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Abstract

Perhaps the most classical diffusion model for chemotaxis is the Keller—Segel
system

Uy =Au—V-@Vv) inR? x (0, 00),

1
v(x) = (—Ap2) " lu(x) == E/ log

R2 lx — z|

u(z, r)dz, ()
u(-,0) =up =0 inR?.

We consider the critical mass case f]RZ uo(x)dx = 8w, which corresponds to the
exact threshold between finite-time blow-up and self-similar diffusion towards zero.
We find a radial function ug with mass 87 such that for any initial condition ug
sufficiently close to uzk) and mass 8, the solution u(x, t) of (x) is globally defined
and blows-up in infinite time. As t — 00 it has the approximate profile

x —&(1) 8
u(x,t) ~ U , Uy = ———,
0% 52 ( (1) ) =T
where A(r) ~ —<—,&(t) — g forsomec > Oandg € R2. This result affirmatively

Jlogt’
answers the nonradial stability conjecture raised in Ghoul and Masmoudi (Commun

Pure Appl Math 71:1957-2015, 2018).

1. Introduction

This paper deals with the classical Keller-Segel problem in R?,
Uy =Au—V-@Vv) inR? x (0, 00),

1 1
v =(—AR2)_lu = —f log u(z,t)dz, (1.1)
2w JR2 |x — z|

u(-,0) = ug in R,
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which is a well-known model for the dynamics of a population density u(x, t)
evolving by diffusion with a chemotactic drift. We consider positive solutions which
are well defined, unique and smooth up to a maximal time 0 < 7 < +o0. This
problem formally preserves mass, in the sense that

/ u(x,t)dx = f uo(x)dx =: M forall re (0, 7).
R2 R2

An interesting feature of (1.1) is the connection between the second moment of the
solution and its mass which is precisely given by
2
— | 1xPux,t)dx =4M — K,
dt Jr2 2
provided that the second moments are finite. If M > 8, the negative rate of
production of the second moment and the positivity of the solution implies finite
blow-up time. If M < 8r the solution lives at all times and diffuses to zero with a
self similar profile according to [5]. When M = 8 the solution is globally defined
in time. If the initial second moment is finite, it is preserved in time, and there is
infinite time blow-up for the solution, as was shown in [4].
Globally defined in time solutions of (1.1) are of course its positive finite mass
steady states, which consist of the family

Us.e(x) = %U (%) L UQ) = A>0, R (12)

8
(I+1y»H*
We observe that all these steady states have the exact mass 87 and infinite second
moment

/ U ¢(x)dx = 8, / Ix|? Uye(x)dx = +o0.
R2 R2

As a consequence, if a solution of (1.1) is attracted by the family (U, ¢), its mass
must be larger than 87 and if the initial second moment is finite, then blow-up
occurs in a singular limit corresponding to A — 0.

In the critical mass M = 87 case, the infinite-time blow-up in (1.1) when the
second moment is finite, takes place in the form of a bubble in the form (1.2) with
A = A(t) — 0 according to [2,4]. Formal rates and precise profiles were derived
in [8,12] to be

A(t) ~ ast — +oo.

c
Jlogt
A radial solution with this rate was built by GHOUL and MasMouDI [26] and its
stability within the radial class was established. The framework of the construction
in [26] was actually fully nonradial, but for stability a spectral gap inequality only
known in the radial case was used. Numerical evidence for this inequality was
obtained in [7], and stability for general nonradial perturbation was conjectured in
[26]. A related spectral estimate, useful in the analysis of finite time blow-up was
found in [15].
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In this paper we construct an infinite-time blow-up solution with a different
method to that in [26], which in particular leads to a proof of the stability assertion
among non-radial functions. The following is our main result:

Theorem 1.1. There exists a nonnegative, radially symmetric function ug(x) with
critical mass fRZ “3 (x)dx = 8m and finite second moment fRZ |x|2 ué(x) dx <
400 such that for every ui(x) sufficiently close (in suitable sense) to u(’§ with
fRZ uydx = 8m, we have that the solution u(x,t) of system (1.1) with initial
condition u(x, 0) = u(x) has the form

wr) = — U(x_—g(t))(l+o(l)) U = —> (13
’ A(1)? A1) ’ (14 |y»)?
uniformly on bounded sets of R?, and
Al) = ——— (140(1)), £(1)— g ast — +oo,

J/logt
for some number ¢ > 0 and some q € R2.

Sufficiently close for the perturbation uj(x) := ug(x) + @(x) in this result is
measured in the C'-weighted norm for some o > 1

I@llso = 11+ 1 [* )l oy + 1L+ |- PT)IVO@)l Lo @2, < +00.

The perturbation ¢ must have zero mass too.
“Uniformly on bounded sets” of R2in (1.3) means that for any bounded K C R2

) = iU (0| =0

_ —1
lim sup )»(I)ZU(x—S(I)) a2 A1)

1200 yek )\(t)

The expansion of u(x, t) can be made more precise though, and this is explained
along the proof of theorem.

The scaling parameter is rather simple to find at main order from the approxi-
mate conservation of second moment, see Sect. 2. The center £(¢) actually obeys a
relatively simple system of nonlocal ODEs.

We devote the rest of this paper to the proof of Theorem 1.1. Our approach
borrows elements of constructions in the works [16—18,21] based on the so-called
inner-outer gluing scheme, where a system is derived for an inner equation defined
near the blow-up point and expressed in the variable of the blowing-up bubble, and
an outer problem that sees the whole picture in the original scale. The result of
Theorem 1.1 has already been announced in [20] in connection with [16,18,21].

There is a vast literature on chemotaxis in biology and in mathematics. The
Patlak—Keller—Segel model [35,44] is used in mathematical biology to describe
the motion of mono-cellular organisms, like Dictyostelium Discoideum, which
move randomly but experience a drift in presence of a chemo-attractant. Under
certain circumstances, these cells are able to emit the chemo-attractant themselves.
Through the chemical signal, they coordinate their motion and eventually aggregate.
Such a self-organization scenario is at the basis of many models of chemotaxis and
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is considered as a fundamental mechanism in biology. Of course, the aggregation
induced by the drift competes with the noise associated with the random motion
so that aggregation occurs only if the chemical signal is strong enough. A classical
survey of the mathematical problems in chemotaxis models can be found in [31,32].
After a proper adimensionalization, it turns out that all coefficients in the Patlak—
Keller—Segel model studied in this paper can be taken equal to 1 and that the only
free parameter left is the total mass. For further considerations on chemotaxis, we
shall refer to [30] for biological models and to [11] for physics backgrounds.

In many situations of interest, cells are moving on a substrate. The two-dimen-
sional case is therefore of special interest in biology, but also turns out to be partic-
ularly interesting from the mathematical point of view as well, because of scaling
properties, at least in the simplest versions of the Keller—Segel model. Boundary
conditions induce various additional difficulties. In the idealized situation of the
Euclidean plane R?, it is known since the early work of W. JXGER and S. LUCKHAUS
[33] that solutions globally exist if the mass M is small and blow-up in finite time
if M is large. The blow-up in a bounded domain is studied in [1,33,39,40,46].
The precise threshold for blow-up, M = 8, has been determined in [5,23], with
sufficient conditions for global existence if M < 8 in [5] (also see [22] in the
radial case). The key estimate is the boundedness of the free energy, which relies
on the logarithmic Hardy-Littlewood—Sobolev inequality established in optimal
form in [9]. We refer to [3] for a review of related results. If M < 8w, diffusion
dominates: intermediate asymptotic profiles and exact rates of convergence have
been determined in [7]. Also see [25,41]. In the supercritical case M > 8, vari-
ous formal expansions are known for many years, starting with [27,28,49] which
were later justified in [38,45], in the radial case, and in [14], in the non-radially
symmetric regime. This latter result is based on the analysis of the spectrum of a
linearized operator done in [15], based on the earlier work [19], and relies on a
scalar product already considered in [45] and similar to the one used in [6,7] in the
subcritical mass regime. An interesting subproduct of the blow-up mechanism in
[29,45] is that the blow-up takes the form of a concentration in the form of a Dirac
distribution with mass exactly 87 at blow-up time, as was expected from [24,29],
but it is still an open question to decide whether this is, locally in space, the only
mechanism of blow-up.

The critical mass case M = 8m is more delicate. If the second moment is
infinite, there is a variety of behaviors as observed for instance in [36,37,43]. For
solutions with finite second moment, blow-up is expected to occur ast — +00: see
[34] for grow-up rates in R2, and [48] for the higher-dimensional radial case. The
existence in R? of a global radial solution and first results of large time asymptotics
were established in [2] using cumulated mass functions. In [4], the infinite time
blow-up was proved without symmetry assumptions using the free energy and
an assumption of boundedness of the second moment. Also see [42,43] for an
existence result under weaker assumptions, and further estimates on the solutions.
Asymptotic stability of the family of steady states determined by (1.2) under the
mass constraint M = 8z has been determined in [10]. The blow-up rate A(#) and
the shape of the limiting profile U were identified in formal asymptotic expansions
in [12,13,47,49,50] and also in [8, Chapter 8]. As already mentioned, a radial
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solution with rate A(t) ~ (logz‘)_l/2

class was established in [26].

was built and its stability within the radial

2. Formal Derivation of the Behavior of the Parameters

We consider here a first approximation to a solution u(x, t) of (1.1), globally
defined in time, such that on bounded sets in x,

1 x —&()
u(x,t) = MNU( 0 )(1 +o(1)) ast — 4oo 2.1)

for certain functions 0 < A(t) — Oand &(¢) — g € R?, where we recall that

8

U =
)= a5 hee

We know that (2.1) can only happen in the critical mass, finite second moment
case,

/ u(x, t)dx = 8, / Ix)?u(x, 1)dx < 400,
R2 R2

which according to the results in [4,12,26] is consistent with a behavior of the form
(2.1). Since the second moment of U is infinite, we do not expect the approximation
(2.1) be uniform in R? but sufficiently far, a faster decay in x should take place
as we shall see next. We will find an approximate asymptotic expression for the
scaling parameter A(¢) that matches with this behavior.

Let us introduce the function Ty := (—=A)~1U. We directly compute

8
To(y) =log ———5—
(1+y?
and hence I'¢ solves the Liouville equation

—ATy = " = U inR?%

Then VTy(y) ~ —l;% for all large y, and hence we get, away from x = &,

_ x—£&
—V - wV(=A)"lu) x4V >
lx — &2
Therefore, defining
Eu):=Au—V-uV(=A)"u) (2.2)

and writing in polar coordinates

ur,0,t) =ulx,t), x==£&01)+ reie,
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we find £(u) ~ 8,214 + §a,u. Hence, assuming that é(t) — 0 sufficiently fast,
equation (1.1) approximately reads as

5
oru = 8r2u + —0,u,
r

which can be idealized as a homogeneous heat equation in R® for radially symmetric
functions. It is therefore reasonable to believe that beyond the self-similar region
r > 4/t the behavior changes into a function of /+/t with fast decay at +oco that
yields finiteness of the second moment. To obtain a first global approximation, we
simply cut-off the bubble (2.1) beyond the self-similar zone. We introduce a further
parameter «(¢) and set

. at) (x—§
i 1) = 55 ( n )X(x, 0. 2.3)
where
x—§
x(x,t)—XO( 7 ) 2.4
with xo a smooth radial cut-off function such that
1 if|z] £1,
= - 2.5
x0(2) {O if 1] = 2. (2.5)

We introduce the parameter «(¢) because the total mass of the actual solution should
equal 8 for all r. However,

1 x—§ e A4
ﬁ/RzU< - )x(x,t)dx_8n+16nTT+0(t—2) 2.6)
ast — 0o, where
o
T =/ (Ro(s) — Dsds < 0, .7
0

and xo(x) = xo(]x|). To achieve fR2 u(x,t)dx = 8w we set @ = a where

&) =1 —2TA72 n 0(’:—:).

Next we will obtain an approximate value of the scaling parameter A(¢) that is
consistent with the existence of a solution u(x, t) ~ u(x, t) where i is the function
in (2.3) with « = @. Let us consider the “error operator”

S(u) = —us + E(u), (2.8)

where € (u) is defined in (2.2). We have the following well-known identities, valid
for an arbitrary function w(x) of class C 2(R?) with finite mass and D?w(x) =
O (|x|~*79) for large |x|:

2
/ IX|?E(w) dx = 4M — K, M= | wkx)dx (2.9)
R2 27‘[ R2
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and
/ xE(w)dx =0, / E(w)dx = 0. (2.10)
R2 R2

Let us recall the simple proof of (2.9). Integrating by parts on finite balls with large
radii and using the behavior of the boundary terms we get the identities

/ Ix|?Awdx = 4M,
RZ

/ X’V - (0V(=A) Hw)dx = —2f x-oV(—=A)"'wdx
]RZ

_ //a)(x)w(y) At |zy)d dy

//w(x)w(y) |y) (| @ T gy

@2.11)

27r

and then (2.9) follows. The proof of (2.10) is even simpler. For a solution u(x, t)
of (1.1) we then get

2

d M
—/ u(x, t)|x)?dx =4M — —, M:/ u(x, t)dx.
dt Jr2 2 R2

In particular, if u (x, ) is sufficiently close to i (x, ¢) and since fR2 u(x, t)ydx =
81, we get the approximate validity of the identity

d
—/ i(x, 1)|x|?dx = 0.
dt Jgr2

This means

al (t) := Az %U (%) X0 <x\;;§> |x|2dx = constant.

We readily check that for some constant «

NG

3
°d, t
1(t)=16m2[0A ﬁ+K+o(1)=16mzlog%+x+o(1) as ). — 0.

Then we conclude that A(#) approximately satisfies
22 logt = ¢* = constant

and hence we get at main order

C
YO0= g
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We also notice that the center of mass is preserved for a true solution, thanks to
(2.10):

d
— xu(x,t)dx = 0.
dt RZ

Since the center of mass of u(x, t) is exactly £(¢) we then get that approximately

&(t) = constant = q.

3. The Approximations u( and u
From now on we to consider the Keller—Segel system starting at a large fy,
uy =Au—V-@Vv) inR? x (t9, 00),

1
v :(—ARz)_lu = oy - log

u(z,t)dz, 3.1
lx —z]

u(- t0) = ug in R%,

which is equivalent to (1.1). We do this so that some expansions for ¢ large take a
simpler form.

In this section we will define a basic approximation to a solution of the Keller—
Segel system (3.1). Let us consider parameter functions

0<A(t)—>0, &) —>q, a(t) > 1 ast— 400

that we will later specify. Let us consider the functions

8
Uy)==—"353 To(y) =loglU(y)
+1yP)? ¢
and define the approximate solution uq(x, t) as
o x—£
note. 1) = 55U (=) x e,
1
vo(x. 1) = (=A) 'ug = — [ log —— ug(x, 1) dx, (3.2)
2w JR2 |x — X|

where x is the cut-off function (5.3). We consider the error operator
S(u) = —ou + E(u),
where
Ew) = Ayu — Vy - V), v=(—Ay) lu.

and next measure the error of approximation S (u).
We have

. A" .
—duo(x. 1) = —%U(y)xo(Z) +a5Zoxo(2) + %s VLUG) x0(2)
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——U ()& - V2x0(2) + U(Y)VzXO(Z) zZ,

AA/'
x—§
7= 7 3.3)
where
X —
Zo(y) =2U() +y-V,U(y), y= Tg (3.4
‘We also have
E(ug) = Ayup — Vy - (uoVyvp)
20 a1
= V0@ - VUM) + =5 Axo@U () - kz"‘ﬁwy)vzm(o Vv

axu(z)

[C0@a = HU20) = V,UG) - (Vy00 = V,T0)] -
Let us decompose

vo(y) = allo(y) + R(y). (3.5)

For the term R in (3.5) we directly estimate

2
R
v, R = { P » (3.6)
Iyl <.
Then
2 1
Ew) = 5772 V0@ - VU ) + 737 82x0@U ) = 33U Vexo( Vo

Otxo(z)

[@ = DU = @ = DY U) - 93Tom) + @@ - DUAR)
— VUM VRO

and thus

S(uo) = U(y)Xo(z)+a—Zox0(Z)+ é VyU(y) xo(2)

+ 22 \/—U(y)é VzXO(Z)+ U(Y)VzXO(Z) Z
2a a1
+ 3507 Ve X0@) - VU G) + 7ﬁAzX0(Z)U(y)
(07
- WU(Y)VZXO(Z) - Vxvo
_ale = Dxo(2)
A4

a);o%m[a(x — DU(y) = VU () - VyR(y)]. (3.7)

Vy - (U(Y)VyFO(Y))

+
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For a function v(¢) defined for ¢ € R? consider the operator

Aev) = M0©) +4- 5 ; V(o). (3.8)

The reason for the notation is that for radial functions v = v(r), r = |¢|, we have
5
Agv = Brzv + =0,
r

which corresponds to Laplace’s operator in R® on radial functions.
Let ¢, (¢, t) be the (radial) solution to

~ - . 1
3P = AP + E(¢,1) inR? x (—0, 00),
2
o (3.9)
¢, 5) =0 in R?,

given by Duhamel’s formula, where E (¢, ¢) is the radial function

E({,t;k):)f; (DXOQ‘) 2/\12 U<;> Voxo(2) -2+ E(x.1),  (3.10)

and

- 2 1

1
T 3312 U)Vzxo(@) - VyLo(y), (3.11)
; _ ¢ _¢
with z = 7;, y=x
We then define
or(x, 1) = @r(x — (1), 1). (3.12)

The reason to define ¢, for t > ’70 is that it gives better properties for the
first approximation of A constructed in Sect.7. Since A(¢) is defined naturally for
t > ty, we will need to define A(¢) for “’ < t < fp in an appropriate way (see
Proposition 5.1 and Sect.7). We will wrlte A = Ao + A1 where both of these
functions are constructed so that they are defined for ¢ > %0 The construction of

Ao 1s given in Proposition 5.1. In particular Ao(t) = \/]Cg?(l +o(l)) ast — oo.
Note that ¢, (-, fo) is not zero.
We define the approximate solution
Ui :=uo+ ¢x (3.13)

which depends on the parameter functions «(z), £(¢), A(t). Correspondingly, we
write

= (=20 ).

We will establish in the next sections that a suitable choice of these functions
makes it possible to find an actual solution of (3.1) as a lower order perturbation of
uj.
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4. The First Error of Approximation

We will assume the following conditions on A, «, &

. C
IA(@®)| + tlog(t) |1 ()] <
¢ V/1og(?)
. C
E@)] < P 4.1)
le(t) — 1] < Tog?’ ()| < P logt’

3
where 5 <y < 2.
We compute

S(u1) = S(uo + @) = S(uo) — 9. + Luylwal = V- (@2 V).

where
Lyylgl = Ap — V- (9Vvg) = V - (uo V),
U= (=A)"gr, vo=(=A)"lug
Then
Sur) = ——U(y)x +@—-1D gZox Ly S VyU(y) x + \/-U(y)é Vxo
@—11 x—& Z(a—l)
—5; aUVexo: N +t =57 Vo VU
©@=D \lu- “2_ AUV VT % UV.xo-V,R
ala — Dy Ay —x) , ax
=V WUV T) + U = VU VR

. 4
t V@& = —0rn =V (92V0) = V- V) = V- (02V),
(4.2)

where R is defined in the decomposition (3.5).
Lemma 4.1. Let ¢ be defined by (3.12)-(3.9) with A satisfying (4.1). Then
m lx —€l <Vt

)
tlogt | L= x— gl = Vi.
(4.3)

l2(x, Ol + (|x =&l + DIVer(x, 1) = C

We also have

lx — &
tlogt (A + |x — ED*’

IVor(x, D] < e —&| < Vi (4.4)
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Proof. In terms of the function ¢, defined in (3.9), with r = |x — &| we claim that

1
Lo r<

@2 (r, )] < C——— kzﬂzz rEv

tlogt —e T o> L

For the proof of this we use barriers. Consider

1
7t = 0 T5 5
viln 1) tlogt A2 +r2
and note that
A4 i
b — (8 8 ) c————, < 28+/t
4 rr + — (s l]Ogt(1+r/)L)4 r=

for some ¢ > 0,68 > 0.
Let x5 /;(r, 1) = )Zo(sf—ﬁ) where xo € C°°(R) is such that xo(s) = 1 fors <1
and xo(s) = 0 for s > 2. Consider

2

1 s
V) =91 xs s (r 1) + 5—— Tlogt® 7.

The function E (3.11) can be estimated by

s 1 ¢
B0l = am ()

where /1(z) is a smooth function with compact support. Then E (3.10) has the
estimate

B0l <€ o (L)
(r2+)h2)2 K2t3 ﬁ

where h,(z) is a smooth function with compact support.
Then for C; sufficiently large

5
o — (9 + ;ar)vf > C|E(r, 1),

where ¢ > 0.
By the comparison principle,

1@2(r, )] = CY(r, 1),

for some uniform constant C. After a suitable scaling, from standard parabolic
estimates we also get

A+ N)IVx@r(r, )] = CY(r,1).

With these two inequalities we obtain (4.3).
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To prove (4.4) we change variables y = xf in the equation (3.9) and define

pilr 1) 50 (r t)
rt)=— —,t).
o2 29 \%

We get the equation, after interpreting p = |y|, y € R®
2204 = Age + Ah(Q2Pr + ¥ - Vy@i) + A EQy, 1),

where E is defined in (3.10). Differentiating with respect to y and using the bound
we already have for V¢, from (4.4), and using standard parabolic estimates, we
get

C 1
DG (y, 1) < —— —, < /tlogt.
IDyor(y, )| = ozt L+ b Iyl = V/tlog

Using that V@, (0, 1) = 0 we deduce that

R c |yl
v D < —_ < {tlogt,
[Vy@:.(y, )l rogt (Lt yD? Iyl = y/tlog

which readily gives (4.4). O

Lemma 4.2. Assuming (4.1) we have

1 log(2+1y) x—£

ATS(u X, 1) < C B = ) 4.5
|5(” )|(1 )< C 1 —C\XI\Z ( )
1 X) = t41 le ) .6

1
for some c € (0, 7).

Proof. Let us analyze the terms involving ¢, . We estimate, using Lemma 4.1,

1 1
22U +ay)| <C —_, < /tlogr.
MenE+2y)| = ozt (1% [y Lyl g
Similarly, by (3.5)
4 . 4 - N -
—;3r<m — V@ - VUOZ_;ar‘pA_V(pA -VIlo—(e — 1)Vg;, - VI1—Vg, - VR

r 1 - - ~
- 4(m— ;)arm—(a — 1)V, - VTo—Vg, - VR.
4.7)

By (4.4)

1 c 1
’,\44( : )Brm‘< ———— |yl < /tlogt.

2422 r = rlogr (14 |y))8’
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The other terms in (4.7) are estimated similarly, using the hypotheses on « and the
estimate on R (3.6), and we get

c 1
tlogr (1+ |y])®’

ly| < {/tlogt.

The terms involving v, = (—A)’lgok are estimated using the formula

=<

4 -
—;3r</>x — V@, - Vg

1 r
U0 = - fo 01 (s. 1)sds.

In A*S(u1) we have also the term —&A2U (y)x, which thanks to (4.1) can be
estimated as

CA?

X (1. 1) <
Plogs (1 1y * "

C
)»20'lU ) < —_— , ).
‘ WMx| = tlogt(1+|y|)6x(y )
The remaining terms are estimated similarly, and we obtain (4.5).
The stated inequality (4.6) follows from the Gaussian decay of ¢, in Lemma4.1.

m}

5. The Inner-Outer Gluing System

Let us consider the initial approximation

ui(x,t) =up(x, t) + @a(x, 1)

built in Sect. 3 for a given choice of the parameter functions A(#), «(¢), £(¢) satis-
fying (4.1). Here uy is the function defined in (3.2) and ¢; that in (3.12). We look
for a solution of the Keller—Segel equation (3.1) in the form of a small perturbation
of u1, namely

ulx,t) =ui(x,t) + o(x, ). 5.1

We write the perturbation ® as a sum of an “inner” contribution, better expressed in
the scale of u(, and a remote effect that takes into consideration the “outer” regime.
Precisely, we write

1 .
Q. 1) = ¢ 0. X D+ 9 D).y = ng (5.2)

where x is the smooth cut-off

x(x,1) = XO(X\;;§> (5.3)

with xo a smooth radial cut-off function such that xo(z) = 1if [z| £ 1, x0(z) = 1
if |z] = 2. (The same as defined in (2.4).)
Recall S(u) given by

Su) = —du+Au—V-uvVv), v=(=A)"lu,
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where the operators act on the original variable x unless otherwise indicated. In the
computations that follow we will express the equation

S +o)=0

for ® given by (5.2), as a parabolic system in its inner and outer contributions ¢’
and ¢°. The coupling in that system will be small if ¢’ (y, ) decays sufficiently fast
in space and time. That can only be achieved for suitable choices of the parameters
o, A, & thatyield certain solvability conditions satisfied. The set of all these relations
is what we call the inner-outer gluing system. Next we formulate this system. It will
be necessary to successively refine its original expression by further decomposing
¢' into two contributions with separate space decay, finally arriving at the equations
(5.48), (5.49), (5.50) and (5.52) which are the ones we will actually solve.
Let us observe that

S+ ®) = 56 — 4 (530'%) ~ 49" + L[ 130 x|+l
—V (@V(-A)D),
where
Luylpl=Ap =V - (pVv) = V- (uiV(=A) '), v =(=A)"uy.
We use the notation
V=T = Sea e,
in the expressions that follow. We expand
La, [A—lquix} = x%mpf + %VX V' + X—lzqﬁiAx -V <A—lz¢iva1>
— V- u1VY).
We have
VoV =V (SUV) 0+ V- (UVE =) x4 55UV VT
+ V(@ V) + V- (@ V@ — )
and
V. (iqs"xwl) =V. (idfvm) X+ izp"vx V.
22 A2 22
Recall the notation
v=v+ v =58 U0, =8
and also (3.5)

vw=alp+R, R= %(—A)’I(U(X —1).



61 Page 16 of 154 Arch. Rational Mech. Anal. (2024) 248:61

Then
L L 1 i
V. pqﬁxvm =V ﬁqﬁVvo x+V. ﬁqﬁVI//x X+E¢VX'VUO
1 .
+ﬁ¢lVX'V%
o i 1 1
= 5V @ VTV - (530 VR ) x+V - (550'Via ) x
a I, I
+ 59V VT + 550/ V - VR + 56/ Vi - V.
Therefore
1 2 L1
Lu, Efﬁx =xﬁA¢ +ﬁvx-v¢ +ﬁ¢ Ax
o 1 . 1 .
_ [v : (ﬁwvro)x +V. (ﬁq)' VR)X +V. (ﬁwvm)x
o | 1 .
+ 58"V Vo + 56V VR + ¢V - Vi |
o (07 N o ~
~ [V (GFUv)x+ V- (U =) x + 35UV -V
V@V V- @V - )
Next we expand
L [9°1 = Ag® — V- (¢°Vu) = V- (1 VY°), ¥° = (=A)"¢".
We have
0 o 0 o
VoY) =V (SUXVY) + V- @90
—v.(Lyvye YUV -V + V- (0, Vi°
=V-{z ¥ x+k—2 X -VY°+ V- (VY x
+ V- (@ VYO — x),

and
V- (¢°Vu) =V - (¢°Vvg) + V- (9 Vi)
=aV - (¢’VIo) + V- (¢?VR) + V- (¢°V)
1
= Vg’ - VIy— ﬁUwo + (@ — 1V - (¢?VT9)
+ V- (@°VR) + V - (¢° V).
Therefore,

o o
Luylg"1 = B¢° = [V (FUVH)x + 5UV - VU + V- (V9 )

+ V- @Y1 = 0]
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o 1 o o
—[ve" - Vo= 5U¢" + @ =DV - (p7VTy)
£V @R+ V- 9V

Based on the previous formulas we formulate the inner equation

1 . . .
A4, (ﬁ¢>’> = L[¢'] — (@ — DV, - (UVy¥) — (@ — D)V, - (¢'VT¢) + 2*S(ur)
=22V @V 0) = W2V - (0°Vy 1) + AU — aVy - (UV,9°)
—22Vy - (@ V) = Vy - (@' V) — (@ — DAPV - (¢°VTp)
—aVy - UV — ¥) — 22Vy - (@ Vy (F — )
—Vy - (@' x + 220V (¥ + ¥,

where
Llp]l = Ay¢p —V, - (UVyY) — Vy - (¢ VI). (5.4

We slightly modify the inner equation into the form

220,¢" = LI¢'1+ Bol¢'1 + E1j + F(¢', 9°, p)i (5.5)
where
p=0,0a,8),
4 x—§
Ei(y, ) =A'S@@)x, 0, y="—"=,

F(@', 9%, p) = —12Vy - (@2 V) — A2V, - (9°Vy ) + 22U °
— (@ — DA*Vy - (9°VyTg) — aVy - (UV,§°)
+ M€ Vy' — 12V, - (@ VW) — V- (9 V1)
— (@ = DV, - (UVy¥) — (@ — DV, - (¢' V,T)
—aVy - (UVy(f — ) = 22V, - (@2 Vy (F — )
—Vy (@ x + 22V + ¥, Y= (=A@ ),

(5.6)
Bol¢']l = M(2¢" +y - Vyg'), (5.7)
and
A
Xy, t) = XO(Z—j;>, (5.8)

with xo as in (2.5). Similarly we formulate the outer equation as

d9” = Ap® — VI - Ve’ +G(¢', ¢°, p) (5.9)
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where

G(¢>i,wO,P)=S(M1,P)(1—X)+}%VX-V¢>i+%2¢iAx—%2¢iarx—}%¢iVX-VFO
53U (1= ) = @20V VY =V - (V91 = )
— (@ =DV (@°VIo)(1 = x) = V- (9°VR) = V- (¢" V) (1 — ¥)
— lev (@' VR)x — A%»"Vx VR — }%WVX VY,
— UV V=V @V i) - 0

1 N
V@V —x) = V- (()TZWX + VW +yNA = x). (5.10)

If ¢>i, @° is a solution to system (5.5), (5.9), then u given by (5.1), (5.2) satisfies
the Keller—Segel system (3.1).

