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Abstract

Perhaps the most classical diffusion model for chemotaxis is the Keller–Segel
system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut = �u − ∇ · (u∇v) in R2 × (0,∞),

v(x) = (−�R2)−1u(x) := 1

2π

∫

R2
log

1

|x − z| u(z, t) dz,
u(·, 0) = u0 � 0 in R2.

(∗)

We consider the critical mass case
∫

R2 u0(x) dx = 8π , which corresponds to the
exact threshold betweenfinite-time blow-up and self-similar diffusion towards zero.
We find a radial function u∗

0 with mass 8π such that for any initial condition u0
sufficiently close to u∗

0 and mass 8π , the solution u(x, t) of (∗) is globally defined
and blows-up in infinite time. As t → +∞ it has the approximate profile

u(x, t) ≈ 1

λ2(t)
U

(
x − ξ(t)

λ(t)

)

, U (y) = 8

(1 + |y|2)2 ,

whereλ(t) ≈ c√
log t

, ξ(t) → q for some c > 0 and q ∈ R
2. This result affirmatively

answers the nonradial stability conjecture raised inGhoul andMasmoudi (Commun
Pure Appl Math 71:1957–2015, 2018).

1. Introduction

This paper deals with the classical Keller–Segel problem in R
2,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut =�u − ∇ · (u∇v) in R2 × (0,∞),

v =(−�R2)−1u := 1

2π

∫

R2
log

1

|x − z| u(z, t) dz,
u(·, 0) = u0 in R2,

(1.1)
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which is a well-known model for the dynamics of a population density u(x, t)
evolving by diffusionwith a chemotactic drift.We consider positive solutionswhich
are well defined, unique and smooth up to a maximal time 0 < T � +∞. This
problem formally preserves mass, in the sense that

∫

R2
u(x, t)dx =

∫

R2
u0(x) dx =: M for all t ∈ (0, T ).

An interesting feature of (1.1) is the connection between the second moment of the
solution and its mass which is precisely given by

d

dt

∫

R2
|x |2 u(x, t) dx = 4M − M2

2π
,

provided that the second moments are finite. If M > 8π , the negative rate of
production of the second moment and the positivity of the solution implies finite
blow-up time. If M < 8π the solution lives at all times and diffuses to zero with a
self similar profile according to [5]. When M = 8π the solution is globally defined
in time. If the initial second moment is finite, it is preserved in time, and there is
infinite time blow-up for the solution, as was shown in [4].

Globally defined in time solutions of (1.1) are of course its positive finite mass
steady states, which consist of the family

Uλ,ξ (x) = 1

λ2
U

(
x − ξ

λ

)

, U (y) = 8

(1 + |y|2)2 , λ > 0, ξ ∈ R
2. (1.2)

We observe that all these steady states have the exact mass 8π and infinite second
moment

∫

R2
Uλ,ξ (x) dx = 8π,

∫

R2
|x |2Uλ,ξ (x) dx = +∞.

As a consequence, if a solution of (1.1) is attracted by the family (Uλ,ξ ), its mass
must be larger than 8π and if the initial second moment is finite, then blow-up
occurs in a singular limit corresponding to λ → 0+.

In the critical mass M = 8π case, the infinite-time blow-up in (1.1) when the
second moment is finite, takes place in the form of a bubble in the form (1.2) with
λ = λ(t) → 0 according to [2,4]. Formal rates and precise profiles were derived
in [8,12] to be

λ(t) ∼ c√
log t

as t → +∞.

A radial solution with this rate was built by Ghoul and Masmoudi [26] and its
stability within the radial class was established. The framework of the construction
in [26] was actually fully nonradial, but for stability a spectral gap inequality only
known in the radial case was used. Numerical evidence for this inequality was
obtained in [7], and stability for general nonradial perturbation was conjectured in
[26]. A related spectral estimate, useful in the analysis of finite time blow-up was
found in [15].
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In this paper we construct an infinite-time blow-up solution with a different
method to that in [26], which in particular leads to a proof of the stability assertion
among non-radial functions. The following is our main result:

Theorem 1.1. There exists a nonnegative, radially symmetric function u∗
0(x) with

critical mass
∫

R2 u∗
0(x) dx = 8π and finite second moment

∫

R2 |x |2 u∗
0(x) dx <

+∞ such that for every u1(x) sufficiently close (in suitable sense) to u∗
0 with∫

R2 u1 dx = 8π , we have that the solution u(x, t) of system (1.1) with initial
condition u(x, 0) = u1(x) has the form

u(x, t) = 1

λ(t)2
U

( x − ξ(t)

λ(t)

)
(1 + o(1)), U (y) = 8

(1 + |y|2)2 (1.3)

uniformly on bounded sets of R2, and

λ(t) = c√
log t

(1 + o(1)), ξ(t) → q as t → +∞,

for some number c > 0 and some q ∈ R
2.

Sufficiently close for the perturbation u1(x) := u∗
0(x) + ϕ(x) in this result is

measured in the C1-weighted norm for some σ > 1

‖ϕ‖∗σ := ‖(1 + | · |4+σ )ϕ‖L∞(R2) + ‖(1 + | · |5+σ )∇ϕ(x)‖L∞(R2) < +∞.

The perturbation ϕ must have zero mass too.
“Uniformlyonbounded sets” ofR2 in (1.3)means that for anybounded K ⊂ R

2

lim
t→∞ sup

x∈K
λ(t)2U

( x − ξ(t)

λ(t)

)−1
∣
∣
∣
∣u(x, t) − 1

λ(t)2
U

( x − ξ(t)

λ(t)

)∣
∣
∣
∣ = 0.

The expansion of u(x, t) can be made more precise though, and this is explained
along the proof of theorem.

The scaling parameter is rather simple to find at main order from the approxi-
mate conservation of second moment, see Sect. 2. The center ξ(t) actually obeys a
relatively simple system of nonlocal ODEs.

We devote the rest of this paper to the proof of Theorem 1.1. Our approach
borrows elements of constructions in the works [16–18,21] based on the so-called
inner-outer gluing scheme, where a system is derived for an inner equation defined
near the blow-up point and expressed in the variable of the blowing-up bubble, and
an outer problem that sees the whole picture in the original scale. The result of
Theorem 1.1 has already been announced in [20] in connection with [16,18,21].

There is a vast literature on chemotaxis in biology and in mathematics. The
Patlak–Keller–Segel model [35,44] is used in mathematical biology to describe
the motion of mono-cellular organisms, like Dictyostelium Discoideum, which
move randomly but experience a drift in presence of a chemo-attractant. Under
certain circumstances, these cells are able to emit the chemo-attractant themselves.
Through the chemical signal, they coordinate theirmotion and eventually aggregate.
Such a self-organization scenario is at the basis of many models of chemotaxis and
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is considered as a fundamental mechanism in biology. Of course, the aggregation
induced by the drift competes with the noise associated with the random motion
so that aggregation occurs only if the chemical signal is strong enough. A classical
survey of themathematical problems in chemotaxismodels can be found in [31,32].
After a proper adimensionalization, it turns out that all coefficients in the Patlak–
Keller–Segel model studied in this paper can be taken equal to 1 and that the only
free parameter left is the total mass. For further considerations on chemotaxis, we
shall refer to [30] for biological models and to [11] for physics backgrounds.

In many situations of interest, cells are moving on a substrate. The two-dimen-
sional case is therefore of special interest in biology, but also turns out to be partic-
ularly interesting from the mathematical point of view as well, because of scaling
properties, at least in the simplest versions of the Keller–Segel model. Boundary
conditions induce various additional difficulties. In the idealized situation of the
Euclidean planeR2, it is known since the early work ofW. Jäger and S. Luckhaus
[33] that solutions globally exist if the mass M is small and blow-up in finite time
if M is large. The blow-up in a bounded domain is studied in [1,33,39,40,46].
The precise threshold for blow-up, M = 8π , has been determined in [5,23], with
sufficient conditions for global existence if M � 8π in [5] (also see [22] in the
radial case). The key estimate is the boundedness of the free energy, which relies
on the logarithmic Hardy–Littlewood–Sobolev inequality established in optimal
form in [9]. We refer to [3] for a review of related results. If M < 8π , diffusion
dominates: intermediate asymptotic profiles and exact rates of convergence have
been determined in [7]. Also see [25,41]. In the supercritical case M > 8π , vari-
ous formal expansions are known for many years, starting with [27,28,49] which
were later justified in [38,45], in the radial case, and in [14], in the non-radially
symmetric regime. This latter result is based on the analysis of the spectrum of a
linearized operator done in [15], based on the earlier work [19], and relies on a
scalar product already considered in [45] and similar to the one used in [6,7] in the
subcritical mass regime. An interesting subproduct of the blow-up mechanism in
[29,45] is that the blow-up takes the form of a concentration in the form of a Dirac
distribution with mass exactly 8π at blow-up time, as was expected from [24,29],
but it is still an open question to decide whether this is, locally in space, the only
mechanism of blow-up.

The critical mass case M = 8π is more delicate. If the second moment is
infinite, there is a variety of behaviors as observed for instance in [36,37,43]. For
solutions with finite secondmoment, blow-up is expected to occur as t → +∞: see
[34] for grow-up rates in R

2, and [48] for the higher-dimensional radial case. The
existence inR2 of a global radial solution and first results of large time asymptotics
were established in [2] using cumulated mass functions. In [4], the infinite time
blow-up was proved without symmetry assumptions using the free energy and
an assumption of boundedness of the second moment. Also see [42,43] for an
existence result under weaker assumptions, and further estimates on the solutions.
Asymptotic stability of the family of steady states determined by (1.2) under the
mass constraint M = 8π has been determined in [10]. The blow-up rate λ(t) and
the shape of the limiting profileU were identified in formal asymptotic expansions
in [12,13,47,49,50] and also in [8, Chapter 8]. As already mentioned, a radial



Arch. Rational Mech. Anal. (2024) 248:61 Page 5 of 154 61

solution with rate λ(t) ∼ (log t)−1/2 was built and its stability within the radial
class was established in [26].

2. Formal Derivation of the Behavior of the Parameters

We consider here a first approximation to a solution u(x, t) of (1.1), globally
defined in time, such that on bounded sets in x ,

u(x, t) = 1

λ(t)2
U

(
x − ξ(t)

λ(t)

)

(1 + o(1)) as t → +∞ (2.1)

for certain functions 0 < λ(t) → 0 and ξ(t) → q ∈ R
2, where we recall that

U (y) = 8

(1 + |y|2)2 .

We know that (2.1) can only happen in the critical mass, finite second moment
case,

∫

R2
u(x, t)dx = 8π,

∫

R2
|x |2u(x, t)dx < +∞,

which according to the results in [4,12,26] is consistent with a behavior of the form
(2.1). Since the secondmoment ofU is infinite, we do not expect the approximation
(2.1) be uniform in R

2 but sufficiently far, a faster decay in x should take place
as we shall see next. We will find an approximate asymptotic expression for the
scaling parameter λ(t) that matches with this behavior.

Let us introduce the function �0 := (−�)−1U. We directly compute

�0(y) = log
8

(1 + |y|2)2
and hence �0 solves the Liouville equation

−��0 = e�0 = U in R2.

Then ∇�0(y) ≈ − 4y
|y|2 for all large y, and hence we get, away from x = ξ ,

−∇ · (u∇(−�)−1u) ≈ 4∇u · x − ξ

|x − ξ |2 .

Therefore, defining

E(u) := �u − ∇ · (u∇(−�)−1u) (2.2)

and writing in polar coordinates

u(r, θ, t) = u(x, t), x = ξ(t) + reiθ ,
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we find E(u) ≈ ∂2r u + 5
r ∂r u. Hence, assuming that ξ̇ (t) → 0 sufficiently fast,

equation (1.1) approximately reads as

∂t u = ∂2r u + 5

r
∂r u,

which can be idealized as a homogeneous heat equation inR6 for radially symmetric
functions. It is therefore reasonable to believe that beyond the self-similar region
r � √

t the behavior changes into a function of r/
√
t with fast decay at +∞ that

yields finiteness of the second moment. To obtain a first global approximation, we
simply cut-off the bubble (2.1) beyond the self-similar zone. We introduce a further
parameter α(t) and set

ū(x, t) = α(t)

λ2
U

( x − ξ

λ

)
χ(x, t), (2.3)

where

χ(x, t) = χ0

( x − ξ√
t

)
(2.4)

with χ0 a smooth radial cut-off function such that

χ0(z) =
{
1 if |z| � 1,

0 if |z| � 2.
(2.5)

We introduce the parameterα(t) because the totalmass of the actual solution should
equal 8π for all t . However,

1

λ2

∫

R2
U

( x − ξ

λ

)
χ(x, t) dx = 8π + 16πϒ

λ2

t
+ O

(λ4

t2

)
(2.6)

as t → ∞, where

ϒ =
∫ ∞

0
(χ̃0(s) − 1)s−3ds < 0, (2.7)

and χ0(x) = χ̃0(|x |). To achieve
∫

R2 ū(x, t) dx = 8π we set α = ᾱ where

ᾱ(t) = 1 − 2ϒ
λ2

t
+ O

(λ4

t2

)
.

Next we will obtain an approximate value of the scaling parameter λ(t) that is
consistent with the existence of a solution u(x, t) ≈ ū(x, t)where ū is the function
in (2.3) with α = ᾱ. Let us consider the “error operator”

S(u) = −ut + E(u), (2.8)

where E(u) is defined in (2.2). We have the following well-known identities, valid
for an arbitrary function ω(x) of class C2(R2) with finite mass and D2ω(x) =
O(|x |−4−σ ) for large |x |:

∫

R2
|x |2E(ω) dx = 4M − M2

2π
, M =

∫

R2
ω(x)dx (2.9)
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and
∫

R2
xE(ω) dx = 0,

∫

R2
E(ω) dx = 0. (2.10)

Let us recall the simple proof of (2.9). Integrating by parts on finite balls with large
radii and using the behavior of the boundary terms we get the identities

∫

R2
|x |2�ω dx = 4M,

∫

R2
|x |2∇ · (ω∇(−�)−1)ω) dx = −2

∫

R2
x · ω∇(−�)−1ω dx

= 1

π

∫

R2

∫

R2
ω(x)ω(y)

x · (x − y)

|x − y|2 dx dy

= 1

2π

∫

R2

∫

R2
ω(x)ω(y)

(x − y) · (x − y)

|x − y|2 dx dy

= M2

2π
(2.11)

and then (2.9) follows. The proof of (2.10) is even simpler. For a solution u(x, t)
of (1.1) we then get

d

dt

∫

R2
u(x, t)|x |2dx = 4M − M2

2π
, M =

∫

R2
u(x, t)dx .

In particular, if u(x, t) is sufficiently close to ū(x, t) and since
∫

R2 ū(x, t)dx =
8π , we get the approximate validity of the identity

d

dt

∫

R2
ū(x, t)|x |2dx = 0.

This means

aI (t) :=
∫

R2

ᾱ

λ2
U

(
x − ξ

λ

)

χ0

(
x − ξ√

t

)

|x |2dx = constant.

We readily check that for some constant κ

I (t)=16πλ2
∫

√
t

λ

0

ρ3dρ

(1 + ρ2)2
+ κ + o(1)=16πλ2 log

√
t

λ
+ κ+o(1) as λ → 0.

Then we conclude that λ(t) approximately satisfies

λ2 log t = c2 = constant

and hence we get at main order

λ(t) = c√
log t

.
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We also notice that the center of mass is preserved for a true solution, thanks to
(2.10):

d

dt

∫

R2
xu(x, t)dx = 0.

Since the center of mass of ū(x, t) is exactly ξ(t) we then get that approximately

ξ(t) = constant = q.

3. The Approximations u0 and u1

From now on we to consider the Keller–Segel system starting at a large t0,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut =�u − ∇ · (u∇v) in R2 × (t0,∞),

v =(−�R2)−1u := 1

2π

∫

R2
log

1

|x − z| u(z, t) dz,
u(·, t0) = u0 in R2,

(3.1)

which is equivalent to (1.1). We do this so that some expansions for t large take a
simpler form.

In this section we will define a basic approximation to a solution of the Keller–
Segel system (3.1). Let us consider parameter functions

0 < λ(t) → 0, ξ(t) → q, α(t) → 1 as t → +∞
that we will later specify. Let us consider the functions

U (y) = 8

(1 + |y|2)2 , �0(y) = logU (y)

and define the approximate solution u0(x, t) as

u0(x, t) = α

λ2
U

( x − ξ

λ

)
χ(x, t),

v0(x, t) = (−�x )
−1u0 = 1

2π

∫

R2
log

1

|x − x̄ | u0(x̄, t) dx̄, (3.2)

where χ is the cut-off function (5.3). We consider the error operator

S(u) = −∂t u + E(u),

where

E(u) = �xu − ∇x · (u∇xv), v = (−�x )
−1u.

and next measure the error of approximation S(u0).
We have

−∂t u0(x, t) = − α̇

λ2
U (y)χ0(z) + α

λ̇

λ3
Z0χ0(z) + α

λ3
ξ̇ · ∇yU (y) χ0(z)
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+ α

λ2
√
t
U (y)ξ̇ · ∇zχ0(z) + α

2λ2t
U (y)∇zχ0(z) · z,

z = x − ξ√
t

(3.3)

where

Z0(y) = 2U (y) + y · ∇yU (y), y = x − ξ

λ
. (3.4)

We also have

E(u0) = �xu0 − ∇x · (u0∇xv0)

= 2α

λ3t1/2
∇zχ0(z) · ∇yU (y) + α

t

1

λ2
�zχ0(z)U (y) − α

λ2
√
t
U (y)∇zχ0(z) · ∇xv0

+ αχ0(z)

λ4

[
(χ0(z)α − 1)U2(y) − ∇yU (y) · (∇yv0 − ∇y�0)

]
.

Let us decompose

v0(y) = α�0(y) + R(y). (3.5)

For the term R in (3.5) we directly estimate

|∇yR(y)| ≤
{

λ2

t
1
|y| |y| ≥

√
t

λ
,

0 |y| ≤
√
t

λ
.

(3.6)

Then

E(u0) = 2α

λ3t1/2
∇zχ0(z) · ∇yU (y) + α

t

1

λ2
�zχ0(z)U (y) − α

λ2
√
t
U (y)∇zχ0(z)∇xv0

+ αχ0(z)

λ4

[
(α − 1)U2(y) − (α − 1)∇yU (y) · ∇y�0(y) + α(χ0(z) − 1)U2(y)

− ∇yU (y) · ∇yR(y)
]
.

and thus

S(u0) = − α̇

λ2
U (y)χ0(z) + α

λ̇

λ3
Z0χ0(z) + α

λ3
ξ̇ · ∇yU (y) χ0(z)

+ α

λ2
√
t
U (y)ξ̇ · ∇zχ0(z) + α

2λ2t
U (y)∇zχ0(z) · z

+ 2α

λ3t1/2
∇zχ0(z) · ∇yU (y) + α

t

1

λ2
�zχ0(z)U (y)

− α

λ2
√
t
U (y)∇zχ0(z) · ∇xv0

− α(α − 1)χ0(z)

λ4
∇y · (U (y)∇y�0(y))

+ αχ0(z)

λ4

[
α(χ − 1)U 2(y) − ∇yU (y) · ∇yR(y)

]
. (3.7)
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For a function v(ζ ) defined for ζ ∈ R
2 consider the operator

�6v(ζ ) = �v(ζ ) + 4
ζ

|ζ |2 · ∇ζ v(ζ ). (3.8)

The reason for the notation is that for radial functions v = v(r), r = |ζ |, we have

�6v = ∂2r v + 5

r
∂rv,

which corresponds to Laplace’s operator in R6 on radial functions.
Let ϕ̃λ(ζ, t) be the (radial) solution to

⎧
⎪⎨

⎪⎩

∂t ϕ̃λ = �6ϕ̃λ + E(ζ, t) in R2 × (
t0
2
,∞),

ϕ̃λ(·, t0
2
) = 0 in R2,

(3.9)

given by Duhamel’s formula, where E(ζ, t) is the radial function

E(ζ, t; λ) = λ̇

λ3
Z0

(ζ

λ

)
χ0

( ζ√
t

)
+ 1

2λ2t
U

(ζ

λ

)
∇zχ0(z) · z + Ẽ(x, t), (3.10)

and

Ẽ(ζ, t; λ) = 2

λ3t1/2
∇zχ0(z) · ∇yU (y) + 1

λ2t
�zχ0(z)U (y)

− 1

λ3t1/2
U (y)∇zχ0(z) · ∇y�0(y), (3.11)

with z = ζ√
t
, y = ζ

λ
.

We then define

ϕλ(x, t) = ϕ̃λ(x − ξ(t), t). (3.12)

The reason to define ϕλ for t > t0
2 is that it gives better properties for the

first approximation of λ constructed in Sect. 7. Since λ(t) is defined naturally for
t > t0, we will need to define λ(t) for t0

2 < t < t0 in an appropriate way (see
Proposition 5.1 and Sect. 7). We will write λ = λ0 + λ1 where both of these
functions are constructed so that they are defined for t > t0

2 . The construction of
λ0 is given in Proposition 5.1. In particular λ0(t) = c0√

log t
(1 + o(1)) as t → ∞.

Note that ϕλ(·, t0) is not zero.
We define the approximate solution

u1 := u0 + ϕλ (3.13)

which depends on the parameter functions α(t), ξ(t), λ(t). Correspondingly, we
write

v1 = (−�x )
−1(u1) .

We will establish in the next sections that a suitable choice of these functions
makes it possible to find an actual solution of (3.1) as a lower order perturbation of
u1.
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4. The First Error of Approximation

We will assume the following conditions on λ, α, ξ
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

|λ(t)| + t log(t)|λ̇(t)| ≤ C
√
log(t)

|ξ̇ (t)| ≤ C

tγ

|α(t) − 1| ≤ C

t log t
, |α̇(t)| ≤ C

t2 log t
,

(4.1)

where 3
2 < γ < 2.

We compute

S(u1) = S(u0 + ϕλ) = S(u0) − ∂tϕλ + Lu0 [ϕλ] − ∇ · (ϕλ∇ψλ).

where

Lu0 [ϕ] = �ϕ − ∇ · (ϕ∇v0) − ∇ · (u0∇ψ),

ψλ = (−�)−1ϕλ, v0 = (−�)−1u0.

Then

S(u1) = − α̇

λ2
U (y)χ + (α − 1)

λ̇

λ3
Z0χ + α

λ3
ξ̇ · ∇yU (y) χ + α

λ2
√
t
U (y)ξ̇ · ∇χ0

+ (α − 1)

2t

1

λ2
U∇zχ0 · x − ξ√

t
+ 2(α − 1)

λ3t1/2
∇zχ0 · ∇yU

+ (α − 1)

t
�χ0

1

λ2
U − α2 − 1

λ3
√
t
U∇zχ0 · ∇y�0 − α

λ3
√
t
U∇zχ0 · ∇yR

− α(α − 1)χ

λ4
∇y · (U∇y�0) + α2χ(1 − χ)

λ4
U 2 − αχ

λ4
∇yU · ∇yR

+ ∇ϕλ · ξ̇ − 4

r
∂rϕλ − ∇ · (ϕλ∇v0) − ∇ · (u0∇ψλ) − ∇ · (ϕλ∇ψλ),

(4.2)

where R is defined in the decomposition (3.5).

Lemma 4.1. Let ϕλ be defined by (3.12)-(3.9) with λ satisfying (4.1). Then

|ϕλ(x, t)| + (|x − ξ | + λ)|∇ϕλ(x, t)| ≤ C
1

t log t

⎧
⎨

⎩

1
λ2+|x−ξ |2 |x − ξ | ≤ √

t

1
t e

− |x−ξ |2
4t |x − ξ | ≥ √

t .

(4.3)

We also have

|∇ϕλ(x, t)| ≤ C

t log t

|x − ξ |
(λ + |x − ξ |)4 , |x − ξ | ≤ √

t . (4.4)
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Proof. In terms of the function ϕ̃λ defined in (3.9), with r = |x − ξ | we claim that

|ϕ̃λ(r, t)| ≤ C
1

t log t

{
1

λ2+r2
r ≤ √

t,

1
t e

− r2
4t r ≥ √

t .

For the proof of this we use barriers. Consider

ψ1(r, t) = 1

t log t

1

λ2 + r2

and note that

∂tψ1 −
(
∂rr + 5

r
∂r

)
ψ1 ≥ c

λ−4

t log t (1 + r/λ)4
, r ≤ 2δ

√
t

for some c > 0, δ > 0.
Let χδ

√
t (r, t) = χ̃0(

r
δ
√
t
) where χ̃0 ∈ C∞(R) is such that χ̃0(s) = 1 for s ≤ 1

and χ̃0(s) = 0 for s ≥ 2. Consider

ψ(r, t) = ψ1(r, t)χδ
√
t (r, t) + C1

t2 log t
e− r2

4t .

The function Ẽ (3.11) can be estimated by

|Ẽ(ζ, t)| ≤ 1

λ2t3
h1

( ζ√
t

)

where h1(z) is a smooth function with compact support. Then E (3.10) has the
estimate

|Ẽ(ζ, t)| ≤ C
|λλ̇|

(r2 + λ2)2
+ 1

λ2t3
h2

( ζ√
t

)

where h2(z) is a smooth function with compact support.
Then for C1 sufficiently large

∂tψ −
(
∂rr + 5

r
∂r

)
ψ ≥ c|E(r, t)|,

where c > 0.
By the comparison principle,

|ϕ̃λ(r, t)| ≤ Cψ(r, t),

for some uniform constant C . After a suitable scaling, from standard parabolic
estimates we also get

(λ + r)|∇x ϕ̃λ(r, t)| ≤ Cψ(r, t).

With these two inequalities we obtain (4.3).
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To prove (4.4) we change variables y = x−ξ
λ

in the equation (3.9) and define

ϕ̃λ(r, t) = 1

λ2
ϕ̂λ

( r

λ
, t

)
.

We get the equation, after interpreting ρ = |y|, y ∈ R
6

λ2∂t ϕ̂ = �R6 ϕ̂ + λλ̇(2ϕ̂λ + y · ∇y ϕ̂λ) + λ4E(λy, t),

where E is defined in (3.10). Differentiating with respect to y and using the bound
we already have for ∇y ϕ̂λ from (4.4), and using standard parabolic estimates, we
get

|D2
y ϕ̂λ(y, t)| ≤ C

t log t

1

(1 + |y|)4 , |y| ≤ √
t log t .

Using that ∇ϕ̂λ(0, t) = 0 we deduce that

|∇y ϕ̂λ(y, t)| ≤ C

t log t

|y|
(1 + |y|)4 , |y| ≤ √

t log t,

which readily gives (4.4). ��
Lemma 4.2. Assuming (4.1) we have

λ4|S(u1)|χ(x, t) ≤ C
1

t log t

log(2 + |y|)
1 + |y|6 , y = x − ξ

λ
, (4.5)

and

|S(u1)|(1 − χ) ≤ C
1

t4 log t
e−c |x |2

t , (4.6)

for some c ∈ (0, 1
4 ).

Proof. Let us analyze the terms involving ϕλ. We estimate, using Lemma 4.1,

∣
∣
∣λ

2U (y)ϕλ(ξ + λy)
∣
∣
∣ ≤ C

1

t log t

1

(1 + |y|)6 , |y| ≤ √
t log t .

Similarly, by (3.5)

−4

r
∂r ϕ̃λ − ∇ϕ̃λ · ∇v0=−4

r
∂r ϕ̃λ−∇ϕ̃λ · ∇�0−(α − 1)∇ϕ̃λ · ∇�0−∇ϕ̃λ · ∇R

= 4
( r

r2 + λ2
− 1

r

)
∂r ϕ̃λ−(α − 1)∇ϕ̃λ · ∇�0−∇ϕ̃λ · ∇R.

(4.7)

By (4.4)

∣
∣
∣λ

44
( r

r2 + λ2
− 1

r

)
∂rϕλ

∣
∣
∣ ≤ C

t log t

1

(1 + |y|)6 , |y| ≤ √
t log t .
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The other terms in (4.7) are estimated similarly, using the hypotheses on α and the
estimate onR (3.6), and we get

∣
∣
∣
∣−

4

r
∂r ϕ̃λ − ∇ϕ̃λ · ∇v0

∣
∣
∣
∣ ≤ C

t log t

1

(1 + |y|)6 , |y| ≤ √
t log t .

The terms involving ψλ = (−�)−1ϕλ are estimated using the formula

∂rψλ(r, t) = 1

r

∫ r

0
ϕλ(s, t)sds.

In λ4S(u1) we have also the term −α̇λ2U (y)χ , which thanks to (4.1) can be
estimated as

∣
∣
∣λ

2α̇U (y)χ
∣
∣
∣ ≤ Cλ2

t2 log t

1

(1 + |y|)4χ(y, t) ≤ C

t log t

1

(1 + |y|)6χ(y, t).

The remaining terms are estimated similarly, and we obtain (4.5).
The stated inequality (4.6) follows from theGaussian decay ofϕλ in Lemma4.1.

��

5. The Inner–Outer Gluing System

Let us consider the initial approximation

u1(x, t) = u0(x, t) + ϕλ(x, t)

built in Sect. 3 for a given choice of the parameter functions λ(t), α(t), ξ(t) satis-
fying (4.1). Here u0 is the function defined in (3.2) and ϕλ that in (3.12). We look
for a solution of the Keller–Segel equation (3.1) in the form of a small perturbation
of u1, namely

u(x, t) = u1(x, t) + �(x, t). (5.1)

We write the perturbation� as a sum of an “inner” contribution, better expressed in
the scale of u0, and a remote effect that takes into consideration the “outer” regime.
Precisely, we write

�(x, t) = 1

λ2
φi (y, t)χ(x, t) + ϕo(x, t), y = x − ξ

λ
, (5.2)

where χ is the smooth cut-off

χ(x, t) = χ0

( x − ξ√
t

)
(5.3)

with χ0 a smooth radial cut-off function such that χ0(z) = 1 if |z| � 1, χ0(z) = 1
if |z| � 2. (The same as defined in (2.4).)

Recall S(u) given by

S(u) = −∂t u + �u − ∇ · (u∇v), v = (−�)−1u,
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where the operators act on the original variable x unless otherwise indicated. In the
computations that follow we will express the equation

S(u1 + �) = 0

for � given by (5.2), as a parabolic system in its inner and outer contributions φi

and ϕo. The coupling in that system will be small if φi (y, t) decays sufficiently fast
in space and time. That can only be achieved for suitable choices of the parameters
α, λ, ξ that yield certain solvability conditions satisfied. The set of all these relations
is what we call the inner-outer gluing system. Next we formulate this system. It will
be necessary to successively refine its original expression by further decomposing
φi into two contributions with separate space decay, finally arriving at the equations
(5.48), (5.49), (5.50) and (5.52) which are the ones we will actually solve.

Let us observe that

S(u1 + �) = S(u1) − ∂t

( 1

λ2
φiχ

)
− ∂tϕ

o + Lu1

[ 1

λ2
φiχ

]
+Lu1 [ϕo]

− ∇ · (�∇(−�)−1�),

where

Lu1 [ϕ] = �ϕ − ∇ · (ϕ∇v1) − ∇ · (u1∇(−�)−1ϕ), v1 = (−�)−1u1.

We use the notation

ψ = 1

λ2
(−�)−1φi , ψ̂ = 1

λ2
(−�)−1(φiχ),

in the expressions that follow. We expand

Lu1

[
1

λ2
φiχ

]

= χ
1

λ2
�φi + 2

λ2
∇χ · ∇φi + 1

λ2
φi�χ − ∇ ·

(
1

λ2
φiχ∇v1

)

− ∇ · (u1∇ψ̂).

We have

∇ · (u1∇ψ̂) = ∇ ·
( α

λ2
U∇ψ

)
χ + ∇ ·

( α

λ2
U∇(ψ̂ − ψ)

)
χ + α

λ2
U∇χ · ∇ψ̂

+ ∇ · (ϕλ∇ψ) + ∇ · (ϕλ∇(ψ̂ − ψ))

and

∇ ·
(

1

λ2
φiχ∇v1

)

= ∇ ·
(

1

λ2
φi∇v1

)

χ + 1

λ2
φi∇χ · ∇v1.

Recall the notation

v1 = v0 + ψλ, v0 = α

λ2
(−�)−1(Uχ), ψλ = (−�)−1ϕλ,

and also (3.5)

v0 = α�0 + R, R = α

λ2
(−�)−1(U (χ − 1)

)
.
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Then

∇ ·
(

1

λ2
φiχ∇v1

)

= ∇ ·
(

1

λ2
φi∇v0

)

χ + ∇ ·
(

1

λ2
φi∇ψλ

)

χ + 1

λ2
φi∇χ · ∇v0

+ 1

λ2
φi∇χ · ∇ψλ

= α

λ2
∇ · (φi∇�0)χ+∇ ·

(
1

λ2
φi∇R

)

χ+∇ ·
(

1

λ2
φi∇ψλ

)

χ

+ α

λ2
φi∇χ · ∇�0 + 1

λ2
φi∇χ · ∇R + 1

λ2
φi∇χ · ∇ψλ.

Therefore

Lu1

[
1

λ2
φiχ

]

= χ
1

λ2
�φi + 2

λ2
∇χ · ∇φi + 1

λ2
φi�χ

−
[
∇ ·

( α

λ2
φi∇�0

)
χ + ∇ ·

( 1

λ2
φi∇R

)
χ + ∇ ·

( 1

λ2
φi∇ψλ

)
χ

+ α

λ2
φi∇χ · ∇�0 + 1

λ2
φi∇χ · ∇R + 1

λ2
φi∇χ · ∇ψλ

]

−
[
∇ ·

( α

λ2
U∇ψ

)
χ + ∇ ·

( α

λ2
U∇(ψ̂ − ψ)

)
χ + α

λ2
U∇χ · ∇ψ̂

+ ∇ · (ϕλ∇ψ) + ∇ · (ϕλ∇(ψ̂ − ψ))
]
.

Next we expand

Lu1 [ϕo] = �ϕo − ∇ · (ϕo∇v1) − ∇ · (u1∇ψo), ψo = (−�)−1ϕo.

We have

∇ · (u1∇ψo) = ∇ ·
( α

λ2
Uχ∇ψo

)
+ ∇ · (ϕλ∇ψo)

= ∇ ·
( α

λ2
U∇ψo

)
χ + α

λ2
U∇χ · ∇ψo + ∇ · (ϕλ∇ψo)χ

+ ∇ · (ϕλ∇ψo)(1 − χ),

and

∇ · (ϕo∇v1) = ∇ · (ϕo∇v0) + ∇ · (ϕo∇ψλ)

= α∇ · (ϕo∇�0) + ∇ · (ϕo∇R) + ∇ · (ϕo∇ψλ)

= ∇ϕo · ∇�0 − 1

λ2
Uϕo + (α − 1)∇ · (ϕo∇�0)

+ ∇ · (ϕo∇R) + ∇ · (ϕo∇ψλ).

Therefore,

Lu1 [ϕo] = �ϕo −
[
∇ ·

( α

λ2
U∇ψo

)
χ + α

λ2
U∇χ · ∇ψo + ∇ · (ϕλ∇ψo)χ

+ ∇ · (ϕλ∇ψo)(1 − χ)
]
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−
[
∇ϕo · ∇�0 − 1

λ2
Uϕo + (α − 1)∇ · (ϕo∇�0)

+ ∇ · (ϕo∇R) + ∇ · (ϕo∇ψλ)
]
.

Based on the previous formulas we formulate the inner equation

λ4∂t

(
1

λ2
φi

)

= L[φi ] − (α − 1)∇y · (U∇yψ) − (α − 1)∇y · (φi∇�0) + λ4S(u1)

− λ2∇y · (ϕλ∇yψ
o) − λ2∇y · (ϕo∇yψλ) + λ2Uϕo − α∇y · (U∇yψ

o)

− λ2∇y · (ϕλ∇yψ) − ∇y · (φi∇yψλ) − (α − 1)λ2∇ · (ϕo∇�0)

− α∇y · (U∇y(ψ̂ − ψ)) − λ2∇y · (ϕλ∇y(ψ̂ − ψ))

− ∇y · ((φiχ + λ2ϕo)∇y(ψ̂ + ψo)),

where

L[φ] = �yφ − ∇y · (U∇yψ) − ∇y · (φ∇�0). (5.4)

We slightly modify the inner equation into the form

λ2∂tφ
i = L[φi ] + B0[φi ] + E1χ̃ + F(φi , ϕo,p)χ̃ (5.5)

where

p = (λ, α, ξ),

E1(y, t) = λ4S(u1(p))(x, t), y = x − ξ

λ
,

F(φi , ϕo,p) = −λ2∇y · (ϕλ∇yψ
o) − λ2∇y · (ϕo∇yψλ) + λ2Uϕo

− (α − 1)λ2∇y · (ϕo∇y�0) − α∇y · (U∇yψ
o)

+ λξ̇ · ∇yφ
i − λ2∇y · (ϕλ∇yψ) − ∇y · (φi∇yψλ)

− (α − 1)∇y · (U∇yψ) − (α − 1)∇y · (φi∇y�0)

− α∇y · (U∇y(ψ̂ − ψ)) − λ2∇y · (ϕλ∇y(ψ̂ − ψ))

− ∇y · ((φiχ + λ2ϕo)∇y(ψ̂ + ψo)), ψ̂ = (−�y)
−1(φiχ),

(5.6)

B0[φi ] = λλ̇(2φi + y · ∇yφ
i ), (5.7)

and

χ̃ (y, t) = χ0

( λy

2
√
t

)
, (5.8)

with χ0 as in (2.5). Similarly we formulate the outer equation as

∂tϕ
o = �ϕo − ∇�0 · ∇ϕo + G(φi , ϕo,p) (5.9)
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where

G(φi , ϕo, p)= S(u1, p)(1−χ)+ 2

λ2
∇χ · ∇φi + 1

λ2
φi�χ− 1

λ2
φi∂tχ− α

λ2
φi∇χ · ∇�0

+ 1

λ2
Uϕo(1 − χ) − αλ2U∇χ · ∇ψo − ∇ · (ϕλ∇ψo)(1 − χ)

− (α − 1)∇ · (ϕo∇�0)(1 − χ) − ∇ · (ϕo∇R) − ∇ · (ϕo∇ψλ)(1 − χ)

− 1

λ2
∇ · (φi∇R)χ − 1

λ2
φi∇χ · ∇R − 1

λ2
φi∇χ · ∇ψλ

− α

λ2
U∇χ · ∇ψ̂ − ∇ · (ϕλ∇(ψ̂ − ψ))(1 − χ)

− ∇(ϕλ∇ψ)(1 − χ) − ∇ · (( 1

λ2
φiχ + ϕo)∇(ψ̂ + ψo))(1 − χ). (5.10)

If φi , ϕo is a solution to system (5.5), (5.9), then u given by (5.1), (5.2) satisfies
the Keller–Segel system (3.1).

5.1. Choice of λ0 and α0

We explain the choice of λ0 in the context of the elliptic equation

L[φ] = h in R2, (5.11)

where h is radial.

Lemma 5.1. Let h(y) be a radial function such that

‖(1 + |y|)γ h(y)‖L∞(R2) < ∞,

for some γ > 4 and satisfying

∫

R2
h(y)dy = 0 (5.12)

∫

R2
h(y)|y|2dy = 0. (5.13)

Then there exists a radial solution φ(y) of equation (5.11) such that

|φ(y)| ≤ C‖(1 + |y|)γ h(y)‖L∞(R2)

1

(1 + |y|)γ−2 , if γ �= 6 (5.14)

|φ(y)| ≤ C‖(1 + |y|)γ h(y)‖L∞(R2)

log(1 + |y|)
(1 + |y|)4 , if γ = 6, (5.15)

and
∫

R2
φ(y)dy = 0. (5.16)
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Proof. Defining g = φ
U − (−�)−1φ we obtain the equation

∇ · (U∇g) = h. (5.17)

Assuming γ > 6 we choose the radial function g defined by

g(ρ) = −
∫ ∞

ρ

1

rU (r)

∫ r

0
h(s)sdsdr, ρ = |y|,

and using (5.12) we get

|g(ρ)| ≤ C‖(1 + |y|)γ h‖L∞(R2)

1

(1 + |y|)γ−6 .

Now we solve Liouville’s equation

−�ψ −Uψ = Ug in R2, ψ(ρ) → 0 as ρ → ∞. (5.18)

Multiplying (5.17) by |y|2 and using (5.13) we see that
∫

R2
gZ0dy = 1

2

∫

R2
h(y)|y|2dy = 0,

with Z0 defined in (3.4). Then by the variations of parameter formula we find that
(5.18) has a unique solution ψ , which satisfies

|ψ(y)| + (1 + |y|)|∇ψ(y)| ≤ ‖(1 + |y|)γ h‖L∞(R2)

1

(1 + |y|)γ−4 . (5.19)

Then we see that φ defined by φ = Ug + Uψ satisfies (5.11), (5.14) and (5.16)
because φ = −�ψ and ψ has the decay (5.19).

If 4 < γ ≤ 6 we do almost the same, except that we define

g(ρ) =
∫ ρ

0

1

rU (r)

∫ r

0
h(s)sdsdr.

��
Remark 5.1. We observe that L[Z0] = 0. This can also be seen in the context of
the Lemma 5.1, where φ = Z0 which corresponds to g being constant. Indeed,
suppose g ≡ 1. Then from (5.18) ψ = −1− 1

2 z0, where z0 is defined in (9.2). This
gives φ = Ug +Uψ = − 1

U z0 = − 1
2 Z0. This shows that L[Z0] = 0.

If h doesn’t satisfy the zero second moment condition (5.13), then a solution
still exists but with worse decay and non-zero mass. More precisely, if h is radial,
‖(1 + |y|)γ h(y)‖L∞(R2) < ∞ for some γ > 6, and satisfies only (5.12), then one
can construct a solution φ to (5.11), but any such solution has the estimate

|φ(y)| ≤ C‖(1 + |y|)γ h(y)‖L∞(R2)

log(1 + |y|)
(1 + |y|)4 ,

so worse decay than the one in (5.14). Moreover, the mass of φ becomes
∫

R2
φ = −

∫

R2
�ψ = −

∫

R2
gZ0 = −1

2

∫

R2
h(y)|y|2dy.
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For the inner equation (5.5) it is then natural to impose that the first error S(u1)χ
satisfies the second moment condition

∫

R2
S(u1)χ |y|2dy = 0, for all t > t0.

