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Abstract

We study the boundary layer theory for slightly viscous stationary flows forced
by an imposed slip velocity at the boundary. According to the theory of Prandtl
(in: International mathematical congress, Heidelberg, 1904; see Gesammelte Ab-
handlungen II, 1961) and Batchelor (J Fluid Mech 1:177–190, 1956), any Euler
solution arising in this limit and consisting of a single “eddy” must have constant
vorticity. Feynman and Lagerstrom (in: Proceedings of IX international congress
on applied mechanics, 1956) gave a procedure to select the value of this vorticity by
demanding a necessary condition for the existence of a periodic Prandtl boundary
layer description. In the case of the disc, the choice—known to Batchelor (1956)
and Wood (J Fluid Mech 2:77–87, 1957)—is explicit in terms of the slip forcing.
For domains with non-constant curvature, Feynman and Lagerstrom give an ap-
proximate formula for the choice which is in fact only implicitly defined and must
be determined together with the boundary layer profile.We show that this condition
is also sufficient for the existence of a periodic boundary layer described by the
Prandtl equations. Due to the quasilinear coupling between the solution and the
selected vorticity, we devise a delicate iteration scheme coupled with a high-order
energy method that captures and controls the implicit selection mechanism.

1. Introduction

Let M ⊂ R
2 be a bounded, simply connected domain. Consider the Navier–

Stokes equations

∂t u
ν + uν · ∇uν = −∇ pν + ν�uν in M, (1)

∇ · uν = 0 in M. (2)
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Motion is excited through the boundary, where stick boundary conditions are sup-
plied

uν · n̂ = 0 on ∂ M, (3)

uν · τ̂ = f on ∂ M, (4)

where n̂ is the unit outer normal vector field on the boundary and τ̂ = n̂⊥, the unit
tangent field. In the above, there is a given autonomous slip velocity f : ∂ M → R,
which should be thought of as being generated by motion of the boundary (via so-
called “stick" or “no slip" boundary conditions—the fluid velocity on the boundary
matches its speed), and is responsible for the generation of complex fluid motions
in the bulk. If the viscosity is large relative to the forcing, then it is easy to see
that all solutions converge to a unique steady state as t → ∞ [38]. However, as
viscosity is decreased, one generally expects solutions to develop and retain non-
trivial variation in time, perhaps even forever harboring turbulent behavior. There
one general exception to this expectation in a special setting, proved in Sect. 3:

Theorem 1. (Absence of turbulence) Let M = D be the disk of radius R and
f = 1

2ω0R for any given ω0 ∈ R be a constant slip on the boundary. For any
distributionally divergence-free u0 ∈ L2, the unique Leray-Hopf weak solution
converges at long time to solid body rotation usb = 1

2ω0x⊥ having vorticity ω0. In
fact,

‖u(t) − usb‖L2 ≤ ‖u0 − usb‖L2e−λ1νt

where λ1 is the first positive eigenvalue of −� with Dirichlet boundary conditions
on D.

Remark. The forcing (slip velocity) in Theorem 1 can be arbitrarily large and yet
for any viscosity Navier–Stokes has a one-point attractor. This is the analogue of
Marchioro’s results on the absence of turbulence on the torus with ‘gravest mode’
body forcing [31,32].

Theorem 1 highlights a peculiarity of solid body rotation on the disk: if you
center a circular basin on fluid on a record player, all motion will eventually be
solid body. A question arises:

Question 1. What if the imposed slip is non-constant, or the domain is not a disk?

As mentioned above, one might expect that if either of these conditions is
violated, time dependence generally survives. However, if the boundary forcing
is special this need not be the case. For instance, consider the velocity field with
constant (unit) vorticity on any M

u∗ = KM [1], KM := ∇⊥�−1
D . (5)

Any such velocity field satisfies both the Euler and Navier–Stokes equations in
the bulk. As such, it is a stationary solution of Euler, and also of Navier–Stokes
provided u∗ is taken as initial data and it is forced consistently on the boundary:
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Fig. 1. Cartoon of streamlines of a steady Navier–Stokes solutions on the ellipse forced by
an imposed slip uν · τ = f on the left. Streamlines of constant vorticity Euler solution

ψ∗ = a2

2(1+a2)
( x2

a2
+ y2) shown on the right

f∗ = u∗ · τ. Thus, for any domain there is a family of non-trivial time-independent
solutions uniformly in ν ≥ 0.