5.1. Choice of Ly and o
We explain the choice of A in the context of the elliptic equation

Ll¢]=h inR?, (5.11)
where £ is radial.
Lemma 5.1. Let h(y) be a radial function such that

1L+ YD R oo w2y < 00,
for some y > 4 and satisfying
/ h(y)dy =0 (5.12)
R2

| rosiay o (513)

Then there exists a radial solution ¢ (y) of equation (5.11) such that

1 .
oM <l + Iyl)Vh(y)llLoooRz)W, ify #6 (5.14)
log(1+ |y .
1 v o0 (R2) =6, .
9O < CNA+ DA ey~ ysia v =6 (5.15)

and

/ ¢ (y)dy = 0. (5.16)
RZ
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Proof. Defining g = % — (—A)~'¢ we obtain the equation
V.- (UVg) =h. 5.17)

Assuming y > 6 we choose the radial function g defined by

o0 l r
g<p>=—fp rU(r)fo h(s)sdsdr, p =y,

and using (5.12) we get

1
lg(P)] < CIA+ |yD 2l poory 77— =5
FE Ao
Now we solve Liouville’s equation
—AY —Uy =Ug inR?, ¥(p) >0 asp— . (5.18)

Multiplying (5.17) by ly|? and using (5.13) we see that

1
/gzody=—/ h(y)lyl*dy =0,
]R2 2 RZ

with Zg defined in (3.4). Then by the variations of parameter formula we find that
(5.18) has a unique solution v, which satisfies

WD+ A+ DIV < 1A+ [yDY Al oo e (5.19)

V(L yhr—+

Then we see that ¢ defined by ¢ = Ug + U+ satisfies (5.11), (5.14) and (5.16)
because ¢ = —Ay and ¢ has the decay (5.19).
If4 < y < 6 we do almost the same, except that we define

P r
g(P)=/0 rU(r)/o h(s)sdsdr.

O

Remark 5.1. We observe that L[Zy] = 0. This can also be seen in the context of
the Lemma 5.1, where ¢ = Zp which corresponds to g being constant. Indeed,
suppose g = 1. Then from (5.18) ¥ = —1 — %zg, where zg is defined in (9.2). This
gives¢p =Ug + Uy = —%zo = —%Zo. This shows that L[Zy] = 0.

If h doesn’t satisfy the zero second moment condition (5.13), then a solution
still exists but with worse decay and non-zero mass. More precisely, if % is radial,
11+ yDY R |l oo m2)y < oo for some y > 6, and satisfies only (5.12), then one
can construct a solution ¢ to (5.11), but any such solution has the estimate

log(1 + |y)
TN T

so worse decay than the one in (5.14). Moreover, the mass of ¢ becomes

1
¢=—/ Aw=—/ gZo=——/ h(y)lyl*dy.
R2 RZ RZ 2 R2

oW < CIA+ YD Rl oo w2
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For the inner equation (5.5) it is then natural to impose that the first error S(u1) x
satisfies the second moment condition

/S(ul)x|y|2dy=0, forall > fo.
RZ

The next lemma gives a way of expressing the second moment of u.

Lemma 5.2. Let uy be defined in (3.13). Then
/ S(un)lx — &dx = 4/ prdx — a/ E(x— &1 1)lx — £Pdx
R2 R2 R2
. @
+f Vo, dx - & — —2/ Uyxlx —&|*dx
R2 )\ R2

~(-a) [ EG- gl - fdx
R2
+4(/ M0+f (0)L><1—L M()—L (pk).
R2 R2 8 R2 8 R2
(5.20)
where E, E are defined in (3.10), (3.11).

Proof of Lemma 5.2. Using (2.11) we see that

Azs<u1>|x—s|2dx——/ atuo|x—é|2dx—/ am|x—$|2dx

1
+4/ uo+/ 2 uo—— %\)-
8 R2

But recall that ¢, (x, 1) = @5 (x — &(¢), t) where ¢, satisfies (3.9). Multiplying that
equation by |¢|? and integrating on R? results in

faz¢x|;|2d¢=—4/ ¢Ad;+/ E(, D¢ .
]RZ R2 R2

Therefore

/atmlx—élde=—4/ ordx— E=8 & WH/ E@, 0l¢Pde
R2 R2 lx — &l Jr2 R2

and then
f S(un)lx — &2dx = —/ duuolx — £ Pdx +4f ordx
R2 R2 R2

+/ V(pAdx~é—/ E(x —&,1)|x — &%dx
IRZ RZ

1 1
+4</ u0+/ (px)(l—— uy — — (pk).
R2 R2 8 R2 8 R2

(5.21)
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But from the formula for 9;ug (3.3) and the definitions of E and E (3.10), (3.11)
we get

—duo(x. 1) = —%U(y)xo(Z) ‘aE(x —£.0) —aE(x —&.1).

Hence
/ (Bputo + E(x — &, 1)|x — £ dx
R2
= / (Buo + aE(x — &))|x — &%dx + (1 — a)/ E(x — &, 1)|x — &%dx
R2 R2

=55 [ Uxl—ePdxva [ Bl gPds
A= Jr2 R2

+(1 - a)/ E(x — &, 1)|x — &%dx.
R2
Replacing this in (5.21) we obtain (5.20). |

In the definition (3.13) of u#; we will stress the dependence on the parameters
by writing p = (A, «, &) and u; = u(p). At this point we would like to construct
Ao and o so that setting po = (Xo, @p, 0) we have

/]RZ u1(po)dx = 8m, (5.22)

[ st@onix - ePax = o). (523)
R2

t%+a
for some o > 0. The reason for allowing in (5.23) an error is that it is difficult to

solve with right hand side equal to 0 and a remainder of size O (¢~ 3 ) witho > 0
is sufficiently small to proceed with the rest of the construction.
Assuming that (5.22) holds, we get

/S(u1)|x—é‘|2dx=4/ sz—af E(x — &, 1; 0)|x — &|%dx
R2 R2 R2
+/ V(p,\dx-é—%/ Ux|x—$|2dx
R2 A Jr2
—(1—a>/ E(x — &1 W)l — £dx.
RZ

It turns out that the main terms in the expression for /Rz S(up)|x — &|*dx are the
first two. So the equation

f S(ui(po))|x — &[*dx =0
RZ

is at main order given by

4/ <pkdx—/ Elx—$|2dx=0.
R2 R2
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It will be shown later that
2

. 22 A4
/ Elx — £Pdx = —647 T + 0( ) (5.24)
R2 1t

see Lemma 7.5, where Y is given in (2.7), so that the equation we want to solve
becomes at main order,

)»2
/ opdx + 16T — = 0.
R2 t
In §7 we will show that

=22 43 2 2 4

AA A A A" loglogt
/ <p;¢ix:—4n/ dS—ZT[T— 16NTT+O(ﬂ)
R2 t

/2 t—s t
(5.25)

see Corollary 7.1. Using (5.25) we see that

A2 =2 i A2 A4 log log ¢
/ mdxﬂsﬂ_:_zm[/ ds + 2] + o (2 loleety
R? ! t t

/2 t—s 2t
(5.26)
so that the equation for A is at main order
=22 )\)\’ )\’2
ds+ — =0.
tj2 =S 2t
One can check that A*(7) = %, where c¢o > 0 is an arbitrary constant, is an
approximate solution. Indeed
r—(1%)2 ()i 2%)2 . r—(1*%)2 d A ()2
/ (s) (S)ds+( ) ~ F I S (1)
/2 t—s 2t t/2 r—s 2t
. A (1)?
~AROA () logr + @)
2t
1d
= -0t t] —0.
5 dt[ (1) log

The error left out in the approximation (5.26) is too big. We give next a result
that shows that for an appropriate modification of A* we can achieve a smaller error.
Let us write E(A) the expression defined in (3.11) with the explicit dependence on
A

Proposition 5.1. Let ¢co > 0 be fixed. For to > 0 sufficiently large there exists
Ao [%, 00) — (0, 00) such that

1 ~ 1
__ E(n —E%dx =
/Rzmodx 4/Rz (o)l — &[dx 0(t%+o

), > 1o, (5.27)



Arch. Rational Mech. Anal. (2024) 248:61 Page 23 of 154 61

for some o > 0. Moreover, for arbitrarily ¢ > 0 small, Ao has the expansion

ro(t) = —— +0(;),

«/logt (IOg t)%—s
. co 1
2l(10g[)3/2 (t(logt)g—a)
iot)] < 5
O = 2 (log )32

ast — oQ.

We will prove this result in §7.1.
Once A is constructed in Proposition 5.1 we choose « so that (5.22) holds, by
imposing

holt
@o(t) /RZU(y)Xo< Oj;w)dH/Rz G ) dx =87, t>19. (5.28)

We note that by (2.6), (5.27) and (5.24) we get

a(r) =1+ 0(%)

1279

ast — 00. A byproduct of the proof of Proposition 5.1 is that

d
— d
dt Agz Prod

and from this and (5.28) we get

C
S [_2 ) (5'29)

C
oo ()] < - (5.30)

As a corollary of Proposition 5.1 we get:

Corollary 5.1. Let py = (ho, 2o, 0) with ag defined by (5.22) and Ao be given by
Proposition 5.1. Then

1
[, st@opt - ePax = o).

3
12
for some o > 0.

Proof. Using Lemma 5.2 we have

/ S(un)lx — £Pdx = 4/ Grodx —/ Ex— £, 1 20)x — £
R2 R2 R2

o 2 2
~20 [ Uyle—gl dX—(l—ao)/ E(x—£. 1; ho)x—&dx
A Jr2 R2

-o(1)
- [%-f-o ’
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for some o > 0, since ¢(t) = O(@) and

2

. 2, (M
fRzE(x—g,t,xo)u—a dx_0<t>

by (5.24) and a direct estimate for the remaining terms in E (c.f. (3.10)). |

5.2. A further improvement of the approximation

We introduce a correction ¢6(y), y= % in the inner approximation to elim-

inate the radial part of S(u;(p)) (defined in (4.2)), which we define as

& A (@—1 1 x—£&
SO(MI(P))=—)\—2U()’)X+(0!— I)EZOX‘FTﬁUszO' 7

2 — 1) (x—1) 1
T Ve WU T AN

U

a?—1 o
——+=UV;x0-VyIp — 3_th1)(0 -V,R

e v

ale — Dy ax(1=x), 5
- gV UV T+ = U

4
- ;3rm — V- (@xVvg) = V- (uoV;) — V- (@ V). (5.31)
With this definition

S(uy) = Sou) + %é VU)X +

ax
— 7V VR,

o
A2/t

and the terms not in S(u1) correspond to %E -V, U(y) x + ﬁU(y) which are

U(y)é - Vo,

in mode 1.
Then we want ¢, to be an appropriate solution to the equation

LIgol +2¥Sou1 (o)) (x, 1) = co(®)Wa inR?, x =& +1y,  (532)

where L is the linear operator (5.4), t > t( is regarded as a parameter, W»(y) is a
fixed smooth radial function with compact support, and

/ Wa()dy =0, / Wa)lyPdy = 1. (533)
R2 R2

By Lemma 5.2 and Proposition 5.1, the choice p = py is so that (5.22), (5.23)
hold. Since the difference between S(u1) and So(«1) contains terms in mode 1 only,
we get from Corollary 5.1

1
[, s eoniyPay = o(—). (5.34)

1279

In (5.32) we select cq(¢) such that

/R DS (o)) + coOWallyPdy =0, 1> 1o
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and thanks to (5.34) we have

C
lco()] < ——, > to. (5.35)
t2te

Note that we have
/ So(u1(pg))dx =0,
R2

which follows from the constant mass in time of u1(po) in (5.22) and the form of
the operator .SO (5.31).

We let ¢ be the solution to (5.32) constructed in Lemma 5.1. By (5.15) and
4.5)

C log(1 + |y))

P T (5.36)

96 (v, 1)] <
and

f«zbé(y,t)dy:o, > 1.
RZ

5.3. Reformulation of the system

In the outer problem (5.9) we would like to separate the effect of the initial
condition from the coupling G (¢*, ¢, p).
‘We take the initial condition in (5.9) to be

(po('v tO) = goé)kv
and let ¢*(x, r) denote the solution of

x—§

ho* = Ag* — vxro( ) - Ve* in R? x (19, 00)

(5.37)
@ (- 10) = ¢f inR%.
The initial condition ¢;(x) will be later used to prove the stability claimed in
Theorem 1.1. The topology for (p(’g will be specified later on.
Note that V, Fo(%) = —4% so that ¢* is a function of the parameters
A, €. Therefore we will write ¢*(x, t; p) when convenient.
We decompose

o' =¢h+ o
o’ =0 +9 (5.38)
P=PpPo+P;

where

Po = (o, @0, 0), p; = (A1, 1, 81),
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with A¢ the function constructed in Proposition 5.1 and &g chosen so that (5.22)
holds.

We substitute the expressions for ¢', ¢° and p in (5.38) into the Egs. (5.5),
(5.9), and are led to the following problem for ¢, ¢

A28, = L] + Bolp]l + Exjia + Fa(¢, 9, 1. 95X in R? x (19, 00)
¢(-,10) =¢o inR?
(5.39)

x—§&
dp = Agp — VT .

9(-,10) =0 inR?,

) Vo + Ga(¢, ¢, p1, 93) in R? x (19, 00)

(5.40)
where x is defined in (5.8),
Ey = =3¢ + Bolgph] + co(t) Wa
Fx(¢,0,p1,08) = F(@) + ¢, 9" + ¢, py+ P1)
+ A4 [So(u1(Py + P1)) — So(u1(pp))]
. A2 .
+ s - VU)X + —=U - Vo (5.41)
N
G2(¢. 9. P1.93) = Gy + ¢, 0" + 9. po+P) + A E2(1 — 12)x
Fo(x,1) = XO(X._f), (5.42)

1z

8 > 01is a small constant to be fixed later on, and y is as in (2.5). We recall that
F and G are defined in (5.6) and (5.10). The expressions for F, and G, depend on
the initial condition ¢ through ¢* (5.37) and ¢¢. The role of ¢y will be clarified
later on.

By the estimate for Xq in Proposition 5.1 and (5.35) we get

|E2(y, )] =

C log(1 + |y]) C
1% , <C./tlogt. (543
Plogi? 15 hF +;%+<f' 2], |yl < Cy/tlogt. (5.43)

The reason that we introduce the cut-off y; is to achieve

Exio(y, )] € ———r,
|[E2x2(y, D] = A o

if v < 1 +28 — 3. We will choose § and o positive small numbers such that
26 — % >0sothatwecanfind 1 <v <1428 — 5.
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5.4. Splitting the inner solution ¢

We perform one more change in the formulation (5.39), (5.40), which consists
in decomposing

¢ = o1+ ¢o.

The function ¢; will solve an equation with part of the right hand side of (5.39),
which will be projected so that it satisfies the zero second moment condition.
For any h(y, t) with sufficient spatial decay we define

molh0) = [ G0y, miio) = [ houobPdy, G4
and
migthiey = [ G 0yjdy. 5= 1.2
R2

which denote the mass, second moment and center of mass of /.
Let Wy € C°°(R?) be radial with compact support such that

fwody=1, /Wo|y|2dy=0.
R2 R2

Let Wy ;, j = 1, 2 be a smooth functions with compact support and with the form
Wij(y) = W(lyDy; so that

/Rz Wiy, = 1. (5.45)

We recall that W5 defined in (5.33).

Then, h — mo[h] Wy has zero mass, h — mo[h] W5 has zero second moment, and
h —my1[h]W1,1 — m 2[h]W] 2 has zero center of mass.

We modify of the operator By appearing in (5.39), and defined in (5.7). The
idea is to work with a variant of it, which coincides with it for radial functions,
but for functions without radial part it is cutoff outside the region |y| < 4 More
precisely, we decompose ¢ in a radial part [¢],,4 defined by

1 27 )
([@lraa(p, 1) = > ¢ (pe', 1)do (5.46)
7T Jo

and a term with no radial mode ¢; = ¢ — [¢],44. We note that the other linear
terms in the equation behave well with this decomposition. Then we define

. . A
Bl¢] = AQ2[@lrad +y - VIPlraa) + A1 (2¢1 + y - V¢1)Xo( (5.47)

)
5Vt
where xo is a smooth cut-off in R with xg(s) = 1 for s < 1 and xo(s) = 1 for
s > 2.
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With these definitions we introduce the following system for ¢1, ¢2, ¢, py,

220,41 = Lip1]+ Blo1] + F3(p1 + ¢2, 0, Py, 08)
—mo[F3(¢1 + ¢2, ¢, P1. 95)I1Wo — ma[F3(é1 + ¢2, ¢, Py1, 95)1W2

2
+) Wi inR? x (1. 0)
j=1

¢1(-19) =0 inR?,
(5.48)
22802 = Ligo] + Blpal +mal F3(d1 + ¢2, 0, Py, 95)1Wa  in R? x (19, 00)
$2(-, 10) = o inR?,

(5.49)
39 = Ap — V- Vo + Gadr + ¢2. ¢, p1. ¢)) inR? x (1, 00)
9(-,10) =0 inR?,
(5.50)
where
F3(¢v @, P1; ¢3)2E222+FZ(¢7 @, P1s GOE)k))Za (551)

In (5.48) w;(t) are functions so that the right hand side has center of mass
equal to zero. A solution ¢, ¢2, ¢ to (5.48), (5.49) and (5.50) gives a solution
to the system (5.39), (5.40) provided p; is such that the following equations are
satisfied

0 = mo[F3(¢1 + ¢2, ¢, p1. 9 1(1), Vit > 1o,

. (5.52)
O0=pu;@), Vt>1, j=12.

5.5. Mass and second moment

In this section we derive some formulas for the mass and second moment
appearing in the right hand side of (5.48).

In the computation of mo[F3(¢, ¢, p. ¢5)] and ma[F3(¢, ¢, py. ¢)], the fol-
lowing formulas will be useful.

Lemma 5.3. We have

/ S(u1 (p)dx = 3, f wodx — 3, f ordx
R2 R2 R2

22 22
= —8;{877(1[1 + ZT—] + ae; (—) +/ (pxdx}
t t R2

and
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Y ral)]

/ (S(u1(p)) — S(u1(po)))dx = —8z{0t1 [871(1 +27
R2

2
_)\‘0

)\2
+ 16 Y
2

t
rao(er() —er () + [ o).

where e (s) is defined by
2

AT] t e (XTZ) (5.53)

Recall that Y is given in (2.7) and note that

/ updx = Sna[l + 27
R2

e1(s) = 0(s?), ass — 0.
Proof. For this we recall that (c.f. (2.8))

Su1(p) = —0uo — @5 + E(uop + @1),

SO
/ S(ui(p))dx = —8,/ uodx — atf ©dx
R2 R2 R2
22 A2
— —8t[8mx[1 + ZTT] +ae1(7> n /Rz (pxdx}.
Therefore
22 22
(S @) = S @odx = =g o [s7 (1427 ) + (7]
22— A2
+ 16 Y
)\2
+ ag (61 (7) - 61 / (o — <Pxo)dx}~
[m]
Lemma 5.4. We have
Ama[So(u1(po +p1)) — SO(”I(PO))]
= —327a; — —f E)|x £ dx
o)
+ P/ U( )x(—)IXI dx
0

2

—4[ae1<%>—aoel<%%>1—[aez@)—aoez(t—%n
- ([ @0~ ox)
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—<1—a>f E(x—s,r,x>|x—é|2dx+(1—ao>/ E(x, 1, ho)lx 2 d
R2 R2
— g / S(u1(po))dx.

R2

Proof. We have defined the second moment m, (5.44) integrating with respect to

y. Note that
4 2. Xx—8\ . .o
i [ rombay= [ () -,

and therefore
A ma[So(u1 (o + P1)) — So(u1(Po))]

v /R So(ut1(Po + PIE + Ay [yI2dy
_ fR So(ue1 (PO E + Ay [yI2dy
_ /H% So(ut1 (Po + P |x — &%y
- / So(ut1(pg)) (¥)|x — & 2dy.
]RZ
We have by Lemma 5.2,
/ S(uy)lx —$|2dx =4/ @rdx —a/ E(x —&,t;0)|x —§|2dx
]RZ RZ ]RZ
+/ vmdx-é—%/ Uy lx — &|%dx
R2 A R2

—a —a)/ EGr — & 15 2)|x — £2dx
]RZ

1 1
+4(f M0+/ 90)\)<1—— Uy — <— <PA)-
R2 R2 8 R2 8 R2

(5.54)

where E, E are defined in (3.10), (3.11). Let

m= / (uo + ¢p)dx, om =m — 8.
R2

Since

/}Rz(uo + @y )dx = 8,

by (5.22), we have

dm = f (oo — @) dx.
RZ
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Replacing m in (5.54) we get

1 2
updx — —(6m)
2

f S(uy(p))|x — §7dx =327 —4/
R2

R2

— Ot/ E(x —&,1; M)|x — $|2dx
R2
. )
+ V(p)\dx-é——z Uyxlx —&|7dx
R2 A R2
— (- a)/ E(x —&,1; 0)|x — £]%dx.  (5.55)
R2
Also under (4.1) we have by (5.24):
. e 22
f Elx — &2dx = —647 Y + ez(—), (5.56)
R2 1t t
where

er(s) = 0(s2), ass — 0.
Combining (5.55), (5.53) and (5.56) we get
| .
/ S(ui(P)|x — £°dx = 327(1 —a) — —(6m)* — 1/ Uxlx —&2dx
R2 2 )\.2 R2
+/ vmx-é—(l—a)/ E(e—£, 1 M)|x—&[2dx
R2 R2
A2 A2
— 4dae (7) — aez<7).

We can apply this formula to p = po and get
@ X
f S(ui(po))lx*dx =321 (1 — ap) — — / U(—)x|x|*dx
R2 Ay JR2 o)
~(-a) [ EGrokPds
R2
23 25
- 40[061 (—O> — a062<—0>.
t t
Note that

/ So(u1 (po))|x — & Pdx = f So(u1 (po))|x2dx + (&2 / So(u1 (po))dx
R2 R2 R2

=/ So(u1(po)|x|2dx+|§|2/ S(u1(po)dx
R2 R2
because

/ So(ui(po)xjdx = 0.
R2
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Therefore,

/R (51 () — S Pl — & Pdx

— 327a — %/}R U f)xo(xfnx — & dx

@ X X 2
— U(—)x(— d
457 Ja UGGy el

o () e (2)] - () - aner(2)
- (/Rz(fpx - @Ao)dx>2
—(1-a) /R2 E(x—& 6, )|x —&7dx + (1 — ap) /Rz E(x,t,h)|x|* dx

— lg? / S(u1(po)dx.
R2

6. Proof of Theorem 1.1

Next we define norms, which are suitably adapted to the terms in the inner linear
problems (5.48), (5.49). Let us write the linearized versions of these problems as

2289 = LI¢] + Bl¢] + h(y,1) inR? x (19, 00),

6.1
é(,10) =0 inR%.
Given positive numbers v, p, e and m € R, we let
I21l0,v,m,p,e =1inf K such that
I'% | 1 Iyl < J/tlogt,
|h(y, )] < &/2 (6.2)
v (og ™ (1+ 1P % vl = JTogt.
y
We also defie
ldll1,0,m,p,e =inf K such that
@, O+ (1 + [yDIVyd (v, )]
I% | 1 Iyl < J/tlogt,
< e/2
o (logny™ (1+ [yhr | W18 Lo iTogt.

|yl®

We develop a solvability theory of problem (6.1) that involves uniform space-
time bounds in terms of the above norms. We will establish two results: one in which
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the solution “loses” one power of ¢ on bounded sets with respect to the time-decay
of i, under radial symmetry and the condition of spatial average O at all times. Our
second result states that for a general 4 this loss is only 7 if in addition the center
of mass and second-moment of & are zero at all times.

For the first result we introduce a parameter in the problem in order to get a fast
decay of the solution:

A28:¢ = LIl + Blp] + h(y, 1) inR?* x (19, 0),

s (6.3)
¢(, 1) =c1Zy inR7,
where Zo is defined as
Zo(0) = (Zo(p) = mz,U)x0( 5755 ) (6.4)

where m 7, is such that

/ Zo=0.
RZ
7

Proposition 6.1. Assume (4.1). Leto > 0, ¢ > Owitho + & <2and 1 <v < .

Let 0 < g < 1. Then there exists a number C > 0 such that for ty sufficiently large
and all radially symmetric h = h(|y|, t) with ||h|l0,v.m.6+6.e < 00 and

/ h(y,t)dy =0, forallt > ty,
RZ

there exists c; € R and solution ¢(y,t) = ’Z;,i’z[h] of problem (6.3) that defines a
linear operator of h and satisfies the estimate

léll1,v—1,mrg—1.4240+e < W”h||o,v,m,6+a,g.
Moreover cy is a linear operator of h and

leil =C ||h||0,v,m,6+0,s-

10~ (log o)™

We also consider the problem

2
3209 = LIgpl + BIpl + h(y. ) + Y uj(OW1j inR? x (9, 00),

= (6.5)

é(- 10) =0 inR%.

where the function W ; have been defined in (5.45).
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Proposition 6.2. Assume (4.1). Let 0 < 0 < 1, ¢ > Owitho +¢ < % and

1 <v < min(l + %, 3 — %, %). Let 0 < g < 1. Then there is C such that for ty
large the following holds. Suppose that h satisfies ||h|o,v.m.6+0.c < 00 and

/ihouo¢y=o,‘/ By, DlylPdy = 0, forallt > t.
R2 R2

Then there exists a solution ¢(y, 1), w;(t) of problem (6.5) that defines a linear
operator of h and satisfies

1801wy 51 4206 = Cll0m 6o

The parameters i satisfy

o)== [ hGr. 03y + 410

where [ij are linear functions of h with

iR < S llvm 50

v+l (log t)v+m+
We denote this solution by ¢ = 7;,“[h].

The proof of the Propositions 6.1 and 6.2 is divided into different steps and
presented in Sects. 8—12.

Next we consider the linear outer problem:
dp° = LO[¢°] + g(x, 1), inR? x (ty, 00) ©6)
¢°(.10) = ¢, inR% '

where

x —&(1)
L[] == Ay — V [F (—)]~V :
[¢] x® x|1o ) x®
For a given function g(x, #) we consider the norm || g||.«, . defined as the least
K = 0 such that for all (x, ) € R? x (9, o0)

I 1)
tog)f 14+ 1¢1P” > i
Accordingly, we consider for a function ¢°(x, t) the norm ||¢||. , defined as the
least K = 0 such that

lg(x, )| = K 6.7)

1 1 x—&
ta=log )P 14+ 1¢P" >

[¢7(x, D] + ( + [x = EDIVeg?(x, 1) = K

for all (x, 1) € R? x (t9, 00).
We assume that the parameters a, b, § satisfy the constraints

b
l<a<4, 2<b<6, a<l+§, B eR. (6.9)
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Proposition 6.3. Assume that the parameter functions p = (;, «, &) satisfy condi-
tions (4.1) and the numbers a, b, B satisfy (6.9). Then there is a constant C so that
for to sufficiently large and for ||g||l«x.0 < 00, there exists a solution ¢p° = ’];,O[g]
of (6.6) with ¢ = 0, which defines a linear operator of g and satisfies

14 1lx,0 < Cligllss,o0-

For the initial condition ¢ in (6.6) we consider the norm || @ ||+, defined as

l¢¢ I+, = inf K such that

o ()] + (A(to) + |x)|Vx® (x)| < TV (6.10)
1+ 0P
Vio
We have an estimate for the solution of (6.6) with ¢ = 0 and ||¢] ||+, < oo.

Proposition 6.4. Assume that the parameter functions p = (;, «, &) satisfy condi-
tions (4.1) and the numbers a, b, B satisfy (6.9). Then there is a constant C so that
for ty sufficiently large and for ||¢g|l«,» < 00 there exists a solution ¢° of (6.6),
which defines a linear operator of ¢ and satisfies

161150 < Ctg™ " log 10)P 4G 15-

The proofs of Propositions 6.3 and 6.4 are contained in Sect. 13.
In what follows we work with p; of the form

P = (O’ aq, él),

that is, we take A = Ao, @ = a9 + 1, &€ = &1, where Ao and «( have been fixed in
Sect.5.1, and we write

P =Py +Pi-

Next we define suitable operators that allow us to formulate the system of
equations (5.48), (5.49), (5.50), and (5.52) as a fixed point problem. We let

Anlgr. 2.9 p1) = T [ Fs@1 + 62, 0.1, 00)

— mo[F3(¢1 + ¢2, ¢, Py, 95)1Wo
—ma[F3(¢1 + ¢2, ¢, 1. ¢5)1W2
—m1[F3(1 + ¢2, 0, p1, 95)IWi 1

— m2[F3(@1 + 92, 9.1 6 IW2
Aidlgr. 2. 9. p1. 951 = Ty [mal F3 (@1 + ¢2. 0. py). 95 1W2]
Aol1, 2, ¢, P1. ol = T)[G2(P1 + b2, ¢, P1» 9)]-
Then the equations (5.48), (5.49),(5.50) can be written as

¢1 = Airlo1, ¢2. 9. p1. 95
#2 = Aild1, ¢2. 9. P, 9]
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¢ = Aol¢1. ¢2, 0,1, 95
Next we consider the equations (5.52), that is, mo[ F3(¢1 +¢2, ¢, Py, ¢5)1(t) =
0and () = 0. By (5.51) and (5.41)
molF3(¢. ¢, Py, 93) %1 = AgmolSo(u1 (o + P1)) — So(u1(Pp))] + mol E272]
+molF (@) +¢.¢* +¢.p +PDAI
+ Agmol (So (w1 (o + P1)) — Sou1(P)) (X — D,

and using Lemma 5.3,
A2 A3
molF3(¢. 0. pr. @) 1) = =230 {en 87 (1+2020) + e (22) ]} + molExta)
+molF (¢ + ¢, 9" + ¢, Py + P K]
+ Agmol(So(u1(py + P1)) — So(u1(Pe))) (X — DI.

This motivates the definition

Ag (@1, 92, 0, P17, 5]
1 %
=—- 3 v / {mo E>x21(s)
sr(1+274) o2 St A
+mo[F (@) + ¢, ¢* + ¢, py + P K1)

+ 2mol(So 1 (P + 1)) — Soar (B (F — DI(s) s 6.11)

Similarly, by (5.51) and (5.41), asking that u; = 0 in (5.48) is equivalent to
0 = roaré faU() ~d+°‘)‘%é /U()a (==)yjd
0081 |, Oy UMy xdy N ¥)9z; X0 \[yj y

+my[Exfa) + mij[F (9 + ¢, 0" + 9. po + )X+ my j[Bléi]].
This motivates the definition

Ag (01, 62, 0. p1. 9]
1

=ft ry 3)]U(y)ijdy{\/»$1]/ U(y)szxo(\[)y,dy

+mi1 [E2%21(s) +my j[F (¢} + b, 0" + ¢, Po + P)FI() + ml,j[B[¢1]](S)}dS
(6.12)

Then we define A, by

Ap[¢lv ¢27 @, P1» ¢6k] = (07 AO[1[¢17 ¢27 ®,P1s ‘Pgl Agl [‘Pla ¢27 ®,P1» 903])
(6.13)

Then

= Ap[¢1’ ¢27 (07 pl’ (pz)k]
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is equivalent to the equations (5.52).
We write

-

¢ = (¢11 ¢27 @, pl)a

and
Alg] = (A6, 951, Annld, 951, Aold, 651, A6, 95D,
and the objective is to find (E such that
¢ = Alg].

The operator .4 depends on the initial condition ¢ appearing in the parabolic
problem (5.37), and we will stress its dependence later on when proving the stability
assertion in Theorem 1.1.

