

integral average, while if g ∈ Lγ (B,Rd) for some γ > 1, we shorten its averaged
norm as ‖g‖Lγ (B) :=

(−∫B |g|γ dx
)1/γ . Furthermore, with z ∈ R

k , and μ ≥ 0, we
set �μ(z) := (μ2 + |z|2)1/2. Finally, if t is any parameter, we indicate by o(t) a
quantity that is infinitesimal as t → 0 or t →∞.

2.2. Structural Assumptions

Throughout the paper, F : RN×n → R, n ≥ 2, N ≥ 1, is an autonomous
integrand satisfying⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F is C2(RN×n),

L−1�μ(z)p ≤ F(z) ≤ L�μ(z)p + L�μ(z)q ,

L−1�μ(z)p−2|ξ |2 ≤ 〈F ′′(z)ξ, ξ 〉, |F ′′(z)| ≤ L

(
1+ |F ′(z)| q−2q−1

)
,

(2.1)

for all z, ξ ∈ R
N×n , some absolute constants L > 1, μ ∈ [0, 1], and exponents

(p, q) satisfying (1.12). If μ = 0 in (2.1), we need to prescribe a (rather natural,
see Section 3 below) limitation on the rate of blow up of the ellipticity ratio:

|F ′′(z)|
|z|p−2 ≤ L0 + L0|F ′(z)|

q−p
q−1 for all z ∈ R

N×n, (2.2)

where L0 > 1 is an absolute constant. Moreover, (2.1)3 assures the strict convexity
of F , and, combined with (2.1)2 guarantees also that

|F ′(z)| ≤ c�μ(z)p−1 + c�μ(z)q−1

�⇒ �μ(z) ≥
{
c|F ′(z)| 1

p−1 if 0 ≤ �μ(z) ≤ 1

c|F ′(z)| 1
q−1 if �μ(z) > 1,

(2.3)

for c ≡ c(L , p, q), see [61, Lemma 2.1]. Let us point out that in the nondegenerate
case μ > 0 in (2.1), the constraint in (2.2) comes as a consequence of (2.1)3 and
(2.3) up to constants depending on (L , p, q, μ), so overall,

|F ′′(z)|
�μ(z)p−2

≤ Lμ + Lμ|F ′(z)|
q−p
q−1 , (2.4)

with Lμ ≡ L0 if μ = 0 and Lμ = μ2−pc(L , p, q) if μ > 0 - in other words,
thanks to (2.2) the dependency on μ occurs only if μ > 0.



69 Page 10 of 51 Arch. Rational Mech. Anal. (2024) 248:69

Remark 2.1. Assumption (2.2) deserves some comment in relation to (2.1)3 and to
(2.4), where a dependency on μ appears in the constants. The restriction in (2.2)
is needed for general degenerate integrands to control the rate of blow up of the
ellipticity ratio, i.e., μ = 0 in (2.1)3, while if μ > 0 it is not needed at all as
the amount of information contained in (2.1)3 suffices to derive the bound in (2.4)
(with explicit dependency on μ). This seems to be unavoidable, given the strong
inhomogeneity displayed in the growth of F ′′, cf. (2.1)3. On the other hand, if more
homogeneous growth conditions are imposed on F ′′, like those usually appearing in
the literature on (p, q)-nonuniformly elliptic problems [5,8,23,24,26], prescribing

that |F ′′(z)| ≤ L�μ(z)p−2+ L�μ(F ′(z))
q−2
q−1 replaces the right-hand side of (2.1)3,

then (2.2) can be discarded and no dependency on μ appears in (2.4).

Remark 2.2. If p = q our results are classical, see [14,41] and references therein,
so given that our approach is of interpolative nature, to avoid trivialities throughout
the paper we shall permanently work assuming the strict inequality p < q.

2.3. Functional Analytical Tools for Degenerate Problems

The vector field Vμ,γ : RN×n → R
N×n , defined as

Vμ,γ (z) := (μ2 + |z|2) γ−2
4 z, γ ∈ (1,∞), μ ∈ [0, 1], (2.5)

for all z ∈ R
N×n , which encodes the scaling features of the p-Laplace operator, is

a useful tool to handle singular or degenerate problems. A couple of helpful related
equivalences are the following:
⎧⎨
⎩

|Vμ,γ (z1)− Vμ,γ (z2)| ≈ (μ2 + |z1|2 + |z2|2)(γ−2)/4|z1 − z2|∫ 1
0 (μ2 + |z2 + λ(z1 − z2)|2) γ−2

2 dλ ≈ (μ2 + |z1|2 + |z2|2) γ−2
2

‖Vμ,γ (w)− (Vμ,γ (w))A‖Lp(A) ≈ ‖Vμ,γ (w)− Vμ,γ ((w)A)‖Lp(A),

(2.6)

holding for any 1 < p <∞, z1, z2 ∈ R
N×n , all measurable subsets A ⊂ R

n (resp.
A ⊂ R

n−1) with positive, finite n-dimensional Lebesgue measure (resp. (n − 1)-
dimensional Hausdorff measure), functions w ∈ Lpγ /2(A,RN×n), up to constants
depending only on (n, N , γ, p), cf. [45, Section 2], and [40, (2.6)]. Let us also
recall Sobolev embedding theorem and Sobolev–Poincaré inequalities on spheres,
cf. [6, Section 3].

Lemma 2.3. Let ∂B	(x0) be an (n − 1)-dimensional sphere with n ≥ 2, k ∈ N be
a number, and w ∈W1,1(∂B	(x0),Rk) be a function. Then

• if w ∈W1,2(∂B	(x0),Rk), then

‖w − (w)∂B	(x0)‖L2∗n−1 (∂B	(x0))
≤ c	‖∇w‖L2(∂B	(x0)), (2.7)

with c ≡ c(n, k);
• if w ∈W1,p(∂B	(x0),Rk) for some 1 < p <∞, then

‖w‖Lp(∂B	(x0)) ≤ c	‖∇w‖Lp∗;n−1 (∂B	(x0)) + c‖w‖Lp∗;n−1 (∂B	(x0)), (2.8)

for c ≡ c(n, p, k).
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We will also need an "unbalanced" version of Poincaré inequality, [6, Section 3].

Lemma 2.4. Let B	(x0) ⊂ R
n, n ≥ 2, be a ball, σ > 0 a number, and w ∈

W1,2(B	(x0)) be any function. Then

‖w‖L2(B	(x0)) ≤ c	‖∇w‖L2(B	(x0)) + c‖|w|σ‖
1
σ

L1(B	(x0))
, (2.9)

with c ≡ c(n, σ ).

We further record classical Sobolev–Morrey embedding theoremwith sharp bound-
ing constant, obtained by applying [18, Theorem 1.1] componentwise.

Proposition 2.5. Letw ∈ W 1,p(Rn,Rk)with p > n ≥ 2, k ≥ 1 be a function such
that | supp(w)| <∞. Then

‖w‖L∞(Rn) ≤ k1/2n−1/pω−1/nn

(
p − 1

p − n

)1/p′

| supp(w)| 1n− 1
p ‖∇w‖L p(Rn).

We conclude this section with the "simple but fundamental" iteration lemma, [41,
Chapter 6].

Lemma 2.6. Let h : [	0, 	1] → R be a non-negative and bounded function, and
let θ ∈ (0, 1), A, B, γ1, γ2 ≥ 0 be numbers. Assume that h(t) ≤ θh(s) + A(s −
t)−γ1 + B(s − t)−γ2 holds for all 	0 ≤ t < s ≤ 	1. Then the following inequality
holds h(	0) ≤ c(θ, γ1, γ2)[A(	1 − 	0)

−γ1 + B(	1 − 	0)
−γ2 ].

3. Growth Conditions and Convex Duality

In this sectionwe recall certain elementary notions fromconvex analysis [29,47,
48,71], and derive important consequences of the structural assumptions (2.1). We
start by recording somebasic facts on convex functions. TheFenchel conjugate of an
integrand F : RN×n → R is defined as the extended real-valued integrandRN×n �
ξ �→ F∗(ξ) := supz∈RN×n (〈z, ξ 〉 − F(z)) . Recall that the Fenchel conjugate
F∗ is real-valued precisely when F is super-linear at infinity, so precisely when
F(z)/|z| → ∞ as |z| → ∞. In fact there is perfect symmetry here. Recall that
the convex and lower semicontinuous envelope of F coincides with the double
Fenchel conjugate F∗∗ ≡ (F∗)∗, and so, when F is convex, it is real-valued and
super-linear precisely when its Fenchel conjugate F∗ is so. For later reference, we
also recall the Fenchel-Young inequality stating that

F(z)+ F∗(ξ) ≥ 〈z, ξ 〉 (3.1)

holds for all z, ξ ∈ R
N×n . It is a direct consequence of the definition of Fenchel

conjugation and it holds for any proper integrand F . Equality in (3.1) holds precisely
when ξ ∈ ∂F(z), the subdifferential of F at z. In particular, we emphasize that if
F is C1-regular, equality holds precisely when F is convex at z and ξ = F ′(z). It
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is worth highlighting that if F satisfies the (p, q)-growth conditions (2.1)2, these
are transformed under Fenchel conjugation into

1

c
|ξ |q ′ − c ≤ F∗(ξ) ≤ c|ξ |p′ + c, (3.2)

for some c ≡ c(L , p, q) ≥ 1, , cf. [17, Section 2] for more details. Let us point
out that the integrand F is super-linear, strictly convex and C1-regular precisely
when its Fenchel conjugate F∗ is so. In this case we also have that both derivatives
are homeomorphisms of RN×n and that (F∗)′ = (F ′)−1. Let us record one of the
implications, namely that when F is real-valued, super-linear, strictly convex and
C1-regular, then so is F∗ and

(F∗)′(F ′(z)) = z and F ′((F∗)′(ξ)) = ξ for all z, ξ ∈ R
N×n . (3.3)

We further record the duality relations that exist between strict convexity and
smoothness for an integrand and its Fenchel conjugate.

Lemma 3.1. Let F : RN×n → R∪{∞} be a convex and proper integrand. Then F
is real-valued, super-linear and strictly convex if and only if its Fenchel conjugate
F∗ is real-valued, super-linear and C1-regular.

The following well-known result [48, Corollary 4.2.10] and its consequences play
an important role in this paper.

Lemma 3.2. Let F ∈ C1(RN×n) be super-linear and strictly convex. If F ∈
C2(Br (z0)) for some ball Br (z0) ⊂ R

N×n, and det(F ′′(z)) �= 0 for all z ∈ Br (z0),
then the Fenchel conjugate F∗ is super-linear, strictly convex and C1-regular. In
addition, F∗ ∈ C2(F ′(Br (z0))) with (F∗)′′(F ′(z)) = F ′′(z)−1 for all z ∈ Br (z0).

We now turn our attention to the growth/ellipticity condition (2.1)3, that is a quan-
titative form of Legendreness for real-valued C2-regular integrands. Recall indeed
that Rockafellar in [71, Chapt. V] highlighted a special class of convex functions,
called there functions of Legendre type, for their useful features in optimization
theory. In the context considered in this paper, these are the integrands that, together
with their Fenchel conjugates, are real-valued and strictly convex. Here it is clear
that the lower bound in (2.1)3 quantifies the strict convexity of F , whereas the upper
bound quantifies the strict convexity of F∗ as we specify below.

Lemma 3.3. Let F ∈ C2(RN×n) be an integrand satisfying the Legendre (p, q)-
growth condition (2.1)3 for exponents 2 ≤ p ≤ q < ∞. Then F∗ ∈ C1(RN×n) ∩
C2(RN×n \ {F ′(0)}) and

1

2L
�1(F

′(z))q ′−2|ξ |2 ≤ 〈(F∗)′′(F ′(z))ξ, ξ 〉 ≤ L�μ(z)2−p|ξ |2 (3.4)

for all z ∈ R
N×n \ {0}, ξ ∈ R

N×n. If μ > 0 in (2.1)3, then F∗ is C2-regular and
(3.4) holds for all z ∈ R

N×n, ξ ∈ R
N×n.
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Proof. The lower bound in (2.1)3 implies in a routine manner that F is strictly
convex and super-linear, and it also guarantees that the Hessian matrix F ′′(z) is
invertible for all z ∈ R

N×n \ {0}. We can now infer from Lemma 3.2 that F∗ is C2-
regular away from F ′(0) and that (F∗)′′(F ′(z)) = F ′′(z)−1 for all z ∈ R

N×n \ {0}.
In order to derive the double bound (3.4) we note that (2.1)3 yields that all the
eigenvalues of F ′′(z) belong to the interval[

L−1�μ(z)p−2, L
(
1+ |F ′(z)| q−2q−1

)]
,

and given that the eigenvalues of (F∗)′′(F ′(z)) = F ′′(z)−1 are their reciprocals,
they must all belong to the interval[

1

2L
�1(F

′(z))
2−q
q−1 , L�μ(z)2−p

]
.

Since (2− q)/(q − 1) = q ′ − 2 this concludes the proof of (3.4). The final claim
follows easily from the same considerations, and Lemma 3.2. ��
We conclude this part with a monotonicity property that follows from the Legendre
(p, q)-growth condition (2.1)3. While this type of result is probably not surprising
to the experts, we are not aware of any record of it in the literature. It is instrumental
for the approach of this paper and we remark that it allows us to use the full power
of convex duality without having to go through the dual variational problem [50].

Corollary 3.4. Let F ∈ C2(RN×n) be an integrand that satisfies the Legendre
(p, q)-growth condition (2.1)3. Then the monotonicity inequalities⎧⎪⎨

⎪⎩
〈F ′(z1)− F ′(z2), z1 − z2〉
≥ c|Vμ,p(z1)− Vμ,p(z2)|2 + c|V1,q ′(F ′(z1))− V1,q ′(F ′(z2))|2
F(z)− F(0)− 〈F ′(0), z〉 ≥ c|Vμ,p(z)|2 + c|V1,q ′(F ′(z)− F ′(0))|2

(3.5)

hold for all z, z1, z2 ∈ R
N×n, with c ≡ c(L , p, q). Moreover, given any R

N×n-
valued, differentiable function w defined on an open set � ⊂ R

n, it holds that
n∑

s=1
〈F ′′(w)∂sw, ∂sw〉 ≥ c|∇Vμ,p(w)|2 + c|∇V1,q ′(F ′(w))|2, (3.6)

for all s ∈ {1, · · · , n}, and some c ≡ c(L , p, q).