For force sufficiently close to that generated by a stationary Euler solution,
asymptotic stability may occur but is a delicate issue. To begin to understanding
these issues, we are interested in the question of the existence of sequence of
stationary Navier–Stokes solutions approximating an Euler flow in this setting.
The Prandtl–Batchelor theory [1,35] provides a restriction on the type of stationary
Euler solutions that can arises as inviscid limits. Namely, it stipulates that they have
constant vorticity within closed streamlines, so-called “eddies". See also Childress
[4,5] and Kim [22,23]. The result, proved in Sect. 4, is:

Theorem 2. (Prandtl–Batchelor Theorem) Let M ⊂ R
2 be a simply connected

domain with smooth boundary. Let ψ : M → R be a W 4,1+(M) streamfunction
of a steady, non-penetrating solution of Euler ue having a single stagnation point
which is non-degenereate in a sense that the period of revolution of a particle is
a differentiable function of the streamline. Suppose {uν}ν>0 is a family satisfying
(1), (2) together with

lim
ν→0

‖uν − ue‖H5/2+(U ) → 0, (6)

for all interior open subsets U ⊂ M. Then ue = ω0u∗ for a constant ω0 ∈ R and
u∗ is (5).

See Fig. 1. for a cartoon of this convergence. In the above theorem, M can
be thought of as a streamline of an Euler solution occupying some larger spatial
domain. If the limiting Euler solution consists of multiple eddies, the above shows
that, within each eddy, the vorticity tends to become constant. The vorticity of
the resulting solution would be a staircase landscape separated, perhaps, by vortex
sheets. Such a picture is consistent with the general expectation of the emergence
of weak solutions in the inviscid limit on bounded domains [7,8,12]. We remark
that similar selection principles to Theorem 2 appear also in two-dimensional pas-
sive scalar problems [33,36], and in steady heat distribution in three-dimensional
integrable magnetic fields [10].
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If the boundary data is a sufficiently small perturbation of the corresponding
slip of an unit vorticity Euler flow u∗ on whole vessel M ,

f = u∗ · τ + εg. (7)

then the inviscid limit of steady Navier–Stokes solutions might be expected to con-
sist of just a single eddy having constant vorticity (5), that is, for some appropriate
constant ω0 ∈ R,

uν → ω0u∗ as ν → 0. (8)

See Conjecture 1. This naturally leads to the following question:

Question 2. Given boundary data (3), (4), (7), how is the limiting vorticity ω0 (8)
selected?

This question was discussed by Batchelor (1956) [1] and Wood (1957) [40] for
disk domains, and the resulting prediction is called the Batchelor–Wood formula.
This analysis was done independently by Feynman–Lagerstrom (1956) [14] who
also generalized this formula to domains with non-constant curvature. See also
[29,30]. The idea is: Navier–Stokes with small viscosity should approximate Euler
(constant vorticity) in the bulk of the domain, and interpolate to the given boundary
conditions across a layer of width

√
ν. In this layer, predicted by Prandtl [35], the

leading order behavior of the fluid is captured by a simpler boundary layer equation
which is supplied with data at infinity from Euler and at zero (the boundary), from
Navier–Stokes. The complication is that the Euler solution is known only up to a
constant multiple. The specific vorticity value ω0 is then fixed by demanding the
corresponding Prandtl equation for the boundary layer admits a periodic solution.