We define the spaces on which we will consider the operator A to set up the
fixed point problem. For certain choices of constants v, ¢, o, ¢, a, b, B, vy, ® that
we will make precise later, we let

Xi = {6 € L°®? x (19,00)) | Vy¢ € LZ(R®? x (19, 0)), |8l o0,

l,%,4,2+a+s <
/ ¢y, )dy =0, / oy, )ydy =0, t > to],
R2 R2

Xo = {9 € L®R? x (19, 00)) | Vy¢ € LR x (19, 00)), llll+,0 < 00},

Xp=10.a1.£) € C' (110,000 | letller 1 o < 000 [Etllct 50 < 00)

where the norms ||¢||1’U_%’%’4’2+U+£ and ||¢||«,, are defined in (6.2), (6.7) and
&1t ),m 1s defined by
lgllco, m = sup t*(logt)™|g(t)].

(= 00]

”g”Cl’M,m = ”g”CO’M,m + ”g”CO,p,—i-l,m'

for a function g € C'([tg, 00)).
‘We choose in the definition of the outer norm (6.8)

5 1
a=v+3l. WwH3<b<6, ﬂ<¥. (6.14)

With these choices we see that (6.9) are satisfied. Also v will be in the range
l<v< % so the interval for b is not empty in (6.14).
We use the following notation: for p; = (0, a1, &1),

P11, = lertllenyy1 o+ €11 140

and ford; = (¢1, 92, 0, P1)»

1Bl = 081l g 0t 4syore + 62,

1, ‘12;1,4’2_’_0_‘_8 + ”(p”*,a + ”pl ||Xp~

(6.15)

2
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With the above notation, given ¢ with [|¢ ||+, sufficiently small, we consider
the fixed point problem

¢ = Alg], (6.16)

with d; in a suitable close ball of X. A solution of this fixed point problem yields a
solution of the system of Egs. (5.48), (5.49), (5.50), (5.52), which in turn gives a
solution to (3.1).

We claim that for some constant C independent of 7o > 1, if tg_l(log 10)?

g llep < 1,and |@llx < 1, then

C +g
||All[¢19 ¢2 (p’ p]7 QD()]”] v— l l] 1 42+(f+8 = + C(logto)zto 2 ||(p(>)k“*,b,
6.17)

for some ¥ > 0 small, a constant C independent of 7, and 7y sufficiently large.
Indeed, by Proposition 6.2 we have

”Ail[d)h ¢27 @, plr @8]”1’1)_%"17*1’4’24_0-4_8 S C|IF3(¢1 + ¢27 @, p]s (pE)k)”O,\),6+U,8'

We recall the expansion of F3 in (5.51). To estimate E» x> we use (5.43) to get

C

X <
IE2X110,v,0,6+0.6 = 555

I z ~(log 1)2

where 8, o are positive small constants and are assumed to satisfy 26 — 5 > 0.

Then we take v in the range

1<v<1+25—%, (6.18)

with v close to 1.

Let us consider the term A4[So(p0 +P1) —So(po)lin F3(d1+d2, ¢, P1» @ ) (c.f.
(5.51)). The formula A*[S (Po + P1) — So(pg)] (c.f. (5.31)) contains for example

the term, evaluated at y = ;f‘ ,

_ /\oaU(y)on/_) + Ao <§1 toxoy)x()(& J;?Aoy)
= —)»%duU(y)Xo()%) - A%dO[U(y) _ U(Sl —;O)»oy)]XO(kon)
_ A%o’on(él 4):0)»0}’)[)(0(51 T/;Aoy> B XO(/\oTty)] 619
But
‘—)\(z)dlU(y)X()(MTi))‘ = C[”Jrlzg(li)gr)@—i a+ |;|)6+g XO():O[>”O[1”C1 v+l
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SO
|20 (00("2) fen
o%¥1 Y)Xo \/— 0.0.640.¢ l‘g 1 ct, 1)+ e
for some ¥ > 0.
Similarly,
. §1+ ?»oy y
“ao[U ) — v (BT2) ] (22)
' 0 Ao Vi
1 1 IElI (_y>
logt t2logt (1 + |y[)> A NG
1+o
1 (tlogt) 2 Aoy
<C xo( 2 )il
7 ogn? o+ e U et
1 1 Aoy
<C—ry - x0(=2) il
15254 (log 1)1 =5 (L4 1yDoHo A /1 el
SO
. &1 + hoy Loy C
a0 = (3575) o) e = 7 7
| 33eo[U ) v | LGy | P e

for some ¥ > 0. The last term in the expression (6.19) is similar.
The terms in A*[So (Po + P1) — So(pgy)] that contain the function ¢;,, are

4
M [=Z0a =V (@20 V00) = V- @0V) = V- (03, V)
e

= 4mapmo—(a — D20 Vy@ig - VyTo+202 V030 - VyRA2102U x93,

—aVy(Ux) - VoW — 20> Vy(@ro Vy¥iag)-

In 10*[So (Po +P1) — So(pg)] these terms appear evaluated at y and then at % +y.
Using estimates for the the second derivative of ¢, similar to Lemma 4.1 and
assuming

o<1, v<l+y, (6.20)

we get
1 -
124 [So(Po + P1) — S0P l0.v.6+0.6 < C5l6lx-
0

The main term in F3(¢1 + ¢2, ¢, p;, @) that depends on the outer solution is
12U ¢° with ¢° = ¢* + ¢ defined in (5.38). Then we have
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A2 8
g P (14 [yt 1w
1
"2 (log )1 (1 + 1y
(tlogr)'+3
t‘”‘%(]ogt)ﬁ-i-l (14 |yp)ste
1

1
<C - .
= C TR oyt T e e

WUy, 0% <

)4)?”‘?”*,0

X0

Therefore
2 - 1
2" Uexllov.6+0e = Cig———lI@ll0-
to” (logro)f~3
Regarding the function ¢* (c.f. (5.37)) we note that it has the estimate
1 1 x—&
a—1 B 5 ¢ =

9= (logH)f 1+ [¢| Vi
by Proposition 6.4, provided (6.9) holds, and therefore

lo*(x, )] < 15" (og 10)P 195115 (6.21)

2 ~ v+1+% g
IAU@* X llo,v,640,6 < Cty > (10g10) 2 (|95 ll,5-

Let us analyze some of the terms in F3(¢1 + ¢2, ¢, Py, @) that depend on the
inner solutions ¢; and ¢,. For instance

(@ —1DVy - (¢;VyIg) = (@ — DVyep; - VyI'g — (@ — 1)¢p; U.

‘We have the estimate

(@ = 1DVyj - VyTox| =

1
i q—1
tlogt =3 (log 'z (1 +1¥D° 19ill -t 25t 420040

1 1

=c - sl oyt :
53 (log 1+ 7 -8 (L [yDSFe T Tl i deoee

and we get
- C
I = 19385 VyToThosroe = 519310y 150 0240

for some ¥ > 0.
We also have, writing ¢ = ¢ + ¢»,

. - C
1461907 Nossroe < 1911y 12 424010

for some ¢ > O, if

y > —. (6.22)



Arch. Rational Mech. Anal. (2024) 248:61 Page 41 of 154 61

Let 1us estimate the term V, - (U Vy(@@ — ) x appearing in (5.6), where 1/} =
(=)~
2 ), v = (—=A) "' (A2¢"). We recall that ¢ = ¢ + ¢, c.f. (5.38), and
therefore we can decompose 1& = 1&6 + 1}1 where 1&6 = (—A)_l(k_2¢6x) and
1&1 = (=A)"'(A2¢x). Similarly, we can decompose ¥ = % + 11 where
Yh = (—A) 7T 2¢) and ¥ = (—A)2(A"1¢). By linearity we need to es-
timate separately Vy, - (UVy(x% - ¢6)) and Vy, - (UVy(@l —y1)). Let us consider
the latter one. Note that

U1 — 1 = (=AM e — x)l.

From the definition of the norm ||¢||1,v_%’%’4’2+6+8

1 1
S ogns (L+1yD?

6O DS Il 1 0t 42 i0se (6.23)

and so
1 1

'3 (log t)% (tlog t)% ’

V3G = 0001 = CIBlL 1ot gnigse

i

t
for <2—.
Iyl < .

Then

V30 - V(1 =)0 D1 = Cllly 1 ot 4n g

2

1 1 Ji

7
o ) fOr |y| S 2_
5% log 1) T (L IyDOH? A

This and a similar estimate for U¢ (1 — x) give

A . C
IVy - (UVy (1 =) Xllo,v,6+0,6 < g”(p”l,vf%,%A,Zﬂﬂrs

forsome ¢ > 0. A similar estimate is obtained for || Vy-(UV,, (1@6 — 1/;6)))2 l0,v.6+0.¢
using (5.36).

Let us estimate next the term A2 Vy - (0. Vy¥r) X, where we recall, ¥ = (—A) -1
(A2¢). To do this we use that ¢ = ¢ + ¢ has zero mass and center of mass, that
is,

/ ¢y, 0)dy =/ ¢(y,)yjdy =0, 1> 1.
R2 R2
This and the estimate (6.23) imply

o 1 log(2 + |y])
A e D

QDI+ A+ 1yDIVyy (v, 0l = Cliglly |,



61 Page 42 of 154 Arch. Rational Mech. Anal. (2024) 248:61

by an argument similar to Remark 9.1. On the other hand, from (4.3)

c N
V(3 D] < ————— |y| =2~
y#aly tlogr (14 |y|)3 g
Therefore
A2 log(2 + [y])
2 ; ;
A2(Vygy -V D =C >
12 (Vygs - Vyy) (v, 1] < ||¢||1’V_%,%,4,2+0+8 v+2(logt)q;l (1 + [yD°
<Clal 1 :
= o=t d2bote i To 7 (log ) "> (L+1yDOT
Ji
<2—.
Iyl < .

From this coupled with a similar estimate for A%, ¢ we get

1329y - @950 610 < %||¢||1,U;,q;1,4,2+(,+8
for some ¥ > 0.
The remaining terms in F3(¢1 + ¢2, @, Py, ¢;;) are estimated in a similar way
and we get the validity (6.17).
Proceeding in the same way we get a Lipschitz bound.  Assuming
16" (og 10)P ll@§ll«.p < 1, for [lp1]lx < 1and $2llx < 1 we have

- - cC - -
1A [B1. 951 = Ait[B2. 051, 3 01 4 3i0e < 561 = B2llx.
0

for some ¢ > 0 small, a constant C independent of fy, and #p sufficiently large.
Indeed, the Lipschitz estimate with respect to ¢1, ¢, and ¢ is direct from the explicit
dependence of F3(¢1 + ¢2, ¢, P, ¢;) on these variables, which is either linear or
quadratic. The Lipschitz dependence on &1 (where p; = (a1, &1)) is also direct from
the explicit form of F3(¢1 + ¢2, ¢, p;. ¢;). The Lipschitz condition with respect
to oy appears as an explicit dependence on this variable in F3(¢1 + ¢2, ¢, Py, ¢3)-

Let us estimate the operator A4;,. We claim that if tg -1 (log t)? logllsns <1
and [[¢|lx < 1, then

” Ai2[¢11 ¢27 @, p]» 903]”1,1)—%,‘1771,4,24—04-8
_lq_gq _ 1
< C(logto)™ 2~ + €15~ (10g10) 7 Il I+, - (6.24)
Indeed, we apply Proposition 6.1 to get

I Ai2[é1, ¢2, ¢, P, @5l =145 4240te

C
= (ogi)i 4 |mal F3(¢1 + 2. 9. py (pg)]W2||O,v+%,l%q,6+o,s
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and since W5 has compact support,

”Al2[¢17 ¢27 (0» p]ﬂ (pg]||l’v_%’%’412+a+£
< supr™Fi(logt) T mal F3(@1 + b2 0. Py 0)1(0)]
= Qog 1)1 rop ¢ P10

Using the definition of F3 (5.51)
m2[F3(¢v @, P1>» ‘Pg)] - mZ[EZXZ] + mZ[F2(¢7 @, P1s goak))z]

We have by (5.43) (assuming o < 1),

- C
Imal E2 X2](D] = =7+

172

Therefore, asking that
340

vV+ - <

o
1+ — 6.25
5 Sv< +2 (6.25)

we get

1 1= ~
supt”T2(logt) 2 [ma[Ex%2](1)] <

t>1g tg

for some ¥ > 0.
By (5.41)

malFa (¢, @, p1» 9§ X1 = A*malSo(u1(py + p1)) — So(u1(py))]
+ma[F(§) + ¢, 0" + ¢, py + P K]
+ A mal(So (i1 (po + P1)) — So(1 (Pe)) (X — DI

Of these terms, the largest is the first one. By Lemma 5.4, and since A = X, we get

K ma[So(u1(po + P1)) — So(u1 (po))]

(5(1 X — -
= —-32ma; — —2/ U(—S)Xo( 5
Ay JR? Ao

)| |2
X —E dx
)\.0

+a1/ E(x—é,t,xonx—sﬁdx—|§|2/ S(ui(po))dx.  (6.26)
R2 R2

But

31 5t 1 A 6
sup 4 log 1) 7 jr (1] = Clogt) " Cllatler 1 o (6.27)
1>1

under the assumption

(S —— (6.28)
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The second term in (6.26) is much smaller. For the last term in (6.26) we use
Lemma 5.3 and (5.29), (5.30) to get

C
‘/ S(ui(po))dx| < — (6.29)
R2 t

and therefore

HGk

2
= t2+_zy||€1||cl’y’0~

/ S(u1(po))dx
R2

Combining (6.26), (6.27) and (6.29) we get

1 1—¢
_— "t2logr) 2 A S +
(Tog o)1~ [Slltrg (logr) Im2[So(u1(po + P1))

— So(u1 (o)1) < Clogto)™ = i1 llx,

Let’s estimate the remaining terms in m2[F3(¢, ¢, py, go(’)‘)]. Consider

AG) = /Hé Yy 209y A) T PRIy Pdy + fR Yy @V, URIy Py

which appears in the definition of F, where ¢ = ¢ + ¢». Let us recall that
Vi = (—Ay) "', and let’s write

v=(Aa)T"¢
Integrating by parts,
Ar) = /RZ(AWAVW + Ay VyYn) - y2X +y - Vyx)dy.
Using the Pohozaev type identity

Ay (Vyy - y) + Ay (Vy ¥ - y)
= Vy - [VyUa(Vy ¥ - y) + Vyr (Vy o - y) — yVy - Vyyr]

and integrating by parts, we get
A1) = —/RZ[VyW(VyI/f W)+ VU (V- y)

—yVyn - V¥ - [2Vyx + yAy x1dy.

Therefore

A < cf V| Vi ldy.
21 /A<y |<4t/

Using that = (—A) !¢, and

/ ¢(y,)dy =0, / ¢y, )ydy =0,
R2 R2
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we have (see Remark 9.1) for any o > 0 small,

1
Dl =<
L+ 1yP72 =3 (log >

IV (y,

—1 ||¢”1 v— 1 q ! 4.240+¢e"

Using that ¢;, and v, are radial and

‘/Rzmdx = tlogt’
by Lemma 4.1 we have
1
[y, Ol = ozt L+ 1yl
Then
1
e e AL IV

Let us consider the contribution of the term A>U @*. Thanks to (6.21)

~ —1 1—
Imal2UG* ZIWallg 1 14 4 < €15~ (0g10) 2 (105 b

under the condition

B> l%q. (6.30)

The other terms in m, are estlmated in a similar way and we get (6.24).
Similarly we get that if tof (log t0)5||(p0||* » < 1, then for ||¢>1||X < 1 and
$2]lx < 1 we have

| Anldr] = Anldallly, ) ot | sarose < C0g10)" 7961 — hallx.

for a constant C independent of #y, where #( sufficiently large.
Let us estimate the operator A,[¢1,$2,¢,py,¢5]. We claim that
if 1~ (log 10)P g ll+.p < 1, then for [p]lx < 1,

N C _ _
1AL, @5 1l1k0 < ———— + C1§~*1og 1)’ 15 1.5 (6.31)
(logtg) = —F
and for |1 llx < 1, lgallx < 1and 5" (log 10)P | Il < 1,
e * e * c e e
I A1, ¢0] — Aolg2. (/7()]”*,0 = 7”(]51 —¢allx.
(logtp) 2

Note that 231 — g > 0 by (6.14).
Indeed, by Proposition 6.3

”AO[¢1’ ¢27 @y p] k] (pE)k]”*,() E C||G2(¢1 + ¢2’ (p’ p] ’ ¢8)||**,0’
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where we recall G; defined in (5.42)
We start with the term A4 E, (1 — Xx2) x - Using the estimate (5.43) we get

1A *Ex(1 = £2) X llss0 < 5
0

for some ¥ > 0 provided
a <41 -9).

We also directly get from (4.6)

IS@D = Ol < =5
Iy

for some ¥ > 0ifa < 4.
Regarding the terms in G (c.f. (5.10)) that the depend linearly on ¢' = ¢ + ¢

we have for [[¢]], 14 40q04e <
1 1 1

C
A
sl < 53 P ogn T (% —EI/AD ¢

—&
e[
=C : : ol
= i ogn B (Lt [x —El/J/p v Ao
(6.32)
which implies
H wx5,0 (ogt )q+1 ||¢”1,v—%,q771,4,2+0+£’
since 8 < qT which is one of the conditions in (6.14)
We also have, using (5.36),
H 1 ¢iA - C
A2 05X x%,0 tg
for some ¥ > 0 if
a <4.
A similar estimate holds for the other terms depending on ¢’
Some of the terms in G that depend on ¢° = ¢* + ¢ are
Lugea—p|=c 2 1 1 1= 0lel
2O TS P e o (L -y
¢ : : (19" [l4,0 + 1@ 11x.0)
—glypp e T e

<
~ tologty t9(logt)P (1 + |x
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which implies that

C
<

Ct4 2102 10)? ot wp,
wno = ologh l@llso + Cty~~(og10)" llegll+p

1 o
|zUeta -0

by Proposition 6.4. Other terms are estimated in a similar way.
Let us estimate the operator A, which is defined by the equations (6.13). We
claim that if

(03 &17 gl) = Ap[¢1, ¢27 @, p]]
and 1§~ (log 10)? | @§ 1o < 1. I6llx < 1. ¢ = (41, b2, @. p1), then
latller sy 0 < Clogi)® P + C15 ™" (og 10)llf 1.6

~ C 1
161ly0 = -5 + Ciy 7 (102 10)7 195 1.5 (6.33)
0

for some ¢ > 0. Similarly, we have the following Lipschitz_estimate.
If 1§~ (log 10)P || 1.5 < 1. then for some # > 0, and for [|$1]x < 1. |2llx < 1.

1A 61, 931 — Aplda. 9gllix, < Clog1)° P lé1 — dalix. (6.34)

for some ¥ > 0.
Indeed, by (6.11)

| A, [01, 02, 0, D1, 95 10| < [T1 ()| + | L (1) + | 3(0)]

where

*1
ILi(n) = / —molE2x21(s)ds
t )LO

o0 q )
L) = f SmolF @)+ 99" + 9. Py + POEN)ds
t Ay

I3(t) = / Kgmol(So(u1(pg + P1)) — So(u1 (o)) (X — DI(s)ds.
t

Using (5.43) and [p> Eady = 0 we get

1
A—zf’HO[Ez)?z](t)

< C——
- C t3—23 :
0

This gives
—3425
Iilleruto <Clp (6.35)

under the assumption

3
v< ——26.
2
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The largest contribution in 7> comes from the term A>U¢° in F(¢)) + ¢, ¢* +
@, Pog + Py) (c.f. (5.6)). The estimate of this term is

1
= C3— 9 114.0 (6.36)
"2 (logt)P

- f Jo)2U()e° (v, dy

k%
and so
[ vowweoa],,  , =ctoen® e,
under the assumption
0 < B. (6.37)
Similar estimates for the remaining terms give
I12lle iy 1.0 < Cogio)® Plilx + Cr~" Aog 10)? g5 .- (6.38)

Regarding I3, using (4.5) we have

AgmolSo(u1(p) (% — D] < (6.39)

3logt
Putting together (6.35), (6.38), and (6.39) we get
1 Aa (91, 62, 9. 01 951l c1 41,6 < Cllog10)® P [1Gl1x + Ci§ ™" log 10) I .5

assuming also that

| W

V<

The computations leading to (6.33) are very similar, under the assumption
1
y <v-— > (6.40)

This restriction arises when considering the largest term in the expression (6.12),
namely comes from estimating the term kgm 1,jlong @ x1 ()\(2)<p,\0¢ is one of the terms
in (5.6))

1 -
Fim1jledR10] = Cho / (oao By, ldy
0 R2
1
t(lOgt) tv—j(logt)

1 ”¢”1,v 15 4240 4¢

Let us summarize the restrictions on the parameters. We let0 < g < 1 be fixed.
We take

0 <8 <o < min(l, 49),
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and
1<u<min(1+25—3,§,1+y,1+3).
22 2
because of (6.18), (6.20), (6.25). We also need
l%q <B®<p< #

by (6.28), (6.37) and by (6.30) and (6.14). We take

o
2 <y <wv >
by (6.22) and (6.40).

Together with the above inequalities we want also the relations o 4+ ¢ < 2,
v+ % < % for Proposition 6.1 and o + ¢ < %, v < min(l + 5,3 — 7, %) for
Proposition 6.2. The condition (6.9) for Propositions 6.3 and 6.4 hold by (6.14).
We see that all these restrictions are satisfied by choosing first §, ¢ > 0 small so
that 26 — 5 > 0. Then we take v > 1 close to 1, thenleta = v + % and b satisfying
(6.14). Then ®, B and y can be selected. Note that with the above procedure we
are getting the restriction b > 5.

We already have all elements to solve the fixed point problem (6.16), which we
recall

b=Alpl, debB,

where B is the closed unit ball in the Banach space of functions d; with ||¢3 lx <400
and the norm defined in (6.15). Thus

B={deX|lplx 1)

Let ¢ be such that tg_l(log 10)? ll@gll+.p < 1. Estimates (6.17), (6.24), (6.31) and
(6.34), imply that, enlarging the parameter 7y if necessary, .4 maps B into itself. We
also get that 4 is a contraction mapping on 3. The contraction mapping principle
yields the existence of a unique fixed point in B, which then yields the required
existence result.

6.1. Stability
Theorem 1.1 gives that if ¢j has mass zero and is small so that
3
o "2 (1og 10)P |9 ll+.5 < 1, then the function

ulx,t) = ;:82 [U(x);(igt)) +¢6<x):)(i§t)’t> +¢>(x/\_o—(i()t),t)]x(x, )

+ @ —E@), D) +o(x, 1) + 9" (x, 1), (6.41)

solves (3.1) and blows-up in the way described in Theorem 1.1. This follows from
the form of the ansatz (3.2), (3.13), (5.1), (5.38), where ¢ = ¢ + ¢», and ¢, ¢,
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@, p* satisfy respectively the equations (5.48), (5.49), (5.50) and (5.37). The initial
value of u is

o o altos ) rx —E0; ¢p) i (% — §@o; @)
ur g0) = Lo (to)? [U< Ao (fo) ) ¢0( A0(10) )
+Cl(<Po)ZO<W)]

x —&(to; ¢ .
xo(%) + B (6 = E(t0: 93). 10) + 95 ).

We recall that ¢, is defined in (3.9). The function ¢ doesn’t depend on & and is
radial about the origin.

We let ug(x) = u*(x; 0). Note that u is radial and so its center of mass is zero.

To prove stability, we would like to prove the following intermediate step: given
v defined on R? small, with mass zero and under some additional assumptions to
be defined later on, we would like to find (pa‘ with mass zero such that

W pl) = uf +v. (6.42)

The equation (6.42) for ¢ has the form

a(to; ¢5) [U(x — &(t0; <p3)> ¢0(x — &(to; <p0))

Lo (t0)? Ao (10) A0 (1)
e (X —E&(to) x —&(10; @)
+C1(¢0)Z°( o(10) )] ' ( Ji )

+ @1 (x — (105 93), o) + @3 (x)

(t0; 0)
= O)iot(oto)Z [U<A0)(Ct0)) ¢0(A0(t0)> +¢1(0) 0<)»o(to))] XO(%)
+ @1, (x, 10) + v. (6.43)

Computing the mass we find that « (¢y; <p6‘) = a(tp; 0). Note that lim; ., £(1) =0
by (6.12). Then the center of mass of u(-, t) satisfies

lim u(x, t)yxdx = 0.
—00 Rz

Since the center of mass is preserved

/ u(x, to)xdx = 0.
R2

Let’s assume that the center of mass of v and ¢ are both zero. Then, computing
the center of mass we find that

§(t0: @) = 0. (6.44)
Then the Eq. (6.43) reduces to
, Wi 0) 5 x N
@16 a5 o5y Zo(5 s ) + b = (6.45)

We will prove at the end of this section the following.
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3
Proposition 6.5. There is § > 0 so that i]‘tg+2 (log 10)P vl «b < 6, v has mass and
center of mass equal to zero, then

/ v(x)|x|?dx =0,
RZ

is equivalent to

c1(v) —c1(0) =0.

3

o . . n
To prove stability we first observe that if v : R*> — R satisfies tg 2
(log t0)5||v||*,b < §, has mass zero, and

/ v(x)xjdx =0, / v(x)|x|2dx =0,
R2 R2

then uf + v = u*(g;) for ¢ = v, by Proposition 6.5.

3
Now consider a general v with t(l; +2 (log 10)P v ll«.» < & (for a possibly smaller

& > 0), and mass zero. We want to show that the initial condition u’(; + v produces

a solution to (3.1) with infinite time blow as described in Theorem 1.1. Consider

Lt ,/x—p xX—0p
unp(x) = ﬁ["o( A ) + v( A )]
where p € R? and A > 0. Note that u 5 p has mass 87. Then we select A and p
such that

/uA,p(x)xjdxzo, /uA,p(x)|x|2dx=/ uz;(x)|x|2dx.
R2 R2 R2

Note that |[AZ — 1| < Ct§||v||*,b < land |p| < Ctyllv]l+,» < 1. Then we expand

upp(x) =uj+w

3
and w satisfies tg+7 (log 10)P||w l«.» < C§, has mass zero, center of mass zero and
second moment equal to 0. By the previous claim, the initial condition u A ,(x) =
ufg + w is such that the solution to (3.1) blows up as in Theorem 1.1. Then the same
is true for the initial condition u§ + v after a scaling and translation in space.

6.2. Proof of Proposition 6.5

v+3
Lemma 6.1. Assume that t, 2 (log tg)? v l«.6 <1, that v has mass and center of
mass equal to zero, and that

c1(v) —c1(0) =0. (6.46)
Then

/ v(x)|x[>dx = 0.
R2
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Proof. From (6.46), (,06k = vsolves (6.45), and therefore ué—l—v is an initial condition
for (3.1) for which the solution blows up in infinite time. The solution u to (3.1)
preserves the second moment:

f u(x, t)|x|2dx = const.
RZ
We compute the expansion of fRz u(x,t)|x |2dx ast — 0o, based on the expression

(6.41).
Note that lim;_, o, £(#) = 0 by (6.12). Then

() U(x_s(t))x(x,t)|x|2dx

o) Jaz =\ 2o(0)
EIONY T Eai0) e
© ho0)? Jre ( 2o(0) )X(x’f)lx E(D)|7dx + o(1),

as t — 00. By explicit computation

1 —&(t t
/RZ U(x 5( )>X(x, Hlx — &) Pdx = Smglog(—) +002)

Ao(1)? Ao (1) A3
(6.47)
ast — 0o.
Using Lemma 4.1
2
Dx —E@)|7dx < .
/]RZ @i (x. D)|x = E(D)]7dx < Tog(0)
Using also Lemma 4.1 to estimate the mass and first moment of ¢;, we get
2
)t dx < . 6.48
/Rzmx MPdx < oo (6.48)

Using (6.47), (6.48) and the estimates for ¢6 (5.36), ¢ = @1 + ¢, that arise from

191141 421 42104 < 00 and @, ¢* which arise from [|p]l«.o < 00, l¢* .0 <

00, we get that

t

2 2 2
fRz w(x, )|x2dx = 8722 log(r%> +0032)

as t — 0o. But 1y was constructed in Proposition 5.1 with the expansion

co 1
ro(t) = +o(———).
0= Togi * (ogn™)

ast — 0o, where ¢g > 0 is a constant. Therefore

f u(x, 1)|x|?dx = 8w}
RZ
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and evaluating at ¢ = o we obtain
/ u(*;(x)|x|2dx + / v(x)|x|)?dx = SJTC%.
R2 R2
We can apply the previous calculation to v = 0 and arrive at
/ u(*;(x)lx|2dx = 8ncg.
R2
This shows that

/ v(x)|x[>dx = 0.
RZ

We need an expansion for ¢ (goa‘) —¢1(0).

3
Lemma 6.2. Assume that tg+2 (log to)ﬁ||g0a‘||*,b < 1 and that ¢§ has mass and
center of mass equal to zero. Then

c1(g5) — ¢1(0) = ag /R LGl Pdx + Ro(@5).
where ag # 0 and Ry satisfies

[Ro ()| < Ctolleg ll,b- (6.49)

Proof. In the following calculations A = Ag.
First we need to estimate the Lipschitz constant of the solutions ¢1, ¢», and ¢
with respect to ¢;. We claim that

16105) = $1O) 1 0t 5 gpe + 1020685 = 2200, 1t 4siges

1 vt -1
< C——riy *(og10)" lgglln (6.50)
log 1y
e 12 9) — 9(x. 1:0)] < C—— ! o+
R T T vt logn B (L x — &1/
(log 10)P 1@ 1. 6.51)

+3 _
—1y 2(og 1) g lles.  (6.52)

o1 [951(1) — 1 [01(1)| < C————+
t"T2(logt) T

We discuss briefly the proof of these estimates. One of the main terms in the
right hand side of (5.50), written for the difference <p(<p(’§) —¢(0) is

1
ﬁ[d’(fﬂg) —d(0)]Ax|(x, 1)

_c 1 1 AN
=2 T ogn s (x—&l/AD ¢ 1O




61 Page 54 of 154 Arch. Rational Mech. Anal. (2024) 248:61

||¢((Pg) - ¢(0)”1,v—l,%,4,2+o‘+8
1
"3 Qogn®s (1+1x —

<C PYNGE o (p5) — O PP

which implies

1, c

= —$(0)]A < o) — (O _ ,
| zlew —sonax| = e L LU IR
since B < 9+1 " which is one of the conditions in (6.14). (Here x depends on

@;- There is another ther in the difference that depends on x (¢5) — x(0) and is
estimated similarly.) Then

lp(x, t: @) — @(x,1; 0)]

1
<C (g @) —dO), 1 oo
P+ logns (14 —&/¥nP Lu=}. 47 4 24o+e
+3 -
15 2 10g10)P TV Igg 1. (6.53)

Considering ¢ as an operator of ¢ we examine the effect of the therm A2U .
This term appears in the right hand side of (5.48), where the effect is less important,
and in the computation of «/j. Estimating the right hand side of (5.50) as in (6.32),
using Proposition 6.3 gives that

loe1 [ (95 1() — a1 [ (0)](2)]

o0
SC/ /%2 U(y)w)(g+)‘y’t’;‘pg)_¢(‘§+)»y,t,;0)|dy

t

1
«(C— - K )
< Ct”+%(1og = e @5) = @O 1 et 4rippe
+4 B

+15 "2 (og 10 1 l1.61-

We consider now the effect of |o1[¢](¢)] in the right hand side of (5.49), where
thanks to Lemma 5.4 appears mainly as o (t) W2(y), where W, is radial with
compact support. Then Proposition 6.1 gives

1p2(y, 1: @3) — d2(y, 1: 0)]
12 240+
<C 11 i 1 +1 1 4 .<’(t10gt) ) o
(log#0)™™ pv=3 (1og 1)z Ta=1 (1 + [y |yl

+3 _
LD = SOy 0t 4nigieto Moz}~ 05 l1cs)
Then

k
16205) = 92001, 1 01 42404e

< C_logt0[||¢((p8) = Oy, 1t 4oore Tho - 10210 7 G114 0]
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The estimate for ¢ is actually better, and therefore

19168 = B1 Ol 1 a1 4y e + 1626 = O,y ot iy,
1

10g o

+ ||¢2(¢(>§) - ¢2(0)”1,v7%,%,4,2+0+8

=< C [”¢1 (QDS) - ¢] (0)||1,V7%,%,4,2+O’+8

v+ _
+15 2 (og10)’ Higg L.

