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Abstract

We introduce an evolutionmodel à la Firey for a convex stone which tumbles on
a beach and undertakes an erosion process depending on some variational energy,
such as torsional rigidity, a principal Dirichlet Laplacian eigenvalue, or Newtonian
capacity. Relying on the assumption of the existence of a solution to the corre-
sponding parabolic flow, we prove that the stone tends to become asymptotically
spherical. Indeed,we identify an ultimate shape of these flowswith a smooth convex
body whose ground state satisfies an additional boundary condition, and we prove
symmetry results for the corresponding overdetermined elliptic problems. More-
over, we extend the analysis to arbitrary convex bodies: we introduce new notions
of cone variational measures and we prove that, if such a measure is absolutely
continuous with constant density, the underlying body is a ball.

1. Introduction

The aim of this paper is to propose a variational counterpart of Firey’s seminal
result stating that the fate of worn stones is that of becoming spherical [26]. Firey
considered the evolution problem satisfied by the support functions h(t, ·) of a
family of convex bodies C(t) in R

3, obtained when an initial convex stone C(0)
tumbles on an abrasive plane and undertakes an erosion process, in which the rate of
wear is proportional to the density of contact points with the plane per unit surface
area, and also to the volume of the stone. The mathematical formulation reads as

⎧
⎪⎨

⎪⎩

∂h
∂t (t, ξ) = −a|C(t)|G(t, ν−1

t (ξ)) on (0, T ) × S
n−1,

h(0, ξ) = h0(ξ) on Sn−1,

h(t, ξ) � b on (0, T ) × S
n−1,

(1)

where a and b are positive constants, ν−1
t is the inverse Gauss map of C(t), G(t, ·)

denotes the Gaussian curvature of C(t), and |C(t)| its volume. Under the assump-
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tion that C(0) is smooth and centrally symmetric, and that, for some T > 0,
the evolution problem (1) admits a smooth solution, Firey showed that actually
T = +∞, that convexity and symmetry are preserved along the flow, and that an
ultimate shapemust satisfy the following geometric condition: in every direction its
support function h and Gaussian curvature G are proportional to each other. More
precisely, denoting by ν its Gauss map and by c a positive constant, it satisfies

h(ξ) = c G(ν−1(ξ)) ∀ξ ∈ S
2. (2)

Firey then obtained the following symmetry result: if a smooth and centrally sym-
metric convex body in R3 satisfies the equality (2), it must be a ball. Moreover, he
conjectured that, in dimension 3, the above results (often referred to as “conver-
gence of solutions to a round point”) should remain valid without the assumption
of central symmetry; in higher dimensions, this is also called the generalized Firey
conjecture.

Firey’s vision of worn stones has inspired many deep developments up today,
in both the fields of evolution equations, and of convex geometry.

On the side of evolution equations, the parabolic problem introduced by Firey,
written in terms of a parametrization of the boundary and up to a renormalization,
is nothing else than the Gaussian curvature flow. Such flow has been intensively
studied in recent years, so that it is impossible to exhausdhely report the related
literature. We refer to the recent monograph [4] for an account about the Gaussian
curvature flow and more references on it. Let us just mention that nowadays a full
resolution is available for both Firey’s conjecture and its generalized version, the
main steps of its history being the following: the existence of a solution to the Gauss
curvature flow was proved in any space dimension by Chou [54]; the convergence
to a round point was obtained in dimension n = 3 by Andrews [3], while in higher
dimensions it follows from a convergence result by Guan–Ni [30], combined with
a rigidity result by Brendle–Choi–Daskalopoulos [17].

On the side of convex geometry, the rigidity result by Firey is related to more
general rigidity questions for convex bodies. In fact, condition (2) amounts to ask
that a convex body K has the same cone volume measure VK as a ball (see Sect.
2 for the definition). Accordingly, a generalized version of Firey rigidity problem
reads as follows: for K belonging to the class Kn of convex bodies in R

n , and a
ball B, investigate the validity of the implication

VK = VB ⇒ K = B. (3)

In the above mentioned papers about the asymptotic behaviour of the Gaussian
curvature flow, it has been proved that (3) holds under the assumption that K has its
centroid at the origin [30, Proposition 3.3] or that K is smooth and strictly convex
[17, Theorem 6].

Looking at (3), one is led in a natural way to the more general question whether
the cone volume measure determines uniquely the associated convex body. In par-
ticular, denoting by Kn∗ the class of centrally symmetric convex bodies in R

n , the
question is whether, given K and K0 in Kn∗ , it holds that
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VK = VK0 ⇒ K = K0. (4)

The relevance of this question lies in particular in its connection with one of the
major open problems in convex geometry, namely the validity of the log-Brunn-
Minkowski inequality

∣
∣(1 − λ) · K +0 λ · L∣∣ � |K |1−λ|L|λ ∀K , L ∈ Kn∗, ∀λ ∈ [0, 1], (5)

where

(1 − λ) · K +0 λ · L :=
{
x ∈ R

n x · ξ � hK (ξ)1−λhL(ξ)λ ∀ξ ∈ S
n−1
}
,

and hK , hL denote the support function of K and L respectively.
Inequality (5), which is a strengthening of the classical Brunn-Minkowsi in-

equality, has been proved in dimension n = 2 in [13], while it is currently open
in higher dimensions (see the recent paper [10] for an extensive survey about the
state of the art in this topic, and also our previous paper [23] for a related func-
tional version). As shown in [13], proving the log-Brunn-Minkowski inequality is
equivalent to proving that, for every fixed K ∈ Kn∗ , the minimization problem

min
{ 1

|K |
∫

Sn−1
log(hL)dVK L ∈ Kn∗ , |K | = |L|

}
(6)

is solved by K itself. Moreover, it turns out that a solution K0 to problem (6) exists
and is a critical set, in the sense that it satisfies the equality of measures VK0 = VK .
Hence the connection with the implication (4). For n = 2, Böröczky–Lutwak–
Yang–Zhang [13] proved that such implication holds true, thus obtaining also the
log-Brunn–Minkowski inequality.

To close the circle, the minimization problem (6) is not unrelated with the
evolution of convex bodies by their Gaussian curvature. Indeed, in the particular
case K = B, the integral in (6) is an entropy functional, firstly considered by
Firey, which decreases along the Gaussian curvature flow (and actually a suitable
generalization of this entropy monotonicity property is used by Guan-Ni to obtain
(3) for bodies with centroid at the origin).

In this work we attack the new problem of studying the above topics when the
volume functional is replaced by some variational energy, such as torsional rigidity,
principal Dirichlet Laplacian eigenvalue, or Newtonian capacity. These functionals
are object of study in many problems of classical and modern Calculus of Vari-
ations, such as isoperimetric type inequalities, concavity inequalities, inequalities
involving polarity. In many cases, the behaviour of these functionals turn out to
resemble that of the volume functional, in particular concerning the validity of
inequalities of Brunn–Minkowski type (see [21]).

Thus, studying variational results à la Firey seems to be a very natural direction,
which is, to the best of our knowledge, completely unexplored. To precise what we
intend, let us focus our attention in particular on the case of torsional rigidity. In
the physical case when K ⊂ R

2 is the cross section of a cylindrical rod K × R

under torsion, its torsional rigidity T (K ) is the torque required for unit angle of
twist per unit length. From an analytical point of view, when K is more in general
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a n-dimensional convex body, its torsional rigidity (often abbreviated as torsion) is
given by

T (K ) =
∫

K
uK dx,

where uK is the torsion function of K , i.e. the unique solution to the Dirichlet
problem

{−�u = 1 in int K
u = 0 on ∂K .