The next lemma gives a way of expressing the second moment of u1.

Lemma 5.2. Let u1 be defined in (3.13). Then
∫

R2
S(u1)|x − ξ |2dx = 4

∫

R2
ϕλdx − α

∫

R2
Ẽ(x − ξ, t; λ)|x − ξ |2dx

+
∫

R2
∇ϕλ dx · ξ̇ − α̇

λ2

∫

R2
Uχ |x − ξ |2dx

− (1 − α)

∫

R2
E(x − ξ, t; λ)|x − ξ |2dx

+ 4
(∫

R2
u0 +

∫

R2
ϕλ

)(
1 − 1

8π

∫

R2
u0 − 1

8π

∫

R2
ϕλ

)
.

(5.20)

where E, Ẽ are defined in (3.10), (3.11).

Proof of Lemma 5.2. Using (2.11) we see that
∫

R2
S(u1)|x − ξ |2dx = −

∫

R2
∂t u0|x − ξ |2dx −

∫

R2
∂tϕλ|x − ξ |2dx

+ 4
(∫

R2
u0 +

∫

R2
ϕλ

)(
1 − 1

8π

∫

R2
u0 − 1

8π

∫

R2
ϕλ

)
.

But recall that ϕλ(x, t) = ϕ̃λ(x − ξ(t), t) where ϕ̃λ satisfies (3.9). Multiplying that
equation by |ζ |2 and integrating on R

2 results in
∫

R2
∂t ϕ̃λ|ζ |2 dζ = −4

∫

R2
ϕ̃λ dζ +

∫

R2
E(ζ, t)|ζ |2 dζ.

Therefore
∫

R2
∂tϕλ|x − ξ |2 dx = −4

∫

R2
ϕλ dx − (x − ξ) · ξ̇

|x − ξ |
∫

R2
∂r ϕ̃λ +

∫

R2
E(ζ, t)|ζ |2 dζ

and then
∫

R2
S(u1)|x − ξ |2dx = −

∫

R2
∂t u0|x − ξ |2dx + 4

∫

R2
ϕλdx

+
∫

R2
∇ϕλ dx · ξ̇ −

∫

R2
E(x − ξ, t)|x − ξ |2dx

+ 4
(∫

R2
u0 +

∫

R2
ϕλ

)(
1 − 1

8π

∫

R2
u0 − 1

8π

∫

R2
ϕλ

)
.

(5.21)
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But from the formula for ∂t u0 (3.3) and the definitions of E and Ẽ (3.10), (3.11)
we get

−∂t u0(x, t) = − α̇

λ2
U (y)χ0(z) + αE(x − ξ, t) − α Ẽ(x − ξ, t).

Hence
∫

R2
(∂t u0 + E(x − ξ, t))|x − ξ |2dx

=
∫

R2
(∂t u0 + αE(x − ξ))|x − ξ |2dx + (1 − α)

∫

R2
E(x − ξ, t)|x − ξ |2dx

= α̇

λ2

∫

R2
Uχ |x − ξ |2dx + α

∫

R2
Ẽ(x − ξ, t)|x − ξ |2dx

+ (1 − α)

∫

R2
E(x − ξ, t)|x − ξ |2dx .

Replacing this in (5.21) we obtain (5.20). ��
In the definition (3.13) of u1 we will stress the dependence on the parameters

by writing p = (λ, α, ξ) and u1 = u1(p). At this point we would like to construct
λ0 and α0 so that setting p0 = (λ0, α0, 0) we have

∫

R2
u1(p0)dx = 8π, (5.22)

∫

R2
S(u1(p0))|x − ξ |2dx = O

( 1

t
3
2+σ

)
, (5.23)

for some σ > 0. The reason for allowing in (5.23) an error is that it is difficult to

solve with right hand side equal to 0 and a remainder of size O(t− 3
2−σ )with σ > 0

is sufficiently small to proceed with the rest of the construction.
Assuming that (5.22) holds, we get

∫

R2
S(u1)|x − ξ |2dx = 4

∫

R2
ϕλdx − α

∫

R2
Ẽ(x − ξ, t; λ)|x − ξ |2dx

+
∫

R2
∇ϕλ dx · ξ̇ − α̇

λ2

∫

R2
Uχ |x − ξ |2dx

− (1 − α)

∫

R2
E(x − ξ, t; λ)|x − ξ |2dx .

It turns out that the main terms in the expression for
∫

R2 S(u1)|x − ξ |2dx are the
first two. So the equation

∫

R2
S(u1(p0))|x − ξ |2dx = 0

is at main order given by

4
∫

R2
ϕλdx −

∫

R2
Ẽ |x − ξ |2dx = 0.
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It will be shown later that
∫

R2
Ẽ |x − ξ |2dx = −64πϒ

λ2

t
+ O

(λ4

t2

)
, (5.24)

see Lemma 7.5, where ϒ is given in (2.7), so that the equation we want to solve
becomes at main order,

∫

R2
ϕλdx + 16πϒ

λ2

t
= 0.

In §7 we will show that

∫

R2
ϕλdx = −4π

∫ t−λ2

t/2

λλ̇

t − s
ds − 2π

λ2

t
− 16πϒ

λ2

t
+ O

(λ4 log log t

t

)

(5.25)

see Corollary 7.1. Using (5.25) we see that

∫

R2
ϕλdx + 16πϒ

λ2

t
= −4π

[∫ t−λ2

t/2

λλ̇

t − s
ds + λ2

2t

]
+ O

(λ4 log log t

t

)

(5.26)

so that the equation for λ is at main order

∫ t−λ2

t/2

λλ̇

t − s
ds + λ2

2t
= 0.

One can check that λ∗(t) = c0√
log t

, where c0 > 0 is an arbitrary constant, is an
approximate solution. Indeed

∫ t−(λ∗)2

t/2

λ∗(s)λ̇∗(s)
t − s

ds + (λ∗)2

2t
≈ λ∗(t)λ̇∗(t)

∫ t−(λ∗)2

t/2

ds

t − s
+ λ∗(t)2

2t

≈ λ∗(t)λ̇∗(t) log t + λ∗(t)2

2t

= 1

2

d

dt

[
λ∗(t)2 log t

]
= 0.

The error left out in the approximation (5.26) is too big. We give next a result
that shows that for an appropriate modification of λ∗ we can achieve a smaller error.
Let us write Ẽ(λ) the expression defined in (3.11) with the explicit dependence on
λ.

Proposition 5.1. Let c0 > 0 be fixed. For t0 > 0 sufficiently large there exists
λ0 : [ t02 ,∞) → (0,∞) such that

∫

R2
ϕλ0dx − 1

4

∫

R2
Ẽ(λ0)|x − ξ |2dx = O

( 1

t
3
2+σ

)
, t > t0, (5.27)
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for some σ > 0. Moreover, for arbitrarily ε > 0 small, λ0 has the expansion

λ0(t) = c0√
log t

+ O
( 1

(log t)
3
2−ε

)
,

λ̇0(t) = − c0
2t (log t)3/2

+ O
( 1

t (log t)
5
2−ε

)
,

|λ̈0(t)| ≤ C

t2(log t)3/2
,

as t → ∞.

We will prove this result in §7.1.
Once λ0 is constructed in Proposition 5.1 we choose α0 so that (5.22) holds, by

imposing

α0(t)
∫

R2
U (y)χ0

(λ0(t)y√
t

)
dy +

∫

R2
ϕλ0(x, t) dx = 8π, t > t0. (5.28)

We note that by (2.6), (5.27) and (5.24) we get

α0(t) = 1 + O
( 1

t
3
2+σ

)

as t → ∞. A byproduct of the proof of Proposition 5.1 is that
∣
∣
∣
∣
d

dt

∫

R2
ϕλ0dx

∣
∣
∣
∣ ≤ C

t2
, (5.29)

and from this and (5.28) we get

|α̇0(t)| ≤ C

t2
. (5.30)

As a corollary of Proposition 5.1 we get:

Corollary 5.1. Let p0 = (λ0, α0, 0) with α0 defined by (5.22) and λ0 be given by
Proposition 5.1. Then

∫

R2
S(u1(p0))|x − ξ |2dx = O

( 1

t
3
2+σ

)
,

for some σ > 0.

Proof. Using Lemma 5.2 we have

∫

R2
S(u1)|x − ξ |2dx = 4

∫

R2
ϕλ0dx −

∫

R2
Ẽ(x − ξ, t; λ0)|x − ξ |2dx

− α̇0

λ2

∫

R2
Uχ |x−ξ |2dx−(1−α0)

∫

R2
E(x−ξ, t; λ0)|x−ξ |2dx

= O
( 1

t
3
2+σ

)
,
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for some σ > 0, since α̇0(t) = O( 1
t2 log t

) and

∫

R2
E(x − ξ, t; λ0)|x − ξ |2dx = O

(λ20

t

)

by (5.24) and a direct estimate for the remaining terms in E (c.f. (3.10)). ��

5.2. A further improvement of the approximation

We introduce a correction φi
0(y), y = x−ξ

λ
in the inner approximation to elim-

inate the radial part of S(u1(p)) (defined in (4.2)), which we define as

S0(u1(p)) = − α̇

λ2
U (y)χ + (α − 1)

λ̇

λ3
Z0χ + (α − 1)

2t

1

λ2
U∇zχ0 · x − ξ√

t

+ 2(α − 1)

λ3t1/2
∇zχ0 · ∇yU + (α − 1)

t
�χ0

1

λ2
U

− α2 − 1

λ3
√
t
U∇zχ0 · ∇y�0 − α

λ3
√
t
U∇zχ0 · ∇yR

− α(α − 1)χ

λ4
∇y · (U∇y�0) + α2χ(1 − χ)

λ4
U 2 − αχ

λ4
∇yU · ∇yR.

− 4

r
∂rϕλ − ∇ · (ϕλ∇v0) − ∇ · (u0∇ψλ) − ∇ · (ϕλ∇ψλ). (5.31)

With this definition

S(u1) = S0(u1) + α

λ3
ξ̇ · ∇yU (y) χ + α

λ2
√
t
U (y)ξ̇ · ∇χ0,

and the terms not in S(u1) correspond to α
λ3

ξ̇ · ∇yU (y) χ + α

λ2
√
t
U (y) which are

in mode 1.
Then we want φi

0 to be an appropriate solution to the equation

L[φi
0] + λ4S0(u1(p0))(x, t) = c0(t)W2 in R2, x = ξ + λy, (5.32)

where L is the linear operator (5.4), t > t0 is regarded as a parameter, W2(y) is a
fixed smooth radial function with compact support, and

∫

R2
W2(y)dy = 0,

∫

R2
W2(y)|y|2dy = 1. (5.33)

By Lemma 5.2 and Proposition 5.1, the choice p = p0 is so that (5.22), (5.23)
hold. Since the difference between S(u1) and S0(u1) contains terms in mode 1 only,
we get from Corollary 5.1

∫

R2
λ4S0(u1(p0))|y|2dy = O

( 1

t
3
2+σ

)
. (5.34)

In (5.32) we select c0(t) such that
∫

R2
[λ4S0(u1(p0)) + c0(t)W2]|y|2dy = 0, t > t0
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and thanks to (5.34) we have

|c0(t)| ≤ C

t
3
2+σ

, t > t0. (5.35)

Note that we have
∫

R2
S0(u1(p0))dx = 0,

which follows from the constant mass in time of u1(p0) in (5.22) and the form of
the operator S0 (5.31).

We let φi
0 be the solution to (5.32) constructed in Lemma 5.1. By (5.15) and

(4.5)

|φi
0(y, t)| ≤ C

t

log(1 + |y|)
1 + |y|4 , (5.36)

and
∫

R2
φi
0(y, t)dy = 0, t > t0.

5.3. Reformulation of the system

In the outer problem (5.9) we would like to separate the effect of the initial
condition from the coupling G(φi , ϕo,p).

We take the initial condition in (5.9) to be

ϕo(·, t0) = ϕ∗
0 ,

and let ϕ∗(x, t) denote the solution of
⎧
⎨

⎩

∂tϕ
∗ = �ϕ∗ − ∇x�0

( x − ξ

λ

)
· ∇ϕ∗ in R2 × (t0,∞)

ϕ∗(·, t0) = ϕ∗
0 in R2.

(5.37)

The initial condition ϕ∗
0 (x) will be later used to prove the stability claimed in

Theorem 1.1. The topology for ϕ∗
0 will be specified later on.

Note that ∇x�0(
x−ξ
λ

) = −4 x−ξ

|x−ξ |2+λ2
so that ϕ∗ is a function of the parameters

λ, ξ . Therefore we will write ϕ∗(x, t;p) when convenient.
We decompose

⎧
⎪⎨

⎪⎩

φi = φi
0 + φ

ϕo = ϕ∗ + ϕ

p = p0 + p1

(5.38)

where

p0 = (λ0, α0, 0), p1 = (λ1, α1, ξ1),
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with λ0 the function constructed in Proposition 5.1 and α0 chosen so that (5.22)
holds.

We substitute the expressions for φi , ϕo and p in (5.38) into the Eqs. (5.5),
(5.9), and are led to the following problem for φ, ϕ

{
λ2∂tφ = L[φ] + B0[φ] + E2χ̃2 + F2(φ, ϕ,p1, ϕ

∗
0 )χ̃ in R2 × (t0,∞)

φ(·, t0) = φ0 in R2

(5.39)
⎧
⎪⎨

⎪⎩

∂tϕ = �ϕ − ∇x�0

(
x − ξ

λ

)

· ∇ϕ + G2(φ, ϕ,p1, ϕ∗
0 ) in R2 × (t0,∞)

ϕ(·, t0) = 0 in R2,

(5.40)

where χ̃ is defined in (5.8),

E2 = −∂tφ
i
0 + B0[φi

0] + c0(t)W2

F2(φ, ϕ,p1, ϕ
∗
0 ) = F(φi

0 + φ, ϕ∗ + ϕ,p0 + p1)

+ λ4[S0(u1(p0 + p1)) − S0(u1(p0))]

+ λαξ̇1 · ∇yU (y) χ + αλ2√
t
U (y)ξ̇1 · ∇χ0 (5.41)

G2(φ, ϕ,p1, ϕ∗
0 ) = G(φi

0 + φ, ϕ∗ + ϕ,p0 + p1) + λ−4E2(1 − χ̃2)χ

χ̃2(x, t) = χ0

( x − ξ

t
1
2−δ

)
, (5.42)

δ > 0 is a small constant to be fixed later on, and χ0 is as in (2.5). We recall that
F and G are defined in (5.6) and (5.10). The expressions for F2 and G2 depend on
the initial condition ϕ∗

0 through ϕ∗ (5.37) and φ0. The role of φ0 will be clarified
later on.

By the estimate for λ̈0 in Proposition 5.1 and (5.35) we get

|E2(y, t)| ≤ C

t2(log t)2
log(1 + |y|)
1 + |y|4 + C

t
3
2+σ

|W2(y)|, |y| ≤ C
√
t log t . (5.43)

The reason that we introduce the cut-off χ̃2 is to achieve

|E2χ̃2(y, t)| ≤ C

tν(1 + |y|)6+σ
,

if ν < 1 + 2δ − σ
2 . We will choose δ and σ positive small numbers such that

2δ − σ
2 > 0 so that we can find 1 < ν < 1 + 2δ − σ

2 .
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5.4. Splitting the inner solution φ

We perform one more change in the formulation (5.39), (5.40), which consists
in decomposing

φ = φ1 + φ2.

The function φ1 will solve an equation with part of the right hand side of (5.39),
which will be projected so that it satisfies the zero second moment condition.

For any h(y, t) with sufficient spatial decay we define

m0[h](t) =
∫

R2
h(y, t)dy, m2[h](t) =

∫

R2
h(y, t)|y|2dy, (5.44)

and

m1, j [h](t) =
∫

R2
h(y, t)y j dy, j = 1, 2,

which denote the mass, second moment and center of mass of h.
Let W0 ∈ C∞(R2) be radial with compact support such that

∫

R2
W0dy = 1,

∫

R2
W0|y|2dy = 0.

Let W1, j , j = 1, 2 be a smooth functions with compact support and with the form
W1, j (y) = W̃ (|y|)y j so that

∫

R2
W1, j (y)y j = 1. (5.45)

We recall that W2 defined in (5.33).
Then, h−m0[h]W0 has zero mass, h−m2[h]W2 has zero second moment, and

h − m1,1[h]W1,1 − m1,2[h]W1,2 has zero center of mass.
We modify of the operator B0 appearing in (5.39), and defined in (5.7). The

idea is to work with a variant of it, which coincides with it for radial functions,
but for functions without radial part it is cutoff outside the region |y| �

√
t

λ
. More

precisely, we decompose φ in a radial part [φ]rad defined by

[φ]rad(ρ, t) = 1

2π

∫ 2π

0
φ(ρeiθ , t)dθ (5.46)

and a term with no radial mode φ1 = φ − [φ]rad . We note that the other linear
terms in the equation behave well with this decomposition. Then we define

B[φ] = λλ̇(2[φ]rad + y · ∇[φ]rad) + λλ̇(2φ1 + y · ∇φ1)χ0

( λy

5
√
t

)
(5.47)

where χ0 is a smooth cut-off in R with χ0(s) = 1 for s ≤ 1 and χ0(s) = 1 for
s ≥ 2.
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With these definitions we introduce the following system for φ1, φ2, ϕ, p1,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λ2∂tφ1 = L[φ1] + B[φ1] + F3(φ1 + φ2, ϕ,p1, ϕ
∗
0 )

− m0[F3(φ1 + φ2, ϕ,p1, ϕ
∗
0 )]W0 − m2[F3(φ1 + φ2, ϕ,p1, ϕ

∗
0 )]W2

+
2∑

j=1

μ jW1, j in R2 × (t0,∞)

φ1(·, t0) = 0 in R2,

(5.48)
{

λ2∂tφ2 = L[φ2] + B[φ2] + m2[F3(φ1 + φ2, ϕ,p1, ϕ
∗
0 )]W2 in R2 × (t0,∞)

φ2(·, t0) = φ0 in R2,

(5.49)
{

∂tϕ = �ϕ − ∇�0 · ∇ϕ + G2(φ1 + φ2, ϕ,p1, ϕ∗
0 ) in R2 × (t0,∞)

ϕ(·, t0) = 0 in R2,

(5.50)

where

F3(φ, ϕ,p1, ϕ
∗
0 ) = E2χ̃2 + F2(φ, ϕ,p1, ϕ

∗
0 )χ̃ , (5.51)

In (5.48) μ j (t) are functions so that the right hand side has center of mass
equal to zero. A solution φ1, φ2, ϕ to (5.48), (5.49) and (5.50) gives a solution
to the system (5.39), (5.40) provided p1 is such that the following equations are
satisfied

{
0 = m0[F3(φ1 + φ2, ϕ,p1, ϕ

∗
0 )](t), ∀t > t0,

0 = μ j (t), ∀t > t0, j = 1, 2.
(5.52)

5.5. Mass and second moment

In this section we derive some formulas for the mass and second moment
appearing in the right hand side of (5.48).

In the computation of m0[F3(φ, ϕ,p1, ϕ
∗
0 )] and m2[F3(φ, ϕ,p1, ϕ

∗
0 )], the fol-

lowing formulas will be useful.

Lemma 5.3. We have
∫

R2
S(u1(p))dx = −∂t

∫

R2
u0dx − ∂t

∫

R2
ϕλdx

= −∂t

{
8πα

[
1 + 2ϒ

λ2

t

]
+ αe1

(λ2

t

)
+

∫

R2
ϕλdx

}

and
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∫

R2
(S(u1(p)) − S(u1(p0)))dx = −∂t

{
α1

[
8π

(
1 + 2ϒ

λ2

t

)
+ e1

(λ2

t

)]

+ 16πα0ϒ
λ2 − λ20

t

+ α0

(
e1

(λ2

t

)
− e1

(λ20

t

))
+

∫

R2
(ϕλ − ϕλ0)dx

}
,

where e1(s) is defined by
∫

R2
u0dx = 8πα

[
1 + 2ϒ

λ2

t

]
+ αe1

(λ2

t

)
. (5.53)

Recall that ϒ is given in (2.7) and note that

e1(s) = O(s2), as s → 0.

Proof. For this we recall that (c.f. (2.8))

S(u1(p)) = −∂t u0 − ∂tϕλ + E(u0 + ϕλ),

so
∫

R2
S(u1(p))dx = −∂t

∫

R2
u0dx − ∂t

∫

R2
ϕλdx

= −∂t

{
8πα

[
1 + 2ϒ

λ2

t

]
+ αe1

(λ2

t

)
+

∫

R2
ϕλdx

}
.

Therefore
∫

R2
(S(u1(p)) − S(u1(p0)))dx = −∂t

{
α1

[
8π

(
1 + 2ϒ

λ2

t

)
+ e1

(λ2

t

)]

+ 16πα0ϒ
λ2 − λ20

t

+ α0

(
e1

(λ2

t

)
− e1

(λ20

t

))
+

∫

R2
(ϕλ − ϕλ0)dx

}
.

��
Lemma 5.4. We have

λ4m2[S0(u1(p0 + p1)) − S0(u1(p0))]
= −32πα1 − α̇

λ2

∫

R2
U (

x − ξ

λ
)χ0(

x − ξ

λ
)|x − ξ |2 dx

+ α̇0

λ20

∫

R2
U (

x

λ0
)χ(

x

λ0
)|x |2 dx

− 4
[
αe1

(λ2

t

)
− α0e1

(λ20

t

)]
−

[
αe2

(λ2

t

)
− α0e2

(λ20

t

)]

−
(∫

R2
(ϕλ − ϕλ0) dx

)2
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− (1 − α)

∫

R2
E(x − ξ, t, λ)|x − ξ |2 dx + (1 − α0)

∫

R2
E(x, t, λ0)|x |2 dx

− |ξ |2
∫

R2
S(u1(p0))dx .

Proof. We have defined the second moment m2 (5.44) integrating with respect to
y. Note that

λ4
∫

R2
f (y)|y|2dy =

∫

R2
f
( x − ξ

λ

)
|x − ξ |2dx,

and therefore

λ4m2[S0(u1(p0 + p1)) − S0(u1(p0))]
= λ4

∫

R2
S0(u1(p0 + p1))(ξ + λy)|y|2dy

− λ4
∫

R2
S0(u1(p0))(ξ + λy)|y|2dy

=
∫

R2
S0(u1(p0 + p1))(x)|x − ξ |2dy

−
∫

R2
S0(u1(p0))(x)|x − ξ |2dy.

We have by Lemma 5.2,
∫

R2
S(u1)|x − ξ |2dx = 4

∫

R2
ϕλdx − α

∫

R2
Ẽ(x − ξ, t; λ)|x − ξ |2dx

+
∫

R2
∇ϕλ dx · ξ̇ − α̇

λ2

∫

R2
Uχ |x − ξ |2dx

− (1 − α)

∫

R2
E(x − ξ, t; λ)|x − ξ |2dx

+ 4
(∫

R2
u0 +

∫

R2
ϕλ

)(
1 − 1

8π

∫

R2
u0 − 1

8π

∫

R2
ϕλ

)
.

(5.54)

where E , Ẽ are defined in (3.10), (3.11). Let

m =
∫

R2
(u0 + ϕλ)dx, δm = m − 8π.

Since
∫

R2
(u0 + ϕλ0)dx = 8π,

by (5.22), we have

δm =
∫

R2
(ϕλ − ϕλ0) dx .
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Replacing m in (5.54) we get
∫

R2
S(u1(p))|x − ξ |2dx = 32π − 4

∫

R2
u0dx − 1

2π
(δm)2

− α

∫

R2
Ẽ(x − ξ, t; λ)|x − ξ |2dx

+
∫

R2
∇ϕλ dx · ξ̇ − α̇

λ2

∫

R2
Uχ |x − ξ |2dx

− (1 − α)

∫

R2
E(x − ξ, t; λ)|x − ξ |2dx . (5.55)

Also under (4.1) we have by (5.24):
∫

R2
Ẽ |x − ξ |2dx = −64πϒ

λ2

t
+ e2

(λ2

t

)
, (5.56)

where

e2(s) = O(s2), as s → 0.

Combining (5.55), (5.53) and (5.56) we get
∫

R2
S(u1(p))|x − ξ |2dx = 32π(1 − α) − 1

2π
(δm)2 − α̇

λ2

∫

R2
Uχ |x − ξ |2dx

+
∫

R2
∇ϕλ dx · ξ̇−(1−α)

∫

R2
E(x−ξ, t; λ)|x−ξ |2dx

− 4αe1
(λ2

t

)
− αe2

(λ2

t

)
.

We can apply this formula to p = p0 and get
∫

R2
S(u1(p0))|x |2dx = 32π(1 − α0) − α̇0

λ20

∫

R2
U (

x

λ0
)χ |x |2dx

− (1 − α0)

∫

R2
E(x, t; λ0)|x |2dx

− 4α0e1
(λ20

t

)
− α0e2

(λ20

t

)
.

Note that
∫

R2
S0(u1(p0))|x − ξ |2dx =

∫

R2
S0(u1(p0))|x |2dx + |ξ |2

∫

R2
S0(u1(p0))dx

=
∫

R2
S0(u1(p0)|x |2dx + |ξ |2

∫

R2
S(u1(p0)dx

because
∫

R2
S0(u1(p0)x j dx = 0.



61 Page 32 of 154 Arch. Rational Mech. Anal. (2024) 248:61

Therefore,
∫

R2
[S(u1(p)) − S(u1(p0))]|x − ξ |2dx

= −32πα1 − α̇

λ2

∫

R2
U (

x − ξ

λ
)χ0(

x − ξ

λ
)|x − ξ |2 dx

+ α̇0

λ20

∫

R2
U (

x

λ0
)χ(

x

λ0
)|x |2 dx

− 4
[
αe1

(λ2

t

)
− α0e1

(λ20

t

)]
−

[
αe2

(λ2

t

)
− α0e2

(λ20

t

)]

−
(∫

R2
(ϕλ − ϕλ0) dx

)2

− (1 − α)

∫

R2
E(x − ξ, t, λ)|x − ξ |2 dx + (1 − α0)

∫

R2
E(x, t, λ0)|x |2 dx

− |ξ |2
∫

R2
S(u1(p0)dx .

��

6. Proof of Theorem 1.1

Next we define norms, which are suitably adapted to the terms in the inner linear
problems (5.48), (5.49). Let us write the linearized versions of these problems as

{
λ2∂tφ = L[φ] + B[φ] + h(y, t) in R2 × (t0,∞),

φ(·, t0) = 0 in R2.
(6.1)

Given positive numbers ν, p, ε and m ∈ R, we let

‖h‖0,ν,m,p,ε = inf K such that

|h(y, t)| ≤ K

tν(log t)m
1

(1 + |y|)p

⎧
⎪⎨

⎪⎩

1 |y| ≤ √
t log t,

(t log t)ε/2

|y|ε |y| ≥ √
t log t .

(6.2)

We also defie

‖φ‖1,ν,m,p,ε = inf K such that

|φ(y, t)| + (1 + |y|)|∇yφ(y, t)|

≤ K

tν(log t)m
1

(1 + |y|)p

⎧
⎪⎨

⎪⎩

1 |y| ≤ √
t log t,

(t log t)ε/2

|y|ε |y| ≥ √
t log t .

We develop a solvability theory of problem (6.1) that involves uniform space-
time bounds in terms of the above norms.Wewill establish two results: one inwhich
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the solution “loses” one power of t on bounded sets with respect to the time-decay
of h, under radial symmetry and the condition of spatial average 0 at all times. Our

second result states that for a general h this loss is only t
1
2 if in addition the center

of mass and second-moment of h are zero at all times.
For the first result we introduce a parameter in the problem in order to get a fast

decay of the solution:

{
λ2∂tφ = L[φ] + B[φ] + h(y, t) in R2 × (t0,∞),

φ(·, t0) = c1 Z̃0 in R2,
(6.3)

where Z̃0 is defined as

Z̃0(ρ) = (Z0(ρ) − mZ0U )χ0

( ρ

3λ(t0)
√
t0

)
, (6.4)

where mZ0 is such that

∫

R2
Z̃0 = 0.

Proposition 6.1. Assume (4.1). Let σ > 0, ε > 0 with σ + ε < 2 and 1 < ν < 7
4 .

Let 0 < q < 1. Then there exists a number C > 0 such that for t0 sufficiently large
and all radially symmetric h = h(|y|, t) with ‖h‖0,ν,m,6+σ,ε < ∞ and

∫

R2
h(y, t)dy = 0, for all t > t0,

there exists c1 ∈ R and solution φ(y, t) = T i,2
p [h] of problem (6.3) that defines a

linear operator of h and satisfies the estimate

‖φ‖1,ν−1,m+q−1,4,2+σ+ε ≤ C

(log t0)1−q
‖h‖0,ν,m,6+σ,ε.

Moreover c1 is a linear operator of h and

|c1| ≤ C
1

tν−1
0 (log t0)m

‖h‖0,ν,m,6+σ,ε.

We also consider the problem

⎧
⎪⎪⎨

⎪⎪⎩

λ2∂tφ = L[φ] + B[φ] + h(y, t) +
2∑

j=1

μ j (t)W1, j in R2 × (t0,∞),

φ(·, t0) = 0 in R2.

(6.5)

where the function W1, j have been defined in (5.45).
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Proposition 6.2. Assume (4.1). Let 0 < σ < 1, ε > 0 with σ + ε < 3
2 and

1 < ν < min(1 + ε
2 , 3 − σ

2 ,
5
4 ). Let 0 < q < 1. Then there is C such that for t0

large the following holds. Suppose that h satisfies ‖h‖0,ν,m,6+σ,ε < ∞ and
∫

R2
h(y, t)dy = 0,

∫

R2
h(y, t)|y|2dy = 0, for all t > t0.

Then there exists a solution φ(y, t), μ j (t) of problem (6.5) that defines a linear
operator of h and satisfies

‖φ‖1,ν− 1
2 ,m+ q−1

2 ,4,2+σ+ε
≤ C‖h‖0,ν,m,6+σ,ε.

The parameters μ j satisfy

μ j (t) = −
∫

R2
h(y, t)y j dy + μ̃ j [h](t)

where μ̃ j are linear functions of h with

|μ̃ j [h]| ≤ C

tν+1(log t)ν+m+2 ‖h‖ν,m,5+σ,ε.

We denote this solution by φ = T i,1
p [h].

The proof of the Propositions 6.1 and 6.2 is divided into different steps and
presented in Sects. 8–12.

Next we consider the linear outer problem:
{

∂tφ
o = Lo[φo] + g(x, t), in R2 × (t0,∞)

φo(·, t0) = φo
0 , in R2.

(6.6)

where

Lo[ϕ] := �xϕ − ∇x

[
�0

( x − ξ(t)

λ(t)

)]
· ∇xϕ.

For a given function g(x, t) we consider the norm ‖g‖∗∗,o defined as the least
K � 0 such that for all (x, t) ∈ R

2 × (t0,∞)

|g(x, t)| � K
1

ta(log t)β
1

1 + |ζ |b , ζ = x − ξ(t)√
t

. (6.7)

Accordingly, we consider for a function φo(x, t) the norm ‖φ‖∗,o defined as the
least K � 0 such that

|φo(x, t)| + (λ + |x − ξ |)|∇xφ
o(x, t)| � K

1

ta−1(log t)β
1

1 + |ζ |b , ζ = x − ξ√
t

(6.8)

for all (x, t) ∈ R
2 × (t0,∞).

We assume that the parameters a, b, β satisfy the constraints

1 < a < 4, 2 < b < 6, a < 1 + b

2
, β ∈ R. (6.9)
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Proposition 6.3. Assume that the parameter functions p = (λ, α, ξ) satisfy condi-
tions (4.1) and the numbers a, b, β satisfy (6.9). Then there is a constant C so that
for t0 sufficiently large and for ‖g‖∗∗,o < ∞, there exists a solution φo = T o

p [g]
of (6.6) with φo

0 = 0, which defines a linear operator of g and satisfies

‖φo‖∗,o ≤ C‖g‖∗∗,o.

For the initial condition φo
0 in (6.6) we consider the norm ‖ϕo

0‖∗,b defined as

‖φo
0‖∗,b = inf K such that

|φo
0(x)| + (λ(t0) + |x |)|∇xφ

o(x)| ≤ K

(1 + |x |√
t0
)b

. (6.10)

We have an estimate for the solution of (6.6) with g = 0 and ‖φo
0‖∗,b < ∞.

Proposition 6.4. Assume that the parameter functions p = (λ, α, ξ) satisfy condi-
tions (4.1) and the numbers a, b, β satisfy (6.9). Then there is a constant C so that
for t0 sufficiently large and for ‖φo

0‖∗,b < ∞ there exists a solution φo of (6.6),
which defines a linear operator of φo

0 and satisfies

‖φo‖∗,o ≤ Cta−1
0 (log t0)

β‖φo
0‖∗,b.

The proofs of Propositions 6.3 and 6.4 are contained in Sect. 13.
In what follows we work with p1 of the form

p1 = (0, α1, ξ1),

that is, we take λ = λ0, α = α0 + α1, ξ = ξ1, where λ0 and α0 have been fixed in
Sect. 5.1, and we write

p = p0 + p1.

Next we define suitable operators that allow us to formulate the system of
equations (5.48), (5.49), (5.50), and (5.52) as a fixed point problem. We let

Ai1[φ1, φ2, ϕ,p1] = T i,1
p

[
F3(φ1 + φ2, ϕ,p1, ϕ

∗
0 )

− m0[F3(φ1 + φ2, ϕ,p1, ϕ
∗
0 )]W0

− m2[F3(φ1 + φ2, ϕ,p1, ϕ
∗
0 )]W2

− m1,1[F3(φ1 + φ2, ϕ,p1, ϕ
∗
0 )]W1,1

− m1,2[F3(φ1 + φ2, ϕ,p1, ϕ
∗
0 )]W1,2

]

Ai2[φ1, φ2, ϕ,p1, ϕ∗
0 ] = T i,2

p
[
m2[F3(φ1 + φ2, ϕ,p1), ϕ

∗
0 ]W2

]

Ao[φ1, φ2, ϕ,p1, ϕ∗
0 ] = T o

p [G2(φ1 + φ2, ϕ,p1, ϕ
∗
0 )].

Then the equations (5.48), (5.49),(5.50) can be written as

φ1 = Ai1[φ1, φ2, ϕ,p1, ϕ∗
0 ]

φ2 = Ai2[φ1, φ2, ϕ,p1, ϕ∗
0 ]



61 Page 36 of 154 Arch. Rational Mech. Anal. (2024) 248:61

ϕ = Ao[φ1, φ2, ϕ,p1, ϕ∗
0 .]

Next we consider the equations (5.52), that is,m0[F3(φ1+φ2, ϕ,p1, ϕ
∗
0 )](t) ≡

0 and μ j (t) ≡ 0. By (5.51) and (5.41)

m0[F3(φ, ϕ,p1, ϕ
∗
0 )χ̃ ] = λ40m0[S0(u1(p0 + p1)) − S0(u1(p0))] + m0[E2χ̃2]

+ m0[F(φi
0 + φ, ϕ∗ + ϕ,p0 + p1)χ̃]

+ λ40m0[(S0(u1(p0 + p1)) − S0(u1(p0)))(χ̃ − 1)],
and using Lemma 5.3,

m0[F3(φ, ϕ,p1, ϕ
∗
0 )χ̃] = −λ20∂t

{
α1

[
8π

(
1 + 2ϒ

λ20

t

)
+ e1

(λ20

t

)]}
+ m0[E2χ̃2]

+ m0[F(φi
0 + φ, ϕ∗ + ϕ,p0 + p1)χ̃]

+ λ40m0[(S0(u1(p0 + p1)) − S0(u1(p0)))(χ̃ − 1)].
This motivates the definition

Aα1 [φ1, φ2, ϕ,p1, ϕ∗
0 ]

= − 1

8π(1 + 2ϒ
λ20
t ) + e1(

λ20
t )

∫ ∞

t

1

λ20

{
m0[E2χ̃2](s)

+ m0[F(φi
0 + φ, ϕ∗ + ϕ,p0 + p1)χ̃](s)

+ λ40m0[(S0(u1(p0 + p1)) − S0(u1(p0)))(χ̃ − 1)](s)
}
ds (6.11)

Similarly, by (5.51) and (5.41), asking that μ j ≡ 0 in (5.48) is equivalent to

0 = λ0αξ̇1, j

∫

R2
∂y jU (y)y j χ̃dy + αλ20√

t
ξ̇1, j

∫

R2
U (y)∂z jχ0(

λy√
t
)y j dy

+ m1, j [E2χ̃2] + m1, j [F(φi
0 + φ, ϕ∗ + ϕ,p0 + p1)χ̃] + m1, j [B[φ1]].

This motivates the definition

Aξ1 [φ1, φ2, ϕ,p1, ϕ∗
0 ]

=
∫ ∞

t

1

λ0α
∫

R2 ∂y j U (y)y j χ̃dy

{αλ20√
t
ξ̇1, j

∫

R2
U (y)∂z j χ0(

λy√
t
)y j dy

+ m1, j [E2χ̃2](s) + m1, j [F(φi
0 + φ, ϕ∗ + ϕ,p0 + p1)χ̃](s) + m1, j [B[φ1]](s)

}
ds

(6.12)

Then we define Ap by

Ap[φ1, φ2, ϕ,p1, ϕ∗
0 ] = (0,Aα1 [φ1, φ2, ϕ,p1, ϕ∗

0 ],Aξ1 [φ1, φ2, ϕ,p1, ϕ∗
0 ]).
(6.13)

Then

p1 = Ap[φ1, φ2, ϕ,p1, ϕ∗
0 ]
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is equivalent to the equations (5.52).
We write

�φ = (φ1, φ2, ϕ,p1),

and

A[ �φ] = (Ai1[ �φ, ϕ∗
0 ],Ai2[ �φ, ϕ∗

0 ],Ao[ �φ, ϕ∗
0 ],Ap[ �φ, ϕ∗

0 ]),
and the objective is to find �φ such that

�φ = A[ �φ].
The operator A depends on the initial condition ϕ∗

0 appearing in the parabolic
problem (5.37), andwewill stress its dependence later onwhen proving the stability
assertion in Theorem 1.1.

We define the spaces on which we will consider the operator A to set up the
fixed point problem. For certain choices of constants ν, q, σ , ε, a, b, β, γ , � that
we will make precise later, we let

Xi =
{
φ ∈ L∞(R2 × (t0,∞)) | ∇yφ ∈ L∞(R2 × (t0,∞)), ‖φ‖

1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

< ∞,

∫

R2
φ(y, t)dy = 0,

∫

R2
φ(y, t)ydy = 0, t > t0

}
,

Xo = {ϕ ∈ L∞(R2 × (t0,∞)) | ∇yφ ∈ L∞(R2 × (t0,∞)), ‖ϕ‖∗,o < ∞},
X p = { (0, α1, ξ1) ∈ C1([t0,∞)) | ‖α1‖C1,ν+ 1

2 ,�
< ∞, ‖ξ1‖C1,γ,0 < ∞}

where the norms ‖φ‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

and ‖ϕ‖∗,o are defined in (6.2), (6.7) and

‖ξ1‖C1,μ,m is defined by

‖g‖C0,μ,m = sup
t≥t0

tμ(log t)m |g(t)|.
‖g‖C1,μ,m = ‖g‖C0,μ,m + ‖ġ‖C0,μ+1,m .

for a function g ∈ C1([t0,∞)).
We choose in the definition of the outer norm (6.8)

a = ν + 5

2
, 2ν + 3 < b < 6, β <

1 + q

2
. (6.14)

With these choices we see that (6.9) are satisfied. Also ν will be in the range
1 < ν < 3

2 so the interval for b is not empty in (6.14).
We use the following notation: for p1 = (0, α1, ξ1),

‖p1‖X p = ‖α1‖C1,ν+ 1
2 ,�

+ ‖ξ1‖C1,1+γ,0,

and for �φ = (φ1, φ2, ϕ,p1),

‖ �φ‖X = ‖φ1‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

+ ‖φ2‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

+ ‖ϕ‖∗,o + ‖p1‖X p .

(6.15)
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With the above notation, given ϕ∗
0 with ‖ϕ∗

0‖∗,b sufficiently small, we consider
the fixed point problem

�φ = A[ �φ], (6.16)

with �φ in a suitable close ball of X . A solution of this fixed point problem yields a
solution of the system of Eqs. (5.48), (5.49), (5.50), (5.52), which in turn gives a
solution to (3.1).

We claim that for some constant C independent of t0 � 1, if ta−1
0 (log t0)β

‖ϕ∗
0‖∗,b ≤ 1, and ‖ �φ‖X ≤ 1, then

‖Ai1[φ1, φ2, ϕ,p1, ϕ∗
0 ]‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

≤ C

tϑ0
+ C(log t0)

σ
2 t

ν+1+ σ
2

0 ‖ϕ∗
0‖∗,b,

(6.17)

for some ϑ > 0 small, a constant C independent of t0, and t0 sufficiently large.
Indeed, by Proposition 6.2 we have

‖Ai1[φ1, φ2, ϕ,p1, ϕ∗
0 ]‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

≤ C‖F3(φ1 + φ2, ϕ,p1, ϕ
∗
0 )‖0,ν,6+σ,ε.

We recall the expansion of F3 in (5.51). To estimate E2χ̃2 we use (5.43) to get

‖E2χ̃‖0,ν,0,6+σ,ε ≤ C

t
1+2δ− σ

2 −ν

0 (log t0)2

where δ, σ are positive small constants and are assumed to satisfy 2δ − σ
2 > 0.

Then we take ν in the range

1 < ν < 1 + 2δ − σ

2
, (6.18)

with ν close to 1.
Let us consider the term λ4[S0(p0+p1)−S0(p0)] in F3(φ1+φ2, ϕ,p1, ϕ

∗
0 ) (c.f.