This implies (6.50). Replacing this in (6.53) we obtain (6.51), and similarly we get
(6.52).

The parameter ¢ appears in the second inner equation in (5.49), which we write
as

{ A¢2 = Lign] + Blgol + h()W in R? x (19, 00) (6.54)

$2(- 10) = c1Zg inR?,
where

h(t, ¢5) = ma[F3(1 + ¢2. ¢, 1. 95)1().

Note that ¢, in (6.54) is radial, so the operator B defined (5.47) reduces to B[¢] =
AMQ2p 4y - Vé) = AV - (v¢). Multiplying by |y|? and integrating on R? gives

xzat/ ¢|y|2dy+m/ olylPdy = h(r).
R2 R2
Then

/\2/ P (y. Dlyl*dy = —/ h(s)ds.
R2 p

But ¢ (y, 1) = ¢1Zo(y) so
B 1
M(t0)2 [z Zo(y)|yI2dy

o0
ci(py) = / h(s, gp)ds.
1o

In particular
1
M(10)? [z Zo)|yPdy

The function A (t, ;) = ma[F3(¢1+ 2, @, Py, ¢3)](1) is analyzed near (6.25).
We follow the same steps. Using the definition of F3 (5.51)

c1(py) —c1(0) = —

/ [h(s, ¢5) — h(s,0)]ds. (6.55)
to

ma[F3(¢, ¢, p1. 95)] = mal E2X2(95)] + ma[F2(, ¢, P, 95) X (90)]-

We note that x, x> also depend on ¢; because & depends on ¢. By (5.41)

ma[Fa(p, @, P1. o) X (o)1 = 1(@3) + 1 (93) + I (¢)
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where

1(t, 98) = 2*malSo(u1(pg + P1)) — So(u1(Pp))]
1 (t, ¢f) = ma[F (¢ + ¢, 9™ + . Po + P X (@)
HI(t, 9f) = 2 *mal(So(u1(Py + P1)) — So(u1(Pe)) (X (95) — D).

The main term is / (¢j) and the others are treated as perturbations.
By Lemma 5.4, since A = A¢, we get

11, 98) = =32may (9) + lo(9), (6.56)
where
i &1 () X ox \
fot- o) = =20 [ UGG ente [ B ol o
— E@)I? / S(u1(po))dx.
RZ
By (6.11)
ai(t, @f) — ai(t,0) = Ay (t, @f) + Ax(t, ) (6.57)
where
N 1 B | ;
Ag)) = - | a{mtre;
87(1+272) +er(20) 7/t 4o
+ (@), @™ + 0(95), Po + P1(05) X (95)1(s)
— mol[F (¢} + ¢(0), 9(0), py + Py (0))X(0)](s)}ds
1 o0
Ax(t, 9) = — > — / xé{mo[(so(m(pwpl(ga;)))
8m(14274) +e1(3) !
— So(u1 (PO (X (¢8) — DI(s)
— mol(So(u1(py + Py (0))) — So(u1(pe) (X (0) — 1>1(s>}ds
Let

1 .
mo(t, o) = Fmo[F(tzﬁE) + (@), ™ + @(95), Po + P1 (o) X (9)1(1)
0

- /R LU (G 00) + 1y, 1, ¢5)dy
so that
molF (@) + ¢ (@8), 0* + 0(93), Po + P1 (@) X (@)1

=23(0) fR UM E ¢0) + Ay, 1 @5)dy + 25 (Omo (e, ¢5).
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By (5.38), ¢ = ¢* 4+ ¢, where ¢ = ¢(¢() solves (5.50) and ¢* solves (5.37).
Therefore

1 o0
At 9p) = — ¥ ¥ / / U™ (E(s, ¢5) + Ay, s, ¢5)dyds
87 (1+272) +er (D) R

+ A, 98)

where

~ 1 o0
Aitt.g) = | [ vomees.
B (1 +2Y20) +e(2) /1 /R

+ 1y, s, ¢5) — @(E(s,0) + Ay, s, 0)dyds

1
- f Lo (s, 8) — ios, O)1ds
87 (1 +27 0)—i—e ( 0)

Integrating (5.37) on R? we find that

at/ " (x, )dx =x<r)‘2/ U(ﬁ)w*(x,z)dx =/ U(y)g*(E + Ay, 1) dy,
RZ ]RZ )\. R2

and therefore

1 _
A, @p) = = = / @*(x, 1, po)dx 4+ A1 (t, @p).
8(1+2770) + e () /%
Then from (6.57)
1
ai(t, ¢5) —ai(t,0) = P ¥ / ¥ (x, 1, 5)dx
87 (1+200) + e (F) /R

+ A1, 95) + Ax(t, ¢7).
Using this and (6.56) we get
I(t,p5) —1(2,0) = 4 / ¥ (x, 1, 5)dx
1+27-2 0 + g€l (i)
— 32w Ay (1, 9f) — 327 As(t, 9F)
+ Io(t, @g) — 1o(t, 0).

Hence
R2

where
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ZTA,—g + SLEI(E)
142722 + e () 7R

— 32w Ay (1, 9f) — 327 Aa(t, @)

+ Io(t, 98) — Io(t, 0) + I (1, @) — 1 (£, 0) + I (1, 93) — 1 (z, 0).

h(gg, 1) =4

From (6.55) it follows that

4 00
c1(pg) —c1(0) = ~ *(x, 8, o0)dxds + ¢ (¢
1(gg) — c1(0) 0 Zo(y)|y|2dy/m fszp (x, 5, 99) 1(¢0)

(6.58)
where
1 %
Gi(gl) = — ! / (s, gtyds.
O 002 fra Zo)lyPdy Juy 0

We can relate the integral ftooo fRZ o*(x,s, go(‘)‘)dxds with the second moment

of ¢ as follows. We multiply the equation of ¢* (5.37) by [x —&(z) |? and integrate

on R? to get

a,/ @*(x, D)lx — £(t)|*dx =/ Ap*(x, Dlx — £(1)*dx
R2 Rz

- /R 2 v.To(= _f(”) Ve*(x. n)x — £(1)dx

—2E(1) / @*(x, ) (x — E())dx.
RZ

But
/ Ag*|x — E(1))?dx = 4/ *dx
R2 R2

and

/Rz V.= _f(”) S Ve*(x. x — £(1)dx

—fRz 0" (x4 EO) [ AcTo( ) Ix + 2o (5 ) - Jax.

Using the explicit expressions for U and I'g and writing y = 3, p = |y|, we get

Ar(x)| |2+2vr<x) lU(x>| |2+2vr<x) X
— ) x —) X = —— — ) x — ). =
0% O\R 227\ AV
8p? 8p?

T 17
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802 8

1+ p2)? 1+p
L8
1+ )7

So

/ 0 (x+§(t))[A r0< )le +2V, ro( )~x]dx

= -8 /Rz<p (x,t)a'x—i—[l;2 U(T><p (x, t)dx

and we find that
o [ ot —swPar =4 [ vendxs [ 0(*5E0)er s
R2 R2 R2 A

— 2&(1) / @ (x, 1) (x — &(1))dx.
]RZ

Integrating and using (6.58) we find that

1
@) — c1(0) = - / *(x, 10)|x|%dx + Ro(e3),
T X0 Ja ZoyPay Jra® T

by (6.44), where

1 x—é(s)
oo T A0 zo(y>|y|2dy 0 U ) Lo s)dxas

~2 / io | go*(x,s)(x—s(s»dxds]+51(¢a“).
1o R2

We claim that Ry () satisfies (6.49). Indeed, let us look at
o
|t )  tos. 01,
to
Similarly (6.36), we have

ay(t, @) —an(t,0)
o

= C———plleoll«n

u+%
X X t (log to)ﬁ
U(=)xo(—)lxPdx| < €2 Py
R2 Ao AQ "3 (logt)P

Similar computations for the other terms of Iy give

2
(log to)?
ot ¢) — Io(2, 0)] < C¢A0n¢a“n*,b.
t"+2(log L

It follows that

(t)

The other terms in Ry are estimated similarly. O

o0
f oG5, 6§) — To(s, O)lds| = =2~ .
1o
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3
Proof of Proposition 6.5. If t(l;+2 (log 10)P lvll«.r < 1andci(v) —c1(0) =0, then
Lemma 6.1 implies that [, v(x)|x|*dx = 0.
To prove the converse, let

vi(x) =

JEIRY
(1+J70)

3
so that ||vy]|,, = 1 (norm defined in (6.10)). Assuming ,udz‘(])ﬂr2 (log 1) < 8 and
§ > 0 small, we have by Lemma 6.2

c1(v + pv1) — 1(0) = ety + Ro(v + pvy),

for some constant ¢ # 0. Note that is ¢ (¢g) continuous function of ¢, and so is
Ry ((pa‘). By the intermediate value theorem, there is © = O(#]|v]|x,») such that
c1(v 4+ pvy) —c1(0) = 0. By Lemma 6.1 fRZ (v(x) + pv1(x))|x|*dx = 0, which
implies that u = 0. But then ¢ (v) — ¢1(0) = 0. O

7. The mass of ¢,

We devote this section to prove Proposition 5.1. To that purpose, a basic step is
to derive a formula for the mass of ¢, defined in (3.12).
Let us write

1 2
¢A=<ﬂ,§)+€0§) (7.1)

where goil) and ¢ ;2) are the solutions, given by Duhamel’s formula, of the following

problems

iox ,
b, = Aewl + 5 Z0(Dx0@) inR x (4. 00) 72)

o' =0

1 ~ . X
30 = Aeop? + —-UV.x0(2) -2+ E, inR?x (2,00), z=-"=

222t Ji

o2, 1) =0
(7.3)

where the operator Ag is defined in (3.8) and E in (3.11). We let ¢[p, A](r, t) be
the solution of the problem

P r r . o f
tglp. ] = Aeplp. 11+ 15 20(7)x(F2) B x (. 00),

ANV (7.4)

elp. M, %) =0 inR?,
given by Duhamel’s formula. By definition, we have

] .
oV = [Ad, AL
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In definitions (7.2), (7.3), (7.4), the parameter function A(7) is assumed to be defined
fort > ’70 In the rest of this section we also assume the validity of the condition
stated for A in (4.1), namely

. C 1
A0 + tlog(D)[A(1)] < b2, (7.5)
log() 2
for some fixed constant C. Let us define
Iplly.m = sup t”(logt)™|p(1)]. (7.6)

t>1t9/2
In what follows we shall only deal with radial functions on R? and sometimes we
will consider them as radial functions on R®. For a fixed constant ¢y > 0 we let

(&)

JVIogt’

() = (7.7)

The following expansion holds.

Lemma 7.1. Assume that A satisfies (7.5). Let0 < y < 2, m € R and suppose that
Iplly,m < oo. Then

r—r(1)?
/ olp, AMl(x)dx = —471/ P(s) ds + R[p, A]
R2 12 t—s

where R[p, \] satisfies
|RLp, Mlly.m < Cliplly.m-

If A1, Ap satisfy

I
) ]=1725

|3
— <
ALy /2,000 2

then we also have

IRLp. A" + 211 = RUp. 2" + 3ol = Cllpllym]| 22| (.8
P : P 2Hyom = =P Nym |75 e /200)
For the proof of the above result we will need the following calculation.
Lemma 7.2. Let
1 1z 1
=— T ———dz, € RS,
f(w) (4;1)3/66 o apde v
Then
Flw) = — 1 %’”'2<1+ |w|2)] (7.9)
w)=—=|[1—e — - .
lwl* 4
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Proof. Let ¢ be given by

1 1 Iy 1
)= — T dy, xeR® t>0,
w0, ) (4n>3t3fme oyt

which solves

dpo = Apswo in R® x (0, 00)

@o(x,0) = ﬁ-
Then
Jf(w) = go(w, 1).
Write
Po(x, 1) = tlzq('%)
Then

5
q"()+2q/() + %q’(s) +29(s) =0

and we want ¢(s) bounded for s — 0, g(s) = s (1 +o(1)) as s — o0. A

calculation using the explicit element in the kernel of the linear operator, s %,
gives
1 52 52
q(s) = S—4[1 —e (14 Z>]’ 5> 0,
and then (7.9) follows. O

Proof of Lemma 7.1. The solution ¢[ p, 1] of (7.4) has the formula

N L (ON A 6
elp. A0 = oy /to/z PEORTEE /Rﬁe >ZO(M )) <ﬁ)dyds, x e RS,
Writing
¢ = ¢lp, Al

we have

2
/ ¢(x, 1) dx = —2f ¢(x, x| dx
R2 T RO

_2 1 [f p(s) 1
C w2 @) Sy M) (t —5)3

/1%6 /1;66 Lﬁ‘lj |x| 4de0<)\z))) (\/_>dyds
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2 1/f(n
~ 7% (@dn) 10/2 M)
= y y
/R6 /Rﬁe 7 —Iy — _szl4dzzo(m)x($>dyds

Using (7.9) we have

_2 (" r® 172 RE
/R“’(x e W e S)2 7 =) Py z0( 25 ) 1 (2 )dves

t [ 2 2
= Zn/t/z f(i;l A [1 —e 49 (1 + 4(;’7_”)] (A(s))x< )rdrds.

0

Let us notice that

%/Rz(p(x,t)dx
N /tot/2 % ooo[l - ei% (1 + ?)]ZO(ZKZS S)X<Z\/\t/; s)zdzds.

We decompose

1
—/ px,)dx =1 + L+ I3
2 R2

where
t)2
I =/
t0/2
t—1(1)?
I :/
/2

t
I = /
t—x(1)?

and separately estimate each term. To estimate /1 we note that for s < /2 we have

= =< 1. Assuming that x (x) = 0 for x > 2 we obtain

~

00 z 2 Ji—s N, 23/1
A[h% O+4HOC£)>AZ%-ﬁﬁ:A .

We estimate for s < 7/2,

ZJ% _2 2 Z\/t —§ Za/t — S
[T 0 D2 A (e
SC/OZ{iS z4%zdz
A(s)4s

(t—s5)3"
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ZZ
where we have used that Zo(p) < C/p*and 1 — e~ 7 (1 + %) < Cz*. Therefore

12 | 12 1-y
ps)ls s c
NE / ~ds < ||p||y,mf s < ————pllym.
w2 (—5) o (—s)2(ogs)™ " ~ 17 (logr)"

Let us analyze I. We write

h=hs+hs+hp+hce+Dha

where
t—x(1)? _ o ) 2 4
p(s)(t —s) _2 z A(s)
bo=—t6 [ PO [T (14 D) A
2,% /t/z o) A e + 4) (t—s)zz“z zds
and

1—M(0)? r 20 2 2 — r—
na= [ PO [ f (14 D) ()R
t

2 Ao 5 o) 7 )wdds
1=1(0)? 20 2 2 4
_ p(s)t —s) [Vi= _2 z A(s) WE—s
by = 16/t/2 o [1 —e T (1 + 5 )] G _S)2Z4x( 7 )zdzds
t—A(1)? 00 2 4
_ p(s)(t —5) 2 z Wt—s A(s)
h“‘fﬁ Ms)? %%[1 (1 () + 1 Jedeas
1= (0)? o0 2
_ P —s) _2 z [N/ Wi—s
na= [ G ) [ T )5 e (B ) ez
A calculation gives that
r—A(1)2
h3=—2/ PG 4. (7.10)
/2 t—=s

Next we find a bound for I ,. Using that Zy is a bounded function and |1 —
2
e~ T(1+ %)l < Cz*, we get

A
(s) N

Vi—s _ 2 - \/Ts
A R 3 e M Evas i

A(s)

= A(s)®
fcfﬁifasc S
0 (t—s)
It follows that
l‘—)»(t)z | (s)|)»(s)2 l‘—)»(t)z )L(S)Z
Dyl < c/ PO 4 < mnpny,m/ QMR
1/2 (t—s) ¥ (log 1) 1/2 (t—s)
C

< — )
< ozl Pl
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Z2
Using that |1 —e™ 7 (1 + §)| < C7*, we get

VS 20 2\ Mot aiss M)t [
[T 00 (e
0 4 (t — S)224 \/E (t— S)2 0
6
- A(s) ’
T (-9}
and similarly as before,
|12 < ¢ Pl
200 =1 Qog rym "Plrom

Using that

Z()(Z t—s>=_16 A(s)? +0( A(s5)0 ) Zmz

A(s) (t —s)2z4 (t —5)3z0 A(s)

we get

2

1=a(1)? 00 6
ps)(t —s) _2 z A(s) W —s
[I2,c] < C/t/z o e [l —e 1 (l + Z)] = S)3Z6X( 7 )zdz

1—s

t—a(1)? As)2 [ P 2 1
EC/ M/ [1-e7 (145 ] 5ez
12 (t—8)? Jiw 4 /123

1—s

But % < 2 in the considered range of s, and then

t—a(t)? 2 2
bl < C/ [p(s)IA(s) 1Og()»(s) )ds
t

/2 (t — S)2 t—s

C t—x(1)? )\(S)Z )L(S)Z
R 1 d
= 17 (log )™ ||p||y,m/t/2 (t—s)2 Og<t—s> s

C

< — )
< ozl Pl

Finally, for I» 4,
D= 0 D) e () e
2

1— 5 (1+ %)]%zdz

_e_
< / Co
25/ i=s
4 [e'e)
=< A(s) 2/ z73dz
t —5)° Joys)iss

A(s)*
t —s)s

<C
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Then

= (1)2 _ 4
|12,d|§C/ [p(HI(E —s5) Als) ds < Cc

1/2 A(s)* (t—s)s — t(logt)™ 1P ly.m-

Finally we estimate

232 2,2

53] = ‘/ttm)z f(is))z 00[1 B e_m(l * 4(€i5))] O(p)x(f/_)pdpds‘
<C/t IP(S)I ds
T Jisawe Ms)?

I21ly.m-

< -
~ tY(ogt)™

In summary, by (7.10) we have written

1 =07 p(s)
—/ px, )dx = —2/ ds+h+hg+hp+Dhe+ g+ I,
21 JR2 t/2 t—s

and each of the expressions I, 17 4, I2 p, I2.¢, 12,4, I3 are linear operators of p with
the estimate

1 [ply,m = Cliplly,m-

The proof of (7.8) follows from the explicit expressions for the terms /; in R,
and similar estimates as before. m]

Lemma 7.3. Suppose that : satisfies (7.5) and (p)(?) be given by (7.3). Then

A(1)?
412 + 0<t2(log 1)? )’

020, 1;1) = — (7.11)

ast — 0o, where O(

satisfy

2) is uniform in ty. With A* given by (7.7), if A1, A2

t2(1

)
)\’*

1
< =, j = 17 23
L>®(19/2,00) 2

then we also have

(7.12)

) 2 A — Ao
02, (0.0 — 92, (0,1)] < H

12 logt AF HL“’(IO/ZOO).

Proof. For simplicity of notation let us write (x, t; ) = @, )(x t). Let us write
the right hand side of equation (7.3) in the following form
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2
E2(-xvtv)") = 2 U(y)VZZO(Z) Z+ )\’3 1/2 ZXO(Z) VyU(Y)

1
+ 37, 8:00@UG)

—1 X
SV V0@ - VDo), y =5, 2=

o

To compute ¢(0, #; 1) let us define the following approximation of it
o0r.1) =224 1),

where ¢(r, t) solves the radial heat equation in dimension 6:

5
0@ = 02G + S0.5+ h(ﬁ) o

¢(r,0) =0,

and

8 ¢
h(¢) = |:Xo - EX()({) + Xo(f)il

The solution ¢@(r, 1) to problem (7.13) can be expressed in self-similar form as

. 1
o0 =58(), ¢= NG
We find for g the equation
g +§g +§g/+2g+h(§)_0 ¢ € (0, 00). (7.14)

Using that the function l“ is in the kernel of the homogeneous equation, we find
the explicit solution of (7.14),

1 (¢ *
go(¢) = ——4/ x3e‘%"2/ h(y)et’ y dydx.
¢ Jo 0
To find the solution ¢ with suitable decay at infinity we let
1_
g(&) =g0(§)+§Z(C)1, (7.15)
where
¢ 3,-
2(¢) = §4 f B dx

is a second solution of the homogeneous equation, linearly independent of 7 and

© 5 12 [F 1.2
I =/ x e 3* / h(y)e*” ydydx.
0 0
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‘We observe that
g0) = 0(e %) ast — +oo,

which makes the solution (7.15) the only one with decay faster than O (¢ - as

¢ — +o00. An explicit calculation gives that I = —8, and therefore
) A(D)?
0,t) =— . 7.16
0.0 =~"3 (7.16)

Then, using a barrier for the equation satisfied by ¢(x, t; 1) — @(x, t) we get

_ebl?

lp(x,1:0) —@(x, )| = C T, (71.17)

t2(log t)? ¢

fort > 2, where 0 < ¢ < ‘1—‘. From (7.16) and (7.17) we obtain (7.11).
The proof of (7.12) is similar. ]

Lemma 7.4. Suppose that : satisfies (7.5) and (p)(?) be given by (7.3). Then

/ ‘2>——2nA2—16nT)‘2+0( ! ) (7.18)
R2 = t t t2(logt)?/)" '

where Y is defined in (2.7), that, is, T = fooo(x()(s) — l)sf3ds.

Proof. Integrating (7.3)

d 2 2
—/ <p§ ) = —4¢§ 0, 1) —
]RZ

= UOVax0(@) - zdx + f

Edx.
R2

222t R

From (7.11)

) . _)\([)2 1
o 0.0 = 42 +0<t2(logt)2>

and we compute

1 ~
- —U)V -2+ E
732, UVexo(@) -z +

1 2 1 1
= —ﬁU(y)szo(z) z+ ﬁvxx -ViU + A—ZAXXU - ﬁUVx - VI

R | Ao, 1 A, 1, 1
= [455 0005 — 645540605 + 850G ) + <067

32,\2, 1 o A4
+ t_3X0(S)s_5 + t_4 X{1<s<2)

AMlrs 3, . A
= 85555000 = =% + x5 ) | + 0 (5 ) xizs=n

where s = -=. Then

4



Arch. Rational Mech. Anal. (2024) 248:61 Page 69 of 154 61

/ UOVero() 2 + / Edx
R

- 222t R2

zzyrgt_ffo 1[ Xo(s) — —x6<s>+x6’<s>]sds+0( )

— 16n§[[) (xo(s) — Ds3ds + /OOO(S—3 o) ds] ( )

A2 24
= 1675 + 0(t—3).

Therefore

d @) K( )2 e 1
< — 2 16775 + 0 s
dr Joo O tlomlg + (t3(10gt)2>

and integrating we get
o 22 A2 1
/ o) = —2m— — 1617+ O(W).
This is the desired expansion (7.18). |
As a corollary from Lemma 7.1 and Lemma 7.4 we get:

Corollary 7.1. Assume A satisfies (7.5). Then

0% 5 G 22t
/ ordx = —471/ (s)ds —2r @ — 67T ©
R2 12 t—s t t

O(ﬂ(ll )2) + R A,

where R is as in Lemma 7.1.

Lemma 7.5. Let E be defined by (3.11). Assume that A\ satisfies (7.5). Then

/ Elx|’d P +0( ! ) (7.19)
X X = — — —_—F . .
R2 t t2(log1)?

Proof. Similarly to the proof of Lemma 7.4 we have

. A1p 3, B A4
E= 873?4[ — %66 + x50 |+ 055 ) xnzs<a

r

where r = |x|, s = <=, and so

. A2
/ Elx|*dx =
R2 t

This is (7.19). O

%I

4

»
=)

|
—_
(@)
S|
| —
“ |
=
oS-
~~
[}
N
+
=
S'%
A
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+
S
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—
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Lemma 7.6. Let E be defined by (3.10). Assume that X satisfies (7.5). Then

/ Elx|*dx| < c_
R2 tlog(t)
Proof. We have from (3.10)
A ¢ c 1 15 N
E¢, ;1) = on(x))m(ﬁ) + mU<X)VZXO(Z) cZ+ E(x, 1),

and we have already computed f]RZ E|x|*dx in (7.19). We have

/R 2 Zo(%)Xo(%)ltlde =272t fo h Zo(me(%)p3 dp

= 0" log(1)),
and so
) EN. (N2
— Zo( = - dz| < .
A3 /Rz O<A)XO<\/?>|§| ¢ ~ tlogt
O
7.1. Proof of Proposition 5.1
Let

1[x]=4/ Wlx—/ E(\)|x|*dx.
R2 R2

For the proof we proceed by linearization, that is we look for a function 1g
satisfying

[I[A0l(D] = C t >ty

t%+0’ ’

with the expansion

Ao(t) = A5 (1) + Ao(t)

where A* was defined in (7.7), that is, A*(z) = \/l"(‘)’? and Ao(r), 1 > %0, is a
correction. Here cg > 0 is a fixed constant.
We claim that
log(logt) 1o

[I[A*1()] < C (7.20)

tlogn)?’ T2

with C independent of 7. In the rest of the proof C will be a constant independent
of ty (for 7 large).
Indeed, using the decomposition (7.1) and the notation (7.4) we have

/ gok*dx=/ (pipdx—i-/ <,0)(ﬁ)dx
R2 R2 R2
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and
/ (pi?dX:/ olp*, A¥ldx, p* = A*ix.
R2 R2

By Lemma 7.1 we have

—A* ()2 %
p*(s) 1 fo
* A*d 4 —ds| <C , > —.
‘/sz[p ldx + n/t/z t—s S' ~ “t(logt)? 72
Therefore
log(logt) 1o
* A% d drlog(®)p* ()| < C——=~, t> —.
‘/sz[p dx + 4 logn)p™ ()| < CTiomss. 1> 5

On the other hand, by Lemma 7.4 we have

AE(1)? A5 (1)? 1

@

D gx = —2 —167Y 0( )
_/Rz Prr @ T d t + t(logt)?

and by Lemma 7.5

. AE(1)? 1
E(W)|x?dx = —647 Y 0 .
42 (@)l dx 4 t + (t2(10gt)2)

Using the explicit form of A* and the previous formulas we deduce (7.20).
Next let us rewrite slightly the operator /[A] as follows. We have

I1)] =4/ <pm,x]dx+4/ 0P dx —/ EV)|x|?dx.
R2 R2 R2

Let us define
* 2
RO p(s)
R[p, Al = olp, Mldx + 4rn —ds.
R2 t/2 r—s

This is similar to the decomposition given in Lemma 7.1, but we have changed the
interval of integration to [%, t — 2*(1)2]. We decompose the integral

s

=A% (1)? r—t'= =A% (1)?
/ p(s) ds — / p(s) ds +/ p(s) ds
12 r—s 12 t—s f—gl-0 T —S

/t—t“9 p(s) r—a*(1)%
'

—ds + p(t) ds

/2 t—s gl r—s

1=2*(1)? _
_ / p(t) — p(s) s
t

10 t—s

where 0 < ¥ < % is a fixed constant.
We change variables ;. = A2, so that
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f—g1=?

1111 = =87 u()) (1 — 9) log(r) — 210g(3*(1))) — 8 / RO g
)2 -

+4/ f?dx+2R[u NOE fzﬁ(ﬁ)|x|2dx

=0 () —
+87‘r/ Mds
t

10 t—s

Let n be a smooth cut-off such that n(t) = 0 for ¢t < %to, n(t) = 1fort > ty. We
define

=0
)
t—s

TTpl = =87 a(1)((1 — ) log(r) — 2log(A* (1)) — 87 3(1) / ds

+4n(t)/ @) dx + 2RI f]—n(r)f B/ Ix%dx
t—2* (t) _
f—p1-0 r—s
which we write
Tl = €[p] + Nl + R[ul,
where

u(s)
— S

ul(@) = =8 (1) ((1 — ¥) log(r) — 21og(A*(1))) — Sﬂn(t)/ ds

NIuI() = 4n(1) / ¢2dx + 20O Rl i1 — (1) / E(Jmlx[2dx

*4\2
=20 D) = 1(s)
t—s

RIU1(0) = 87n(1) /

Note that I[A](¢) = I[22](¢) for > to.
Instead of finding A such that /[A] = O for ¢ > #( we are going to construct u
such that

[ [p](0)] <

) t A
t%+a ~ 2
for some o > 0.
Let u* = (A*)? where A* is defined in (7.7). In a first step we will find 1 so

that
* * * )
L™ + 1]+ Nw™ + w1l + R 1 =0, > R (7.21)

We will look for w1 with [|eql«,,m < 0o where, for a function 1 € Cl([%o, 00))
with lim; o 1 (¢) = 0 we define

It llsym = sup 7 (logt)" |1 ()| = llfe1lly.m-
t>to/2
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Equation (7.21) takes the form

t_tl—ﬂ

. X i (s)
0= —8mi1((1 —9)log(r) — 2log(A* (1)) — 8mn(r) ; ds
t/2 -
)
+n@®er() +n@) Filul@), > R (7.22)
where
er(t) = I[p*]
and F is an operator with the following properties:
IE1 Ly m < Cllinlls,y,m, (7.23)
| Filie] = Filalllym < Cllitr — ia2lle,y.m, (7.24)

for fi; satisfying || lls,y.m < 1, withO < y < 2,m € R, where || ||,/ is defined

in (7.6). From (7.20) we find

log(log1t) fo
—_—, > —.
t(log t)2 2
Now we apply the contraction mapping principle to the Eq. (7.22) written in
the form

let()| = C

pr = —n@ [l + S (1= ﬁ)log(tl) — Zlog(k*(t)))n(t)[el(t)
+ Flul®)], t > %0 (7.25)
where
1 = )

L[] = ds.