We recall that, if we have a long cylindrical rod in the spaceR3 of cross-section
K , the function uK (also known as warping function) determines the state of the
stress in the interior of the rod, as it is proportional to the out-of-plane displacement
of the sections.

A classical result by Dahlberg [24] ensures that, for any K ∈ Kn , the gradient
of the torsion function is well-defined Hn−1-a.e. on ∂K , and belongs to L2(∂K ).
Moreover, it is also well-known that the Hadamard first variation of torsion can
be expressed through an integral formula, which is the perfect analogue of the
one valid for volume, replacing the surface area measure SK by the torsion first
variation measure μK , defined by

μK := (νK )�
(|∇uK |2Hn−1 ∂K

)
, (7)

(νK )� denotes the push forward through the Gauss map of K . By pursuing the
analogy with the case of volume, we are led to introduce the cone torsion measure
of K , as the positive measure on Sn−1 defined by

τK := hK μK ,

where hK denotes the support function of K .
Relying on this new definition, it is natural to investigate the rigidity question

analogue to the one of Firey, namely whether, for a given K ∈ Kn∗ ,

τK = τB ⇒ K = B.

In the setting of smooth convex bodies, the equality τK = τB amounts to ask that the
torsion function uK satisfies, for some positive constant c, the boundary condition

|∇uK |2x · νK = c GK on ∂K ,

whereGK denotes theGaussian curvature of ∂K . Hence, the corresponding rigidity
problem consists in investigating symmetry of smooth convex bodies K such that
the following overdetermined boundary value problem admits a solution:

⎧
⎪⎨

⎪⎩

−�u = 1 in int K ,

u = 0 on ∂K ,

|∇u|2x · νK = c GK on ∂K .

(8)
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This problem is not covered by the very vast literature on Serrin-type problems
[55], as the simultaneous presence of the support function and of curvature in
the overdetermined boundary condition is completely new; we limit ourselves to
quote the papers [15,27] about overdetermined problems in which curvatures are
involved.

In Theorem 1 we establish symmetry for problem (8), under the weaker as-
sumption that K has its centroid at the origin. At present, we do not know if the
assumption on the centroid can be removed. The proof of Theorem 1 is obtained
by an ad-hoc combination of different inequalities, such as the Saint–Venant in-
equality for torsion, and the isoperimetric inequality for the 2-affine surface area (or
alternatively, an isoperimetric-type inequality proved in [19] and Blasckhe–Santaló
inequality).

In the setting of arbitrary convex bodies, the equality τK = τB cannot be
formulated any longer as a pointwise equality for the gradient of the torsion function
along the boundary; it just tells the measure τK is a constant multiple of the diffuse
measure on the sphere, i.e.

τK = cHn−1
S
n−1. (9)

In Theorem 4 we establish symmetry for convex bodies with centroid at the origin
satisfying (9). We argue by adapting the arguments used in the regular case, but
the proof is more delicate, as it involves the regularity properties of convex bodies
having an absolutely continuous surface area measure; in this respect, we heavily
rely on the results proved by Hug in the papers [34–36].

The symmetry results described so far are related to many further questions. In
particular, in the spirit of Firey’s work, it is natural to wonder whether the condition
τK = τB identifies K as the ultimate shape of some flow.

To answer this question, we imagine a new variational flow for worn stones
which tumble on an abrasive plane and undertake an energy-based erosion process.
Namely, we assume that the rate of wear is proportional to the density of contact
points with the abrasive plane, no longer per unit surface area measure as in [26],
but per unit torsion first variation measure; moreover, while in [26] the rate of wear
is also taken to be proportional to the volume, we take it to be proportional to the
torsional rigidity.

To write explicitly the problem, let C(t) represent the evolution in time of an
initial convex stone C(0), and let σ be any small part of ∂C(t). The measure of the
set of directions for which the abrasive plane touchesC(t) at points in σ is given by
Hn−1(νt (σ )), where νt is the Gauss map ofC(t). By a standard change of variables
(see Proposition 1 (e)), we have

Hn−1(νt (σ )) =
∫

σ

G(t, y) dHn−1(y),

where G(t, y) denotes the Gauss curvature of ∂C(t) at the point y. Recalling the
definitions of surface area measure and of torsion first variation measure for the
convex body C(t), the above integral can also be written as

∫

νt (σ )

G(t, ν−1
t (ξ)) dSC(t) or

∫

νt (σ )

G(t, ν−1
t (ξ))

|∇ut (ν
−1
t (ξ))|2 dμC(t),
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where u(t, ·) is the torsion function of C(t). Thus we see that, while contact points
have density G(t, ν−1

t (ξ))with respect to the surface area measure SC(t), they have

density G(t,ν−1
t (ξ))

|∇u(t,ν−1
t (ξ))|2 with respect to the first variation measure μC(t) in (7). We

conclude that the variational analogue of Firey’s problem when replacing volume
by torsion reads as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂h
∂t (t, ξ) = −aT (C(t)) G(t,ν−1

t (ξ))

|∇u(t,ν−1
t (ξ))|2 on (0, T ) × S

n−1,

h(0, ξ) = h0(ξ) on Sn−1,

h(t, ξ) � b on (0, T ) × S
n−1.

(10)

A possible physical reason for considering such a model of abrasion process
depending on the torsion first variation measure, can be the fact that, among the
fundamental types of stresses undertaken by a body subject to abrasion, torsion
appears to be the most relevant (in fact, typically the abrasion rate is less sensitive
to traction, flexion, compression, or shear). On the other hand, the same model
might also be used to describe other deterioration processes of erosion or corro-
sion. Indeed, the rate of deterioration of the body can be related to its mechanical
properties, which in turn are affected by variations in the gradient of the warping
function.

From a mathematical point of view, the main novelty of the evolutionary model
(10) consists in its non-local nature, coming from the gradient of the warping
function. Due to this non-local nature, getting global existence and regularity results
seems to be a challenging problem (we refer to [20] for general nonlocal flows, and
to the paper [33], appeared after the submission of thismanuscript, for a logarithmic
version of our flow). Proving the existence of a unique smooth solution to problem
(10) is an interesting problem in parabolic flows, which is beyond the scopes of this
paper, and will be object of further research.

As in Firey’s paper, we assume that C(0) is smooth and centrally symmetric,
and that for some T > 0, the evolution problem (10) admits a smooth solution.
Under this assumption, Theorem 7 establishes that T = +∞, that convexity and
symmetry are preserved along the flow, and that an ultimate shape has the same
cone torsion measure as a ball. The proof relies basically on the Brunn-Minkowski
inequality for torsion due to Borell [8].

To conclude, another question we wish to address is whether, by analogy with
(4), for any pair of convex bodies K , K0 ∈ Kn∗ , we have

τK = τK0 ⇒ K = K0. (11)

Such am implication is in turn related to the possibility of strengthening the Brunn-
Minkowski inequality for torsion into a logarithmic Brunn-Minkowski inequality
of the kind

T
(
(1 − λ) · K +0 λ · L) � T (K )1−λT (L)λ ∀K , L ∈ Kn∗, ∀λ ∈ [0, 1].

(12)

Indeed, by arguing as in the proof of Lemma 3.2 in [13], one can easily check
that (12) is equivalent to proving that, for every fixed K ∈ Kn∗ , the minimization
problem
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min
{ 1

T (K )

∫

Sn−1
log(hL)dτK L ∈ Kn∗ , T (K ) = T (L)

}
(13)

is solved by K itself; moreover, if the above problem admits solution K0, it must
satisfy the first order optimality condition τK0 = τK (cf. the proof of Theorem 7.1
in [13]).

The inequality (12) (or the implication (11)) is likely very challenging, and it
should be first proved (or disproved) in dimension n = 2, see Sect. 6 for some
related remarks.