(5.51)). The formula λ4[S0(p0 + p1) − S0(p0)] (c.f. (5.31)) contains for example
the term, evaluated at y = x−ξ1

λ0
,

− λ20α̇U (y)χ0

(λ0y√
t

)
+ λ20α̇0U

(ξ1 + λ0y

λ0

)
χ0

(ξ1 + λ0y√
t

)

= −λ20α̇1U (y)χ0

(λ0y√
t

)
− λ20α̇0

[
U (y) −U

(ξ1 + λ0y

λ0

)]
χ0

(λ0y√
t

)

− λ20α̇0U
(ξ1 + λ0y

λ0

)[
χ0

(ξ1 + λ0y√
t

)
− χ0

(λ0y√
t

)]
(6.19)

But

∣
∣
∣
∣−λ20α̇1U (y)χ0

(λ0y√
t

)∣
∣
∣
∣ ≤ C

1

tν+ 1−σ
2 (log t)�− σ

2

1

(1 + |y|)6+σ
χ0

(λ0y√
t

)
‖α1‖C1,ν+ 1

2 ,�
,
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so
∥
∥
∥−λ20α̇1U (y)χ0

(λ0y√
t

)∥
∥
∥
0,ν,6+σ,ε

≤ C

tϑ0
‖α1‖C1,ν+ 1

2 ,�
,

for some ϑ > 0.
Similarly,

∣
∣
∣
∣−λ20α̇0

[
U (y) −U

(ξ1 + λ0y

λ0

)]
χ0

(λ0y√
t

)∣
∣
∣
∣

≤ C
1

log t

1

t2 log t

1

(1 + |y|)5
|ξ1|
λ0

χ0

(λ0y√
t

)

≤ C
1

t2+γ (log t)
3
2

(t log t)
1+σ
2

(1 + |y|)6+σ
χ0

(λ0y√
t

)
‖ξ1‖C1,γ,0

≤ C
1

t
3−σ
2 +γ (log t)1− σ

2

1

(1 + |y|)6+σ
χ0

(λ0y√
t

)
‖ξ1‖C1,γ,0

so
∥
∥
∥−λ20α̇0

[
U (y) −U

(ξ1 + λ0y

λ0

)]
χ0

(λ0y√
t

)∥
∥
∥
0,ν,6+σ,ε

≤ C

tϑ0
‖α1‖C1,ν+ 1

2 ,�
,

for some ϑ > 0. The last term in the expression (6.19) is similar.
The terms in λ4[S0(p0 + p1) − S0(p0)] that contain the function ϕλ0 are

λ0
4
[
−4

r
∂rϕλ0 − ∇ · (ϕλ0∇v0) − ∇ · (u0∇ψλ0) − ∇ · (ϕλ0∇ψλ0)

]

= 4
λ0

2

ρ(ρ2 + 1)
∂ρϕλ0−(α − 1)λ0

2∇yϕλ0 · ∇y�0+λ0
2∇yϕλ0 · ∇yR+2λ0

2Uχϕλ0

− α∇y(Uχ) · ∇yψλ0 − λ0
2∇y(ϕλ0∇yψλ0).

In λ0
4[S0(p0 +p1)− S0(p0)] these terms appear evaluated at y and then at ξ1

λ0
+ y.

Using estimates for the the second derivative of ϕλ0 similar to Lemma 4.1 and
assuming

σ < 1, ν < 1 + γ, (6.20)

we get

‖λ4[S0(p0 + p1) − S0(p0)]‖0,ν,6+σ,ε ≤ C
1

tϑ0
‖ �φ‖X .

The main term in F3(φ1 + φ2, ϕ,p1, ϕ
∗
0 ) that depends on the outer solution is

λ2Uϕo with ϕo = ϕ∗ + ϕ defined in (5.38). Then we have
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|λ2Uϕ(y, t)χ̃ | ≤ λ2

ta−1(log t)β
1

(1 + |y|)4 χ̃‖ϕ‖∗,o

≤ C
1

tν+ 3
2 (log t)β+1

1

(1 + |y|)4 χ̃‖ϕ‖∗,o

≤ C
(t log t)1+ σ

2

tν+ 3
2 (log t)β+1

1

(1 + |y|)6+σ
χ̃‖ϕ‖∗,o

≤ C
1

tν+ 1−σ
2 (log t)β− σ

2

1

(1 + |y|)6+σ
χ̃‖ϕ‖∗,o.

Therefore

‖λ2Uϕχ̃‖0,ν,6+σ,ε ≤ C
1

t
1−σ
2

0 (log t0)β− σ
2

‖ϕ‖∗,o.

Regarding the function ϕ∗ (c.f. (5.37)) we note that it has the estimate

|ϕ∗(x, t)| ≤ ta−1
0 (log t0)

β‖ϕ∗
0‖∗,b

1

ta−1(log t)β
1

1 + |ζ |b , ζ = x − ξ√
t

(6.21)

by Proposition 6.4, provided (6.9) holds, and therefore

‖λ2Uϕ∗χ̃‖0,ν,6+σ,ε ≤ Ct
ν+1+ σ

2
0 (log t0)

σ
2 ‖ϕ∗

0‖∗,b.

Let us analyze some of the terms in F3(φ1 + φ2, ϕ,p1, ϕ
∗
0 ) that depend on the

inner solutions φ1 and φ2. For instance

(α − 1)∇y · (φ j∇y�0) = (α − 1)∇yφ j · ∇y�0 − (α − 1)φ jU.

We have the estimate

|(α − 1)∇yφ j · ∇y�0χ̃ | ≤ C

t log t

1

tν− 1
2 (log t)

q−1
2

1

(1 + |y|)6 ‖φ j‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

≤ C
1

tν+ 1
2 − σ

2 (log t)1+
q−1
2 − σ

2

1

(1 + |y|)6+σ
‖φ j‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

,

and we get

‖(α − 1)∇yφ j · ∇y�0χ̃‖0,ν,6+σ,ε ≤ C

tϑ0
‖φ j‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

,

for some ϑ > 0.
We also have, writing φ = φ1 + φ2,

‖λξ̇1∇φχ̃‖0,ν,6+σ,ε ≤ C

tϑ0
‖φ‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

for some ϑ > 0, if

γ >
σ

2
. (6.22)
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Let us estimate the term ∇y · (U∇y(ψ̂ − ψ))χ̃ appearing in (5.6), where ψ̂ =
(−�)−1

(λ−2φiχ), ψ = (−�)−1(λ−2φi ). We recall that φi = φi
0 + φ, c.f. (5.38), and

therefore we can decompose ψ̂ = ψ̂ i
0 + ψ̂1 where ψ̂ i

0 = (−�)−1(λ−2φi
0χ) and

ψ̂1 = (−�)−1(λ−2φχ). Similarly, we can decompose ψ = ψ i
0 + ψ1 where

ψ i
0 = (−�)−1(λ−2φi

0) and ψ1 = (−�)−2(λ−1φ). By linearity we need to es-
timate separately ∇y · (U∇y(ψ̂

i
0 −ψ i

0)) and ∇y · (U∇y(ψ̂1 −ψ1)). Let us consider
the latter one. Note that

ψ̂1 − ψ1 = (−�)−1[λ−2φ(1 − χ)].
From the definition of the norm ‖φ‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

|φ(y, t)| ≤ ‖φ‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

1

tν− 1
2 (log t)

q−1
2

1

(1 + |y|)4 (6.23)

and so

|∇y(ψ̂1 − ψ1)(y, t)| ≤ C‖φ‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

1

tν− 1
2 (log t)

q−1
2

1

(t log t)
3
2

,

for |y| ≤ 2

√
t

λ
.

Then

|∇yU · ∇y(ψ̂1 − ψ1))(y, t)| ≤ C‖φ‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

1

tν+ 1−σ
2 (log t)

q+1−σ
2

1

(1 + |y|)6+σ
, for |y| ≤ 2

√
t

λ
.

This and a similar estimate for Uφ(1 − χ) give

‖∇y · (U∇y(ψ̂1 − ψ1))χ̃‖0,ν,6+σ,ε ≤ C

tϑ0
‖φ‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

for someϑ > 0.A similar estimate is obtained for ‖∇y ·(U∇y(ψ̂
i
0−ψ i

0))χ̃‖0,ν,6+σ,ε

using (5.36).
Let us estimate next the term λ2∇y · (ϕλ∇yψ)χ̃ , where we recall,ψ = (−�)−1

(λ−2φ). To do this we use that φ = φ1 + φ2 has zero mass and center of mass, that
is,

∫

R2
φ(y, t) dy =

∫

R2
φ(y, t)y j dy = 0, t > t0.

This and the estimate (6.23) imply

|ψ(y, t)| + (1 + |y|)|∇yψ(y, t)| ≤ C‖φ‖
1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

1

tν− 1
2 (log t)

q−1
2

log(2 + |y|)
(1 + |y|)2 ,
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by an argument similar to Remark 9.1. On the other hand, from (4.3)

|∇yϕλ(y, t)| ≤ C

t log t

1

(1 + |y|)3 , |y| ≤ 2

√
t

λ
.

Therefore

|λ2(∇yϕλ · ∇yψ)(y, t)| ≤ C‖φ‖
1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

λ2

tν+ 1
2 (log t)

q+1
2

log(2 + |y|)
(1 + |y|)6

≤ C‖φ‖
1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

1

tν+ 1−σ
2 (log t)

q+1−σ
2

1

(1 + |y|)6+σ
,

|y| ≤ 2

√
t

λ
.

From this coupled with a similar estimate for λ2ϕλφ we get

‖λ2∇y · (ϕλ∇yψ)χ̃‖0,ν,6+σ,ε ≤ C

tϑ0
‖φ‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

for some ϑ > 0.
The remaining terms in F3(φ1 + φ2, ϕ,p1, ϕ

∗
0 ) are estimated in a similar way

and we get the validity (6.17).
Proceeding in the same way we get a Lipschitz bound. Assuming

ta−1
0 (log t0)β‖ϕ∗

0‖∗,b ≤ 1, for ‖ �φ1‖X ≤ 1 and ‖ �φ2‖X ≤ 1 we have

‖Ai1[ �φ1, ϕ∗
0 ] − Ai1[ �φ2, ϕ∗

0 ]‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

≤ C

tϑ0
‖ �φ1 − �φ2‖X ,

for some ϑ > 0 small, a constant C independent of t0, and t0 sufficiently large.
Indeed, the Lipschitz estimatewith respect toφ1,φ2, andϕ is direct from the explicit
dependence of F3(φ1 + φ2, ϕ,p1, ϕ

∗
0 ) on these variables, which is either linear or

quadratic. The Lipschitz dependence on ξ1 (wherep1 = (α1, ξ1)) is also direct from
the explicit form of F3(φ1 + φ2, ϕ,p1, ϕ

∗
0 ). The Lipschitz condition with respect

to α1 appears as an explicit dependence on this variable in F3(φ1 + φ2, ϕ,p1, ϕ
∗
0 ).

Let us estimate the operator Ai2. We claim that if ta−1
0 (log t0)β‖ϕ∗

0‖∗,b ≤ 1
and ‖ �φ‖X ≤ 1, then

‖ Ai2[φ1, φ2, ϕ,p1, ϕ∗
0 ]‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

≤ C(log t0)
− 1−q

2 −� + Cta−1
0 (log t0)

1−q
2 ‖ϕ∗

0‖∗,b. (6.24)

Indeed, we apply Proposition 6.1 to get

‖Ai2[φ1, φ2, ϕ,p1, ϕ∗
0 ]‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

≤ C

(log t0)1−q

∥
∥m2[F3(φ1 + φ2, ϕ,p1, ϕ

∗
0 )]W2

∥
∥
0,ν+ 1

2 ,
1−q
2 ,6+σ,ε
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and since W2 has compact support,

‖Ai2[φ1, φ2, ϕ,p1, ϕ∗
0 ]‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

≤ C

(log t0)1−q
sup
t>t0

tν+ 1
2 (log t)

1−q
2 |m2[F3(φ1 + φ2, ϕ,p1, ϕ

∗
0 )](t)|.

Using the definition of F3 (5.51)

m2[F3(φ, ϕ,p1, ϕ
∗
0 )] = m2[E2χ̃2] + m2[F2(φ, ϕ,p1, ϕ

∗
0 )χ̃]

We have by (5.43) (assuming σ < 1
2 ),

|m2[E2χ̃2](t)| ≤ C

t
3+σ
2

.

Therefore, asking that

ν + 1

2
<

3 + σ

2
⇔ ν < 1 + σ

2
(6.25)

we get

sup
t>t0

tν+ 1
2 (log t)

1−q
2 |m2[E2χ̃2](t)| ≤ C

tϑ0
,

for some ϑ > 0.
By (5.41)

m2[F2(φ, ϕ,p1, ϕ
∗
0 )χ̃] = λ4m2[S0(u1(p0 + p1)) − S0(u1(p0))]

+ m2[F(φi
0 + φ, ϕ∗ + ϕ,p0 + p1)χ̃ ]

+ λ4m2[(S0(u1(p0 + p1)) − S0(u1(p0)))(χ̃ − 1)].
Of these terms, the largest is the first one. By Lemma 5.4, and since λ = λ0, we get

λ4m2[S0(u1(p0 + p1)) − S0(u1(p0))]
= −32πα1 − α̇1

λ20

∫

R2
U (

x − ξ

λ0
)χ0(

x − ξ

λ0
)|x − ξ |2 dx

+ α1

∫

R2
E(x − ξ, t, λ0)|x − ξ |2 dx − |ξ |2

∫

R2
S(u1(p0))dx . (6.26)

But

sup
t>t0

tν+ 1
2 (log t)

1−q
2 |α1(t)| ≤ C(log t0)

1−q
2 −�‖α1‖C1,ν+ 1

2 ,�
, (6.27)

under the assumption

� >
1 − q

2
. (6.28)
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The second term in (6.26) is much smaller. For the last term in (6.26) we use
Lemma 5.3 and (5.29), (5.30) to get

∣
∣
∣
∣

∫

R2
S(u1(p0))dx

∣
∣
∣
∣ ≤ C

t2
(6.29)

and therefore

|ξ(t)|2
∣
∣
∣
∣

∫

R2
S(u1(p0))dx

∣
∣
∣
∣ ≤ C

t2+2γ ‖ξ1‖2C1,γ,0.

Combining (6.26), (6.27) and (6.29) we get

C

(log t0)1−q
sup
t>t0

tν+ 1
2 (log t)

1−q
2 λ4|m2[S0(u1(p0 + p1))

− S0(u1(p0))](t)| ≤ C(log t0)
− 1−q

2 −�‖p1‖X p .

Let’s estimate the remaining terms in m2[F3(φ, ϕ,p1, ϕ
∗
0 )]. Consider

A(t) :=
∫

R2
∇y · (λ2ϕλ∇y(−�y)

−1φ)χ̃ |y|2dy +
∫

R2
∇y · (φ∇yψλ)χ̃ |y|2dy

which appears in the definition of F , where φ = φ1 + φ2. Let us recall that
ψλ = (−�x )

−1ϕλ and let’s write

ψ = (−�y)
−1φ

Integrating by parts,

A(t) =
∫

R2
(�yψλ∇yψ + �yψ∇yψλ) · y(2χ̃ + y · ∇y χ̃ )dy.

Using the Pohozaev type identity

�yψλ(∇yψ · y) + �yψ(∇yψλ · y)
= ∇y · [∇yψλ(∇yψ · y) + ∇yψ(∇yψλ · y) − y∇yψλ · ∇yψ]

and integrating by parts, we get

A(t) = −
∫

R2
[∇yψλ(∇yψ · y) + ∇yψ(∇yψλ · y)

− y∇yψλ · ∇yψ] · [2∇y χ̃ + y�y χ̃]dy.
Therefore

|A(t)| ≤ C
∫

2
√
t/λ≤|y|≤4

√
t/λ

|∇yψ | ∇ψ |dy.

Using that ψ = (−�)−1φ, and
∫

R2
φ(y, t)dy = 0,

∫

R2
φ(y, t)ydy = 0,
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we have (see Remark 9.1) for any � > 0 small,

|∇ψ(y, t)| ≤ C

1 + |y|2−�

1

tν− 1
2 (log t)

q−1
2

‖φ‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

.

Using that ϕλ, and ψλ are radial and
∣
∣
∣
∣

∫

R2
ϕλdx

∣
∣
∣
∣ ≤ C

t log t
,

by Lemma 4.1 we have

|ψλ(y, t)| � C

t
√
log t

1

1 + |y| .

Then

|A(t)| ≤ C
1

tν+1− �
2 (log t)

q
2 −1− �

2
‖φ‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

.

Let us consider the contribution of the term λ2Uϕ∗. Thanks to (6.21)

‖m2[λ2Uϕ∗χ̃ ]W2‖0,ν+ 1
2 ,

1−q
2 ,6+σ,ε

≤ Cta−1
0 (log t0)

1−q
2 ‖ϕ∗

0‖∗,b,

under the condition

β >
1 − q

2
. (6.30)

The other terms in m2 are estimated in a similar way and we get (6.24).
Similarly we get that if ta−1

0 (log t0)β‖ϕ∗
0‖∗,b ≤ 1, then for ‖ �φ1‖X ≤ 1 and

‖ �φ2‖X ≤ 1 we have

‖Ai2[ �φ1] − Ai2[ �φ2]‖0,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

≤ C(log t0)
− 1−q

2 −�‖ �φ1 − �φ2‖X ,
for a constant C independent of t0, where t0 sufficiently large.

Let us estimate the operator Ao[φ1, φ2, ϕ,p1, ϕ∗
0 ]. We claim that

if ta−1
0 (log t0)β‖ϕ∗

0‖∗,b ≤ 1, then for ‖ �φ‖X ≤ 1,

‖Ao[ �φ, ϕ∗
0 ]‖∗,o ≤ C

(log t0)
q+1
2 −β

+ Cta−2
0 (log t0)

β−1‖ϕ∗
0‖∗,b, (6.31)

and for ‖ �φ1‖X ≤ 1, ‖ �φ2‖X ≤ 1 and ta−1
0 (log t0)β‖ϕ∗

0‖∗,b ≤ 1,

‖Ao[ �φ1, ϕ∗
0 ] − Ao[ �φ2, ϕ∗

0 ]‖∗,o ≤ C

(log t0)
q+1
2 −β

‖ �φ1 − �φ2‖X .

Note that q+1
2 − β > 0 by (6.14).

Indeed, by Proposition 6.3

‖Ao[φ1, φ2, ϕ,p1, ϕ∗
0 ]‖∗,o ≤ C‖G2(φ1 + φ2, ϕ,p1, ϕ

∗
0 )‖∗∗,o,
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where we recall G2 defined in (5.42).
We start with the term λ−4E2(1 − χ̃2)χ . Using the estimate (5.43) we get

‖λ−4E2(1 − χ̃2)χ‖∗∗,o ≤ C

tϑ0

for some ϑ > 0 provided

a < 4(1 − δ).

We also directly get from (4.6)

‖S(u1)(1 − χ)‖∗∗,o ≤ C

tϑ0

for some ϑ > 0 if a < 4.
Regarding the terms in G (c.f. (5.10)) that the depend linearly on φi = φi

0 +φ,
we have for ‖φ‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

< ∞
∣
∣
∣
1

λ2
φ�χ

∣
∣
∣(x, t) ≤ C

λ2

1

tν− 1
2 (log t)

q−1
2

1

(|x − ξ |/λ|)4
1

t
∣
∣
∣�zχ0(

x − ξ√
t

)

∣
∣
∣‖φ‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

≤ C
1

tν+ 5
2 (log t)

q+1
2

1

(1 + |x − ξ |/√t)b
‖φ‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

(6.32)

which implies
∥
∥
∥
1

λ2
φ�χ

∥
∥
∥∗∗,o ≤ C

(log t0)
q+1
2 −β

‖φ‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

,

since β <
q+1
2 , which is one of the conditions in (6.14).

We also have, using (5.36),
∥
∥
∥
1

λ2
φi
0�χ

∥
∥
∥∗∗,o ≤ C

tϑ0

for some ϑ > 0 if

a < 4.

A similar estimate holds for the other terms depending on φi .
Some of the terms in G that depend on ϕo = ϕ∗ + ϕ are

∣
∣
∣
1

λ2
Uϕo(1 − χ)

∣
∣
∣ ≤ C

λ2

|x − ξ |4
1

ta−1(log t)β
1

(1 + |x − ξ |/√t)b
(1 − χ)‖ϕo‖∗,o

≤ C

t0 log t0

1

ta(log t)β
1

(1 + |x − ξ |/√t)b
(‖ϕ∗‖∗,o + ‖ϕ‖∗,o)
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which implies that
∥
∥
∥
1

λ2
Uϕo(1 − χ)

∥
∥
∥∗∗,o ≤ C

t0 log t0
‖ϕ‖∗,o + Cta−2

0 (log t0)
β−1‖ϕ∗

0‖∗,b,

by Proposition 6.4. Other terms are estimated in a similar way.
Let us estimate the operator Ap, which is defined by the equations (6.13). We

claim that if

(0, α̃1, ξ̃1) = Ap[φ1, φ2, ϕ,p1]
and ta−1

0 (log t0)β‖ϕ∗
0‖∗,b ≤ 1, ‖ �φ‖X ≤ 1, �φ = (φ1, φ2, ϕ,p1), then

‖α̃1‖C1,ν+ 1
2 ,�

≤ C(log t0)
�−β + Cta−1

0 (log t0)
�‖ϕ∗

0‖∗,b

‖ξ̃1‖∗,γ,0 ≤ C

tϑ0
+ Ct1+γ

0 (log t0)
1
2 ‖ϕ∗

0‖∗,b, (6.33)

for some ϑ > 0. Similarly, we have the following Lipschitz estimate.
If ta−1

0 (log t0)β‖ϕ∗
0‖∗,b ≤ 1, then for some ϑ > 0, and for ‖ �φ1‖X ≤ 1, ‖ �φ2‖X ≤ 1,

‖Ap[ �φ1, ϕ∗
0 ] − Ap[ �φ2, ϕ∗

0 ]‖X p ≤ C(log t0)
�−β‖ �φ1 − �φ2‖X , (6.34)

for some ϑ > 0.
Indeed, by (6.11)

|Aα1 [φ1, φ2, ϕ,p1, ϕ∗
0 ](t)| ≤ |I1(t)| + |I2(t)| + |I3(t)|

where

I1(t) =
∫ ∞

t

1

λ20
m0[E2χ̃2](s)ds

I2(t) =
∫ ∞

t

1

λ20
m0[F(φi

0 + φ, ϕ∗ + ϕ,p0 + p1)χ̃ ](s)ds

I3(t) =
∫ ∞

t
λ20m0[(S0(u1(p0 + p1)) − S0(u1(p0)))(χ̃ − 1)](s)ds.

Using (5.43) and
∫

R2 E2dy = 0 we get
∣
∣
∣
∣
∣

1

λ20
m0[E2χ̃2](t)

∣
∣
∣
∣
∣
≤ C

1

t3−2δ .

This gives

‖I1‖C1,ν+ 1
2 ,�

≤ Ct
ν− 3

2+2δ
0 , (6.35)

under the assumption

ν <
3

2
− 2δ.
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The largest contribution in I2 comes from the term λ2Uϕo in F(φi
0 + φ, ϕ∗ +

ϕ,p0 + p1) (c.f. (5.6)). The estimate of this term is
∣
∣
∣
∣
∣

1

λ20(t)

∫

R2
λ0(t)

2U (y)ϕo(y, t)dy

∣
∣
∣
∣
∣
≤ C

1

tν+ 3
2 (log t)β

‖ϕo‖∗,o (6.36)

and so
∥
∥
∥

∫

R2
U (y)ϕo(y, t)dy

∥
∥
∥
C1,ν+ 1

2 ,�
≤ C(log t0)

�−β‖ϕo‖∗,o,

under the assumption

� < β. (6.37)

Similar estimates for the remaining terms give

‖I2‖C1,ν+ 1
2 ,�

≤ C(log t0)
�−β‖ �φ‖X + Cta−1

0 (log t0)
�‖ϕ∗

0‖∗,b. (6.38)

Regarding I3, using (4.5) we have

λ20m0[S0(u1(p))(χ̃ − 1)] ≤ C

t3 log t
. (6.39)

Putting together (6.35), (6.38), and (6.39) we get

‖Aα1 [φ1, φ2, ϕ,p1, ϕ∗
0 ]‖C1,ν+ 1

2 ,�
≤ C(log t0)

�−β‖ �φ‖X + Cta−1
0 (log t0)

�‖ϕ∗
0‖∗,b

assuming also that

ν <
3

2
.

The computations leading to (6.33) are very similar, under the assumption

γ < ν − 1

2
. (6.40)

This restriction arises when considering the largest term in the expression (6.12),
namely comes from estimating the term λ20m1, j [ϕλ0φχ̃] (λ20ϕλ0φ is one of the terms
in (5.6))

1

λ0
λ20|m1, j [ϕλ0φχ̃ ](t)| ≤ Cλ0

∫

R2
|ϕλ0φy j |dy

≤ Cλ0
1

t (log t)2
1

tν− 1
2 (log t)

q−1
2

‖φ‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

Let us summarize the restrictions on the parameters. We let 0 < q < 1 be fixed.
We take

0 < δ < σ < min(1, 4δ),
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and

1 < ν < min
(
1 + 2δ − σ

2
,
3

2
, 1 + γ, 1 + σ

2

)
.

because of (6.18), (6.20), (6.25). We also need

1 − q

2
< � < β <

1 + q

2

by (6.28), (6.37) and by (6.30) and (6.14). We take

σ

2
< γ < ν − 1

2

by (6.22) and (6.40).
Together with the above inequalities we want also the relations σ + ε < 2,

ν + 1
2 < 7

4 for Proposition 6.1 and σ + ε < 3
2 , ν < min(1 + ε

2 , 3 − σ
2 ,

5
4 ) for

Proposition 6.2. The condition (6.9) for Propositions 6.3 and 6.4 hold by (6.14).
We see that all these restrictions are satisfied by choosing first δ, σ > 0 small so
that 2δ− σ

2 > 0. Then we take ν > 1 close to 1, then let a = ν+ 5
2 and b satisfying

(6.14). Then �, β and γ can be selected. Note that with the above procedure we
are getting the restriction b > 5.

We already have all elements to solve the fixed point problem (6.16), which we
recall

�φ = A[ �φ], �φ ∈ B,

whereB is the closed unit ball in the Banach space of functions �φ with ‖ �φ‖X < +∞
and the norm defined in (6.15). Thus

B = { �φ ∈ X | ‖ �φ‖X � 1 }.
Let ϕ∗

0 be such that ta−1
0 (log t0)β‖ϕ∗

0‖∗,b ≤ 1. Estimates (6.17), (6.24), (6.31) and
(6.34), imply that, enlarging the parameter t0 if necessary,Amaps B into itself. We
also get that A is a contraction mapping on B. The contraction mapping principle
yields the existence of a unique fixed point in B, which then yields the required
existence result.

6.1. Stability

Theorem 1.1 gives that if ϕ∗
0 has mass zero and is small so that

t
ν+ 3

2
0 (log t0)β‖ϕ∗

0‖∗,b ≤ 1, then the function

u(x, t) = α(t)

λ0(t)2

[
U

( x − ξ(t)

λ0(t)

)
+ φi

0

( x − ξ(t)

λ0(t)
, t

)
+ φ

( x − ξ(t)

λ0(t)
, t

)]
χ(x, t)

+ ϕ̃λ0(x − ξ(t), t) + ϕ(x, t) + ϕ∗(x, t), (6.41)

solves (3.1) and blows-up in the way described in Theorem 1.1. This follows from
the form of the ansatz (3.2), (3.13), (5.1), (5.38), where φ = φ1 + φ2, and φ1, φ2,
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ϕ, ϕ∗ satisfy respectively the equations (5.48), (5.49), (5.50) and (5.37). The initial
value of u is

u∗(x;ϕ∗
0 ) = α(t0;ϕ∗

0 )

λ0(t0)2

[
U

( x − ξ(t0;ϕ∗
0 )

λ0(t0)

)
+ φi

0

( x − ξ(t0;ϕ∗
0 )

λ0(t0)

)

+ c1(ϕ
∗
0 )Z̃0

( x − ξ(t0)

λ0(t0)

)]

· χ0

( x − ξ(t0;ϕ∗
0 )√

t0

)
+ ϕ̃λ0(x − ξ(t0;ϕ∗

0 ), t0) + ϕ∗
0 (x).

We recall that ϕ̃λ is defined in (3.9). The function ϕ̃ doesn’t depend on ξ and is
radial about the origin.

We let u∗
0(x) = u∗(x; 0). Note that u∗

0 is radial and so its center of mass is zero.
To prove stability, we would like to prove the following intermediate step: given

v defined on R
2 small, with mass zero and under some additional assumptions to

be defined later on, we would like to find ϕ∗
0 with mass zero such that

u∗(ϕ∗
0 ) = u∗

0 + v. (6.42)

The equation (6.42) for ϕ∗
0 has the form

α(t0;ϕ∗
0 )

λ0(t0)2

[
U

( x − ξ(t0;ϕ∗
0 )

λ0(t0)

)
+ φi

0

( x − ξ(t0;ϕ∗
0 )

λ0(t0)

)

+ c1(ϕ
∗
0 )Z̃0

( x − ξ(t0)

λ0(t0)

)]
· χ0

( x − ξ(t0;ϕ∗
0 )√

t0

)

+ ϕ̃λ0(x − ξ(t0;ϕ∗
0 ), t0) + ϕ∗

0 (x)

= α(t0; 0)
λ0(t0)2

[
U

( x

λ0(t0)

)
+ φi

0

( x

λ0(t0)

)
+ c1(0)Z̃0

( x

λ0(t0)

)]
· χ0

( x√
t0

)

+ ϕ̃λ0(x, t0) + v. (6.43)

Computing the mass we find that α(t0;ϕ∗
0 ) = α(t0; 0). Note that limt→∞ ξ(t) = 0

by (6.12). Then the center of mass of u(·, t) satisfies
lim
t→∞

∫

R2
u(x, t)xdx = 0.

Since the center of mass is preserved
∫

R2
u(x, t0)xdx = 0.

Let’s assume that the center of mass of v and ϕ∗
0 are both zero. Then, computing

the center of mass we find that

ξ(t0;ϕ∗
0 ) = 0. (6.44)

Then the Eq. (6.43) reduces to

(c1(ϕ
∗
0 ) − c1(0))

α(t0; 0)
λ0(t0)2

Z̃0

( x

λ0(t0)

)
+ ϕ∗

0 (x) = v. (6.45)

We will prove at the end of this section the following.
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Proposition 6.5. There is δ > 0 so that if t
ν+ 3

2
0 (log t0)β‖v‖∗,b ≤ δ, v has mass and

center of mass equal to zero, then
∫

R2
v(x)|x |2dx = 0,

is equivalent to

c1(v) − c1(0) = 0.

To prove stability we first observe that if v : R
2 → R satisfies t

ν+ 3
2

0
(log t0)β‖v‖∗,b ≤ δ, has mass zero, and

∫

R2
v(x)x j dx = 0,

∫

R2
v(x)|x |2dx = 0,

then u∗
0 + v = u∗(ϕ∗

0 ) for ϕ
∗
0 = v, by Proposition 6.5.

Now consider a general v with t
ν+ 3

2
0 (log t0)β‖v‖∗,b ≤ δ (for a possibly smaller

δ > 0), and mass zero. We want to show that the initial condition u∗
0 + v produces

a solution to (3.1) with infinite time blow as described in Theorem 1.1. Consider

u�,p(x) = 1

�2

[
u∗
0

( x − p

�

)
+ v

( x − p

�

)]
,

where p ∈ R
2 and � > 0. Note that u�,p has mass 8π . Then we select � and p

such that
∫

R2
u�,p(x)x j dx = 0,

∫

R2
u�,p(x)|x |2dx =

∫

R2
u∗
0(x)|x |2dx .

Note that |�2 − 1| ≤ Ct20‖v‖∗,b � 1 and |p| ≤ Ct0‖v‖∗,b � 1. Then we expand

u�,p(x) = u∗
0 + w

and w satisfies t
ν+ 3

2
0 (log t0)β‖w‖∗,b ≤ Cδ, has mass zero, center of mass zero and

second moment equal to 0. By the previous claim, the initial condition u�,p(x) =
u∗
0 +w is such that the solution to (3.1) blows up as in Theorem 1.1. Then the same

is true for the initial condition u∗
0 + v after a scaling and translation in space.

6.2. Proof of Proposition 6.5

Lemma 6.1. Assume that t
ν+ 3

2
0 (log t0)β‖v‖∗,b ≤ 1, that v has mass and center of

mass equal to zero, and that

c1(v) − c1(0) = 0. (6.46)

Then
∫

R2
v(x)|x |2dx = 0.
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Proof. From (6.46),ϕ∗
0 = v solves (6.45), and thereforeu∗

0+v is an initial condition
for (3.1) for which the solution blows up in infinite time. The solution u to (3.1)
preserves the second moment:

∫

R2
u(x, t)|x |2dx = const.

We compute the expansion of
∫

R2 u(x, t)|x |2dx as t → ∞, based on the expression
(6.41).

Note that limt→∞ ξ(t) = 0 by (6.12). Then

α(t)

λ0(t)2

∫

R2
U

( x − ξ(t)

λ0(t)

)
χ(x, t)|x |2dx

= α(t)

λ0(t)2

∫

R2
U

( x − ξ(t)

λ0(t)

)
χ(x, t)|x − ξ(t)|2dx + o(1),

as t → ∞. By explicit computation

1

λ0(t)2

∫

R2
U

( x − ξ(t)

λ0(t)

)
χ(x, t)|x − ξ(t)|2dx = 8πλ20 log

( t

λ20

)
+ O(λ20)

(6.47)

as t → ∞.
Using Lemma 4.1

∫

R2
ϕλ0(x, t)|x − ξ(t)|2dx ≤ C

log(t)
.

Using also Lemma 4.1 to estimate the mass and first moment of ϕλ0 we get
∫

R2
ϕλ0(x, t)|x |2dx ≤ C

log(t)
. (6.48)

Using (6.47), (6.48) and the estimates for φi
0 (5.36), φ = φ1 + φ2 that arise from

‖φ‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

< ∞, and ϕ, ϕ∗ which arise from ‖ϕ‖∗,o < ∞, ‖ϕ∗‖∗,o <

∞, we get that
∫

R2
u(x, t)|x |2dx = 8πλ20 log

( t

λ20

)
+ O(λ20)

as t → ∞. But λ0 was constructed in Proposition 5.1 with the expansion

λ0(t) = c0√
log t

+ O
( 1

(log t)
3
2−ε

)
,

as t → ∞, where c0 > 0 is a constant. Therefore
∫

R2
u(x, t)|x |2dx = 8πc20
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and evaluating at t = t0 we obtain
∫

R2
u∗
0(x)|x |2dx +

∫

R2
v(x)|x |2dx = 8πc20.

We can apply the previous calculation to v = 0 and arrive at
∫

R2
u∗
0(x)|x |2dx = 8πc20.

This shows that
∫

R2
v(x)|x |2dx = 0.

��
We need an expansion for c1(ϕ∗

0 ) − c1(0).

Lemma 6.2. Assume that t
ν+ 3

2
0 (log t0)β‖ϕ∗

0‖∗,b ≤ 1 and that ϕ∗
0 has mass and

center of mass equal to zero. Then

c1(ϕ
∗
0 ) − c1(0) = a0

∫

R2
ϕ∗
0 (x)|x |2dx + R0(ϕ

∗
0 ),

where a0 �= 0 and R0 satisfies

|R0(ϕ
∗
0 )| ≤ Ct0‖ϕ∗

0‖∗,b. (6.49)

Proof. In the following calculations λ = λ0.
First we need to estimate the Lipschitz constant of the solutions φ1, φ2, and ϕ

with respect to ϕ∗
0 . We claim that

‖φ1(ϕ∗
0 ) − φ1(0)‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

+ ‖φ2(ϕ∗
0 ) − φ2(0)‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

≤ C
1

log t0
t
ν+ 1

2
0 (log t0)

β−1‖ϕ∗
0‖∗,b (6.50)

|ϕ(x, t;ϕ∗
0 ) − ϕ(x, t; 0)| ≤ C

1

tν+ 3
2 (log t)

q+1
2

1

(1 + |x − ξ |/√t)b
t
ν+ 1

2
0

(log t0)
β−1‖ϕ∗

0‖∗,b (6.51)

|α1[ϕ∗
0 ](t) − α1[0](t)| ≤ C

1

tν+ 1
2 (log t)

q+1
2

t
ν+ 1

2
0 (log t0)

β−1‖ϕ∗
0‖∗,b. (6.52)

We discuss briefly the proof of these estimates. One of the main terms in the
right hand side of (5.50), written for the difference ϕ(ϕ∗

0 ) − ϕ(0) is

∣
∣
∣
1

λ2
[φ(ϕ∗

0 ) − φ(0)]�χ

∣
∣
∣(x, t)

≤ C

λ2

1

tν− 1
2 (log t)

q−1
2

1

(|x − ξ |/λ|)4
1

t

∣
∣
∣�zχ0(

x − ξ√
t

)

∣
∣
∣
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‖φ(ϕ∗
0 ) − φ(0)‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

≤ C
1

tν+ 5
2 (log t)

q+1
2

1

(1 + |x − ξ |/√t)b
‖φ(ϕ∗

0 ) − φ(0)‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

,

which implies
∥
∥
∥
1

λ2
[φ(ϕ∗

0 ) − φ(0)]�χ

∥
∥
∥∗∗,o ≤ C

(log t0)
q+1
2 −β

‖φ(ϕ∗
0 ) − φ(0)‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

,

since β <
q+1
2 , which is one of the conditions in (6.14). (Here χ depends on

ϕ∗
0 . There is another ther in the difference that depends on χ(ϕ∗

0 ) − χ(0) and is
estimated similarly.) Then

|ϕ(x, t;ϕ∗
0 ) − ϕ(x, t; 0)|

≤ C
1

tν+ 3
2 (log t)

q+1
2

1

(1 + |x − ξ |/√t)b
[‖φ(ϕ∗

0 ) − φ(0)‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

+ t
ν+ 1

2
0 (log t0)

β−1‖ϕ∗
0‖∗,b]. (6.53)

Considering ϕ as an operator of φ we examine the effect of the therm λ2Uϕ.
This term appears in the right hand side of (5.48), where the effect is less important,
and in the computation of α1. Estimating the right hand side of (5.50) as in (6.32),
using Proposition 6.3 gives that

|α1[φ(ϕ∗
0 ](t) − α1[φ(0)](t)|

≤ C
∫ ∞

t

∫

R2
U (y)|ϕ(ξ + λy, t, ;ϕ∗

0 ) − ϕ(ξ + λy, t, ; 0)|dy

≤ C
1

tν+ 1
2 (log t)

q+1
2

[‖φ(ϕ∗
0 ) − φ(0)‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

+ t
ν+ 1

2
0 (log t0)

β−1‖ϕ∗
0‖∗,b].

We consider now the effect of |α1[φ](t)| in the right hand side of (5.49), where
thanks to Lemma 5.4 appears mainly as α1(t)W2(y), where W2 is radial with
compact support. Then Proposition 6.1 gives

|φ2(y, t;ϕ∗
0 ) − φ2(y, t; 0)|

≤ C
1

(log t0)1−q

1

tν− 1
2 (log t)

q+1
2 +q−1

1

(1 + |y|)4 min
(
1,

(t log t)1/2

|y|
)2+σ+ε

· [‖φ(ϕ∗
0 ) − φ(0)‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

+ t
ν+ 1

2
0 (log t0)

β−1‖ϕ∗
0‖∗,b].

Then

‖φ2(ϕ∗
0 ) − φ2(0)‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

≤ C
1

log t0
[‖φ(ϕ∗

0 ) − φ(0)‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

+ t
ν+ 1

2
0 (log t0)

β−1‖ϕ∗
0‖∗,b].
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The estimate for φ1 is actually better, and therefore

‖φ1(ϕ∗
0 ) − φ1(0)‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

+ ‖φ2(ϕ∗
0 ) − φ2(0)‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

≤ C
1

log t0
[‖φ1(ϕ∗

0 ) − φ1(0)‖1,ν− 1
2 ,

q−1
2 ,4,2+σ+ε

+ ‖φ2(ϕ∗
0 ) − φ2(0)‖1,ν− 1

2 ,
q−1
2 ,4,2+σ+ε

+ t
ν+ 1

2
0 (log t0)

β−1‖ϕ∗
0‖∗,b].

This implies (6.50). Replacing this in (6.53) we obtain (6.51), and similarly we get
(6.52).

The parameter c1 appears in the second inner equation in (5.49), which wewrite
as

{
λ2∂tφ2 = L[φ2] + B[φ2] + h(t)W2 in R2 × (t0,∞)

φ2(·, t0) = c1 Z̃0 in R2,
(6.54)

where

h(t, ϕ∗
0 ) = m2[F3(φ1 + φ2, ϕ,p1, ϕ

∗
0 )](t).

Note that φ2 in (6.54) is radial, so the operator B defined (5.47) reduces to B[φ] =
λλ̇(2φ + y · ∇φ) = λλ̇∇ · (yφ). Multiplying by |y|2 and integrating on R

2 gives

λ2∂t

∫

R2
φ|y|2dy + 2λλ̇

∫

R2
φ|y|2dy = h(t).

Then

λ2
∫

R2
φ(y, t)|y|2dy = −

∫ ∞

t
h(s)ds.

But φ2(y, t0) = c1 Z̃0(y) so

c1(ϕ
∗
0 ) = − 1

λ(t0)2
∫

R2 Z̃0(y)|y|2dy
∫ ∞

t0
h(s, ϕ∗

0 )ds.

In particular

c1(ϕ
∗
0 ) − c1(0) = − 1

λ(t0)2
∫

R2 Z̃0(y)|y|2dy
∫ ∞

t0
[h(s, ϕ∗

0 ) − h(s, 0)]ds. (6.55)

The function h(t, ϕ∗
0 ) = m2[F3(φ1+φ2, ϕ,p1, ϕ

∗
0 )](t) is analyzed near (6.25).