Proof. If μ ∈ (0, 1] in (2.1)3, inequality (3.5)1 comes as a direct consequence of
Lemma 3.3 and (2.6)1,2, with the stated dependency of the constant c. In fact, letting
ξ1 := F ′(z1), ξ2 := F ′(z2), we rewrite

〈F ′(z1)− F ′(z2), z1 − z2〉 (3.3)= 〈ξ1 − ξ2, (F
∗)′(ξ1)− (F∗)′(ξ2)〉

=
〈(∫ 1

0
(F∗)′′(ξ2 + λ(ξ1 − ξ2)) dλ

)
(ξ1 − ξ2), ξ1 − ξ2

〉

(3.4)≥ 1

2L

(∫ 1

0
�1(ξ2 + λ(ξ1 − ξ2))

q ′−2 dλ
)
|ξ1 − ξ2|2

(2.6)1,2≥ c|V1,q ′(ξ1)− V1,q ′(ξ2)|2
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for c ≡ c(L , p, q) which, together with the lower bound in (2.1)3, yields (3.5)1.
On the other hand, if μ = 0 we apply Lemma 3.3 and (2.6)1,2 to derive (3.5)1
for all z1, z2 ∈ R

N×n such that zero does not belong to the closed segment with
endpoints z1, z2. Because the terms on the two sides of (3.5)1 are continuous in
z1, z2 we obtain the general case by approximation. The bound in (3.5)2 comes as
a straightforward consequence of (3.1) and Lemma 3.3. Indeed, observe that up to
replacing2 F(z) by F(z) − F(0) − 〈F ′(0), z〉 for all z ∈ R

N×n , we can assume
that F(0) = 0, and F ′(0) = 0, observe that this and the definition of F∗ imply that
F∗(0) = 0, set ξ := F ′(z) and bound

F(z)
(3.1),(3.3)≥ 〈ξ, (F∗)′(ξ)〉 − F∗(ξ)

F∗(0)=0=
∫ 1

0
〈(F∗)′(ξ)− (F∗)′(λξ), ξ〉 dλ

=
∫ 1

0

∫ 1

0
(1− λ)〈(F∗)′′(λξ + t (1− λ)ξ)ξ, ξ〉 dt dλ

(3.4)≥ 1

2L

(∫ 1

0

∫ 1

0
(1− λ)�1(λξ + t (1− λ)ξ)q

′−2 dt dλ
)
|ξ |2

q ′<2≥ c�1(ξ)q
′−2|ξ |2 (2.5)≥ c|V1,q ′(ξ)|2,

with c ≡ c(L , q), and (3.5)2 follows including also the p-ellipticity information
from (2.1)3. Finally, (3.6) is a direct consequence of (3.51) and standard difference
quotients arguments. ��

As a direct consequence of Corollary 3.4, we deduce Lq ′ -integrability of the
stress tensor for any function having F locally finite.

Corollary 3.5. Let B � � be any ball with radius smaller than one, and v ∈
W1,p(B,RN ) be a function such thatF (v; B) <∞. Then F ′(∇v) ∈ Lq ′(B;RN )

with

‖F ′(∇v)‖q ′
Lq′ (B)

≤ cF (v; B)+ c, (3.7)

with c ≡ c(n, L , p, q).

Proof. A direct computation gives

|F ′(∇v)|q ′ (2.3)≤ c + c|F ′(∇v)− F ′(0)|q ′ (2.5)≤ c + |V1,q ′(F ′(∇v)− F ′(0))|2
(3.5)2≤ c + c

(
F(∇v)− F(0)− 〈F ′(0),∇v〉)

(2.3)≤ cF(∇v)+ c|∇v|p + c
(2.1)2≤ cF(∇v)+ c,

where we also used Young inequality with conjugate exponents (p, p′), and it is
c ≡ c(L , p, q). Integrating the content of the previous display on B we obtain
(3.7), and the proof is complete. ��

2 Here we are subtracting a null Lagrangian from the convex integrand F , so this does not
affect variational problem (1.1).
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3.1. Convex Polynomials

In this section we prove that for a reasonably large class of integrands, the usual
natural growth conditions and the quantified Legendre one actually coincide. In
this respect, let us first point out that a straightforward consequence of (2.3), and
(2.1)3 yield

|F ′′(z)| ≤ c�1(z)
q−2, (3.8)

for all z ∈ R
N×n , and some positive c ≡ c(L , q), that is the (q − 2)-growth of F ′′

available in the controlled (p, q)-growth case. It is easy to see that the converse
is false, that is, the condition on the right-hand side of (2.1)3 is strictly stronger
than (3.8) when q > 2. However, if we restrict our attention to a special family
of polynomials we can show that the two growth conditions actually coincide. To
this aim, let us recall that, given a number d ∈ N, for our purposes a polynomial
of degree d is a smooth real-valued function P : RN×n → R that coincides with
its Taylor expansion of order d. For convenience, we shall group by homogeneity
the various terms appearing in the polynomial, thus ultimately expressing it as the
sum of homogeneous components:

P(z) :=
d∑

s=0
Ps(z) =

d∑
s=0

1

s!
P(s)(0)[�s z], (3.9)

for all z ∈ R
N×n , where we used the definition of polynomial to explicitly identify

Ps , that from now on, will be referred to as homogeneous components of the
polynomial. We are mostly interested in convex, even polynomials, resulting as the
sumof nonnegative homogeneous components. In particular, the evenness condition
implies that the polynomial has even degree 2d, and in (3.9) only 2s-homogeneous
terms appear. Before proving that convex, even polynomials of degree 2d verify the
quantified Legendre growth in (2.1)3 with q = 2d, let us recall the Euler relation for
homogeneous functions: whenever g ∈ C1(RN×n) is positively κ-homogeneous
for some κ > 1, then

κg(z) = 〈g′(z), z〉 for all z ∈ R
N×n . (3.10)

Next, a technical lemma.

Lemma 3.6. Let Q, H ∈ C1(RN×n) be functions such that H is convex, even, and
s-homogeneous for some s ≥ 2, and 〈Q′(z), z〉 ≥ 0 for all z ∈ R

N×n. Then there
exists δ ≡ δ(H, s) ∈ [0, 1), depending only on the structure of H such that

〈Q′(z), H ′(z)〉 ≥ −δ|Q′(z)||H ′(z)| for all z ∈ R
N×n . (3.11)

Proof. Without loss of generality we can assume that H is not identically 0. Con-
vexity and s-homogeneity assure that H(z) ≥ 0 for all z ∈ R

N×n . Moreover, as
H1/s is convex, 1-homogeneous and nonnegative cf. [71, Corollary 15.3.2], it is
the support function of some compact, convex, symmetric set K ⊂ R

N×n , i.e.,
H(z) = (supξ∈K ξ · z)s for all z ∈ R

N×n . We then set V := span(K ), decompose
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R
N×n = V ⊕ V

⊥, and accordingly split RN×n � z = z1 + z2 ∈ V ⊕ V
⊥, so

that H(z) ≡ H(z1), H ′(z) ≡ H ′(z1) for all z ∈ R
N×n . Being K symmetric, zero

belongs to the relative interior of K , and as H is not identically 0 there exists a
positive radius σH > 0 such that B̄σH (0) ∩ V ⊂ K and

inf
ω∈∂BσH (0)

H(ω) > 0
(3.10)�⇒ inf

ω∈∂BσH (0)
|H ′(ω)| > 0. (3.12)

Back to (3.11), if z ∈ V
⊥ there is nothing to prove as H ′(z) = 0, so for the rest of

the proof wewill take z ∈ V\{0}. We then decompose H ′ and Q′ in an orthonormal
fashion along z - for G ∈ {H, Q} we have:

G ′(z) = 〈G
′(z), z〉z
|z|2 +

(
G ′(z)− 〈G

′(z), z〉z
|z|2

)
=: 〈G

′(z), z〉z
|z|2 + EG(z).

A direct computation then shows that

〈H ′(z), Q′(z)〉 = 〈H
′(z), z〉〈Q′(z), z〉

|z|2 + 〈EH (z), EQ(z)〉
(3.10)= sH(z)〈Q′(z), z〉

|z|2 + 〈EH (z), EQ(z)〉
〈Q′(z),z〉≥0≥ 〈EH (z), EQ(z)〉 ≥ −|EH (z)||Q′(z)|.

Now, if |EH (z)| = 0 there is nothing to prove, otherwise by homogeneitywe bound

0 < |EH (z)|2 = |H ′(z)|2 − 〈H
′(z), z〉2
|z|2

(3.10)= |H ′(z)|2 − s2H(z)2

|z|2

= |H ′(z)|2
(
1− s2H(σH z/|z|)2

σ 2
H |H ′(σH z/|z|)|2

)
(3.12)≤ |H ′(z)|2

·
(
1− inf

ω∈∂BσH (0)∩V
s2H(ω)2

σ 2
H |H ′(ω)|2

)
=: |H ′(z)|2δ2,

where we used that by continuity (H ∈ C1(RN×n)) and thanks to (3.12), the
infimum of H/|H ′| taken over ∂BσH (0) ∩ V is strictly positive, thus δ ∈ [0, 1). ��
Now we are ready to state the main result of this section.

Proposition 3.7. Let d ∈ N, and P be an even, convex polynomial of degree 2d
with nonnegative homogeneous components. Then for each i ∈ {0, . . . , 2d − 2},
there exists c ≡ c(n, N , P,d) > 0 such that

|P(i+2)(z)| ≤ c
(
1+ |P ′(z)| 2d−2−i2d−1

)
for all z ∈ R

N×n . (3.13)

Proof. The proof relies on an induction argument on the degree of the polynomial.
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Base step: d = 1

Recalling that P is even, by definition we have P(z) = P(0)+2−1〈P ′′(0)z, z〉,
with P ′′(0) being positive semi-definite, and in particular not identically zero.
Therefore we trivially have |P ′′(z)| = |P ′′(0)| ≤ |P ′′(0)|(1 + |P ′(z)|0), that is
(3.13) with d = 1, and c0 := |P ′′(0)| > 0.

Inductive Step

Assume now that (3.13) holds for all polynomials of degree 2 j whenever 1 ≤
j ≤ d, and let P : RN×n → R be a convex, even polynomial of degree 2d + 2,
meaning in particular that P(2d+2)(0) �≡ 0, and the (2d+ 2)-homogeneous part of
P is given by

R
N×n � z �→ H(z) := 1

(2d+ 2)!
P(2d+2)(0)[�2d+2z],

so that P = Q + H , where Q : RN×n → R is an even polynomial of degree
2d̃ ≤ 2d. By homogeneity we have

P(t z)

t2d+2
→ H(z) as t →∞,

pointwise in z ∈ R
N×n , thus H is convex. But then z �→ H1/(2d+2)(z) is convex,

1-homogeneous, and nonnegative, see [71, Corollary 15.3.2], so it must be the
support function for a compact and convex subset K ⊂ R

N×n , i.e.:

H(z)1/(2d+2) = sup
ξ∈K
〈ξ, z〉 for all z ∈ R

N×n . (3.14)

Since any nonempty, convex, closed set is uniquely determined by its support
function, and H �≡ 0, then K is symmetric, thus 0 belongs to the relative inte-
rior of K . Set V := span(K ), and let σP > 0 be the largest number such that
B̄σP (0)∩V ⊂ K - σP is positive as 0 is in the relative interior of K . After splitting
z = z1+ z2 ∈ V⊗V

⊥, the formulation of H as the support function of K in (3.14)
yields that H (i+2)(z) ≡ H (i+2)(z1) for all i ∈ {0, · · · , 2d}, so we bound

(2d+ 2)

( |z1|
σP

)2d+2
inf

ω∈∂BσP (0)∩V H(ω) ≤ (2d+ 2)H(z1)

(3.10)= 〈H ′(z1), z1〉 ≤ |H ′(z1)||z1|
≤ |z1|

2d+2

σ 2d+1
P

sup
ω∈∂BσP (0)∩V

|H ′(ω)|,

so for some c ≡ c(n, N , P,d) ≥ 1 it is

c−1|z1|2d+1 ≤ |H ′(z1)| ≤ c|z1|2d+1, (3.15)
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where we used the (2d + 1)-homogeneity of H ′. The very definition of H now
yields, for i ∈ {0, . . . , 2d},

|H (i+2)(z1)| ≤ c|z1|2d−i
(3.15)≤ c|H ′(z1)| 2d−i2d+1 , (3.16)

with c ≡ c(n, N , P,d). We then jump back to the decomposition P = Q + H .
Recalling that H ≡ H(z1), on V

⊥ it is P = Q, so Q|V⊥ is an even, convex
polynomial of degree 2d̃ ≤ 2d. In particular, by the induction hypothesis we have

|Q(i+2)(z2)|≤c
(
1+|Q′(z2)|

2d̃−2−i
2d̃−1

)
for all z2 ∈ V

⊥, i ∈{0, · · · , 2d̃− 2}.
(3.17)

Next, Taylor-expanding about z2, we obtain

|P(2+i)(z)| ≤ |Q(2+i)(z1 + z2)| + |H (2+i)(z1)|

≤
∣∣∣∣∣∣
2d̃−2−i∑
s=0

1

s!
Q(2+i+s)(z2)[�s z1]

∣∣∣∣∣∣+ |H
(2+i)(z1)|

≤ c
2d̃−2−i∑
s=1

1

s!
|Q(2+i+s)(z2)||z1|s + c|Q(2+i)(z2)| + c|H (2+i)(z1)|

≤ c
2d̃−2−i∑
s=1

|Q(2+i+s)(z2)| 2d−i
2d−i−s + c|z1|2d−i + |Q(2+i)(z2)| + |H (2+i)(z1)|

(3.16),(3.17)≤ c
2d̃−2−i∑
s=0

(
1+ |Q′(z2)|

(2d̃−s−i−2)(2d−i)
(2d̃−1)(2d−i−s)

)
+ c|H ′(z1)| 2d−i2d+1

≤ c
(
1+ |Q′(z2)| 2d−i2d+1

)
+ c|H ′(z1)| 2d−i2d+1 , (3.18)

where c ≡ c(n, N , P,d) and we used Young inequality with conjugate exponents(
2d−i

2d−i−s ,
2d−i
s

)
, and observed that for s ≥ 0 and i ≥ −1, it is

2d̃− s − i − 2

2d− i − s
≤ 2d̃− 1

2d+ 1
. (3.19)

Via Taylor expansion, we further estimate

|Q′(z2)− Q′(z1 + z2)| ≤ c
2d̃−1∑
s=1
|Q(1+s)(z2)||z1|s

≤ c
2d̃−1∑
s=1

(
ε|Q(1+s)(z2)| 2d+1

2d+1−s + 1

ε
2d+1−s

s

|z1|2d+1
)

(3.17)≤ cε
2d̃−1∑
s=1

(
1+ |Q′(z2)|

2d̃−1−s
2d̃−1

) 2d+1
2d+1−s + c

ε2d
|z1|2d+1

(3.19)i=−1≤ cε
(
1+ |Q′(z2)|

)+ c

ε2d
|z1|2d+1,
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for c ≡ c(n, N , P,d) - here we used Young inequality with conjugate exponents(
2d+1

2d+1−s ,
2d+1
s

)
. The content of the previous display then gives

|Q′(z2)| ≤ cε
(
1+ |Q′(z2)|

)+ |Q′(z)| + c

ε2d
|z1|2d+1

(3.15)≤ cε
(
1+ |Q′(z2)|

)+ |Q′(z)| + c

ε2d
|H ′(z1)|,

so choosing ε ≡ ε(n, N , P,d) ∈ (0, 1) sufficiently small we end up with

|Q′(z2)| ≤ c(1+ |Q′(z)|)+ c|H ′(z1)|, (3.20)

for c ≡ c(n, N , P,d). Merging estimates (3.18) and (3.20) we eventually get

|P(2+i)(z)| ≤ c
(
1+ |Q′(z)|2 + |H ′(z)|2

) 2d−i
2(2d+1)

,

with c ≡ c(n, N , P,d). Finally, recalling that Q is (at most) the sum of 2s-
homogeneous terms of P with s ∈ {0, · · · ,d}, i.e.:

Q(z) = P(z)− H(z) =
2d∑
s=0

Ps(z), P2s+1 ≡ 0 for all s ∈ {0, · · · ,d− 1},

the nonnegativity of the Ps’s imply

〈P ′s(z), z〉 (3.10)= sPs(z) ≥ 0 �⇒ 〈Q′(z), z〉 ≥ 0.

Keeping in mind that H is convex, even and (2d+2)-homogeneous, by Lemma 3.6
we find δ ≡ δ(n, N , P,d) ∈ [0, 1) such that

(1− δ)(|Q′(z)|2 + |H ′(z)|2) ≤ |Q′(z)|2 + |H ′(z)|2 − 2δ|Q′(z)||H ′(z)|
(3.11)≤ |Q′(z)+ H ′(z)|2 = |P ′(z)|2.

Combining the last four displays we end up with (3.13)d+1 and the proof is com-
plete. ��

As a direct consequence of Lemma 3.6 and Proposition 3.7 we can show that
whenever a convex, even, positively s-homogeneous function is added to an in-
tegrand satisfying Legendre (p, q)-growth conditions, the sum verifies Legendre
(p,max(s, q))-growth conditions.