To conclude, we point out that all the results discussed so far are valid also
when torsional rigidity is replaced either by the principal frequency of the Dirichlet
Laplacian, or (for n � 3) by theNewtonian capacity.Also for this reason,we believe
that the parabolic flows and logarithmic inequalities related to our variational worn
stones are worth of further investigation.

Outline of the paper. In Sect. 2 we detail the definitions of cone variational
measures and related representation formulas. In Sect. 3 we prove symmetry for
smooth centred convex bodies K where overdetermined boundary value problems
such as (8) admit a solution. In Sect. 4 we extend the rigidity results of the previous
section to the general framework of arbitrary centred convex bodies. In Sect. 5 we
relate the convex bodies studied in the previous sections to new variational flows. In
Sect. 6we give a few concluding remarks about logarithmicBrunn-Minkowski-type
inequalities.

2. Cone Variational Measures and Related Representation Formulas

Let Kn be the class of convex bodies in R
n with the origin in their interior. In

particular, we are going to consider convex bodies in Kn whose centroid

cen(K ) = 1

|K |
∫

K
x dx

coincides with the origin. Here and below, we indicate by | · | the volume functional
onKn .We shall also consider the subclassKn∗ of centrally symmetric convex bodies.

Given K ∈ Kn , we denote by hK and νK respectively its support function and
Gauss map. By definition, if m is a measure on ∂K , its push-forward (νK )�(m)

through the Gauss map is the measure on S
n−1 defined by

∫

Sn−1
ϕ d(νK )�(m) =

∫

∂K
ϕ ◦ νK dm ∀ϕ ∈ C(Sn−1).

We recall that the surface area measure SK and the cone volume measure VK

are defined respectively by

SK = (νK )�(Hn−1 ∂K ) , VK = hK SK ;
moreover, denoting by |VK | the total variation of VK , it holds that

|K | = 1
n

∫

Sn−1 hK dSK = 1
n |VK |,

d
dt |K + t L|

∣
∣
∣
t=0+ = ∫

Sn−1 hL dSK .
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The name cone volume measure is motivated by the fact that, when K is a polytope
with facets Fi and unit outer normals νi , it holds that

VK =
∑

i

|�(o, Fi )|δνi , (14)

where δνi is a Dirac mass at νi and �(o, Fi ) is the cone with apex o and basis Fi .
In recent years, this notion of cone volume measure has been widely studied (see
[5,11–14,29,40,41,44,46–48,53,57,58]).

Let now F(K ) be one of the following variational energies: torsional rigidity
T (K ), first Dirichlet Laplacian eigenvalue λ1(K ), or Newtonian capacity cap(K )

(the latter in dimension n � 3). We denote by uK the corresponding ground state,
defined as the unique solution in� = intK to the following elliptic boundary value
problems (in the second case normalized so to have unit L2-norm):

{
−�u = 1 in �

u = 0 on ∂�

{
−�u = λ1(�)u in �,

u = 0 on ∂�

⎧
⎪⎨

⎪⎩

�u = 0 in Rn \ K

u = 1 on ∂K

u(x) → 0 as |x | → +∞.

It is well known that, by analogy with the case of volume, each of these func-
tionals and its Hadamard derivative satisfy the following representation formulas
(see respectively [22], [37] and [38])

F(K ) = 1
|α|
∫

Sn−1 hK dμK

d
dt F(K + t L)

∣
∣
∣
t=0+ = sign(α)

∫

Sn−1 hL dμK .

Here α denotes the homogeneity degree of F under domain dilation (which equals
equal to n + 2 for torsion, −2 for the eigenvalue, and n − 2 for capacity) and μK

is the first variation measure of F , defined by

μK := (νK )�
(|∇uK |2Hn−1 ∂K

)
(15)

We set the following:

Definition 1. (cone variational measures) For any of the functionals above, with
any K ∈ Kn we associate the positive measure on S

n−1 defined by hK μK , being
μK given by (15), and we denote it respectively by τK (cone torsion measure), by
σK (cone eigenvalue measure) and by ηK (cone capacitary measure).

Let us point out that the terminology in Definition 1 is chosen to emphasize the
analogy with the case of volume, though this is somehow an abuse; indeed, the
analogue of the equality (14) is clearly false for our variational functionals, since
they are not additive under the decomposition of a polytope in Kn into cones with
apex o and bases at its facets.
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Let us also notice that the above representation formulas can be rewitten as
integrals over the boundary and in terms of the total variations of the corresponding
cone variational measure, respectively as

T (K ) = 1

n + 2

∫

∂K
|∇uK |2 x · νK dHn−1 = 1

n + 2
|τK |, (16)

λ1(K ) = 1

2

∫

∂K
|∇uK |2 x · νK dHn−1 = 1

2
|σK |, (17)

cap(K ) = 1

n − 2

∫

∂K
|∇uK |2 x · νK dHn−1 = 1

n − 2
|ηK | (n � 3). (18)

Remark 1. The cone variational measures introduced in Definition 1 are weakly∗
continuous with respect to the convergence of convex bodies in Hausdorff distance.
Indeed, if Kn converge to K∞ in Hausdorff distance, the support functions of Kn

converge uniformly to the support function of K∞, while the first variationmeasures
of Kn converge weakly∗ to the first variation measure of K∞ (cf. respectively [38,
Thm. 3.1] for capacity, [37, Section 7] for the first eigenvalue, and [22, Thm. 6] for
torsion).

3. Rigidity Results for Smooth Convex Bodies

In this sectionwedealwith overdetermined boundary value problems on smooth
convex bodies K , for which the Gauss map νK and the Gaussian curvature GK can
be classically defined. Whenever no confusion may arise, we omit the index K and
we simply write ν and G. We denote by B a generic ball, by B1 the unit ball, and
by ωn its Lebesgue measure.

Theorem 1. Let K ∈ Kn have its centroid at the origin, and boundary of class
C2. Assume that, for some constant c > 0, there exists a solution to the following
overdetermined boundary value problem on � := intK:

⎧
⎪⎨

⎪⎩

−�u = 1 in �,

u = 0 on ∂�,

|∇u|2x · ν = c G on ∂�.

Then K is a ball.

The proof of Theorem 1 is based on the application of different inequalities
for convex bodies, some involving torsional rigidity and some others being purely
geometrical. We list them below:

(i) The Saint–Venant inequality for torsion [32,49]:

T (K )

|K | n+2
n

� T (B)

|B| n+2
n

,
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with equality if and only if K is a ball. More explicitly, since T (B1) = ωn
n(n+2) ,

T (K ) � |K | n+2
n

n(n + 2)ω
2
n
n

, (19)

with equality if and only if K is a ball.
(ii) The isoperimetric inequality of the p-affine surface area in the case p = 2:

�2(K ) :=
∫

∂K

G
2

n+2

(x · ν)
n

n+2
dHn−1 � n ω

4
n+2
n |K | n−2

n+2 , (20)

with equality if and only if K is an ellipsoid (see [43, Theorem 4.8], [56,
Theorem 4.2] or [52, formula (10.49)]).

(iii) The isoperimetric-type inequality:

T (K )1−
1

n+2
∫

∂K |∇uK |2 � T (B)1−
1

n+2
∫

∂B |∇uB |2 (21)

see [19, Theorem 3.15].
(iv) The Blaschke–Santaló inequality [6,50] for convex bodies with centroid at the

origin:

|K ||Ko| � ω2
n, (22)

with equality if and only if K is an ellipsoid (see [42, Theorem 1′]).