We note that the (Prandtl–Batchelor or Feynman–Lagerstrom) theory was de-
veloped to address the specific phenomenon which only arises for stationary flows
on closed domains. For the much different setting of unsteady flows, the question
of which Euler flow is achieved in the inviscid limit is essentially completely deter-
mined by the initial data. For stationary flows on non-closed domains, for example
on [0, L]×R+, there is an analogue of data prescribed on the sides {x = 0}, {x = L}
which similarly fixes the inviscid Euler flow (see for instance, results of [15], [21]
for results in this direction). In contrast, for closed domains, the only prescribed
data is the slip boundary data, f (θ). Therefore, the selection mechanism is less
obvious to uncover, and historically motivated investigations of Prandtl–Batchelor
or Feynman–Lagerstrom, and from a rigorous standpoint, the results in this paper.

On the disk M = D of radius R, this amounts to:

ω0n =
ffl
TL

(2gq2
e + εg2qe)ds
ffl
TL

q3
e ds

− 1

ω0n−1ε

´∞
0 y f (Qn−1(y, s), s;ω0n−1)dy

ffl
TL

q3
e ds

. (9)

This picture has been rigorously justified by Kim [24,25] for the boundary layer
and recently by Fei, Gao, Lin and Tao [13] for Navier–Stokes. The latter constructs
a sequence of steady Navier–Stokes solutions on the disk forced by (7) converg-
ing towards this predicted end state. In the case of a general domain, Feynman–
Lagerstrom argued that selecting ω0 to ensure a certain periodicity is a necessary
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Fig. 2. Boundary layer geometry, depicted (abusing the required asymptotic ν → 0 for the
sake of illustration) in von Mises coordinates. The level ψ ∈ [0,∞) denotes the distance
from the boundary in a layer of size

√
ν, upon rescaling so that this extends indefinetely.

See Sect. 2. The unique vorticity value ω0 so that such a boundary layer exists is selected
nonlinearly via (12). It is given approximately by the Feynman-Lagerstrom formulae (13)
or (14)

condition for the existence of such a layer and therefore for convergence, but did
not speak to its sufficiency. We now review their theory.

Recall Prandtl’s boundary layer equations written in von Mises coordinates
(s, ψ), where s is the periodic coordinate on the boundary and ψ̄ := ψ/

√
ν is the

rescaled streamline coordinate. From hereon, we denote ψ̄ = ψ and

qe(s) := u∗ · τ̂ (γ (s))

where γ : [0, |∂ M |) → ∂ M is the arc-length parametrization of the boundary,
is the tangential slip along the boundary of unit vorticity Euler solutions (5). The
Prandtl equations—which determine an unknown function q : [0, L) × R

+ → R

which serves as an approximation of the tangential Navier–Stokes velocity uν · τ̂

in an O(
√

ν) boundary layer—are (see [34]):

∂s Q − q∂2ψ Q = 0, Q = q2 − ω2
0q2

e , (10)

which is to be satisfied on (ψ, s) ∈ [0,∞)×[0, L)where L = |∂ M | is the length of
the boundary. For completeness, we derive these equations in Sect. 2. The solution
q must connect Navier–Stokes to Euler: at the boundary (ψ = 0), the solution q
takes the Navier–Stokes data and away from the boundary (ψ = ∞), the solution
q assumes the Eulerian behavior:

q(0, s) = f (s), q(∞, s) = ω0qe(s)

which, for Q, translates to the data

Q(0, s) = f 2(s) − ω2
0q2

e (s), Q(∞, s) = 0.

The solution q (or, equivalently, Q) of Eq. (10) must be periodic in the s variable
(so that the boundary layer closes). See Fig. 2. Feynman–Lagerstrom noted that this
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leads to a self-consistency condition on ω0. We will enforce this in the following
way. First, we rewrite (10) as

∂s Q − ω0qe∂
2
ψ Q =

(
1 − ω0qe√

ω2
0q2

e + Q

)
∂s Q.