Corollary 3.8. Let Q, H ∈ C2(RN×n) be functions such that Q satisfies (2.1)3, for
some exponents 2 ≤ p ≤ q, and H is convex, even, and s-homogeneous for some
s ≥ 2. Then the sum Q + H satisfies (p,max{q, s})-Legendre growth conditions.
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Proof. The lower bound in (2.1)3 is preserved by the sum Q + H as Q satisfies
(2.1)3, and H is convex. Concerning the upper bound, if z = 0, there is nothing
to prove, otherwise, being H convex, s-homogeneous (s ≥ 2), and even, we can
repeat verbatim the construction detailed in the "Inductive step" of the proof of
Proposition 3.7 up to (3.15) to decomposeRN×n = V⊕V⊥, so that onV the double
bound in (3.15) holds true for the map H . SplittingRN×n � z = z1+ z2 ∈ V⊕V

⊥,
we control

|Q′′(z)+ H ′′(z)| (2.1)3,(3.14)≤ c

(
1+ |Q′(z)| q−2q−1

)
+ |z1|s−2

∣∣H ′′ (z1/|z1|)∣∣
(3.15)≤ c

(
1+ |Q′(z)| q−2q−1

)
+ c|H ′(z1)| s−2s−1

≤ c
(
1+ |Q′(z)|2 + |H ′(z)|2

) max{s,q}−2
2(max{s,q}−1)

(3.11)≤ c

(
1+ |Q′(z)+ H ′(z)|max{s,q}−2

max{s,q}−1
)

,

with c ≡ c(n, N , L , p, q, s, H). ��
Next, we focus on those convex, even polynomials that are strongly p-elliptic in
the sense of (2.1)3 (left-hand side), and show that in the degenerate case p > 2,
μ = 0, the bound in (2.2) holds true.

Corollary 3.9. Let d0,d ∈ N, be such that 2 < 2d0 < 2d, and let P be an even,
convex polynomial of degree 2d with nonnegative homogeneous components Ps
such that Ps ≡ 0 for all s ∈ {1, · · · , 2(d0−1)}. Then (2.2) is verified with q = 2d,
for all 2 < p ≤ 2d0, that is,

|P ′′(z)|
|z|p−2 ≤ c

(
1+ |P ′(z)| 2d−p

2d−1
)

for all z ∈ R
N×n \ {0}, (3.21)

with c ≡ c(n, N , p,d, P).

Proof. By definition3 of P ,

|P ′′(z)| ≤
2d∑

s=2d0
|P ′′s (z)|

≤
d∑

s=d0
|z|2s−2 ∣∣P ′′2s (z/|z|)∣∣ ≤ c

d∑
s=d0
|z|2s−2, (3.22)

with c ≡ c(P,d). Now, keeping in mind that 2 < p ≤ 2d0, if |z| ∈ (0, 1) we
bound

|P ′′(z)|
|z|p−2

(3.22)≤ c
d∑

s=d0
|z|2s−p |z|≤1≤ c,

3 By evenness all the homogeneous components of P of odd degree vanish.
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for c ≡ c(P, p,d). We next observe that, whenever |z| ≥ 1, the (2s − 1)-
homogeneity of P ′2s gives

|P ′(z)| ≤
2d∑

s=2d0
|P ′s(z)| ≤

d∑
s=d0
|z|2s−1 ∣∣P ′2s (z/|z|)∣∣ ≤ c

d∑
s=d0
|z|2s−1|z|≥1≤ c|z|2d−1,

(3.23)

for c ≡ c(P,d), so we estimate

|P ′′(z)|
|z|p−2

(3.13)≤ c

|z|p−2
(
1+ |P ′(z)| 2d−22d−1

)

|z|≥1≤ c + c|P ′(z)| 2d−22d−1

|z|p−2
(3.23)≤ c

(
1+ |P ′(z)| 2d−p

2d−1
)

,

with c ≡ c(P, p,d), and the proof is complete. ��
Remark 3.10. Thanks to Corollary 3.8, we immediately see that the class of inte-
grands featuring Legendre (p, q)-growth conditions embraces the anisotropic poly-
nomial examples introduced by Marcellini in [61]. In fact, repeated applications of
Corollary 3.8 to the integrand in (1.6)–(1.8) yield that P satisfies (p, qn)-Legendre
growth conditions, and the prototypical examples of integrands with (p, q)-growth
are covered.

3.2. An Abstraction of the Quantified Legendre Condition

Let F , G : RN×n → R be two strictly convex, C1 integrands that are super-
linear, i.e.:

F(z)

|z| → ∞ and
G(z)

|z| → ∞ as |z| → ∞.

Consequently also the Fenchel conjugates F∗ and G∗ are strictly convex, C1 and
super-linear, that is, F and G real-valued, are super-linear Legendre integrands.
The goal of this subsection is the following result and its corollary, that can be seen
as an abstract counterpart of (2.1)3, covering more general convexity conditions
than the usual power type one.

Proposition 3.11. The difference of the Fenchel conjugates F∗ − G∗, is convex if
and only if

F(z + z0)− F(z0)− 〈F ′(z0), z〉 ≤ G
(
z + (G∗)′(F ′(z0))

)
−G ((G∗)′(F ′(z0)))− 〈G ′ ((G∗)′(F ′(z0))) , z〉

holds for all z, z0 ∈ R
N×n.

The condition can be recast as a second order condition if we interpret it in the
viscosity sense:
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Corollary 3.12. The difference of the Fenchel conjugates F∗−G∗, is convex if and
only if

F ′′(z0) ≤ G ′′
(
(G∗)′(F ′(z0))

)

holds as quadratic forms in the viscosity sense for all z0 ∈ R
N×n.

Proof of Proposition 3.11. Note that the derivatives F ′ and G ′ are homeomor-
phisms of RN×n with inverses (F∗)′ and (G∗)′, respectively. Fix z0 ∈ R

N×n and
put ξ0 = F ′(z0). Now F∗ − G∗ is convex at ξ0 if and only if

(
F∗ − G∗

)
(ξ) ≥ (F∗ − G∗

)
(ξ0)+ 〈

(
F∗ − G∗

)′
(ξ0), ξ − ξ0〉

holds for all ξ ∈ R
N×n , that is,

F∗(ξ)− F∗(ξ0)− 〈(F∗)′(ξ0), ξ − ξ0〉 ≥ G∗(ξ)− G∗(ξ0)− 〈(G∗)′(ξ0), ξ − ξ0〉

for all ξ ∈ R
N×n . Because (F∗)′(ξ0) = z0 we get by Fenchel conjugation that this

inequality is equivalent to

sup
ξ∈RN×n

(〈z, ξ 〉 − F∗(ξ)+ F∗(ξ0)+ 〈(F∗)′(ξ0), ξ − ξ0〉
)

≤ sup
ξ∈RN×n

(〈z, ξ 〉 − G∗(ξ)+ G∗(ξ0)+ 〈(G∗)′(ξ0), ξ − ξ0〉
)

for all z ∈ R
N×n . Recalling that F∗∗ = F , G∗∗ = G we can rewrite this as

F(z + z0)+ F∗(ξ0)− 〈z0, F ′(z0)〉 ≤ G(z + (G∗)′(ξ0))+ G∗(ξ0)− 〈(G∗)′(ξ0), ξ0〉

for all z ∈ R
N×n . Because F(z0)+F∗(ξ0) = 〈z0, ξ0〉 andG∗(ξ0)+G((G∗)′(ξ0)) =

〈ξ0, (G∗)′(ξ0)〉 the last inequality can be rewritten as F(z + z0)− F(z0) ≤ G(z +
(G∗)′(ξ0))−G((G∗)′(ξ0)) for all z ∈ R

N×n . Consequently, using that ξ0 = F ′(z0)
and G ′((G∗)′(F ′(z0))) = ξ0 we arrive at the inequality

F(z + z0)− F(z0)− 〈F ′(z0), z〉
≤ G(z + (G∗)′(F ′(z0)))− G((G∗)′(F ′(z0)))− 〈F ′(z0), z〉

for all z ∈ R
N×n , as required.

4. Higher Differentiability Under Legendre (p, q)-Growth

In this section we derive some regularity results for local minimizers of varia-
tional integrals under Legendre (p, q)-growth. Our focus is on the higher differen-
tiability of minima, that will subsequently be used to prove finer regularity in low
dimension and in the scalar setting.
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4.1. Approximation Scheme

Our approximation scheme is rather basic and aims at correcting two relevant
structural issues of the integrand F : unbalanced growth and possible degeneracy.
Let B ≡ Br(xB) � � be a ball with radius 0 < r ≤ 1. We regularize u ∈
W1,p

loc (�,RN ) via convolution against a sequence of mollifiers {φε}ε>0 ⊂ C∞c (Rn)

thus determining a sequence {ũε}ε>0 := {u ∗ φε}ε>0 ⊂ C∞loc(�,RN ), set

γε :=
(
1+ ε−1 + ε−1‖∇ũε‖2qLq (B)

)−1
so that γε‖∇ũε‖qLq (B) ↘ε→0 0,

(4.1)

define integrand

R
N×n � z �→ Fε(z) := F(z)+ γε�1(∇uε)

q , (4.2)

and introduce the family of approximating functionals

W1,q(B,RN ) � w �→ Fε(w; B) :=
∫
B
Fε(∇w) dx .

By (2.1)3 and basic direct methods, the Dirichlet problem

ũε +W1,q
0 (B,RN ) � w �→ minFε(w; B) (4.3)

admits a unique solution uε ∈
(
ũε +W1,q

0 (B,RN )
)
, verifying by minimality the

integral identity

0 =
∫
B
〈F ′ε(∇uε),∇w〉 dx for all w ∈W1,q

0 (B,RN ). (4.4)

The convergence features of the sequence of minima obtained solving the approx-
imating problems in (4.3) are well known, see e.g. [15, Section 3]:

Fε(uε; B)→ F (u; B), γε‖∇uε‖qLq (B) ↘ 0,

uε → u strongly in W1,p(B,RN ). (4.5)

Let us quickly show that Fε ∈ C2(RN×n) enjoys both growth/ellipticity features
of the q-Laplacian type, and uniform Legendre (p, q)-growth.

Lemma 4.1. With (2.1) in force, let Fε be the integrand defined in (4.2). Then⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

γε�1(z)
q ≤ Fε(z) ≤ ��1(z)

q ,

1

�
�μ(z)p−2|ξ |2 + γε

�
�1(z)

q−2|ξ |2 ≤ 〈F ′′ε (z)ξ, ξ 〉,
|F ′′ε (z)| ≤ ��1(z)

q−2,

|F ′′ε (z)| ≤ �

(
1+ |F ′ε(z)|

q−2
q−1
)

,

(4.6)

for all z, ξ ∈ R
N×n and some � ≡ �(n, N , L , p, q).
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Proof. The first three bounds in (4.6) are a straightforward consequence of (2.1),
(2.3) and the very definition of Fε, so we focus on (4.6)4. We first prove that there
exists a constant c̃ ≡ c̃(L , p, q) such that if |z| ≥ c̃, then 〈F ′(z), z〉 > 0. In fact,
by Young inequality with conjugate expoenents (p, p′) we have

〈F ′(z), z〉 = 〈F ′(z)− F ′(0), z〉 + 〈F ′(0), z〉
(3.5)1,(2.3)≥ c|Vμ,p(z)|2 − c|z| ≥ c′|z|p − c′′,

with c′, c′′ ≡ c′, c′′(L , p, q), thus letting c̃ := max{(2c′′/c′)1/p, 1} ≡ c̃(L , p, q) ≥
1 we get

|z| ≥ c̃ �⇒ 〈F ′(z), z〉 ≥ min

{
c′

2
, c′′
}
|z|p > 0. (4.7)

Next, by (4.63) we have

|z| ≤ c̃ �⇒ |F ′′ε (z)| ≤ c(n, N , L , p, q), (4.8)

while if |z| ≥ c̃ we compute

|F ′ε(z)|2 = |F ′(z)|2 + q2γ 2
ε �1(z)

2(q−2)|z|2 + 2qγε�1(z)
q−2〈F ′(z), z〉

(4.7)≥ |F ′(z)|2 + γ 2
ε q

2�1(z)
2(q−2)|z|2 �⇒ |F ′(z)| + qγε�1(z)

q−2|z| ≤ 2|F ′ε(z)|,
(4.9)

therefore

|F ′′ε (z)| (2.1)3≤ L

(
1+ |F ′(z)| q−2q−1

)
+ cγε�1(z)

q−2

|z|≥c̃, γε<1≤ L

(
1+ |F ′(z)| q−2q−1

)
+ c

(
γε�1(z)

q−2|z|) q−2q−1 (4.9)≤ c

(
1+ |F ′ε(z)|

q−2
q−1
)

(4.10)

for c ≡ c(n, N , L , p, q). Combining (4.8) and (4.10) we obtain (4.6)4 and the
proof is complete. ��
Thanks to (4.6)1,2,3, by-now classical regularity theory [41, Chapter 8] yields that

V1,q(∇uε), ∇uε ∈W1,2
loc (B,RN×n) (4.11)

in particular, by (4.11) via difference quotients arguments, (4.4) can be differenti-
ated: system

0 =
∫
B
〈F ′′ε (∇uε)∂s∇uε,∇w〉 dx (4.12)

holds for any w ∈ W1,2(B,RN ) such that supp(w) � B, and all s ∈ {1, · · · , n}.
Finally, we record for later use the elementary energy estimates

L−1‖∇uε‖pLp(B) + γε‖∇uε‖qLq (B)

(2.1)2≤ Fε(uε; B)
(4.5)1≤ F (u; B)+ o(ε).

(4.13)
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4.2. Proof of Theorem 1.2

Westart by recording theuniform Lq ′ -boundon the stress tensors {F ′(∇uε)}ε>0:

‖F ′(∇uε)‖q
′

Lq′ (B)

(3.7)≤ cF (uε; B)+ o(ε)+ c
(4.13)≤ cF (u; B)+ o(ε)+ c,

(4.14)

for c ≡ c(n, L , p, q). We fix a ball Br (x0) ⊆ B, let 	 ∈ (0, 3r/4), introduce the
following symbols:

Hε(x0; 	) :=
n∑

s=1

∫
B	(x0)

〈F ′′ε (∇uε)∂s∇uε, ∂s∇uε〉 dx,

Sε(x0; 	) :=
∫
B	(x0)

�1(F
′(∇uε))

q ′ dx

Pε(x0; 	) :=
∫
B	(x0)

�μ(∇uε)
p dx,

Qε(x0; 	) := γε

∫
B	(x0)

�1(∇uε)
q dx

Vε,p(x0; 	) := |Vμ,p(∇uε)− (Vμ,p(∇uε))∂B	(x0)|,
Vε,q(x0; 	) := |V1,q(∇uε)− (V1,q(∇uε))∂B	(x0)|,

and notice that by (4.11) all the above quantities are finite. Before proceeding
further, a brief remark about notation: since all balls considered from now on will
be centered at x0, we shall omit denoting it and simply write B	(x0) ≡ B	. With
0 < δ < min{1, dist(B	, ∂B)/100}, we regularize the characteristic function of
B	 by convolution against a sequence {φδ}δ>0 ⊂ C∞c (Rn) of standard mollifiers ,
thus defining {ηδ}δ>0 := {1B	 ∗ φδ}δ>0 ⊂ C∞c (B	+2δ), test (4.12) against wδ :=
ηδ(∂suε − (∂suε)∂B	 ), which is admissible by (4.11), and sum on s ∈ {1, · · · , n}.
We obtain:

n∑
s=1

∫
B	+2δ

ηδ〈F ′′ε (∇uε)∂s∇uε, ∂s∇uε〉 dx

= −
n∑

s=1

∫
B	+2δ
〈F ′′ε (∇uε)∂s∇uε, (∂suε − (∂suε)∂B	 )⊗∇ηδ〉 dx .