Proof of Theorem1.Weare going to obtain anupper bound and a lower bound for
the constant c appearing in the overdetermined boundary condition, starting from
two different expressions of it. For the upper bound we use inequality (i), while the
lower bound can be obtained by twodifferentmethods: either by using the inequality
(ii), or by using the inequalities (iii)-(iv). We provide both methods because, as we
shall see, the first one works to extend the result to the overdetermined boundary
value problem associated with the Newtonian capacity, while the second one works
for the first Laplacian Dirichlet eigenvalue. Since the upper bound and the lower
bound turn out to match each other, we conclude that in particular Saint-Venant
inequality (19) holds as an equality, and hence K must be a ball.

–Upper bound for c. We integrate over the boundary both sides of the pointwise
overdetermined condition

|∇u|2 x · ν = c G on ∂K .

By using respectively the identity (16) and the change of variables formula (2.5.29)
in [51], we obtain

∫

∂K
|∇u|2 x · ν dHn−1 = (n + 2)T (K ),

and
∫

∂K
G dHn−1 =

∫

Sn−1
1 dHn−1 = Hn−1(Sn−1) = nωn . (23)
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Hence we get

c = n + 2

n ωn
T (K ) . (24)

Then by using the Saint-Venant inequality (19) we obtain the upper bound

c � 1

n2

( |K |
ωn

) n+2
n

, (25)

with equality if and only if K is a ball.
– Lower bound for c (first method).We integrate on ∂K the pointwise overde-

termined condition, after rewriting it as

|∇u| = c1/2
(

G

x · ν

)1/2

on ∂K .

Exploiting the fact that u solves the torsion problem, we obtain

|K | = c1/2
∫

∂K

(
G

x · ν

)1/2

dHn−1,

i.e.

c = |K |2
[∫

∂K

( G
x ·ν
)1/2

dHn−1
]2 . (26)

We now look at the integral appearing the denominator in the right-hand side of
(26). Let us distinguish the cases n = 2 and n � 3.

If n = 2, such integral is exactly the 2-affine surface area:

∫

∂K

(
G

x · ν

)1/2

dHn−1 = �2(K ).

If n � 3, the same integral can be estimated in terms of the 2-affine surface area
usingHölder’s inequality. Specifically, usingHölder’s inequality with the conjugate
exponents β = 2n

n+2 and β ′ = 2n
n−2 , it holds that

∫

∂K

(
G

x · ν

)1/2

dHn−1 =
∫

∂K

G1/n

(x · ν)1/2
· G 2−n

2n dHn−1

�
[∫

∂K

(
G1/n

(x · ν)1/2

)β

dHn−1

]1/β

·
[∫

∂K

(
G

2−n
2n

)β ′
dHn−1

]1/β ′

=
[∫

∂K

G
2

n+2

(x · ν)
n

n+2
dHn−1

] n+2
2n

·
[∫

∂K
G dHn−1

] n−2
2n

= [�2(K )] n+2
2n · [nωn]

n−2
2n .
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Hence, for every n � 2, we have that

∫

∂K

(
G

x · ν

)1/2

dHn−1 � �2(K )
n+2
2n (n ωn)

n−2
2n � n ω

n+2
2n
n |K | n−2

2n , (27)

where in the second inequality we have used the 2-affine isoperimetric inequality
(20).

From (26) and (27), we get

c � |K |2

n2 ω
n+2
n

n |K | n−2
n

= 1

n2

( |K |
ωn

) n+2
n

. (28)

– Lower bound for c (second method). We integrate over ∂K the pointwise
overdetermined condition, after rewriting it as

|∇u|2 = c
G

x · ν
on ∂K .

Then, using also the expression of T (K ) in (24), the isoperimetric inequality
(21) reads:

c1−
1

n+2

(
nωn
n+2

)1− 1
n+2

c
∫

∂K
G
x ·ν

� T (B)1−
1

n+2
∫

∂B |∇uB |2 .

Rising the above inequality to power (n + 2), and setting for brevity

�(B) := T (B)1−
1

n+2
∫

∂B |∇uB |2 ,

we get

c �

(
nωn
n+2

)n+1

�(B)n+2
(∫

∂K
G
x ·ν
)n+2 . (29)

We now look at the integral appearing the denominator in the right-hand side of
(29). We transform it into an integral on S

n−1 by the classical change of variables
formula already quoted above. Then, by using Hölder’s inequality with conjugate
exponents n and n

n−1 , the well-known representation formula for the volume of

the dual body |Ko| = 1
n

∫

Sn−1 h
−n
K , and the Blaschke-Santaló inequality (22), we

obtain

∫

∂K
G
x ·ν = ∫

Sn−1
1
hK

�
(∫

Sn−1
1
hnK

) 1
n
(nωn)

n−1
n

= (n|Ko|) 1
n (nωn)

n−1
n

� nω
n+1
n

n |K |− 1
n .

(30)
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We now combine (29) and (30). Taking also into account that T (B1) = ωn
n(n+2) , and∫

∂B1
|∇uB1 |2 = ωn

n , so that

�(B)n+2 = n

(n + 2)n+1ωn
,

we arrive exactly at the inequality (28). �

– Conclusion.By comparing the upper bound (25) and the lower bound (28), we

conclude that the equality sign holds in both inequalities. In particular, the equality
sign in (25) implies that K is a ball. �

Theorem 2. Let K ∈ Kn have its centroid at the origin, and boundary of class
C2. Assume that, for some constant c > 0, there exists a solution to the following
overdetermined boundary value problem on � := int K:

⎧
⎪⎨

⎪⎩

−�u = λ1(�)u in �,

u = 0 on ∂�,

|∇u|2x · ν = c G on ∂�.

Then K is a ball.

The proof of Theorem 2 is similar to the one of Theorem 1; it is based on the
following inequalities:

(i) The Faber-Krahn inequality

λ1(K )|K |2/n � λ1(B)|B|2/n, (31)

with equality if and only if K is a ball, see e.g. [31, Section 3.2].
(ii) The isoperimetric-type inequality

λ1(K )3/2
∫

∂K |∇uK |2 � λ1(B)3/2
∫

∂B |∇uB |2 (32)

see [19, Theorem 3.15].
(iii) The Blaschke-Santaló inequality (22).

Proof of Theorem 2. Similarly as in the proof of Theorem 1, we are going to
provide a matching upper and lower bound for the constant c appearing in the
overdetermined boundary condition. A lower bound on c is obtained by arguing as
done to obtain an upper bound in the proof of Theorem 1. First we integrate over
∂K the overdetermined condition written as

|∇u|2 x · ν = c G on ∂K .

Using the identity (17), and a change of variables as in (23), we deduce that

c = 2

n ωn
λ1(K ). (33)
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Then, by using the Faber-Krahn inequality (31), we obtain the lower bound

c � 2

n
ω

2−n
n

n λ1(B)|K |− 2
n , (34)

with equality if and only if K is a ball.
An upper bound on c is obtained by arguing as done to obtain a lower bound in

the proof of Theorem 1, second method. Namely, we integrate on ∂K the overde-
termined condition, after rewriting it as

|∇u|2 = c
G

x · ν
on ∂K .

By using also the expression of λ1(K ) in (33), the isoperimetric inequality (32)
reads:

c
3
2
( nωn

2

) 3
2

c
∫

∂K
G
x ·ν

� λ1(B)
3
2

∫

∂B |∇uB |2 .

Rising the above inequality to power 2, and setting for brevity

�(B) := λ1(B)
3
2

∫

∂B |∇uB |2 ,

we obtain

c �
(

2

nωn

)3

�(B)2
(∫

∂K

G

x · ν

)2

.