We follow the same steps. Using the definition of F3 (5.51)

m2[F3(φ, ϕ,p1, ϕ
∗
0 )] = m2[E2χ̃2(ϕ

∗
0 )] + m2[F2(φ, ϕ,p1, ϕ

∗
0 )χ̃(ϕ∗

0 )].
We note that χ̃ , χ̃2 also depend on ϕ∗

0 because ξ depends on ϕ∗
0 . By (5.41)

m2[F2(φ, ϕ,p1, ϕ
∗
0 )χ̃(ϕ∗

0 )] = I (ϕ∗
0 ) + II (ϕ∗

0 ) + III (ϕ∗
0 )
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where

I (t, ϕ∗
0 ) = λ4m2[S0(u1(p0 + p1)) − S0(u1(p0))]

II (t, ϕ∗
0 ) = m2[F(φi

0 + φ, ϕ∗ + ϕ,p0 + p1)χ̃(ϕ∗
0 )]

III (t, ϕ∗
0 ) = λ4m2[(S0(u1(p0 + p1)) − S0(u1(p0)))(χ̃(ϕ∗

0 ) − 1)].
The main term is I (ϕ∗

0 ) and the others are treated as perturbations.
By Lemma 5.4, since λ = λ0, we get

I (t, ϕ∗
0 ) = −32πα1(ϕ

∗
0 ) + I0(ϕ

∗
0 ), (6.56)

where

I0(t, ϕ
∗
0 ) = − α̇1(ϕ

∗
0 )

λ20

∫

R2
U (

x

λ0
)χ0(

x

λ0
)|x |2 dx + α1(ϕ

∗
0 )

∫

R2
E(x, t, λ0)|x |2 dx

− |ξ(ϕ∗
0 )|2

∫

R2
S(u1(p0))dx .

By (6.11)

α1(t, ϕ
∗
0 ) − α1(t, 0) = A1(t, ϕ

∗
0 ) + A2(t, ϕ

∗
0 ) (6.57)

where

A1(t, ϕ
∗
0 ) = − 1

8π(1 + 2ϒ
λ20
t ) + e1(

λ20
t )

∫ ∞

t

1

λ20

{
m0[F(φi

0

+ φ(ϕ∗
0 ), ϕ

∗ + ϕ(ϕ∗
0 ),p0 + p1(ϕ

∗
0 ))χ̃(ϕ∗

0 )](s)
− m0[F(φi

0 + φ(0), ϕ(0),p0 + p1(0))χ̃(0)](s)
}
ds

A2(t, ϕ
∗
0 ) = − 1

8π(1 + 2ϒ
λ20
t ) + e1(

λ20
t )

∫ ∞

t
λ20

{
m0[(S0(u1(p0 + p1(ϕ

∗
0 )))

− S0(u1(p0)))(χ̃(ϕ∗
0 ) − 1)](s)

− m0[(S0(u1(p0 + p1(0))) − S0(u1(p0)))(χ̃(0) − 1)](s)
}
ds

Let

m̃0(t, ϕ
∗
0 ) = 1

λ20
m0[F(φi

0 + φ(ϕ∗
0 ), ϕ

∗ + ϕ(ϕ∗
0 ),p0 + p1(ϕ

∗
0 ))χ̃(ϕ∗

0 )](t)

−
∫

R2
U (y)ϕo(ξ(t, ϕ∗

0 ) + λy, t, ϕ∗
0 )dy

so that

m0[F(φi
0 + φ(ϕ∗

0 ), ϕ
∗ + ϕ(ϕ∗

0 ),p0 + p1(ϕ
∗
0 ))χ̃(ϕ∗

0 )](t)
= λ20(t)

∫

R2
U (y)ϕo(ξ(t, ϕ∗

0 ) + λy, t, ϕ∗
0 )dy + λ20(t)m̃0(t, ϕ

∗
0 ).
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By (5.38), ϕo = ϕ∗ + ϕ, where ϕ = ϕ(ϕ∗
0 ) solves (5.50) and ϕ∗ solves (5.37).

Therefore

A1(t, ϕ
∗
0 ) = − 1

8π(1 + 2ϒ
λ20
t ) + e1(

λ20
t )

∫ ∞

t

∫

R2
U (y)ϕ∗(ξ(s, ϕ∗

0 ) + λy, s, ϕ∗
0 )dyds

+ Ã1(t, ϕ
∗
0 )

where

Ã1(t, ϕ
∗
0 ) = − 1

8π(1 + 2ϒ
λ20
t ) + e1(

λ20
t )

∫ ∞

t

∫

R2
U (y)[ϕ(ξ(s, ϕ∗

0 )

+ λy, s, ϕ∗
0 ) − ϕ(ξ(s, 0) + λy, s, 0)]dyds

− 1

8π(1 + 2ϒ
λ20
t ) + e1(

λ20
t )

∫ ∞

t
[m̃0(s, ϕ

∗
0 ) − m̃0(s, 0)]ds.

Integrating (5.37) on R
2 we find that

∂t

∫

R2
ϕ∗(x, t)dx = λ(t)−2

∫

R2
U

( x − ξ

λ

)
ϕ∗(x, t) dx =

∫

R2
U (y)ϕ∗(ξ + λy, t) dy,

and therefore

A1(t, ϕ
∗
0 ) = 1

8π(1 + 2ϒ
λ20
t ) + e1(

λ20
t )

∫

R2
ϕ∗(x, t, ϕ∗

0 )dx + Ã1(t, ϕ
∗
0 ).

Then from (6.57)

α1(t, ϕ
∗
0 ) − α1(t, 0) = 1

8π(1 + 2ϒ
λ20
t ) + e1(

λ20
t )

∫

R2
ϕ∗(x, t, ϕ∗

0 )dx

+ Ã1(t, ϕ
∗
0 ) + A2(t, ϕ

∗
0 ).

Using this and (6.56) we get

I (t, ϕ∗
0 ) − I (t, 0) = − 4

1 + 2ϒ
λ20
t + 1

8π e1(
λ20
t )

∫

R2
ϕ∗(x, t, ϕ∗

0 )dx

− 32π Ã1(t, ϕ
∗
0 ) − 32π A2(t, ϕ

∗
0 )

+ I0(t, ϕ
∗
0 ) − I0(t, 0).

Hence

h(t, ϕ∗
0 ) − h(t, 0) = −4

∫

R2
ϕ∗(x, t, ϕ∗

0 )dx + h̃(t, ϕ∗
0 )

where



61 Page 58 of 154 Arch. Rational Mech. Anal. (2024) 248:61

h̃(ϕ∗
0 , t) = 4

2ϒ
λ20
t + 1

8π e1(
λ20
t )

1 + 2ϒ
λ20
t + 1

8π e1(
λ20
t )

∫

R2
ϕ∗(x, t, ϕ∗

0 )dx

− 32π Ã1(t, ϕ
∗
0 ) − 32π A2(t, ϕ

∗
0 )

+ I0(t, ϕ
∗
0 ) − I0(t, 0) + II (t, ϕ∗

0 ) − II (t, 0) + III (t, ϕ∗
0 ) − III (t, 0).

From (6.55) it follows that

c1(ϕ
∗
0 ) − c1(0) = 4

λ(t0)2
∫

R2 Z̃0(y)|y|2dy
∫ ∞

t0

∫

R2
ϕ∗(x, s, ϕ∗

0 )dxds + c̃1(ϕ
∗
0 )

(6.58)

where

c̃1(ϕ
∗
0 ) = − 1

λ(t0)2
∫

R2 Z̃0(y)|y|2dy
∫ ∞

t0
h̃(s, ϕ∗

0 )ds.

We can relate the integral
∫ ∞
t0

∫

R2 ϕ
∗(x, s, ϕ∗

0 )dxds with the second moment

of ϕ∗
0 as follows. We multiply the equation of ϕ∗ (5.37) by |x − ξ(t)|2 and integrate

on R
2 to get

∂t

∫

R2
ϕ∗(x, t)|x − ξ(t)|2dx =

∫

R2
�ϕ∗(x, t)|x − ξ(t)|2dx

−
∫

R2
∇x�0

( x − ξ(t)

λ

)
· ∇ϕ∗(x, t)|x − ξ(t)|2dx

− 2ξ̇ (t) ·
∫

R2
ϕ∗(x, t)(x − ξ(t))dx .

But
∫

R2
�ϕ∗|x − ξ(t)|2dx = 4

∫

R2
ϕ∗dx

and
∫

R2
∇x�0

( x − ξ(t)

λ

)
· ∇ϕ∗(x, t)|x − ξ(t)|2dx

= −
∫

R2
ϕ∗(x + ξ(t))

[
�x�0

( x

λ

)
|x |2 + 2∇x�0

( x

λ

)
· x

]
dx .

Using the explicit expressions for U and �0 and writing y = x
λ
, ρ = |y|, we get

�x�0

( x

λ

)
|x |2 + 2∇x�0

( x

λ

)
· x = − 1

λ2
U

( x

λ

)
|x |2 + 2∇y�0

( x

λ

)
· x
λ

= − 8ρ2

(1 + ρ2)2
− 8ρ2

1 + ρ2
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= −
[ 8ρ2

(1 + ρ2)2
+ 8 − 8

1 + ρ2

]

= −8 + 8

(1 + ρ2)2
.

So
∫

R2
ϕ∗(x + ξ(t))

[
�x�0

( x

λ

)
|x |2 + 2∇x�0

( x

λ

)
· x

]
dx

= −8
∫

R2
ϕ∗(x, t)dx +

∫

R2
U

( x − ξ(t)

λ

)
ϕ∗(x, t)dx

and we find that

∂t

∫

R2
ϕ∗(x, t)|x − ξ(t)|2dx = −4

∫

R2
ϕ∗(x, t)dx +

∫

R2
U

( x − ξ(t)

λ

)
ϕ∗(x, t)dx

− 2ξ̇ (t)
∫

R2
ϕ∗(x, t)(x − ξ(t))dx .

Integrating and using (6.58) we find that

c1(ϕ
∗
0 ) − c1(0) = 1

λ(t0)2
∫

R2 Z̃0(y)|y|2dy
∫

R2
ϕ∗(x, t0)|x |2dx + R0(ϕ

∗
0 ),

by (6.44), where

R0(ϕ
∗
0 ) = 1

λ(t0)2
∫

R2 Z̃0(y)|y|2dy
[∫ ∞

t0

∫

R2
U

( x − ξ(s)

λ

)
ϕ∗(x, s)dxds

− 2
∫ ∞

t0
ξ̇ (s)

∫

R2
ϕ∗(x, s)(x − ξ(s))dxds

]
+ c̃1(ϕ

∗
0 ).

We claim that R0(ϕ
∗
0 ) satisfies (6.49). Indeed, let us look at

∫ ∞

t0
[I0(s, ϕ∗

0 ) − I0(s, 0)]ds.

Similarly (6.36), we have
∣
∣
∣
∣
∣

α̇1(t, ϕ∗
0 ) − α̇1(t, 0)

λ20

∫

R2
U (

x

λ0
)χ0(

x

λ0
)|x |2 dx

∣
∣
∣
∣
∣
≤ C

t
ν+ 3

2
0 (log t0)β

tν+ 3
2 (log t)β

λ20‖ϕ∗
0‖∗,b

Similar computations for the other terms of I0 give

|I0(t, ϕ∗
0 ) − I0(t, 0)| ≤ C

t
ν+ 3

2
0 (log t0)β

tν+ 3
2 (log t)β

λ20‖ϕ∗
0‖∗,b.

It follows that
∣
∣
∣
∣

∫ ∞

t0
[I0(s, ϕ∗

0 ) − I0(s, 0)]ds
∣
∣
∣
∣ ≤ C

t0
log(t0)

‖ϕ∗
0‖∗,b.

The other terms in R0 are estimated similarly. ��
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Proof of Proposition 6.5. If t
ν+ 3

2
0 (log t0)β‖v‖∗,b ≤ 1 and c1(v) − c1(0) = 0, then

Lemma 6.1 implies that
∫

R2 v(x)|x |2dx = 0.
To prove the converse, let

v1(x) = 1

(1 + |x |√
t0
)b

so that ‖v1‖∗,b = 1 (norm defined in (6.10)). Assuming μt
ν+ 3

2
0 (log t0)β ≤ δ and

δ > 0 small, we have by Lemma 6.2

c1(v + μv1) − c1(0) = cμt20 + R0(v + μv1),

for some constant c �= 0. Note that is c1(ϕ∗
0 ) continuous function of ϕ∗

0 , and so is
R0(ϕ

∗
0 ). By the intermediate value theorem, there is μ = O(t0‖v‖∗,b) such that

c1(v + μv1) − c1(0) = 0. By Lemma 6.1
∫

R2(v(x) + μv1(x))|x |2dx = 0, which
implies that μ = 0. But then c1(v) − c1(0) = 0. ��

7. The mass of ϕλ

We devote this section to prove Proposition 5.1. To that purpose, a basic step is
to derive a formula for the mass of ϕλ defined in (3.12).

Let us write

ϕλ = ϕ
(1)
λ + ϕ

(2)
λ (7.1)

where ϕ(1)
λ and ϕ

(2)
λ are the solutions, given by Duhamel’s formula, of the following

problems
⎧
⎪⎨

⎪⎩

∂tϕ
(1)
λ = �6ϕ

(1)
λ + λ̇

λ3
Z0(

x

λ
)χ0(z) in R2 × ( t02 ,∞)

ϕ
(1)
λ (·, t0

2 ) = 0

(7.2)

⎧
⎪⎨

⎪⎩

∂tϕ
(2)
λ = �6ϕ

(2)
λ + 1

2λ2t
U∇zχ0(z) · z + Ẽ, in R2 × ( t02 ,∞), z = x√

t
,

ϕ
(2)
λ (·, t0

2 ) = 0
(7.3)

where the operator �6 is defined in (3.8) and Ẽ in (3.11). We let ϕ[p, λ](r, t) be
the solution of the problem

⎧
⎨

⎩

∂tϕ[p, λ] = �6ϕ[p, λ] + p

λ4
Z0

( r

λ

)
χ

( r√
t

)
in R2 × ( t02 ,∞),

ϕ[p, λ](·, t0
2 ) = 0 in R2,

(7.4)

given by Duhamel’s formula. By definition, we have

ϕ
(1)
λ = ϕ[λλ̇, λ].
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In definitions (7.2), (7.3), (7.4), the parameter function λ(t) is assumed to be defined
for t > t0

2 . In the rest of this section we also assume the validity of the condition
stated for λ in (4.1), namely

|λ(t)| + t log(t)|λ̇(t)| ≤ C
√
log(t)

, t >
t0
2
, (7.5)

for some fixed constant C . Let us define

‖p‖γ,m = sup
t≥t0/2

tγ (log t)m |p(t)|. (7.6)

In what follows we shall only deal with radial functions on R
2 and sometimes we

will consider them as radial functions on R
6. For a fixed constant c0 > 0 we let

λ∗(t) = c0√
log t

. (7.7)

The following expansion holds.

Lemma 7.1. Assume that λ satisfies (7.5). Let 0 < γ < 2, m ∈ R and suppose that
‖p‖γ,m < ∞. Then

∫

R2
ϕ[p, λ](x)dx = −4π

∫ t−λ(t)2

t/2

p(s)

t − s
ds + R[p, λ]

where R[p, λ] satisfies
‖R[p, λ]‖γ,m ≤ C‖p‖γ,m .

If λ1, λ2 satisfy

∥
∥
∥
λ j

λ∗
∥
∥
∥
L∞(t0/2,∞)

<
1

2
, j = 1, 2,

then we also have

‖R[p, λ∗ + λ1] − R[p, λ∗ + λ2]‖γ,m ≤ C‖p‖γ,m

∥
∥
∥
λ1 − λ2

λ∗
∥
∥
∥
L∞(t0/2,∞)

. (7.8)

For the proof of the above result we will need the following calculation.

Lemma 7.2. Let

f (w) = 1

(4π)3

∫

R6
e− |z|2

4
1

|w − z|4 dz, w ∈ R
6.

Then

f (w) = 1

|w|4
[
1 − e

−|w|2
4

(
1 + |w|2

4

)]
. (7.9)
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Proof. Let ϕ0 be given by

ϕ0(x, t) = 1

(4π)3

1

t3

∫

R6
e− |y|2

4t
1

|x − y|4 dy, x ∈ R
6, t > 0,

which solves

∂tϕ0 = �R6ϕ0 in R6 × (0,∞)

ϕ0(x, 0) = 1

|x |4 .

Then

f (w) = ϕ0(w, 1).

Write

ϕ0(x, t) = 1

t2
q
( |x |√

t

)
.

Then

q ′′(s) + 5

s
q ′(s) + s

2
q ′(s) + 2q(s) = 0

and we want q(s) bounded for s → 0, q(s) = s−4(1 + o(1)) as s → ∞. A
calculation using the explicit element in the kernel of the linear operator, s−4,
gives

q(s) = 1

s4

[
1 − e− s2

4

(
1 + s2

4

)]
, s > 0,

and then (7.9) follows. ��
Proof of Lemma 7.1. The solution ϕ[p, λ] of (7.4) has the formula

ϕ[p, λ](x, t) = 1

(4π)3

∫ t

t0/2

p(s)

λ4(s)

1

(t − s)3

∫

R6
e−

|x−y|2
4(t−s) Z0

( y

λ(s)

)
χ

( y√
s

)
dyds, x ∈ R

6.

Writing

ϕ = ϕ[p, λ]
we have

∫

R2
ϕ(x, t) dx = 2

π2

∫

R6
ϕ(x, t)|x |−4dx

= 2

π2

1

(4π)3

∫ t

t0/2

p(s)

λ4(s)

1

(t − s)3
∫

R6

∫

R6
e− |x−y|2

4(t−s) |x |−4dx Z0

( y

λ(s)

)
χ

( y√
s

)
dyds
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= 2

π2

1

(4π)3

∫ t

t0/2

p(s)

λ(s)4
∫

R6

∫

R6
e− |z|2

4
1

|y − √
t − sz|4 dzZ0

( y

λ(s)

)
χ

( y√
s

)
dyds

Using (7.9) we have

∫

R2
ϕ(x, t)dx = 2

π2

∫ t

t0/2

p(s)

λ(s)4

∫

R6

1

(t − s)2
f ((t − s)−1/2|y|)Z0

( y

λ(s)

)
χ

( y√
s

)
dyds

= 2π
∫ t

t0/2

p(s)

λ(s)4

∫ ∞
0

[
1 − e−

r2
4(t−s)

(
1 + r2

4(t − s)

)]
Z0

( r

λ(s)

)
χ

( r√
s

)
rdrds.

Let us notice that

1

2π

∫

R2
ϕ(x, t)dx

=
∫ t

t0/2

p(s)(t − s)

λ(s)4

∫ ∞

0

[
1 − e− z2

4

(
1 + z2

4

)]
Z0

( z
√
t − s

λ(s)

)
χ

( z
√
t − s√
s

)
zdzds.

We decompose

1

2π

∫

R2
ϕ(x, t)dx = I1 + I2 + I3

where

I1 =
∫ t/2

t0/2
...

I2 =
∫ t−λ(t)2

t/2
...

I3 =
∫ t

t−λ(t)2
...

and separately estimate each term. To estimate I1 we note that for s ≤ t/2 we have
s

t−s ≤ 1. Assuming that χ(x) = 0 for x ≥ 2 we obtain

∫ ∞

0

[
1 − e− z2

4

(
1 + z2

4

)]
Z0

( z
√
t − s

λ(s)

)
χ

( z
√
t − s√
s

)
zdz =

∫ 2
√
s√

t−s

0
...

We estimate for s ≤ t/2,

∣
∣
∣

∫ 2
√
s√

t−s

0

[
1 − e− z2

4

(
1 + z2

4

)]
Z0

( z
√
t − s

λ(s)

)
χ

( z
√
t − s√
s

)
zdz

∣
∣
∣

≤ C
∫ 2

√
s√

t−s

0
z4

λ(s)4

(t − s)2z4
zdz

≤ C
λ(s)4s

(t − s)3
,
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where we have used that Z0(ρ) ≤ C/ρ4 and 1 − e− z2
4 (1 + z2

4 ) ≤ Cz4. Therefore

|I1| ≤
∫ t/2

t0/2

|p(s)|s
(t − s)2

ds ≤ ‖p‖γ,m

∫ t/2

0

s1−γ

(t − s)2(log s)m
ds ≤ C

tγ (log t)m
‖p‖γ,m .

Let us analyze I2. We write

I2 = I2,∗ + I2,a + I2,b + I2,c + I2,d

where

I2,∗ = −16
∫ t−λ(t)2

t/2

p(s)(t − s)

λ(s)4

∫ ∞

0

[
1 − e− z2

4

(
1 + z2

4

)] λ(s)4

(t − s)2z4
zdzds

and

I2,a =
∫ t−λ(t)2

t/2

p(s)(t − s)

λ(s)4

∫ λ(s)√
t−s

0

[
1 − e− z2

4

(
1 + z2

4

)]
Z0

( z
√
t − s

λ(s)

)
χ

( z
√
t − s√
s

)
zdzds

I2,b = 16
∫ t−λ(t)2

t/2

p(s)(t − s)

λ(s)4

∫ λ(s)√
t−s

0

[
1 − e− z2

4

(
1 + z2

4

)] λ(s)4

(t − s)2z4
χ

( z
√
t − s√
s

)
zdzds

I2,c =
∫ t−λ(t)2

t/2

p(s)(t − s)

λ(s)4

∫ ∞
λ(s)√
t−s

[
1 − e− z2

4

(
1 + z2

4

)][
Z0

( z
√
t − s

λ(s)

)
+ 16

λ(s)4

(t − s)z4

]
zdzds

I2,d =
∫ t−λ(t)2

t/2

p(s)(t − s)

λ(s)4

∫ ∞

0

[
1 − e− z2

4

(
1 + z2

4

)]
Z0

( z
√
t − s

λ(s)

)[
χ

( z
√
t − s√
s

)
−1

]
zdzds

A calculation gives that

I2,∗ = −2
∫ t−λ(t)2

t/2

p(s)

t − s
ds. (7.10)

Next we find a bound for I2,a . Using that Z0 is a bounded function and |1 −
e− z2

4 (1 + z2
4 )| ≤ Cz4, we get

∣
∣
∣

∫ λ(s)√
t−s

0

[
1 − e− z2

4

(
1 + z2

4

)]
Z0

( z
√
t − s

λ(s)

)
χ

( z
√
t − s√
s

)
zdz

∣
∣
∣

≤ C
∫ λ(s)√

t−s

0
z5dz ≤ C

λ(s)6

(t − s)3
.

It follows that

|I2,a | ≤ C
∫ t−λ(t)2

t/2

|p(s)|λ(s)2
(t − s)2

ds ≤ C

tγ (log t)m
‖p‖γ,m

∫ t−λ(t)2

t/2

λ(s)2

(t − s)2
ds

≤ C

tγ (log t)m
‖p‖γ,m .
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Using that |1 − e− z2
4 (1 + z2

4 )| ≤ Cz4, we get

∣
∣
∣

∫ λ(s)√
t−s

0

[
1 − e− z2

4

(
1+ z2

4

)] λ(s)4

(t − s)2z4
χ

( z
√
t − s√
s

)
zdz

∣
∣
∣C ≤ λ(s)4

(t − s)2

∫ λ(s)√
t−s

0
zdz

≤ C
λ(s)6

(t − s)3
,

and similarly as before,

|I2,b| ≤ C

tγ (log t)m
‖p‖γ,m .

Using that

Z0

( z
√
t − s

λ(s)

)
= −16

λ(s)4

(t − s)2z4
+ O

( λ(s)6

(t − s)3z6

)
,

z
√
t − s

λ(s)
≥ 1,

we get

|I2,c| ≤ C
∫ t−λ(t)2

t/2

p(s)(t − s)

λ(s)4

∫ ∞
λ(s)√
t−s

[
1 − e− z2

4

(
1 + z2

4

)] λ(s)6

(t − s)3z6
χ

( z
√
t − s√
s

)
zdz

≤ C
∫ t−λ(t)2

t/2

p(s)λ(s)2

(t − s)2

∫ ∞
λ(s)√
t−s

[
1 − e− z2

4

(
1 + z2

4

)] 1

z5
dz.

But λ(s)√
t−s

≤ 2 in the considered range of s, and then

|I2,c| ≤ C
∫ t−λ(t)2

t/2

|p(s)|λ(s)2
(t − s)2

log
(λ(s)2

t − s

)
ds

≤ C

tγ (log t)m
‖p‖γ,m

∫ t−λ(t)2

t/2

λ(s)2

(t − s)2
log

(λ(s)2

t − s

)
ds

≤ C

tγ (log t)m
‖p‖γ,m .

Finally, for I2,d ,

∣
∣
∣

∫ ∞

0

[
1 − e− z2

4

(
1 + z2

4

)]
Z0

( z
√
t − s

λ(s)

)[
χ

( z
√
t − s√
s

)
−1

]
zdz

∣
∣
∣

≤
∫ ∞

2
√
s/

√
t−s

[
1 − e− z2

4

(
1 + z2

4

)] λ(s)4

(t − s)2z4
zdz

≤ λ(s)4

(t − s)2

∫ ∞

2
√
s/

√
t−s

z−3dz

≤ C
λ(s)4

(t − s)s
.
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Then

|I2,d | ≤ C
∫ t−λ(t)2

t/2

|p(s)|(t − s)

λ(s)4
λ(s)4

(t − s)s
ds ≤ C

tγ (log t)m
‖p‖γ,m .

Finally we estimate

|I3| =
∣
∣
∣

∫ t

t−λ(t)2

p(s)

λ(s)2

∫ ∞

0

[
1 − e− ρ2λ2

4(t−s)

(
1 + ρ2λ2

4(t − s)

)]
Z0(ρ)χ

( λρ√
s

)
ρdρds

∣
∣
∣

≤ C
∫ t

t−λ(t)2

|p(s)|
λ(s)2

ds

≤ C

tγ (log t)m
‖p‖γ,m .

In summary, by (7.10) we have written

1

2π

∫

R2
ϕ(x, t)dx = −2

∫ t−λ(t)2

t/2

p(s)

t − s
ds + I1 + I2,a + I2,b + I2,c + I2,d + I3,

and each of the expressions I1, I2,a , I2,b, I2,c, I2,d , I3 are linear operators of p with
the estimate

‖I j [p]‖γ,m ≤ C‖p‖γ,m .

The proof of (7.8) follows from the explicit expressions for the terms I j in R,
and similar estimates as before. ��

Lemma 7.3. Suppose that λ satisfies (7.5) and ϕ
(2)
λ be given by (7.3). Then

ϕ
(2)
λ (0, t; λ) = −λ(t)2

4t2
+ O

( 1

t2(log t)2

)
, (7.11)

as t → ∞, where O( 1
t2(log t)2

) is uniform in t0. With λ∗ given by (7.7), if λ1, λ2
satisfy

∥
∥
∥
λ j

λ∗
∥
∥
∥
L∞(t0/2,∞)

<
1

2
, j = 1, 2,

then we also have

|ϕ(2)
λ∗+λ1

(0, t) − ϕ
(2)
λ∗+λ2

(0, t)| ≤ C

t2 log t

∥
∥
∥
λ1 − λ2

λ∗
∥
∥
∥
L∞(t0/2,∞)

. (7.12)

Proof. For simplicity of notation let us write ϕ(x, t; λ) = ϕ
(2)
λ (x, t). Let us write

the right hand side of equation (7.3) in the following form
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E2(x, t; λ) = − 1

2λ2t
U (y)∇z z0(z) · z + 2

λ3t1/2
∇zχ0(z) · ∇yU (y)

+ 1

λ2t
�zχ0(z)U (y)

− 1

λ3t1/2
U (y)∇zχ0(z) · ∇y�0(y), y = x

λ
, z = x√

t
.

To compute ϕ(0, t; λ) let us define the following approximation of it

ϕ̂(r, t) = λ2ϕ̃(r, t),

where ϕ̃(r, t) solves the radial heat equation in dimension 6:
⎧
⎨

⎩

∂t ϕ̃ = ∂2r ϕ̃ + 5

r
∂r ϕ̃ + 1

t3
h
( r√

t

)
,

ϕ̃(r, 0) = 0,
(7.13)

and

h(ζ ) = 8

ζ 4

[

χ ′′
0 − 3

ζ
χ ′
0(ζ ) + ζ

2
χ ′
0(ζ )

]

.

The solution ϕ̃(r, t) to problem (7.13) can be expressed in self-similar form as

ϕ̃(r, t) = 1

t2
g(ζ ), ζ = r√

t
.

We find for g the equation

g′′ + 5

ζ
g′ + ζ

2
g′ + 2g + h(ζ ) = 0, ζ ∈ (0,∞). (7.14)

Using that the function 1
ζ 4

is in the kernel of the homogeneous equation, we find
the explicit solution of (7.14),

g0(ζ ) = − 1

ζ 4

∫ ζ

0
x3e− 1

4 x
2
∫ x

0
h(y)e

1
4 y

2
y dydx .

To find the solution ϕ̃ with suitable decay at infinity we let

g(ζ ) = g0(ζ ) + 1

8
z̄(ζ )I, (7.15)

where

z̄(ζ ) = 1

ζ 4

∫ ζ

0
x3e− 1

4 x
2
dx

is a second solution of the homogeneous equation, linearly independent of 1
ζ 4

and

I =
∫ ∞

0
x3e− 1

4 x
2
∫ x

0
h(y)e

1
4 y

2
y dydx .
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We observe that

g(ζ ) = O(e− 1
4 ζ

2
) as ζ → +∞,

which makes the solution (7.15) the only one with decay faster than O(ζ−4) as
ζ → +∞. An explicit calculation gives that I = −8, and therefore

ϕ̂(0, t) = −λ(t)2

4t2
. (7.16)

Then, using a barrier for the equation satisfied by ϕ(x, t; λ) − ϕ̂(x, t) we get

|ϕ(x, t; λ) − ϕ̂(x, t)| ≤ C
1

t2(log t)2
e−c |x |2

t , (7.17)

for t ≥ 2, where 0 < c < 1
4 . From (7.16) and (7.17) we obtain (7.11).

The proof of (7.12) is similar. ��
Lemma 7.4. Suppose that λ satisfies (7.5) and ϕ

(2)
λ be given by (7.3). Then

∫

R2
ϕ
(2)
λ = −2π

λ2

t
− 16πϒ

λ2

t
+ O

( 1

t2(log t)2

)
. (7.18)

where ϒ is defined in (2.7), that, is, ϒ = ∫ ∞
0 (χ0(s) − 1)s−3ds.

Proof. Integrating (7.3)

d

dt

∫

R2
ϕ
(2)
λ = −4ϕ(2)

λ (0, t) − 1

2λ2t

∫

R2
U (y)∇zχ0(z) · zdx +

∫

R2
Ẽdx .

From (7.11)

ϕ
(2)
λ (0, t) = −λ(t)2

4t2
+ O

( 1

t2(log t)2

)

and we compute

− 1

2λ2t
U (y)∇zχ0(z) · z + Ẽ

= − 1

λ2
U (y)∇zχ0(z) · z + 2

λ2
∇xχ · ∇xU + 1

λ2
�xχU − 1

λ2
U∇χ · ∇�0

=
[
4
λ2

t3
χ ′
0(s)

1

s3
− 64

λ2

t3
χ ′
0(s)

1

s5
+ 8

λ2

t3
(χ ′′

0 (s) + 1

s
χ ′
0(s))

1

s4

+ 32
λ2

t3
χ ′
0(s)

1

s5

]
+ O

(λ4

t4

)
χ{1≤s≤2}

= 8
λ2

t3
1

s4

[ s

2
χ ′
0(s) − 3

s
χ ′
0(s) + χ ′′

0 (s)
]

+ O
(λ4

t4

)
χ{1≤s≤2}

where s = r√
t
. Then
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− 1

2λ2t

∫

R2
U (y)∇zχ0(z) · zdx +

∫

R2
Ẽdx

= 2π
8λ2

t2

∫ ∞

0

1

s4

[ s

2
χ ′
0(s) − 3

s
χ ′
0(s) + χ ′′

0 (s)
]
sds + O

(λ4

t3

)

= 16π
λ2

t2

[∫ ∞

0
(χ0(s) − 1)s−3ds +

∫ ∞

0
(s−3χ ′

0)
′ds

]
+O

(λ4

t3

)

= 16π
λ2

t2
ϒ + O

(λ4

t3

)
.

Therefore

d

dt

∫

R2
ϕ
(2)
λ = 2π

λ(t)2

t2
+ 16πϒ

λ2

t2
+ O

( 1

t3(log t)2

)

and integrating we get
∫

R2
ϕ
(2)
λ = −2π

λ2

t
− 16πϒ

λ2

t
+ O

( 1

t2(log t)2

)
.

This is the desired expansion (7.18). ��
As a corollary from Lemma 7.1 and Lemma 7.4 we get:

Corollary 7.1. Assume λ satisfies (7.5). Then

∫

R2
ϕλdx = −4π

∫ t−λ(t)2

t/2

λλ̇(s)

t − s
ds − 2π

λ2(t)

t
− 16πϒ

λ2(t)

t

+ O
( 1

t2(log t)2

)
+ R[λλ̇, λ],

where R is as in Lemma 7.1.

Lemma 7.5. Let Ẽ be defined by (3.11). Assume that λ satisfies (7.5). Then
∫

R2
Ẽ |x |2dx = −64πϒ

λ2

t
+ O

( 1

t2(log t)2

)
. (7.19)

Proof. Similarly to the proof of Lemma 7.4 we have

Ẽ = 8
λ2

t3
1

s4

[
− 3

s
χ ′
0(s) + χ ′′

0 (s)
]

+ O
(λ4

t4

)
χ{1≤s≤2},

where r = |x |, s = r√
t
, and so

∫

R2
Ẽ |x |2dx = 16π

λ2

t

∫ ∞

0

1

s4

[
− 3

s
χ ′
0(s) + χ ′′

0 (s)
]
s3ds + O

(λ4

t2

)

= −64π
λ2

t
ϒ + O

(λ4

t2

)
.

This is (7.19). ��
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Lemma 7.6. Let E be defined by (3.10). Assume that λ satisfies (7.5). Then
∣
∣
∣
∣

∫

R2
E |x |2dx

∣
∣
∣
∣ ≤ C

t log(t)
.

Proof. We have from (3.10)

E(ζ, t; λ) = λ̇

λ3
Z0

(ζ

λ

)
χ0

( ζ√
t

)
+ 1

2λ2t
U

(ζ

λ

)
∇zχ0(z) · z + Ẽ(x, t),

and we have already computed
∫

R2 Ẽ |x |2dx in (7.19). We have
∫

R2
Z0

(ζ

λ

)
χ0

( ζ√
t

)
|ζ |2 dζ = 2πλ4

∫ ∞

0
Z0(ρ)χ0

( λρ√
t

)
ρ3 dρ

= O(λ4 log(t)),

and so
∣
∣
∣
∣
λ̇

λ3

∫

R2
Z0

(ζ

λ

)
χ0

( ζ√
t

)
|ζ |2 dζ

∣
∣
∣
∣ ≤ C

t log t
.

��

7.1. Proof of Proposition 5.1

Let

I [λ] = 4
∫

R2
ϕλdx −

∫

R2
Ẽ(λ)|x |2dx .

For the proof we proceed by linearization, that is we look for a function λ0
satisfying

|I [λ0](t)| ≤ C
1

t
3
2+σ

, t > t0

with the expansion

λ0(t) = λ∗(t) + λ̃0(t)

where λ∗ was defined in (7.7), that is, λ∗(t) = c0√
log t

and λ̃0(t), t > t0
2 , is a

correction. Here c0 > 0 is a fixed constant.
We claim that

|I [λ∗](t)| ≤ C
log(log t)

t (log t)2
, t >

t0
2
, (7.20)

with C independent of t0. In the rest of the proof C will be a constant independent
of t0 (for t0 large).

Indeed, using the decomposition (7.1) and the notation (7.4) we have
∫

R2
ϕλ∗dx =

∫

R2
ϕ
(1)
λ∗ dx +

∫

R2
ϕ
(2)
λ∗ dx
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and
∫

R2
ϕ
(1)
λ∗ dx =

∫

R2
ϕ[p∗, λ∗]dx, p∗ = λ∗λ̇∗.

By Lemma 7.1 we have
∣
∣
∣
∣
∣

∫

R2
ϕ[p∗, λ∗]dx + 4π

∫ t−λ∗(t)2

t/2

p∗(s)
t − s

ds

∣
∣
∣
∣
∣
≤ C

1

t (log t)2
, t >

t0
2
.

Therefore
∣
∣
∣
∣

∫

R2
ϕ[p∗, λ∗]dx + 4π log(t)p∗(t)

∣
∣
∣
∣ ≤ C

log(log t)

t (log t)2
, t >

t0
2
.

On the other hand, by Lemma 7.4 we have

∫

R2
ϕ
(2)
λ∗ dx = −2π

λ∗(t)2

t
− 16πϒ

λ∗(t)2

t
+ O

( 1

t (log t)2

)
,

and by Lemma 7.5

∫

R2
Ẽ(λ∗)|x |2dx = −64πϒ

λ∗(t)2

t
+ O

( 1

t2(log t)2

)
.

Using the explicit form of λ∗ and the previous formulas we deduce (7.20).
Next let us rewrite slightly the operator I [λ] as follows. We have

I [λ] = 4
∫

R2
ϕ[λλ̇, λ]dx + 4

∫

R2
ϕ
(2)
λ dx −

∫

R2
Ẽ(λ)|x |2dx .

Let us define

R[p, λ] =
∫

R2
ϕ[p, λ]dx + 4π

∫ t−λ∗(t)2

t/2

p(s)

t − s
ds.

This is similar to the decomposition given in Lemma 7.1, but we have changed the
interval of integration to [ t2 , t − λ∗(t)2]. We decompose the integral

∫ t−λ∗(t)2

t/2

p(s)

t − s
ds =

∫ t−t1−ϑ

t/2

p(s)

t − s
ds +

∫ t−λ∗(t)2

t−t1−ϑ

p(s)

t − s
ds

=
∫ t−t1−ϑ

t/2

p(s)

t − s
ds + p(t)

∫ t−λ∗(t)2

t−t1−ϑ

1

t − s
ds

−
∫ t−λ∗(t)2

t−t1−ϑ

p(t) − p(s)

t − s
ds

where 0 < ϑ < 1
2 is a fixed constant.

We change variables μ = λ2, so that
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I [λ] = −8πμ̇(t)((1 − ϑ) log(t) − 2 log(λ∗(t))) − 8π
∫ t−t1−ϑ

t/2

μ̇(s)

t − s
ds

+ 4
∫

R2
ϕ
(2)√
μ
dx + 2R[μ̇,

√
μ] −

∫

R2
Ẽ(

√
μ)|x |2dx

+ 8π
∫ t−λ∗(t)2

t−t1−ϑ

μ̇(t) − μ̇(s)

t − s
ds.

Let η be a smooth cut-off such that η(t) = 0 for t < 3
4 t0, η(t) = 1 for t > t0. We

define

Ĩ [μ] = −8πμ̇(t)((1 − ϑ) log(t) − 2 log(λ∗(t))) − 8πη(t)
∫ t−t1−ϑ

t/2

μ̇(s)

t − s
ds

+ 4η(t)
∫

R2
ϕ
(2)√
μ
dx + 2η(t)R[μ̇,

√
μ] − η(t)

∫

R2
Ẽ(

√
μ)|x |2dx

+ 8πη(t)
∫ t−λ∗(t)2

t−t1−ϑ

μ̇(t) − μ̇(s)

t − s
ds

which we write

Ĩ [μ] = �[μ] + N [μ] + R[μ],
where

�[μ](t) = −8πμ̇(t)((1 − ϑ) log(t) − 2 log(λ∗(t))) − 8πη(t)
∫ t−t1−ϑ

t/2

μ̇(s)

t − s
ds

N [μ](t) = 4η(t)
∫

R2
ϕ
(2)√
μ
dx + 2η(t)R[μ̇,

√
μ] − η(t)

∫

R2
Ẽ(

√
μ)|x |2dx

R[μ](t) = 8πη(t)
∫ t−λ∗(t)2

t−t1−ϑ

μ̇(t) − μ̇(s)

t − s
ds.

Note that I [λ](t) = Ĩ [λ2](t) for t ≥ t0.
Instead of finding λ such that I [λ] = 0 for t > t0 we are going to construct μ

such that

| Ĩ [μ](t)| ≤ C

t
3
2+σ

, t >
t0
2
,

for some σ > 0.
Let μ∗ = (λ∗)2 where λ∗ is defined in (7.7). In a first step we will find μ1 so

that

�[μ∗ + μ1] + N [μ∗ + μ1] + R[μ∗] = 0, t >
t0
2
. (7.21)

We will look for μ1 with ‖μ1‖∗,γ,m < ∞ where, for a function μ1 ∈ C1([ t02 ,∞))

with limt→∞ μ1(t) = 0 we define

‖μ1‖∗,γ,m = sup
t≥t0/2

tγ (log t)m |μ̇1(t)| = ‖μ̇1‖γ,m .
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Equation (7.21) takes the form

0 = −8πμ̇1((1 − ϑ) log(t) − 2 log(λ∗(t))) − 8πη(t)
∫ t−t1−ϑ

t/2

μ̇1(s)

t − s
ds

+ η(t)e1(t) + η(t)F1[μ1](t), t >
t0
2
, (7.22)

where

e1(t) = Ĩ [μ∗]
and F1 is an operator with the following properties:

‖F1[μ̃1]‖γ,m ≤ C‖μ̃1‖∗,γ,m, (7.23)

‖F1[μ̃1] − F1[μ̃2]‖γ,m ≤ C‖μ̃1 − μ̃2‖∗,γ,m, (7.24)

for μ̃ j satisfying ‖μ̃ j‖∗,γ,m ≤ 1, with 0 < γ < 2, m ∈ R, where ‖ ‖γ,m is defined
in (7.6). From (7.20) we find

|e1(t)| ≤ C
log(log t)

t (log t)2
, t >

t0
2
.