((I =) log(r) — 21og(A*(1)) Ji/2 t—=s
We directly check that

2Ly m =

= 1_19||l‘1«l||y,m~

Let X be the space X = {1 € Cl([%’, 00)) | lim;—, oo i1(¢) = 0} with the norm
letllx = k1 ll«.1,3—¢, where 0 < ¢ < 1. It follows that if ¥ < %the equation

(7.25) has a unique solution z¢1 in the ball B;(0) of X.
Therefore we have found (1 with [|f¢1 || «,1.3—¢ < 1sothatu = u*+u satisfies

%2 . .
=210 u® — )
—_—das.

1] = —87n(t)
f—l-? r—s

(7.26)
To estimate this remainder we then need a bound for ji. Differentiating with respect
to ¢ in the decompositions used in Lemmas 7.1, 7.4, 7.5 we obtain

log(logt) to
>

1(1)] < C =22, —.
10l = Cr g 72 2
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Differentiating in ¢ equation (7.25) and using the contraction mapping principle we
get that for any ¢ > 0 small

O] = 7=

Using this we find that the remainder (7.26) has the estimate

/’—”‘W ) = s) | c to
t

S| < t> —
T t—s = o’ 2’

where u = u* + 1.
Next we introduce another correction w to improve the decay of the remainder.
We consider 4 = u* 4+ 1 + po and we consider the following equation for u;:

0]
Ou* 4+ pi + w2l + Nlw* + iy + pol + R + il =0, > 5

Similarly as before, this equation can be written as

== .
0 = —87 (1 — ) log(t) — 2log(A* (1)) — Snn(t)/ ’;Z(S)ds
t/2 -9
7
+n0ea(n) + 1O Flpal@). 1> 2, (7.27)

where F, satisfies the same estimate (7.23) (7.24), and e, has the estimate
C o
le2(1)] < T t > 3

Using again the contraction mapping principle we find a solution p; of (7.27) with
2l 1+9—e,1 < 1. Then for u = pu* + w1 + p2

_a* ()2 . .
RO 5 (1) = fa(s)
=~ ds.
10 r—s

I[p)(1) = =87 (1)
To estimate this remainder we need the following bound for ji

. c
2] = 5= (7.28)

which is obtained from an estimate for é;, differentiating with respect to ¢ equation
3

(7.27). The estimate for ¢; is obtained from an analogous estimate for %.

From (7.28) we find

~ C to

[l = PEES s > 7
where we recall that 0 < ¥ < % is arbitrary.

Thus letting Ao = /i, 4 = u* + 1 + po we obtain

> 1.

C
[ITAo]l < 29—

Choosing ¥ > Alf and ¢ > 0 small, we obtain the properties stated in Proposition 5.1.
O
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8. Inner Linear Theory

In this section we consider the problem

2
3209 = LIl + BIpl + h(y, 1) + Y uj(OWi ; inR* x (19, 00)

=l (8.1)
¢(.10) =0 inR%
that appears in the inner equations (5.48) and (5.49), where, we recall
Ligl =V [UV(% ~ =879,
o000 =5 [ tog(2 )t s, (82)

Slightly more general than the operator B defined in (5.47) we will consider

Bl¢] = &i(DN@lraa + 2(0)y - VIdlraa + (§1(1)P1 + S2(1)y - V¢1)Xo<%),
where [@]4q is the radial part of ¢ (defined in (5.46)) and ¢ = ¢ — [¢],44, and
where xo is the smooth cut-off function defined in (2.5). In the sequel we will keep
the same notation for B.

In what follows we will analyze the linear initial value problem (8.1) where
we assume that the functions A(¢), ¢; (¢) are continuous, fyp > 1 and that for some
positive numbers ¢, C we have

c C
< A1) < forall t > 1,
Jogr =0 = et 0
C
6i()| = ———— forallt > 1.
tlog”t

We change the time variable into

t
1
T = ‘L’()—}-/ ——ds,
0 )\(S)z

where 1) = 1y log #p. Then
citlogt < t < cotlogt

for some ¢, ¢; > 0. Identifying ¢ (y, t) and h(y, t) with ¢ (v, t) and h(y, T) we
rewrite (8.1) as

2
30:¢ = LIp] + Blpl +h+ Y pj(mW1; inR> x (19, 00)

o (8.3)

¢(, ) =0 inR?
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We consider problem (8.3) for functions £ (y, 7) that have fast decay in space.
More precisely, we assume that for all 7 > 0 there is Ct such that

lh(y, 7)| < forall (v, 7) € R? x (19, T).

T
1+ 1y6

In this case, by a solution ¢ (y, t) of (8.3) we understand a continuous function
¢ (y, 1), of class Clin v, such that for any T > 1 there exists a Cr > 0 with

oy, DI+ A +1yDIVyp(y, )l < TlTylf, forall (y, 7) € R* x (0, T),
(8.4)
and satisfies the integral equation
T
s0.0= [ [ 60-zr-9)1-vovre - VUVl
7 /R
2
+2U¢ + Blgpl+h+ Y pj()W j1(z. 5)dzds, (8.5)

j=1
where (—A)~ ¢ is defined in (8.2) and G (y, 1) is the two-dimensional heat kernel,
I _p?
Gy, 1) = ——e % .
4t

From the formula

1 _
Vo) = —5- [ =

ly

we see that if [p(y)| < ﬁ then

V(=)o) <

< 1+ 1910l oo g2y
14yl LED

Using this estimate, existence and uniqueness of a solution of (8.5) satisfying (8.4)
are standard. For a short time 7" > 7 this is established by a contraction mapping
argument in an appropriate L°-weighted space. Then a direct linear continuation
procedure applies.

A first natural condition to impose on 4 in (8.3) is that

/ h(y,t)dy =0 forall T > 19,
R2

in order to achieve that the solution has also zero mass at all times.

We want to find solutions to (8.3) that have fast decay in space and time. For
this we need to assume fast space-time decay of the right hand side, which we do
by working with the following class of norms.
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Given positive numbers v, p, ¢ and m € R, we let ||i]l,n, p,e denote the least
K > 0 such that for all T > 7o and for all y € R?

X L TN

(. 1) < /2 (8.6)
y 0 (logT)" (1+ [y))? |’—| lyl > JT.
y

This is similar to the norm introduced in (6.2) but defined using 7 instead of . We
will give the results in Sects. 9—12 using the norm (8.6).

Still, fast decay of the right hand side doesn’t imply fast decay of the solution.
For example, consider Eq. (8.1) without the operator B and without the 1 ;, that is,

3¢ = L[p] + h(y, 1) inR? x (19, 00) 57
#(,7) =0 inR2, ’

and suppose that 7 has compact support in space and time, and that ¢ has sufficient
space-time decay. Then, multiplying (8.7) by |y|? and integrating in R? x (o, 00)

gives
o0
/ /h(y,r>|y|2dydr=o,
v JR2

because if ¢ is a regular function with fast decay, then

/ Ligllyl2dy = o,
RZ

see Remark 9.2 below. It is then necessary to impose a condition on /, or to adjust
a parameter in the problem in order to get a fast decay of the solution. We develop
here the theory by adjusting the parameter c; in the equation below

d:¢ = L[p] + B[]+ h(y,1) inR* x (19, 00), 8.8)
¢(.10) =c1Zy inR?, '
where Z is defined in (6.4).
Proposition 8.1. Leto > 0,& > Owitho +¢ <2and1 < v < ZT- Let0 < g < 1.

Then there exists a number C > 0 such that for ty sufficiently large and all radially
symmetric h = h(|y|, ©) with ||h|lym.6+6.c < 00 and

/ h(y,t)dy =0, forallt > 19,
RZ

there exists ci € R and solution ¢ (y, t) = ’];,i’z[h] of problem (8.8) that defines a
linear operator of h and satisfies the estimate

||¢||v71,m+q,4,2+a+s =< —_”h”v,m,6+a,£~
(logro)!~4

Moreover cy is a linear operator of h and

leil =C I2llv,m, 6+0,e-

r(')’_l (log To)™+!
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We have stated this result only in the radial setting, because this is what is
needed, but there is a version of it in the non-radial case.
The next result is for the problem

2
3¢ = LI¢1+ BIpl +h(y, T) + ) _ujWi; inR* x (19, 00),
= (8.9)
¢(,7) =0 inR?
and holds without the radial symmetry assumption.

Proposition 8.2. Let 0 <0 < 1, ¢ > Owitho + ¢ < % and 1 < v < min(1 +

£.3-9%. %). Let O < g < 1. Then there is C such that for to large the following
holds. Suppose that h satisfies ||h|lv m.6+0.c < 00 and

/ h(y, D)dy = 0, f hy, D) yPdy =0, forallt > .
R2 R2

Then there exists a solution ¢(y, t), i of problem (8.9) that defines a linear
operator of h and satisfies

||¢||U7%ym+%)4’2+0+8 <Clh ||v,m,6+o,a~

The parameters i satisfy

w0 == [ Gy + o

where [i; are linear functions of h with

I jh1(D)] = CW Allv,m,6+0.6-

We denote this solution by ¢ = 7;,“[h].

Propositions 6.1 and 6.2 given in Sect. 6 are direct corollaries of Propositions 8.1
and 8.2. The only changes are due to the change in the time variable, because
T ~ tlogt, and the fact that the norms for the solutions in Propositions 6.1 and 6.2
include a gradient term. The estimate for the gradient follows from the weighted
L estimate, scaling and standard parabolic estimates.

The proofs of Propositions 8.1 and 8.2 are contained in Sects. 9—12. They are
based on an energy inequality obtained by multiplying the equation by a suitable
test function, and using an inequality for a quadratic form. Section9 contains some
preliminaries on this quadratic form.

In Proposition 10.1, we obtain an additive decomposition of the solution ¢ (y, 7)
of (8.8) into a part with a relatively slow space decay that loses 7'/? with respect
to the time decay of the right hand side, and a term along Z(y) that loses an entire
power of 7. This is the key element for the proof of Proposition 8.1 in Sect. 10
(p-80).
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Then the proof of Proposition 8.2 in the radial case uses Proposition 10.1 after
formally applying the operator L ™! to the original equation and performing a con-
centration procedure that improves the space decay of the resulting error. This is
done on Sect. 11, and we give there a proof of Proposition 8.2 in the case of radial
functions.

The proof of Proposition 8.2 in the general case is in Sect. 12 (p.96).. The idea
is that the decomposition obtained in Proposition 10.1 for solutions with no radial
mode does not contain the term along Z(, which allows us to obtain a much better
estimate.

9. Preliminaries for the Linear Theory

A central ingredient in obtaining good estimates for the linearized parabolic
operator associated to the inner problem is the analysis of the quadratic form

¢ / gp., g= % —(-A)lg. 9.1)
]RZ

This quadratic form arises when considering the linearized Keller—Segel problem
(8.1). Indeed, L[¢] = V - (UVg) and it is natural to test the Eq. (8.1) with g, since

/ L[qb]g:/ V-(UVg>g=—/ UVl
R2 RZ R2

But from the time derivative we get 22 fRZ 0:¢g, which leads to (9.1).
We observe that g has degeneracy directions. Indeed, if = (—A)~!¢ then

Ay +U(y)y =—Ug inR>.

The operator Ay 4 U (y) is classical. It corresponds to linearizing the Liouville
equation

Av+e’ =0 inR?

around the solution I'g = log U. It is well known that the bounded kernel of this
linearization is spanned by the generators of rigid motions, namely dilation and
translations of the equation, which are precisely the functions z¢, z1, z» defined by

{Zo(y) = VIo(y)-y+2

. ©9.2)
zj(y) =9y, To(y), j=1,2.

Note that g is precisely annihilated at the linear combinations of these functions.
In the rest of this section we will state and prove several estimates that take into
account this issue, which will be crucial later on.

The quadratic form (9.1) can be naturally transformed into a similar one in S?
by stereographic projection IT : §\ {(0,0, 1)} — R?

Y1 2 )
l—y3' 1—y3/°

I(y1, y2, ¥3) =<
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For ¢ : R? — R we write
¢ =¢oll, @:52\{(01071)}_>R'

Then we have the following formulas:

1
- _ 1 U
/;290 2/Rz(p

/0|VS2§73|2=/ Ul Vel
52 R2

1~
EUASNZJ = (Ag2@) o I1.

9.1. The Liouville equation

Here we consider the linearized Liouville equation
AY +Uy¥ +h=0 inR% 9.3)
The stereographic projection transforms the linearized Liouville equation (9.3) into
Agy + 20 +2h =0 9.4)

in S2\{P}, P = (0,0, 1), where = ¥ o I, h = (U 'h) o II.
The functions in (9.2) are transformed through the stereographic projection into
constant multiples of the coordinate functions

I =cjwj, j=12, Zw) =cows, o= ,w,ws) €S

By standard elliptic theory, if h e Lf (SZ), p > 2, then exists a solution 1}0 €
W?2P(5%) to (9.4) in $? if and only if / satisfies

/ hzj =0, j=1,2,3.
S2

This solution is unique if we normalize it such that

/ Yoz; =0, j=123,
S2
and then satisfies the estimate

1Wollcracszy < CllallLrs2,

whereo = 1 — %. By subtracting off a suitable linear combination of the functions

Zj, j =0, 1,2 we obtain the unique solution U1 to (9.4) in S? satisfying

Y1(P) =0, Vi (P)=0. 9.5)
For this solution we also have the estimate

11l cracsyy < CllalLp(s2)- (9.6)
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Lemma 9.1. Let 0 < o < 1. Then there is C such that if  satisfies (9.3) and
Y (y) = 0as |y| — oo with h satisfying ||(1 + |y|)3+”h|lLoo(R2) < +o00 and

[wvsnona=o. [ @vrhomyar=o. j=12 o1
then
I+ 1D Wl e @y < CIL+ YD TR Lo g2y

Remark 9.1. Let 7 : R? — R satisfy [|(1 + [y)**h| @2, < 400 where
O0<o < 1.If

/ h(y)dy = 0
Rz

then

(=A) Th(y)| < g I+ [yD* Rl oo 2y

+[yD?

Ifh:R? > R satisfy || (1 + |y|)3+“h||LOC(Rz) < +oowhere 0 < 0 < 1 andin
addition to mass zero we have

/ hyidy =0, j=1,2.
RZ
then

(=A) Th(y)| < a I+ [yD* TR oo g2y

c
+ [ypi+e

The first claim is standard. For the second, write

1 X
o hw =5 [ (log x| = log x = y| + %) Ky,

and estimate the integral after splitting it into the regions |y| < % and its comple-

ment.

Proof of Lemma 9.1. We claim that ¥ = (—A)~"(Uv + h). Indeed the function
v — YN Y + h) is harmonic in R2 and decays to 0 at infinity, and therefore
it is equal to 0. The assumptions (9.7) and Remark 9.1 imply that

1A+ 1D Wl e @2y < CIA+ YD TRl o2y + ClY I Loo@2y.  (9.8)

Let ¥ = 1 o1, so that it satisfies (9.4) in $*\ {P} with s = (U~"h) o T1. Note
that 1 € LP(S?) for some p > 2. More precisely,

1Al o (s2y < CICA + 1D Rl oo g2y, 9.9)
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with p < ﬁ The singularity at P is removable and thus v satisfies (9.4) in S2.

By elliptic regularity ¥ € C*(S?) for some « > 0. Since v decays at infinity,
¥ (P) = 0. By (9.8) we have also Vg2 (P) = 0.

We let 1//1 denote the solution to (9.4) satlsfylng (9.5). The solution to (9.4) in
s2 satisfying (9.5) is unique, so that we have 1// 1//1 and by estimate (9.6), (9.9)
and (9.8) we obtain

1A+ 1D Wl poe@ey < CIL+ YD TR Lo g2y

9.2. A quadratic form

Here we discuss properties of the quadratic form (9.1). For this we consider a
function ¢ : R — R with sufficient decay, in the form

1
[N < W, (9.10)

with 0 < 0 < 1, and zero mass,
/ ¢dy =0. 9.11)
R2
We recall g defined in (9.1) g = % — (—A)_1¢>, and use the notation
Y=o
so that
—AY —Uy =Ug inR%
We next introduce a normalized version of g, namely g defined by

gt =g+a,

/ gtUdy =0.
RZ

As shown in Lemma 9.3 below, the quadratic form [, ¢g is equivalentto [, U (g
It will be convenient to work with functions ¢L, wl, which are analogues of
¢, ¥ but associated to g*. In particular, we want a choice of ¥ such that

where a € R is chosen so that

J_)Z.

Ayt — Uyt =Ugh, v (y) - 0 as|y| — co. 9.12)
Letyo=1+ %z(), where z( is defined in (9.2), and observe that

—Avyo — Ug = =U, Yo(y) = 0 as|y| — oc.
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Then ¥+ defined by

vt =y —a(1+320)= v~ avo,

indeed satisfies (9.12).
Define

T =U@E" +yD).
and obtain the relations

¢ =0+ 25Uz, —Ayt=¢t | ¢t=0.
2 RZ

We note that ¢ — ¢~ = 4Uz is a constant times Zo = Uzg, which is in the kernel
of the operator L.

Lemma 9.2. If ¢ : R?> — R satisfies (9.10) and (9.11), then

/Rngz]:/RszUz,-:o, j=0,1,2,

where zj are the functions defined in (9.2).

Proof. By the definition of v and from (9.10), (9.11) we have

C
1 \Y —_—,
[+ A+ [yDIVEOD)I] < aT+ph°
and hence also

C
1 1
V=W + A+ yDIVE=(OI = e (9.13)

We multiply (9.12) by z, integrate in the ball Bg(0) and let R — 0. Since z;
is in the kernel of A 4+ U we just have to check that

Ayt 9z,
/ (1// zj—l/fj‘ﬁ)—>0, as R — oo,
aBg \ OV av

where v is the exterior normal vector to d Bg. This follows from (9.13), and the
explicit bounds

lzoO)| = C, |zj j=12,

C
W = (1+—|y|),

C
Vz; _
VO = e

A consequence of the previous lemma is the following.
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Remark 9.2. Suppose that ¢ : R?> — R satisfies (9.10) and (9.11). Then
/ LigllyP’dy = 0.
R2
Indeed, integrating on Bg, with the notation g = % —(=A)7g,
| oisfay= [ v-wvoisidy
Bp Br
= —2/ UVg-ydy + R2/ UVyg-vdS(y)
Bg dBR
=2/ gZody—Z/ Ugy - vdy+R2/ UVg-vdS(y).
Bgr dBR dBR

By (9.10) and (9.11), g(y) = O(Iy*~%), Vg(y) = O(y|'™?) as |y| — oo.
Therefore the boundary terms tend to 0 as R — o0, and we get

/ Ligllyl*dy = 2/ gZody =0,
R2 R2
by Lemma 9.2.

Lemma 9.3. There are constants ¢ > 0, ¢c; > 0 such that if ¢ : R* — R satisfies

1
|¢()’)|EW, 0<o <1

and (9.11), then
o [ue? s [ oetza [ v 9.14)
R?2 R2 R2
Proof. By Lemma 9.2
a
/ g = / (ot + =Uz0)g = / ot (gt +a) = / ptgt
R? R2 2 R2 R2
=f UGg™ + vt
RZ
Let gt = gt o T, ¥+ = ¢+ o IT and write (9.12) as

—Apyt —29t =25t ins% (9.15)

We also get

1 -
3 / bg = / (G52 + 4540,
R2 S2

Multiplying (9.15) by ¥+ we find that

[Latit =5 [veite - [ a2
$2 2 Js $2
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and hence

1 _ ~12 1 12 AR
§/Rz¢g—/sz(8)+2/sz|vﬂ‘ﬁ| /52(1#)-

We recall that the eigenvalues of —A on §? are given by {k(k + 1) | k > 0}.
The eigenvalue 0 has a constant eigenfunction and the eigenvalue 2 has eigenspace
spanned by the coordinate functions 7; (x1, x2, x3) = x;, for (x1, x2, x3) € $2 and
i =1,2,3.Let (1) ;>0 denote all eigenvalues, repeated according to multiplicity,
with Ag = 0, Ay = A2 = A3 = 2, and let (¢;) ;>0 denote the corresponding
eigenfunctions so that they form an orthonormal system in L2(8?), and e, €2, 3
are multiples of the coordinate functions 71, 7>, 3. We decompose 1Z and g to get
that

00 (o 0]
=it # =Yg ©1
Jj=0 =0
where
Ui =Wteae. & =@ e
Then

1 >, 1 & .
3 /R b8 = jg(g,*)z +3 gw -2’

e¢]

e’} ~ 1 _
=2 @)= ()’ +5 2 04 =W
j=0 j=4
Equation (9.15) gives us that
(j —D¥; =287, (9.17)

and then

1 00 00 2
LY PP S 5Ly2
2/RZ¢g j_l(g]) +j_4)\j_2(g])'

By Lemma 9.2 gi- = g5~ = g3 = 0. Therefore
o0

1 AjL
D v (720 (9.18)
j=4

and
1 oo
2 1277 — 5142
Z/RZ@ U j§4(g,) :

This proves (9.14). O
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Lemma 9.4. There exist positive constants ci, ¢a such that if ¢ : R> — R is
radially symmetric and satisfies (1 + |y|)3t7¢ € L®°(R?) with0 < o < 1, and

/ $()dy = 0,
RZ

then
o [ue? s [ v e vet 09
R2 R2 R2
[Lvw? <o veh 920
R2 R2
Proof. Using the same notation as in the proof of Lemma 9.3, we have

1 _ 1
3 L@ =5 [ vt 2t e
2 R2 2 R2
= f L@ +298t +@H’)
N
o0
=Y @D+ 2078 + @D
j=0
As in the previous proof, gji =0for j =0,1,2,3. Using (9.17) we get
1 3 00 )\'2
1 U-1oh)? = 712 J 51)2
: /R @ = L0+ g @D
j=0 j=4
This formula already gives

/U(gL)zsc/ U (¢
R2 R2

We observe that @li = &j = 0 by radial symmetry. We also have 1/}&- =0, by
(9.17). Let

and note that it satisfies
—Agy — 29 =23+ inS2.
By (9.17),
11l 2052 < ClE 2052

and from elliptic estimates

IV llcagszy < CIESIL2es2)s (9.21)
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forany 0 < < 1. Since (1+|y)>T?¢ € L (R?) and ¢ has total mass 0, we have
(1+|yD'"7 ¢ € L*®(R?) (here the functions are radial) and also (1+ |y|)1+" Yt e
L®(R?). It follows that ¥+ (P) = 0 where P = (0, 0, 1). Since ¥+ and v differ
by a constant times 73 we have

S (P
Y= 713(P)n3’

where m3(x1, X2, x3) = x3. This implies, by (9.21),
1252y < Clldll2s2) + CIF(PI] < ClIE 252
This proves the other inequality in (9.19) and (9.20). |

Lemma 9.5. Suppose that = ¢(y, 1), y € R%, t > 0 is a function satisfying

1
lp(y, )] < W,

with) <o < 1,

/¢>(y,t)dy=0, VvVt > 0,
]RZ

and that ¢ is differentiable with respect to t and ¢; satisfies also

1
lp: (v, )| < W

1
/@g:—a,/ o2
R2 2 R2

where for each t, g(y, t) is defined as

g= % —(=AHe + e

Then

and c(t) € R is chosen so that
/ g(y,nHU(y)dy = 0.
R2
Proof. Using the notation of the previous lemma, we have
/ &8 2/ U(gr +v¥1)g = 2/ (88 + Vid).
R2 R2 52

We have

—Agy — 2% =2§, inS%
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And differentiating in ¢ we get
~ Aoy — 29, =2§,, inS% (9.22)

Multiplying by g and integrating we find that

~ 1 ~
/ %g’: _—/ Ath_/ g,g
S2 2 SZ SZ
/ Pig = _/ Alﬁzg’
R2 S2

Decompose as in (9.16) and find that

/R2 $ig =Y AW
j=0

Thus

But from (9.22)
hj—=2)Wj)e =28 )

We note that g; = 0 for j = 0, 1, 2, 3. Indeed, this is true for j = 0 by the
assumption fRz gU = 0. By Lemma 9.2 this is true also for j = 1, 2, 3. Then

f ¢tg_

and the desired conclusion follows from (9.18). m|

(gj)tg]

9.3. A Poincaré inequality

Lemma 9.6. Let B (0) C R? be the open ball centered at 0 of radius R. There exists
C > 0 such that, for any R > 0 large and any g € H'(Bg) with /BR gUdx =0
we have

2 2
= v 5/ Vgl2U.
R? Jp, Br

Proof. Using a Fourier decomposition we only need to consider the radial case,
that is, we claim that if g(r) satisfies

R r
/Og()(1 ypdr =0, (9.23)

then there is C such that for all R large

K 2 r 2 R/ 2 r
[0 gr) —(1+r2)2dr§CR/O g 1+ 2)2d
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Let 0 < § < 1 to be fixed later on. From (9.23) we have

R r ) r
/5 s e _/0 8O T
But

i dr = e
/5 g()(1+ r2)2 5/3 80 )_(l+r2>

1 g 1 g@® +1/Rg/(r)
)

dr.

214 R2 2146822 1+ r2

Therefore

Lg@®l 1 [g(R)]
21+62§21+R2+2/3 'l

By the Cauchy-Schwarz inequality

R
A‘ |g(r)|1+ sdr
5 - I\
/O|g(r)|mdr (/0 g()m ) :

dr+f 80|

R , r 1/2
([ €02 ) " togR—10g5)!

Hence
2 g( )2 2 r
g()" <2=——+1— +2(logR — loga)/ g i+ 2)2d
2 ’ 2 r
48 ————dr. 9.24
+ /0 S 9.24)
We compute now
R R
2 r 1 5 d 1
—  dr=—- d
/8 8O 2f5 8 (1+r> :
1 g(R)?* 1g(? R / 1
21+ R? §1+52+/5 )8 (N7 dr:

Using (9.24) and the Cauchy-Schwartz inequality we get

R 2 2
L 1 g(R) 8(R)
dr < ————— 4+ ——

/5 T s I iy

R
2 r
+ (IOgR — log 5)\/6 g’(r) md}"
)
+28 [ gy’
0

R
AR2 / 2 r d
+ /5 gr) A1)

.
S —
1+
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o | “ L
r)°—dr.
AR? 8
But A1§2 < é(1+ 5 forr € [§,R]if A = 4(1 + 62) and R > 1. Choosing

A=4(1+ 82) and R > 2 we have

R R
2 r 2 1 N2 r
————dr <[2AR” +2(og R — log$ —d

/8 80 G <1 (log R — log )1/8 g

s
45° R 9.25
+ /0 O 9.25)
With 6 > O still to be chosen we get from (9.24) for0 < x < §
2(x)> <2g( R)? +2(log R — logx)/ ¢ (N ——ar
(147r2)?
+ 4x? / g(r)? —(1 =
Integrating we get
8 R
2 r zg( ) / 7rN2 r
—d ) 2log R ——d
+ 84 / e —ar (9.26)
o S a2 '

Using the condition (9.23) we obtain

R r 1 (R d r2
/Og()(l 2)2 _E/O g(r)d—(1+ )dr

Then

R
R <4R* | gr)P—d
g(R)” = /0 g () etk

Using this combined with (9.26) we get

)
2
/0g<r>—(1+2)2 64/0 ¢ 0P

+ 210gR/ g (r)?
0

8
+ 6t / g(r)’
0

,
———d
a+r22?

.
S
a+r2
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Taking § = % (this fixes A) gives

) R
2 r / 2 r
/0 g(r) —(1 n rz)zdr <4(ogR + 1)/0 g ) —(1 n rz)zdr.

Combining this with (9.25) we get

K 2 r 2 R/ 2 r
/Og(r) mdrSCR/O g )y ——=dr.

(1+7r2)2
O
10. Linear Theory: A Decomposition
Here we consider
9:¢ = L[p] + Blp] +h, inR* x (19, 00), (10.0)
$(,70) =g inR”. '

The results of this section are going to be used later only in the case of radial
functions, so we make this assumption here. We write in the rest of this section

¢ =¢(y, 1) =¢(p, 1), where y € R, p = |y|.
The operator B is assumed to be one of the following two:

Blgp] =¢(0)(2¢+y - Vo) = (D)V - (y9), (10.2)
or
Blg] =¢(v)y - Vo, (10.3)
where
(r) =— £0 +O< 11 ) as T — 09,
tlogt 7(log t)1+90

for some constants ¢y > 0,0 < opg < 1.
We assume that |||« < 0o where

IA|l++ = inf K, such that
1 1 7¢/?
0. 91 = K e e ™ (1 o
where v > 1,& > 0,0 > 0, m € R. This is the same norm as in (8.6).
We also assume that 4 has zero mass

), r>ro,yeR2,

/ h(y,t)dy =0 forall T > 19, (10.4)
R2

and the same for the initial condition

f dody = 0. 10.5)
R2
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It follows from the equation (10.1), (10.4), and (10.5) that the solution ¢ to (10.1)
defined in §8 satisfies

/ ¢(y,7)dy =0 forall T > 19.
R2

We recall the decomposition of ¢ introduced in §9.2. Given ¢ : R> — R with
sufficient decay and mass zero, we let g = % — (=A™, and define a so that

Ja2(g +@)Udy = 0. Then define g+ = g +a, y* = ¥ — a(l + 1z¢), and

¢L=¢—‘5’zo. (10.6)
Actually a is directly computed by
1 1 1 1
a=——— Ug=— U-A)"¢p=— Cog. (10.7)
87 R2 8 RrR2 8 R2

In the time dependent situation a = a(t) and all functions depend on y € R* and
T.

A difficulty to obtain estimates is the presence of a kernel in the linear operator
if B = 0, since Zy satisfies L[Zp] = 0. It can be proved that the solution ¢ of
(10.1) with zero initial condition and ||4||++ < oo has the bound

log 7\ 2¢0—00
) Ml

sup (. )| = €
y 0gT

and probably this estimate cannot be improved much. Also ¢ has a some decay at
spatial infinity and in particular it has finite second moment

/Rz ¢ Dl yPdy < 00, 7> 1.

Therefore Zy doesn’t describe well the class of solution we want to consider, even
for the case B = 0, in which ¢(7) = 0.

A better candidate to describe the solutions ¢ of (10.1) with zero initial condition
and ||/]|«+« < oo is obtained by considering the initial value problem

9:Zp = L[Zp] + B[Zp]. inR* x (19, 00), (108)
Zp(-, 1) = Zo inR2. '
where ZO is defined in (6.4). Note that since Z( has mass zero and decays like 1/ p4
we have mz, = 0(%).
We will then consider the problem

(10.9)

d:¢ = L[¢] + Blpl +h, inR* x (19, 00),
¢(, 1) =c1Zo inR?,

for radial functions ¢, i, ¢o, where ¢; € R is a parameter. We assume that ||/ || <
0.