For the integral appearing at the right hand side of the above inequality, the
estimate (30) found in the proof of Theorem 1 holds. Hence we get

c � 8

n
ω

2−n
n

n �(B)2|K |− 2
n . (35)

To conclude the proof, it remains to show that the expressions at the right hand
sides of the lower bound (34) and of the the upper bound (35) coincide. Indeed in
this case the Faber-Krahn inequality must hold as an equality, yielding that K is a
ball. The matching of our upper and lower bounds corresponds to the equality

2λ1(B) =
∫

∂B
|∇uB |2. (36)

The validity of (36) is checked through some direct computations involving
Bessel functions, that we enclose for the sake of completeness. We have (see for
instance [39, Section 4])

λ1(B1) = ( j n
2−1,1)

2, (37)

where j n
2−1,1 is the first zero of the Bessel function Jn

2−1, and

uB1(r) = Cr1−
n
2 Jn

2−1( j n2−1,1r).
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The value of the constant C is determined by imposing that uB1 has unit L
2-norm,

yielding

C2 =
(
nωn

∫ 1

0
J 2( j1r) r dr

)−1

(here and in the sequel we have written for brevity J := Jn
2−1 and j1 := j n

2−1,1).
Since, by known properties of Bessel functions (see [1, 11.4.5]) we have

∫ 1

0
J 2( j1r)r dr = 1

2
(J ′( j1))2 ,

we infer that

C2 = 2

nωn

1

(J ′( j1))2
.

Hence,
∫

∂B1
|∇uB1 |2 = C2 j21 (J ′( j1))2 = 2 j21 . (38)

From (37) and (38), we see that (36) is satisfied and our proof is complete. �

Theorem 3. Let K ∈ Kn have its centroid at the origin, and boundary of class
C2. Assume that, for some constant c > 0, there exists a solution to the following
overdetermined boundary value problem on the complement of K :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u = 0 in Rn \ K
u = 1 on ∂K
|∇u|2x · ν = c G on ∂K
lim|x |→+∞ u(x) = 0.

Then K is a ball.

Also the proof of Theorem 3 follows the same strategy of Theorem 1. This is
based on the following inequalities:

(i) The isoperimetric inequality for capacity [49]

cap(K )

|K | n−2
n

� cap(B)

|B| n−2
n

,

with equality if and only if K is a ball. More explicitly, since cap(B1) =
n(n − 2)ωn ,

cap(K ) � (n − 2)2ω
2−n
n

n |K | n−2
n , (39)

with equality if and only if K is a ball.
(ii) The isoperimetric inequality (20) for the p-affine surface area in the case p = 2.
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Proof of Theorem 3. A lower bound for c is obtained by arguing as done to obtain
an upper bound in the proof of Theorem 1. Specifically, by (18) and (23), we obtain

c = n − 2

n ωn
cap(K ). (40)

Then, by using the isoperimetric inequality (39) for capacity, we get

c � (n − 2)2ω
2−n
n

n |K | n−2
n , (41)

with equality if and only if K is a ball.
An upper bound for c is obtained by arguing as done to obtain a lower bound

in the proof of Theorem 1, first method. We integrate over ∂K the overdetermined
condition, after rewriting it as

|∇u| = c1/2
(

G

x · ν

)1/2

.

Using the equalities cap(K ) = ∫

∂K |∇u| (see [28, p.27]) and (40), we obtain

cap(K ) = n ωn

n − 2
c = c1/2

∫

∂K

(
G

x · ν

)1/2

dHn−1,

i.e.

c =
(n − 2

nωn

)2
[∫

∂K

(
G

x · ν

)1/2

dHn−1

]2

. (42)

For the integral appearing at the right hand side of the above inequality, the
estimate (27) found in the proof of Theorem 1 (through the use of Hölder inequality
and the 2-affine isoperimetric inequality) holds. Thus we get

c �
(n − 2

nωn

)2[
n ω

n+2
2n
n |K | n−2

2n

]2 = (n − 2)2ω
2−n
n

n |K | n−2
n . (43)

Comparing (41) and (43), we see that our lower and upper bounds match each
other, implying in particular that (41) must hold with equality sign, and hence that
K is a ball. �


4. Rigidity Results for Arbitrary Convex Bodies

In this section we drop any smoothness assumption and we deal with arbitrary
centred convex bodies having some cone variational measure equal to that of a ball.

Theorem 4. Let K ∈ Kn have its centroid at the origin, and let τK be its cone
torsion measure according to Definition 1. Assume that, for some positive constant
c,

τK = cHn−1
S
n−1 as measures on S

n−1. (44)

Then K is a ball.
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The proof of Theorem 4 requires some preliminaries about convex bodieswhich
have absolutely continuous surface area measure (or equivalently which admit a
curvature function); we gather them in Proposition 1, relying on some results proved
in [34–36].

We recall that, if a convex body K has absolutely continuous surface
area measure, by definition there exists a unique non-negative function fK ∈
L1(Sn−1,Hn−1

S
n−1), called curvature function of K , such that its surface area

measure satisfies SK = fKHn−1
S
n−1. Equivalently, we have

V1(K , L) := lim
t→0+

V (K + t L) − V (K )

t

= 1

n

∫

Sn−1
hL(ξ) fK (ξ)dHn−1(ξ) ∀L ∈ Kn .

Below we follow the usual convention that ν : ∂K → S
n−1 is a possibly multi-

valued map associating to every x ∈ ∂K the unit vectors of the normal cone to ∂K
at x .

Moreover, using the notations in the cited papers of Hug, we set

– M(K ):= the set of points x ∈ ∂K such that ∂K is second order differentiable
at x (so that ν(x) is a singleton and G(x) is well-defined as the product of the
principal curvatures);

– (∂K )+:= the set of points x ∈ ∂K such that there exists an internal tangent ball
touching ∂K at x (so that G(x) is finite);

– exp∗ K := the set of points x ∈ ∂K such that there exists a closed ball B
containing K with x ∈ ∂B (so that G(x) > 0).

Proposition 1. Assume that K ∈ Kn has absolutely continuous surface area mea-
sure, and let fK be its curvature function. Then:

(a) Denoting by r1(ξ), . . . , rn−1(ξ) the generalized radii of curvature of ∂K at
ν−1(ξ), namely the eigenvalues of D2hK (ξ)|ξ⊥ , we have

fK (ξ) = r(ξ) :=
n−1∏

j=1

r j (ξ) for Hn−1-a.e. ξ ∈ S
n−1. (45)

(b) Setting

R(K ) := M(K ) ∩ (∂K )+ ∩ exp∗ K ,

we have that Hn−1(∂K \ R(K )) = 0, and ν is a bijection from R(K ) to
ν(R(K )).

If, in addition, fK (ξ) > 0 for Hn−1-a.e. ξ ∈ S
n−1, then:

(c) ν(R(K )) has full measure in Sn−1, i.e. Hn−1(Sn−1 \ ν(R(K ))) = 0.
(d) After possibly removing aHn−1-null set from R(K ), for every ξ ∈ ν(R(K )), hK

is second order differentiable at ξ , x := ∇hK (ξ) ∈ R(K ) and G(x) r(ξ) = 1.
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(e) For every nonnegative function ψ ∈ L1(∂K ,Hn−1 ∂K ) it holds that
∫

∂K
ψ dHn−1 =

∫

Sn−1

ψ(ν−1(ξ))

G(ν−1(ξ))
dHn−1(ξ).

Proof. The equality (45) is proved in [35, formula (2.8)].
Statement (b) is consequence of the facts that Hn−1(∂K\M) = 0, Hn−1(∂K

\(∂K )+) = 0 and Hn−1(∂K\ exp∗ K ) = 0, following respectively from Alexan-
droff theorem [2], [45], and [36, Theorem 3.7(c)].