Now we apply the contraction mapping principle to the Eq. (7.22) written in
the form

μ̇1 = −η(t)Ir [μ̇1] + 1

8π((1 − ϑ) log(t) − 2 log(λ∗(t)))
η(t)

[
e1(t)

+ F[μ1](t)
]
, t >

t0
2
, (7.25)

where

Ir [μ̇1] = 1

((1 − ϑ) log(t) − 2 log(λ∗(t))

∫ t−t1−ϑ

t/2

μ̇1(s)

t − s
ds.

We directly check that

‖Ir [μ̇]‖γ,m ≤ ϑ

1 − ϑ
‖μ̇1‖γ,m .

Let X be the space X = {μ1 ∈ C1([ t02 ,∞)) | limt→∞ μ1(t) = 0} with the norm
‖μ1‖X = ‖μ1‖∗,1,3−ε, where 0 < ε < 1. It follows that if ϑ < 1

2 the equation
(7.25) has a unique solution μ1 in the ball B1(0) of X .

Thereforewe have foundμ1 with ‖μ1‖∗,1,3−ε ≤ 1 so thatμ = μ∗+μ1 satisfies

Ĩ [μ] = −8πη(t)
∫ t−λ∗(t)2

t−t1−ϑ

μ̇1(t) − μ̇1(s)

t − s
ds. (7.26)

To estimate this remainder we then need a bound for μ̈. Differentiating with respect
to t in the decompositions used in Lemmas 7.1, 7.4, 7.5 we obtain

|ė1(t)| ≤ C
log(log t)

t2(log t)2
, t >

t0
2
.
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Differentiating in t equation (7.25) and using the contraction mapping principle we
get that for any ε > 0 small

|μ̈1(t)| ≤ C

t2−ε
.

Using this we find that the remainder (7.26) has the estimate
∣
∣
∣
∣
∣

∫ t−λ∗(t)2

t−t1−ϑ

μ̇(t) − μ̇(s)

t − s
ds

∣
∣
∣
∣
∣
≤ C

t1+ϑ−ε
, t >

t0
2
,

where μ = μ∗ + μ1.
Next we introduce another correctionμ2 to improve the decay of the remainder.

We consider μ = μ∗ + μ1 + μ2 and we consider the following equation for μ2:

�[μ∗ + μ1 + μ2] + N [μ∗ + μ1 + μ2] + R[μ∗ + μ1] = 0, t >
t0
2
.

Similarly as before, this equation can be written as

0 = −8πμ̇2((1 − ϑ) log(t) − 2 log(λ∗(t))) − 8πη(t)
∫ t−t1−ϑ

t/2

μ̇2(s)

t − s
ds

+ η(t)e2(t) + η(t)F2[μ2](t), t >
t0
2
, (7.27)

where F2 satisfies the same estimate (7.23) (7.24), and e2 has the estimate

|e2(t)| ≤ C

t1+ϑ−ε
, t >

t0
2
.

Using again the contraction mapping principle we find a solution μ2 of (7.27) with
‖μ2‖∗,1+ϑ−ε,1 ≤ 1. Then for μ = μ∗ + μ1 + μ2

Ĩ [μ](t) = −8πη(t)
∫ t−λ∗(t)2

t−t1−ϑ

μ̇2(t) − μ̇2(s)

t − s
ds.

To estimate this remainder we need the following bound for μ̈2

|μ̈2(t)| ≤ C

t2+ϑ−ε
(7.28)

which is obtained from an estimate for ė2, differentiating with respect to t equation

(7.27). The estimate for ė2 is obtained from an analogous estimate for d3μ1
dt3

.
From (7.28) we find

| Ĩ [μ](t)| ≤ C

t1+2ϑ−ε
t >

t0
2
,

where we recall that 0 < ϑ < 1
2 is arbitrary.

Thus letting λ0 = √
μ, μ = μ∗ + μ1 + μ2 we obtain

|I [λ0]| ≤ C

t1+2ϑ−ε
t > t0.

Choosingϑ > 1
4 and ε > 0 small, we obtain the properties stated in Proposition 5.1.

��
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8. Inner Linear Theory

In this section we consider the problem
⎧
⎪⎪⎨

⎪⎪⎩

λ2∂tφ = L[φ] + B[φ] + h(y, t) +
2∑

j=1

μ j (t)W1, j in R2 × (t0,∞)

φ(·, t0) = 0 in R2.

(8.1)

that appears in the inner equations (5.48) and (5.49), where, we recall

L[φ] = ∇ ·
[
U∇

( φ

U
− (−�)−1φ

)]
,

(−�)−1φ(y, t) = 1

2π

∫

R2
log

( 1

|y − z|
)
φ(z, t)dz. (8.2)

Slightly more general than the operator B defined in (5.47) we will consider

B[φ] = ζ1(t)[φ]rad + ζ2(t)y · ∇[φ]rad + (ζ1(t)φ1 + ζ2(t)y · ∇φ1)χ0

( λy

5
√
t

)
,

where [φ]rad is the radial part of φ (defined in (5.46)) and φ1 = φ − [φ]rad , and
where χ0 is the smooth cut-off function defined in (2.5). In the sequel we will keep
the same notation for B.

In what follows we will analyze the linear initial value problem (8.1) where
we assume that the functions λ(t), ζi (t) are continuous, t0 > 1 and that for some
positive numbers c, C we have

c√
log t

≤ λ(t) ≤ C√
log t

for all t > t0,

|ζi (t)| � C

t log2 t
for all t > t0.

We change the time variable into

τ = τ0 +
∫ t

t0

1

λ(s)2
ds,

where τ0 = t0 log t0. Then

c̃1t log t ≤ τ ≤ c̃2t log t

for some c̃1, c̃2 > 0. Identifying φ(y, t) and h(y, t) with φ(y, τ ) and h(y, τ ) we
rewrite (8.1) as

⎧
⎪⎪⎨

⎪⎪⎩

∂τφ = L[φ] + B[φ] + h +
2∑

j=1

μ j (τ )W1, j in R2 × (τ0,∞)

φ(·, τ0) = 0 in R2,

(8.3)



61 Page 76 of 154 Arch. Rational Mech. Anal. (2024) 248:61

We consider problem (8.3) for functions h(y, τ ) that have fast decay in space.
More precisely, we assume that for all T > 0 there is CT such that

|h(y, τ )| ≤ CT

1 + |y|6 for all (y, τ ) ∈ R
2 × (τ0, T ).

In this case, by a solution φ(y, τ ) of (8.3) we understand a continuous function
φ(y, τ ), of class C1 in y, such that for any T > τ0 there exists a CT > 0 with

|φ(y, τ )| + (1 + |y|)|∇yφ(y, τ )| ≤ CT

1 + |y|6 for all (y, τ ) ∈ R
2 × (τ0, T ),

(8.4)

and satisfies the integral equation

φ(y, τ ) =
∫ τ

τ0

∫

R2
G(y − z, τ − s) [−∇φ∇�0 − ∇U∇(−�)−1φ

+ 2Uφ + B[φ] + h +
2∑

j=1

μ j (s)W1, j ](z, s) dz ds, (8.5)

where (−�)−1φ is defined in (8.2) and G(y, τ ) is the two-dimensional heat kernel,

G(y, τ ) = 1

4πτ
e− |y|2

4τ .

From the formula

∇(−�)−1h(y) = − 1

2π

∫

R2

y − z

|y − z|2 h(z)dz

we see that if |φ(y)| ≤ C
1+|y|6 then

|∇(−�)−1φ(y)| ≤ C

1 + |y| ‖(1 + |y|6)φ‖L∞(R2).

Using this estimate, existence and uniqueness of a solution of (8.5) satisfying (8.4)
are standard. For a short time T > τ0 this is established by a contraction mapping
argument in an appropriate L∞-weighted space. Then a direct linear continuation
procedure applies.

A first natural condition to impose on h in (8.3) is that
∫

R2
h(y, τ )dy = 0 for all τ > τ0,

in order to achieve that the solution has also zero mass at all times.
We want to find solutions to (8.3) that have fast decay in space and time. For

this we need to assume fast space-time decay of the right hand side, which we do
by working with the following class of norms.
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Given positive numbers ν, p, ε and m ∈ R, we let ‖h‖ν,m,p,ε denote the least
K � 0 such that for all τ > τ0 and for all y ∈ R

2

|h(y, τ )| ≤ K

τ ν(log τ)m

1

(1 + |y|)p

⎧
⎪⎨

⎪⎩

1 |y| ≤ √
τ ,

τ ε/2

|y|ε |y| ≥ √
τ .

(8.6)

This is similar to the norm introduced in (6.2) but defined using τ instead of t . We
will give the results in Sects. 9–12 using the norm (8.6).

Still, fast decay of the right hand side doesn’t imply fast decay of the solution.
For example, consider Eq. (8.1) without the operator B and without the μ j , that is,

{
∂τφ = L[φ] + h(y, t) in R2 × (τ0,∞)

φ(·, τ0) = 0 in R2,
(8.7)

and suppose that h has compact support in space and time, and that φ has sufficient
space-time decay. Then, multiplying (8.7) by |y|2 and integrating in R2 × (τ0,∞)

gives
∫ ∞

τ0

∫

R2
h(y, τ )|y|2dydτ = 0,

because if φ is a regular function with fast decay, then
∫

R2
L[φ]|y|2dy = 0,

see Remark 9.2 below. It is then necessary to impose a condition on h, or to adjust
a parameter in the problem in order to get a fast decay of the solution. We develop
here the theory by adjusting the parameter c1 in the equation below

{
∂τφ = L[φ] + B[φ] + h(y, t) in R2 × (τ0,∞),

φ(·, t0) = c1 Z̃0 in R2,
(8.8)

where Z̃0 is defined in (6.4).

Proposition 8.1. Let σ > 0, ε > 0 with σ + ε < 2 and 1 < ν < 7
4 . Let 0 < q < 1.

Then there exists a number C > 0 such that for t0 sufficiently large and all radially
symmetric h = h(|y|, τ ) with ‖h‖ν,m,6+σ,ε < ∞ and

∫

R2
h(y, τ )dy = 0, for all τ > τ0,

there exists c1 ∈ R and solution φ(y, τ ) = T i,2
p [h] of problem (8.8) that defines a

linear operator of h and satisfies the estimate

‖φ‖ν−1,m+q,4,2+σ+ε ≤ C

(log τ0)1−q
‖h‖ν,m,6+σ,ε.

Moreover c1 is a linear operator of h and

|c1| ≤ C
1

τ ν−1
0 (log τ0)m+1

‖h‖ν,m,6+σ,ε.
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We have stated this result only in the radial setting, because this is what is
needed, but there is a version of it in the non-radial case.

The next result is for the problem
⎧
⎪⎪⎨

⎪⎪⎩

∂τφ = L[φ] + B[φ] + h(y, τ ) +
2∑

j=1

μ jW1, j in R2 × (τ0,∞),

φ(·, τ0) = 0 in R2,

(8.9)

and holds without the radial symmetry assumption.

Proposition 8.2. Let 0 < σ < 1, ε > 0 with σ + ε < 3
2 and 1 < ν < min(1 +

ε
2 , 3 − σ

2 ,
5
4 ). Let 0 < q < 1. Then there is C such that for τ0 large the following

holds. Suppose that h satisfies ‖h‖ν,m,6+σ,ε < ∞ and
∫

R2
h(y, τ )dy = 0,

∫

R2
h(y, τ )|y|2dy = 0, for all τ > τ0.

Then there exists a solution φ(y, τ ), μ j of problem (8.9) that defines a linear
operator of h and satisfies

‖φ‖ν− 1
2 ,m+ q

2 ,4,2+σ+ε ≤ C‖h‖ν,m,6+σ,ε.

The parameters μ j satisfy

μ j (τ ) = −
∫

R2
h(y, τ )y j dy + μ̃ j [h](τ )

where μ̃ j are linear functions of h with

|μ̃ j [h](τ )| ≤ C
1

τ ν+1(log τ)m+1 ‖h‖ν,m,6+σ,ε.

We denote this solution by φ = T i,1
p [h].

Propositions 6.1 and 6.2 given in Sect. 6 are direct corollaries of Propositions 8.1
and 8.2. The only changes are due to the change in the time variable, because
τ ∼ t log t , and the fact that the norms for the solutions in Propositions 6.1 and 6.2
include a gradient term. The estimate for the gradient follows from the weighted
L∞ estimate, scaling and standard parabolic estimates.

The proofs of Propositions 8.1 and 8.2 are contained in Sects. 9–12. They are
based on an energy inequality obtained by multiplying the equation by a suitable
test function, and using an inequality for a quadratic form. Section9 contains some
preliminaries on this quadratic form.

In Proposition 10.1, we obtain an additive decomposition of the solutionφ(y, τ )
of (8.8) into a part with a relatively slow space decay that loses τ 1/2 with respect
to the time decay of the right hand side, and a term along Z0(y) that loses an entire
power of τ . This is the key element for the proof of Proposition 8.1 in Sect. 10
(p.80).
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Then the proof of Proposition 8.2 in the radial case uses Proposition 10.1 after
formally applying the operator L−1 to the original equation and performing a con-
centration procedure that improves the space decay of the resulting error. This is
done on Sect. 11, and we give there a proof of Proposition 8.2 in the case of radial
functions.

The proof of Proposition 8.2 in the general case is in Sect. 12 (p.96).. The idea
is that the decomposition obtained in Proposition 10.1 for solutions with no radial
mode does not contain the term along Z0, which allows us to obtain a much better
estimate.

9. Preliminaries for the Linear Theory

A central ingredient in obtaining good estimates for the linearized parabolic
operator associated to the inner problem is the analysis of the quadratic form

φ �→
∫

R2
gφ, g = φ

U
− (−�)−1φ. (9.1)

This quadratic form arises when considering the linearized Keller–Segel problem
(8.1). Indeed, L[φ] = ∇ · (U∇g) and it is natural to test the Eq. (8.1) with g, since

∫

R2
L[φ]g =

∫

R2
∇ · (U∇g)g = −

∫

R2
U |∇g|2.

But from the time derivative we get λ2
∫

R2 ∂tφg, which leads to (9.1).
We observe that g has degeneracy directions. Indeed, if ψ = (−�)−1φ then

�ψ +U (y)ψ = −Ug in R2.

The operator �ψ +U (y)ψ is classical. It corresponds to linearizing the Liouville
equation

�v + ev = 0 in R2

around the solution �0 = logU . It is well known that the bounded kernel of this
linearization is spanned by the generators of rigid motions, namely dilation and
translations of the equation, which are precisely the functions z0, z1, z2 defined by

{
z0(y) = ∇�0(y) · y + 2

z j (y) = ∂y j�0(y), j = 1, 2.
(9.2)

Note that g is precisely annihilated at the linear combinations of these functions.
In the rest of this section we will state and prove several estimates that take into
account this issue, which will be crucial later on.

The quadratic form (9.1) can be naturally transformed into a similar one in S2

by stereographic projection ! : S2 \ {(0, 0, 1)} → R
2

!(y1, y2, y3) =
( y1
1 − y3

,
y2

1 − y3

)
.
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For ϕ : R2 → R we write

ϕ̃ = ϕ ◦ !, ϕ̃ : S2 \ {(0, 0, 1)} → R.

Then we have the following formulas:
∫

S2
ϕ̃ = 1

2

∫

R2
ϕU

∫

S2
Ũ |∇S2 ϕ̃|2 =

∫

R2
U |∇R2ϕ|2

1

2
Ũ�S2 ϕ̃ = (�R2ϕ) ◦ !.

9.1. The Liouville equation

Here we consider the linearized Liouville equation

�ψ +Uψ + h = 0 in R2. (9.3)

The stereographic projection transforms the linearized Liouville equation (9.3) into

�S2ψ̃ + 2ψ̃ + 2h̃ = 0 (9.4)

in S2\{P}, P = (0, 0, 1), where ψ̃ = ψ ◦ !, h̃ = (U−1h) ◦ !.
The functions in (9.2) are transformed through the stereographic projection into

constant multiples of the coordinate functions

z̃ j (ω) = c jω j , j = 1, 2, z̃0(ω) = c0ω3, ω = (ω1, ω2, ω3) ∈ S2.

By standard elliptic theory, if h̃ ∈ L p(S2), p > 2, then exists a solution ψ̃0 ∈
W 2,p(S2) to (9.4) in S2 if and only if h̃ satisfies

∫

S2
h̃ z̃ j = 0, j = 1, 2, 3.

This solution is unique if we normalize it such that
∫

S2
ψ̃0 z̃ j = 0, j = 1, 2, 3,

and then satisfies the estimate

‖ψ̃0‖C1,α(S2) ≤ C‖h̃‖L p(S2)

where α = 1− 2
p . By subtracting off a suitable linear combination of the functions

z̃ j , j = 0, 1, 2 we obtain the unique solution ψ̃1 to (9.4) in S2 satisfying

ψ̃1(P) = 0, ∇S2ψ̃1(P) = 0. (9.5)

For this solution we also have the estimate

‖ψ̃1‖C1,α(S2) ≤ C‖h̃‖L p(S2). (9.6)
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Lemma 9.1. Let 0 < σ < 1. Then there is C such that if ψ satisfies (9.3) and
ψ(y) → 0 as |y| → ∞ with h satisfying ‖(1 + |y|)3+σ h‖L∞(R2) < +∞ and

∫

R2
(Uψ + h(y))dy = 0,

∫

R2
(Uψ + h(y))y j dy = 0, j = 1, 2, (9.7)

then

‖(1 + |y|)1+σψ‖L∞(R2) ≤ C‖(1 + |y|)3+σ h‖L∞(R2).

Remark 9.1. Let h : R
2 → R satisfy ‖(1 + |y|)2+σ h‖L∞(R2) < +∞ where

0 < σ < 1. If
∫

R2
h(y)dy = 0

then

|(−�)−1h(y)| ≤ C

(1 + |y|)σ ‖(1 + |y|)2+σ h‖L∞(R2).

If h : R2 → R satisfy ‖(1+ |y|)3+σ h‖L∞(R2) < +∞ where 0 < σ < 1 and in
addition to mass zero we have

∫

R2
h(y)y j dy = 0, j = 1, 2,

then

|(−�)−1h(y)| ≤ C

(1 + |y|)1+σ
‖(1 + |y|)3+σ h‖L∞(R2).

The first claim is standard. For the second, write

(−�)−1h(x) = 1

2π

∫

R2

(

log |x | − log |x − y| + y · x
|x |2

)

h(y)dy,

and estimate the integral after splitting it into the regions |y| < |x |
2 and its comple-

ment.

Proof of Lemma 9.1. We claim that ψ = (−�)−1(Uψ + h). Indeed the function
ψ − (−�)−1(Uψ + h) is harmonic in R2 and decays to 0 at infinity, and therefore
it is equal to 0. The assumptions (9.7) and Remark 9.1 imply that

‖(1 + |y|)1+σψ‖L∞(R2) ≤ C‖(1 + |y|)3+σ h‖L∞(R2) + C‖ψ‖L∞(R2). (9.8)

Let ψ̃ = ψ ◦!, so that it satisfies (9.4) in S2 \ {P} with h̃ = (U−1h)◦!. Note
that h̃ ∈ L p(S2) for some p > 2. More precisely,

‖h̃‖L p(S2) ≤ C‖(1 + |y|)3+σ h‖L∞(R2), (9.9)
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with p < 2
1−σ

. The singularity at P is removable and thus ψ̃ satisfies (9.4) in S2.

By elliptic regularity ψ̃ ∈ C1,α(S2) for some α > 0. Since ψ decays at infinity,
ψ̃(P) = 0. By (9.8) we have also ∇S2ψ̃(P) = 0.

We let ψ̃1 denote the solution to (9.4) satisfying (9.5). The solution to (9.4) in
S2 satisfying (9.5) is unique, so that we have ψ̃ = ψ̃1 and by estimate (9.6), (9.9)
and (9.8) we obtain

‖(1 + |y|)1+σψ‖L∞(R2) ≤ C‖(1 + |y|)3+σ h‖L∞(R2).

��

9.2. A quadratic form

Here we discuss properties of the quadratic form (9.1). For this we consider a
function φ : R2 → R with sufficient decay, in the form

|φ(y)| ≤ 1

(1 + |y|)2+σ
, (9.10)

with 0 < σ < 1, and zero mass,
∫

R2
φ dy = 0. (9.11)

We recall g defined in (9.1) g = φ
U − (−�)−1φ, and use the notation

ψ = (−�)−1φ

so that

−�ψ −Uψ = Ug in R2.

We next introduce a normalized version of g, namely g⊥ defined by

g⊥ = g + a,

where a ∈ R is chosen so that
∫

R2
g⊥Udy = 0.

Asshown inLemma9.3below, thequadratic form
∫

R2 φg is equivalent to
∫

R2 U (g⊥)2.
It will be convenient to work with functions φ⊥, ψ⊥, which are analogues of

φ, ψ but associated to g⊥. In particular, we want a choice of ψ⊥ such that

−�ψ⊥ −Uψ⊥ = Ug⊥, ψ⊥(y) → 0 as |y| → ∞. (9.12)

Let ψ0 = 1 + 1
2 z0, where z0 is defined in (9.2), and observe that

−�ψ0 −Uψ0 = −U, ψ0(y) → 0 as |y| → ∞.
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Then ψ⊥ defined by

ψ⊥ = ψ − a
(
1 + 1

2
z0

)
= ψ − aψ0,

indeed satisfies (9.12).
Define

φ⊥ = U (g⊥ + ψ⊥),

and obtain the relations

φ = φ⊥ + a

2
Uz0, −�ψ⊥ = φ⊥,

∫

R2
φ⊥ = 0.

We note that φ −φ⊥ = a
2Uz0 is a constant times Z0 = Uz0, which is in the kernel

of the operator L .

Lemma 9.2. If φ : R2 → R satisfies (9.10) and (9.11), then
∫

R2
gUz j =

∫

R2
g⊥Uz j = 0, j = 0, 1, 2,

where z j are the functions defined in (9.2).

Proof. By the definition of ψ and from (9.10), (9.11) we have

|ψ(y)| + (1 + |y|)|∇ψ(y)| ≤ C

(1 + |y|)σ ,

and hence also

|ψ⊥(y)| + (1 + |y|)|∇ψ⊥(y)| ≤ C

(1 + |y|)σ . (9.13)

We multiply (9.12) by z j , integrate in the ball BR(0) and let R → ∞. Since z j
is in the kernel of � +U we just have to check that

∫

∂BR

(∂ψ⊥

∂ν
z j − ψ⊥ ∂z j

∂ν

)
→ 0, as R → ∞,

where ν is the exterior normal vector to ∂BR . This follows from (9.13), and the
explicit bounds

|z0(y)| ≤ C, |z j (y)| ≤ C

(1 + |y|) , j = 1, 2,

|∇z j (y)| ≤ C

(1 + |y|)2 .

��
A consequence of the previous lemma is the following.
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Remark 9.2. Suppose that φ : R2 → R satisfies (9.10) and (9.11). Then
∫

R2
L[φ]|y|2dy = 0.

Indeed, integrating on BR , with the notation g = φ
U − (−�)−1φ,

∫

BR

L[φ]|y|2dy =
∫

BR

∇ · (U∇g)|y|2dy

= −2
∫

BR

U∇g · ydy + R2
∫

∂BR

U∇g · νdS(y)

= 2
∫

BR

gZ0dy − 2
∫

∂BR

Ugy · νdy + R2
∫

∂BR

U∇g · νdS(y).

By (9.10) and (9.11), g(y) = O(|y|2−σ ), ∇g(y) = O(|y|1−σ ) as |y| → ∞.
Therefore the boundary terms tend to 0 as R → ∞, and we get

∫

R2
L[φ]|y|2dy = 2

∫

R2
gZ0dy = 0,

by Lemma 9.2.

Lemma 9.3. There are constants c1 > 0, c2 > 0 such that if φ : R2 → R satisfies

|φ(y)| ≤ 1

(1 + |y|)3+σ
, 0 < σ < 1

and (9.11), then

c1

∫

R2
U (g⊥)2 ≤

∫

R2
φg⊥ ≤ c2

∫

R2
U (g⊥)2. (9.14)

Proof. By Lemma 9.2
∫

R2
φg =

∫

R2
(φ⊥ + a

2
Uz0)g =

∫

R2
φ⊥(g⊥ + a) =

∫

R2
φ⊥g⊥

=
∫

R2
U (g⊥ + ψ⊥)g⊥.

Let g̃⊥ = g⊥ ◦ !, ψ̃⊥ = ψ⊥ ◦ ! and write (9.12) as

−�S2ψ̃
⊥ − 2ψ̃⊥ = 2g̃⊥, in S2. (9.15)

We also get

1

2

∫

R2
φg =

∫

S2
[(g̃⊥)2 + ψ̃⊥g̃⊥].

Multiplying (9.15) by ψ̃⊥ we find that
∫

S2
g̃⊥ψ̃⊥ = 1

2

∫

S2
|∇S2ψ̃

⊥|2 −
∫

S2
(ψ̃⊥)2
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and hence

1

2

∫

R2
φg =

∫

S2
(g̃⊥)2 + 1

2

∫

S2
|∇S2ψ̃

⊥|2 −
∫

S2
(ψ̃⊥)2.

We recall that the eigenvalues of −� on S2 are given by {k(k + 1) | k ≥ 0}.
The eigenvalue 0 has a constant eigenfunction and the eigenvalue 2 has eigenspace
spanned by the coordinate functions πi (x1, x2, x3) = xi , for (x1, x2, x3) ∈ S2 and
i = 1, 2, 3. Let (λ j ) j≥0 denote all eigenvalues, repeated according to multiplicity,
with λ0 = 0, λ1 = λ2 = λ3 = 2, and let (e j ) j≥0 denote the corresponding
eigenfunctions so that they form an orthonormal system in L2(S2), and e1, e2, e3
are multiples of the coordinate functions π1, π2, π3. We decompose ψ̃ and g̃ to get
that

ψ̃⊥ =
∞∑

j=0

ψ̃⊥
j e j , g̃⊥ =

∞∑

j=0

g̃⊥
j e j , (9.16)

where

ψ̃⊥
j = 〈ψ̃⊥, e j 〉L2(S2), g̃⊥

j = 〈g̃⊥, e j 〉L2(S2).

Then

1

2

∫

R2
φg =

∞∑

j=0

(g̃⊥
j )

2 + 1

2

∞∑

j=0

(λ j − 2)(ψ̃⊥
j )

2

=
∞∑

j=0

(g̃⊥
j )

2 − (ψ̃⊥
0 )2 + 1

2

∞∑

j=4

(λ j − 2)(ψ̃⊥
j )

2.

Equation (9.15) gives us that

(λ j − 2)ψ̃⊥
j = 2g̃⊥

j , (9.17)

and then

1

2

∫

R2
φg =

∞∑

j=1

(g̃⊥
j )

2 +
∞∑

j=4

2

λ j − 2
(g̃⊥

j )
2.

By Lemma 9.2 g̃⊥
1 = g̃⊥

2 = g̃⊥
3 = 0. Therefore

1

2

∫

R2
φg =

∞∑

j=4

λ j

λ j − 2
(g̃⊥

j )
2 (9.18)

and

1

2

∫

R2
(g⊥)2U =

∞∑

j=4

(g̃⊥
j )

2.

This proves (9.14). ��
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Lemma 9.4. There exist positive constants c1, c2 such that if φ : R
2 → R is

radially symmetric and satisfies (1 + |y|)3+σ φ ∈ L∞(R2) with 0 < σ < 1, and
∫

R2
φ(y)dy = 0,

then

c1

∫

R2
U (g⊥)2 ≤

∫

R2
U−1(φ⊥)2 ≤ c2

∫

R2
U (g⊥)2, (9.19)

∫

R2
U (ψ⊥)2 ≤ c2

∫

R2
U (g⊥)2. (9.20)

Proof. Using the same notation as in the proof of Lemma 9.3, we have

1

2

∫

R2
U−1(φ⊥)2 = 1

2

∫

R2
U [(ψ⊥)2 + 2ψ⊥g⊥ + (g⊥)2]

=
∫

S2
[(ψ̃⊥)2 + 2ψ̃⊥g̃⊥ + (g̃⊥)2]

=
∞∑

j=0

[(ψ̃⊥
j )

2 + 2ψ̃⊥
j g̃

⊥
j + (g̃⊥

j )
2].

As in the previous proof, g̃⊥
j = 0 for j = 0, 1, 2, 3. Using (9.17) we get

1

2

∫

R2
U−1(φ⊥)2 =

3∑

j=0

(ψ̃⊥
j )

2 +
∞∑

j=4

λ2j

(λ j − 2)2
(g̃⊥

j )
2.

This formula already gives
∫

R2
U (g⊥)2 ≤ C

∫

R2
U−1(φ⊥)2.

We observe that ψ̃⊥
1 = ψ̃⊥

2 = 0 by radial symmetry. We also have ψ̃⊥
0 = 0, by

(9.17). Let

ψ̂ =
∞∑

j=4

ψ̃⊥
j e j

and note that it satisfies

−�S2ψ̂ − 2ψ̂ = 2g̃⊥ in S2.

By (9.17),

‖ψ̂‖L2(S2) ≤ C‖g̃⊥‖L2(S2),

and from elliptic estimates

‖ψ̂‖Cα(S2) ≤ C‖g̃⊥‖L2(S2), (9.21)
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for any 0 < α < 1. Since (1+|y|)3+σ φ ∈ L∞(R2) and φ has total mass 0, we have
(1+|y|)1+σψ ∈ L∞(R2) (here the functions are radial) and also (1+|y|)1+σψ⊥ ∈
L∞(R2). It follows that ψ̃⊥(P) = 0 where P = (0, 0, 1). Since ψ̃⊥ and ψ̂ differ
by a constant times π3 we have

ψ̃⊥ = ψ̂ − ψ̂(P)

π3(P)
π3,

where π3(x1, x2, x3) = x3. This implies, by (9.21),

‖ψ̃⊥‖L2(S2) ≤ C‖ψ̂‖L2(S2) + C |ψ̂(P)| ≤ C‖g̃⊥‖L2(S2).

This proves the other inequality in (9.19) and (9.20). ��
Lemma 9.5. Suppose that φ = φ(y, t), y ∈ R

2, t > 0 is a function satisfying

|φ(y, t)| ≤ 1

(1 + |y|)2+σ
,

with 0 < σ < 1,
∫

R2
φ(y, t) dy = 0, ∀t > 0,

and that φ is differentiable with respect to t and φt satisfies also

|φt (y, t)| ≤ 1

(1 + |y|)2+σ
.

Then
∫

R2
φt g = 1

2
∂t

∫

R2
φg

where for each t, g(y, t) is defined as

g = φ

U
− (−�−1)φ + c(t)

and c(t) ∈ R is chosen so that
∫

R2
g(y, t)U (y) dy = 0.

Proof. Using the notation of the previous lemma, we have
∫

R2
φt g =

∫

R2
U (gt + ψt )g = 2

∫

S2
(g̃t g̃ + ψ̃t g̃).

We have

−�S2ψ̃ − 2ψ̃ = 2g̃, in S2.
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And differentiating in t we get

−�S2ψ̃t − 2ψ̃t = 2g̃t , in S2. (9.22)

Multiplying by g̃ and integrating we find that
∫

S2
ψ̃t g̃ = −1

2

∫

S2
�ψ̃t g̃ −

∫

S2
g̃t g̃.

Thus
∫

R2
φt g = −

∫

S2
�ψ̃t g̃

Decompose as in (9.16) and find that

∫

R2
φt g =

∞∑

j=0

λ j (ψ̃ j )t g̃ j

But from (9.22)

(λ j − 2)(ψ̃ j )t = 2(g̃ j )t .

We note that g̃ j = 0 for j = 0, 1, 2, 3. Indeed, this is true for j = 0 by the
assumption

∫

R2 gU = 0. By Lemma 9.2 this is true also for j = 1, 2, 3. Then

1

2

∫

R2
φt g =

∞∑

j=4

λ j

λ j − 2
(g̃ j )t g̃ j

and the desired conclusion follows from (9.18). ��

9.3. A Poincaré inequality

Lemma 9.6. Let BR(0) ⊂ R
2 be the openball centered at 0 of radius R. There exists

C > 0 such that, for any R > 0 large and any g ∈ H1(BR) with
∫

BR
g U dx = 0

we have

C

R2

∫

BR

g2U ≤
∫

BR

|∇g|2U.

Proof. Using a Fourier decomposition we only need to consider the radial case,
that is, we claim that if g(r) satisfies

∫ R

0
g(r)

r

(1 + r2)2
dr = 0, (9.23)

then there is C such that for all R large

∫ R

0
g(r)2

r

(1 + r2)2
dr ≤ CR2

∫ R

0
g′(r)2 r

(1 + r2)2
dr.
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Let 0 < δ < 1 to be fixed later on. From (9.23) we have
∫ R

δ

g(r)
r

(1 + r2)2
dr = −

∫ δ

0
g(r)

r

(1 + r2)2
dr.

But
∫ R

δ

g(r)
r

(1 + r2)2
dr = −1

2

∫ R

δ

g(r)
d

dr

( 1

1 + r2

)
dr

= −1

2

g(R)

1 + R2 + 1

2

g(δ)

1 + δ2
+ 1

2

∫ R

δ

g′(r) 1

1 + r2
dr.

Therefore

1

2

|g(δ)|
1 + δ2

≤ 1

2

|g(R)|
1 + R2 + 1

2

∫ R

δ

|g′(r)| 1

1 + r2
dr +

∫ δ

0
|g(r)| r

(1 + r2)2
dr.

By the Cauchy-Schwarz inequality
∫ R

δ

|g′(r)| 1

1 + r2
dr ≤

(∫ R

δ

g′(r)2 r

(1 + r2)2
dr

)1/2
(log R − log δ)1/2

∫ δ

0
|g(r)| r

(1 + r2)2
dr ≤ δ

(∫ δ

0
g(r)2

r

(1 + r2)2
dr

)1/2
.

Hence

g(δ)2 ≤ 2
g(R)2

R4 + 2(log R − log δ)

∫ R

δ

g′(r)2 r

(1 + r2)2
dr

+ 4δ2
∫ δ

0
g(r)2

r

(1 + r2)2
dr. (9.24)

We compute now
∫ R

δ

g(r)2
r

(1 + r2)2
dr = −1

2

∫ R

δ

g(r)2
d

dr

( 1

1 + r2

)
dr

= −1

2

g(R)2

1 + R2 + 1

2

g(δ)2

1 + δ2
+

∫ R

δ

g(r)g′(r) 1

1 + r2
dr.

Using (9.24) and the Cauchy-Schwartz inequality we get
∫ R

δ

g(r)2
r

(1 + r2)2
dr ≤ −1

2

g(R)2

1 + R2 + g(R)2

R4

+ (log R − log δ)

∫ R

δ

g′(r)2 r

(1 + r2)2
dr

+ 2δ2
∫ δ

0
g(r)2

r

(1 + r2)2
dr

+ AR2
∫ R

δ

g′(r)2 r

(1 + r2)2
dr
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+ 1

AR2

∫ R

δ

g(r)2
1

r
dr.

But 1
AR2r

≤ 1
2

r
(1+r2)2

for r ∈ [δ, R] if A = 4(1 + 1
δ2
) and R ≥ 1. Choosing

A = 4(1 + 1
δ2
) and R ≥ 2 we have

∫ R

δ

g(r)2
r

(1 + r2)2
dr ≤ [2AR2 + 2(log R − log δ)]

∫ R

δ

g′(r)2 r

(1 + r2)2
dr

+ 4δ2
∫ δ

0
g(r)2

r

(1 + r2)2
dr (9.25)

With δ > 0 still to be chosen we get from (9.24) for 0 < x < δ

g(x)2 ≤ 2
g(R)2

R4 + 2(log R − log x)
∫ R

0
g′(r)2 r

(1 + r2)2
dr

+ 4x2
∫ δ

0
g(r)2

r

(1 + r2)2
dr.

Integrating we get

∫ δ

0
g(r)2

r

(1 + r2)2
dr ≤ δ2

g(R)2

R4 + 2 log R
∫ R

0
g′(r)2 r

(1 + r2)2
dr

+ δ4
∫ δ

0
g(r)2

r

(1 + r2)2
dr. (9.26)

Using the condition (9.23) we obtain

∫ R

0
g(r)

r

(1 + r2)2
dr = 1

2

∫ R

0
g(r)

d

dr

( r2

1 + r2

)
dr

= 1

2
g(R)

R2

1 + R2 − 1

2

∫ R

0
g′(r) r2

1 + r2
dr.

Then

g(R)2 ≤ 4R4
∫ R

0
g′(r)2 r

(1 + r2)2
dr.

Using this combined with (9.26) we get

∫ δ

0
g(r)2

r

(1 + r2)2
dr ≤ δ24

∫ R

0
g′(r)2 r

(1 + r2)2
dr

+ 2 log R
∫ R

0
g′(r)2 r

(1 + r2)2
dr

+ δ4
∫ δ

0
g(r)2

r

(1 + r2)2
dr.



Arch. Rational Mech. Anal. (2024) 248:61 Page 91 of 154 61

Taking δ = 1
2 (this fixes A) gives

∫ δ

0
g(r)2

r

(1 + r2)2
dr ≤ 4(log R + 1)

∫ R

0
g′(r)2 r

(1 + r2)2
dr.

Combining this with (9.25) we get
∫ R

0
g(r)2

r

(1 + r2)2
dr ≤ CR2

∫ R

0
g′(r)2 r

(1 + r2)2
dr.

��

10. Linear Theory: A Decomposition

Here we consider
{

∂τφ = L[φ] + B[φ] + h, in R2 × (τ0,∞),

φ(·, τ0) = φ0 in R2.
(10.1)

The results of this section are going to be used later only in the case of radial
functions, so we make this assumption here. We write in the rest of this section
φ = φ(y, τ ) = φ(ρ, τ), where y ∈ R

2, ρ = |y|.
The operator B is assumed to be one of the following two:

B[φ] = ζ(τ )(2φ + y · ∇φ) = ζ(τ )∇ · (yφ), (10.2)

or

B[φ] = ζ(τ )y · ∇φ, (10.3)

where

ζ(τ ) = − ζ0

τ log τ
+ O

( 1

τ(log τ)1+σ0

)
, as τ → ∞,

for some constants ζ0 > 0, 0 < σ0 < 1.
We assume that ‖h‖∗∗ < ∞ where

‖h‖∗∗ = inf K , such that

|h(y, τ )| ≤ K
1

τ ν(log τ)m

1

(1 + |y|)6+σ
min

(
1,

τ ε/2

|y|ε
)
, τ > τ0, y ∈ R

2,

where ν > 1, ε > 0, σ > 0, m ∈ R. This is the same norm as in (8.6).
We also assume that h has zero mass

∫

R2
h(y, τ )dy = 0 for all τ > τ0, (10.4)

and the same for the initial condition
∫

R2
φ0dy = 0. (10.5)
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It follows from the equation (10.1), (10.4), and (10.5) that the solution φ to (10.1)
defined in §8 satisfies

∫

R2
φ(y, τ )dy = 0 for all τ > τ0.

We recall the decomposition of φ introduced in §9.2. Given φ : R2 → R with
sufficient decay and mass zero, we let g = φ

U − (−�−1)φ, and define a so that
∫

R2(g + a)Udy = 0. Then define g⊥ = g + a, ψ⊥ = ψ − a(1 + 1
2 z0), and

φ⊥ = φ − a

2
Z0. (10.6)

Actually a is directly computed by

a = − 1

8π

∫

R2
Ug = 1

8π

∫

R2
U (−�)−1φ = 1

8π

∫

R2
�0φ. (10.7)

In the time dependent situation a = a(τ ) and all functions depend on y ∈ R
2 and

τ .
A difficulty to obtain estimates is the presence of a kernel in the linear operator

if B = 0, since Z0 satisfies L[Z0] = 0. It can be proved that the solution φ of
(10.1) with zero initial condition and ‖h‖∗∗ < ∞ has the bound

sup
y

|φ(y, τ )| ≤ C
( log τ0

log τ

)2ζ0−σ0‖h‖∗∗,

and probably this estimate cannot be improved much. Also φ has a some decay at
spatial infinity and in particular it has finite second moment

∫

R2
|φ(y, τ )| |y|2 dy < ∞, τ > τ0.

Therefore Z0 doesn’t describe well the class of solution we want to consider, even
for the case B = 0, in which ζ(τ ) ≡ 0.

Abetter candidate to describe the solutionsφ of (10.1)with zero initial condition
and ‖h‖∗∗ < ∞ is obtained by considering the initial value problem

{
∂τ ZB = L[ZB] + B[ZB], in R2 × (τ0,∞),

ZB(·, τ0) = Z̃0 in R2.
(10.8)

where Z̃0 is defined in (6.4). Note that since Z0 has mass zero and decays like 1/ρ4

we have mZ0 = O( 1
τ0
).

We will then consider the problem
{

∂τφ = L[φ] + B[φ] + h, in R2 × (τ0,∞),

φ(·, τ0) = c1 Z̃0 in R2,
(10.9)

for radial functions φ, h, φ0, where c1 ∈ R is a parameter. We assume that ‖h‖∗∗ <

∞.
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Proposition 10.1. Let us assume that 1 < ν < 7
4 . Then there is C > 0 such that for

any τ0 sufficiently large the following holds. Suppose that ‖h‖∗∗ < ∞ is radially
symmetric and satisfies the zero mass condition (10.4). Then there exists c1 such
that the solution φ = φ⊥ + a

2 Z0 of (10.9) satisfies

|a(τ )| ≤ C
f (τ )R(τ )2

(log τ0)1−q
‖h‖∗∗,

|φ⊥(ρ, τ )| ≤ C f (τ )R(τ )
1

1 + |y|2 ‖h‖∗∗. (10.10)

where R(τ ) > 0 is defined by

R(τ )2 = τ

(log τ)q
, (10.11)

where 0 < q < 1, and

f (τ ) = 1

τ ν(log τ)m
. (10.12)

Moreover c1 is a linear function of h and satisfies

|c1| ≤ C
f (τ0)R(τ0)2

(log τ0)1−q
‖h‖∗∗.

We always decompose φ as in (10.6):

φ = φ⊥ + a(τ )

2
Z0

and write

g = φ

U
− (−�)−1φ, g⊥ = φ⊥

U
− (−�)−1φ⊥.