Arch. Rational Mech. Anal. (2024) 248:61 Page 93 of 154 61

Proposition 10.1. Let us assume that 1 < v < 47'1' Then there is C > 0 such that for
any 1o sufficiently large the following holds. Suppose that ||h| .« < oo is radially
symmetric and satisfies the zero mass condition (10.4). Then there exists c1 such
that the solution ¢ = ¢ + 520 of (10.9) satisfies

f(OR()
< C———|h|ls,
a(@)] = € il
1
lp=(p. T)| < Cr@R@) ———5 1nlsx- (10.10)
L+ 1yl
where R(t) > 0 is defined by
R(r)* = : 10.11
T (10.11)
where 0 < q < 1, and
f(® : (10.12)
)= ——. .
V(log 7)™
Moreover c is a linear function of h and satisfies
f(10)R(10)?
< C————"—||h| -
le1] < (logro)l—‘i [172] s
We always decompose ¢ as in (10.6):
p=0"+ 227
2
and write
0] -1 1 ¢J' 1,1
=——(-A , =——(-A .
g= ~ A ¢ 8 g A
Let us denote
1/2
w(t) = (/ Ug(t)z) . (10.13)
R2\ Bg(r)(0)

The strategy for the proof of Proposition 10.1 is contained in the following
lemmas. The first one is an a-priori estimate for the solution, assuming that a(75) =
0 for some 7T>.

Lemma 10.1. There is C such that for vy large the following holds. Suppose that
7]l < 00 is radially symmetric and satisfies the zero mass condition (10.4) and
consider (10.9). Let ¢+, a be the decomposition (10.6). Suppose that for some
c1 € Rthere is T» > 1 is such that

a(Tr) = 0.
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Then
oo = CEOED g, e o (10.14)
0] = C LS bl 7€ [0, 72) (10.15)
erl < c’;(gg)r—';(fff||hn**. (10.16)

The constant C is independent of T> and c.

There is a variant of the previous lemma, where the hypothesis a(72) = 0 is
replaced by an assumption about its time decay.

Lemma 10.2. There is C such that for ty large the following holds. Suppose that
|74+ < 00 is radially symmetric and satisfies the zero mass condition (10.4) and
consider (10.9). Let ¢, a be the decomposition (10.6). Suppose that for some
c; € R,

a
W € LOO(TO, 00).
Then

fOR(T)?
(log 79) 14
f(O)R(T)
(log 79) 14
f(10)R()?
(log 79) 14

la(n)] = C 7llss, T > 70 (10.17)

lw()] = C 1Al T > 70, (10.18)

leil =C 170 (10.19)
Lemma 10.3. Let Zg be the solution to (10.8) and write it as Zp = Zé‘ + ”TZZO
according to the decomposition (10.6). Then az(t) # 0 for all T > 1.

Lemma 10.4. There is C such that for ty large the following holds. Suppose that
|74+ < 00 is radially symmetric and satisfies the zero mass condition (10.4). Then
there is a unique c1 € R such that the solution ¢ = (]5L + %Zo of (10.9) (as in
(10.6)) satisfies (10.17), (10.18) and (10.19).

In the first results we do some computations and obtain some estimates, which
are used as technical steps in the main argument.

The nextlemma is a calculation to help us deal with the term B when we multiply
the equation by a suitable test function. It holds for operators more general than B
as in (10.2) and (10.3). Let

Blg]l = t1(1)¢ + (2(2)y - Vo,
with ¢1(7), ¢2(7) satisfying

5 ()] =

for all T > 1. (10.20)
tlogt
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Lemma 10.5. We have

f Blolgt
RZ

Proof. We have

<
“tlogt

/ U(gh)*dy +c' ( )| “IVe LUz|,.. (1021)

/ Blglgtdy = / [£1(T)¢ + &2 (T)y - Volg™dy.
R2 R2

By Lemma 9.3 and the hypothesis (10.20) we have

C
’a(r)/ pgtdy| < / U(gh)3dy. (10.22)
R2 tlogt Jr2

Let us write

fR ¥ VeMET(dy= / v Vere <y>dy+% 7 VZog )y

‘We claim that

/ y - Vét(ngt(ndy| < C / (gH2Udy. (10.23)
R2 R2

Indeed, we write
f y-Vot(megt(ndy = f y-V(UghHegt(dy + / y - VUYHg(y)dy.
R2 R2 R2

(10.24)

But

/R zy-V(UgL)gHy)dy e VU (gH)>(y)dy + / Uy-Vgtgt(ydy

1
/ - VU(gH)?(y)dy + 3 /R Uy VI(gH)*1()dy

5 / y VU@ ()dy — / U™ ()dy.
R2 R?

and so

V y-V(UghHeg*(y)dy
]RZ

<C / (gH?Udy. (10.25)
R2
The second term in (10.24) is:

/ y-VUyHgt(ydy= [ (- VU tegt(n)dy+ / Uy - Vyhgt(dy.
R2 R2 R2

We estimate the first term above
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=c([ wtrvay) ([ whrvay)”

<C / (gH*Udy, (10.26)
R2

[Lovowteoun

by (9.20). To estimate fRz U(y- VwL)gL(y)dy we write it using radial symmetry:

/R UG Vgt (dy =27 /0 U)W (0)g™ (p)pdp.

We use that ¥ satisfies
—AYt Uyt =Ugt nR?, ¢t (p,1) > 0 asp— oo.

Then, by the variations of parameters formula, since that fRz Ugtzody = 0, we
have

0o o
WYY () = (o) / U(r)g™(r)Zo(r)r dr + Z)(p) /0 U(r)g™(r)z0(r)r dr,

P

where 79 is a second linear independent function in the kernel of A + U satisfying

1Z0(p)| = C(Jlog p| + 1).

We then compute

/0 U)W (p)g(0)p*dp = I + I

where
o) o0
" /o / U(p)U(r)zg(p)ao(r)gt (g™ (p)prdrdp
0
e} e’}
L= _./0 / U(p)U(r)zo(p)zo(r)gt(r)gt(p)p*rdrdp.
0
We directly check that

I+ 10| < C/R;g%zl/dy.

From this we get that

[Lvo vt o

< cf (gH*Udy. (10.27)
R2

Combining (10.24), (10.25), (10.26), (10.27) we obtain (10.23).
Next we claim that

1
‘ /R Y- VZo(ygt (»dy| = CIVE U2 2. (10.28)
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Indeed, write
y-VZo=V-(yZy) —2Zo =V -(yZy —2Vz0) — 42y

where z¢ is defined in (9.2) and satisfies the linearized Liouville equation Azgp +
Uz = 0. We have used here that Zy = Uzg. So

/ y-VZo(ygt(ydy = —/ (yZo —2Vz0)Vgtdy — 4/ g Zody.
R2 R2 R2

?Out Jw2 Zog*dy = [ Uzog*dy = 0 by Lemma 9.2, and |yZo — 2Vzg| < Iy%

1

1 3 1
-VZo(y)gt(y)d <cf ——— Vgt 2dy) < C|VetU2 || 2.
[y vzt o] < o [ gy elvet ) = Cive i

This proves (10.28).
From (10.22), (10.23) and (10.28) we conclude the validity of (10.21).
O

In the next lemma we get an estimate for fRz $g*, but with right hand side that
depends on the solution.

Lemma 10.6. We make the same assumptions of Proposition 10.1. Let f be given
by (10.12), w be defined in (10.13) and let R : [1g, 00) — (0, 00) be continuous.
There is ¢ > 0, ¢ > 0 and C > 0 such that for to sufficiently large, if

2
RO _, (10.29)

sup =<
r>1 Tlogt

then

2 L 2 a@? | w(0)?
07 A;‘f’g +F/l;2¢g <Cf(v) ”h”**_‘_CT—i_CT’

for some constant ¢ > 0.
Proof. Equation (10.9) can be written in the form
d0¢ =V -(UVgH) + Blgp]l +h, inR*x (19, 00).

We multiply this equation by g* and integrate on R?, using Lemma 9.5:

1
531/ ¢gL+/ UIVgi|2=/ B[¢]gl+/ hgt. (10.30)
R2 R2 R2 R2

Let H = (—A)~'h, and observe that, since 4 is radial and fRZ hdy =0,

o0

1
IVH(p, )| = ‘;/ h(s, t)sds| < Cf () |h]lsx
o

(L+p)3Fo
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Jurs
R2

It follows that

VH - Vgt
RZ

/ V.VHg'| =
R2

1
< —f U|Vgl|2+cf VHPU!
2 R2 R2
1
<5 [ UIVe R+ crRinie,
R2
This combined with (10.30) gives

1 1
—a,f ¢gL+—f UIVe P <
2 RZ 2 RZ

We use the inequality in Lemma 9.6 to get

Blplg*t |+ Cf(@?IRl2,.  (10.31)

c _

—2f (g — &)U 5/ UIVghP?, (10.32)

R Bgr R2
for some ¢ > 0, where

J_ 1
g U.
5ol
From
(¢M)U f g+ —gR>2U+2f ek f @)U

we get

¢HPU <2 / (gt — 352U + C@EL 2.

Br Br

s0, using (10.32),
¢ 132 12 I 1
— U < Uwv C— ,
RZ/BR@) _/Rz Ve 1P +C 33
for anew ¢ > 0. This implies

¢ 142 12 I 10 1 152

— U< Uwv C— C— U .

72 /Héz(g ) _/Rz Ve 1"+ Co7 (8r)" + Cp3 .. (&7)
Using that g = g 4+ a we get

a2

2
/(g )U</ UIVet?+C 2(gR) —|—C——|—C . (10.33)

/ gtUdy =0
RZ

But
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and this implies

1
-1 1
8 = — / g U
S5 U Jr2\i,

SO

o) Ca’> C

2 12 2
U< —F—+ — U.

<g>_R2/\R(g) _R4+R2/Rz\BRg

This combined with (10.33) gives

w?

2
¢ 1.2 1.2 a
— U< U|V +C— +C—.
RZ/Rz(g) _,éz Vel R4+ R?

We use this together with (10.31) to obtain (for a new ¢ > 0)
3o [+ [@hu g [ uiwet
2 R2 R2 R2 4 R2
| siols*
R2

‘We obtain from Lemma 10.5 and the assumption (10.29) that

2

a2 w
+Cf (@) h2, + Cog +Cor (10.34)

< R2

la(7)]
Blplg"| < / & PUdy + 5 vgluty,,
R2 rlogt 7 log
2 R4 1

- Lsz la(t)| C VlUfz.
= ‘L'lOgT /I;Z(g ) y+ R4 + fz(lo T)2 ” g ”LZ

e Lo la ( >|2 Buer L
:cﬁ (gH)*Udy + + Ce*|Vg U2|| (10.35)

Taking ¢ > 0 small, and combining (10.34) and (10.35) we get

w?

1 Ca®
1 152 < 2 h 2
or fchpg + /Rz(g U = @Il + —g + C s
By Lemma 9.3 we obtain

2 2
1, € L 2 @
o [ o5+ 15 [ 0wt = CroPmid + o+ o

for some constant ¢ > 0, which is the desired conclusion. m]

The next lemma provides a pointwise estimate for g = % —(—A"1)¢ assuming
a certain bound for || Ul/zglle.
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Lemma 10.7. Assume v > 0. Let ¢ be the solution to (10.9) as in §8. Suppose that
T > 19 and

1
g U] L2®2y < K1 fi1(7), T € [0, 1], (10.36)

where K1 > 0 and

1
fiw = B
where i € R. Then
hllse el
V800l = C(K1 + s S ) fice )(1+| 7 el

Proof. We define
go=Ug,
and obtain from (10.1) the equation
0rg0 = Udrg = dcp — U(=A"1)d:4
—v. [UV(%)] — UGNV UV)I+h—U=A)""h

+ Blgol + B[Uv[goll — U(—A)"'(Blgo + Uy[golD),
(10.37)

where we regard ¥/[go] as the operator that maps go to the unique radial solution to
—AY —Uy =g inR?%, ¢(p,7) > 0 asp — oo. (10.38)

We note that this problem has indeed a solution since fR2 g0zody = Oby Lemma9.2,
which is unique by imposing ¥ (p, 7) — 0 as p — o0 in the radial setting. This
solution is given by the variations of parameters formula

o0 o
Y(p, 1) = Zo(p)/ go(r, T)zo(r)r dr + zo(p) /0 go(r, T)zo(r)rdr,
P

where Zo is a second linear independent function in the kernel of A + U satisfying

1Z0(p)| = C(llog p| + 1).
We compute

V.- (UVg) =AgU+ VU -Vg=A(gU)— VU -Vg—gAU,
and hence

(—A) V- (UV] = —gU — (=A) ' [VU - Vg + gAU]
=—gU—v

where

vi=(—A) "N (V- (goVIp)). (10.39)
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We write (10.37) as
d:80 = Ago — Vgo - Vg +2Ugo + Blgol + h (10.40)
where

h=Uv+ BlUYIgoll — U(—A) " (Blgo + U¥lgoll) +h — U(—=A)""h.
(10.41)

Note that since we are working with radial functions, we can integrate (10.39)
explicitly and obtain

oo
v(p, 1) = / go(s, T)Io(s)ds. (10.42)
P
We claim that for any y € R?:

h kK
il )fl (T)ﬁ,
R ptr

I7llLe s () < C(Kl + T €10, 11]. (10.43)

Indeed, let us start with

oo ] o0 /2
/ [w()|PU (p)pdp < f (/ U<s)g<s>2sds)”
0 0 0

o0 / 2
( / U (s o) ds)”/ZU(p)pdp
0

N

1
< ClIgU 12 gay: (10.44)

which follows from (10.42) and Holder’s inequality
Letuswrite v = ¥[go] and ¥ = oll, where IT is the stereographic projection.
Writing (10.38) in S? and using standard L? theory we find that for any p > 2

~ ~ 1
[VllLe(s2)y + IVs2¥liLe(s2) = CllgU2 | L2R2),

which implies

1

_r\7 1
IV Lo w2y + (./]RZ \Vy|PU! 2) < CllgU |l 2®2y- (10.45)

Lety € R2. From (10.36) we see that

1
T <CK T)——, T € [19, T1],
llgo( )”L2(Bl(y)) 1/1( )(1 N [0, 71]

and from (10.36) and (10.44) we have

NUv(, Dllers ) < CK1 fi(T) i TE€ [0, T1]. (10.46)

A+1yD" r
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Similarly, inequalities (10.45) and (10.36) imply

1

1
IBIUVLgolllLrion = CKUAT) o G e

T €[, T1]. (10.47)

Let’s estimate

(—=A) "V (Blgo + Uylgol) = 1(x)(—A) "Ly - V(go + U¥[go)
+ 00 (=A) (g0 + Ulgol).

Note that ¥ = (—A) "¢ = (—A)~!(go + U). But we can estimate ¥ from

Y(p) = Zo(p)/ / g0(s)zo(s)sds, p > 1. (10.48)

(r)zr

Then (10.36) yields

C 1
< — U2 <CK , , 1],  (10.49
[V (p, D] < T lgU2 1l 2®2) < 1f1(f)1+p T €[, 1], ( )

and so

U(=A)"" (g0 + U¥lgoD)| < CK1 fi(t)——, t€lr.nl.  (10.50)

1+ [y’

Concerning the term (—A)"Ny - V(go + Uv)), we notice that if we let w =
8o+ Uy, then [po y - Vw =0, and

(=)' Vw)(p) =/ rw(r, T)dr =2y (p, 7).
0

Using (10.36) and (10.49) we get

1
(870 Vigo + UM, 0| = CK1 i) . T el mi)

From this and (10.50) we find that

|U(—A) "' (Blgo+Uv¥ g0l (v, 1)I<CK; fi(T) T € [10, T1]-

(10.51)

tlogr(1+lyD)3’

Finally the estimates

- Il 1
IRl Lr By + 10U (=) Rl Loy < C s fi(T) (1052
(A+1yp™ 7

are directly obtained.
Combining (10.46), (10.47), (10.51), and (10.52) we deduce (10.43).
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From equation (10.40), the estimate (10.43), standard parabolic L? estimates
restricted to By(y) x (max(t — 1, 19), ) and embedding into Holder spaces, we
deduce that
IIhII** let]
R(70) f 1(70)

T € [10, T1].

(10.53)

19000 )l = (K1 + )@

(1+| N’

This is the desired conclusion. We also get from (10.53):

IIhII** et
R(70) fl(TO)

.ol = (K +

)f( ) € [t, 11]. (10.54)

I+ | 2’
0
In some of the proofs below the following barrier will be useful. Consider the
equation
d:¢ = Agep +h in (19, 00) x RS

$(t0.) = 0 (10.55)

where Aps is the laplacian in RS. Suppose that & has the estimate

1

1
R T NGT

for some y, b € R.
Ify <3andy < %’ then there is a barrier satisfying

1 1 : 1
G aThIT S0 0 = O n T

Indeed, we can consider all functions to be radial and write p = |y|, y € R®. Let

5 _Lo(r -
¢(p,r)—ﬂg(ﬁ), g“—ﬁ. (10.56)

Then

n 1 1 5 /! ; !/
oc8 = (B + 20,6 = = o [0 + 260 + 5600+ 2],

Let g1(¢) = W Since y < 2 we have
V 5 / { / C
SO+ @O+ 30 +ra@] = 5o czm

2
for some ¢, M > 0. Let go(¢) = e_% be the Gaussian kernel, which satisfies

5
80(&) + Eg()(z) + %g()(é) +3g0(¢) =0.
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Let g = C1g0 + g1. Since y < 3, we can find C; large so that

»
o0+ 260+ S © 8] 2 e €20

Then ¢ defined by (10.56) with g = C;go + g1 is a supersolution to (10.55).
In the next lemma we improve the spatial decay of g = % — (=A"NHe.

Lemma 10.8. Assume 1 < v < 47'1' Let ¢ be the solution to (10.9) as in §8. Suppose
that T > 19 and

1
lg(@U2 22 < K1 fi1(r), T €[, 11l

where K1 > 0 and

I
fiw = B
where u € R. Then
U, 0l = C(Ki+ oy 1Y oy L e gl
- R(70) fl(TO) (1+ )
(10.57)

Proot:. ‘We us the same notation as in Lemma 10.7 and consider (10.40) forgg = Ug
with £ defined in (10.41). We are going to use barriers to estimate go.
We claim that /& satisfies

|h(y. T)|<C<K1+“h”**)f1(f)< ! + ! ) T € [10, T1].
- R(70) (I+1yDS * tlogz(1+(y[)3
(10.58)
Indeed, from (10.53) and (10.54) we find that
| —Uv+h—U(=A)"'h < C<K1 + ”h”**)fl( ) , T €[, 1]
- R(70) (1 +| e
(10.59)

To estimate B[Uv[go]] we use (10.49) a similar estimate for d,v, and the assump-
tions on ¢, & in (10.20), to obtain

IBIUV[goll = CK1 f1(T) —— T € [0, T1].

tlogt 1 + |y
This, (10.59) and (10.51) prove (10.58).

To get better spatial decay we construct a barrier and apply the maximum
principle to equation (10.40) in (R%\B Ry (0)) x (70, T1), where Ry is a fixed large
constant. Several of constants C below depend on Ry but we will not keep track of
the explicit dependence.

The linear operator for g in (10.40), acting on radial functions with p = |y,
is given by
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0:80 — [Ago — Vgo - Vo + Blgol +2Ugol

S +0( ! )
1+ p2 P80 A

1
= 0:80 — 0pp80 — ;8/380 -

0<rl(§gr>g0 + O(IISgr)papgo'

The main part outside of a ball Bg,(0) with Ry big is given by 9; — 9, — %8p.
By (10.58) we need to construct g; such that

0:81 —[Ag1 — Vg1 -VIo+ Blg1] +2Ug1] = hy

where

h = : 1
1o, 7) = fl(”((l T " Tlogr(l +p)5>'

To construct g1, let 0 < ¢ < 1, and let g;(p) be radial and solve
Aeg1 = 1 in RO
— = —— 1N N
681 I 6=

such that g1 (p)(1 + ,04_19) is bounded below and above by positive constants. Let

p fi(@) filh) 2
Sﬁ) e 292(1 + p//7)° TR T

For appropriate § > 0, C1, and C,, the function g;(p, ) is a supersolution in
(RZ\BRO (0)) x (79, t1) for the right hand side /. More precisely, writing M =

Ré—l?(Kl + u?h(”(:)); —+ fl(lf())lCl')’ we have

’

210, 7) = Aoz 00

(3 —[A = V() - VTo+ B) Mg > ||, in(R?>\ Bg,(0)) x (%0, 71),

Mg > |gol, onp=Ro, T € (10, 71),

because of Lemma 10.7, and

Mgi(t) = |e1Ugz |, inR?,
where
Z i
87, =7 — (=M%,

1
1+p%

is the function g associated to Zo defined in (6.4). We note that |U 87, p|=<C

and is supported on p < 2,/79. Here we are using that v < % + %.

Using the maximum principle we get

(17| let]
lgo(y, T)| < C(K1 + R(z0) + fl(m))fl(f)

1
Tt )" T € [10, T1].
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The constant C here depends on Ry, but Ry is fixed and we will not keep track of
the dependence of C on Ry.
By (10.42) and (10.48) we have

> ||h||** lci] 1 1
ol = (K + 3+ ) O e * rogea T ee)

We can now repeat the argument with a new barrier. Consider g>(p) the radial
solution to

1 3 1
7 = 8(p) =27 el (10.60)

- 1 .
_A682=—6+a in RC, C11+p

I+p

where ¢y, ¢p > 0. Let

_ N P f1(o) filr) _o*
gz(p,r):fl(r)gz<p>><o(5ﬁ)+clrz(l+p/ﬁ)6_ﬂ + Ot

For appropriate constants §, C1, C, and assuming thatv < 2 — % we get a suitable
supersolution and we obtain

IIhII** letl
00, D)l = C(Ki + JAO——
R(To) J1(0) 1+ )4
This proves (10.57).
The restrlctlon on v were v < + 5 andv <2 — 5 Y. Choosing ¢ = 4 we find
that for v < both barriers Work. O

The next result is a technical step used in several places.

Lemma 10.9. Let ¢ : R? — R be radial such that fRZ ¢ = 0and |p(y)| <
Wfor someo > 0. Let g = % — (=A)"'¢ and assume that ||g|| 1~ < oo.
Then

llgllzee
(1+|yh*

Proof. Let = (—A)~'¢. Since v satisfies
—AYy —-Uy¢ =Ug inR%, ¥(p) >0 asp— oo,

e <C (10.61)

we have necessarily
/ Ugzody = 0.
R2
We have the variations of parameters formula
oo
¥ (p) = zo0(p) / - (r)2 / Ug(s, t)zo(s)sdsdr, p > 1. (10.62)

From (10.62) we find

[Y(p, Dl = CliglliLee.
This and the formula ¢ = Ug + Uy gives (10.61). O
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Next we give a proof of Proof of Lemma 10.1, but first we point some estimates
of Z defined in (6.4). Using the general decomposition (10.6), we write

- -, ao
Zo=Zy + ~ Zo-

By (10.7)

_ 1 ~ log 79
ay = — I'nZo =2+ 0O .
87 JRr2 70

Hence ZOL satisfies

2 (p) = Zo(p) = 5 Zo(p)

1
= (Zo() = mz U xs = (14 0(Z22) ) Zot)
. logryg 1
= Z0(p) s = D+ 0(Z2 0 )

where

x3(p) = X0(35T_0)-

Let gg = % — (—Ay)_lzo and g(J)- = go + ap. Note that since Zy has mass
zero and decays like 1/p* we have m Zo = 0(11—0). We claim that

/ Zogydy
RZ

Indeed, let us use the notation

log 7o

<C . (10.63)

2

Yo = (A, Z

so that
. Zy -
g =7 Yo
Let us write
Zo=Zo+h,

where
h=Zy(x3—1) —mz,Uxs3.

Since Azg + Uzp = 0 and lim,_, 5 20(p) = —2 we have (—A)’lZo =z0+ 2.
Therefore

Vo= (-MN"1Zo=z0+2+ (=A)"'h.
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Since the mass of Zg is zero
/ Zogy = / Zogo
R2 R2
Zo+h -
= [z m (25 i)y
R2 U
Zo+h _1
- 2(zo+h)( —20—2—(=A) h)dy
R

72 +27Z0h + h?
0 dy — /2 Zo(z0 + 2 + (=AY ' h)dy
R

=/ Zot2Zoh + A7
R2 U

—f h(zo 4+ 2+ (=A) " 'h)dy
RZ

But Zy = Uz and the mass of 4 is zero, so
h2
- / Zo(—=A) "' hdy — / h(—A)"'hdy
R2 R2

/Zog /Zohdy—l-/ —dy
RZ
/—dy /h(—A)_lhdy,
2

because, integrating by parts,
/ ZO(—A)_lhdyzf (—AZO)(—A)_lhdy=/ z0h.
R2 R2 R2

By direct computation

1

- ol =RV
[(=Ay) " h(p)| < Clog(to) {qz

- < J70.
)

With this inequality we estimate
h? C
/ —dy| = =
R2 U 72
and
log 19

h(—=A)"'hdy| <
R2

This proves (10.63).
Proof of Lemma 10.1. We let R be defined by (10.11). We multiply equation (10.9)

by g+ and integrate in R%. Using Lemmas 10.6 and 9.3 we get

2
d Aﬁgl f og* < Cf(@*hl2, @2 (10.64)

Ca
+ ot
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for some ¢ > 0, where

12
w(t) = (/ g U) .
R\ Bg(r)

Let us write

l@lloo, 7, = @Il Lo (29, T2)>

and note that

Fr L v e

The following inequalities are valid for 7o < 7 < T>. From (10.64) we get

b oo+ g [ o0 = cror (it [ L+ Il )

By Gronwall’s inequality and Lemma 9.3 we get

2 2
e < crorre? (i + | g + oL +edpe?)
(10.65)
where
1 1
D(x) = LY
f(@)R(m) 70
and we have used (10.63).
From (10.65) we find
| ¢ = crorrar( i, + ||
®2 = R(@)2 " " T IR2 f o,y
D()*
2
— 10.66
+ R(19)2 H Rf HOO,TZ 1R(1:0)2> ( )
Using Lemma 10.8 we get
2 —
Ugl = CF(DR() (R( Sl + | 2z
+ 2 ko Tt ) (06))
R(To) 0.1y S (@) R(w0)*/ (1 + p)
where we have used that for tp large, ggg)) < f(To)}?(to)z'
We use this to estimate
1
2 2
U<C R —
/H;Z\Bkg < Cf(x)R(x) (R( Sl v + | szHMZ
2
+ Ry | & b+ '“'f(m)R(m)Z) ’
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which implies

() 1
R(f);m = <R(To) ks + H R2f Hoo T R(To) H Rf Hoo T ”f(ro)R<ro)2)'
We deduce that

1
H Hoo n (R(l’o) ” ”** + H sz Hoo T |Cl| f(To)R(‘L'())Z)' (1068)
Combining this inequality with (10.66) we obtain
fRz U < Cf@)*R()* <W” o+ | 227 |cl|m)2,
(10.69)
and with (10.65) we get

/Rz(gifu < Cf @ R@? (1] + HR%CHMZ + |c1|—f(ro);(ro)z)2-

(10.70)

Going back to (10.67) we find
Vo, )l = CHORD (bl + | lerl ) .
- R(z0) Rof oo T TR T+ p*
(10.71)

Using Lemma 10.9 we also obtain

1

a H +lel ! ) .
R2 f loo.1y f(0)R(19)%/ 1+ p*
(10.72)

|¢(,0J)|5Cf(r)R(t)< I ”***H

R(70)

We multiply the equation satisfied by ¢ (10.9) by |y|? XO(%), and integrate on
RZ

2, (Y _ 2, Y 2, Y
oc [ otsPro(5)dy = [ @ior+misPropdy+ [ BolExoGody

R’(‘L’) 5 Z l
i fqublyl VXO(R)- Rdy, (10.73)

where R’ = ‘ZZR
We integrate (10.73) from t to 7>, use the decomposition (10.6) and thata(7>) =
0 to get

la(t)|logz < (L )1+ My x0()dyds

R(s)

Blp)]1ly? Xo(m)dyds

Tz
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T R’
f ()/ )yl Vio(=—) - —dy

R(5) R®RG)
+‘/Rz¢L(T2)|y|2Xo<R(T) dy‘ '/ 5@ ( s ) ’
(10.74)

By Lemma 9.4 and (10.70)

172
[ e@tivtay < cro( [ @r@ru)
Bar(r) R2
1/2
< ek ([ @)

= CFOR@? (Il + ”R%f”m * '“'m)'

(10.75)

Analogously,

< CHADRED (Wilee + | 25| + wm)

+ le1l

€ 2
‘/de) D0 757 )4

< Cf(0)R(t) (Hh”** + H

1
R2f Hoo 05 f ()R (x0)? )
(10.76)

Integrating by parts

T
‘/ /B[¢(s>1|y| 10( s

_C/; ?log;/ &y, S)H)‘ Xo(ﬁ)dyds

+c/ —/ 16 Y PIV X0 (=) dyds.
r slogs Jr2

R(s)
(10.77)
Let’s estimate, using (10.72)
b 1
/T slogs/ EXCEOIINE Xo(m)dyds
< [ L poreras(go et | o] Hlel k)
- Jros R(70) R2 f llc,1, f(m0)R(10)?
a 1
< CrOR® (el + | 52| +lerl ),
The second term in (10.77) is even smaller, and we deduce that
b )
[ BB P xo(75)dvds| < CF R > (e e + el
1
— ). 10.78
el R Gor) o7
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From (10.72) we also get

T R’
f ) / SV x0(2) - ——dyds
T R2

R(s) R RG)
T2 R/(s) 5 1
sc/r o [ORG) 45(3s il + | =] et 7 —s)
2 , 1
< CF(DR() (mnhn** Harilen T re) 1079

Next we look at
2.,Y y 1/ 2 y
L =dy = -2 UVg - =)dy — — U Vg-V =)d
[, tieisProGay = =2 [ 09g-yx0G0dy = ¢ [ VPV Vaotdy
=2/ gZoxo<X>dy+if Uy - Vxo()dy
R2 R R Jr2 R

1 2 y 1 2 y
— VU - Vyxo(5)dy + — UAxo(=)dy.
+ R/RZglyl x0(R)dy + 23 RZglyl xo()dy
(10.80)

‘We have f]RiZ gZo = 0 by Lemma 9.2 and therefore, using (10.71), we find that

/ gZody
R\ Bg(r)(0)

< 1ol + |57+l p )

The remaining terms in (10.80) are estimated using (10.69) or (10.71) and we get

‘/ 8ZOX0(m)dY‘

[ tosaoCoas| = e (st + | g | +iel st
R2 R - R(tp) o R2 f lloo, 13 FEo)R(w)?/”
Therefore
)
L[cb( Iyl? xo(m)dyds < Cf(v)R(1)*(log 7)4

(R(r )” e+ H R2fH f(to)R(ro)Z) (10:81)

Finally
)
hlyl? XO(—)dde < Cf(R(@)*1og ) ||| s (10.82)

From (10.74), (10.75), (10.76), (10.78), (10.79), (10.81), and (10.82) we get

c |;)
") RT)? /)

(10.83)

la(t)|logT < Cf(T)R(T)Z(IOgT)q(”h“** + HR%f Hoo T
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Assuming 7y large, we deduce that

Al + letl (10.84)

HRTf”M = aogf%( m)

Note that a(tp) and c; are related. Indeed, the initial condition is ¢g = aZy =
o + 25 7, with

C1l ~
a(to) = 3 /RZ Zolo,

by (10.7). We note that f» ZoTo = 167 + O(*24%). So by (10.84)

(w0 R(z0)? 1
<C <C——F———|h C—|cil.
1] = Cla()l = € E 2 e + € o siglenl
For 7( large, we deduce that
(10) R(10)*
e1] < Cla(zy)| < ¢ LER@" . (10.85)
(log 7o) ~¢
This proves (10.16). Replacing this in (10.84) we get
C
— P q—— 10.86
| =5 7 o, < ooy Milles (10.86)

which proves (10.14). Combining (10.68), (10.85) and (10.86) we obtain (10.15).
Finally, we also obtain from (10.72)

c/ORG o1 il
(logto)1=a 1+ p* " ™

lp(p, D) <C (10.87)

O

Proof of Lemma 10.2. The proof is a slight modification of the one of Lemma 10.1.
Using the same notation as in that proof, integrating (10.73) from 7 to 7> > 7 yields

2
| sisPo(g )y = [ el ao( g )ds

T
=/T / (LIp()]+ )yl Xo(m)dyds

T y
+ / f BIS oS )dvds

T
/ ‘R / SOV x0(=2=) - =2—dyds,
. R() R(s)” R(s)

Similarly to (10.83) we obtain

5 a 1
la@llog T = Cf RO o) (Mhllen + | iz |+ letl s )
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+ Cla(T2)|log(T3). (10.88)

_a_

The assumption R € L*(tp, 0o) implies that

lim a(r)logt =0.
T—>00

Letting 75 — o0 in (10.88) we obtain

+ |1l

la(@)llog T < Cf @R og 1) (1]

a 1
+ HRTfHLOO(ro,oo) f(ro)R(r0)2)'

Then the same argument as in Lemma 10.1 gives the estimates for a, w and ¢;. O

Proof of Lemma 10.3. Here Zp is the solution to (10.8). Assume to the contrary
that there is some 75 > 1( such that

az(Tz) =0.