Assume now that fK > 0Hn−1-a.e. on Sn−1. Recall that the curvature measure
of K is the measure CK , supported on ∂K , defined by

CK (E) := Hn−1(ν(E)) for every Borel set E ⊆ ∂K .

By (45) and Theorem 2.3 in [36], it follows that CK is absolutely continuous
with respect to Hn−1 ∂K . Since, by statement (b), the set ∂K\R(K ) is Hn−1-
negligible, we conclude that also statement (c) holds, namely S

n−1 \ ν(R(K )) is
Hn−1-negligible. To prove statement (d), we consider the subset of Sn−1 given by

� := {
ξ ∈ ν(R(K )) : hK is second order differentiable at ξ

}
,

and we replace R(K ) with the possibly smaller set ν−1(�). Then statement (d)
follows from (c) and Alexandroff theorem.

Finally, let us prove (e). Following [34], for every r > 0 let (∂K )r be the set
of all points of x ∈ ∂K such that there exists an internal tangent ball of radius
r touching ∂K at x . From Lemma 2.3 in [34], the map ν (∂K )r is Lipschitz
continuous, and its approximate (n − 1)-dimensional Jacobian is

ap Jn−1ν (∂K )r (x) = G(x), forHn−1-a.e. x ∈ (∂K )r .

Recalling that G(x) > 0 for Hn−1-a.e. x ∈ ∂K , for every positive n ∈ N we
can apply Federer’s coarea formula (see [25, Theorem 3.2.22]) to the non-negative
function

hn(x) := ψ(x)

G(x)
χ(∂K )1/n (x),

obtaining
∫

∂K
hn G dHn−1 =

∫

(∂K )1/n

hn G dHn−1 =
∫

ν((∂K )1/n)

ψ ◦ ν−1

G ◦ ν−1 dH
n−1.

Since (∂K )+ = ⋃
n(∂K )1/n , the change of variable formula (e) follows by using

(c), and applying Lebesgue monotone convergence theorem. �

We are now in a position to give the
Proof of Theorem 4. The idea is to follow the same proof line of Theorem 1.

However, this cannot be done directly, since we do not have any longer a pointwise
identity holding along the boundary. So,we have to prove first of all that the constant
c appearing in (44) can be still expressed by the two different formulas (24) and
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(26). To obtain formula (24), it is enough to observe that the two measures in the
overdetermined conditionsmust have the same total variation: using (16),we obtain

|τK | = (n + 2)T (K ),

and hence

c = |τK |
Hn−1(Sn−1)

= n + 2

n ωn
T (K ).

To obtain also formula (26), we need first to prove the following
Claim: the equality (44) implies that K has absolutely continuous surface area

measure, and in addition its curvature function is strictly positive.
This amount to show that, if the equality (44) holds, for a Borel set E ⊂ S

n−1,
the following implications hold:

Hn−1
S
n−1(E) = 0 ⇒ SK (E) = 0; (46)

Hn−1
S
n−1(E) > 0 ⇒ SK (E) > 0. (47)

Indeed, (46) implies that K admits a curvature function fK ; then, since SK =
fK Hn−1

S
n−1, (47) implies that fK is strictly positive Hn−1-a.e. on S

n−1.
Let E ⊂ S

n−1 be a Borel set with Hn−1
S
n−1(E) = 0. By (44), we have

τK (E) = 0. Recalling that, by definition, we have

τK (E) =
∫

ν−1(E)

|∇u|2x · ν dHn−1, (48)

and

SK (E) = Hn−1(∂K ∩ ν−1(E)),

the implication (46) follows from the fact that

|∇u|2x · ν > 0 Hn−1-a.e. on ∂K .

Indeed, the term x · ν remains strictly positive since by assumption K contains the
origin in its interior,while the term |∇u|2 remains strictly positive byHopf boundary
point lemma (since K admits an inner touching ball atHn−1-a.e. x ∈ ∂K , see e.g.
[45]).

Let E ⊂ S
n−1 be a Borel set with Hn−1

S
n−1(E) > 0. From (44), it follows

that τK (E) = cHn−1(E) > 0. In turn, by (48), this implies thatHn−1(ν−1(E)) >

0, or equivalently that SK (E) > 0, proving (47).
Since we have just proved that K admits a positive curvature function fK ,

recalling also the definition of cone torsion measure τK , the equality (44) can be
reformulated as

hK ν�(|∇u|2Hn−1 ∂K ) = c

fK
ν�(Hn−1 ∂K ).
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Namely, for every Borel set E ⊂ S
n−1, it holds that

∫

ν−1(E)

x · ν|∇u|2 dHn−1 = c
∫

ν−1(E)

1

fK ◦ ν
dHn−1. (49)

We now invoke Proposition 1. By statements (a) and (d), we can rewrite the right
hand side of the above equality as

∫

ν−1(E)

1

fK ◦ ν
dHn−1 =

∫

ν−1(E)

G dHn−1,

so that (49) turns into
∫

ν−1(E)

x · ν|∇u|2 dHn−1 = c
∫

ν−1(E)

G dHn−1. (50)

By Proposition 1, statements (b) and (c), we know that ν R(K ) is a bijection
from R(K ) to ν(R(K )), withHn−1(∂K\R(K )) = 0 andHn−1(Sn−1\ν(R(K ))) =
0. In view of this fact, the integral equality (50) yields the pointwise equality

|∇u| = c1/2
(

G(x)

x · ν(x)

)1/2

Hn−1-a.e. on ∂K .

Integrating over ∂K , we see that (26) holds.
Having established the validity of (24) and (26), the remaining of the proof can

proceed in the analogous way as in Theorem 1. Indeed, the inequalities used in the
proof of Theorem 1 do not need any smoothness assumption. In particular, for the

2-affine isoperimetric inequality for convex bodies which admit a curvature
function, we refer to [40, Theorem 3] (see also [34, Remark p. 296]). �


As well as the inequalities used in the proof of Theorem 1, also the inequalities
used in the proof of Theorems 2 and 3 do not need any smoothness assumption. Thus
we obtain the following results for convex bodies with the same cone eigenvalue
measure or the same cone capacity measure as a ball. We omit their proofs since
they are analogous to the one of Theorem 4 detailed above.

Theorem 5. Let K ∈ Kn have its centroid at the origin, and let σK be its cone
eigenvalue measure according to Definition 1. Assume that, for some positive con-
stant c,

σK = cHn−1
S
n−1 as measures on S

n−1.

Then K is a ball.

Theorem 6. Let K ∈ Kn, n � 3, have its centroid at the origin, and let ηK be its
cone capacity measure according to Definition 1. Assume that, for some positive
constant c,

ηK = cHn−1
S
n−1 as measures on S

n−1.

Then K is a ball.



Arch. Rational Mech. Anal. (2024) 248:48 Page 21 of 30 48

5. Ultimate Shapes of Variational Flows

In this section we show that, in the smooth centrally symmetric setting, the
convex bodies analysed in Sect. 3 can be identified with the ultimate shapes of new
variational flows, under the basic assumption that they admit a solution. We present
a unified treatment, by considering the evolution problem

⎧
⎪⎪⎨

⎪⎪⎩

∂h
∂t (t, ξ) = −aF(C(t)) G(t,ν−1

t (ξ))

|∇u(t,ν−1
t (ξ))|2 on (0, T ) × S

n−1,

h(0, ξ) = h0(ξ) on Sn−1,

h(t, ξ) � b on (0, T ) × S
n−1.

(51)

where F may denote either the torsional rigidity, or the principal Dirichlet Lapla-
cian eigenvalue, or the Newtonian capacity (the latter for n � 3), and u is the
corresponding ground state.