Recalling that ηδ ⇀∗ 1B	 in BV, we let δ → 0 in the above display to derive
via Cauchy Schwarz inequality, and Hölder inequality with conjugate exponents
(q/(q − p), q/p),



69 Page 26 of 51 Arch. Rational Mech. Anal. (2024) 248:69

Hε(x0; 	) =
n∑

s=1

∫
∂B	

〈F ′′ε (∇uε)∂s∇uε, (∂suε − (∂suε)∂B	 )⊗ (x − x0)/	〉 dHn−1(x)

≤ cH′ε(x0; 	)
1
2

(∫
∂B	

|F ′′ε (∇uε)||∇uε − (∇uε)∂B	 |2 dHn−1(x)
) 1

2

≤ cH′ε(x0; 	)
1
2

(∫
∂B	

|F ′′(∇uε)|
�μ(∇uε)p−2

�μ(∇uε)
p−2|∇uε − (∇uε)∂B	 |2 dHn−1(x)

) 1
2

+cγ
1
2

ε H′ε(x0; 	)
1
2

(∫
∂B	

�1(∇uε)
q−2|∇uε − (∇uε)∂B	 |2 dHn−1(x)

) 1
2

(2.4)≤ cH′ε(x0; 	)
1
2

(∫
∂B	

(
1+ |F ′(∇uε)|

q−p
q−1
)

�μ(∇uε)
p−2|∇uε − (∇uε)∂B	 |2 dHn−1(x)

) 1
2

+cγ
1
2

ε H′ε(x0; 	)
1
2

(∫
∂B	

(
1+ |∇uε|2 + |(∇uε)∂B	 |2

) q−2
2 |∇uε − (∇uε)∂B	 |2 dHn−1(x)

) 1
2

(2.6)1,3≤ cH′ε(x0; 	)
1
2 S′ε(x0; 	)

q−p
2q

(∫
∂B	

V
2q
p

ε,p(x0; 	) dHn−1(x)
) p

2q

+cγ
1
2

ε H′ε(x0; 	)
1
2

(∫
∂B	

V2
ε,q (x0; 	) dHn−1(x)

) 1
2

(2.6)1≤ c	
p(n−1)
2q H′ε(x0; 	)

1
2 S′ε(x0; 	)

q−p
2q

(∫
−
B
V

2q
p

ε,p(x0; 	) dHn−1(x)
) p

2q

+cH′ε(x0; 	)
1
2 Q′ε(x0; 	)

1
2 , (4.15)

with c ≡ c(n, N , L , Lμ, p, q). We then notice that, up to choosing 2∗n−1 so large
that 2∗n−1 > 2q/p when n = 2 or n = 3, by (1.12) it is 2q/p < 2∗n−1, so we can
write

2q

p
= 2λ+ (1− λ)2∗n−1 �⇒ λ = p2∗n−1 − 2q

p(2∗n−1 − 2)
, 1− λ = 2(q − p)

p(2∗n−1 − 2)
,

(4.16)

as to control via Hölder inequality with conjugate exponents (1/λ, 1/(1− λ)),

‖Vε,p(x0; 	)‖
L
2q
p (∂B	)

≤ ‖Vε,p(x0; 	)‖
pλ
q

L2(∂B	)
‖Vε,p(x0; 	)‖

p(1−λ)2∗n−1
2q

L
2∗n−1 (∂B	)

(2.7)≤ c	
p(1−λ)2∗n−1

2q ‖Vε,p(x0; 	)‖
pλ
q

L2(∂B	)
‖∇Vμ,p(∇uε)‖

p(1−λ)2∗n−1
2q

L2(∂B	)

(3.6)≤ c	
p
2q

(
1−n+(1−λ)

(
n−1−2∗n−1(n−3)/2

))
P′ε(x0; 	)

pλ
2q H′ε(x0; 	)

p(1−λ)2∗n−1
4q ,

(4.17)

for c ≡ c(n, N , L , p, q). Merging (4.15) and (4.17) we get

Hε(x0; 	) ≤ c	β0S′ε(x0; 	)
q−p
2q P′ε(x0; 	)

pλ
2q H′ε(x0; 	)

1
2+

p(1−λ)2∗n−1
4q

+ cH′ε(x0; 	)
1
2Q′ε(x0; 	)

1
2 , (4.18)
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where we set

β0 := p(1− λ)

2q

(
n − 1− 2∗n−1(n − 3)

2

)
,

and it is c ≡ c(n, N , L , Lμ, p, q). Next, we fix parameters r/2 ≤ τ2 < τ1 ≤
3r/4 < dist(x0, ∂B), and, for Kε ∈ {Hε,Pε,Qε,Sε}, set

IKε :=
{
	 ∈ (τ2, τ1) : K′ε(x0; 	) ≤ 4

τ1 − τ2

∫ τ1

τ2

K′ε(x0; t) dt
}

.

From the definition we get, since Kε(x0; ·) is absolutely continuous and increasing,
thatL1

(
(τ2, τ1) \ IKε

)
<(τ1−τ2)/4, and consequentlyL1

(
IHε ∩ IPε ∩ IQε

∩ ISε

)
> 0. Therefore we can pick 	 ∈ IHε ∩IPε ∩IQε

∩ISε for which also (4.18) holds.
Hereby

Hε(x0; 	) ≤ c	β0Sε(x0; τ1)
q−p
2q Pε(x0; τ1)

pλ
2q Hε(x0; τ1)

1
2+

p(1−λ)2∗n−1
4q

(τ1 − τ2)
3q−p
2q

+ cQε(x0; τ1) 1
2Hε(x0; τ1) 1

2

(τ1 − τ2)
, (4.19)

with c ≡ c(n, N , Lμ, p, q). Now we observe that

(4.16) �⇒ 1

2
+ p(1− λ)2∗n−1

4q
< 1,

sowe can applyYoung inequality with conjugate exponents
(

2q
2q−λp ,

2q
λp

)
and (2, 2)

to have

Hε(x0; τ2) ≤ Hε(x0; 	)

≤ 1

4
Hε(x0; τ1)+ c	α0Sε(x0; τ1)κ2Pε(x0; τ1)

(τ1 − τ2)κ1
+ cQε(x0; τ1)

(τ1 − τ2)2

(4.13),(4.14)≤ 1

4
Hε(x0; τ1)+ c	α0 (F (uε; B)+ 1+ o(ε))κ2+1

(τ1 − τ2)κ1
+ cQε(x0; τ1)

(τ1 − τ2)2

where we set

α0 := 2qβ0

λp
, κ1 := 3q − p

λp
, κ2 := q − p

λp
, (4.20)

and it is c ≡ c(n, N , Lμ, p, q). Lemma 2.6 then yields

∫
Br/2
|∇Vμ,p(∇uε)|2 + |∇V1,q ′(F ′(∇uε))|2 dx

(3.6)≤ Hε(x0; r/2)

(2.1)1,(4.5)1,2≤ crα0−κ1 (F (u; B)+ 1+ o(ε))κ2+1 + r−2o(ε), (4.21)
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for c ≡ c(n, N , L , Lμ, p, q). Finally, we use (4.52,3) and (2.11) to send ε → 0
in (4.21) , and fix Br (x0) ≡ B to conclude with (1.14). A standard covering ar-
gument then yields that Vμ,p(∇u), V1,q ′(F ′(∇u)) ∈ W1,2

loc (�,RN×n), and (1.13)1
is proven. Now we only need to prove the validity of (1.132). To this end, we as-
sume μ > 0 in (2.1)3, observe that thanks to (4.21) and (2.5), sequence {uε}ε>0 of
solutions to problem (4.3) is now uniformly bounded also in W 2,2(Br/2,RN ), and
observe that by (4.63) and (4.11) it is

L1
loc(B) �

n∑
s=1
〈∂s F ′(∇uε), ∂s∇uε〉

=
n∑

s=1

〈
F ′′(∇uε)

�μ(∇uε)p−2
�μ(∇uε)

p−2
2 ∂s∇uε, �μ(∇uε)

p−2
2 ∂s∇uε

〉

=:
n∑

s=1
D(G ′′(∇uε), V

s
ε ),

where we set
⊙

(RN×n)× R
N×n � (A, z) �→ D(A, z) := 〈Az, z〉, RN×n � z �→

G ′′(z) := F ′′(z)�μ(z)2−p, and V s
ε := �μ(∇uε)

p−2
2 ∂s∇uε. Function D is contin-

uous by definition, and, if the first argument is restricted to positive semi-definite
forms, it is also nonnegative. Notice that by (2.1)1 and (4.5)3, it is G ′′(∇uε) →
F ′′(∇u)�μ(∇u)2−p inLn-measure. Moreover, observing that

∂sVμ,p(∇uε)−
(
p − 2

4

)
�μ(∇uε)

p−6
2 ∂s |∇uε|2∇uε = �μ(∇uε)

p−2
2 ∂s∇uε,

being p ≥ 2, for each s ∈ {1, · · · , n} by (4.21) we have V s
ε ⇀ �μ(∇u)

p−2
2 ∂s∇u

weakly in L2(Br/2,RN×n). By [70, Theorem 4.1 and Remark 4.2], up to non-
relabelled subsequences, each of the sequences {G ′′(∇uε), V s

ε }ε>0 generates a

Young measure and, via [70, Lemma 5.19], it is {G ′′(∇uε), V s
ε }ε>0

Y→ {νsx } where
νsx = δG ′′(∇u)⊗ κs

x , and {κs
x } is a Young measure generated by {V s

ε }ε>0. Therefore

∫−Br/2
∫
RN×n

|z|2 dκs
x (z) dx <∞ and

∫
RN×n

z dκs
x (z) = �μ(∇u)

p−2
2 ∂s∇u.

By weak lower semicontinuity for Young measures [70, Proposition 4.6], we have

∑n
s=1

∫−Br/2〈νsx ,D(·, ·)〉 dx ≤ lim inf
ε→0

∑n
s=1

∫−Br/2D(G ′′(∇uε), V s
ε ) dx

≤ sup
ε>0

∑n
s=1

∫−Br/2〈∂s F ′(∇uε), ∂s∇uε〉 dx

≤ sup
ε>0

∑n
s=1

∫−Br/2〈F ′′ε (∇uε)∂s∇uε, ∂s∇uε〉 dx (4.21)
< ∞,

(4.22)
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so we can apply Jensen inequality [70, Lemma 5.11] to derive∑n
s=1

∫−Br/2〈∂s F ′(∇u), ∂s∇u〉 dx =∑n
s=1

∫−Br/2〈F ′′(∇u)∂s∇u, ∂s∇u〉 dx
=∑n

s=1
∫−Br/2〈G ′′(∇u)�μ(∇u)

p−2
2 ∂s∇u,

�μ(∇u)
p−2
2 ∂s∇u〉 dx

≤∑n
s=1

∫−Br/2〈νsx ,D(·, ·)〉 dx (4.22)
< ∞.

A standard covering argument then gives (1.132) and completes the proof.

Remark 4.2. Theorem 1.2 is valid a fortiori if the integrand governing F is of the
form R

N×n � z �→ F̃(z) := F(z) + a0(1 + |z|2)q/2 with F as in (2.1) and some
constant a0 ≥ 0. In this case estimate (1.14) includes also the informations coming
from the q-elliptic term, i.e.:

‖∇Vμ,p(∇u)‖L2(B/2) + ‖∇V1,q ′(F ′(∇u))‖L2(B/2)

+ a
1
2
0 ‖∇V1,q(∇u)‖L2(B/2) ≤ c‖(F̃(∇u)+ 1)‖bL1(B)

,

with c ≡ c(n, N , L , Lμ, p, q).

4.3. Proof of Corollary 1.3

The proof of statements (ii.)–(iii.) comes as a direct consequence of Sobolev–
Morrey embedding theorem and Theorem 1.2. Concerning the result in (i.), Theo-

rem 1.2 and Sobolev embedding theorem yields that ∇u ∈ L
np
n−2
loc (�,RN×n) and, if

p > n− 2, it is np/(n− 2) > n, thus Sobolev-Morrey embedding theorem allows
to complete the proof.

4.3.1. Proof of Theorem 1.5, (i.) Proposition 3.7 and Corollary 3.9 yield that
Corollary 1.3 applies to the class of convex polynomials in the statement of Theo-
rem 1.5, and in three space dimensions n = 3 the local Hölder continuity result in
(i.) immediately follows with no upper restriction on the polynomial degree. Part
(ii.) of Theorem 1.5 will be proven in Section 5.3.1 below.

5. Smoothness in Two Space Dimensions

In this section we offer two independent proofs of gradient boundedness in
2d for vector-valued minimizers of functional F , based on an inhomogeneous
monotonicity formula, and on a renormalized Gehring–Giaquinta and Modica type
lemma. From this, we deduce full regularity in 2d. As already mentioned in Section
1.1, our approach allows handling simultaneously degenerate and nondegenerate
problems and entails new results already in the genuine (p, q)-setting, see Re-
mark 5.3 below. For the sake of clarity, we shall divide the remainder of the section
in three parts, beginning by detailing the two arguments leading to gradient bound-
edness and concluding by proving the full regularity statement, leading to the proof
of Theorem 1.4.
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5.1. Proof of Theorem 1.4: 2d-Gradient Boundedness via Monotonicity Formula

We look back at Sect. 4.2, and exploit the low dimension—if n = 2 we are
allowed to choose 2∗1 arbitrarily large—to study the asymptotics of the exponents
in (4.20). We have

α0 − κ1 = −2q

p

(
1− 2q

p2∗1

)−1
+ 4(2q − p)

p2∗1 − 2q
↗ −2q

p
as 2∗1 →∞,

κ2 + 1 = q

p

(
1− 2q

p2∗1

)−1
− 2(2q − p)

p2∗1 − 2q
↘ q

p
as 2∗1 →∞,

so we can increase 2∗1 in such a way that α0 − κ1 ≥ −4q/p and κ2 + 1 ≤ 2q/p,
and be more precise on estimate (4.21), that now becomes

‖∇Vμ,p(∇uε)‖2L2(B/2) + ‖∇V1,q ′(F ′(∇uε))‖2L2(B/2)

≤ cHε(xB;r/2) ≤ c‖F(∇u)+ 1‖
2q
p

L1(B)
, (5.1)

for c ≡ c(N , L , Lμ, p, q). By (4.14), (5.1), and Trudinger inequality [80, Theorem

2], there exists a parameter d ≈ ‖F(∇u)+1‖−2q/p
L1(B)

, with constants implicit in "≈"
depending on (N , L , Lμ, p, q) such that

∫
−
B/2

exp
{
d|V1,q ′(F ′(∇uε))|2

}
dx � 1, (5.2)

again up to constants depending on (N , L , Lμ, p, q)—in fact, an inspection of the
proof of [80, Theorem 2] shows that thanks to (5.1) and (4.14) the constant d, that is
proportional to the quantity ‖∇V1,q ′(F ′(∇uε))‖2L2(B/2)

+‖V1,q ′(F ′(∇uε))‖2L2(B/2)
can be suitably enlarged to replace any dependency on ε with a dependency on
(N , L , Lμ, p, q). In particular, whenever B	 ⊆ B/2 we have by Jensen’s inequal-
ity,

‖V1,q ′(F ′(∇uε))‖2L2(B	)
≤ d−1 log

(∫
−
B	

exp
{
d|V1,q ′(F ′(∇uε))|2

}
dx

)

≤ cd−1 log
((

r

	

)2 ∫
−
B/2

exp
{
d|V1,q ′(F ′(∇uε))|2

}
dx

)

(5.2)≤ c log

(
r

	