Let us denote

ω(τ) =
(∫

R2\BR(τ )(0)
Ug(τ )2

)1/2
. (10.13)

The strategy for the proof of Proposition 10.1 is contained in the following
lemmas. The first one is an a-priori estimate for the solution, assuming that a(T2) =
0 for some T2.

Lemma 10.1. There is C such that for τ0 large the following holds. Suppose that
‖h‖∗∗ < ∞ is radially symmetric and satisfies the zero mass condition (10.4) and
consider (10.9). Let φ⊥, a be the decomposition (10.6). Suppose that for some
c1 ∈ R there is T2 > τ0 is such that

a(T2) = 0.
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Then

|a(τ )| ≤ C
f (τ )R(τ )2

(log τ0)1−q
‖h‖∗∗, τ ∈ [τ0, T2] (10.14)

|ω(τ)| ≤ C
f (τ )R(τ )

(log τ0)1−q
‖h‖∗∗, τ ∈ [τ0, T2] (10.15)

|c1| ≤ C
f (τ0)R(τ0)2

(log τ0)1−q
‖h‖∗∗. (10.16)

The constant C is independent of T2 and c1.

There is a variant of the previous lemma, where the hypothesis a(T2) = 0 is
replaced by an assumption about its time decay.

Lemma 10.2. There is C such that for τ0 large the following holds. Suppose that
‖h‖∗∗ < ∞ is radially symmetric and satisfies the zero mass condition (10.4) and
consider (10.9). Let φ⊥, a be the decomposition (10.6). Suppose that for some
c1 ∈ R,

a

f R2 ∈ L∞(τ0,∞).

Then

|a(τ )| ≤ C
f (τ )R(τ )2

(log τ0)1−q
‖h‖∗∗, τ > τ0 (10.17)

|ω(τ)| ≤ C
f (τ )R(τ )

(log τ0)1−q
‖h‖∗∗, τ > τ0, (10.18)

|c1| ≤ C
f (τ0)R(τ0)2

(log τ0)1−q
‖h‖∗∗. (10.19)

Lemma 10.3. Let ZB be the solution to (10.8) and write it as ZB = Z⊥
B + aZ

2 Z0
according to the decomposition (10.6). Then aZ (τ ) �= 0 for all τ ≥ τ0.

Lemma 10.4. There is C such that for τ0 large the following holds. Suppose that
‖h‖∗∗ < ∞ is radially symmetric and satisfies the zero mass condition (10.4). Then
there is a unique c1 ∈ R such that the solution φ = φ⊥ + a

2 Z0 of (10.9) (as in
(10.6)) satisfies (10.17), (10.18) and (10.19).

In the first results we do some computations and obtain some estimates, which
are used as technical steps in the main argument.

The next lemma is a calculation to help us dealwith the term B whenwemultiply
the equation by a suitable test function. It holds for operators more general than B
as in (10.2) and (10.3). Let

B̃[φ] = ζ1(τ )φ + ζ2(τ )y · ∇φ,

with ζ1(τ ), ζ2(τ ) satisfying

|ζi (τ )| � C

τ log τ
for all τ > τ0. (10.20)
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Lemma 10.5. We have
∣
∣
∣
∣

∫

R2
B̃[φ]g⊥

∣
∣
∣
∣ ≤ C

τ log τ

∫

R2
U (g⊥)2dy + C

|a(τ )|
τ log τ

‖∇g⊥U
1
2 ‖L2 . (10.21)

Proof. We have
∫

R2
B̃[φ]g⊥dy =

∫

R2
[ζ1(τ )φ + ζ2(τ )y · ∇φ]g⊥dy.

By Lemma 9.3 and the hypothesis (10.20) we have
∣
∣
∣
∣ζ1(τ )

∫

R2
φg⊥dy

∣
∣
∣
∣ ≤ C

τ log τ

∫

R2
U (g⊥)2dy. (10.22)

Let us write
∫

R2
y · ∇φ(y)g⊥(y)dy=

∫

R2
y · ∇φ⊥(y)g⊥(y)dy+ a(τ )

2

∫

R2
y · ∇Z0(y)g

⊥(y)dy.

We claim that
∣
∣
∣
∣

∫

R2
y · ∇φ⊥(y)g⊥(y)dy

∣
∣
∣
∣ ≤ C

∫

R2
(g⊥)2Udy. (10.23)

Indeed, we write
∫

R2
y · ∇φ⊥(y)g⊥(y)dy =

∫

R2
y · ∇(Ug⊥)g⊥(y)dy +

∫

R2
y · ∇(Uψ⊥)g⊥(y)dy.

(10.24)

But
∫

R2
y · ∇(Ug⊥)g⊥(y)dy =

∫

R2
y · ∇U (g⊥)2(y)dy +

∫

R2
Uy · ∇g⊥g⊥(y)dy

=
∫

R2
y · ∇U (g⊥)2(y)dy + 1

2

∫

R2
Uy · ∇[(g⊥)2](y)dy

= 1

2

∫

R2
y · ∇U (g⊥)2(y)dy −

∫

R2
U (g⊥)2(y)dy,

and so
∣
∣
∣
∣

∫

R2
y · ∇(Ug⊥)g⊥(y)dy

∣
∣
∣
∣ ≤ C

∫

R2
(g⊥)2Udy. (10.25)

The second term in (10.24) is:
∫

R2
y · ∇(Uψ⊥)g⊥(y)dy=

∫

R2
(y · ∇U )ψ⊥g⊥(y)dy+

∫

R2
U (y · ∇ψ⊥)g⊥(y)dy.

We estimate the first term above
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∣
∣
∣
∣

∫

R2
(y · ∇U )ψ⊥g⊥(y)dy

∣
∣
∣
∣ ≤ C

(∫

R2
(ψ⊥)2Udy

)1/2(
∫

R2
(g⊥)2Udy

)1/2

≤ C
∫

R2
(g⊥)2Udy, (10.26)

by (9.20). To estimate
∫

R2 U (y ·∇ψ⊥)g⊥(y)dy we write it using radial symmetry:

∫

R2
U (y · ∇ψ⊥)g⊥(y)dy = 2π

∫ ∞

0
U (ρ)(ψ⊥)′(ρ)g⊥(ρ)ρ2dρ.

We use that ψ⊥ satisfies

−�ψ⊥ −Uψ⊥ = Ug⊥ in R2, ψ⊥(ρ, τ ) → 0 as ρ → ∞.

Then, by the variations of parameters formula, since that
∫

R2 Ug⊥z0dy = 0, we
have

(ψ⊥)′(ρ) = z′0(ρ)
∫ ∞

ρ

U (r)g⊥(r)z̄0(r)r dr + z̄′0(ρ)
∫ ρ

0
U (r)g⊥(r)z0(r)r dr,

where z̄0 is a second linear independent function in the kernel of �+U satisfying

|z̄0(ρ)| ≤ C(| log ρ| + 1).

We then compute
∫ ∞

0
U (ρ)(ψ⊥)′(ρ)g⊥(ρ)ρ2dρ = I1 + I2

where

I1 =
∫ ∞

0

∫ ∞

ρ

U (ρ)U (r)z′0(ρ)z̄0(r)g⊥(r)g⊥(ρ)ρ2rdrdρ

I2 = −
∫ ∞

0

∫ ∞

ρ

U (ρ)U (r)z̄′0(ρ)z0(r)g⊥(r)g⊥(ρ)ρ2rdrdρ.

We directly check that

|I1| + |I2| ≤ C
∫

R2
(g⊥)2Udy.

From this we get that
∣
∣
∣
∣

∫

R2
U (y · ∇ψ⊥)g⊥(y)dy

∣
∣
∣
∣ ≤ C

∫

R2
(g⊥)2Udy. (10.27)

Combining (10.24), (10.25), (10.26), (10.27) we obtain (10.23).
Next we claim that

∣
∣
∣
∣

∫

R2
y · ∇Z0(y)g

⊥(y)dy

∣
∣
∣
∣ ≤ C‖∇g⊥U

1
2 ‖L2 . (10.28)
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Indeed, write

y · ∇Z0 = ∇ · (yZ0) − 2Z0 = ∇ · (yZ0 − 2∇z0) − 4Z0

where z0 is defined in (9.2) and satisfies the linearized Liouville equation �z0 +
Uz0 = 0. We have used here that Z0 = Uz0. So

∫

R2
y · ∇Z0(y)g

⊥(y)dy = −
∫

R2
(yZ0 − 2∇z0)∇g⊥dy − 4

∫

R2
g⊥Z0dy.

But
∫

R2 Z0g⊥dy = ∫

R2 Uz0g⊥dy = 0 by Lemma 9.2, and |yZ0 − 2∇z0| ≤ C
|y|4 ,

so
∣
∣
∣
∣

∫

R2
y · ∇Z0(y)g

⊥(y)dy

∣
∣
∣
∣ ≤ C

(∫

R2

1

(1 + |y|)4 |∇g⊥|2dy
) 1

2 ≤ C‖∇g⊥U
1
2 ‖L2 .

This proves (10.28).
From (10.22), (10.23) and (10.28) we conclude the validity of (10.21).

��
In the next lemma we get an estimate for

∫

R2 φg⊥, but with right hand side that
depends on the solution.

Lemma 10.6. We make the same assumptions of Proposition 10.1. Let f be given
by (10.12), ω be defined in (10.13) and let R : [τ0,∞) → (0,∞) be continuous.
There is c > 0, ε > 0 and C > 0 such that for τ0 sufficiently large, if

sup
τ≥τ0

R2(τ )

τ log τ
≤ ε (10.29)

then

∂τ

∫

R2
φg⊥ + c

R2

∫

R2
φg⊥ ≤ C f (τ )2‖h‖2∗∗ + C

a(τ )2

R4 + C
ω(τ)2

R2 ,

for some constant c > 0.

Proof. Equation (10.9) can be written in the form

∂τφ = ∇ · (U∇g⊥) + B[φ] + h, in R2 × (τ0,∞).

We multiply this equation by g⊥ and integrate on R
2, using Lemma 9.5:

1

2
∂τ

∫

R2
φg⊥ +

∫

R2
U |∇g⊥|2 =

∫

R2
B[φ]g⊥ +

∫

R2
hg⊥. (10.30)

Let H = (−�)−1h, and observe that, since h is radial and
∫

R2 hdy = 0,

|∇H(ρ, τ )| =
∣
∣
∣
∣
1

ρ

∫ ∞

ρ

h(s, τ )sds

∣
∣
∣
∣ ≤ C f (τ )‖h‖∗∗

1

(1 + ρ)5+σ
.
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It follows that
∣
∣
∣
∣

∫

R2
hg⊥

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

R2
∇ · ∇Hg⊥

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

R2
∇H · ∇g⊥

∣
∣
∣
∣

≤ 1

2

∫

R2
U |∇g⊥|2 + C

∫

R2
|∇H |2U−1

≤ 1

2

∫

R2
U |∇g⊥|2 + C f (τ )2‖h‖2∗∗.

This combined with (10.30) gives

1

2
∂τ

∫

R2
φg⊥ + 1

2

∫

R2
U |∇g⊥|2 ≤

∣
∣
∣
∣

∫

R2
B[φ]g⊥

∣
∣
∣
∣ + C f (τ )2‖h‖2∗∗. (10.31)

We use the inequality in Lemma 9.6 to get

c

R2

∫

BR

(g⊥ − ḡ⊥
R )

2U ≤
∫

R2
U |∇g⊥|2, (10.32)

for some c > 0, where

ḡ⊥
R = 1

∫

BR
U

∫

BR

g⊥U.

From
∫

BR

(g⊥)2U =
∫

BR

(g⊥ − ḡ⊥
R )

2U + 2
∫

BR

g⊥ḡ⊥
RU −

∫

BR

(ḡ⊥
R )

2U

we get
∫

BR

(g⊥)2U ≤ 2
∫

BR

(g⊥ − ḡ⊥
R )

2U + C(ḡ⊥
R )

2.

so, using (10.32),

c

R2

∫

BR

(g⊥)2U ≤
∫

R2
U |∇g⊥|2 + C

1

R2 (ḡ
⊥
R )

2,

for a new c > 0. This implies

c

R2

∫

R2
(g⊥)2U ≤

∫

R2
U |∇g⊥|2 + C

1

R2 (ḡ
⊥
R )

2 + C
1

R2

∫

R2\BR

U (g⊥)2.

Using that g⊥ = g + a we get

c

R2

∫

R2
(g⊥)2U ≤

∫

R2
U |∇g⊥|2 + C

1

R2 (ḡ
⊥
R )

2 + C
ω2

R2 + C
a2

R4 . (10.33)

But
∫

R2
g⊥Udy = 0
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and this implies

ḡ⊥
R = − 1

∫

BR
U

∫

R2\BR

g⊥U

so

(ḡ⊥
R )

2 ≤ C

R2

∫

R2\BR

(g⊥)2U ≤ Ca2

R4 + C

R2

∫

R2\BR

g2U.

This combined with (10.33) gives

c

R2

∫

R2
(g⊥)2U ≤

∫

R2
U |∇g⊥|2 + C

a2

R4 + C
ω2

R2 .

We use this together with (10.31) to obtain (for a new c > 0)

1

2
∂τ

∫

R2
φg⊥ + c

R2

∫

R2
(g⊥)2U + 1

4

∫

R2
U |∇g⊥|2

≤
∣
∣
∣
∣

∫

R2
B[φ]g⊥

∣
∣
∣
∣ + C f (τ )2‖h‖2∗∗ + C

a2

R4 + C
ω2

R2 . (10.34)

We obtain from Lemma 10.5 and the assumption (10.29) that

∣
∣
∣
∣

∫

R2
B[φ]g⊥

∣
∣
∣
∣ ≤ C

τ log τ

∫

R2
(g⊥)2Udy + C

|a(τ )|
τ log τ

‖∇g⊥U
1
2 ‖L2

≤ C

τ log τ

∫

R2
(g⊥)2Udy + |a(τ )|2

R4 + C
R4

τ 2(log τ)2
‖∇g⊥U

1
2 ‖2L2 .

= C
ε

R2

∫

R2
(g⊥)2Udy + |a(τ )|2

R4 + Cε2‖∇g⊥U
1
2 ‖2L2 . (10.35)

Taking ε > 0 small, and combining (10.34) and (10.35) we get

∂τ

∫

R2
φg⊥ + 1

R2

∫

R2
(g⊥)2U ≤ C f (τ )2‖h‖2∗∗ + Ca2

R4 + C
ω2

R2 .

By Lemma 9.3 we obtain

∂τ

∫

R2
φg⊥ + c

R2

∫

R2
φg⊥ ≤ C f (τ )2‖h‖2∗∗ + C

a2

R4 + C
ω2

R2 ,

for some constant c > 0, which is the desired conclusion. ��

The next lemma provides a pointwise estimate for g = φ
U −(−�−1)φ assuming

a certain bound for ‖U 1/2g‖L2 .
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Lemma 10.7. Assume ν > 0. Let φ be the solution to (10.9) as in §8. Suppose that
τ1 ≥ τ0 and

‖g(τ )U 1
2 ‖L2(R2) ≤ K1 f1(τ ), τ ∈ [τ0, τ1], (10.36)

where K1 ≥ 0 and

f1(τ ) = (log τ)μ

τν−1 ,

where μ ∈ R. Then

|U (y)g(y, τ )| ≤ C
(
K1 + ‖h‖∗∗

R(τ0)
+ |c1|

f1(τ0)

)
f1(τ )

1

(1 + |y|)2 , τ ∈ [τ0, τ1].

Proof. We define

g0 = Ug,

and obtain from (10.1) the equation

∂τ g0 = U∂τ g = ∂τφ −U (−�−1)∂τφ

= ∇ ·
[
U∇

(g0
U

)]
−U (−�)−1 [∇ · (U∇g)] + h −U (−�)−1h

+ B[g0] + B[Uψ[g0]] −U (−�)−1(B[g0 +Uψ[g0]]),
(10.37)

where we regard ψ[g0] as the operator that maps g0 to the unique radial solution to

−�ψ −Uψ = g0 in R2, ψ(ρ, τ ) → 0 as ρ → ∞. (10.38)

Wenote that this problemhas indeed a solution since
∫

R2 g0z0dy = 0byLemma9.2,
which is unique by imposing ψ(ρ, τ) → 0 as ρ → ∞ in the radial setting. This
solution is given by the variations of parameters formula

ψ(ρ, τ) = z0(ρ)
∫ ∞

ρ

g0(r, τ )z̄0(r)r dr + z̄0(ρ)
∫ ρ

0
g0(r, τ )z0(r)r dr,

where z̄0 is a second linear independent function in the kernel of �+U satisfying
|z̄0(ρ)| ≤ C(| log ρ| + 1).

We compute

∇ · (U∇g) = �gU + ∇U · ∇g = �(gU ) − ∇U · ∇g − g�U,

and hence

(−�)−1[∇ · (U∇g)] = −gU − (−�)−1 [∇U · ∇g + g�U ]

= −gU − v

where

v := (−�)−1(∇ · (g0∇�0)). (10.39)
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We write (10.37) as

∂τ g0 = �g0 − ∇g0 · ∇�0 + 2Ug0 + B[g0] + h̃ (10.40)

where

h̃ = Uv + B[Uψ[g0]] −U (−�)−1(B[g0 +Uψ[g0]]) + h −U (−�)−1h.
(10.41)

Note that since we are working with radial functions, we can integrate (10.39)
explicitly and obtain

v(ρ, τ ) =
∫ ∞

ρ

g0(s, τ )�
′
0(s)ds. (10.42)

We claim that for any y ∈ R
2:

‖h̃‖L p(B1(y)) ≤ C
(
K1 + ‖h‖∗∗

R(τ0)

)
f1(τ )

1

(1 + |y|)4− 4
p

, τ ∈ [τ0, τ1]. (10.43)

Indeed, let us start with
∫ ∞

0
|v(ρ)|pU (ρ)ρdρ ≤

∫ ∞

0

(∫ ∞

ρ

U (s)g(s)2sds
)p/2

(∫ ∞

ρ

U (s)
�′
0(s)

2

s
ds

)p/2
U (ρ)ρdρ

≤ C‖gU 1
2 ‖p

L2(R2)
, (10.44)

which follows from (10.42) and Hölder’s inequality
Let uswriteψ = ψ[g0] and ψ̃ = ψ◦!,where! is the stereographic projection.

Writing (10.38) in S2 and using standard L p theory we find that for any p > 2

‖ψ̃‖L∞(S2) + ‖∇S2ψ̃‖L p(S2) ≤ C‖gU 1
2 ‖L2(R2),

which implies

‖ψ‖L∞(R2) +
(∫

R2
|∇ψ |pU 1− p

2

) 1
p ≤ C‖gU 1

2 ‖L2(R2). (10.45)

Let y ∈ R
2. From (10.36) we see that

‖g0(·, τ )‖L2(B1(y)) ≤ CK1 f1(τ )
1

(1 + |y|)2 , τ ∈ [τ0, τ1],

and from (10.36) and (10.44) we have

‖Uv(·, τ )‖L p(B1(y)) ≤ CK1 f1(τ )
1

(1 + |y|)4− 4
p

, τ ∈ [τ0, τ1]. (10.46)
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Similarly, inequalities (10.45) and (10.36) imply

‖B[Uψ[g0]]‖L p(B1(y)) ≤ CK1 f1(τ )
1

τ log τ

1

(1 + |y|)4 , τ ∈ [τ0, τ1]. (10.47)

Let’s estimate

(−�)−1(B[g0 +Uψ[g0]]) = ζ1(τ )(−�)−1(y · ∇(g0 +Uψ[g0]))
+ ζ2(τ )(−�)−1(g0 +Uψ[g0]).

Note that ψ = (−�)−1φ = (−�)−1(g0 +Uψ). But we can estimate ψ from

ψ(ρ) = z0(ρ)
∫ ∞

ρ

1

z0(r)2r

∫ ∞

r
g0(s)z0(s)sds, ρ > 1. (10.48)

Then (10.36) yields

|ψ(ρ, τ)| ≤ C

1 + ρ
‖gU 1

2 ‖L2(R2) ≤ CK1 f1(τ )
1

1 + ρ
, τ ∈ [τ0, τ1], (10.49)

and so

|U (−�)−1(g0 +Uψ[g0])| ≤ CK1 f1(τ )
1

1 + |y|5 , τ ∈ [τ0, τ1]. (10.50)

Concerning the term (−�)−1(y · ∇(g0 + Uψ)), we notice that if we let w =
g0 +Uψ , then

∫

R2 y · ∇w = 0, and

(−�)−1(y · ∇w)(ρ) =
∫ ∞

ρ

rw(r, τ )dr − 2ψ(ρ, τ).

Using (10.36) and (10.49) we get

∣
∣
∣((−�)−1(y · ∇(g0 +Uψ)))(ρ, τ )

∣
∣
∣ ≤ CK1 f1(τ )

1

1 + ρ
, τ ∈ [τ0, τ1].

From this and (10.50) we find that

|U (−�)−1(B[g0+Uψ[g0]])(y, τ )|≤CK1 f1(τ )
1

τ log τ(1+|y|)5 , τ ∈ [τ0, τ1].
(10.51)

Finally the estimates

‖h‖L p(B1(y)) + ‖U (−�)−1h‖L p(B1(y)) ≤ C
‖h‖∗∗
R(τ0)

f1(τ )
1

(1 + |y|)4− 4
p

(10.52)

are directly obtained.
Combining (10.46), (10.47), (10.51), and (10.52) we deduce (10.43).
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From equation (10.40), the estimate (10.43), standard parabolic L p estimates
restricted to B1(y) × (max(τ − 1, τ0), τ ) and embedding into Hölder spaces, we
deduce that

|g0(y, τ )| ≤ C
(
K1 + ‖h‖∗∗

R(τ0)
+ |c1|

f1(τ0)

)
f1(τ )

1

(1 + |y|)2 , τ ∈ [τ0, τ1].
(10.53)

This is the desired conclusion. We also get from (10.53):

|v(y, τ )| ≤ C
(
K1 + ‖h‖∗∗

R(τ0)
+ |c1|

f1(τ0)

)
f1(τ )

1

(1 + |y|)2 , τ ∈ [τ0, τ1]. (10.54)

��
In some of the proofs below the following barrier will be useful. Consider the

equation

∂τφ = �R6φ + h in (τ0,∞) × R
6

φ(τ0, ·) = 0
(10.55)

where �R6 is the laplacian in R6. Suppose that h has the estimate

|h(y, τ )| ≤ 1

τγ+1

1

(1 + |y|/√τ)b

for some γ, b ∈ R.
If γ < 3 and γ < b

2 then there is a barrier satisfying

C1
1

τγ

1

(1 + |y|/√τ)b
≤ φ(y, τ ) ≤ C2

1

τγ

1

(1 + |y|/√τ)b
.

Indeed, we can consider all functions to be radial and write ρ = |y|, y ∈ R
6. Let

φ̄(ρ, τ ) = 1

τγ
g
( ρ√

τ

)
, ζ = ρ√

τ
. (10.56)

Then

∂τ φ̄ −
(
∂ρρ + 5

ρ
∂ρ

)
φ̄ = − 1

τγ+1

[
g′′(ζ ) + 5

ζ
g′(ζ ) + ζ

2
g′(ζ ) + γ g(ζ )

]
.

Let g1(ζ ) = 1
(1+ζ 2)b/2

. Since γ < b
2 we have

−
[
g′′
1 (ζ ) + 5

ζ
g′
1(ζ ) + ζ

2
g′
1(ζ ) + γ g1(ζ )

]
≥ c

ζ b
, ζ ≥ M,

for some c,M > 0. Let g0(ζ ) = e− ζ2

4 be the Gaussian kernel, which satisfies

g′′
0 (ζ ) + 5

ζ
g′
0(ζ ) + ζ

2
g′
0(ζ ) + 3g0(ζ ) = 0.
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Let g = C1g0 + g1. Since γ < 3, we can find C1 large so that

−
[
g′′(ζ ) + 5

ζ
g′(ζ ) + ζ

2
g′(ζ ) + γ g(ζ )

]
≥ c

1 + ζ b
, ζ > 0.

Then φ̄ defined by (10.56) with g = C1g0 + g1 is a supersolution to (10.55).
In the next lemma we improve the spatial decay of g = φ

U − (−�−1)φ.

Lemma 10.8. Assume 1 < ν < 7
4 . Let φ be the solution to (10.9) as in §8. Suppose

that τ1 ≥ τ0 and

‖g(τ )U 1
2 ‖L2(R2) ≤ K1 f1(τ ), τ ∈ [τ0, τ1],

where K1 ≥ 0 and

f1(τ ) = (log τ)μ

τν−1 ,

where μ ∈ R. Then

|U (ρ)g(ρ, τ )| ≤ C
(
K1 + ‖h‖∗∗

R(τ0)
+ |c1|

f1(τ0)

)
f1(τ )

1

(1 + ρ)4
, τ ∈ [τ0, τ1].

(10.57)

Proof. Weus the samenotation as inLemma10.7 and consider (10.40) for g0 = Ug
with h̃ defined in (10.41). We are going to use barriers to estimate g0.

We claim that h̃ satisfies

|h̃(y, τ )|≤C
(
K1+ ‖h‖∗∗

R(τ0)

)
f1(τ )

( 1

(1+|y|)6 + 1

τ log τ(1+|y|)5
)
, τ ∈ [τ0, τ1].

(10.58)

Indeed, from (10.53) and (10.54) we find that

| −Uv + h −U (−�)−1h| ≤ C
(
K1 + ‖h‖∗∗

R(τ0)

)
f1(τ )

1

(1 + |y|)6 , τ ∈ [τ0, τ1].
(10.59)

To estimate B[Uψ[g0]]we use (10.49) a similar estimate for ∂ρψ , and the assump-
tions on ζ1, ζ2 in (10.20), to obtain

|B[Uψ[g0]| ≤ CK1 f1(τ )
1

τ log τ

1

1 + |y|5 , τ ∈ [τ0, τ1].

This, (10.59) and (10.51) prove (10.58).
To get better spatial decay we construct a barrier and apply the maximum

principle to equation (10.40) in (R2\BR0(0)) × (τ0, τ1), where R0 is a fixed large
constant. Several of constants C below depend on R0 but we will not keep track of
the explicit dependence.

The linear operator for g0 in (10.40), acting on radial functions with ρ = |y|,
is given by
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∂τ g0 − [�g0 − ∇g0 · ∇�0 + B[g0] + 2Ug0]
= ∂τ g0 − ∂ρρg0 − 1

ρ
∂ρg0 − 4ρ

1 + ρ2 ∂ρg0 + O
( 1

1 + ρ4

)
g0

+ O
( 1

τ log τ

)
g0 + O

( 1

τ log τ

)
ρ∂ρg0.

The main part outside of a ball BR0(0) with R0 big is given by ∂τ − ∂ρρ − 5
ρ
∂ρ .

By (10.58) we need to construct ḡ1 such that

∂τ ḡ1 − [�ḡ1 − ∇ ḡ1 · ∇�0 + B[ḡ1] + 2Uḡ1] ≥ h1

where

h1(ρ, τ ) = f1(τ )
( 1

(1 + ρ)6
+ 1

τ log τ(1 + ρ)5

)
.

To construct ḡ1, let 0 < ϑ < 1, and let g̃1(ρ) be radial and solve

−�6g̃1 = 1

1 + ρ6−ϑ
in R6,

such that g̃1(ρ)(1 + ρ4−ϑ) is bounded below and above by positive constants. Let

ḡ1(ρ, τ ) = f1(τ )g̃1(ρ)χ0

( ρ

δ
√
τ

)
+ C1

f1(τ )

τ 2−ϑ/2(1 + ρ/
√
τ)5

+ C2
f1(τ )

τ 2−ϑ/2 e
− ρ2

4τ ,

For appropriate δ > 0, C1, and C2, the function ḡ1(ρ, τ ) is a supersolution in
(R2\BR0(0)) × (τ0, τ1) for the right hand side h1. More precisely, writing M =
R2−ϑ
0 (K1 + ‖h‖∗∗

R(τ0)
+ 1

f1(τ0)
|c1|), we have

(∂τ − [� − ∇(·) · ∇�0 + B])Mḡ1 ≥ |h̃|, in (R2 \ BR0(0)) × (τ0, τ1),

Mḡ1 ≥ |g0|, on ρ = R0, τ ∈ (τ0, τ1),

because of Lemma 10.7, and

Mḡ1(τ0) ≥
∣
∣
∣c1UgZ̃0

∣
∣
∣ , in R2,

where

gZ̃0
= Z̃0

U
− (−�)−1 Z̃0,

is the function g associated to Z̃0 defined in (6.4).We note that |UgZ̃0
(ρ)| ≤ C 1

1+ρ4

and is supported on ρ ≤ 2
√
τ0. Here we are using that ν < 3

2 + ϑ
2 .

Using the maximum principle we get

|g0(y, τ )| ≤ C
(
K1 + ‖h‖∗∗

R(τ0)
+ |c1|

f1(τ0)

)
f1(τ )

1

(1 + ρ)4−ϑ
, τ ∈ [τ0, τ1].
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The constant C here depends on R0, but R0 is fixed and we will not keep track of
the dependence of C on R0.

By (10.42) and (10.48) we have

|h̃(y, τ )| ≤ C
(
K1 + ‖h‖∗∗

R(τ0)
+ |c1|

f1(τ0)

)
f1(τ )

( 1

(1 + ρ)6+σ
+ 1

τ log τ(1 + ρ)6−ϑ

)
.

We can now repeat the argument with a new barrier. Consider g̃2(ρ) the radial
solution to

− �6g̃2 = 1

1 + ρ6+σ
in R6, c1

1

1 + ρ4 ≤ g̃2(ρ) ≤ c2
1

1 + ρ4 , (10.60)

where c1, c2 > 0. Let

ḡ2(ρ, τ ) = f1(τ )g̃2(ρ)χ0

( ρ

δ
√
τ

)
+ C1

f1(τ )

τ 2(1 + ρ/
√
τ)6−ϑ

+ C2
f1(τ )

τ 2
e− ρ2

4τ .

For appropriate constants δ, C1, C2, and assuming that ν < 2− ϑ
2 we get a suitable

supersolution and we obtain

|g0(y, τ )| ≤ C
(
K1 + ‖h‖∗∗

R(τ0)
+ |c1|

f1(τ0)

)
f1(τ )

1

(1 + ρ)4
.

This proves (10.57).
The restriction on ν were ν < 3

2 + ϑ
2 and ν < 2− ϑ

2 . Choosing ϑ = 1
4 we find

that for ν < 7
4 both barriers work. ��

The next result is a technical step used in several places.

Lemma 10.9. Let φ : R
2 → R be radial such that

∫

R2 φ = 0 and |φ(y)| ≤
C

(1+|y|)2+σ for some σ > 0. Let g = φ
U − (−�)−1φ and assume that ‖g‖L∞ < ∞.

Then

|φ(y)| ≤ C
‖g‖L∞

(1 + |y|)4 . (10.61)

Proof. Let ψ = (−�)−1φ. Since ψ satisfies

−�ψ −Uψ = Ug in R2, ψ(ρ) → 0 as ρ → ∞,

we have necessarily
∫

R2
Ugz0dy = 0.

We have the variations of parameters formula

ψ(ρ) = z0(ρ)
∫ ∞

ρ

1

z0(r)2r

∫ ∞

r
Ug(s, τ )z0(s)s ds dr, ρ > 1. (10.62)

From (10.62) we find

|ψ(ρ, τ)| ≤ C‖g‖L∞ .

This and the formula φ = Ug +Uψ gives (10.61). ��
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Next we give a proof of Proof of Lemma 10.1, but first we point some estimates
of Z̃0 defined in (6.4). Using the general decomposition (10.6), we write

Z̃0 = Z̃⊥
0 + ã0

2
Z0.

By (10.7)

ã0 = 1

8π

∫

R2
�0 Z̃0 = 2 + O

(
log τ0

τ0

)

.

Hence Z̃⊥
0 satisfies

Z̃⊥
0 (ρ) = Z̃0(ρ) − ã0

2
Z0(ρ)

= (Z0(ρ) − mZ0U (ρ))χ3 −
(
1 + O

( log τ0

τ0

))
Z0(ρ)

= Z0(ρ)(χ3 − 1) + O
( log τ0

τ0

1

1 + ρ4

)

where

χ3(ρ) = χ0

( ρ

3
√
τ0

)
.

Let g̃0 = Z̃0
U − (−�y)

−1 Z̃0 and g̃⊥
0 = g̃0 + ã0. Note that since Z0 has mass

zero and decays like 1/ρ4 we have mZ0 = O( 1
τ0
). We claim that

∣
∣
∣
∣

∫

R2
Z̃0g

⊥
0 dy

∣
∣
∣
∣ ≤ C

log τ0

τ 2
. (10.63)

Indeed, let us use the notation

ψ̃0 = (−�y)
−1 Z̃0

so that

g̃0 = Z̃0

U
− ψ̃0.

Let us write

Z̃0 = Z0 + h,

where

h = Z0(χ3 − 1) − mZ0Uχ3.

Since �z0 + Uz0 = 0 and limρ→∞ z0(ρ) = −2 we have (−�)−1Z0 = z0 + 2.
Therefore

ψ̃0 = (−�)−1 Z̃0 = z0 + 2 + (−�)−1h.



61 Page 108 of 154 Arch. Rational Mech. Anal. (2024) 248:61

Since the mass of Z̃0 is zero
∫

R2
Z̃0 g̃

⊥
0 =

∫

R2
Z̃0 g̃0

=
∫

R2
(Z0 + h)

( Z0 + h

U
− ψ̃0

)
dy

=
∫

R2
(Z0 + h)

( Z0 + h

U
− z0 − 2 − (−�)−1h

)
dy

=
∫

R2

Z2
0 + 2Z0h + h2

U
dy −

∫

R2
Z0(z0 + 2 + (−�)−1h)dy

−
∫

R2
h(z0 + 2 + (−�)−1h)dy

But Z0 = Uz0 and the mass of h is zero, so

∫

R2
Z̃0g

⊥ =
∫

R2
z0hdy +

∫

R2

h2

U
dy −

∫

R2
Z0(−�)−1hdy −

∫

R2
h(−�)−1hdy

=
∫

R2

h2

U
dy −

∫

R2
h(−�)−1hdy,

because, integrating by parts,
∫

R2
Z0(−�)−1hdy =

∫

R2
(−�z0)(−�)−1hdy =

∫

R2
z0h.

By direct computation

|(−�y)
−1h(ρ)| ≤ C log(τ0)

{
1
ρ2 ρ ≥ √

τ0
1
τ0

ρ ≤ √
τ0.

With this inequality we estimate

∣
∣
∣
∣

∫

R2

h2

U
dy

∣
∣
∣
∣ ≤ C

τ 2

and
∣
∣
∣
∣

∫

R2
h(−�)−1hdy

∣
∣
∣
∣ ≤ C

log τ0

τ 2
.

This proves (10.63).

Proof of Lemma 10.1. We let R be defined by (10.11).Wemultiply equation (10.9)
by g⊥ and integrate in R2. Using Lemmas 10.6 and 9.3 we get

∂τ

∫

R2
φg⊥ + c

R2

∫

R2
φg⊥ ≤ C f (τ )2‖h‖2∗∗ + Ca2

R4 + C

R2ω(τ)2, (10.64)
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for some c > 0, where

ω(τ) =
(∫

R2\BR(τ )

g2U
)1/2

.

Let us write

‖ϕ‖∞,T2 = ‖ϕ‖L∞(τ0,T2),

and note that
∥
∥
∥

a

R2 f

∥
∥
∥
2

∞,T2
< ∞,

∥
∥
∥

ω

R f

∥
∥
∥∞,T2

< ∞.

The following inequalities are valid for τ0 < τ < T2. From (10.64) we get

∂τ

∫

R2
φg⊥ + c

R2

∫

R2
φg⊥ ≤ C f (τ )2

(
‖h‖2∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥
2

∞,T2
+

∥
∥
∥

ω

R f

∥
∥
∥
2

∞,T2

)
.

By Gronwall’s inequality and Lemma 9.3 we get
∫

R2
(g⊥)2U ≤ C f (τ )2R(τ )2

(
‖h‖2∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥
2

∞,T2
+

∥
∥
∥

ω

R f

∥
∥
∥
2

∞,T2
+ c21D(τ0)

2
)

(10.65)

where

D(τ0) = 1

f (τ0)R(τ0)

√
log τ0

τ0
,

and we have used (10.63).
From (10.65) we find

∫

R2
g2U ≤ C f (τ )2R(τ )4

( 1

R(τ0)2
‖h‖2∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥
2

∞,T2

+ 1

R(τ0)2

∥
∥
∥

ω

R f

∥
∥
∥
2

∞,T2
+ c21

D(τ0)
2

R(τ0)2

)
(10.66)

Using Lemma 10.8 we get

|Ug| ≤ C f (τ )R(τ )2
( 1

R(τ0)
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ 1

R(τ0)

∥
∥
∥

ω

R f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

) 1

(1 + ρ)4
, (10.67)

where we have used that for τ0 large,
D(τ0)
R(τ0)

< 1
f (τ0)R(τ0)2

.
We use this to estimate

∫

R2\BR

g2U ≤ C f (τ )2R(τ )2
( 1

R(τ0)
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ 1

R(τ0)

∥
∥
∥

ω

R f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)2
,
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which implies

ω(τ)

R(τ ) f (τ )
≤ C

( 1

R(τ0)
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ 1

R(τ0)

∥
∥
∥

ω

R f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)
.

We deduce that
∥
∥
∥

ω

R f

∥
∥
∥∞,T2

≤ C
( 1

R(τ0)
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)
. (10.68)

Combining this inequality with (10.66) we obtain
∫

R2
g2U ≤ C f (τ )2R(τ )4

( 1

R(τ0)
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)2
,

(10.69)

and with (10.65) we get
∫

R2
(g⊥)2U ≤ C f (τ )2R(τ )2

(
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)2
.

(10.70)

Going back to (10.67) we find

|Ug(ρ, τ )| ≤ C f (τ )R(τ )2
( 1

R(τ0)
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞ + |c1| 1

f (τ0)R(τ0)2

) 1

1 + ρ4 .

(10.71)

Using Lemma 10.9 we also obtain

|φ(ρ, τ)|≤C f (τ )R(τ )2
( 1

R(τ0)
‖h‖∗∗+

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+|c1| 1

f (τ0)R(τ0)2

) 1

1+ρ4 .

(10.72)

We multiply the equation satisfied by φ (10.9) by |y|2χ0(
y
R ), and integrate on

R
2

∂τ

∫

R2
φ|y|2χ0

( y

R

)
dy =

∫

R2
(L[φ] + h)|y|2χ0(

y

R
)dy +

∫

R2
B[φ]|y|2χ0(

y

R
)dy

− R′(τ )
R

∫

R2
φ|y|2∇χ0(

y

R
) · y

R
dy, (10.73)

where R′ = dR
dτ .

We integrate (10.73) from τ toT2, use the decomposition (10.6) and thata(T2) =
0 to get

|a(τ )| log τ ≤
∣
∣
∣
∣

∫ T2

τ

∫

R2
(L[φ(s)] + h)|y|2χ0(

y

R(s)
)dyds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ T2

τ

∫

R2
B[φ(s)]|y|2χ0(

y

R(s)
)dyds

∣
∣
∣
∣
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+
∣
∣
∣
∣

∫ T2

τ

R′(s)
R(s)

∫

R2
φ(s)|y|2∇χ0(

y

R(s)
) · y

R(s)
dyds

∣
∣
∣
∣

+
∣
∣
∣
∣

∫

R2
φ⊥(T2)|y|2χ0

( y

R(T2)

)
dy

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

R2
φ⊥(τ )|y|2χ0

( y

R(τ )

)
dy

∣
∣
∣
∣ .

(10.74)

By Lemma 9.4 and (10.70)
∫

B2R(τ )
|φ(τ)⊥||y|2dy ≤ CR(τ )

(∫

R2
(φ⊥(τ ))2U−1

)1/2

≤ CR(τ )
(∫

R2
(g⊥(τ ))2U

)1/2

≤ C f (τ )R(τ )2
(
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)
.

(10.75)

Analogously,

∣
∣
∣
∣

∫

R2
φ⊥(T2)|y|2χ0

( y

R(T2)

)
dy

∣
∣
∣
∣ ≤ C f (T2)R(T2)

2
(
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)

≤ C f (τ )R(τ )2
(
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)
.

(10.76)

Integrating by parts

∣
∣
∣
∣
∣

∫ T2

τ

∫

R2
B[φ(s)]|y|2χ0( y

R(s)
)dyds

∣
∣
∣
∣
∣
≤ C

∫ T2

τ

1

s log s

∫

R2
|φ(y, s)||y|2χ0( y

R(s)
)dyds

+ C
∫ T2

τ

1

s log s

∫

R2
|φ(y, s)||y|2|∇χ0(

y

R(s)
)|dyds.
(10.77)

Let’s estimate, using (10.72)

∫ T2

τ

1

s log s

∫

R2
|φ(y, s)||y|2χ0(

y

R(s)
)dyds

≤ C
∫ T2

τ

1

s
f (s)R(s)2ds

( 1

R(τ0)
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)

≤ C f (τ )R(τ )2
( 1

R(τ0)
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)
.

The second term in (10.77) is even smaller, and we deduce that
∣
∣
∣
∣

∫ T2

τ

∫

R2
B[φ(s)]|y|2χ0(

y

R(s)
)dyds

∣
∣
∣
∣ ≤ C f (τ )R(τ )2

( 1

R(τ0)
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)
. (10.78)
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From (10.72) we also get

∣
∣
∣
∣
∣

∫ T2

τ

R′(s)
R(s)

∫

R2
φ(s)|y|2∇χ0(

y

R(s)
) · y

R(s)
dyds

∣
∣
∣
∣
∣

≤ C
∫ T2

τ

R′(s)
R(s)

f (s)R(s)2ds
( 1

R(τ0)
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)

≤ C f (τ )R(τ )2
( 1

R(τ0)
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)
. (10.79)

Next we look at

∫

R2
L[φ]|y|2χ0( yR )dy = −2

∫

R2
U∇g · yχ0( yR )dy − 1

R

∫

R2
U |y|2∇g · ∇χ0(

y

R
)dy

= 2
∫

R2
gZ0χ0(

y

R
)dy + 4

R

∫

R2
gUy · ∇χ0(

y

R
)dy

+ 1

R

∫

R2
g|y|2∇U · ∇χ0(

y

R
)dy + 1

R2

∫

R2
g|y|2U�χ0(

y

R
)dy.