Let us remark that, in terms of the parametrization of ∂C(t) by its inverse Gauss
map X (t, ·) : Sn−1 � ξ → ν−1

t (ξ) ∈ ∂C(t), the evolution equation in (51) can be
written as

∂X

∂t
(t, ξ) = − G(t, X)

|∇u|(t, X)2
F(C(t)) ξ on (0, T ) × S

n−1

(indeed, we have h(t, ξ) = ν−1
t (ξ) · ξ , so that ∂h

∂t (t, ξ) = ∂X
∂t (t, ν−1

t (ξ)) · ξ ).
Thus, up to the factor F(C(t)) (which is just a rescaling allowing to have global

existence in time), the unique crucial difference between (51) and the classical
Gaussian curvature flow is the presence of the squared modulus of the ground state
gradient.

We denote by α the homogeneity degree of F under domain dilations (see Sect.
4). The following statement deals with the cases of torsion and first eigenvalue, see
however Remark 2 for the case of capacity.

Theorem 7. Let F = T or F = λ1. Assume that, for some maximal time T > 0,
there exists a unique family of convex bodies C(t), defined for t ∈ [0, T ), which
are smooth (at least of class C3) and such that their support function ξ �→ h(t, ξ)

satisfies (51). Then, setting γ = anωn|α| ,

(i) it holds that F(t) = F0 exp(−γ t), where F0 is the energy at t = 0; moreover,
the family C(t) is strictly decreasing by inclusion;

(ii) the flow is defined for every t � 0 (i.e., T = +∞), and the sets C(t) are strictly
convex bodies;

(iii) the following entropy is decreasing along the flow:

E(t) :=
∫

Sn−1
log h(t, ξ) dHn−1(ξ) + γ nωnt;

(iv) assuming in addition that C(0) is centrally symmetric, we have that C(t) is cen-
trally symmetric for every t � 0; moreover, if {tn} → +∞, up to subsequences
exp(γ tn)C(tn) converge in Hausdorff distance to a centrally symmetric convex
body, called an ultimate shape for problem (10), whose cone torsion measure or
cone eigenvalue measure is absolutely continuous with respect toHn−1

S
n−1,

with constant density.
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Remark 2. As it can be seen by direct inspection of the proof below, for F = cap,
thanks to the Brunn-Minkowski inequality proved in [7], statement (i) continues to
hold, but in principle statement (ii) may fail, because the positivity of the capacity
does not imply that the corresponding convex body is nondegenerate. However, if
it occurs that the flow is defined for all times, then also statements (iii)–(iv) hold
true.

Proof. We follow the proof line of [26, Thm. 1, Thm. 2].
(i) Set

F1(K , L) := 1

α
lim
t→0+

F(K + t L) − F(K )

t
= 1

|α|
∫

Sn−1
hL dμK ,

where μK is the first variation measure given by (15); recall that, by the Brunn-
Minkowski inequality satisfied by F (see [9] for torsion and [16] for the first eigen-
value), it holds that

F1(K , L) � F(K )1−
1
α F(L)

1
α . (52)

Rewrite the equation as

|∇u(t, ν−1
t (ξ))|2

G(t, ν−1
t (ξ))

lim
s→0

1

s

[
h(t + s, ξ) − h(t, ξ)

] = −aF(t). (53)

Let us denote by (0, T ′), with T ′ � T , the maximal interval of existence of a
smooth solution to this equation.

Integrating over Sn−1 with respect to ξ , we obtain

|α| lim
s→0

F1(t, t + s) − F(t)

s
= −anωn F(t),

where we used for shortness the notation F1(t, t ′) := F1(C(t),C(t ′)), F(t) :=
F(C(t)).

Then, using (52), we arrive at

− anωn

|α| F(t) � F(t)1−
1
α
d

dt

(
F

1
α (t)

)
= 1

α

d

dt
F(t). (54)

Consider now the convex body C̃(t) with support function h̃(t, ξ) := h(t, ξ)

exp(γ t). Denoting by ũ, ν̃t , G̃, F̃ respectively its torsion function, Gauss map,
Gaussian curvature, and torsional rigidity, it holds that

G̃(t, ν̃−1
t (ξ)) = exp

(−(n − 1)γ t
)
G(t, ν−1

t (ξ)),

|∇ũ(t, ν̃−1
t (ξ))|2 = exp

(
(α − n)γ t

)|∇u(t, ν−1
t (ξ))|2,

F̃(t) = exp(αγ t)F(t) .

Taking γ = anωn|α| , by (54), we have

(sign α)
d

dt
F̃(t) � 0. (55)
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The equation satisfied by h̃ is

|∇ũ(t, ν̃−1
t (ξ))|2

G̃(t, ν̃−1
t (ξ))

[∂ h̃

∂t
(t, ξ) − γ h̃(t, ξ)

]
= −aF̃(t). (56)

Integrating this equation on Sn−1, by the choice of γ and the representation formula
for F̃(t), we infer that

∫

Sn−1

|∇ũ(t, ν̃−1
t (ξ))|2

G̃(t, ν̃−1
t (ξ))

∂ h̃

∂t
(t, ξ) dHn−1(ξ) = 0.

Consequently, differentiating under the sign of integral (thanks to the smoothness
assumption made on C(t) and standard elliptic boundary regularity),

d

dt
F̃(t) = 1

|α|
∫

Sn−1

∂

∂t

[ |∇ũ(t, ν̃−1
t (ξ))|2

G̃(t, ν̃−1
t (ξ))

]
h̃(t, ξ) dHn−1(ξ),

that we may rewrite as

d

dt
F̃(t) = lim

s→0

F̃1(t + s, t) − F̃(t)

s
,

where we have set F̃1(t + s, t) := F1(C̃(t + s), C̃(t)). Then, using (52) in a similar
way as above, we obtain

d

dt
F̃(t) �

[
F̃(t)

1
α
d

dt

(
F̃1− 1

α (t)
)]

=
(
1 − 1

α

) d

dt
F̃(t),

which shows that

(sign α)
d

dt
F̃(t) � 0. (57)

By combining (55) and (57), we see that F̃(t) is equal to a constant, precisely
to F0 := F̃(0) = F(0), and hence

F(t) = F0 exp(−αγ t).

Since F(t) > 0 for every t ∈ [0, T ′), from the equation we see in particular
that the family of convex sets C(t) is strictly decreasing with respect to t .

(ii) We recall that, for a convex body K , we have the inequalities

T (K ) � |K | n+2
n

n(n + 2)ω
2
n
n

and λ1(K ) � π2

(minimal width(K ))2
(58)

(the first one is the Saint-Venant inequality (19), while for the second one we refer
e.g. to [18, Proposition 11]). It follows thatC(t) is a nondegenerate convex body for
every t ∈ (0, T ′). Moreover, the strict convexity of C(t) follows from the fact that,
in equation (53), the right hand side is strictly negative. We infer that T ′ = +∞,
so that T = +∞, and C(t) is strictly convex for every t � 0.
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(iii) Dividing equation (56) by |∇ũ(t ,̃ν−1
t (ξ))|2

G̃(t ,̃ν−1
t (ξ))

h̃(t, ξ) and recalling that F̃(t) ≡
F0, we get

d

dt
log h̃(t, ξ) − γ = −aF0

G̃(t, ν̃−1
t (ξ))

|∇ũ(t, ν̃−1
t (ξ))|2

1

h̃(t, ξ)
.

By applying Hölder’s inequality
(∫

Sn−1
f

)(∫

Sn−1

1

f

)

� n2ω2
n,

with

f = G̃(t, ν̃−1
t (ξ))

|∇ũ(t, ν̃−1
t (ξ))|2

1

h̃(t, ξ)
,

we get

∫

Sn−1
d
dt log h̃(t, ξ) dHn−1(ξ) � γ nωn − aF0n2ω2

n

[ ∫

Sn−1
|∇ũ(t ,̃ν−1

t (ξ))|2
G̃(t ,̃ν−1

t (ξ))
h̃(t, ξ)

]−1

= an2ω2
n|α| − aF0n2ω2

n

(|α|F0
)−1 = 0.