)
‖F(∇u)+ 1‖

2q
p

L1(B)
, (5.3)
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for c ≡ c(N , L , Lμ, p, q). Next, taking x0 ∈ B/4, and 	 ∈ (0,r/6), we fix a ball
B	(x0) � B/2 and refine estimate (4.15) as

Hε(x0; 	)
(2.7)≤ c	H′ε(x0; 	)

1
2

(∫
−
∂B	

�1(F
′(∇uε))

q ′ dH1(x)

) q−p
2q

(∫
∂B	

|∇Vμ,p(∇uε)|2 dH1(x)

) 1
2

+c	H′ε(x0; 	)
1
2

(∫
∂B	

γε|∇V1,q(∇uε)|2 dH1(x)

) 1
2

(3.6)≤ c	H′ε(x0; 	)

(
1+ ‖�1(F ′(∇uε))‖

q−p
2(q−1)
Lq′ (∂B	)

)

(2.6)1≤ c	H′ε(x0; 	)

(
1+ ‖V1,q ′(F ′(∇uε))‖

q−p
q

L2(∂B	)

)
, (5.4)

where we also used Hölder inequality with conjugate exponents (q/(q − p), q/p),
and it is c ≡ c(N , L , Lμ, p, q). By the trace theorem [43, Section 2.3], we control

‖V1,q ′(F ′(∇uε))‖L2(∂B	) ≤ c‖V1,q ′(F ′(∇uε))‖L2(B	) + c‖∇V1,q ′(F ′(∇uε))‖L2(B	)

(5.1)≤ c‖V1,q ′(F ′(∇uε))‖L2(B	) + c‖F(∇u)+ 1‖
q
p

L1(B)

(5.3)≤ c log

(
r

	

) 1
2 ‖F(∇u)+ 1‖

q
p

L1(B)
,

for c ≡ c(N , L , Lμ, p, q), therefore we can update (5.4) to

Hε(x0; 	) ≤ c	 log

(
r

	

) q−p
2q ‖F(∇u)+ 1‖

q−p
p

L1(B)
H′ε(x0; 	), (5.5)

with c ≡ c(N , L , Lμ, p, q). We then let B := c‖F(∇u) + 1‖
q−p
p

L1(B)
, pick any

σ ∈ (0,r/64), and integrate the inequality in (5.5) on 	 ∈ (σ,r/6) to derive

q

(q + p)B
log
(r
σ

) q+p
2q ≤ 2q

(q + p)B

(
log
(r
σ

) q+p
2q − log(6)

q+p
2q

)

≤ B−1
∫ r/6

σ

1

	 log
(
r
	

) q−p
2q

d	
(5.5)≤ log

(
Hε(x0;r/6)

Hε(x0; σ)

)
.
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Next, we set β := (qB−1/(q + p)
)2q/(q+p)

, γ := (q + p)/(2q), and pass to the
exponentials in the previous display to recover

c‖∇Vμ,p(∇uε)‖2L2(Bσ )
+ c‖∇V1,q ′(F ′(∇uε))‖2L2(Bσ )

(3.6)≤ Hε(x0; σ)

≤ exp
{− (β log (r/σ))γ

}
Hε(x0;r/6)

≤ exp
{− (β log (r/σ))γ

}
Hε(xB;r/2)

(5.1)≤ c exp
{− (β log (r/σ))γ

} ‖F(∇u)+ 1‖
2q
p

L1(B)
,

for c ≡ c(N , L , Lμ, p, q). We then let ε→ 0 above and use (4.5)3 to secure

‖∇Vμ,p(∇u)‖2L2(Bσ )
+ ‖∇V1,q ′(F ′(∇u))‖2L2(Bσ )

≤ c exp
{− (β log (r/σ))γ

} ‖F(∇u)+ 1‖
2q
p

L1(B)

≤ c log
(r
σ

)−(γ+2) ‖F(∇u)+ 1‖bL1(B)
, (5.6)

where we used that (β log(r/σ))γ+2 exp {−(β log(r/σ))γ } → 0 as σ → 0, and it

is b := (γ + 2)
(
q−p
p

)
+ 2q

p , c ≡ c(N , L , Lμ, p, q). Since (5.6) holds true for all

balls Bσ (x0) � B/2, x0 ∈ B/4, from a variant of Morrey lemma [35, Lemma 1.1],
see also [36, page 287], we deduce that Vμ,p(∇u), V1,q ′(F ′(∇u)) are continuous
on B/8 and therefore bounded, and a standard covering argument eventually yields
that F ′(∇u), ∇u ∈ L∞loc(�,RN×2).

5.2. Proof of Theorem 1.4: 2d-Gradient Boundedness via Renormalized
Gehring–Giaquinta and Modica Lemma

Our first move is a quantitative version of classical Gehring lemma [37], after
Giaquinta and Modica [39].

Lemma 5.1. Assume that ϕ is a nonnegative, decreasing function on [t0,∞), in-
finitesimal as t →∞, and satisfying

−
∫ ∞
t

s1−m dϕ(s) ≤ c0t
1−mMϕ(t), (5.7)

for some absolute constants c0 ≥ 1, M ≥ 1, m ∈ (0, 1) and all t ≥ t0. There exists
a positive number

t := 2c0M− m

2c0M− 1
∈ (1, 2) verifying t↘ 1 as M→∞, (5.8)

such that

−
∫ ∞
t0

st−m dϕ(s) ≤ −2tt−10

∫ ∞
t0

s1−m dϕ(s). (5.9)
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Proof. We assume for the moment that there is κ ≥ 1 such that ϕ(t) = 0 whenever
t ≥ κ . We will remove this restriction in the end. With d > 0 we set

Id(t) := −
∫ κ

t
sd dϕ(s) and Id := Id(t0).

For some t > 1 > m to be determined, integrating by parts we have

It−m = −
∫ κ

t0
st−1s1−m dϕ(s) = −

∫ κ

t0
st−1 dI1−m(s)

= tt−10 I1−m + (t− 1)
∫ κ

t0
st−2I1−m(s) ds

(5.7)≤ tt−10 I1−m + c0(t− 1)M
∫ κ

t0
st−1−mϕ(s) ds

= tt−10 I1−m + c0(t− 1)M

t− m

(
It−m − tt−m0 ϕ(t0)

) ≤ tt−10 I1−m + c0(t− 1)MIt−m
(t− m)

.

We now fix t > 1 so close to one that

c0(t− 1)M

t− m
= 1

2
⇐⇒ t = 2c0M− m

2c0M− 1
m<1
> 1,

and (5.8) is satisfied. The above choice of t allows us to conclude that

It−m ≤ 2tt−10 I1−m
ϕ(t)≡0 if t≥κ�⇒ (5.9), (5.10)

and we are done in the case ϕ(t) ≡ 0 for t ≥ κ . Let us take care of the general case.
Observe that being ϕ nonincreasing on [t0,∞), we have for any given T ≥ κ:

−
∫ T

κ

s1−m dϕ(s) ≥ −κ1−m
∫ T

κ

dϕ(s) = κ1−m (ϕ(κ)− ϕ(T )) ,

so letting T →∞ above we get

−
∫ ∞

κ

s1−m dϕ(s)
ϕ(T )→0≥ κ1−mϕ(κ). (5.11)

Next, we set ϕκ(t) := ϕ(t) if t ≤ κ , and ϕκ(t) := 0 if t > κ . For t ≤ κ we have

−
∫ ∞
t

s1−m dϕκ(s) = −
∫ κ

t
s1−m dϕ(s)−

∫ ∞
κ

s1−m dϕκ(s)

≤ −
∫ κ

t
s1−m dϕ(s)+ κ1−mϕ(κ)

(5.11)≤ −
∫ κ

t
s1−m dϕ(s)−

∫ ∞
κ

s1−m dϕ(s) = −
∫ ∞
t

s1−m dϕ(s),

(5.12)
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while if t > κ the above relation is trivially true, given that ϕκ(t) ≡ 0 if t > κ .
Thanks to what we have just proved, we have

−
∫ ∞
t0

st−m dϕκ(s) = −
∫ κ

t0
st−m dϕκ(s)

(5.10)≤ −2tt−10

∫ κ

t0
s1−m dϕκ(s)

≤ −2tt−10

∫ ∞
t0

s1−m dϕκ(s)
(5.12)≤ −2tt−10

∫ ∞
t0

s1−m dϕ(s).

(5.13)

The conclusion now follows sending κ →∞. ��
The previous lemma is instrumental to establish a self-improving property for func-
tions satisfying suitable reverse Hölder inequalities.

Lemma 5.2. Let Q1(0) ⊂ R
n be the unitary cube centered at the origin and v ∈

L1(Q1(0)) be a nonnegative function verifying

∫
−
Q	/2(x0)

v dx ≤ ĉM

(∫
−
Q	(x0)

vm dx

)1/m

, (5.14)

for all cubes Q	(x0) � Q1(0), some exponent m ∈ (0, 1), and absolute constants
ĉ,M ≥ 1. There exists a constant c∗ ≡ c∗(n, ĉ) ≥ 1, and a positive number
t ∈ (1, 2) as in (5.8), i.e.:

t = 2c∗M− m

2c∗M− 1
∈ (1, 2) satisfying t↘ 1 as M→∞, (5.15)

such that
(∫
−
Q1/2(0)

vt dx

)1/t

≤ 24n+4
∫
−
Q1(0)

v dx .

In particular, for any fixed threshold s0 ≥ 1, the constant c∗ in (5.15) can be taken
so large that

c∗ > s0, (5.16)

up to update dependency c∗ ≡ c∗(n, ĉ,s0).

Proof. We ask the reader to have [41, Section 6.4] at hand as we shall carefully
track the dependency of the constants appearing in the various arguments leading
to the proof of [41, Theorem 6.6]. To be as close as possible to the setting of [41,
Section 6.4], we let d(x) := dist(x, ∂Q1), introduce function F(x) := d(x)nv(x),
and denoting by P̃ � Q1 a cube and P the cube concentric to P̃ with half side,
and rearrange (5.14) in terms of F as

‖F‖L1(P) ≤ cM‖Fm‖
1
m

L1(P̃)
, (5.17)
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holding for all cubes P̃ � Q1, with c ≡ c(n, ĉ), that is [41, inequality (6.47)]. We
next look into [41, Lemma 6.2], that relies on a Calderón-Zygmund type argument
combined with integral estimates on level sets. Introducing the superlevel set�t :=
{x ∈ Q1 : F(x) > t} for all

t ≥ t0 := ‖v‖L1(Q1)
(5.18)

and carefully tracking the occurrences of constant M along the proof of [41, Lemma
6.2] (fix λ ≈ M up to dimensional constants there) we end up with

∫
�t

F dx ≤ c∗t1−mM
∫

�t

Fm dx, (5.19)

for c∗ ≡ c∗(n, ĉ). Notice that there is no loss of generality in arbitrarily enlarging
the value of c∗, and in particular to take it larger than the assigned s0, thus fixing
dependencies c∗ ≡ c∗(n, ĉ,s0). In the light of [41, Lemma 6.3], inequality (5.19)
can be rewritten as

−
∫ ∞
t

s1−m dϕ(s) ≤ c∗t1−mMϕ(t) for all t ≥ t0, (5.20)

where we set ϕ(t) := ∫
�t

Fm dx . Notice that by definition, ϕ is nonincreasing on

[t0,∞) and, sinceF ∈ L1(Q1), we see thatϕ(t)→ 0 as t →∞, so the assumptions
of Lemma 5.1 are verified—in particular, (5.20) is exactly (5.7) with c0 ≡ c∗, and
t0 as defined in (5.18), thus (5.9) holds true with exponent t resulting from (5.8)
that is the one in (5.15), and, via [41, Lemma 6.3] we can write

∫
�t0

Ft dx ≤ 2tt−10

∫
�t0

F dx .

On the other hand, on Q1 \�t0 we have

∫
Q1\�t0

Ft dx ≤ tt−10

∫
Q1\�t0

F dx,

therefore we can conclude with
∫
Q1

Ft dx ≤ 4tt−10

∫
Q1

F dx,

and, coming back to the function v we eventually get

∫
Q1/2

vt dx ≤ 22n+2tt−10

∫
Q1

v dx = 24n+2|Q1|
(∫
−
Q1

v dx

)t

,

where we used (5.18) and (5.8)1 to remove any dependency of the bounding con-
stants on t. The proof is complete. ��
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We return to Dirichlet problem (4.3), and observe that conditions (4.6)1,2,3 guar-
antee that [14, Theorem V] applies and

uε ∈W1,∞
loc (B,RN ) ∩W2,2

loc (B,RN ). (5.21)

We then let Q ≡ Qr0(xQ) � B/16 be any cube with half-side length r0 ∈ (0, 1],
scale the whole problem on Q1 by letting vε(x) := uε(xQ + r0x)/r0, v(x) :=
u(xQ + r0x)/r0, observe that the amount of regularity in (5.21) is obviously pre-
served by the blown up map vε so that the definition

Mε ≥ max

{
‖F ′(∇uε)‖

q−p
q−1
L∞(Q), 1

}
, (5.22)

makes sense, and recall that system (4.12) holds verbatim for the scaled maps vε

on Q1. We then let Q	(x0) � Q1 be any cube with half side length 	 ∈ (0, 1],
η ∈ C1

c(Q	(x0)) be such that 1Q	/2(x0) ≤ η ≤ 1Q	(x0) and |∇η| � 	−1, and test
(4.12) against wε := η2(∂svε − (∂svε)Q	(x0)) to get, after using Cauchy–Schwarz
inequality, (3.6), (2.6)1,3, (2.4), and Sobolev-Poincaré inequality,
∫
−
Q	/2(x0)

Vε dx

:=
∫
−
Q	/2(x0)

(
|∇Vμ,p(∇vε)|2 + |∇V1,q ′(F ′(∇vε))|2 + γε|∇V1,q(∇vε)|2

)
dx

≤ c

	2

∫
−
Q	(x0)

|F ′′(∇vε)||∇vε − (∇vε)Q	(x0)|2 dx

+ cγε

	2

∫
−
Q	(x0)

�1(∇vε)
q−2|∇vε − (∇vε)Q	(x0)|2 dx

≤ cMε

	2

∫
−
Q	(x0)

|Vμ,p(∇vε)− (Vμ,p(∇vε))Q	(x0)|2 dx

+ cγε

	2

∫
−
Q	(x0)

|V1,q(∇vε)− (V1,q(∇vε))Q	(x0)|2 dx

≤ cMε

(∫
−
Q	(x0)

|∇Vμ,p(∇vε)|2∗;2 dx
) 2

2∗;2

+ c

(∫
−
Q	(x0)

γ

2∗;2
2

ε |∇V1,q(∇vε)|2∗;2 dx
) 2

2∗;2
≤ cMε

(∫
−
Q	(x0)

V
2∗;2
2

ε dx

) 2
2∗;2

,

(5.23)

for c ≡ c(N , L , Lμ, p, q). From (5.21)-(5.23) we see that the assumptions of
Lemma 5.2 are satisfied with

s0 := q

p
, ĉ ≡ max{c,s0}, M ≡ Mε, m := 2∗;2

2
= 1

2
,

(5.24)
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therefore we obtain an exponent t ∈ (1, 2) as in (5.15) such that ‖Vε‖Lt(Q1/2) ≤
212‖Vε‖L1(Q1)

, which in particular implies

(∫
−
Q1/2

|∇V1,q ′(F ′(∇vε))|2t dx
) 1

2t

≤ 26
(∫
−
Q1

Vε dx

) 1
2

. (5.25)

Next, we let η0 ∈ C1
c(Q1/2) such that 1Q1/4 ≤ η0 ≤ 1Q1/2 and |∇η0| ≤ 2, observe

that we have η0V1,q ′(F ′(∇vε)) ∈W1,2t(R2,RN×2) and via (5.25), bound

‖∇(η0V1,q ′(F
′(∇vε)))‖L2t(Rn)

≤ 2‖V1,q ′(F ′(∇vε))‖L2t(Q1/2)
+ ‖∇V1,q ′(F ′(∇vε))‖L2t(Q1/2)

≤ 2‖V1,q ′(F ′(∇vε))‖L2t(Q1/2)
+ 26‖Vε‖

1
2
L1(Q1)

. (5.26)

We then apply Proposition 2.5, and use (5.26) and (5.15) to deduce that

‖V1,q ′(F ′(∇vε))‖L∞(Q1/4) ≤ ‖η0V1,q ′(F ′(∇vε))‖L∞(Rn)

≤
(
2t− 1

2t− 2

) 2t−1
2t | supp(η0V1,q ′(F ′(∇vε)))| 12− 1

2t

21/(2t)ω
1/2
2 (2N )−1/2

‖∇(η0V1,q ′(F
′(∇vε)))‖L2t(Rn)

≤ 28
√

N

π

(
2t− 1

2t− 2

) 2t−1
2t

(
‖V1,q ′(F ′(∇vε))‖L2t(Q1/2)

+ ‖Vε‖
1
2
L1(Q1)

)
.