(10.80)

We have
∫

R2 gZ0 = 0 by Lemma 9.2 and therefore, using (10.71), we find that

∣
∣
∣
∣

∫

R2
gZ0χ0(

y

R(τ )
)dy

∣
∣
∣
∣ ≤

∣
∣
∣
∣
∣

∫

R2\BR(τ )(0)
gZ0dy

∣
∣
∣
∣
∣

≤ f (τ )
( 1

R(τ0)
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞ + |c1| 1

f (τ0)R(τ0)2

)
.

The remaining terms in (10.80) are estimated using (10.69) or (10.71) and we get

∣
∣
∣
∣

∫

R2
L[φ]|y|2χ0(

y

R
)dy

∣
∣
∣
∣ ≤ C f (τ )

( 1

R(τ0)
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)
.

Therefore

∣
∣
∣
∣

∫ T2

τ

∫

R2
L[φ(s)]|y|2χ0(

y

R(s)
)dyds

∣
∣
∣
∣ ≤ C f (τ )R(τ )2(log τ)q

( 1

R(τ0)
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

|c1| 1

f (τ0)R(τ0)2

)
. (10.81)

Finally
∣
∣
∣
∣

∫ T2

τ

∫

R2
h|y|2χ0(

y

R(s)
)dyds

∣
∣
∣
∣ ≤ C f (τ )R(τ )2(log τ)q‖h‖∗∗. (10.82)

From (10.74), (10.75), (10.76), (10.78), (10.79), (10.81), and (10.82) we get

|a(τ )| log τ ≤ C f (τ )R(τ )2(log τ)q
(
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)
.

(10.83)
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Assuming τ0 large, we deduce that
∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

≤ C

(log τ0)1−q

(
‖h‖∗∗ + |c1| 1

f (τ0)R(τ0)2

)
. (10.84)

Note that a(τ0) and c1 are related. Indeed, the initial condition is φ0 = c1 Z̃0 =
φ⊥
0 + a(τ0)

2 Z0 with

a(τ0) = c1
8π

∫

R2
Z̃0�0,

by (10.7). We note that
∫

R2 Z̃0�0 = 16π + O(
log τ0
τ0

). So by (10.84)

|c1| ≤ C |a(τ0)| ≤ C
f (τ0)R(τ0)2

(log τ0)1−q
‖h‖∗∗ + C

1

(log τ0)1−q
|c1|.

For τ0 large, we deduce that

|c1| ≤ C |a(τ0)| ≤ C
f (τ0)R(τ0)2

(log τ0)1−q
‖h‖∗∗. (10.85)

This proves (10.16). Replacing this in (10.84) we get
∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

≤ C

(log τ0)1−q
‖h‖∗∗, (10.86)

which proves (10.14). Combining (10.68), (10.85) and (10.86) we obtain (10.15).
Finally, we also obtain from (10.72)

|φ(ρ, τ)| ≤ C
f (τ )R(τ )2

(log τ0)1−q

1

1 + ρ4 ‖h‖∗∗. (10.87)

��
Proof of Lemma 10.2. The proof is a slight modification of the one of Lemma 10.1.
Using the same notation as in that proof, integrating (10.73) from τ to T2 > τ yields

∫

R2
φ(T2)|y|2χ0

( y

R(T2)

)
dy −

∫

R2
φ(τ)|y|2χ0

( y

R(τ )

)
dy

=
∫ T2

τ

∫

R2
(L[φ(s)] + h)|y|2χ0(

y

R(s)
)dyds

+
∫ T2

τ

∫

R2
B[φ(s)]|y|2χ0(

y

R
)dyds

−
∫ T2

τ

R′(s)
R(s)

∫

R2
φ(s)|y|2∇χ0(

y

R(s)
) · y

R(s)
dyds,

Similarly to (10.83) we obtain

|a(τ )| log τ ≤ C f (τ )R(τ )2(log τ)q
(
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

+ |c1| 1

f (τ0)R(τ0)2

)
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+ C |a(T2)| log(T2). (10.88)

The assumption a
f R2 ∈ L∞(τ0,∞) implies that

lim
τ→∞ a(τ ) log τ = 0.

Letting T2 → ∞ in (10.88) we obtain

|a(τ )| log τ ≤ C f (τ )R(τ )2(log τ)q
(
‖h‖∗∗ +

∥
∥
∥

a

R2 f

∥
∥
∥
L∞(τ0,∞)

+ |c1| 1

f (τ0)R(τ0)2

)
.

Then the same argument as in Lemma 10.1 gives the estimates for a, ω and c1. ��
Proof of Lemma 10.3. Here ZB is the solution to (10.8). Assume to the contrary
that there is some T2 > τ0 such that

aZ (T2) = 0.

We follow the same computations as in the proof of Lemma 10.1 with h = 0 and
c1 = 1. By the inequality (10.84) in the proof of Lemma 10.1

∥
∥
∥

a

R2 f

∥
∥
∥∞,T2

≤ C

(log τ0)1−q

1

f (τ0)R(τ0)2

which implies

|a(τ0)| ≤ C

(log τ0)1−q
. (10.89)

But by (10.7)

a(τ0) = 1

8π

∫

R2
�0 Z̃0 = 2 + O

(
log τ0

τ0

)

which contradicts (10.89). ��
Proof of Lemma 10.4. We let Tn be a sequence such that Tn → ∞ as n → ∞. Let
φ̄ be the solution to (10.1) with initial condition equal to 0. This solution exists but
for the moment we don’t have any control of its asymptotic behavior as τ → ∞.
Let φ̄⊥, ā(τ ) be the decomposition (10.6) of φ̄. Let Z⊥

B , aZ (τ ) be the decomposition
(10.6) of ZB . Using Lemma 10.3 there is cn ∈ R such that

ā(Tn) + cnaZ (Tn) = 0.

Let us define

φn = φ̄ + cn ZB,

and let

φn = φ⊥
n + an

2
Z0
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be the decomposition (10.6) of φn . Then by Lemma 10.1 we have

|an(τ )| ≤ C
f (τ )R(τ )2

(log τ0)1−q
‖h‖∗∗, τ ∈ [τ0, Tn]

|ωn(τ )| ≤ C
f (τ )R(τ )

(log τ0)1−q
‖h‖∗∗, τ ∈ [τ0, Tn]

|cn| ≤ C
f (τ0)R(τ0)2

(log τ0)1−q
‖h‖∗∗.

Moreover, we also have the uniform estimate

|φn(ρ, τ )| ≤ C
f (τ )R(τ )2

(log τ0)1−q

1

1 + ρ4 ‖h‖∗∗

for τ ∈ [τ0, Tn] from (10.87).
By using standard parabolic estimates, passing to a subsequencewemay assume

that cn → c1 and φn → φ locally uniformly in space-time, and that φ is a solution
of (10.9) for some c1 such that

|c1| ≤ C
f (τ0)R(τ0)2

(log τ0)1−q
‖h‖∗∗.

Moreover φ satisfies

|φ(ρ, τ)| ≤ C
f (τ )R(τ )2

(log τ0)1−q

1

1 + ρ4 ‖h‖∗∗

and writing the decomposition (10.6) as φ = φ⊥ + a
2 Z0 we have

|a(τ )| ≤ C
f (τ )R(τ )2

(log τ0)1−q
‖h‖∗∗.

We also get

|ωn(τ )| ≤ C
f (τ )R(τ )

(log τ0)1−q
‖h‖∗∗,

where ω is defined in (10.13).
The uniqueness of c1 is a consequence of Lemma 10.2. ��

Proof of Proposition 10.1. We have already constructed φ and c1 in Lemma 10.4,
we have the uniqueness of φ and the estimates for a and c1 in Lemma 10.2.

We only need to prove the estimate for φ⊥ stated in (10.10). By the construction
of φ in Lemma 10.4 and (10.70), (10.85) and (10.86), we get

∫

R2
(g⊥)2U ≤ C f (τ )2R(τ )2‖h‖2∗∗, τ > τ0. (10.90)

We claim that from this inequality we have

U |g⊥(y, τ )| ≤ C f (τ )R(τ )
1

(1 + |y|)2 ‖h‖∗∗., τ > τ0.
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The proof of this estimate is similar to that of (10.57) in Lemma 10.8.
Indeed, we define

g⊥
0 = Ug⊥

and obtain the equation

∂τ g
⊥
0 = ∇ ·

(
U∇

(g⊥
0

U

))
−U (−�)−1∇ ·

(
U∇

(g⊥
0

U

))

+ h −U (−�)−1h

+ B[g⊥
0 ] −U (−�)−1B[g⊥

0 ] + B[Uψ[g⊥
0 ] −U (−�)−1B[Uψ[g⊥

0 ]
+ a′(τ )U + a

2
B[Z0] − a

2
U (−�)−1B[Z0]. (10.91)

Here the notation ψ[g⊥
0 ] is the one introduced in the proof of Lemma 10.7 in

(10.38).
To get an estimate for the solution we need an estimate for a′(τ ). Since g⊥ =

g + a and
∫

R2 Ug⊥ = 0 we have

a(τ ) = − 1

8π

∫

R2
Ug(τ )dy = − 1

8π

∫

R2
g0(τ )dy.

But integrating (10.37) we find

∂τ

∫

R2
g0(τ )dy = −

∫

R2
U (−�)−1

(
∇ · (U∇ g0

U
)
)
dy −

∫

R2
U (−�)−1hdy

−
∫

R2
U (−�)−1(B[g0 +Uψ[g0]])dy,

which gives the expression

a′(τ ) = 1

8π

∫

R2
U (−�)−1

(
∇ · (U∇ g0

U
)
)
dy + 1

8π

∫

R2
U (−�)−1hdy

+ 1

8π

∫

R2
U (−�)−1(B[g0 +Uψ[g0]])dy.

We claim that

|a′(τ )| ≤ C f (τ )R(τ )‖h‖∗∗. (10.92)

Indeed, we have
∫

R2
U (−�)−1

(
∇ · (U∇ g0

U
)
)
dy =

∫

R2
�0∇ · (U∇g⊥)dy = −

∫

R2
∇U · ∇g⊥dy

=
∫

R2
�Ug⊥.

Then, by (10.90)
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∣
∣
∣
∣

∫

R2
U (−�)−1

(
∇ · (U∇ g0

U
)
)
dy

∣
∣
∣
∣ ≤ C

(∫

R2
(g⊥)2U

)1/2

≤ C f (τ )R(τ )‖h‖∗∗.

We also have, for the case of the operator (10.2),

∫

R2
U (−�)−1(B[g0]) dy =

∫

R2
�0B[g0] = ζ(τ )

∫

R2
�0∇ · (yg0)dy

= −ζ(τ )

∫

R2
∇�0 · yUgdy

But by construction and (10.69), (10.85) and (10.86), we get

(∫

R2
g2U

)1/2 ≤ C

(log τ0)1−q
f (τ )R(τ )2‖h‖∗∗. (10.93)

so, using (10.93)

∣
∣
∣
∣

∫

R2
U (−�)−1(B[g0]) dy

∣
∣
∣
∣ ≤ C

τ log τ

( ∫

R2
Ug2

)1/2

≤ C

τ log τ

1

(log τ0)1−q
f (τ )R(τ )2‖h‖∗∗

≤ C f (τ )‖h‖∗∗
≤ C f (τ )R(τ )‖h‖∗∗.

The last term is estimated similarly and we get (10.92).
Repeating the argument in of Lemma 10.7 we obtain from (10.90)

|g⊥
0 (y, τ )| ≤ C f (τ )R(τ )‖h‖∗∗

1

(1 + |y|)2 .

An argument similar to Lemma 10.9 gives

|φ⊥(ρ, τ )| ≤ C f (τ )R(τ )
1

(1 + |y|)2 ‖h‖∗∗.

��
We have an estimate for φ⊥ stronger than (10.10) under a stricter assumption

on ν.

Lemma 10.10. Let us assume that 1 < ν < 3
2 . Under the same assumption of

Proposition 10.1 let φ = φ⊥ + a
2 Z0 be the solution of (10.9). Then

|φ⊥(y, τ )| ≤ CR(τ ) f (τ )‖h‖∗∗

{
1

(1+|y|)2 |y| ≤ √
τ

τ
|y|4 |y| ≥ √

τ ,
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Proof. We write (10.91) as

∂τ g
⊥
0 = �g⊥

0 − ∇g⊥
0 · ∇�0 + 2Ug⊥

0 + B[g⊥
0 ] + h̃1 (10.94)

where

h̃1 = −U (−�)−1(∇ · (g⊥
0 ∇�0))

−U (−�)−1B[g⊥
0 ] + B[Uψ[g⊥

0 ]] −U (−�)−1B[Uψ[g⊥
0 ]]

+ a′(τ )U + a

2
B[Z0] − a

2
U (−�)−1B[Z0]

+ h −U (−�)−1h.

Then, similarly to (10.58), we have

|h̃1(y, τ )| ≤ C f (τ )R(τ )‖h‖∗∗
1

(1 + |y|)4 .

Let

ḡ⊥(ρ, τ ) = f (τ )R(τ )g̃3(ρ)χ0

( ρ

δ
√
τ

)
+ A1

f (τ )R(τ )

τ

1

(1 + ρ/
√
τ)4

+ A2
f (τ )R(τ )

τ
e− ρ2

4τ

where −�6g̃3 = 1
1+ρ4 with g̃2(ρ) → 0 as ρ → ∞. If ν < 3

2 , for appropriate

positive constants δ, A1, A2, and C , the function C‖h‖∗∗ḡ⊥ is supersolution to
(10.94) in {(y, τ )|τ > τ0, |y| > R0}. We deduce that

|g⊥
0 (y, τ )| ≤ C f (τ )R(τ )‖h‖∗∗

min(1, τ
|y|2 )

(1 + |y|)2 .

An argument similar to Lemma 10.9 gives

|φ⊥(ρ, τ )| ≤ C f (τ )R(τ )‖h‖∗∗

{
1

1+|y|2 |y| ≤ √
τ

τ
|y|4 |y| ≥ √

τ .

��
Proof of Proposition 8.1. By Proposition 10.1 there is c1 such that the solution φ

to (10.9) has the properties stated in Proposition 10.1. We recall that by (10.87) φ
satisfies

|φ(ρ, τ)| ≤ C
f (τ )R(τ )2

(log τ0)1−q

1

1 + ρ4 ‖h‖∗∗. (10.95)

We will construct a barrier to estimate φ for |y| ≥ R0, where R0 is a large
constant. We consider the equation (10.9) in R2 \ BR0(0) written in the form

∂τφ = �φ − 4∇�0∇φ + 2Uφ + B[φ] + h̄, (10.96)
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where

h̄ = −∇U∇ψ + h.

Since ψ = (−�)−1φ, from (10.95) we get

|∇ψ(ρ, τ)| ≤ C
f (τ )R(τ )2

(log τ0)1−q

1

1 + ρ3 ‖h‖∗∗.

This gives

|∇U · ∇ψ | ≤ C
f (τ )R(τ )2

(log τ0)1−q

1

1 + ρ8 ‖h‖∗∗. (10.97)

By (10.97) and the definition of the norm ‖h‖∗∗,

|h̄(y, τ )| ≤ C
f (τ )R(τ )2

(log τ0)1−q

1

(1 + ρ)6+σ
min

(
1,

τ ε/2

ρε

)
‖h‖∗∗,

where we have used that σ + ε < 2. Let g̃2 be defined by (10.60) and let

φ̄(ρ, τ ) = f (τ )R(τ )2 g̃2(ρ)χ0

( ρ

δ
√
τ

)
+ A1

f (τ )R(τ )2

τ 2

1

(1 + ρ/
√
τ)6+σ+ε

+ A2
f (τ )R(τ )2

τ 2
e− ρ2

4τ .

Then for suitable positive constants δ, A1, A2, and C , the function C(log τ0)
q−1

‖h‖∗∗φ̄ is a supersolution to (10.96) in {(y, τ )|τ > τ0, |y| > R0}. For this we need
ν < 2. Moreover |φ(ρ, τ)| ≤ Cφ̄(ρ, τ )(log τ0)

q−1‖h‖∗∗ at ρ = R0 by (10.95).
By the maximum principle

|φ(y, τ )| ≤ Cφ̄(y, τ )(log τ0)
q−1‖h‖∗∗, |y| > R0.

This gives the explicit bound

|φ(ρ, τ)| ≤ C
f (τ )R(τ )2

(log τ0)1−q

1

(1 + ρ4)
min

(
1,

τ 1/2

ρ

)2+σ+ε‖h‖∗∗

��
We include here some results that will be useful later. Let

Ẑ0 = L[Z̃0].

Lemma 10.11. The function Ẑ0 satisfies

|Ẑ0(ρ)| ≤ C
1

τ0(1 + ρ)4
, (10.98)

and is supported on ρ ≤ 2τ0.
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Proof. Let ψ = (−�)−1 Z̃0 and g = Z̃0
U − ψ . By (6.4) and using that Z0 = Uz0,

z0 defined in (9.2),

g = (Z0 − mZ0U )χ

U
− ψ = z0χ − mZ0χ − ψ,

whereχ(ρ) = χ0(
ρ√
τ0
). Note that Z̃0 hasmass zero and support in B2

√
τ0 . It follows

that ψ has also support contained in B2
√
τ0 and then g has support contained in

B2
√
τ0 . Therefore Ẑ0 = L[Z̃0] = ∇ · (U∇g) has also support contained in B2

√
τ0 .

To get an estimate for Ẑ0 let us write

ψ = (−�)−1(Z0 − mZ0U )χ) = (−�)−1Z0 + ψ1,

where

ψ1 = (−�)−1(Z0(χ − 1) − mZ0Uχ).

Since�z0 +Uz0 = 0 and limρ→∞ z0(ρ) = −2 we have (−�)−1Z0 = z0 + 2. So

ψ = z0 + 2 + ψ1

Hence

g = z0(χ − 1) − 2 − mZ0χ − ψ1

and so

Ẑ0 = L[Z̃0] = ∇ · (U∇g)

= ∇ · (U (∇z0(χ − 1) + z0∇χ − mZ0∇χ − ∇ψ1)). (10.99)

Using radial symmetry and mZ0 = O( 1
τ0
) we get

|∇ψ1(ρ)| ≤ C
1

τ0(1 + ρ)
.

From this and (10.99) we get (10.98). ��
Consider the initial value problem

{
∂τφ1 = L[φ1] + B[φ1] in R2 × (τ0,∞),

φ1(·, τ0) = Ẑ0 in R2.
(10.100)

Lemma 10.12. Let 0 < γ < 2. Let 1 < ν0 < 7
4

f0(τ ) = 1

τ ν0
.

and let R(τ ) be as in (10.11). Then the solution φ1 of (10.100) satisfies

|φ1(ρ, τ )| ≤ C
f0(τ )R(τ )2

τ0 f0(τ0)R(τ0)2
1

(1 + ρ4)
min

(
1,

τ 1/2

ρ

)2+γ

.
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Proof. A suitable modification in the proof of Proposition 10.1 gives the following
result. Consider

{
∂τφ = L[φ] + B[φ] in R2 × (τ0,∞),

φ(·, t0) = φ0 + c1 Z̃0 in R2,
(10.101)

Then there is C > 0 such that for any τ0 sufficiently large the following holds.
Suppose that φ0 is a radial function with zero mass in R

2, supported in B2
√
τ0(0),

and such that

|φ0(ρ)| ≤ M
1

1 + ρ4 .

Then there exists c1 such that the solution φ of (10.101) satisfies

|φ(ρ, τ)| ≤ CM
f0(τ )R(τ )2

f0(τ0)R(τ0)2
1

(1 + ρ4)
min

(
1,

τ 1/2

ρ

)2+γ

.

Moreover c1 is a linear function of φ0 and satisfies

|c1| ≤ CM
1

(log τ0)1−q
.

Let us apply this statement to φ0 = L[Z̃0], which is radial, with mass zero,
support in B2

√
τ0(0), and satisfies

|φ0(ρ)| ≤ 1

τ0

1

1 + ρ4 ,

by Lemma 10.11. Then there exists c1 such that the solution φ̃ to (10.101) with
φ0 = L[Z̃0] satisfies

|φ̃(ρ, τ )| ≤ C
f0(τ )R(τ )2

τ0 f0(τ0)R(τ0)2
1

(1 + ρ4)
min

(
1,

τ 1/2

ρ

)2+γ

. (10.102)

We claim that c1 = 0. To prove this, we multiply (10.101) by |y|2 and integrate
on R

2 × (τ0,∞). Let’s work with

B[φ] = ζ(τ )∇ · (yφ).
The case of the operator (10.3) is similar. Then we get

∂τ

∫

R2
φ̃(y, τ )|y|2dy = −2ζ(τ )

∫

R2
φ̃(y, τ )|y|2dy,

because
∫

R2 L[φ]|y|2dy = 0, see Remark 9.2. Integrating

∫

R2
φ̃(y, τ )|y|2dy = e

−2
∫ τ
τ0

ζ
∫

R2
φ̃(y, τ0)|y|2dy = c1e

−2
∫ τ
τ0

ζ
∫

R2
Z̃0(y)|y|2dy,
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because
∫

R2 L[Z̃0]|y|2dy = 0. Using the asymptotic expansion of ζ one gets

e
−2

∫ τ
τ0

ζ → ∞, as τ → ∞.

But the bound (10.102) implies that

lim
τ→∞

∫

R2
φ̃(y, τ )|y|2dy = 0.

This only can happen if c1 = 0.
We deduce thatφ1 defined in (10.100) coincides with φ̃, and then (10.102) holds

for φ1. ��

11. Linear Estimate with Second Moment (Radial)

We will prove in this section Proposition 8.2 in the radial case h(ρ, τ ). In this
case μ j ≡ 0.

Proposition 11.1. Let 0 < σ < 1, ε > 0 with σ + ε < 2 and 1 < ν < min(1 +
ε
2 , 3 − σ

2 ,
5
4 ). Let 0 < q < 1. Then there is C such that for τ0 large the following

holds. Suppose that h satisfies ‖h‖ν,m,6+σ,ε < ∞ and
∫

R2
h(y, τ )dy = 0,

∫

R2
h(y, τ )|y|2dy = 0.

Then the solution φ(y, τ ) of problem (8.9) satisfies

‖φ‖ν− 1
2 ,m+ q

2 ,4,2+σ+ε ≤ C‖h‖ν,m,6+σ,ε.

To describe the idea of the proof more easily let us consider for a moment the
equation (8.9) without B:

{
∂τφ = L[φ] + h(y, t) in R2 × (τ0,∞)

φ(·, τ0) = 0 in R2,
(11.1)

The idea is to formally apply a suitable left inverse L−1 of L to (11.1) (to be defined
later on in Lemma 11.1). If we call � = L−1φ, H = L−1h, then we would like to
solve

{
∂τ� = L[�] + H(y, t) in R2 × (τ0,∞)

�(·, τ0) = 0 in R2.
(11.2)

In order to get good properties of H , in this stepwe have already used that h satisfies
the secondmoment condition. At this point wewould like to apply Proposition 10.1,
which gives a decomposition

� = �⊥ + a(τ )

2
Z0.
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Note that�⊥ decays in time like 1/τν−1/2 and so φ = L� also decays in time like
1/τν−1/2, which is better than the estimate provided by Proposition 8.1. It turns
out that H decays in space like 1/ρ4+σ so we can’t apply directly Proposition 10.1
to (11.2). What we do is concentrate H by solving first a nicer problem. We write
� = �1 + �2 where �1 is asked to solve

{
∂τ�1 = L0[�1] + H(y, t) in R2 × (τ0,∞)

�1(·, τ0) = 0 in R2.

where

L0[φ] = ∇ ·
(
U∇

( φ

U

))
= �φ − ∇φ · ∇�0 +Uφ. (11.3)

Lemma 11.2 below deals with �1. Then the problem for �2 becomes

{
∂τ�2 = L0[�2] + L[�1] − L0[�1] in R2 × (τ0,∞)

�1(·, τ0) = 0 in R2.

It turns out that the right hand side in this equation has better spatial decay and we
can apply Proposition 10.1.

In the next lemmas we give some preliminary results, and the proof of Propo-
sition 11.1 is given at the end of this section.

We define the inverse of L that we use. For h : R2 → R define ‖h‖τ,6+σ,ε as
the smallest K such that

|h(y)| ≤ K

(1 + |y|)6+σ

{
1 |y| ≤ √

τ
τε/2

|y|ε |y| ≥ √
τ ,

which depends on τ , treated as parameter here, σ , and ε.

Lemma 11.1. Let σ, ε > 0. Let h = h(ρ) be radial and satisfy ‖h‖τ,6+σ,ε < ∞
and

∫

R2
hdy =

∫

R2
h|y|2dy = 0.

Then there exists H radially symmetric such that L[H ] = h in R2 and satisfies

‖H‖τ,4+σ,ε ≤ C‖h‖τ,6+σ,ε (11.4)

Moreover, H defines a linear operator of h and satisfies

∫

R2
Hdy = 0. (11.5)
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Proof. Write the equation L[H ] = h as

∇ · (U∇g) = h

where g = H
U − (−�)−1H . We choose g as

g(ρ) = −
∫ ∞

ρ

1

rU (r)

∫ r

0
h(s)sdsdr.

Using that
∫

R2 h = 0 we check that

|g(ρ)| ≤ C‖h‖τ,6+σ,ε

{
1

(1+ρ)σ
ρ ≤ √

τ

τε/2

ρσ+ε ρ ≥ √
τ

Now we solve Liouville’s equation

−�ψ −Uψ = Ug in R2, ψ(ρ) → 0 as ρ → ∞,

Since
∫

R2 h|y|2dy = 0 we check that
∫

R2
gZ0dy = 0.

Then we can use the variations of parameter formula, and get

|ψ(ρ)| ≤ C‖h‖τ,6+σ,ε

{
1

(1+ρ)2+σ ρ ≤ √
τ

τε/2

ρ2+σ+ε ρ ≥ √
τ

Then define H = U (g+ψ), which is the desired solution, and note that it satisfies
(11.4). Property (11.5) follows from H = −�ψ and the decay of ψ . ��

To take into account the operator B we define

�[φ] = y · ∇φ,

and compute

� ◦ L[�] − L ◦ �[�] = ∇ · (�Uy) − 2L[�] − ∇ · ((y · ∇U + 2U )∇(−�)−1�).

(11.6)

Indeed, write " = (−�)−1�. Then

L� = �� − ∇�0 · ∇� − ∇U · ∇" + 2U�. (11.7)

By direct computation

��� = ��� − 2�� (11.8)

�(∇�0 · ∇�) = ∇(��0) · ∇� + ∇�0 · ∇(��) − 2∇�0 · ∇� (11.9)

�(∇U · ∇") = ∇(�U ) · ∇" + ∇U · ∇(�") − 2∇U · ∇", (11.10)
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but −�" = �, and therefore

−�(�") + 2�" = ��.

Applying (−�)−1 gives

�" = (−�)−1(��) + 2".

Substituting this into (11.10) we obtain

�(∇U · ∇") = ∇(�U ) · ∇" + ∇U · ∇[(−�)−1(��) + 2"] − 2∇U · ∇"

= ∇(�U ) · ∇" + ∇U · ∇[(−�)−1(��)]. (11.11)

Combining (11.7), (11.8), (11.9), (11.11) we find that

�L� = L�� − 2L� + 4U� − 2∇U · ∇" − ∇(��0) · ∇�

− ∇(�U ) · ∇" + 2�(U )�.

But

−2∇U · ∇" − ∇(�U ) · ∇" = −∇Z0 · ∇"

= −∇ · (Z0∇") − Z0�,

so that

�L�=L��−2L�+4U�−∇(��0) · ∇�+2�(U )�−∇ · (Z0∇") − Z0�.

Using that

2�(U )� − Z0� = −2U� + �(U )�

we then obtain

�L� = L�� − 2L� + 2U� − ∇(��0) · ∇� + �(U )� − ∇ · (Z0∇")

Let’s consider the terms 2U� − ∇(��0) · ∇� + �(U )�. Noting that ∇(��0) =
∇(y · ∇� + 2) = ∇z0 and that Z0 = 2U + �(U ), we can write

2U� − ∇(��0) · ∇� + �(U )� = 2U� − ∇z0 · ∇� + �(U )�

= Z0� − ∇ · (∇z0�) + �z0�.

But �z0 + Z0 = 0, so

�L� = L�� − 2L� − ∇ · (∇z0�) − ∇ · (Z0∇").

We can again write ∇z0 = ∇(y · ∇�0) and using the radial symmetry of the
functions �0, z0 and the notation ρ = |y|

∇z0 = y

ρ
∂ρz0 = y

ρ
∂ρ(ρ∂ρ�0) = y��0 = −yU.
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Then

�L� = L�� − 2L� + ∇ · (yU�) − ∇ · (Z0∇").

This proves (11.6).
Formula (11.6) leads us to consider the following equation for � = L−1[φ]:
{

∂τ� = L[�] + B̃[�] + ζ1(τ )A[�] + H in R2 × (τ0,∞)

�(·, τ0) = 0
(11.12)

where

A[�] = L−1[∇ · (�Uy) − ∇ · (Z0∇(−�)−1�)],
Z0(y) = 2U (y) + y · ∇yU (y), and B̃ has the same form as B:

B̃[�] = ζ̃1(τ )y · ∇� + ζ̃2(τ )�

with ζ̃1(τ ), ζ̃2(τ ) satisfying

|ζ̃i (τ )| � C

τ log τ
for all τ > τ0. (11.13)

and ζ1 satisfies the same restriction, that is, (10.20).
The next lemma allows us to reduce to an equation like (11.12) but with a right

hand side with more spatial decay.

Lemma 11.2. Let σ > 0, ε > 0 and 1 < ν < min(1 + ε
2 , 3 − σ

2 ). Let H(y, τ ) be
radial in y and satisfy

∫

R2
H(·, τ ) = 0 (11.14)

and ‖H‖ν,m,4+σ,ε < ∞. Then there exists H1 and �1 such that
{

∂τ�1 = L[�1] + B̃[�1] + H − H1, in R2 × (τ0,∞)

�1(·, τ0) = 0 in R2.

Moreover �1 and H1 are linear operators of H and satisfy

|�1(ρ, τ )| ≤ C

τ ν(log τ)m
‖H‖ν,m,4+σ,ε

{
1

(1+ρ)2+σ ρ ≤ √
τ

τ 1+ε/2

(1+ρ)4+σ+ε ρ ≥ √
τ .

(11.15)

|H1(ρ, τ )| ≤ C

τ ν(log τ)m
‖H‖ν,m,4+σ,ε

{
1

(1+ρ)6+σ ρ ≤ √
τ

τε/2

(1+ρ)6+σ+ε ρ ≥ √
τ .

, (11.16)

∫

R2
�1dy = 0 (11.17)

∫

R2
H1(·, τ ) = 0. (11.18)
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Proof. Write the operator L as

L[φ] = L0[φ] − ∇ · (U∇(−�)−1φ)

where L0 is defined in (11.3). Consider the problem
{

∂τ�1 = L0[�1] + B̃[�1] + H, in R2 × (τ0,∞),

�1(·, τ0) = 0 in R2.

The idea is to formally apply L−1
0 to this equation. Similarly to the proof of

(11.6) we compute

� ◦ L0[�] − L0 ◦ �[�] = ∇ · (�Uy) − 2L0[�].
This leads us to consider the problem

{
∂τ �̃ = L0[�̃] + B1[�̃] + H̃ , in R2 × (τ0,∞),

�̃(·, τ0) = 0 in R2,
(11.19)

where H̃ is a radial function satisfying

L0[H̃ ] = H in R2

and

B1[�̃] = ζ̂1(τ )y · ∇�̃ + ζ̂2(τ )�̃

with

ζ̂1(τ ) = ζ̃1(τ ) = O
( 1

τ log τ

)
, ζ̂2(τ ) = ζ̃2(τ ) − 2ζ̃1(τ ) = O

( 1

τ log τ

)
,

(11.20)

by (11.13).
We claim that there is a choice of H̃ , which defines a linear operator of H , and

satisfies

|H̃ | + (1 + ρ)|∇ H̃ | ≤ C
1

τ ν(log τ)m
‖H‖ν,m,4+σ,ε

{
1

(1+ρ)2+σ ρ ≤ √
τ

τε/2

(1+ρ)2+σ+ε ρ ≥ √
τ .

(11.21)

Indeed, the equation L0[H̃ ] = H for radial functions has the form

∂ρ

(
ρU∂ρ

( H̃

U

))
= ρH.

We select the solution

H̃(ρ, τ ) = U (ρ)

∫ ρ

0

1

rU (r)

∫ r

0
H(s, τ )sdsdr.
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Using (11.14) we get (11.21).
Instead of (11.19) we consider
{

∂τ �̃1 = �R2�̃1 − ∇�0 · ∇�̃1 + B1[�̃1] + H̃ , in R2 × (τ0,∞),

�̃1(·, τ0) = 0 in R2,

(11.22)

We then have the following estimate for �̃1:

|�̃1| ≤ C

τ ν(log τ)m
‖H‖ν,m,4+σ,ε

{
1

(1+ρ)σ
ρ ≤ √

τ

τ 1+ε/2

(1+ρ)2+σ+ε ρ ≥ √
τ .

(11.23)

For the proof of this we construct a barrier. First we find a solution to

�R2φ1 − ∇�0 · ∇φ1 + 1

(1 + ρ)2+σ
= 0 in R2,

φ1(ρ) → 0 as ρ → ∞.

The equation may be integrated explicitly, noting that

�R2φ − ∇�0 · ∇φ = φρρ +
( 1

ρ
+ 4ρ

1 + ρ2

)
φρ

and that the constants are in the kernel of this operator. We then have

φ1(ρ) =
∫ ∞

ρ

1

r(1 + r2)2

∫ r

0

1

(1 + s)2+σ
s(1 + s2)2dsdr

and this implies

|φ1(ρ)| + (1 + ρ)|φ′
1(ρ)| ≤ C

(1 + ρ)σ

Let

χ(ρ, τ) = χ0(
ρ

δ
√
τ
),

where χ0 ∈ C∞(R), χ0(s) = 1 for s ≤ 1 and χ0(s) = 0 for s ≥ 2. Define
φ̃1 = 1

τν(log τ)m φ1χ . We have

(∂τ − �R2 + ∇�0 · ∇)φ̃1

≥ 1

τ ν(log τ)m(1 + ρ)2+σ
χ − C1

τ ν+σ/2+1(log τ)m
χ{δ√τ≤ρ≤2δ

√
τ },

for some C1 > 0, δ > 0 (assuming τ0 large). Now consider

φ2(ρ, τ ) = 1

τ ν+σ/2(log τ)m

1

(1 + ρ/
√
τ)2+σ+ε

,

φ3(ρ, τ ) = 1

τ ν+σ/2(log τ)m
e− ρ2

4τ .
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A computation, using (11.20), shows that

φ̄ = A1φ̃1 + A2φ2 + A3φ3

satisfies

(∂τ − �R2 + ∇�0 · ∇ + B1)φ̄ ≥ c

τ ν(log τ)m

{
1

(1+ρ)2+σ ρ ≤ √
τ

τε/2

(1+ρ)2+σ+ε ρ ≥ √
τ .

for some c > 0. This step needs ν − 1 < ε
2 and ν + σ

2 < 3. By comparison, we
find that �̃1 satisfies (11.23).

The solution �̃1 of (11.22) satisfies

∂τ �̃1 = L0[�̃1] −U�̃1 + B1[�̃1] + H̃

Applying L0 to this equation we find that

�1 = L0[�̃1]
satisfies

∂τ�1 = L[�1] + B̃[�1] + H − H1

with

H1 = −∇ · (U∇"1) + L0[U�̃1] + ζ̃1∇ · (�̃1Uy), "1 = (−�)−1�1.

(11.24)

Let us verify that �1 and H1 satisfy the conditions stated in (11.15), (11.16),
(11.18). Indeed, from standard parabolic estimates and (11.23) we have

|∇�̃1| ≤ C

τ ν(log τ)m
‖H‖ν,m,4+σ,ε

{
1

(1+ρ)1+σ ρ ≤ √
τ

τ 1+ε/2

(1+ρ)3+σ+ε ρ ≥ √
τ .

(11.25)

Differentiating in y j , j = 1, 2 the equation (11.22) and using standard parabolic
estimates, together with (11.21) and (11.25), we obtain

|D2�̃1| ≤ C

τ ν(log τ)m
‖H‖ν,m,4+σ,ε

{
1

(1+ρ)2+σ ρ ≤ √
τ

τ 1+ε/2

(1+ρ)4+σ+ε ρ ≥ √
τ .

(11.26)

The definition �1 = L0[�̃1] and the estimates (11.23), (11.25), (11.26) give
the estimate (11.15).

We compute

H1 = −∇U · ∇"1 +U�1 + ∇U · ∇�̃1 +U��̃1 + ζ̃1∇ · (�̃1Uy).

Note that
∫

R2 �1(·, τ ) = 0. So, by a direct radial computation of"1 = (−�)−1�1
and (11.15) we obtain

|∇"1(ρ, τ )| ≤ C

τ ν(log τ)m
‖H‖ν,m,4+σ,ε

{
1

(1+ρ)1+σ ρ ≤ √
τ

τ 1+ε/2

(1+ρ)3+σ+ε ρ ≥ √
τ .
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This estimate and the ones already obtained for �̃1 (11.25), (11.26) and for �1
(11.15) yields

|H1(ρ, τ )| ≤ C

τ ν(log τ)m
‖H‖ν,m,4+σ,ε

{
1

(1+ρ)6+σ ρ ≤ √
τ

τε/2

(1+ρ)6+σ+ε ρ ≥ √
τ .

,

which is the desired estimate (11.16).
Finally, the zero mass condition (11.18) follows from the form of H1 (11.24)

and its decay. The mass condition for �1 (11.17) follows from �1 = L0[�̃1] and
the decay of �̃1 (11.23) and (11.25). ��

Next wewould like to obtain a result similar to Proposition 10.1 for the problem
(11.12). In order to simplify this step, we will modify this equation by allowing a
parameter in the initial condition. This technical obstruction will be removed in the
proof of Proposition 11.1. Thus we consider

{
∂τ� = L[�] + B̃[�] + ζ1(τ )A[�] + H in R2 × (τ0,∞)

�(·, τ0) = c1 Z̃0,
(11.27)

where Z̃0 is defined in (6.4).
The next result allows us to say that if in equation (11.27) the right hand side has

fast decay, then we can decompose the solution similarly as in Proposition 10.1.
This result is an extension of that proposition to an equation that has the extra
operator A in it, which is treated as a perturbation.

Lemma 11.3. Let 0 < σ < 1, ε > 0, σ + ε < 2, 1 < ν < min(1 + ε
2 , 3 − σ

2 ,
3
2 ).

Let 0 < q < 1. Then there is C > 0 such that for τ0 sufficiently large and for H
radially symmetric with ‖H‖ν,m,4+σ,ε < ∞ and

∫

R2
H(y, τ )dy = 0 for all τ > τ0

the solution� to (11.27) can be decomposed as� = �0+ a(τ )
2 Z0 with the estimates

|�0(ρ, τ )| ≤ C‖H‖ν,m,4+σ,ε

1

τ ν− 1
2 (log τ)m+ q

2

min
( 1

(1 + |y|)2 ,
τ

|y|4
)

|a(τ )| ≤ C‖H‖ν,m,4+σ,ε

1

τ ν−1(log τ)m+q
.

Moreover �0 and a are linear operators of H.

Proof of Lemma 11.3. We will treat the operator A as a perturbation and therefore
consider

{
∂τ� = L[�] + B̃[�] + H in R2 × (τ0,∞)

�(·, τ0) = c1 Z̃0.
(11.28)
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Let�1, H1 be the functions constructed in Lemma 11.2. Setting� = �1+�2,
(11.28) is equivalent to the following equation for �2

{
∂τ�2 = L[�2] + B̃[�2] + H1, in R2 × (τ0,∞),

�2(·, τ0) = c1 Z̃0 in R2.
(11.29)

We now apply Proposition 10.1 to (11.29). We have that ‖H1‖ν,m,6+σ,ε < ∞
by (11.16), H1 is radial and satisfies the zero mass condition (11.18). By Propo-
sition 10.1 and Lemma 10.10 there exists c1 such that the solution �2 of (11.29)
satisfies

�2(y, τ ) = �⊥
2 (y, τ ) + a(τ )

2
Z0(y),

with the estimates

|�⊥
2 (y, τ )| ≤ C

‖H1‖ν,m,6+σ,ε

τ ν− 1
2 (log τ)m+ q

2

⎧
⎪⎨

⎪⎩

1

(1 + |y|)2 |y| ≤ √
τ

τ

|y|4 |y| ≥ √
τ ,

(11.30)

|a(τ )| ≤ C
‖H1‖ν,m,6+σ,ε

τ ν−1(log τ)m+q
. (11.31)

(We are ignoring the factor 1
(log τ0)1−q in the estimate of a(τ ).) We also know that

c1 is a linear function of H1 and satisfies

|c1| ≤ C
‖H1‖ν,m,6+σ,ε

τ ν−1
0 (log τ0)m+1

.

Combining (11.15) and (11.30) we conclude that�, the solution to (11.28), can
be decomposed as

� = �0 + a(τ )

2
Z0

where �0(y, τ ) = �1 + �⊥
2 is radial and satisfies

|�0(y, τ )| ≤ C
‖H‖ν,m,4+σ,ε

τ ν− 1
2 (log τ)m+ q

2

min
( 1

(1 + |y|)2 ,
τ

|y|4
)

and a(τ ) satisfies, combining (11.16) and (11.31),

|a(τ )| ≤ C
1

τ ν−1(log τ)m+q
‖H‖ν,m,4+σ,ε.