We follow the same computations as in the proof of Lemma 10.1 with 2 = 0 and
c1 = 1. By the inequality (10.84) in the proof of Lemma 10.1

7). = Gy T
R flloo.1» = (log 70)!~7 f(z0)R(10)?

which implies

la(zo)| < W (10.89)

But by (10.7)

1 ~ log 7o
a(fo)=§ 2Fozo=2+0
R

70

which contradicts (10.89). O

Proof of Lemma 10.4. We let T, be a sequence such that 7,, — oo asn — o00. Let
¢ be the solution to (10.1) with initial condition equal to 0. This solution exists but
for the moment we don’t have any control of its asymptotic behavior as T — 0.
Let J)l, a(t) be the decomposition (10.6) of ¢_> Let Z+, az(7) be the decomposition
(10.6) of Zp. Using Lemma 10.3 there is ¢, € R such that

a(Ty) + chaz(T,) = 0.
Let us define
$n =+ cuZs,
and let

a,
¢n =¢,J,‘+7"ZO
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be the decomposition (10.6) of ¢,,. Then by Lemma 10.1 we have

R 2
@) < CZE s, €0, T
R
jon(0)] < C%nhn**, v € [1. Tl
(1) R(x0)*
lenl < CWHW**-

Moreover, we also have the uniform estimate

f@OR@?* 1
(log10)!=4 1+ p* |

lpn(p, )| = C (7]

for T € [, T,,] from (10.87).

By using standard parabolic estimates, passing to a subsequence we may assume
that ¢, — c1 and ¢, — ¢ locally uniformly in space-time, and that ¢ is a solution
of (10.9) for some c; such that

f(x0)R(1)?

<C
il = (log79)'~4

1721

Moreover ¢ satisfies

fOR@? 1 N
(logf())l_q 1+,04 ” ”**

lp(p. D) = C

and writing the decomposition (10.6) as ¢ = ¢ + %Zo we have

F(DR(1)?

@@l = Cp iy

(17211

We also get
J(@)R()

<C——7-—
lon(D)] < € o

(17211

where w is defined in (10.13).
The uniqueness of ¢ is a consequence of Lemma 10.2. O

Proof of Proposition 10.1. We have already constructed ¢ and c¢; in Lemma 10.4,
we have the uniqueness of ¢ and the estimates for a and ¢y in Lemma 10.2.

We only need to prove the estimate for ¢+ stated in (10.10). By the construction
of ¢ in Lemma 10.4 and (10.70), (10.85) and (10.86), we get

/ U < Cf@’R@?(AIZ,. T > 70 (10.90)
R2
We claim that from this inequality we have

1
Ulgt(y. 1)l < Cf(r)R(r)mllhll**., T > 1.
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The proof of this estimate is similar to that of (10.57) in Lemma 10.8.
Indeed, we define

g =Ug

and obtain the equation

1 L

degy = V- (UV(%O)) —UEATY (UV(%O»

+h—U=A)""h
+ Blgyl — U(=A)""Blgg 1+ BlU¥Igy1— U(—A) "' BlU¥[gy]
+d (DU + %B[Zo] _ %U(—A)_lB[ZO]. (10.91)

Here the notation w[gol] is the one introduced in the proof of Lemma 10.7 in
(10.38).

To get an estimate for the solution we need an estimate for a’(z). Since g+ =
g+aand [ Ugt =0 we have

1 1
a(r) = ~ 3 /Rz Ug(t)dy = 3 /RZ go(v)dy.

But integrating (10.37) we find
oc [ aomdy == [ veay (v )ay - [ vy Thay
R2 R2 U R2
— L U(=8)7"(Blgo + Uylg0lDdy,
which gives the expression
1 _ 80 1 -
"t)=— | UNYV-UVE))d —f U(—A)"'hd
@ =g [ V(v @VE)ay+ o [ Ua)hay
1 _
+or / U(—=A)""(Blgo + U[golDdy.
T JR2
We claim that

@' ()] < CFOR@)A] s (10.92)

Indeed, we have

/ U(—A)—l(v.(Uv@))dyzf IOV - (UVgl)dy = —/ VU - Vgtdy
R2 U R? R2

= / AUgJ‘.
R2

Then, by (10.90)
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1/2

‘/ U(=A)~ l(v (UV—) dy

< c f (gﬂ2
< Cf(f)R(f)Ilhll**.
We also have, for the case of the operator (10.2),
v Blanay = [ roslsol =< [ 1oV gy
R2 R2 R2
= —C(r)/ VDo - yUgdy
R2

But by construction and (10.69), (10.85) and (10.86), we get

2.\ /? c 2
([#0)" = Gorms ORI (10.93)

s0, using (10.93)

C 1/2
‘ [ U(—A)—I(B[gondy‘ ( / Ug?)
R2 tlogt \ Jr2

C
< R 2IA
~ tlogt (log -L-O)l—q F@OR@) Al

< Cf(@Ihllsx
= Cf(@OR@) 1Al

IA

The last term is estimated similarly and we get (10.92).
Repeating the argument in of Lemma 10.7 we obtain from (10.90)

1
1
|go (v, Dl = Cf(T)R(T)”h”**m-

An argument similar to Lemma 10.9 gives

1
1
lp~ (o, T)| < Cf(T)R(T)m||h||**~

O

We have an estimate for ¢= stronger than (10.10) under a stricter assumption
on v.

Lemma 10.10. Let us assume that 1 < v < % Under the same assumption of

Proposition 10.1 let ¢ = ¢ + 5 Zo be the solution of (10.9). Then

1
6 (v, D < CR@) F(@) 1l | TPD? Iyl < V7
o b= VT
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Proof. We write (10.91) as
98¢ = Mgl — Vgt - Vo +2Ugt + Blgd1+ hy (10.94)
where
hi = —U(=A)""(V - (g5 VT0))
—U(=A)""Blgg 1+ BlUV gy 11 - U(=A) "' BlUY gyl
+d (DU + gB[Zo] - gU(—A)’]B[Zo]
+h—UC—A)"h.

Then, similarly to (10.58), we have

1h1(y, )| < CL@)R@)|IA]] 4

1+ Iy
Let
L e\, fORD 1
g (p,r)—f(r)R(t)g3(p)x0(8ﬁ)+A1 (14 p/J0)*
L ORO 2
T

where —Aggs = ﬁ with g2(p) — Oas p — oo. If v < %, for appropriate

positive constants §, A1, A», and C, the function C ||h||**gJ- is supersolution to
(10.94) in {(y, )|t > 70, |y| > Ro}. We deduce that

: T
min(1, W)

. e
185 (v, DI = CF@R@) 7] (1+yh* -

An argument similar to Lemma 10.9 gives

1
- =T
L 1+|y|?
(0, D = CF@R@) Al
o~ (0, T)I f@OR@) A ly,|4 ] > VT,

O

Proof of Proposition 8.1. By Proposition 10.1 there is ¢; such that the solution ¢
to (10.9) has the properties stated in Proposition 10.1. We recall that by (10.87) ¢
satisfies

f@R@?* 1

’ =< C
lp(p, DI = (Togto)~4 T+ p

7 1A (10.95)

We will construct a barrier to estimate ¢ for |y| > Ry, where Ry is a large
constant. We consider the equation (10.9) in R%\ B Ro(0) written in the form

3. = Ap — 4VT oV +2U¢ + B[p] + h, (10.96)
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where
h=-VUVY + h.
Since ¥ = (—A)~ !¢, from (10.95) we get

f@OR@? 1

VU0 D = C o s e

This gives

FOR@? 1

VU -Vy| < C
VU= Clogro=a 50

g 17l (10.97)

By (10.97) and the definition of the norm ||/|| .,

f(@R(@)? 1
(log70)! =7 (1 + p)t

g/2

T
— )l

lh(y, )| < C min(l,
where we have used that o 4+ ¢ < 2. Let g be defined by (10.60) and let

f(DR(x)? 1
12 (14 p//T)0t0+¢

B0 7 = FORE B0(5) + A

fOR@? 2
)—————¢€ 4t

+A
72

Then for suitable positive constants §, Ay, A», and C, the function C (log 'l:o)q_1
l|71]| 4+ is a supersolution to (10.96) in {(y, )|t > o, |y| > Ro}. For this we need
v < 2. Moreover |¢(p, 7)| < Co(p, 7)(log 70)9 " ||h]ls« at p = Ry by (10.95).
By the maximum principle

6 (y, D) < Co(y, 1) og 70)? | Allsss  |y] > Ro.

This gives the explicit bound

F@OR@? 1 ( r'/2>2+o+8
mm

lp(p, D) = C(log o (11 %) I, — 7] e
O
We include here some results that will be useful later. Let
Zo = L[ Zo).
Lemma 10.11. The function 20 satisfies
1Zo(p)| < C T (10.98)

and is supported on p < 21.
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Proof. Let y = (—A)~'Zgand g = 2 — y. By (6.4) and using that Zo = Uz,
zo defined in (9.2),

_ Zo—mzU)x _

U Yo =zox —mzyx — V¥,

where x (p) = XO(J%)- Note that Zo has mass zero and support in B, Ja It follows

that ¢ has also support contained in B, /7 and then g has support contained in

B, /- Therefore Zg = L[Zo] = V - (UVg) has also support contained in B, /z;.
To get an estimate for Z let us write

V= (0" (Zo —mz,U)x) = (=)' Zo + 1,
where
V1= 0" Zolx — D = mz,Up).
Since Azp+ Uzo = 0 and lim,_, o0 20(p) = —2 we have (—A) "1 Zg = zo +2. So
Y =z0+2+Y
Hence
g=z20( -1 —=2=mzyx —1n
and so
Zy=L[Z] = V- (UVg)
= V.- (UVzolx — 1) +20Vx —mz,Vx — V1)) (10.99)
Using radial symmetry and mz, = O(%) we get

\% _—
VY (o)l = CTO(1 )

From this and (10.99) we get (10.98). |
Consider the initial value problem

{ d:¢1 = Llg1]1+ Blg1] inR? x (19, 00),

X ) (10.100)
61, 10) = Zp inR~.

Lemma 10.12. Let 0 <y < 2. Let 1 < vy < %

1
fo(r) = —

v’

and let R(t) be as in (10.11). Then the solution ¢1 of (10.100) satisfies

lp1(0, D) < C

3

fO(T)R(T)2 1 (1 /25 24y
10 fo(t0) R(10)? (1 + p*) mm( _) :
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Proof. A suitable modification in the proof of Proposition 10.1 gives the following
result. Consider

_ : 2
{¢ d:¢ = L[$] + Blp] inR* x (19, 00), (10.101)

(,10) = ¢o +c1Zy inR?,

Then there is C > 0 such that for any 7 sufficiently large the following holds.
Suppose that ¢y is a radial function with zero mass in R?, supported in B, va(0),
and such that

lpo(p)| = M

1+ p*

Then there exists ¢ such that the solution ¢ of (10.101) satisfies

foMR@?* 1 min(l ﬁ)uy
fo(to)R(t0)> (1 + p*) Top '

Moreover ¢ is a linear function of ¢ and satisfies

lp(p, D) = CM

<CM——.
il = (log79)'~4

Let us apply this statement to ¢g = L[Zo], which is radial, with mass zero,
support in B /7;(0), and satisfies

1
< —
() = 1

by Lemn}a 10.11. Then there exists c¢; such that the solution q~> to (10.101) with
¢o = L[Zy] satisfies

$(p, 7)< C (10.102)

fo(D)R(x)? 1 ; (1 r1/2>2+y
w0 foR@? A+ o0 ™\ 7)

We claim that ¢; = 0. To prove this, we multiply (10.101) by |y|? and integrate
on R2 x (tp, 00). Let’s work with

Blp] = C(D)V - (y9).

The case of the operator (10.3) is similar. Then we get
9 / $(y, DlylPdy = =2¢(1) / ¢y, )lyldy,
R2 R2
because fRz L[¢]1ly|’dy = 0, see Remark 9.2. Integrating

~ _2 T - _2 T -
f¢(y,r>|y|2dy=e ffof/ by, ) lyPdy = cre ffo”'f Zo(y)lyl*dy,
R? R2 R2
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because fRZ L[Zo1|y|>dy = 0. Using the asymptotic expansion of { one gets

_2 [T
e f’04—>oo, as T — 0Q.

But the bound (10.102) implies that
lim | $0, DlylPdy =0.
T—>00 RZ

This only can happen if c; = 0. ~
We deduce that ¢p; defined in (10.100) coincides with ¢, and then (10.102) holds
for ¢. |

11. Linear Estimate with Second Moment (Radial)

We will prove in this section Proposition 8.2 in the radial case i (p, 7). In this
case uj = 0.

Proposition 11.1. Let 0 <0 < 1, ¢ > Owitho +& <2and 1 < v < min(l 4+
5.3—-9%, %). Let 0 < q < 1. Then there is C such that for tq large the following
holds. Suppose that h satisfies ||h|lv m.6+0.c < 00 and

[ n.ody =0, [ hooiyPay =o.

R2 R2

Then the solution ¢ (y, T) of problem (8.9) satisfies
||¢||U_%,m+%’4’2+g+g = C”h”v,m,6+a,s~

To describe the idea of the proof more easily let us consider for a moment the
equation (8.9) without B:

3¢ = LIpl + h(y, 1) inR* x (19, 00) G

¢(. 1) =0 inR?, '
The idea is to formally apply a suitable left inverse L' of L to (11.1) (to be defined
later on in Lemma 11.1). If we call & = L_1¢, H = L~ 1A, then we would like to
solve

{ 39;® = L[®]+ H(y,1) inR? x (19, 00) (11.2)

®(,79) =0 inR%
In order to get good properties of H, in this step we have already used that / satisfies

the second moment condition. At this point we would like to apply Proposition 10.1,
which gives a decomposition

¢=¢L+@zo.
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Note that & decays in time like 1/7"~1/2 and so ¢ = L® also decays in time like
1/7"~1/2, which is better than the estimate provided by Proposition 8.1. It turns
out that H decays in space like 1/p%*° so we can’t apply directly Proposition 10.1
to (11.2). What we do is concentrate H by solving first a nicer problem. We write
o = & + O, where & is asked to solve

3: D1 = Lo[®1]1+ H(y, 1) inR? x (19, 00)
®;(, ) =0 inR%

where

Lolo] =v.<UV(%>) — A — V- VTy+Ud. (11.3)

Lemma 11.2 below deals with ®@1. Then the problem for ®, becomes

3Dy = Lo[®a] + L[®1] — Lo[®;] inR? x (79, 00)
®(,79) =0 inR2%

It turns out that the right hand side in this equation has better spatial decay and we
can apply Proposition 10.1.

In the next lemmas we give some preliminary results, and the proof of Propo-
sition 11.1 is given at the end of this section.

We define the inverse of L that we use. For # : R? — R define ||k llz.640.c as
the smallest K such that

K 1 < .JT
h()] < ———— Y A = v
T+ D |22 1yl = vr,

which depends on t, treated as parameter here, o, and ¢.

Lemma 11.1. Let 0, ¢ > 0. Let h = h(p) be radial and satisfy ||| z.6+6.c < OO

and
/ hdy :f h|y|>dy = 0.
R2 R2

Then there exists H radially symmetric such that L{H] = h in R? and satisfies

IHllz,440,e < Cllhllz,640.6 (11.4)

Moreover, H defines a linear operator of h and satisfies

; Hdy = 0. (11.5)
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Proof. Write the equation L[H] = h as
V- (UVg)=h

where g = % — (—=A)""H. We choose g as

o0 1 r
g(p) = —/p rU(r)_/O h(s)sdsdr.

Using that [, h = 0 we check that

W p =T
&/
;0+E 102\/?

1g(0)| = Cllhllz,640.e {

Now we solve Liouville’s equation
—AY —Uy =Ug inR?, Y(p) >0 asp — oo,

Since [z hly|*dy = 0 we check that

/ gZydy = 0.
R2

Then we can use the variations of parameter formula, and get

1
T P ST

W (p)| < Clihllr.6ro. | 7
TFoTE p=T

Then define H = U (g + 1), which is the desired solution, and note that it satisfies
(11.4). Property (11.5) follows from H = — A and the decay of ¥. O

To take into account the operator B we define
Alpl =y Vo,
and compute

AoL[®] —LoA[®] =V - (dUy) —2L[®] — V- ((y- VU +2U)V(=A)"'®).

(11.6)
Indeed, write ¥ = (—A)~!®. Then
LO=Ad—-VIy-VO—-VU . -VV +2U. (11.7)
By direct computation
AAD = AAD —2AD (11.8)

A(VDg - V®) = V(ATy) - V® + VI - V(AD) — 2Vl - VP (11.9)
A(VU - VV) = V(AU) - V¥ + VU - V(AW) — 2VU - V¥, (11.10)
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but —AW = ®, and therefore
—A(AVY) +2AV = AD.
Applying (—A)~! gives
AV = (—A) N (AD) 4 2.
Substituting this into (11.10) we obtain

A(VU - V) = V(AU) - VU + VU - V[(=A) "1 (A®D) +2W] — 2VU - VU
= V(AU) - V¥ + VU - V[(=A) " (AD)]. (11.11)

Combining (11.7), (11.8), (11.9), (11.11) we find that

AL® = LA® —2LO +4UP — 2VU - VW — V(ATy) - VO
— V(AU) - VU 4 2A(U) .

But

—2VU - V¥ —V(AU) - V¥ = -VZ,- V¥
-V - (ZoVV¥) — Zy?,

so that
ALO=LADP-2LDP+4UD—V(ATy) - VO+2AU)P—-V - (Z)VV¥) — Z(.
Using that
2AU)D — Zpd = 22U+ A(U)D
we then obtain
AL =LA —2LDP42U0d — V(ATl) - VO + AU)P — V- (ZoVV)

Let’s consider the terms 2U ® — V(ATg) - V& + A(U)®. Noting that V(ATy) =
V(y - VI +2) = Vzp and that Zy = 2U + A(U), we can write

2UP — V(AT) - VO + AU)D =2UD — Vzo- VO + AU)D
=Zy® - V- (Vzo®) + Azo®.

But Azg + Zog =0, so
ALD = LAD —2LDP -V .- (Vzgd) — V. (ZyVV).

We can again write Vzg = V(y - VI¢) and using the radial symmetry of the
functions Iy, z¢ and the notation p = |y|

y y
Vzo = ;szo = ;8p(p8p1“0) = yAl'g = —yU.
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Then
AL =LAD —-2LO+ V.- YUD) -V . (ZyVV).

This proves (11.6).
Formula (11.6) leads us to consider the following equation for ® = L~![¢]:

{ 3;® = L[®] + B[®] + ¢1(1)A[P] + H in R? x (79, 00)
(11.12)
O(-,70) =0
where
Al®@] = L7V - (®Uy) = V- (ZoV(-2) "' D)],

Zo(y) =2U() +y-V,U(y),and B has the same form as B:

B[®]=1(0)y - VO + 5 (0)d
with 1 (1), Ez(t) satisfying

12i ()] < forall T > 19. (11.13)

tlogt

and ¢ satisfies the same restriction, that is, (10.20).
The next lemma allows us to reduce to an equation like (11.12) but with a right
hand side with more spatial decay.

Lemma 11.2. Leto > 0,& > 0and 1 < v < min(l + % 3—3). Let H(y, 1) be
radial in y and satisfy

/ZH(~,T) =0 (11.14)
R

and |H ||y, m 4+0.c < 00. Then there exists Hy and ®1 such that

3, @) = L[®1] + B[® ]+ H — H;, inR?* x (19, 0)
®(,79) =0 inR>.

Moreover ®1 and Hy are linear operators of H and satisfy

1
C T P ST
1©1(0. T)| < ————— | Hllvmatoe | AL (11.15)
T (lOg‘C) W 1% > ﬁ
1
C i T
H1(0, D = e [ H om0 | 0002 . (11.16)
tV(log7) gpprore P > J/T.
/ P1dy =0 (11.17)
R2

f2H1(~,t)=0. (11.18)
R
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Proof. Write the operator L as
L[] = Lolp] — V - (UV(=A)"'¢)
where L is defined in (11.3). Consider the problem
0:®1 = Lol®1]+ B[®1]+ H, inR* x (19, 00),
{ ®(,70) =0 inR%

The idea is to formally apply L, ! to this equation. Similarly to the proof of

(11.6) we compute
Ao Lo[®]— Loo A[®] =V - (®Uy) — 2Lo[P].
This leads us to consider the problem

3, ® = Lo[®] + B1[®] + H, inR> x (19, 0),

(-, 1) =0 inR? (o
where H is a radial function satisfying
Lo[H] = H inR?
and
Bi[®] =1(0)y - Vo + (n)d
with
G0 =810 = 0( o). &) = Ea() =2610) = O o).
(11.20)

by (11.13).
We claim that there is a choice of H, which defines a linear operator of H, and
satisfies

1
T PENVT
e/2
(H;)w p =4t
(11.21)

|H|+ (1 + p)|VH| < C—

WHH”\),IHA-‘:—G,S {

Indeed, the equation LO[FI ] = H for radial functions has the form

(o (57)) = .

We select the solution

~ LA | r
H(p,t) = U(p)/(; m./o H(s, t)sdsdr.



61 Page 128 of 154 Arch. Rational Mech. Anal. (2024) 248:61
Using (11.14) we get (11.21).
Instead of (11.19) we consider

31—&31 = Aqusl — VIyp- V&DI + B][&Dl] + ﬁ, in R x (10, 00),
®1(, ) =0 inR?,

(11.22)
We then have the following estimate for ®:
1
~ C 507 p =T
1D1] < ———— N Hllvmator ] hlep (11.23)
tV(log 7)™ pmaee (H_IJW p =T

For the proof of this we construct a barrier. First we find a solution to

Agedpy — VI - Vo + =0 inR?,

(1 +p)2+(r
¢1(p) > 0 as p — oo.

The equation may be integrated explicitly, noting that

1 4p
Aga¢p — VI - Vop = (— —)
R2¢ 0 ¢ ¢pp + 0 + 1 + p2 (pp

and that the constants are in the kernel of this operator. We then have

¢1<p>=/oo ] / 1 s(1 +s%)2dsdr
P

r(14+r3)2 Jy (1+s5)2t0

and this implies

) c
[$1(0)| + (1 + p)|P)(p)] < Tt

Let
x(p f)=XO(—p )
E) (Sﬁ £

where xo € C¥(R), xo(s) = 1 fors < 1and xo(s) = 0 for s > 2. Define
$1 = Wfﬁlx. We have

(9 — Agz + VIo - V)i
- 1 Cq
~ v(og )" (1 + p)>te X = V024 (Jog T)™ X{8T<p=<28/7}>

for some C; > 0, § > 0 (assuming 7 large). Now consider

1 1
P2(p. T) = vto/2(log T)™ (1 + p/ﬁ)2+a+s’
1 _o
300, 0) = oA e -

.L-v+0/2(10g T)m e
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A computation, using (11.20), shows that

¢ = A1 + A2y + Azgs
satisfies
1
_ —L_— p<
(3 — Ags + VD0V + B)p = ——— 1 T+ v
tV(log7) Trp)ore p=>4T.

for some ¢ > 0. This step needs v — 1 < § and v + § < 3. By comparison, we

find that ®; satisf}es (11.23).
The solution & of (11.22) satisfies

9@ = Lo[®1]— UP + Bi[®1]+ H
Applying L to this equation we find that
@) = Lo[®1]
satisfies
0,1 = L[®]+ B[®1]+ H — H,
with

Hi = =V - (UVW¥) + Lo[UD]1 + 5V - (®1Uy), ¥ = (—A)"'d;.
(11.24)

Let us verify that ®; and H; satisfy the conditions stated in (11.15), (11.16),
(11.18). Indeed, from standard parabolic estimates and (11.23) we have

1
8 c —— p=JT
VO] < ————— | Hllvmaroe ] THs v (11.25)
T (logf) (14-p)3tote b= \/?

Differentiating in y;, j = 1, 2 the equation (11.22) and using standard parabolic
estimates, together with (11.21) and (11.25), we obtain

1
- o P ST
1= v,m,4+o,¢ 1+2s+2 (11.26)
|D*® | I H |l e
v m ,m,4+o0, cl+e/
4 (log T) (1+p)4+0+£ p = \/?

The definition &; = Lo[d~>1] and the estimates (11.23), (11.25), (11.26) give
the estimate (11.15).
We compute

H =-VU -VU + U + VU -V&, + UAD, + 51V - (d,Uy).

Note that fRZ @ (-, ) = 0. So, by a direct radial computation of W = (—A)~'d;
and (11.15) we obtain

1
Y RV
1 H lyn 4406 { )

IVWi(p, 1) =
v T P ZVT

(log )"
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This estimate and the ones already obtained for 5>1 (11.25), (11.26) and for @,
(11.15) yields

p =T
T

I
T

1H o atoe | 00 ,
Tiperee P Z VT

H <
|Hi(p, 7)| = v (log 7)"

which is the desired estimate (11.16).

Finally, the zero mass condition (11.18) follows from the form of H; (11.24)
and its decay. The mass condition for ®; (11.17) follows from &; = Lo[®;] and
the decay of ®; (11.23) and (11.25). O

Next we would like to obtain a result similar to Proposition 10.1 for the problem
(11.12). In order to simplify this step, we will modify this equation by allowing a
parameter in the initial condition. This technical obstruction will be removed in the
proof of Proposition 11.1. Thus we consider

3;® = L[®] + B[®] + ¢1 (1) A[®P]+ H inR? x (19, 00)

- 11.27)
(-, 10) = c1Zo,
where Zg is defined in (6.4).
The next result allows us to say that if in equation (11.27) the right hand side has
fast decay, then we can decompose the solution similarly as in Proposition 10.1.
This result is an extension of that proposition to an equation that has the extra
operator A in it, which is treated as a perturbation.

Lemmall3.let0 <o <1,e>0,0+c <2 1<v<min(l +§,3— %,%).
Let 0 < g < 1. Then there is C > 0 such that for vy sufficiently large and for H
radially symmetric with ||H ||y m 440, < 00 and

/ H(y,7)dy =0 forallt > 1
R2

the solution ® to (11.27) can be decomposed as ® = o+ “(2—1) Zo with the estimates

1 1 T
[®0(0, DI < CllHllvum 44, min =)
o gat”’%(log Tymts (L+[yD?" |y*
1

la(t)| = C”H”u,m,4+o,8W-

Moreover ®¢ and a are linear operators of H.

Proof of Lemma 11.3. We will treat the operator A as a perturbation and therefore
consider

3;® = L[®] + B[®]+ H inR? x (19, 00)

- (11.28)
@(-, 10) = c1Zp.
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Let @, H; be the functions constructed in Lemma 11.2. Setting ® = & + &,
(11.28) is equivalent to the following equation for ®;

9; Py = L[®2] + B[P + Hi, in R? x 70, 00),
: @y = L[®2] + B[D2] + Hi (10, 00) (1129)

Or(-, 19) = C]Z() in R2.

We now apply Proposition 10.1 to (11.29). We have that ||H|||ym.6+0,e < 00
by (11.16), H; is radial and satisfies the zero mass condition (11.18). By Propo-
sition 10.1 and Lemma 10.10 there exists ¢ such that the solution @, of (11.29)
satisfies

®y(y. 1) = DL (y. 1) + ?zmy),

with the estimates

H — bI=JT
@4 (y. 1)) < ¢ Wtlvmsroc L1 4y)2 (11.30)
"2 (logT)" "2 P Iyl = V7,
H
|a(r)| < C ” l”v,m,f)-i—zf,s (11'31)

-1 (log 7:)m+q :

(We are ignoring the factor in the estimate of a(7).) We also know that

1
(log 70)!1—4
c1 1s a linear function of H; and satisfies
” Hl ||v,m,6+o,£

O B O S —
7y~ (log 7o) +1

Combining (11.15) and (11.30) we conclude that ®, the solution to (11.28), can
be decomposed as
a(r)
O =Py + TZO

where ®g(y, 1) = @ + @j‘ is radial and satisfies

H 1
o e ( )
"7 2(log )" 2 A+ 1yD= Iyl
and a(7) satisfies, combining (11.16) and (11.31),
la(t)| < C | H v, m.4+0.e-

‘L"’_l(log .[)m+q

We summarize the previous finding as follows. Given H radial satisfying
fRz H(,t) = 0for v > 79 and || H|lv,m.4+0.e < 00, let us denote To(H) =
b9 = O + d)é- and T,(H) = a(t) so that the solution ® of (11.28), is & =
dp + @Zo =To[H]+ %Ta[H]Zo. Then Ty, T, are linear and have the estimates

ITolH]llo < ClIIH llv.m.4+0.e (11.32)
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1TalHlla = CIH ||y, m 440,65 (11.33)
where
v—1 m+% 1
IPollo="sup 7" (logr)"** —————[®0(y. 7)|
JcR2 in(—L =
e, yeR mm(<1+|y|>2’ |y|4>

lalla = sup 7~ (log T)"*4a(7)].
T>1)

Moreover c; is a linear function of H and satisfies

||H||U,m,4+c7,£

O B O e —
7y~ (log 7o) +!