(5.27)

Before proceeding further, let usmake explicit the values of the constants/exponents
involving t above by means of (5.15), (5.16) and (5.24). We have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2t− 1

2t− 2
= 2c∗Mε

2t− 1

2t
= 2c∗Mε

4c∗Mε − 1

Mε≥1≤ 2c∗
4c∗ − 1

(5.24)1,2≤ 2q

4q − p

t− 1

t
= 1

4c∗Mε − 1

Mε≥1≤ 1

4c∗ − 1

(5.24)1,2≤ p

4q − p
,

where we used that 1/(2t)′, (t − 1)/t are decreasing with respect to both Mε

and c∗. Incorporating this information in (5.27), scaling back on Q, and letting
Uε := |∇Vμ,p(∇uε)|2 + |∇V1,q ′(F ′(∇uε))|2 + γε|∇V1,q(∇uε)|2, by (2.5) we
obtain after standard manipulations
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|F ′(∇uε(xQ))| q
′
2 ≤ cM

2q
4q−p
ε ‖V1,q ′(F ′(∇uε))‖

t−1
t

L∞(Q)

(∫−Q |V1,q ′(F ′(∇uε))|2 dx
) 1

2t

+ cM
2q

4q−p
ε

(∫−Q r20Uε dx
) 1

2 + c

≤ cM
q(4q−3p)

2(q−p)(4q−p)
ε

[
1+

(∫−Q |V1,q ′(F ′(∇uε))|2 dx
) 1

2
]

+ cM
2q

4q−p
ε

(∫−Q r20Uε dx
) 1

2 + c, (5.28)

with c ≡ c(N , L , Lμ, p, q). Next, we fix parameters 2−3r ≤ τ2 < τ1 ≤ 2−5/2r,
correspondingly, cubes concentric with B, i.e.: B/8 ⊂ Q2−3r(xB) ⊂ Qτ2(xB) ⊂
Qτ1(xB) ⊂ Q2−5/2r(xB) � B/4, and observe that for any xQ ∈ Qτ2(xB), cube
Q(τ1−τ2)/8(xQ) � Qτ1(xB), so, keeping inmind that there is no loss of generality in
assuming that ‖F ′(∇uε)‖L∞(Q2−3r(xB )) ≥ 1 (otherwise the proof would be finished

already),we apply (5.28)withQ ≡ Q(τ1−τ2)/8(xQ) andMε ≡ ‖F ′(∇uε)‖(q−p)/(q−1)
L∞(Qτ1 (xB )),

which verifies (5.22), to get

|F ′(∇uε(xQ))| q
′
2

≤ c‖F ′(∇uε)‖
q′(4q−3p)
2(4q−p)

L∞(Qτ1 (xB ))

⎡
⎢⎣1+ 1

τ1 − τ2

⎛
⎝
∫
Q τ1−τ2

8
(xQ )

|V1,q ′(F ′(∇uε))|2 dx
⎞
⎠

1
2
⎤
⎥⎦

+c‖F ′(∇uε)‖
q′4(q−p)
2(4q−p)

L∞(Qτ1 (xB ))

⎛
⎝
∫
Q (τ1−τ2)

8
(xQ )

Uε dx

⎞
⎠

1
2

+ c

≤ c‖F ′(∇uε)‖
q′(4q−3p)
2(4q−p)

L∞(Qτ1 (xB ))

⎡
⎣1+ 1

τ1 − τ2

(∫
Qτ1 (xB )

|V1,q ′(F ′(∇uε))|2 dx
) 1

2
⎤
⎦

+c‖F ′(∇uε)‖
q′4(q−p)
2(4q−p)

L∞(Qτ1 (xB ))

(∫
Qτ1 (xB )

Uε dx

) 1
2

+ c,

for c ≡ c(N , L , Lμ, p, q). Taking the supremum for all xQ ∈ Qτ2(xB), and setting
θ1 := (4q−3p)/(4q− p), θ2 := 4(q− p)/(4q− p) ∈ (0, 1), by Young inequality
we obtain

‖F ′(∇uε)‖
q′
2
L∞(Qτ2 (xB ))

≤ c‖F ′(∇uε)‖
θ1q
′

2
L∞(Qτ1 (xB ))

[
1+ 1

τ1 − τ2

(∫
B/4
|V1,q ′(F ′(∇uε))|2 dx

) 1
2
]

+c‖F ′(∇uε)‖
θ2q
′

2
L∞(Qτ1 (xB ))

(∫
B/4

Uε dx

) 1
2 + c

≤ 1

4
‖F ′(∇uε)‖

q′
2
L∞(Qτ1 (xB )) + c

(∫
B/4

Uε dx

) 1
2(1−θ2)
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+ c

(τ1 − τ2)
1

1−θ1

(∫
B/4
|V1,q ′(F ′(∇uε))|2 dx

) 1
2(1−θ1) + c (5.29)

with c ≡ c(N , L , Lμ, p, q). We can then apply Lemma 2.6, (4.14), (4.5)1,2, and
(4.21) (keep Remark 4.2 in mind), to conclude with

‖F ′(∇uε)‖
q′
2
L∞(B/8)

≤ c

(∫
−
B/4
|V1,q ′(F ′(∇uε))|2 dx

) 1
2(1−θ1) + c

(∫
B/4

Uε dx

) 1
2(1−θ2) + c

≤ c

(∫
−
B
F(∇uε)+ γε(1+ |∇uε|2) q

2 + 1 dx

)b

≤ c

(∫
−
B
1+ F(∇u) dx

)b

+ o(ε), (5.30)

with c ≡ c(N , L , Lμ, p, q),b ≡ b(p, q). Now, by (4.53)we know that∇uε → ∇u
strongly in Lp(B,RN ), so by (2.1)1 (up to subsequences) F ′(∇uε) → F ′(∇u)

almost everywhere. This means that we can send ε → 0 in (5.30) and pass to the
weak∗-limit to deduce

‖F ′(∇u)‖
q′
2
L∞(B/8) ≤ c

(∫
−
B
1+ F(∇u) dx

)b

,

for c ≡ c(N , L , Lμ, p, q), b ≡ b(p, q), which, together with (2.3) gives (1.16)
(with possibly different exponent b ≡ b(p, q)), and a standard covering argument
leads to ∇u ∈ L∞loc(�,RN×2), and, whenever �2 � �1 � � are open sets as in
the statement of Theorem 1.4, it is

‖∇u‖L∞(�2) ≤ c(N , L , Lμ, p, q,F (u;�1), dist(�2, ∂�1)). (5.31)

5.3. Proof of Theorem 1.4: Full Regularity

Once it is known, by either of the arguments in the previous two sections, that
minima of F are locally Lipschitz continuous, the nonuniform ellipticity of the
integrand F prescribed by (2.1)3 becomes immaterial. The gradient boundedness,
Theorem 1.2, and a simple difference quotients argument guarantee that we can
recover (4.12) with F , u, instead of Fε, uε, so, fixing open sets �2 � �1 � � as
in (5.31), and cubes Q	(x0) � Q � �2, with B/16 � Q ≡ Q2−15/4r(xQ) � B/8,
computations analogous to those in (5.23) eventually yield∫
−
Q	/2(x0)

|∇Vμ,p(∇u)|2 + |∇V1,q ′(F ′(∇u))|2 dx

≤ c

	2

∫
−
Q	(x0)

|F ′′(∇u)||∇u − (∇u)Q	(x0)|2 dx

≤ cM

	2

∫
−
Q	(x0)

|Vμ,p(∇u)− (Vμ,p(∇u))Q	(x0)|2 dx
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(5.31)≤ c

(∫
−
Q	(x0)

(
|∇Vμ,p(∇u)|2 + |∇V1,q ′(F ′(∇u))|2

)m
dx

) 1
m

,

where we set M := 1 + ‖F ′(∇u)‖(q−p)/(q−1)
L∞(Q) , and it is c ≡ c(N , L , Lμ, p, q,

F (u;�1), dist(�2, ∂�1)), m = 1/2. We can now apply classical Gehring lemma
[41, Theorem 6.6] to prove the existence of an exponent t ≡ t(N , L , Lμ, p, q,

F (u;�1), dist(�2, ∂�1)) ∈ (1, 2), cf. (5.15), such that

‖∇Vμ,p(∇u)‖L2t(B/16) + ‖∇V1,q ′(F ′(∇u))‖L2t(B/16)

≤ c‖∇Vμ,p(∇u)‖L2t(Q/2) + c‖∇V1,q ′(F ′(∇u))‖L2t(Q/2)

≤ c‖∇Vμ,p(∇u)‖L2(Q) + c‖∇V1,q ′(F ′(∇u))‖L2(Q) ≤ c‖(F(∇u)+ 1)‖bL1(B)
,

wherewealsoused (1.14), and it is c ≡ c(N , L , Lμ, p, q,F (u;�1), dist(�2, ∂�1),
b ≡ b(p, q), and (1.17) is proven. By Sobolev Morrey embedding theorem we
further obtain that Vμ,p(∇u) ∈ C0,1−1/t(Q/2,RN×2), which in turn implies that
∇u ∈ C0,β0(Q/2,RN×2),β0 ≡ β0(N , L , Lμ, p, q, ,F (u;�1), dist(�2, ∂�1)) ∈
(0, 1). With this last information at hand, if μ > 0 in (2.1)3 we can follow a well-
known strategy [41, Section 8.8] to conclude with gradient Hölder continuity up to
any exponent less than one. If in addition to the nondegeneracy condition μ > 0,
the integrand governingF is also real analytic, by-now standard theory [67, Chap-
ter 6], [68] yields that u is real analytic. A standard covering argument finishes the
proof.

5.3.1. Proof of Theorem 1.5, (ii.) The proof of the second claim of Theorem 1.5
is a direct consequence of Proposition 3.7 and Theorem 1.4 formulated for minima
of variational integrals governed by nondegenerate, analytic integrands. Recalling
the content of Section 4.3.1, the proof of Theorem 1.5 is complete.

Remark 5.3. Our techniques apply also to the genuine (p, q)-nonuniform ellipticity
conditions, i.e.

�μ(z)p−2IN×2 � F ′′(z) � �μ(z)p−2IN×2 + �μ(z)q−2IN×2 (5.32)

in the sense of bilinear forms, with μ ∈ [0, 1], and 2 ≤ p < q < 2p, the usual
bound in two space dimensions. To adapt the arguments in Sects. 5.1, 5.2 to the
(p, q)-framework, we recall that (5.32) implies

|F ′′(z)|
�μ(z)p−2

� 1+ �μ(z)q−p, (5.33)

accordingly, the following (very minor) modifications need to be (respectively)
implemented—higher differentiability results in the spirit of Theorem1.2 that allow
controlling the resulting right-hand side term being available in [30,32].

• Since (5.33) is in force, in (4.15) Hölder inequality needs to be applied with
conjugate exponents (p/(q − p), p/(2p − q)), so in the last line of (4.15),

term P′ε(	)
q−p
2p replaces S′ε(	)

q−p
2q , and ‖Vε,p‖

L
2p

2p−q (∂B	)
appears instead of
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‖Vε,p‖
L
2q
p (∂B	)

. As a consequence, Vμ,p(∇uε) replaces V1,q ′(F ′(∇uε)) every-

where in (5.4), and the term in parenthesis that needs to be controlled via trace

theorem, now is ‖Vμ,p(∇uε)‖
q−p
p

L2(∂B	)
, so in (5.2) the argument of the exponen-

tial must be replaced by |Vμ,p(∇uε)|2 (any control on the stress tensor F ′(∇uε)

being lost in the genuine (p, q)-case).
• In (5.22) the lower bound on Mε needs to be replaced by max{1, ‖∇uε‖q−p

L∞(Q)};
in (5.25) there must be |∇Vμ,p(∇uε)| instead of |∇V1,q ′(F ′(∇uε))| that is no
longer available; and in (5.24)1 we need that s0 = p/(2p − q) to be able to
apply Young inequality and reabsorbe terms in (5.29).

Very recently, Schäffner [74] improved the assumptions for the validity of Lipschitz
regularity for scalar local minimizers of (p, q)-nonuniformly elliptic functionals in
two space dimensions by updating the bound on exponents (p, q) to q < 3p. The
approach in [74] relies on a fine argument based on 1-d interpolation and maximum
principle, that are in general not available in the vectorial setting.

6. The Scalar Case

This section is devoted to the proof, based on a renormalized [23] version of the
Moser iteration designed in [6,23,24,61], of local Lipschitz continuity for scalar
minimizers of functional F under Legendre (p, q)-growth conditions. Given the
quite technical content of this last part of the paper, for simplicity we split it in two
steps, ultimately yielding the proof of Theorem 1.6.

6.1. An Abstract W1,2 to L∞ Iteration

Here we derive an abstract L∞-W1,2 estimate valid for any sufficiently regular
function satisfying a suitable reverse Hölder type inequality for arbitrarily large
powers.

Lemma 6.1. Let −1 ≤ α0 < ∞, 0 < γ0 < 1 be numbers, v ∈ L∞loc(B1(0)) be a

nonnegative function such that v(α0+2)/2 ∈W1,2
loc (B1(0)) and, fixed balls B1/8(0) ⊂

Bσ (0) � B1(0), σ ∈ (1/8, 1] arbitrary, for all nonnegative η ∈ C1
c(Bσ (0)), any

α ≥ α0, and some absolute constants c0 ≥ 1, M ≥ 1, inequality

‖η∇v
α+2
2 ‖L2(B1) ≤ c0AαM

1
2 ‖(v α+2

2 + 1)∇η‖L2(B1), (6.1)

holds true with

Aα :=
⎧⎨
⎩

1 if α = α0

α + 2

α + 1
if α > α0.

(6.2)

Then, for every ball B1/8(0) ⊆ Bτ2(0) ⊂ Bτ1(0) ⊆ Bσ (0), the L∞-W1,2 estimate

‖v‖L∞(Bτ2 ) ≤ cM
γ

(2+α0)(1−γ )

(τ1 − τ2)a0
‖(v α0+2

2 + 1)‖
2

α0+2
W1,2(Bτ1 )

(6.3)
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is verified, where

γ :=
⎧⎨
⎩

n − 3

n − 1
if n ≥ 4

γ0 if n ∈ {2, 3},
(6.4)

and it is c,a0 ≡ c,a0(n, α0, γ0).