We summarize the previous finding as follows. Given H radial satisfying∫

R2 H(·, τ ) = 0 for τ > τ0 and ‖H‖ν,m,4+σ,ε < ∞, let us denote T0(H) =
�0 = �1 + �⊥

2 and Ta(H) = a(τ ) so that the solution � of (11.28), is � =
�0 + a(τ )

2 Z0 = T0[H ]+ 1
2Ta[H ]Z0. Then T0, Ta are linear and have the estimates

‖T0[H ]‖0 ≤ C‖H‖ν,m,4+σ,ε (11.32)
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‖Ta[H ]‖a ≤ C‖H‖ν,m,4+σ,ε, (11.33)

where

‖�0‖0 = sup
τ>τ0, y∈R2

τ ν− 1
2 (log τ)m+ q

2
1

min
(

1
(1+|y|)2 ,

τ
|y|4

) |�0(y, τ )|

‖a‖a = sup
τ>τ0

τ ν−1(log τ)m+q |a(τ )|.

Moreover c1 is a linear function of H and satisfies

|c1| ≤ C
‖H‖ν,m,4+σ,ε

τ ν−1
0 (log τ0)m+1

.

We will apply these estimates to treat problem (11.27), which can be written as
the fixed point problem

�0 = T0[H + ζ1A[�0 + aZ0]]
a = Ta[H + ζ1A[�0 + aZ0]]

By (11.32) and (11.33)

‖T0[ζ1A[�0+aZ0]]‖0+‖Ta[ζ1A[�0+aZ0]]‖a ≤ C‖ζ1A[�0+aZ0]‖ν,m,4+σ,ε.

We claim that

‖ζ1A[�0]‖ν,m,4+σ,ε ≤ Cτ−ϑ
0 ‖�0‖0, (11.34)

for some ϑ > 0, where C is independent of τ0, and

‖ζ1A[aZ0]‖ν,m,4+σ,ε ≤ C

(log τ0)1+q
‖a‖a . (11.35)

Assume for the moment that (11.34), (11.35) hold. The we see that

‖�0‖0 + ‖a‖a ≤ C

(log τ0)1+q
(‖�0‖0 + ‖a‖a) + C‖H‖ν,m,4+σ,ε.

For τ0 large this gives

‖�0‖0 + ‖a‖a ≤ C‖H‖ν,m,4+σ,ε,

which is the desired result.
For the proof of estimates (11.34), (11.35) we will need the following property.

If � satisfies |�(y)| ≤ 1
(1+|y|)2+κ for some κ > 0 and

∫

R2 �dy = 0, then

∫

R2
∇ · [�Uy − Z0∇"]|y|2dy = 0, " = (−�)−1�. (11.36)

Indeed,
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∫

R2
∇ · (�Uy)|y|2dy = −2

∫

R2
�U |y|2dy = 2

∫

R2
�"U |y|2dy

= −2
∫

R2
∇" · ∇(U |y|2)dy

= −2
∫

R2
∇" · yZ0dy

and
∫

R2
∇ · (Z0∇")|y|2dy = −2

∫

R2
Z0∇" · ydy.

To prove (11.34), let us write "0 = (−�)−1�0. Then

A[�0] = L−1[∇ · (�0Uy − Z0∇"0)].
Using the definition of L−1 given in Lemma 11.1 we have that

L−1[∇ · (�Uy) − ∇ · (Z0∇(−�)−1�)] = Ug +Uψ

where

g(ρ, τ ) = −
∫ ∞

ρ

[
�0(s, τ )s − Z0(s)

U (s)
∂ρ"0(s, τ )

]
ds, (11.37)

and ψ is the decaying solution to the Liouville equation

−�ψ −Uψ = Ug.

From the definition "0 = (−�)−1�0 and using that
∫

R2 �0dy = 0 we have

∂ρ"0(ρ, τ ) = 1

ρ

∫ ∞

ρ

�0(s, τ )sds

which gives the estimate

|∂ρ"0(ρ, τ )| ≤ C‖�0‖0 1

τ ν− 1
2 (log τ)m+ q

2

⎧
⎨

⎩

log( 2
√
τ

1+ρ
)

1+ρ
ρ ≤ √

τ ,
τ
ρ3 ρ ≥ √

τ .

Then formula (11.37) gives

|g(ρ, τ )| ≤ C‖�0‖0 1

τ ν− 1
2 (log τ)m+ q

2

{
log2( 2

√
τ

1+ρ
) ρ ≤ √

τ ,
τ
ρ2 ρ ≥ √

τ .

≤ C‖�0‖0 1

τ ν− 1
2 (log τ)m+ q

2 −2
min

(
1,

τ

ρ2

)
.

We note that by (11.36) we have
∫

R2 Ugz0dy = 0. Then, ψ has the estimate

|ψ(ρ, τ)| ≤ C‖�0‖0 1

τ ν− 1
2 (log τ)m+ q

2 −2

1

(1 + ρ)2
min

(
1,

τ

ρ2

)
.
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It follows that A[�0] = Ug +Uψ satisfies

|A[�0](ρ, τ )| ≤ C‖�0‖0 1

τ ν− 1
2 (log τ)m+ q

2 −2

1

(1 + ρ)4
min

(
1,

τ

ρ2

)
.

From this inequality we obtain (11.34).
The proof of (11.35) is similar. This time A[aZ0] = Ug1 +Uψ1 where

g1(ρ, τ ) = −a(τ )
∫ ∞

ρ

[
Z0(s)s − Z0(s)

U (s)
z′0(s)

]
ds,

and ψ1 is the radial decaying solution to

−�ψ1 −Uψ1 = Ug1.

We then obtain that

|A[aZ0](ρ, τ )| ≤ C‖a‖a 1

τ ν−1(log τ)m+q

1

(1 + ρ)6
.

From this estimate we deduce (11.35). ��

Before proving Proposition 11.1 as stated, we obtain a version of it for the
problem

{
∂τφ = L[φ] + B[φ] + h(y, τ ) in R2 × (τ0,∞),

φ(·, τ0) = c1 Ẑ0 in R2,
(11.38)

where

Ẑ0 = L[Z̃0].

Lemma 11.4. Let 0 < σ < 1, ε > 0, σ +ε < 2 and 1 < ν < min(1+ ε
2 , 3− σ

2 ,
3
2 ).

Let 0 < q < 1. Then there is C such that for τ0 large the following holds. Suppose
that h is radially symmetric, satisfies ‖h‖ν,m,6+σ,ε < ∞ and

∫

R2
h(y, τ )dy = 0,

∫

R2
h(y, τ )|y|2dy = 0, τ > τ0.

Then there exist c1 ∈ R and a solution φ(y, τ ) of problem (11.38) that define linear
operators of h and satisfy

‖φ‖
ν− 1

2 ,m+ q−1
2 ,4,2+σ+ε

≤ C‖h‖ν,m,6+σ,ε.

|c1| ≤ C
1

τ ν−1
0 (log τ0)m+1

‖h‖ν,m,6+σ,ε.
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Proof. Consider equation (11.27),whereH is the function constructed inLemma11.1.
By Lemma 11.3, there is c1 such that the solution� of (11.27) can be decomposed
as� = �0+ a(τ )

2 Z0, where�0 and a satisfy the estimates stated in that proposition.
In combination with (11.4) we find

|�0(ρ, τ )| ≤ C‖h‖ν,m,6+σ,ε

1

τ ν− 1
2 (log τ)m+ q

2

min
( 1

(1 + |y|)2 ,
τ

|y|4
)

|a(τ )| ≤ C‖h‖ν,m,6+σ,ε

1

τ ν−1(log τ)m+q
. (11.39)

|c1| ≤ C
1

τ ν−1
0 (log τ0)m+1

‖h‖ν,m,6+σ,ε. (11.40)

Moreover �0, a, c1 are linear operators of H .
From standard parabolic estimates and (11.39) we obtain

|∇�0(ρ, τ )| ≤ C‖h‖ν,m,6+σ,ε

1

τ ν− 1
2 (log τ)m+ q

2

min
( 1

(1 + |y|)3 ,
τ

|y|5
)
. (11.41)

We consider the equation for�0 = �− a(τ )
2 Z0, obtained from (11.27), and differ-

entiate with respect to y j , j = 1, 2. Using standard parabolic estimates, together
with (11.39), (11.41), and the bound for a′(τ ) in (10.92), we obtain

|D2�0(ρ, τ )| ≤ C‖h‖ν,m,6+σ,ε

1

τ ν− 1
2 (log τ)m+ q

2

min
( 1

(1 + |y|)4 ,
τ

|y|6
)
.

(11.42)

Let us define φ = L[�]. Then φ satisfies (11.38) because L[Z0] = 0 and
thanks to (11.39), (11.41), (11.42) we find

|φ(ρ, τ)| ≤ C‖h‖ν,m,6+σ,ε

1

τ ν− 1
2 (log τ)m+ q

2

min
( 1

(1 + |y|)4 ,
τ

|y|6
)
. (11.43)

In the rest of the proof we show that

|φ(ρ, τ)| ≤ C‖h‖ν,m,6+σ,ε

1

τ ν− 1
2 (log τ)m+ q

2

1

(1 + ρ)4

{
1 ρ ≤ √

τ
τ 1+σ/2+ε/2

ρ2+σ+ε ρ ≥ √
τ .

For this we consider the equation (11.38) written in the form

∂τφ = �φ − ∇�0∇φ + 2Uφ + B[φ] + h̄, (11.44)

where

h̄ = −∇U∇ψ + h.

Using (11.43) and the radial formula for ψ = (−�)−1φ, we get

|∇ψ(y, τ )| ≤ C‖h‖ν,m,6+σ,ε

1

τ ν− 1
2 (log τ)m+ q

2

{
1

(1+ρ)3
ρ ≤ √

τ

τ

ρ5 ρ ≥ √
τ .
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This estimate and the definition of the norm ‖h‖ν,m,6+σ,ε, give

|h̄(y, τ )| ≤ C
1

τ ν− 1
2 (log τ)m+ q

2

‖h‖ν,m,6+σ,ε

⎧
⎨

⎩

1
(1+|y|)6+σ |y| ≤ √

τ

1
τ 3+σ/2(

|y|√
τ
)6+σ+ε

|y| ≥ √
τ .

We now construct a barrier very similar to the proof of Proposition 8.1

φ̄(ρ, τ ) = A1
1

τ ν− 1
2 (log τ)m+ q

2

g̃2(ρ)χ0

( ρ√
τ

)

+ A2
1

τ ν+ 3
2 (log τ)m+ q

2

1

(1 + ρ/
√
τ)6+σ+ε

+ A3
1

τ ν+ 3
2 (log τ)m+ q

2

e− ρ2

4τ ,

where g̃2 is the function (10.60).We consider (11.44) in { (y, τ ) | τ > τ0, |y| > R0 }
where R0 > 0 is a large constant. For suitable constants A1, A2, A3,C the function
C‖h‖ν,m,6+σ,εφ̄ is a supersolution. This computation requires ν < 3

2 .
Moreover φ(y, τ ) ≤ C‖h‖ν,m,6+σ,εφ̄(y, τ ) at |y| = R0. The initial conditions

also compare well. Indeed, by Lemma 10.11 and (11.40)

|φ(ρ, τ0)| = c1|Ẑ0(ρ)| ≤ C
1

τ ν−1
0 (log τ0)m+1

‖h‖ν,m,6+σ,ε

1

τ0

1

1 + ρ6 ,

and this is supported on ρ ≤ 2
√
τ 0, so

|φ(ρ, τ0)| ≤ C‖h‖ν,m,6+σ,εφ̄(y, τ ).

By the maximum principle

|φ(y, τ )| ≤ Cφ̄(y, τ )‖h‖ν,m,6+σ,ε, |y| > R0.

This finishes the proof. ��
Proof of Proposition 11.1. Let φ̂, c1 be the solution to (11.38) constructed in
Lemma 11.4. Let φ1 be the solution to (10.100). By Lemma 10.12 φ1 satisfies

|φ1(ρ, τ )| ≤ C
τ
ν0−1
0 R(τ )2

τ ν0 R(τ0)2
1

(1 + ρ4)
min

(
1,

τ 1/2

ρ

)2+σ+ε

, (11.45)

where 1 < ν0 < 7
4 . Then the solution φ to (8.9) that we construct is given by

φ = φ̂ − c1φ1.

To get the desired estimate on φ we need to estimate |c1φ1|. Let f be given by
(10.12). By (11.40) and (11.45)
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|c1φ1(ρ, τ )| ≤ C
1

τ ν−1
0 (log τ0)m+1

τ
ν0−1
0 R(τ )2

τ ν0 R(τ0)2
1

(1 + ρ4)
min

(
1,

τ 1/2

ρ

)2+σ+ε‖h‖ν,m,6+σ,ε

≤ C
1

log τ0R(τ0)
f (τ )R(τ )

1

(1 + ρ4)
min

(
1,

τ 1/2

ρ

)2+σ+ε‖h‖ν,m,6+σ,ε

≤ C f (τ )R(τ )
1

(1 + ρ4)
min

(
1,

τ 1/2

ρ

)2+σ+ε‖h‖ν,m,6+σ,ε

provided 1
2 + ν − ν0 < 0. However ν0 can be taken close to 7

4 , so we obtain the
result by assuming ν < 5

4 in addition to the other constraints needed in Lemma 11.4,
namely 1 < ν < min(1 + ε

2 , 3 − σ
2 ,

3
2 ). ��

12. Linear Estimate with Second Moment (General)

A convenient property of problem (8.3) is that it can be split into Fourier modes.
If we decompose

h(y, τ ) = h0(|y|, τ ) + h1(y, τ ), h0(ρ, τ ) = 1

2π

∫ 2π

0
h(ρeiθ , τ )dθ (12.1)

φ(y, τ ) = φ0(|y|, τ ) + φ1(y, τ ), φ0(ρ, τ ) = 1

2π

∫ 2π

0
φ(ρeiθ , τ )dθ, (12.2)

then φ solves (8.3) if and only if φi solves (8.3) where h is replaced with hi , for
i = 0, 1. If h = h1 we say that h has no radial mode.

For the proof Proposition 8.2 in the general case we will consider in a first step
the equation (8.3) but without the operator B, namely,

{
∂τφ = L[φ] + h, in R2 × (τ0,∞),

φ(·, τ0) = 0 in R2,
(12.3)

for functions with no radial mode, as explained at the beginning of Sect. 11. Later
on, we will consider equation (8.3) for functions with no radial mode, where we
will treat the operator B[φ] as a perturbation term that can be assimilated to the
right hand side.

The main step in the proof is the following estimate, valid when the functions
involved have no radial mode:

Proposition 12.1. Let 0 < σ < 1, 0 < ε < 2, 0 < ν < min(1+ ε
2 ,

3
2 − σ

2 ), m ∈ R.
Then there is a C > 0 such that for any τ0 sufficiently large the following holds.
Suppose that h(y, τ ) has no radial mode and satisfies ‖h‖ν,m,5+σ,ε < ∞,

∫

R2
h(y, τ )y j dy = 0 for all τ > τ0, j = 1, 2. (12.4)

Then the solution φ(y, τ ) of (12.3) satisfies

|φ(y, τ )| ≤ C
‖h‖ν,m,5+σ,ε

τ ν(log τ)m

⎧
⎨

⎩

1
(1+|y|)3+σ , |y| ≤ √

τ .

τ
1+ ε

2

|y|5+σ+ε , |y| ≥ √
τ .

(12.5)
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Proof. Since h(y, τ ) has no radial mode, all functions involved in the proof have
also this property. We use the notation from §9.2, particular g = φ

U − (−�)−1φ,
g⊥ = g − a with a(τ ) ∈ R such that

∫

R2
g⊥(y, τ )Udy = 0.

But
∫

R2
g(y, τ )Udy = 0

because g has no radial mode, so that a(τ ) = 0, g⊥ = g, φ⊥ = φ. Then the proof
proceeds as the proof of Proposition 10.1 with some simplifications, since there is
no need to estimate a.

We write (12.3) as

∂τφ = ∇ · (U∇g⊥) + h, in R2 × (τ0,∞).

We multiply this equation by g and integrate in R2.
Let R > 0 be a large fixed constant and let

f (τ ) = 1

τ ν(log τ)m
.

Let T2 > τ0 and let

‖ϕ‖∞,T2 = sup
τ∈[τ0,T2]

|ϕ(τ)|.

The following estimates are valid for τ ∈ [τ0, T2]. As in the proof of Proposi-
tion 10.1 we get

∫

R2
g2U ≤ C f (τ )2R2

(
‖h‖2ν,m,5+σ,ε +

∥
∥
∥

ω

f R

∥
∥
∥
2

∞,T2

)
, (12.6)

where

ω(τ) =
(∫

R2\BR

g(τ )2U
)1/2

.

Similarly as in Lemma 10.8, from (12.6) we get

|Ug(y, τ )| ≤ C f (τ )R
(
‖h‖ν,m,5+σ,ε +

∥
∥
∥

ω

f R

∥
∥
∥∞,T2

) 1

(1 + |y|)3+σ
. (12.7)

The proof is presented below. We use this to estimate

ω(τ) =
(∫

R2\BR

g2U
)1/2 ≤ C f (τ )R1−σ

(
‖h‖ν,m,5+σ,ε +

∥
∥
∥

ω

f R

∥
∥
∥∞,T2

)
,

which implies

ω(τ)

f (τ )R
≤ CR−σ ‖h‖ν,m,5+σ,ε + CR−σ

∥
∥
∥

ω

f R

∥
∥
∥∞,T2

.
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We deduce that
∥
∥
∥

ω

f R

∥
∥
∥∞,T2

≤ CR−σ ‖h‖ν,m,5+σ,ε,

by choosing R as a large constant.
Now we let T2 → ∞ and find

ω(τ) ≤ C f (τ )R‖h‖2ν,m,5+σ,ε, τ > τ0. (12.8)

The inequalities that follow hold for τ > τ0.
Combining (12.8) with (12.6) we obtain

∫

R2
g2U ≤ C f (τ )2R2‖h‖2ν,m,5+σ,ε, τ > τ0.

and using (12.7) we also get

|Ug(y, τ )| ≤ C f (τ )R‖h‖ν,m,5+σ,ε

1

(1 + |y|)3+σ
.

Let ψ = (−�)−1φ so that φ = Ug + Uψ . Using Lemma 9.1 and the previous
estimate we obtain

|ψ(y, τ )| + (1 + |y|)|∇ψ(y, τ )| ≤ C
R

τ ν(log τ)m

1

(1 + |y|)1+σ
‖h‖ν,m,5+σ,ε.

(12.9)

We consider the equation (12.3) in R2\BR(0) written in the form

∂τφ = �φ − ∇�0∇φ + 2Uφ + h̄,

where

h̄ = −∇U∇ψ + h.

By (12.9) and the definition of the norm ‖h‖ν,m,5+σ,ε,

|h̄(y, τ )| ≤ C‖h‖ν,m,5+σ,ε

1

τ ν(log τ)m

1

(1 + |y|)5+σ

{
1 |y| ≤ √

τ
τε/2

|y|ε |y| ≥ √
τ .

Here we are using ε < 2. Using barriers as in the proof of Lemma 10.8 we get

|φ(y, τ )| ≤ C‖h‖ν,m,5+σ,ε

1

τ ν(log τ)m

1

(1 + |y|)3+σ

{
1 |y| ≤ √

τ
τ 1+ε/2

|y|2+ε |y| ≥ √
τ .

(For this we need ν < 1 + ε
2 , ν + σ

2 < 3
2 .) This proves (12.5). ��
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Proof of (12.7). We define

g0 = Ug,

which satisfies the equation

∂τ g0 = �g0 − ∇g0 · ∇�0 + 2Ug0 + h̃ (12.10)

where

h̃ = Uv + h −U (−�)−1h

and

v := (−�)−1(∇ · (g0∇�0)).

As in the proof of Lemma 10.7 we obtain

|g0(y, τ )| ≤ C
R

τ ν(log τ)m(1 + |y|)2 K , (12.11)

where

K = ‖h‖ν,m,5+σ,ε +
∥
∥
∥

ω

f R

∥
∥
∥∞,T2

.

Applying parabolic estimates to (12.10) and a scaling argument we find

|∇g0(y, τ )| ≤ C
RK

τ ν(log τ)m(1 + |y|)3 . (12.12)

Using (12.11), (12.12) and g0 = gU we get that

|∇U · ∇g + g�U | ≤ C
RK

τ ν(log τ)m(1 + |y|)4 .

We observe that for i = 1, 2
∫

R2
∇(U∇g)yi dy = 0. (12.13)

Indeed,
∫

R2
∇(U∇g)yi dy = −

∫

R2
U∇gei =

∫

R2
g∇Uei .

But from g = φ
U − ψ , ψ = (−�)−1φ we have

−�ψ −Uψ = Ug = g0.

Multiplying this equation by zi = ∇�0ei defined in (9.2) and integrating we get
∫

R2
gU∇�0ei = 0,
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which is the desired claim (12.13). We note that
{

−�v = ∇U · ∇g + g�U = ∇ · (g∇U ) in R2.

v(y) → 0 as |y| → ∞.

Now we can apply Remark 9.1 and deduce that for any ϑ ∈ (0, 1) there is C such
that

|v(y, τ )| ≤ C
RK

τ ν(log τ)m(1 + |y|)2−ϑ
. (12.14)

We next estimate h̃. From Remark 9.1 and the assumptions on h, in particular
(12.4), we have

|((−�)−1h)(y, τ )| ≤ C
‖h‖

τ ν(log τ)m(1 + |y|)2−ϑ
, (12.15)

for any ϑ ∈ (0, 1). Also from (12.11) we have

|Ug0(y, τ )| ≤ C
R

τ ν(log τ)m(1 + |y|)6 K .

Therefore, from (12.15), (12.11), (12.14) we find that, for any ϑ > 0,

|h̃(y, τ )| ≤ C
RK

τ ν(log τ)m

[ 1

(1 + |y|)5+σ
min

(
1,

τ ε/2

ρε

)
+ 1

(1 + |y|)6−ϑ

]
.

We now use a barrier as in the proof of Lemma 10.8, in a domain of the form
(R2\BR0)×(τ0,∞)where R0 is a large constant.We let g̃(y) be the radial decaying
solution to −�6g̃ = 1

(1+|y|)5+σ and

ḡ(y, τ ) = 1

τ ν(log τ)m
g̃(y)χ0

( y

δ
√
τ

)
+ C1

1

τ ν+ 3
2+ σ

2 (log τ)m

[ 1

(1 + |y|/√τ)μ
+ C2e

− |y|2
4τ

]

where

μ = min(5 + σ + ε, 6 − ϑ).

We assume that ν < 3
2 − σ

2 − ϑ
2 , ν < 1 + ε

2 , ν + σ
2 < 3

2 , and σ + ϑ < 1. Since
ϑ > 0 is arbitrary we only need ν < 3

2 − σ
2 , ν < 1 + ε

2 and σ < 1. Then, for an
appropriate choice of C1, C2, the function RK ḡ(y, τ ) is a supersolution. By the
maximum principle

|g0(y, τ )| ≤ CRK ḡ(y, τ ).

This proves the desired estimate (12.7). ��
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Next we consider equation (8.3), which we recall,

⎧
⎪⎪⎨

⎪⎪⎩

∂τφ = L[φ] + B[φ] + h +
2∑

j=1

μ j (τ )W1, j in R2 × (τ0,∞)

φ(·, τ0) = 0 in R2.

(12.16)

For φ with no radial mode we can write

B[φ] = (ζ1(t)φ + ζ2(t)y · ∇φ)χ0

( λy

5
√
t

)
.

Corollary 12.1. Let 0 < σ < 1, 0 < ε < 2, 1 < ν < min(1 + ε
2 ,

3
2 − σ

2 ), m ∈ R.
Then there is a C > 0 such that for any τ0 sufficiently large the following holds.
Suppose that h(y, τ ) has no radial mode and satisfies ‖h‖ν,m,5+σ,ε < ∞. Then
there is a solution φ(y, τ ), μ j of (12.16) that is a linear operator of h and satisfies

‖φ‖ν,m,3+σ,2+ε ≤ C‖h‖ν,m,5+σ,ε (12.17)

μ j (τ ) = −
∫

R2
h(y, τ )y j dy + μ̃ j [h](τ )

|μ̃ j [h]| ≤ C

τ ν+1+σ (log τ)m+1 ‖h‖ν,m,5+σ,ε. (12.18)

Proof. Using Proposition 12.1, there is a linear operator T so that given h with
‖h‖ν,m,5+σ,ε < ∞, with no radial mode, and satisfying the condition (12.4) as-
sociates the solution φ of (12.3). Then the solution φ of (12.16) can be written
as

φ = T
[
B[φ] + h +

2∑

j=1

μ j (τ )W1, j

]
,

where μ j is chosen so that
∫

R2
(B[φ] + h)y jdy + μ j (τ ) = 0, ∀τ > τ0. (12.19)

The estimate (12.5) implies

‖φ‖ν,m,3+σ,2+ε ≤ ‖B[φ] + h‖ν,m,5+σ,ε + sup
τ>τ0

τ ν(log τ)m
2∑

j=1

|μ j (τ )|.

Using standard parabolic estimates we also get

‖|y|∇φ‖ν,m,3+σ,2+ε ≤ ‖B[φ] + h‖ν,m,5+σ,ε + sup
τ>τ0

τ ν(log τ)m
2∑

j=1

|μ j (τ )|.
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To estimate μ j note that multiplying (12.16) by y j and integrating we get that
∫

R2
φy j dy = 0, ∀τ > τ0.

Therefore
∣
∣
∣
∣

∫

R2
B(φ)dy

∣
∣
∣
∣ ≤ C

τ ν+1+σ (log τ)m+1 ‖φ‖ν,m,3+σ,2+ε,

and from the definition (12.19)

sup
τ>τ0

τ ν(log τ)m
2∑

j=1

|μ j (τ )| ≤ C‖h‖ν,m,5+σ,ε + C

τ 1+σ
0 log τ0

‖φ‖ν,m,3+σ,2+ε.

We also have that

‖B[φ]‖ν,m,5+σ,ε ≤ C

log τ0
‖|φ| + |y||∇φ|‖ν,m,3+σ,2+ε.

Then for τ0 large we deduce the estimate (12.17).
Finally, from (12.19) we get (12.18) with μ̃ j a linear operator of h satisfying

|μ̃ j [h]| =
∣
∣
∣
∣

∫

R2
B(φ)dy

∣
∣
∣
∣ ≤ C

τ ν+1+σ (log τ)m+1 ‖φ‖ν,m,3+σ,2+ε

≤ C

τ ν+1+σ (log τ)m+1 ‖h‖ν,m,5+σ,ε.

��
We are now in a position to prove Proposition 8.2 in the general case.

Proof of Proposition 8.2. We decompose h = h0 + h1 and φ = φ0 + φ1 as in
(12.1), (12.2). We apply Proposition 11.1 to get

‖φ0‖ν− 1
2 ,m+ q

2 ,4,2+σ+ε ≤ C‖h‖ν,m,6+σ,ε.

To estimate φ1 we use Corollary 12.1. First we select 0 < ϑ < 1
2 . Then note that

‖h1‖ν,m,6−ϑ,σ+ε+ϑ ≤ C‖h‖ν,m,6+σ,ε.

Then Corollary 12.1 gives a solution φ1 of (12.16) such that

‖φ1‖ν,m,3+σ̄ ,2+ε̄ ≤ C‖h1‖ν,m,5+σ̄ ,ε̄ .

We take σ̄ = 1 − ϑ and ε̄ = ε + σ + ϑ and get

‖φ1‖ν,m,4−ϑ,2+σ+ε+ϑ ≤ C‖h1‖ν,m,6−ϑ,σ+ε+ϑ

and

μ j (τ ) = −
∫

R2
h(y, τ )y j dy + μ̃ j [h](τ )
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because h0 is radial, with

|μ̃ j [h]| ≤ C

τ ν+2−ϑ(log τ)m+1 ‖h1‖ν,m,6−ϑ,σ+ε+ϑ .

But

‖φ1‖ν− 1
2 ,m+ q

2 ,4,2+σ+ε ≤ ‖φ1‖ν,m+ q
2 ,4−ϑ,2+σ+ε+ϑ

and hence

‖φ1‖ν− 1
2 ,m+ q

2 ,4,2+σ+ε ≤ C‖h‖ν,m,6+σ,ε.

To apply Corollary 12.1 we need 1 < ν < 1 + ε
2 and ν < 1 + ϑ

2 . Given 1 < ν <

min(1 + ε
2 , 3 − σ

2 ,
5
4 ) we can select ϑ ∈ (0, 1

2 ) such that ν < 1 + ϑ
2 and then

proceed. This concludes the proof. ��

13. The Outer Problem

We consider the linear outer problem
{

∂tφ
o = Lo[φo] + g(x, t), in R2 × (t0,∞)

φo(·, t0) = 0, in R2,
(13.1)

where

Lo[ϕ] := �xϕ − ∇x

[
�0

( x − ξ(t)

λ(t)

)]
· ∇xϕ = �xϕ + 4

(x − ξ)

|x − ξ |2 + λ2
· ∇xϕ.

For g : R2 × (t0,∞) → R we consider the norm ‖g‖∗∗,o defined as the least
K such that for all (x, t) ∈ R

2 × (t0,∞)

|g(x, t)| � K
1

(t − t0 + A)a(log t)β
1

1 + |ζ |b , ζ = x − ξ(t)√
t − t0 + A

,

where A > 0 is a constant.
We also define the norm ‖φ‖∗,o as the least K such that

|φo(x, t)| + (λ + |x − ξ |)|∇xφ
o(x, t)|

≤ K
1

(t − t0 + A)a−1(log t)β
1

1 + |ζ |b , ζ = x − ξ√
t − t0 + A

for all (x, t) ∈ R
2 × (t0,∞).

We assume that the parameters a, b satisfy the constraints

1 < a < 4, 2 < b < 6, a < 1 + b

2
. (13.2)

There is no restriction on β.
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We recall from (4.1) that we are assuming that

|λ̇(t)| ≤ C

t (log t)3/2
, t > t0, (13.3)

and

|ξ̇ (t)| ≤ C

t
3
2+σ

, t > t0, (13.4)

where 0 < σ < 1
2 .

Proposition 13.1. Assume that a, b satisfy (13.2), A
λ(t0)2

is sufficiently large, and
λ, ξ satisfy (13.3), (13.4). Then there is a constant C so that for t0 sufficiently large
and for ‖g‖∗∗,o < ∞ there exists a solution φo = T o

p [g] of (13.1), which defines
a linear operator of g and satisfies

‖φo‖∗,o ≤ C‖g‖∗∗,o.

Proposition 6.3 in Sect. 6 follows from Proposition 13.1 with A = t0.

Lemma 13.1. Let 2 < β < 6 and h(r) satisfy

|h(r)| ≤ λ−2

(r/λ + 1)β
= λβ−2

(r + λ)β
, (13.5)

where λ > 0. Then there is a unique bounded radial function ϕ(r) satisfying

Lo[ϕ] + h = 0 in R2.

Moreover ϕ satisfies

|ϕ(r)| + (λ + r)|∂rϕ(r)| ≤ C

(1 + r/λ)β−2 = C
λβ−2

(r + λ)β−2 (13.6)

Proof. The equation for ϕ is given by

∂rrϕ(r) +
(1

r
+ 4r

λ2 + r2

)
∂rϕ(r) + h(r) = 0, r > 0.

We change variables ρ = r
λ
and let ϕ(r) = ϕ̄( r

λ
). Then we need to solve

∂ρρϕ̄ +
( 1

ρ
+ 4ρ

1 + ρ2

)
∂ρϕ̄ + h̄(ρ) = 0, ρ > 0,

where

h̄(ρ) = λ2h(λρ).

By (13.5)

|h̄(ρ)| ≤ 1

(1 + ρ)β
.
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The bounded solution is given by

ϕ̄(ρ) =
∫ ∞

ρ

1

v(1 + v2)2

∫ v

0
h̄(s)s(1 + s2)2 ds dv.

By direct computation we get

|ϕ̄(ρ)| + (1 + ρ)|∂ρϕ̄(ρ)| ≤ C

(1 + ρ)β−2 ,

and this implies (13.6). ��
Proof of Proposition 13.1. To find a pointwise estimate for the solution φo we
construct a barrier.

Using polar coordinates x − ξ(t) = reiθ , Lo can be written as:

Lo[ϕ] = ∂rrϕ +
(1

r
+ 4r

λ2 + r2

)
∂rϕ + 1

r2
∂θθϕ.

First we construct a function ψ̃(r, t) such that
[
∂t − ∂rr −

(1

r
+ 4r

λ2 + r2

)
∂r

]
ψ̃ ≥ 1

(t − t0 + A)a(log t)β
1

(1 + r/
√
t − t0 + A)b

.

Let

ψ1(r, t) = 1

(t − t0 + A)a−1(log t)β

[ 1

(1 + r2
t−t0+A )

b/2
+ C1e

− r2
4(t−t0+A)

]
.

Choosing a large constant C1, ψ1 satisfies

∂tψ1 − ∂rrψ1 − 5

r
∂rψ1

≥ c
1

(t − t0 + A)a(log t)β
1

(1 + r√
t−t0+A

)b
, for r > 0, t > t0,

where c > 0. Here we require a < 4 and a < 1+ b
2 , which are part of the conditions

(13.2). Then

[
∂t − ∂rr −

(1

r
+ 4r

λ2 + r2

)
∂r

]
ψ1 =

[
∂t − ∂rr − 5

r
∂r

]
ψ1 + 4

λ2

r(r2 + λ2)
∂rψ1

≥ c
1

(t − t0 + A)a(log t)β
1

(1 + r√
t−t0+A

)b

− 4
λ2

r(r2 + λ2)
|∂rψ1|, (13.7)

but

∂rψ1 = r

(t − t0 + A)a(log t)β

[
− b

(1 + r2
t−t0+A )

b/2+1
− C1

2
e
− r2

4(t−t0+A)
]
,
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and so

λ2

r(r2 + λ2)
|∂rψ1| ≤ C

λ2

r2 + λ2

1

(t − t0 + A)a(log t)β
1

(1 + r2
t−t0+A )

b/2+1
.

(13.8)

We note that for r ≤ √
t − t0 + A we have

λ2

r(r2 + λ2)
|∂rψ1| ≤ λ2

r2 + λ2

1

(t − t0 + A)a(log t)β

≤ C
λ2

(r2 + λ2)2

1

(t − t0 + A)a−1(log t)β
, (13.9)

where we have used that A ≥ λ(t)2.
Let ψ̃2(r; λ) be the bounded solution of

−
[
∂rr +

(1

r
+ 4r

λ2 + r2

)
∂r

]
ψ̃2 = λ2

(r2 + λ2)2
, r > 0,

given by Lemma 13.1. Then ψ̃2 can be written as

ψ̃2(r; λ) = ψ̄2

( r

λ

)
,

for a function ψ̄2 satisfying

|ψ̄2(ρ)| + (1 + ρ)|ψ̄ ′
2(ρ)| ≤ C

1 + ρ2 . (13.10)

Let

ψ2(r, t) = 1

(t − t0 + A)ta−1(log t)β
ψ̃2(r; λ(t)).

Then, using (13.10) and (13.3), we get

[
∂t − ∂rr −

(1

r
+ 4r

λ2 + r2

)
∂r

]
ψ2

= 1

(t − t0 + A)a−1(log t)β
λ2

(r2 + λ2)2

[
1 −

( a − 1

t − t0 + A
+ β

t log t

)
ψ̃2(r)

(r2 + λ2)2

λ2
− λ̇

λ
ψ̄ ′
2

( r

λ

) r

λ

(r2 + λ2)2

λ2

]

≥ 1

(t − t0 + A)a−1(log t)β
λ2

(r2 + λ2)2

[
1 − C

r2 + λ2

t − t0 + A

]
.

Therefore there is δ > 0 (fixed independent of t0) such that for all t0 large,
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[
∂t − ∂rr −

(1

r
+ 4r

λ2 + r2

)
∂r

]
ψ2

≥ 1

2

1

(t − t0 + A)a−1(log t)β
λ2

(r2 + λ2)2
, for r ≤ 2δ

√
t . (13.11)

Let χ0 ∈ C∞(R) be such that χ0(s) = 1 if s ≤ 1 and χ0(s) = 0 if s ≥ 2 and
define

χδ(r, t) = χ0

( r

δ
√
t − t0 + A

)
.

We consider

ψ̃ = ψ1 + Mψ2χδ,

where M > 0 is a constant to be fixed later. We compute, using (13.7)

[
∂t − ∂rr −

(1

r
+ 4r

λ2 + r2

)
∂r

]
ψ̃ ≥ c

1

(t − t0 + A)a(log t)β(1 + r√
t−t0+A

)b

− 4
λ2

r(r2 + λ2)
|∂rψ1|

+ Mχδ

[
∂t − ∂rr −

(1

r
+ 4r

λ2 + r2

)
∂r

]

ψ̃2 + R(r, t), (13.12)

where

R = M
[
ψ2∂tχδ − 2∂r ψ̃2∂rχδ − ψ̃2

(
∂rrχδ + 1

r
∂rχδ + 4

r

r2 + λ2
∂rχδ

)]
.

We have, by (13.10),

|R(r, t)| ≤ C2Mλ2
1

(t − t0 + A)a+1(log t)β
, (13.13)

where C2 is independent of M (although it depends on δ), and is supported on
δ
√
t − t0 + A ≤ r ≤ 2δ

√
t − t0 + A.

We claim that there is M > 0 and c̃ > 0 so that for all t0 sufficiently large

[
∂t − ∂rr −

(1

r
+ 4r

λ2 + r2

)
∂r

]
ψ̃ ≥ c̃

1

ta(log t)β(1 + r/
√
t)b

, (13.14)

for all r > 0, t > t0.
Indeed, if r ≤ δ

√
t − t0 + A, then from (13.12), (13.7), (13.11) and (13.9) we

get

[
∂t − ∂rr −

(1

r
+ 4r

λ2 + r2

)
∂r

]
ψ̃ ≥ c

1

(t − t0 + A)a(log t)β(1 + r√
t−t0+A

)b

− C
λ2

(r2 + λ2)

1

(t − t0 + A)a−1(log t)β
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+ Mχδ

[
∂t − ∂rr −

(1

r
+ 4r

λ2 + r2

)
∂r

]
ψ̃2

≥ c
1

(t − t0 + A)a(log t)β(1 + r√
t−t0+A

)b
,

(13.15)

if M ≥ C . Here we fix M = C .
If δ

√
t − t0 + A ≤ r ≤ 2δ

√
t − t0 + A, then by (13.12), (13.7), (13.9) and

(13.13) we get
[
∂t − ∂rr −

(1

r
+ 4r

λ2 + r2

)
∂r

]
ψ̃ ≥ c

1

(t − t0 + A)a(log t)β(1 + r√
t−t0+A

)b

− C2Mλ2
1

(t − t0 + A)a+1(log t)β

= 1

(t − t0 + A)a(log t)β

( c

3b
− C2Mλ2

t − t0 + A

)

By taking A
λ(t0)2

large, we get

[
∂t − ∂rr −

(1

r
+ 4r

λ2 + r2

)
∂r

]
ψ̃ ≥ c

2

1

(t − t0 + A)a(log t)β(1 + r√
t−t0+A

)b
,

(13.16)

for δ
√
t − t0 + A ≤ r ≤ 2δ

√
t − t0 + A.

If r ≥ 2δ
√
t − t0 + A, by (13.12) and (13.8)

[
∂t − ∂rr −

( 1

r
+ 4r

λ2 + r2

)
∂r

]
ψ1 ≥ c

1

(t − t0 + A)a (log t)β (1 + r√
t−t0+A

)b

− C
λ2

r2 + λ2
1

(t − t0 + A)a (log t)β
1

(1 + r2
t−t0+A )b/2+1

≥ 1

(t − t0 + A)a (log t)β (1 + r√
t−t0+A

)b

[
c − C

λ2

t − t0 + A

]

≥ c

2

1

(t − t0 + A)a (log t)β (1 + r√
t−t0+A

)b
(13.17)

if A
λ(t0)2

is sufficiently large.
Combining (13.15), (13.16) and (13.17) we deduce the estimate (13.14).
Let

ψ(x, t) = ψ̃(|x − ξ |, t).
Then, by (13.14),

(∂t − Lo)[ψ] =
[
∂t − ∂rr −

(1

r
+ 4r

λ2 + r2

)
∂r

]
ψ̃ − ∂r ψ̃

(x − ξ) · ξ̇
|x − ξ |

≥ c̃
1

(t − t0 + A)a(log t)β(1 + r√
t−t0+A

)b
− |ξ̇ | |∂r ψ̃ |,
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but

|∂rψ | ≤ C
1

(t − t0 + A)a−1/2(log t)β
1

(1 + r√
t−t0+A

)b+1

+ C
1

(t − t0 + A)a−1(log t)β
1

λ

1

(1 + r/λ)3
χδ(r, t)

+ C
1

δ(t − t0 + A)a−1/2(log t)β
1

(1 + r/λ)2
χ ′
0

( r

δ
√
t − t0 + A

)
.

Using (13.4) we see that if t0 is sufficiently large,

(∂t − Lo)[ψ] ≥ c̃

2

1

(t − t0 + A)a(log t)β(1 + r√
t−t0+A

)b
.

��

A direct consequence of the proof of Proposition 13.1 (using the same barriers)
is the following, for the initial value problem

{
∂tφ

o = Lo[φo], in R2 × (t0,∞)

φo(·, t0) = φo
0 , in R2.

(13.18)

Consider the norm

‖φo
0‖∗,b = inf K such that

|φo
0(x)| ≤ K

(1 + |x−ξ(0)|√
t−t0+A

)b

where b ∈ (2, 6), A > 0.

Proposition 13.2. Assume that a, b satisfy (13.2), A
λ(t0)2

is sufficiently large, and
λ, ξ satisfy (13.3), (13.4). Then there is a constant C so that for t0 sufficiently large
and for ‖φo

0‖∗,b < ∞ there exists a solution φo of (13.18), which defines a linear
operator of φo

0 and satisfies

‖φo‖∗,o ≤ CAa−1(log t0)
β‖φo

0‖∗,b.
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