Integrating the above equation over the boundary, we obtain

∂2ψ

ˆ L

0
qe(s)Q(ψ, s)ds = Nω0 [Q]

where the nonlinearity is explicitly

Nω0 [Q](ψ) := − 1

ω0

ˆ L

0

⎛
⎝1 − ω0qe(s)√

ω2
0q2

e (s) + Q

⎞
⎠ ∂s Qds. (11)

Then, for some scalars A and B, we obtain the identity
ˆ L

0
qe(s)Q(ψ, s)ds = A + Bψ −

ˆ ∞

ψ

(ψ − y)Nω0 [Q](y)dy.

From the boundary conditions, we have that A = B = 0. We thus obtain the
nonlinear condition that at each ψ ∈ R+, we have

ˆ L

0
qe(s)Q(ψ, s)ds =

ˆ ∞

ψ

(y − ψ)Nω0 [Q](y)dy.

Evaluating at ψ = 0, we find a nonlinear, nonlocal condition determining the
constant ω0:

ˆ L

0
qe(s)( f 2(s) − ω2

0q2
e (s))ds =

ˆ ∞

0
yNω0 [Q](y)dy. (12)

Remark. (Feynman–Lagerstrom formulae) Letting 1 − ω2
0 =: εω0 with ω0 =

O(1), we anticipate Q = O(ε). Since 1√
ω2
0+x

− 1√
ω2
0

= − x
2ω3

0
+ O(x2), we see

that Nω0 [Q](ψ) = O(Q2) = O(ε2). Moreover Nω0 [Q](y) is trivial in the case
of the boundary having constant curvature κ := τ̂ ·∇n̂ · τ̂ . Indeed, in this case of M
being a disk, it is readily seen that the integrand in (11) is a total derivative in s and
hence Nω0 [Q](ψ) ≡ 0), see the next Remark. Thus, as pointed out by Feynman
and Lagerstrom [14], to leading order, condition (12) is

ω2
0 =
´ L
0 qe(s) f 2(s)ds
´ L
0 q3

e (s)ds
+ o(|∂sκ|). (13)

This formula is exact (having ∂sκ = 0) when M is the disk, and generally only
for the disk.1 Recalling f (s) = qe(s) + εg(s) so that f 2(s) − ω2

0q2
e (s) = (1 −

1 Among domains with smooth boundary. For Lipschitz domains, it holds also for regular
polygons [39].
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ω2
0)q

2
e (s) + 2εg(s)qe(s) + ε2 g2(s), to leading order in ε (the deviation of NS data

from unit vorticity Euler slip) we have

ω2
0 = 1 + 2ε

´ L
0 q2

e (s)g(s)ds
´ L
0 q3

e (s)ds
+ O(ε2). (14)

Remark. (Wood’s formula when M = D) On the disk of radius R, the constant
vorticity solution (5) is solid body rotation u∗(x) = 1

2 x⊥, so that qe = R
2 is

a constant. In fact, by Serrin’s theorem [37] constraining a domain admitting a
solution of �ψ = 1 with constant Neumann and Dirichlet data, the disk is the
unique domain for which the solid body Euler solution has constant boundary slip
velocity qe. See also [26]. On the disk, (13) without an error term is exact and, with
the circumference L = 2πR, agrees with (9) of Wood [40].

In this paper, we rigorously establish this prediction by constructing a periodic
boundary layer verifying the Feynman–Lagerstrom condition if the constant vortic-
ity Euler solution u∗ on M defined by (5) has no stagnation points on the boundary.
We have

Theorem 3. (Existence of a periodic Prandtl boundary layer) Let M be a simply
connected domain with L = |∂ M |. Denote TL = [0, L). Let qe : TL → R

be a smooth, non-vanishing function. Let f (s) := qe(s) + εg(s) with smooth
g : TL → R. For all ε sufficiently small, depending only the data (qe, g), there
exists a unique constant ω0 ∈ R and function q : TL ×R

+ → R such that the pair
(ω0, q) solves the Prandtl equations on TL × R

+:

∂s Q − q∂2ψ Q = 0, Q = q2 − ω2
0q2

e ,

Q(s, 0) = f 2(s) − ω2
0q2

e (s),

Q(s,∞) = 0. (15)

Moreover, the solution Q lies in the space X2,50 defined by (25)and enjoys‖Q‖X2,50 �
ε. The selected vorticity ω0 can be expressed as follows: there exists a constant
C > 0 so that

ω2
0 =
´ L
0 qe(s) f 2(s)ds
´ L
0 q3

e (s)ds
+ ωErr where |ωErr| ≤ Cε2. (16)

The sign of ω0 agrees with that of the background qe which, in this case, is positive.