Proof. We fix parameters 1/8 ≤ τ2 < τ1 ≤ σ < 1, and, for i ∈ N ∪ {0} introduce
radii 	i := τ2 + 2−i (τ1 − τ2), balls Bi := B	i (0), cut-off functions ηi ∈ C1

c(Bi )
such that 1Bi+1 ≤ ηi ≤ 1Bi , and apply [6, Lemma 3], see also [54, Lemma 3], to
the right-hand side of (6.1) with η = ηi . We obtain

‖(v α+2
2 + 1)∇ηi‖2L2(Bi )

≤ 2

(	i − 	i+1)
δ+1
δ

(∫ 	i

	i+1

(∫
∂Bs

(vα+2 + 1) dHn−1(x)
)δ

ds

) 1
δ

(6.5)

for all δ ∈ (0, 1]. With γ ∈ (0, 1] as in (6.4), we record that
((

2

γ

)
∗;n−1

)−1
= min

{
γ

2
+ 1

n − 1
, 1

}
≥ 1

2
, (6.6)

define ṽ := v
γ (α+2)

2 , and estimate

‖vα+2 + 1‖δL1(∂Bs )
= ‖ṽ 2

γ + 1‖δL1(∂Bs )

(2.8)≤ cs
2δ
γ ‖∇ṽ‖

2δ
γ

L

(
2
γ

)
∗;n−1 (∂Bs )

+ c‖(ṽ + 1)‖
2δ
γ

L

(
2
γ

)
∗;n−1 (∂Bs )

(6.6)≤ cs
2δ
γ ‖∇ṽ‖

2δ
γ

L2(∂Bs )
+ c‖(ṽ + 1)‖

2δ
γ

L2(∂Bs )
, (6.7)

for c ≡ c(n, γ0). We plug (6.7) in (6.5), choose δ = γ , and restore the original
notation to get

‖(v α+2
2 + 1)∇ηi‖2L2(Bi )

≤ c

(	i − 	i+1)
γ+1
γ

‖(v γ (α+2)
2 + 1)‖

2
γ

W1,2(Bi )
, (6.8)

where we also used that 	i ≥ 2−3 for all i ∈ N∪{0}, and it is c ≡ c(n, γ0). Merging
(6.8) and (6.1) we obtain,

‖(v α+2
2 + 1)‖2

W1,2(Bi+1)
(2.9)≤ c‖∇v

α+2
2 ‖2L2(Bi+1) + c‖(v α+2

2 + 1)‖2L2γ (Bi+1)

(6.1),(6.8)≤ cA2
αM

(	i − 	i+1)
γ+1
γ

‖(v γ (α+2)
2 + 1)‖

2
γ

W1,2(Bi )
, (6.9)

with c ≡ c(n, c0, γ0). We have only one degree of freedom left in (6.9), that is
α ≥ α0 ≥ −1, so we introduce sequence {αi }i∈N∪{0}, recursively defined as

α0 ≥ −1 arbitrary, αi := 1

γ
αi−1 + 2

(
1

γ
− 1

)
, i ∈ N.
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The above position immediately implies that

αi = 2+ α0

γ i
− 2→∞ as i →∞.

Set Vi := ‖(v
αi+2
2 + 1)‖

2
αi+2
W1,2(Bi )

, and for i ∈ N rearrange (6.9) as

Vi ≤
⎡
⎣cA2αi

(
2i

τ1 − τ2

) γ+1
γ

⎤
⎦

1
αi+2

M
1

αi+2V
αi−1+2
γ (αi+2)
i−1 , (6.10)

with c ≡ c(n, c0, γ0). Iterating (6.10) over j ∈ {0, · · · , i − 1} we end up with

Vi ≤ M
1

αi+2
∑i−1

k=0
1

γ k V

α0+2
γ i (αi+2)
0

i−1∏
k=0

⎡
⎣cA2

αi−k

(
2i−k

τ1 − τ2

) γ+1
γ

⎤
⎦

1
αi+2

∑k
j=0 1

γ j

. (6.11)

Let us examine the behavior as i →∞ of the various quantities appearing in (6.11).
We have

1

αi + 2

i−1∑
k=0

1

γ k
→ γ

(2+ α0)(1− γ )
,

α0 + 2

γ i (αi + 2)
= 1,

and

i−1∏
k=0

⎡
⎣cA2

αi−k

(
2i−k

τ1 − τ2

) γ+1
γ

⎤
⎦

1
αi+2

∑k
j=0 1

γ j

= exp

⎧⎨
⎩

i−1∑
k=0

1

αi + 2

k∑
j=0

1

γ j
log

⎛
⎝cA2αi−k

(
2i−k

τ1 − τ2

) γ+1
γ

⎞
⎠
⎫⎬
⎭

≤ exp

{
4(γ + 1)

(1− γ )2(2+ α0)

(
log

(
c

τ1 − τ2

)
+ log

(
2+ α0

2+ α0 − γ

))}

· exp
{

(γ + 1) log(2)

γ (1− γ )(2+ α0)

i−1∑
k=0

(i − k)γ (i−k)
}
≤ c

(τ1 − τ2)a0
<∞,

for c,a0 ≡ c,a0(n, α0, γ0). We then send i →∞ in (6.11) to conclude with (6.3)
and the proof is complete. ��

6.2. A Caccioppoli Type Inequality for Powers

For z ∈ R
n and α ≥ −1, we introduce functions

L(z) := �μ(z)p, lα(z) := L(z)
(α+2)

2 + 1, (6.12)
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and recall that whenever w is a twice differentiable function, the inequalities

|∇Vμ,p(∇w)|2 ≈ �μ(∇w)p−2|∇2w|2 � |∇L(∇w)
1
2 |2 (6.13)

holds up to constants depending only on p. Next, we look back at the family
of approximating integrals defined in Sect. 4.1, and record that by (4.6)1,2,3, and
classical scalar regularity results [41, Chapter 8] it is uε ∈ W1,∞

loc (B) ∩W2,2
loc (B).

Then we scale uε in such a way that function vε(x) := (uε(x0 + rx)− (uε)B)/r
minimizes F on B1(0), name v(x) := (u(x0 + rx) − (u)B)/r, and observe that
by construction it is

vε ∈W1,∞
loc (B1(0)) ∩W2,2

loc (B1(0)). (6.14)

Now we are ready to prove a homogenized Caccioppoli type inequality involving
arbitrary powers of L(∇vε).

Lemma 6.2. For all nonnegative η ∈ C1
c(B1/4(0)), α ≥ −1 and all constants

Mε ≥ 1 such that

Mε ≥ max

{
‖F ′ε(∇vε)‖

q−p
q−1
L∞( supp(η)), 1

}
(6.15)

the Caccioppoli type inequality for powers

‖η∇lα(∇vε)‖L2(B1) ≤ cAαM
1
2
ε ‖lα(∇vε)∇η‖L2(B1), (6.16)

holds with c ≡ c(n, N , L , p, q), and Aα as in (6.2).

Proof. With η ∈ C1
c(B1/4) being a nonnegative cut-off function, α > −1, and

s ∈ {1, · · · , n}, we test (4.12) against ws,α := η2L(∇vε)
α+1∂svε, admissible by

(6.14), to get

0 =
n∑

s=1

∫
B1

η2L(∇vε)
α+1〈F ′′ε (∇vε)∂s∇vε, ∂s∇vε〉 dx

+(α + 1)
n∑

s=1

∫
B1

η2L(∇vε)
α〈F ′′ε (∇vε)∂svε∂s∇vε,∇L(∇vε)〉 dx

+2
n∑

s=1

∫
B1

ηL(∇vε)
α+1〈F ′′ε (∇vε)∂s∇vε∂svε,∇η〉 dx =: (I)+ (II)+ (III).

(6.17)

We immediately bound below

(I)
(4.6)2≥ 1

�

∫
B1

η2L(∇vε)
α+1�μ(∇vε)

p−2|∇2vε|2 dx
(6.13)≥ c

∫
B1

η2L(∇vε)
α+1|∇l−1(∇vε)|2 dx, (6.18)
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for c ≡ c(n, L , p, q). Now notice that

∇L(∇vε) = p�μ(∇vε)
p−2

n∑
s=1

∂svε∂s∇vε, (6.19)

so we control

(II)
(6.19)= (α + 1)

p

∫
B1

η2L(∇vε)
α

〈
F ′′ε (∇vε)

�μ(∇vε)p−2
∇L(∇vε),∇L(∇vε)

〉
dx

(4.6)2≥ α + 1

p�

∫
B1

η2L(∇vε)
α|∇L(∇vε)|2 dx

= 4(α + 1)

p�(α + 2)2

∫
B1

η2|∇L(∇vε)
α+2
2 |2 dx = 4(α + 1)

p�(α + 2)2

∫
B1

η2|∇lα(∇vε)|2 dx .

Finally, via Cauchy–Schwarz and Young inequalities we obtain

|(III)| (6.19)= 2

p

∣∣∣∣
∫
B1

ηL(∇vε)
α+1

〈
F ′′ε (∇vε)

�μ(∇vε)p−2
∇L(∇vε),∇η

〉
dx

∣∣∣∣
≤ (II)

2
+ 8

p(α + 1)

∫
B1∩{|∇vε |>1}

|∇η|2L(∇vε)
α+2 |F ′′ε (∇vε)|

�μ(∇vε)p−2
dx

+ 8

p(α + 1)

∫
B1∩{|∇vε |≤1}

|∇η|2L(∇vε)
α+1+ 2

p |F ′′ε (∇vε)| dx
(4.6)4≤ (II)

2
+ 8�

p(α + 1)

∫
B1∩{|∇vε |>1}

|∇η|2L(∇vε)
α+2

(
1+ |F ′ε(∇vε)|

q−2
q−1
)

�μ(∇vε)
2−p dx

+ c

α + 1

∫
B1∩{|∇vε |≤1}

|∇η|2L(∇vε)
α+1+ 2

p dx

(2.3)≤ (II)

2
+ c

α + 1

∫
B1∩{|∇vε |>1}

|∇η|2L(∇vε)
α+2 (1+ |F ′ε(∇vε)|

q−p
q−1
)
dx

+ c

α + 1

∫
B1∩{|∇vε |≤1}

|∇η|2L(∇vε)
α+1+ 2

p dx

≤ (II)

2
+ c

α + 1

∫
B1∩{|∇vε |>1}

|∇η|2L(∇vε)
α+2 (1+ |F ′ε(∇vε)|

q−p
q−1
)
dx

+ c

α + 1

∫
B1∩{|∇vε |≤1}

|∇η|2lα(∇vε)
2 dx

≤ (II)

2
+ c

α + 1

∫
B1
|∇η|2lα(∇vε)

2
(
1+ |F ′ε(∇vε)|

q−p
q−1
)
dx,

with c ≡ c(n, L , p, q). Merging the content of the two previous displays, we derive

∫
B1

η2|∇lα(∇vε)|2 dx ≤ c

(
α + 2

α + 1

)2 ∫
B1
|∇η|2lα(∇vε)

2
(
1+ |F ′ε(∇vε)|

q−p
q−1
)
dx,

(6.20)

with c ≡ c(n, L , p, q). Let us briefly discuss the case α = −1: in (6.17) term (II)
vanishes, so we only need to estimate term (III) in a slightly different way than
what we did before. Via Cauchy Schwarz and Young inequalities we get
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|(III)| ≤ (I)

2
+ 8

∫
B1
|F ′′ε (∇vε)||∇vε|2|∇η|2 dx

(4.6)3,4≤ (I)

2
+ 8�

∫
B1∩{|∇vε |>1}

(
1+ |F ′ε(∇vε)|

q−2
q−1
)

�μ(∇vε)p−2
�μ(∇vε)

p|∇η|2 dx

+c
∫
B1∩{|∇vε |≤1}

�μ(∇vε)
2|∇η|2 dx

(2.3)≤ (I)

2
+ c

∫
B1∩{|∇vε |>1}

(
1+ |F ′ε(∇vε)|

q−p
q−1
)
L(∇vε)|∇η|2 dx

+c
∫
B1∩{|∇vε |≤1}

(
1+ L(∇vε)

1
2

)2 |∇η|2 dx

≤ (I)

2
+ c

∫
B1

(
1+ |F ′ε(∇vε)|

q−p
q−1
)
l−1(∇vε)

2|∇η|2 dx,

for c ≡ c(n, L , p, q), thus∫
B1

η2|∇l−1(∇vε)|2 ≤ c
∫
B1
|∇η|2l−1(∇vε)

2
(
1+ |F ′ε(∇vε)|

q−p
q−1
)
dx . (6.21)

Finally, with (6.20), (6.21) at hand and keeping in mind the validity of (6.14), we
can pick any constant Mε ≥ 1 satisfying (6.15) and turn (6.20), (6.21) into (6.16).
The proof is complete. ��

6.3. Proof of Theorem 1.6

We start by observing that there is no loss of generality in assuming

‖F ′ε(∇vε)‖L∞(B1/8) ≥ 1, (6.22)

otherwise the proof would be already finished. We then fix parameters 1/8 ≤ τ2 <

τ1 ≤ 1/4, corresponding to concentric balls B1/8 ⊆ Bτ2 ⊂ Bτ1 ⊆ B1/4, set Mε :=
‖F ′ε(∇vε)‖

q−p
q−1
L∞(Bτ1 ) and notice that (6.16) holds in particular for all nonnegative

η ∈ C1
c(Bτ1) and our choice of Mε matches (6.15) (keep in mind (6.22)). Moreover,

by (6.14)we see thatL(∇vε) ∈ L∞loc(B1), andl−1(∇vε) ∈W1,2
loc (B1). This, together

with (6.16) allows applying Lemma 6.1 to L(∇vε), with σ = τ1, α0 = −1, γ0
being any positive number less than p/q (say γ0 = p/(2q) < 1), Aα as in (6.2),
and M = Mε to get

‖F ′ε(∇vε)‖
p

q−1
L∞(Bτ2 )

(2.3)≤ c‖L(∇vε)‖L∞(Bτ2 ) + c

(6.3)≤ c

(τ1 − τ2)a0
‖F ′ε(∇vε)‖

γ (q−p)
(q−1)(1−γ )

L∞(Bτ1 ) ‖l−1(∇vε)‖2W1,2(Bτ1 )
+ c, (6.23)

for c ≡ c(n, L , p, q), a0 ≡ a0(n, p, q). Now, from (1.12) and our choice of γ0 we
deduce that

γ (q − p)

(q − 1)(1− γ )
<

p

q − 1
,
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so in (6.23) we can apply Young inequality with conjugate exponents

(
p(1−γ )
γ (q−p) ,

p(1−γ )
p−γ q

)
to have

‖Fε(∇uε)‖
p

q−1
L∞(Bτ2 ) ≤

1

4
‖Fε(∇uε)‖

p
q−1
L∞(Bτ1 ) +

c‖l−1(∇vε)‖
2p(1−γ )
p−γ q

W1,2(Bτ1 )

(τ1 − τ2)
pa0(1−γ )

p−γ q

+ c.

Lemma 2.6 then yields

‖F ′ε(∇vε)‖
p

q−1
L∞(B1/8)

≤ c‖l−1(∇vε)‖
2p(1−γ )
p−γ q

W1,2(B1/4)
+ c,

thus via (3.5)1,

‖∇vε‖L∞(B1/8) ≤ c‖l−1(∇vε)‖
2(1−γ )(q−1)
(p−1)(p−γ q)

W1,2(B1/4)
+ c

with c ≡ c(n, L , p, q). We then scale back on B to deduce via (6.13) and (4.21),

‖∇uε‖L∞(B/8) ≤ c‖Vμ,p(∇uε)‖
2(1−γ )(q−1)
(p−1)(p−γ q)

W1,2(B/4)
+ c ≤ c‖(F(∇u)+ 1)‖bL1(B)

,

for c ≡ c(n, L , Lμ, p, q) and b ≡ b(n, p, q) (possibly different from the one
appearing in (4.21)). Finally, we send ε→ 0 in the above display and use (4.53) to
conclude with (1.18). A standard covering argument completes the proof.