By interchanging derivative and integral on S
n−1, we obtain that the entropy E(t)

decreases along the flow.
(iv) The central symmetry of C(t) corresponds to the condition h(t, ξ) =

h(t,−ξ), which is satisfied since the map h(t, ξ) is a solution to problem (51),
and by assumption such problems admits a unique solution. Now, integrating on
[0, t] the inequality E ′ � 0, we obtain

E(t) =
∫

Sn−1
log h̃(t, ξ) dHn−1(ξ) �

∫

Sn−1
log h̃0(ξ) dHn−1(ξ) = E(0).

By exploiting the central symmetry of C̃(t) this implies, by arguing as in [26, proof
of Thm. 2], that the convex bodies C̃(t) lie into some fixed ball independent of
t ; moreover, applying the inequalities (58) it follows that, for every t � 0, C̃(t)
contains a fixed ball centered at the origin. So there exist R > r > 0 independent
of t such that

Br (0) ⊆ C̃(t) ⊆ BR(0) ∀t ∈ [0,+∞). (59)

In particular this implies that the monotone decreasing map E(t) is bounded from
below, and so it converges to a finite limit as t → +∞; thus we have

lim
t→+∞

d

dt
E(t) = lim

t→+∞
d

dt

∫

Sn−1
log h̃(t, ξ) dHn−1(ξ) = 0. (60)

Set

g(t, ξ) := 1 − 1

γ

∂

∂t
log h̃(t, ξ).
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We have

∫

Sn−1 g(t, ξ) dHn−1(ξ) = nωn − 1
γ

∫

Sn−1
∂
∂t log h̃(t, ξ) dHn−1(ξ)

∫

Sn−1
1

g(t,ξ)
dHn−1(ξ) = γ

aF0

∫

Sn−1 h̃(t, ξ)
|∇ũ(t ,̃ν−1

t (ξ))|2
G̃(t ,̃ν−1

t (ξ))
dHn−1 = nωn,

where to compute the integral of g−1 we have used (56). It follows that

∫

Sn−1

(√
g − 1√

g

)2
dHn−1(ξ) = − 1

γ

∫

Sn−1

∂

∂t
log h̃(t, ξ) dHn−1(ξ)

and hence by (60) we have that g(t, ξ) → 1 Hn−1-a.e. on S
n−1 as t → +∞. By

(59), the support functions h̃(t, ·) are bounded from above and from below on Sn−1

by positive constants independent of t . It follows that

lim
t→+∞

∂ h̃

∂t
(t, ξ) = 0 Hn−1-a.e. on S

n−1. (61)

Take now a sequence {tn} → +∞. By (59) and by the compactness of theHausdorff
distance, C̃(tn) converges to a nondegenerate convex body C̃∞. Then the cone
variational measures of C̃(tn) converge weakly* to the cone variational measure of
C̃∞ (see Remark 1). Thus, if we set

ψn(ξ) := |∇ũ(tn, ν̃
−1
tn (ξ))|2

G̃(tn, ν̃
−1
tn (ξ))

h̃(tn, ξ)

we have that ψn converge weakly in L1(Sn−1,Hn−1
S
n−1) to ψ∞, being ψ∞ the

density of the cone variational measure of C̃∞.
On the other hand, by passing to the limit as n → +∞ in the equation (56)

written at t = tn , recalling that F(tn) = F0, and exploiting (61), we obtain the
following pointwise convergence

lim
n

ψn(ξ) = a

γ
F0 Hn−1-a.e. on Sn−1. (62)

Moreover, we have

lim
n

∫

Sn−1
ψn(ξ) dHn−1 =

∫

Sn−1
ψ∞(ξ) dHn−1,

(see respectively [22, eq. (23)] for torsion, [38, eq. (3.15)] for capacity and [37,
Section 7] for principal eigenvalue), so thatψn converge toψ∞ strongly in L1(Sn−1,

Hn−1
S
n−1).

In particular, from (62) we conclude that ψ∞ = a
γ
F0, namely the cone varia-

tional measure of C̃∞ is a constant multiple of Hn−1
S
n−1. �
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6. Concluding Remarks

Remark 3. In dimension n = 2 and for K smooth, the existence of a solution to the
logarithmic Minkowski problem (13) easily follows from the results proved in [13,
Section 6]. Indeed, it is not restrictive to assume T (K ) = 1 and to minimize over
convex bodies with unit torsion. Let {L j } be a minimizing sequence. By arguing
as in the proof of Lemma 6.2 in [13], it is possible to find a sequence of origin-
symmetric parallelograms {Pj }, with T (Pj ) = 1 and orthogonal diagonals, such
that Pj ⊆ L j ⊆ 2Pj . If {L j } is not bounded, we have that also {Pj } is not bounded;
moreover, by the assumption T (L j ) = 1, themonotonicity of torsion by inclusions,
and Saint-Venant inequality (19), the volume of Pj is bounded from below by a
positive constant independent of j . Then we can apply Lemma 6.1 in [13] to infer
that the sequence

∫

S1
log hPj dVK is not bounded from above. Since by Hopf’s

boundary lemma |∇uK |2 has a strictly positive minimum on ∂K , this implies that
also the sequence

∫

S1
log hL j dτK is not bounded from above, contradicting the

fact that {L j } is a minimizing sequence. Hence, {L j } remains bounded, and by
Blaschke’s selection theorem we may select a converging subsequence; its limit
turns out to be an origin symmetric convex body with unit torsion which solves
problem (13).

Remark 4. In any space dimension, for K = B the logarithmicMinkowski problem
(13) is solved uniquely by the ball. Namely, using for brevity the notation τ B for
the normalized cone torsion measure, i.e. τ B := τB/T (B), we have

∫

Sn−1
log
(hL
hB

)
dτ B � 1

n + 2
log
(T (L)

T (B)

)
∀L ∈ Kn∗ .

Indeed, it was proved by Guan–Ni [30, Proposition 1.1] that
∫

Sn−1
log
(hL
hB

)
dV B � 1

n
log
( |L|
|B|
)

∀L ∈ Kn∗, (63)

with equality if and only if L = B, where V B := VB/|B| denotes the normalized
cone volume measure of B. Since B is a ball, we have V B = τ B . Then, by using
(63) and the Saint-Venant inequality, we obtain

∫

Sn−1
log
(hL
hB

)
dτ B � 1

n
log
( |L|
|B|
)

� 1

n + 2
log
(T (L)

T (B)

)
∀L ∈ Kn∗ .

Remark 5. In dimension n = 2, the logarithmic Brunn-Minkowski inequality for
the first eigenvalue and for the torsion can be easily tested on the class of rectangles.
For any x > 0, set Rx = (0, x)× (0, 1). Given �1, �2 > 0, and λ ∈ (0, 1), we have

(1 − λ) · R�1 +0 λ · R�2 = R� with � = �1−λ
1 �λ

2 .

Then, by using the explicit formulas

λ1(R�) = π2
(
1 + 1

�2

)

T (R�) = �3

12 − 16�4

π5

∑
k�0

e(2k+1)π/�−1
e(2k+1)π/�+1

1
(2k+1)5

,
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the inequalities

λ1(R�) � λ1(R�1)
1−λλ1(R�2)

λ and T (R�) � T (R�1)
1−λT (R�2)

λ

are confirmed, respectively, via explicit straightforward computations and via com-
putations done by Mathematica.
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