This theorem, proved in Sect. 5, provides the first rigorous confirmation of the
Feynman–Lagerstrom formula, and justifies their claim that for | f − qe| � | f |
(translating to ε � 1), the leading term in (13) serves as a good approximation for
the selected vorticity.

The constant ω0 satisfies (12), and has an explicit component, determined by
qe(s) and f (s), as well as an implicit component ωErr which is smaller amplitude
and for which we obtain bounds. We emphasize that the ω0 appearing in (15) is
nonlinearity selected as soon as the domain, M , is no longer a disk (for example,
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M is an ellipse). This requires, at an analytical level, a delicate coupling between
the choice of constant, ω0, and the control of the solution Q in an appropriately
chosen norm, which is the main innovation of our work.2

We anticipate the Prandtl system, which we analyze in this paper, to be stable in
the inviscid limit for the full Navier–Stokes system. Indeed, this is what is proved
in [13] when M is a disk and ue = x⊥. However, as discussed above, in that very
special setting the constant ω0 can be explicitly determined (9). In general, this is
not the case and ω0 is only implicitly determined by the condition (12) described
above, making the inviscid limit more delicate. Nevertheless, we believe that the
nonlinearly determined constant ω0 will describe, to leading order in viscosity, the
selection principle. That is, we believe that Navier–Stokes vorticityων should obey
an asymptotic expansion

ων = ω0 + O(
√

ν) (17)

in the interior of the domain. In fact, we issue the following

Conjecture 1. Let M ⊂ R
2 be any simply connected domain such that the constant

vorticityEuler solutionu∗ on M definedby (5) has a single eddy (streamfunction has
a single, non-degenerate, critical point). Suppose that Navier–Stokes is forced by a
slip of the form (7), e.g. f = u∗ · τ + εg for some smooth function g : ∂ M → R.
Then, there exists an ε∗ := ε∗(M, g) such that for all ε < ε∗ we have weak
convergence in L2(M)

uν ⇀ ω0u∗ as ν → 0

along a sequence of steady Navier–Stokes solutions, whereω0 := ω0(M, g) is (16)
of Thm 3.

Of course, stronger convergence can be expected, along with a boundary layer
description such as that established by [13] on the disk. The fact that moving
boundaries can stabilize the inviscid limit is a well known phenomenon from the
work of Guo and Nguyen [16] and Iyer [19,20]. Verifying the expansion (17) to
prove the above conjecture will require substantially new ideas. In the context of
elliptical domains M , this is work in preparation.

Finally we remark that the failure of a boundary layer to exist is indicative of
the existence of multiple eddies: constant vorticity regions are separated by internal
layers which can be thought of as free boundaries. This can happen either if the
constant vorticity solution on that domain has multiple eddies, or if the given slip
data is far from that of a constant vorticity slip (according to our Theorem 3).
Kim [26] showed that if the Navier–Stokes boundary slip is only slightly negative
in places, the Prandtl–Batchelor theory still applies to good approximation in the
bulk. For the situation of being far from compatible slip data, see Kim and Childress
[28] for an analytical investigation on a rectangle, Greengard and Kropinski [17]

2 In this respect, the selection mechanism is similar to another arising in fluid dynamics:
inviscid damping [2]. There, perturbations to certain stable shear flows return to equilibrium
in a weak sense, but the which equilibrium they converge to must determined together with
the entire time history of the solution.
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for a numerical investigation on disk domains, and Henderson, Lopez and Stewart
[18] for laboratory experiments.