Acknowledgements. C. De Filippis is supported by the University of Parma via the
project “Local vs Nonlocal: mixed type operators and nonuniform ellipticity”, CUP_
D91B21005370003, and by the INdAM GNAMPA project “Problemi non locali: teoria
cinetica e non uniforme ellitticità”, CUP_E53C22001930001. We thank the anonymous ref-
eree for her/his helpful comments that eventually lead to an improved presentation of our
results.

Funding Open access funding provided by Università degli Studi di Parma within the
CRUI-CARE Agreement.

Data Availability Statement There is no data attached to this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna-
tional License, which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to thematerial. If material is not
included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


69 Page 48 of 51 Arch. Rational Mech. Anal. (2024) 248:69

References

1. Antonini, C. A., Cianchi, A., Ciraolo, G., Farina, A.,Maz’ya, V. G.: Global second-order
estimates in anisotropic elliptic problems. Preprint (2023). arXiv:2307.03052

2. Ball, J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity.
Phil. Trans. R. Soc. Lond. 306, 557–611, 1982

3. Baroni, P.: Riesz potential estimates for a general class of quasilinear equations. Calc.
Var. PDE 53, 803–846, 2015

4. Baroni, P., Di Castro, A., Palatucci, G.: Intrinsic geometry and de Giorgi classes
for certain anisotropic problems. Disc. Cont. Dyn. Systems 10(4), 647–659, 2017

5. Beck, L., Mingione, G.: Lipschitz bounds and nonuniform ellipticity. Comm. Pure
Appl. Math. 73, 944–1034, 2020

6. Bella, P., Schäffner, M.: On the regularity of minimizers for scalar integral func-
tionals with (p, q)-growth. Anal. PDE 13(7), 2241–2257, 2020

7. Bella, P., Schäffner, M.: Local boundedness and Harnack inequality for solutions of
linear nonuniformly elliptic equations. Comm. Pure Appl. Math. LXXIV, 0453–0477,
2021

8. Bella, P.,Schäffner,M.: Lipschitz bounds for integral functionalswith (p, q)-growth
conditions. Adv. Calc. Var. 17(2), 373–390, 2024

9. Bildhauer, M., Fuchs, M.: Two dimensional anisotropic variational problems. Calc.
Var. PDE 16, 177–186, 2003

10. Bonfanti, G., Cellina, A., Mazolla, M.: The higher integrability and the validity
of the Euler-Lagrange equation for solutions to variational problems. SIAM J. Control
Optim. 50, 888–899, 2012

11. Bousquet, P., Brasco, L.: C1 regularity of orthotropic p-harmonic functions in the
plane. Anal. PDE 11(4), 813–854, 2018

12. Bousquet, P., Brasco, L.: Lipschitz regularity for orthotropic functionals with non-
standard growth conditions. Rev. Math. Iberoam. 36(7), 1989–2032, 2020

13. Bögelein, V., Duzaar, F., Marcellini, P., Scheven, C.: Boundary regularity for
elliptic systems with p, q-growth. J. Math. Pures Appl. 159, 250–293, 2022

14. Campanato, S.: Hölder continuity of the solutions of some non-linear elliptic systems.
Adv. Math. 48, 16–43, 1983

15. Carozza, M., Kristensen, J., Passarelli di Napoli, A.: Higher differentiability of
minimizers of convex variational integrals. Ann. I. H. Poincaré - AN 28, 395–411, 2011

16. Carozza, M.,Kristensen, J., Passarelli di Napoli, A.: On the validity of the Euler-
Lagrange system. Comm. Pure Appl. Anal. 14, 1, 2015

17. Carozza, M., Kristensen, J., Passarelli di Napoli, A.: Regularity of minimizers
of autonomous convex variational integrals. Ann. Sc. Norm. Sup. Pisa Cl. Sci. XIII,
1065–1089, 2014

18. Cianchi, A.: Sharp Morrey-Sobolev inequalities and the distance from the extremals.
Trans. Am. Math. Soc. 360(8), 4335–4347, 2008

19. Cianchi, A.,Maz’ya, V.G.: Global boundedness of the gradient for a class of nonlinear
elliptic systems. Arch. Ration. Mech. Anal. 212(1), 129–177, 2014

20. Cianchi, A., Schäffner, M.: Local boundedness of minimizers under unbalanced
Orlicz growth conditions. J. Diff. Equ. 401, 58–92, 2024

21. Clozeau, N., Gloria, A.: Quantitative nonlinear homogenization: control of oscilla-
tions. Arch. Ration. Mech. Anal. 247, 67, 2023

22. De Filippis, C.: Quasiconvexity and partial regularity via nonlinear potentials. J. Math.
Pures Appl. 163, 11–82, 2022

23. De Filippis, C., Mingione, G.: On the regularity of minima of non-autonomous func-
tionals. J. Geom. Anal. 30, 1584–1626, 2020

24. De Filippis, C., Mingione, G.: Lipschitz bounds and nonautonomous integrals. Arch.
Ration. Mech. Anal. 242, 973–1057, 2021

25. De Filippis, C., Mingione, G.: Nonuniformly elliptic Schauder theory. Invent. math.
234, 1109–1196, 2023

http://arxiv.org/abs/2307.03052


Arch. Rational Mech. Anal. (2024) 248:69 Page 49 of 51 69

26. De Filippis, C., Piccinini, M.: Borderline global regularity for nonuniformly elliptic
systems. Int. Math. Res. Notices 20(2023), 17324–17376, 2023

27. De Filippis, C., Stroffolini, B.: Singular multiple integrals and nonlinear potentials.
J. Funct. Anal. 285(2), 109952, 2023

28. Douglis, A.,Nirenberg, L.: Interior estimates for elliptic systems of partial differential
equations. Comm. Pure Appl. Math. 8(4), 503–538, 1955

29. Ekeland, I., Témam, R.: Convex analysis and variational problems. Classics in Applied
Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA 28, (1999).

30. Esposito, L., Leonetti, F., Mingione, G.: Higher integrability for minimizers of in-
tegral functionals with (p, q) growth. J. Diff. Equ. 157, 414–438, 1999

31. Esposito, L.,Leonetti, F.,Mingione,G.: Regularity results forminimizers of irregular
integrals with (p, q) growth. Forum Math. 14, 245–272, 2002

32. Esposito, L., Leonetti, F.,Mingione, G.: Sharp regularity for functionals with (p, q)
growth. J. Diff. Equ. 204(1), 5–55, 2004

33. Evans, L.C.: Some new PDE methods for weak KAM theory. Calc. Var. PDE 17,
159–177, 2003

34. Franceschini, F.: Partial regularity for BVB minimizers. Preprint (2023).
arXiv:2310.20002

35. Frehse, J.: On Signorini’s problem and variational problems with thin obstacles. Ann.
Sc. Norm. Sup. Pisa Cl. Sci. 2, 343–362, 1977

36. Frehse, J.: Two dimensional variational problems with thin obstacle. Math. Z. 143,
279–288, 1975

37. Gehring, F.W.: The Lp-integrability of the partial derivatives of a quasi conformal
mapping. Acta Math. 130, 265–277, 1973

38. Giaquinta, M.: Growth conditions and regularity, a counterexample. Manuscr. Math.
59, 245–248, 1987

39. Giaquinta, M., Modica, G.: Regularity results for some classes of higher order non-
linear elliptic systems. J. Reine Ang. Math. 311(312), 145–168, 1979

40. Giaquinta, M., Modica, G.: Remarks on the regularity of the minimizers of certain
degenerate functionals. Manuscr. Math. 57, 55–99, 1986

41. Giusti, E.: Direct Methods in the calculus of variations. World Scientific Publishing
Co, River Edge (2003)

42. Gmeineder, F.: Partial regularity for symmetric quasiconvex functionals on BD. J.
Math. Pures Appl. 145, 83–129, 2021

43. Gmeineder, F., Kristensen, J.: Partial regularity for BV minimizers. Arch. Ration.
Mech. Anal. 232, 1429–1473, 2019

44. Gmeineder, F., J. Kristensen, F.: Quasiconvex functionals of (p, q)-growth and the
partial regularity of relaxed minimizers. Preprint (2022). arXiv:2209.01613

45. Hamburger, C.: Regularity of differential forms minimizing degenerate elliptic func-
tionals. J. Reine Angew. Math. 431, 7–64, 1992

46. Hirsch, J., Schäffner, M.: Growth conditions and regularity, an optimal local bound-
edness result. Commun. Contemp. Math. 23(3), 2050029, 2021

47. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algo-
rithms I—Fundamentals. Springer-Verlag, Berlin (1996)

48. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algo-
rithms II. Springer, Berlin (2010)

49. Irving, C., Koch, L.: Boundary regularity results for minimisers of convex functionals
with (p, q)-growth. Adv. Nonlinear Anal. 12, 20230110, 2023

50. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators
and Integral Functionals. Springer-Verlag, Berlin (1994)

51. Koch, L.: Global higher integrability for minimisers of convex functionals with (p, q)-
growth. Calc. Var. PDE 60(2), 63, 2021

52. Koch, L.: Global higher integrability for minimisers of convex obstacle problems with
(p, q)-growth. Calc. Var. PDE 61(3), 88, 2022

http://arxiv.org/abs/2310.20002
http://arxiv.org/abs/2209.01613


69 Page 50 of 51 Arch. Rational Mech. Anal. (2024) 248:69

53. Koch, L., Kristensen, J.: On the validity of the Euler-Lagrange system without growth
assumptions. Preprint (2022). arXiv:2203.00333

54. Koch, L., Ruf, M., Schäffner, M.: On the Lavrentiev gap for convex, vectorial integral
functionals. Preprint (2023). arXiv:2305.19934

55. Kristensen, J.: A necessary and sufficient condition for lower semicontinuity. Nonlin-
ear Anal. 120, 43–56, 2015

56. Ladyzhenskaya, O.A.,Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations.
Academic Press, New York-London (1968)

57. Li, Z.: Partial regularity for BV ω-minimizers of quasiconvex functionals. Calc. Var.
PDE 61, 178, 2022

58. Marcellini, P.: Growth conditions and regularity for weak solutions to nonlinear el-
liptic PDEs. J. Math. Anal. Appl. 501(1), 124408, 2021

59. Marcellini, P.: On the definition and the lower semicontinuity of certain quasiconvex
integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 391–409, 1986

60. Marcellini, P.: Un example de solution discontinue d’un probléme variationel dans le
cas scalaire. Preprint, Ist. U. Dini, Firenze (1987)-(1988).

61. Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations with
non-standard growth conditions. Arch. Rat. Mech. Anal. 105, 267–284, 1989

62. Marcellini, P.: The stored-energy for some discontinuous deformations in nonlinear elas-
ticity. Partial Differential Equations and the Calculus of Variations vol. II, Birkhäuser
Boston Inc., (1989).

63. Marcellini, P.: Regularity and existence of solutions of elliptic equations with p, q-
growth conditions. J. Differ. Equ. 90, 1–30, 1991

64. Marcellini, P.: Regularity for elliptic equations with general growth conditions. J.
Diff. Equ. 105, 296–333, 1993

65. Marcellini, P.: Regularity for some scalar variational problems under general growth
conditions. J. Optim. Theory Appl. 90, 161–181, 1996

66. Mooney, C., Savin, O.: Some singular minimizers in low dimensions in the Calculus
of Variations. Arch. Ration. Mech. Anal. 221, 1–22, 2016

67. Morrey, Jr., C. B.: Multiple integrals in the calculus of variations. Classics in Mathe-
matics Springer-Verlag, Berlin (2008)

68. Morrey, C.B., Jr.: On the analyticity of the solutions of analytic non-linear elliptic
systems of partial differential equations: part I. Analyticity in the interior. Amer. J.
Math. 80, 198–218, 1958

69. Necas, J.: Sur la régularité des solutions variationelles des équations elliptiques non-
linéaires d’ordre 2k en deux dimensions. Ann. Scu. Norm. Sup. Pisa III(21), 427–457,
1967

70. Rindler, F.: Calculus of Variations. Springer, Heidelberg (2018)
71. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
72. Ruf, M., Schäffner, M.: New homogenization results for convex integral functionals

and their Euler-Lagrange equations. Calc. Var. PDE 63, 32, 2024
73. Schäffner, M.: Higher integrability for variational integrals with non-standard growth

conditions. Calc. Var. Partial Differ. Equ. 60, 1–16, 2021
74. Schäffner, M.: Lipschitz bounds for nonuniformly elliptic integral functionals in the

plane. Proc. Amer. Math. Soc. (2024). proc/16878
75. Schmidt, T.: Regularity of minimizers of W1,p-quasiconvex variational integrals with

(p, q)-growth. Calc. Var. 32, 1–24, 2008
76. Schmidt, T.: Regularity theorems for degenerate quasiconvex energies with (p, q)-

growth. Adv. Calc. Var. 1(3), 241–270, 2008
77. Schmidt, T.: Regularity of Relaxed Minimizers of Quasiconvex Variational Integrals

with (p, q)-growth. Arch. Ration. Mech. Anal. 193, 311–337, 2009
78. Seregin, G.: On differentiability properties of the stress tensor in the Coulomb-Mohr

theory of plasticity. St. Petersburg Math. J. 4(6), 1257–1272, 1993
79. Šverák, V., Yan, X.: Non-Lipschitz minimizers of smooth uniformly convex function-

als. PNAS 99(24), 15269–15276, 2002

http://arxiv.org/abs/2203.00333
http://arxiv.org/abs/2305.19934


Arch. Rational Mech. Anal. (2024) 248:69 Page 51 of 51 69

80. Trudinger, N.S.: On Imbeddings into Orlicz spaces and some applications. J. Math.
Mech. 17(5), 473–483, 1967

81. Ural’tseva, N.N.: Degenerate quasilinear elliptic systems. Zap. Na. Sem. Leningrad.
Otdel. Mat. Inst. Steklov. (LOMI) 7, 184–222, 1968

C. De Filippis
Dipartimento SMFI,
Universitá di Parma,

Parco Area delle Scienze 53/A,
43124 Parma

Italy.
e-mail: cristiana.defilippis@unipr.it

and

L. Koch
MPI for Mathematics in the Sciences,

Inselstrasse 22,
04177 Leipzig
Germany.

e-mail: lkoch@mis.mpg.de

and

J. Kristensen
Mathematical Institute,
University of Oxford,

Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road,
Oxford

OX2 6GG UK.
e-mail: jan.kristensen@maths.ox.ac.uk

(Received December 22, 2023 / Accepted June 12, 2024)
Published online July 29, 2024

© The Author(s) (2024)


	Quantified Legendreness and the Regularity of Minima
	Abstract
	1 Introduction
	1.1 Techniques

	2 Preliminaries
	2.1 Notation
	2.2 Structural Assumptions
	2.3 Functional Analytical Tools for Degenerate Problems

	3 Growth Conditions and Convex Duality
	3.1 Convex Polynomials
	3.2 An Abstraction of the Quantified Legendre Condition

	4 Higher Differentiability Under Legendre -Growth
	4.1 Approximation Scheme
	4.2 Proof of Theorem 1.2
	4.3 Proof of Corollary 1.3
	4.3.1 Proof of Theorem 1.5, (i.)


	5 Smoothness in Two Space Dimensions
	5.1 Proof of Theorem 1.4: -Gradient Boundedness via Monotonicity Formula
	5.2 Proof of Theorem 1.4: -Gradient Boundedness via Renormalized Gehring–Giaquinta and Modica Lemma
	5.3 Proof of Theorem 1.4: Full Regularity
	5.3.1 Proof of Theorem 1.5, (ii.)


	6 The Scalar Case
	6.1 An Abstract  to  Iteration
	6.2 A Caccioppoli Type Inequality for Powers
	6.3 Proof of Theorem 1.6

	Acknowledgements.
	References