We will apply these estimates to treat problem (11.27), which can be written as
the fixed point problem

Dy = To[H + §1A[Do + aZp]]
a=T,[H+ 1 A[Do + aZp]]

By (11.32) and (11.33)
I Tol¢1 Al®o+aZollllo+ Tale1 Al®o+aZolllla < Clict Al®o+aZollly.m.ato.e.
We claim that
151 AL v, 440, < CT " 1 Pollo, (11.34)

for some ¥ > 0, where C is independent of 7¢, and

IS1AlaZolllv,m 4406 < lalla- (11.35)
(log

‘L’())l+q

Assume for the moment that (11.34), (11.35) hold. The we see that

[Pollo + llalla < (log (IPollo + llalla) + CIH lv,m,440.e-

.L-O)lJrq
For 19 large this gives
[@ollo + llalla = CllHIlvm 4+0.e

which is the desired result.
For the proof of estimates (11.34), (11.35) we will need the following property.
If @ satisfies |®(y)| < W for some k¥ > 0 and fRz ddy = 0, then

/ V- [®Uy — ZoVW]|y|Pdy =0, ¥ =(—A)"'o. (11.36)
R2

Indeed,
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[ v-@upisidy =2 [ ouipay=2 [ awuiyiay
]RZ ]RZ RZ
=—2/ VY - V(Uly*)dy
RZ

=— / VW - yZody
R2
and
/V~(ZOV\IJ)|y|2dy:—2/ ZoVV - ydy.
R2 R2

To prove (11.34), let us write Wy = (—A)~"'®g. Then
A[®o] = L[V - (DUy — ZoV¥p)].
Using the definition of L~! given in Lemma 11.1 we have that
LTIV - (@Uy) = V- (ZoV(=A) "' ®)] = Ug + Uy

where

Zy(s)
U(s)

¢(p,7) = — foo[%(s, )s — 8, Wo(s, r)]ds, (11.37)
o

and v is the decaying solution to the Liouville equation
—AYy —Uy¢y =Ug.

From the definition Wy = (—A)~!®q and using that Jr2 Pody = 0 we have

o0

1
8, Wo(p, T) = — / ®o(s. T)sds
P Jp

which gives the estimate

log(T5;)
1 I+p
19, %o(p, )] < CllPollg———— | s PENT.

" (log )"t | & p =T

Then formula (11.37) gives

1 log?(3%) p < V7,
18(0, )| < Cll@ollo—————7 1 .~ 7
.L,v—j(log T)m+7 ? P = ﬁ

1 T
< Cl[®ollo min(1, ).
V=3 (log T)ymti-2 p?

We note that by (11.36) we have fRz Ugzody = 0. Then, ¥ has the estimate

1 1 T
[ (p. D)l = CllPolo min(1, ).
-[V_%(log f)m+%_2 1+ ,0)2 102
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It follows that A[®g] = Ug + U+ satisfies

1
|AL®ol(p. )| = Cl[@llo min(1, ).
‘[V_%(]()g [)m+%_2 1+ p)* p?

From this inequality we obtain (11.34).
The proof of (11.35) is similar. This time AlaZy] = Ug + U where

g1(p. 1) = —a(x) /p RECE (o]
and v is the radial decaying solution to
—AY = Uy = Ugi.
We then obtain that
1 1

AlaZ , <C .
(ALaZol(p, Ol = Cllalle 0 e T3 )6

From this estimate we deduce (11.35). O

Before proving Proposition 11.1 as stated, we obtain a version of it for the
problem

3¢ = L[¢] + Blp] + h(y, ) inR? x (19, 00),

; ) (11.38)
¢(-,10) =c1Zp inR”,

where
Zo = L[Zo].
Lemmalld. LetO <o < 1,6 >0,0+ec <2andl <v < min(l—i—%, 3—%, %).

Let 0 < g < 1. Then there is C such that for to large the following holds. Suppose
that h is radially symmetric, satisfies ||h|lv m 640, < 00 and

/ h(y, 7)dy =0, / h(y, D)ly|*dy =0, > 10.
R2 R2

Then there exist c1 € R and a solution ¢ (y, t) of problem (11.38) that define linear
operators of h and satisfy

”¢”v7%,m+%,4,2+(r+g = C“h”v,m,6+a,8-

leil = C ||h||v,m,6+a,8-

rg_l(log 70) M+l
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Proof. Considerequation (11.27), where H is the function constructedin Lemma 11.1.
By Lemma 11.3, there is ¢ such that the solution ® of (11.27) can be decomposed

as d = Op+ @ Zy, where ©¢ and a satisfy the estimates stated in that proposition.

In combination with (11.4) we find

1 1 T
€00, )| = Cllhlum o0, min =)
P Y og rymtE N+ YD Iyl
1
la(0)] < C||h||u,m,6+a,sw- (11.39)
leil = Cw————llhllv,m6+0.e- (11.40)
7 ! (log 79)m+!
Moreover @y, a, ¢y are linear operators of H.
From standard parabolic estimates and (11.39) we obtain
Vao(p, D < Cll 1 in(———, ). (4
olp, T)| = ,m,6+0, y mll’l( . —) .
e Uer”_%(logt)’“‘% L+ 1yD37 Iyl

We consider the equation for &g = & — @Z@, obtained from (11.27), and differ-

entiate with respect to y;, j = 1, 2. Using standard parabolic estimates, together
with (11.39), (11.41), and the bound for a’(t) in (10.92), we obtain

1 1 T
D200, )| = Cllhllom 610, min( =)
e r"_%(log T)ym+s (L+[yD*" [yI°

(11.42)

Let us define ¢ = L[P]. Then ¢ satisfies (11.38) because L[Zp] = 0 and
thanks to (11.39), (11.41), (11.42) we find

1
160, D1 = Cllluum s oe ——————— min(———. —= ). (1143)
o asr”_%(log D (L+1yD* 1yl6
In the rest of the proof we show that
1 1 1 0 <JT
¢ (0. D) < Cllhllvmsro. ofasers
o Ug-[‘)_%(logf)m"'% (1+:0)4 rpzw ,OZx/?-

For this we consider the equation (11.38) written in the form
90 = Ap — VIV +2U¢ + Blp] + h, (11.44)
where
h=—-VUVY +h.
Using (11.43) and the radial formula for ¢ = (—A)" Lo, we get

1
1 —3 P = ﬁ
VY (y, 1) < C||h||v,m,6+<r,e_ 1 7 (g P)
V"2 (logT)" "2 05 p =T
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This estimate and the definition of the norm || k||, 6+0.¢. giVE

1
|l:l( N=<c Al A+lypote |)’|§ﬁ
S mbtoey 1
= ilogrymtt TS o (Lyerore R{E=RVES

We now construct a barrier very similar to the proof of Proposition 8.1

Bp.1) = A (o L)
’ V-1 (log 7)™+ N

1 1
? r‘”'%(log oyt (1+ p//T)0Tote
1 p?

FA
43 (log )" +%

+ A

where g3 is the function (10.60). We consider (11.44)in{ (y, t) |7 > 0, |y| > Ro}
where Ry > 0 is a large constant. For suitable constants Ay, A,, A3, C the function
Cllh ||U,m,6+g’£q§ is a supersolution. This computation requires v < %

Moreover ¢ (y, 7) < C||h||ugm,6+(,,5¢_>(y, 7) at |y| = Rop. The initial conditions
also compare well. Indeed, by Lemma 10.11 and (11.40)

900, 70 = 11 Z0(p)] < cmuh||v,m,ﬁ+o,g%1:—p6,
and this is supported on p < Zﬁo, SO
160, ©0)| < Cllhllv.m.6to.eh(y, T).
By the maximum principle
6y, DI < CH, Dlhllvmbroer ¥ > Ro.
This finishes the proof. O

Proof of Proposition 11.1. Let é, ¢1 be the solution to (11.38) constructed in
Lemma 11.4. Let ¢ be the solution to (10.100). By Lemma 10.12 ¢ satisfies

1’(1))0_1R(T)2 1 in(l 11/2>2+U+8

9100, 01 < C e ™

, (11.45)

where 1 < vy < %. Then the solution ¢ to (8.9) that we construct is given by

¢ =¢—cior

To get the desired estimate on ¢ we need to estimate |ci¢;|. Let f be given by
(10.12). By (11.40) and (11.45)
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) e 1 fgﬂ—lR(f)Z 1 () ﬁ 2tote
191(p, )| = ‘Egil(logfo)mﬁ»l ‘[VUR('[O)Z (14 p% mm( T op ) lom.6+0e
st R min(1 ) gt
log 70 R (7o) TErS o R
1 . -,;1/2 24o0+¢
< CIOR® g min(L =) Whlumssoc

provided % + v — vy < 0. However vy can be taken close to %, so we obtain the

result by assuming v < % in addition to the other constraints needed in Lemma 11.4,

namely 1 <v<min(1+%,3—%,%). O

12. Linear Estimate with Second Moment (General)

A convenient property of problem (8.3) is that it can be split into Fourier modes.
If we decompose

1 2 .
h(y, ) = ho(lyl,7) + hi(y, 7). ho(p,t)zgfo h(pe®, v)do  (12.1)

2

1 .
oy, 1) =do(lyl, T) + ¢1(y, 7), ¢0(paf)=§ A p(pe?, T)do, (12.2)

then ¢ solves (8.3) if and only if ¢; solves (8.3) where £ is replaced with h;, for
i =0, 1.If h = hy we say that h has no radial mode.

For the proof Proposition 8.2 in the general case we will consider in a first step
the equation (8.3) but without the operator B, namely,

3.0 = L[p]1+h, inR? x (19, 00),

o (12.3)
¢(,70) =0 inR7,

for functions with no radial mode, as explained at the beginning of Sect. 11. Later
on, we will consider equation (8.3) for functions with no radial mode, where we
will treat the operator B[¢] as a perturbation term that can be assimilated to the
right hand side.

The main step in the proof is the following estimate, valid when the functions
involved have no radial mode:

Proposition 12.1. Let0 <o < 1,0 <e¢ <2,0 < v < min(l +%, %—%), m e R.
Then there is a C > 0 such that for any vy sufficiently large the following holds.
Suppose that h(y, T) has no radial mode and satisfies ||hllv,m,5+0,c < 00,

f h(y,t)yjdy =0 forallt > 1, j=1,2. (12.4)
R2
Then the solution ¢ (y, T) of (12.3) satisfies

15llv,m, 5406 (1—Hyl)3+"’ Iyl = VT
V(log 7)™ 3

lp(y, ) =C
‘pr’ Iyl > 7.

(12.5)
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Proof. Since h(y, t) has no radial mode, all functions involved in the proof have
also this property. We use the notation from §9.2, particular g = % —(=A)7g,
g+ = g —a with a(r) € R such that

/ ¢ (y, 1)Udy = 0.
]RZ
But

/ gy, n)Udy =0
R2

because g has no radial mode, so that a(r) = 0, g= = g, ¢ = ¢. Then the proof
proceeds as the proof of Proposition 10.1 with some simplifications, since there is
no need to estimate a.

We write (12.3) as

3=V -(UVghH) +h, inR*x (19, 0).

We multiply this equation by g and integrate in R
Let R > 0 be a large fixed constant and let

1
v(log 7)™’

fr)=
Let 75 > 10 and let

lolloo,, = sup o).
T€[0,72]

The following estimates are valid for t € [19, 72]. As in the proof of Proposi-
tion 10.1 we get

w 112
/R 8U = CF @R (1012 15100 + HﬁHm Tz), (12.6)

where

w(r) = (/R2\BR g(r)zU)l/2

Similarly as in Lemma 10.8, from (12.6) we get

1

—(1 T 12.7)

U800l = CFOR(Ihlmsroe + | %] )

The proof is presented below. We use this to estimate

27\ 1-o @
o=, €U)" =cfOR (Ihlmsioe+ | 1|, ):
R2\ By SR oo,

which implies

w(T) _ _
< CR™|h CR™ H .
” ||v,m,5+o,s + fR 0. Ty

f(OR ~
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We deduce that

w
— <CR7|h ,
| = CR Wl s

by choosing R as a large constant.
Now we let T, — oo and find

w(t) < Cf(0)R||? T > 170. (12.8)

v,m,5+o0,&’
The inequalities that follow hold for t > 1.

Combining (12.8) with (12.6) we obtain

/R SU = CI@O’ RISy 51060 T > T0-

and using (12.7) we also get

1

Ug(y, )| < Cf(T)R|h _—
|Ug(y. Dl = Cf(OR] IIV,m,s+a,g(1+|y|)3+g

Let = (—A) ¢ so that ¢ = Ug + U. Using Lemma 9.1 and the previous
estimate we obtain

W Ol + A+ [yDIVY(y. Dl = C

”h ||v,m,5+a,s-
(12.9)

t(log 7)™ (1 + |yDite

We consider the equation (12.3) in R?\ B (0) written in the form
30 = Ap — VoV +2U¢ + h,
where
h=—-VUVY + h.

By (12.9) and the definition of the norm |||y 5+0.¢»

1 1 1 Iyl <7
£/2
v (logT)" (L+ D3 |52 Iyl = V7.

Here we are using ¢ < 2. Using barriers as in the proof of Lemma 10.8 we get

1 1 {1 Iyl < VT

14+¢/2
(gt (1+ D | S Iyl = V7.

|}_l()’a )| < Cllhllvm5+0.e

lp(y, T)| < C”h”v,m,5+o,s

(For this weneed v < 1 + %, v+ 3 < %.) This proves (12.5). |
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Proof of (12.7). We define

g0 =Ug,
which satisfies the equation
d:80 = Ago — Vgo - Vo +2Ugo + h (12.10)
where
h=Uv+h—-U=A)""h
and

vi=(=A) "NV (g0VI)).
As in the proof of Lemma 10.7 we obtain

R

8003, D = C o K (12.11)
where
K = lhllvmsioe + | x| -
fRIlco, T
Applying parabolic estimates to (12.10) and a scaling argument we find
IVgo(y, )| < C RK : (12.12)
tV(log )" (1 + |y])?
Using (12.11), (12.12) and gg = gU we get that
IVU - Vg +gAU| < C RK .
tV(log )" (1 + |yD*
We observe that fori = 1,2
fRz V(UVg)yidy =0. (12.13)

Indeed,

/ V(UVg)yidy:—/ UVge; :/ gVUe;.
R2 R2 R2

But from g = % — ¥, ¥ = (—A)"'¢ we have
~Ay — Uy = Ug = g.

Multiplying this equation by z; = VI'pe; defined in (9.2) and integrating we get

/2 gUVTge; =0,
R
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which is the desired claim (12.13). We note that

—Av=VU-Vg+gAU =V -(gVU) inR>.
v(y) > 0 as|y| — oo.

Now we can apply Remark 9.1 and deduce that for any 9 € (0, 1) there is C such
that

RK

vy, )| <C .
O Ol = C g oL+ p)2?

(12.14)

We next estimate /. From Remark 9.1 and the assumptions on /4, in particular
(12.4), we have

[l
tV(log )™ (1 + [yD*?’

(=)', 0l <C (12.15)

for any ¢ € (0, 1). Also from (12.11) we have

R
K.
V(log 7)™ (1 + [y])®

Therefore, from (12.15), (12.11), (12.14) we find that, for any ¢ > 0,

[Ugo(y, )| = C

RK 7¢/2

1 . |
o (log T)" [(1 +yhote min(1, p_> Tar |y|)6—l"]'

lh(y, 7)| < C

We now use a barrier as in the proof of Lemma 10.8, in a domain of the form
(R2\B Ry) X (T, 00) where Ry is alarge constant. We let g(y) be the radial decaying

solution to —Agg = T and

O iy ——
(. 7) Tv(logr)mg(y)xo(8ﬁ>+ LS (log oy

C2€ 4t

[ o]
I+ Iyl/VOH
where

w=minS+o+¢ 6—1).

We assume that v < 5—5— 73,V < 1+§,v+7 < %,anda—{—l? < 1. Since
¥ > 0 is arbitrary we only need v < % — %, v<l1+ % and o < 1. Then, for an
appropriate choice of Cy, C», the function RK g(y, 7) is a supersolution. By the
maximum principle

180y, T)| = CRK&(y, 7).

This proves the desired estimate (12.7). O
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Next we consider equation (8.3), which we recall,

2
d:¢ = LIgpl + Blgl+h+ > _uu;j(m)Wy; inR* x (10, 00)

= (12.16)

é(,19) =0 inR>.
For ¢ with no radial mode we can write

_ Ay
Blg] = (61 + a()y - V¢)Xo<5—ﬁ).

Corollary 12.1. Let0 <0 < 1,0 <e <2, 1 <v <min(l + %, % — %), m e R.
Then there is a C > 0 such that for any vy sufficiently large the following holds.
Suppose that h(y, t) has no radial mode and satisfies ||h|ly m 540 < 00. Then
there is a solution ¢ (y, T), puj of (12.16) that is a linear operator of h and satisfies

Pllv.m 340,246 < Clihllv,m5+0.6 (12.17)

wj(r) = —Azh(y,r)yjdy+ﬁj[h](r)

R = i og pyrt v svoce (12.18)

Proof. Using Proposition 12.1, there is a linear operator 7 so that given /& with
1Allv.m.5+0.e < 00, with no radial mode, and satisfying the condition (12.4) as-
sociates the solution ¢ of (12.3). Then the solution ¢ of (12.16) can be written
as

2
6 =T[BIpI+h+Y m@W].
j=1

where 1 ; is chosen so that

| B8+ by + 0 =0, o=, (12.19)

The estimate (12.5) implies

2
1llvm 310246 < IBIG1+ hllum.stoe + sup T/(log )™ Y |uj()l.

>7) =

Using standard parabolic estimates we also get

2
1YV llvm3to2te < IBIGL+ hllvmsioe + sup T (og )™ D |u;(7)].

T>10 =1
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To estimate w; note that multiplying (12.16) by y; and integrating we get that

/]RZ ¢yjdy =0, VYVt > 10.

Therefore

C
/R 2 B(qb)dy‘ < i g ryreT 18 hm 3to2ve,
and from the definition (12.19)

2
C
sup 7" (log 7)™ E lwj (O] = Cllhllv,m,5+0. + e log 7 @1lv,m,3+0,24¢-
0 0

T>10 =1

‘We also have that

C
I Bld1lv,m, 540, < 1—|I|¢| + IYUVSIllv,m3+0,2+e-
0g Ty

Then for 7( large we deduce the estimate (12.17).
Finally, from (12.19) we get (12.18) with i ; a linear operator of / satisfying

i [h]l

C
/RZ B(‘P)dy' = T (log ‘L’)m+1 D1lv,m,3+0,2+¢

— gvtlto(Jog r)ymtl 152 llv,m.5+0,e-

We are now in a position to prove Proposition 8.2 in the general case.

Proof of Proposition 8.2. We decompose h = ho + h1 and ¢ = ¢o + ¢1 as in
(12.1), (12.2). We apply Proposition 11.1 to get

”¢O”v7%,m+%,4,2+(r+s = C||h||v,m,6+0',8-
To estimate ¢ we use Corollary 12.1. First we select 0 < ¥ < % Then note that

”hl ||v,m,6719,(r+8+19 =< C”h ||v,m,6+a,e~

Then Corollary 12.1 gives a solution ¢ of (12.16) such that

lp1llv,m,3+5,24+8 < Cllhtllv,m,5+5.z-

Wetakeo =1 — 9 andé = ¢+ o + ¢ and get

ND1llv,m 4—9240+e+s < Cllhillv,m6—0,0+e+0

and

nj(t) = _fRz h(y, ©)yjdy + ij[h](T)
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because A is radial, with

I jlhll < ST (Jog £y ] I llv,m,6-0,0+e+0-
But
o1l 1 i g a210te = NP1l mt g 4-0240+040
and hence
||¢1||v7%,m+%’4y2+g+g = C||h||v,m,6+a,8-

To apply Corollary 12.1 weneed | <v < 1+ 5andv < 1+ %. Given 1 < v <

min(1 + %, 37, %) we can select ¥ € (0, %) such that v < 1 + % and then
proceed. This concludes the proof. O

13. The Outer Problem

We consider the linear outer problem

{ 0,¢° = L[¢°] + g(x. 1), inR* x (10, 00) (13.1)

¢°(,10) =0, inR?,
where

x —&(1) _ (x —§)
0 )] “Vip = Ayp +4—|x i V.

L7lg) = Avg = Ve[ o

For g : R? x (9, 00) — R we consider the norm |lg |l +,0 defined as the least
K such that for all (x, ) € R? x (g, 00)

1 1 x — (1)

D<K ST A
lg(x, )] = (t—t0+A)“(10gt)ﬁ1+|§|b ¢ 't —ty+ A

where A > 0 is a constant.
We also define the norm | @]l , as the least K such that

[ (x, )] + (A + |x — ED[ Vi (x, 1)
1 1 x—£&
S K ’ ; e e———
(t —to+ A Tlogt)P 1 + |¢|P JE—t+ A

for all (x, 1) € RZ x (19, 00).
We assume that the parameters a, b satisfy the constraints

b
l<a<4, 2<b<6, a<1+§. (13.2)

There is no restriction on j.
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We recall from (4.1) that we are assuming that

Ol = -

C
W, t > 1o, (133)

and

: c
ED = ——. t>1n. (13.4)

12

where 0 < 0 < %

Proposition 13.1. Assume that a, b satisfy (13.2), )»(?7 is sufficiently large, and

A, & satisfy (13.3), (13.4). Then there is a constant C so that for to sufficiently large
and for || gll«x.0 < 00 there exists a solution ¢° = 7;,"[g] of (13.1), which defines
a linear operator of g and satisfies

147 1lx,0 < Cligllss,o0-
Proposition 6.3 in Sect. 6 follows from Proposition 13.1 with A = 1.
Lemma 13.1. Let 2 < B < 6 and h(r) satisfy
o = M
(r/x+DF (r4+ 0P

(13.5)

where . > 0. Then there is a unique bounded radial function ¢(r) satisfying
L°lg]l+h =0 inR>.
Moreover ¢ satisfies

B—2
o) < —C ¢t
(L+r/r)p—2 (r +1)P—2

lp()+ & +1r)lo (13.6)

Proof. The equation for ¢ is given by

o) + (4

.
; m)ﬂ,(ﬂ(r)—i-h(r):O, r>0.

We change variables p = 7 and let ¢(r) = ¢(5). Then we need to solve

_ 1 4p I
9 (— —)a h(p) =0, 0,
op® + p+1+p2 o9 +h(p) P>
where
h(p) = Ah(Ap).
By (13.5)

. 1
Ih(p)| = T 0F



61 Page 146 of 154 Arch. Rational Mech. Anal. (2024) 248:61

The bounded solution is given by

_ _ o0 1 v_ 2.2
(0(,0)—//0 —v(l—{—vz)z/o h(s)s(1 4+ s°)=ds dv.

By direct computation we get

C
7 1 0,0 < —7,
@)+ 1+ p)3,0(0)| < 0+ )2
and this implies (13.6). |

Proof of Proposition 13.1. To find a pointwise estimate for the solution ¢° we
construct a barrier.
Using polar coordinates x — £(¢) = re'?, L can be written as:

L1 = 000+ (4 s )+ 0.
" rooA24r2)7 r2

First we construct a function &(r, t) such that

(60— s — (1 + 4—r)ar]& > 1 1

1—1

ro A24r? (t — 1o+ A)*og )P (1 +r/T =19 + AP’
Let
Vi) = [ o)
’ - a- b/2 ’
(t =10+ A (logt)P L(1 + C) /

Choosing a large constant C, ¥ satisfies

5
oY1 — 01 — ;arlﬂl

1 1
>c 7 3 — 5 forr >0, t > 1,
(t — 1o +A) (logt) (1 + m)

where ¢ > 0. Here we requirea < 4anda < 1+ %’, which are part of the conditions
(13.2). Then

1 4r 5 22
|:3[ — Oy — (; + —)\2 I r2>8r]w1 = [31 — Opp — ;8r:|w1 +4r(r2 +A2) 0y
1 1
= a B b
(t —to+ A)2(logt)P (1 + m)
)\'2
—4— 10 s 13.7
r(r2+k2)| U] (13.7)
but
2
oy = ! [_ b _ Qe*m],
(t =10+ A)(logn)PL (14 2 yb/2+1 2

t—to+A
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and so
X o ! !
2 4 a2V = 2757 2 .
r(r?+ %) r2 422 (1 — 1o+ A)a(log )P (1 4 7r+A)b/2+1
(13.8)
We note that for r < /t — 9 + A we have
2 ol = = !
r(r2+22) YN =050 =1 + A)a(log )P
22 1
(13.9)

C b
T2 A2 (1t =10+ A (log )P

where we have used that A > A(1)2.
Let yr»(r; 1) be the bounded solution of

Lo+ G+t )i = g 70

given by Lemma 13.1. Then v/, can be written as
~ -7
Pari 1) = V().

for a function v, satisfying

[Y2(0)| + (1 + p) |3 (p)| < et (13.10)
Let
1 -
Yo(r, 1) = (— 05 Ay T(og1)? Yo (r; A(1)).
Then, using (13.10) and (13.3), we get
1 4r
[8’ = O = (? Ty r2)8’]wz
B 1 22
C(t—to+ A (log )P (r2 + 12)2
a—1 /3 >+ A r(rr+2%)?
[ ()0 B
. 1 e [ i ]
Tt —to+ A (logt)P (r2 +12)2 t—to+ AL

Therefore there is § > 0 (fixed independent of #y) such that for all 7, large,
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I:at - 8rr - (l + 4—r)8 ]102
ro A2+4r2)7
1 e
(t —to+ A4 1logt)? (r2 + A2)2’

1
=5 for r < 28+/1. (13.11)

Let xo € C*°(R) be such that yo(s) = 1if s < 1 and xo(s) = 0if s > 2 and
define

;
o = ro( e
xs(r, 1) = Xo ST A
We consider
¥ =1+ My s,
where M > 0 is a constant to be fixed later. We compute, using (13.7)
ERX: (1+ v )ar 1 = !
-0 — -+ —5—— >c
RGN VI E Y A (t =10+ Ay (log P (1 + ==
2
—4———19
r(r2+k2)| i
1 4r
M0 =ty = (04 52 )0
V2 + RO 1), (13.12)

where

~ ~ 1 r
R = M[ 205 — 2092015 — 02 (9t + 0t + 45—, ) |
r re4+ A
We have, by (13.10),
1

R(r, )| < CoMA? ,
R Dl =< M (log )P

(13.13)

where C; is independent of M (although it depends on §), and is supported on

S/t —tg+ A <r <28t —ty+ A.

We claim that there is M > 0 and ¢ > 0 so that for all 7y sufficiently large

[a—a _(1+4_r>3]1/;>5 : (13.14)
t rr r )\2_’_’.2 r - ta(log[)ﬁ(l-l—r/«/;)b, .

forallr > 0,1 > 1.
Indeed, if » < §4/t — 1o + A, then from (13.12), (13.7), (13.11) and (13.9) we
get

1 4r = !
3 — 0 —(— —>3 =
[r Gt ere ’]w_C(t—to+A)“(10gf)ﬂ(1+J#ﬁ)b
A2 1

c
(r2+22) (t — 1o + A)a— T (log )P
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1 4r ~
o+ Ms[ 00— = (S + 35 )0 |2

1
>c -
(t —to + A)*(log t)ﬁ(l + =Ty
(13.15)

)

if M > C.Herewe fix M =C.
fovt—to+A <r <25t —1ty+ A, then by (13.12), (13.7), (13.9) and

(13.13) we get

1 4r . 1
B — By — (— —)a >
[ re r +k2+r2 r]l/f_C(t—to+A)a(logt)5(1+m)b
1
— CaM)?
2 =0 + At (log )P
_ 1 <c CZM)»2 )
Tt —to+A)log)P\3  r—r+ A
By taking ﬁ large, we get
[8 5 <1+ 4r )8]1/7>C 1
TN T )T S 2 =+ A log P (1 + =P
(13.16)

for 64/t —tg+ A <r <28/t — 19 + A.
Ifr > 25t — 1ty + A, by (13.12) and (13.8)

1 4r 1
= — (- + 55— )V =
[’ ” (r A2+r2)r]%76(1710+A)“(logt)ﬁ(l+ﬁ)b
c 22 1 1
r2 422 (1 —1g+ A)(logP (4 4 . tr2+A)b/2+1
)
1 22
z —le-¢ ]
(t—t0+A)“(logz)l3(l+W) t—tg+A

e i (13.17)
21+ A QognP (1 + )P

if T is sufficiently large.
Combining (13.15), (13.16) and (13.17) we deduce the estimate (13.14).

Let

A
1

Yx, 1) = P(x — &, 1).
Then, by (13.14),

1 4 . Cx B £

R L e o L A e
1 . ~

‘ - oy,
ZC(I—IO+A)6¢(]0g[)/3(] +\/t—?m)b €1 10,1
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but
[0,y <C ! !
r - _ —-1/2 r b+1
(t — 1o+ A1/ 2(logt)P (1 + =i
+C ! ! ! (r, 1)
2 .
(t — 1o+ A)—T(log )P A (1 +r/a)3 "
1 1

/

.
+C ( )
57 —to+ A 12(log )P 1 +r02 s icret A

Using (13.4) we see that if 7y is sufficiently large,

: 1
3 — L° 2 |
O = LW = 5 G T Ao P+

O

A direct consequence of the proof of Proposition 13.1 (using the same barriers)
is the following, for the initial value problem

d¢° = L°[¢°], inR? x (19, 00
20 0] ) 0 ) (13.18)
#°(.t0) = ¢, inR".
Consider the norm
l¢gll«,» =inf K such that
lgg ()] < 1o 0L
where b € (2,6), A > 0.
Proposition 13.2. Assume that a, b satisfy (13.2), )»(?W is sufficiently large, and

A, & satisfy (13.3), (13.4). Then there is a constant C so that for to sufficiently large
and for ||¢gll+,p < 00 there exists a solution ¢° of (13.18), which defines a linear
operator of ¢ and satisfies

161140 < CA*" ' (log 10)P (193 II.5-
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