2. Derivation of the Prandtl Boundary Layer Equation

In this section,we derive the Prandtl equations for any simply connected domain
M . Assume that s : [0, L] → ∂ M be the arc-length parametrization of the boundary
∂ M . For s ∈ TL , let τ(s) and n(s) be unit the tangential vector to the boundary
∂ M . There exists δ > 0 such that for any x ∈ M such that dist(x, ∂ M) < δ, there
exists a unique s ∈ TL and x(s) ∈ ∂ M such that

dist(x, ∂ M) = |x − x(s)|.
Moreover, one has the representation

x(s, z) = x(s) + zn(s),

where x(s) ∈ ∂ M and z = dist(x, ∂ M), see [3]. The map

{x ∈ M : 0 < dist(x, ∂ M) < δ} → TL × (0, δ)

x → (z, s)

is a diffeomorphism. We also define the following quantities for the domain M :

γ (s) = x ′′
1 (s)x ′

2(s) − x ′
1(s)x ′′

2 (s), J (z, s) = 1 + zγ (s) > 0,

where γ represents the boundary curvature, and J is a Jacobian for a near-wall
mapping used to derived the following formofNavier–Stokes, see [3] andAppendix
6.

Now for x = x(s, z), we denote τ(s) and n(s) to be the tangential and normal
vector at x(s) ∈ ∂ M on the boundary. Consider the steadyNavier–Stokes equations

uν · ∇uν + ∇ pν = ν�uν,

∇ · uν = 0,

written in the region dist(x, ∂ M) < δ. We define

uτ (s, z) = uν(x) · τ(s) = uν(x(s, z)) · τ(s),

un(s, z) = uν(x) · n(s) = uν(x(s, z)) · n(s).

Bydirect calculation, provided inAppendix 6, theNavier–Stokes equations become

uτ

J
∂suτ + un∂zuτ − γ

J
uτ un + 1

J
∂s p

= ν

{
1

J
∂z(J∂zuτ ) + 1

J
∂s

(
1

J
∂suτ

)
− 1

J
∂s

(γ un

J

)
− γ

J
(γ uτ + ∂sun)

}
,

uτ

J
∂sun + un∂zun − γ

J
u2

τ + ∂z p

= ν

{
1

J
∂z (J∂zun) + 1

J
∂s

(
1

J
∂sun

)
− 1

J
∂s

(γ uτ

J

)
− γ

J
(∂suτ − γ un)

}
,

∂zun + 1

J
∂suτ − γ

J
un = 0.
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Remark. On the disk with the usual polar coordinates (θ, r) ∈ T×[0, 1], we have
γ (θ) = −1, J (z, θ) = 1

r
, uτ = uθ , un = ur .

Near the boundary, in a layer ofwidth
√

ν, we anticipate thatNavier–Stokes velocity
field (uτ , un)will look like a small boundary layer correction (u P

τ , vP
n ), to a constant

vorticity (ω0qe, 0) Euler flow, as discussed in the introduction. That is,

uτ (s, z) ∼ ω0qe(s) + u P
τ (s, Z) , un(s, z) ∼ √

νvP
n (s, Z) , Z = z√

ν
,

where limZ→∞ u P
τ (s, Z) = 0. See discussion in Oleinik and Samokhin [34]. Plug-

ging in this ansatz into the Navier–Stokes equations near the boundary, and using
the approximation

1
J = 1

1+zγ (s) = 1
1+√

νZγ (s)
∼ 1 − √

νZγ (s) + O(ν),

we obtain the equations

(ω0qe(s) + u P
τ )∂s(ω0qe(s) + u P

τ ) + vP
n ∂Z (qe(s) + u P

τ ) + ∂s p − ∂2Z u P
τ = 0,

∂Z p = 0
(18)

along with the divergence free condition

∂s(ω0qe(s) + u P
τ ) + ∂ZvP

n = 0

Taking Z → ∞ in the Eq. (18), we obtain

∂s p = −ω2
0qe(s)q

′
e(s)

Replacing the pressure by the above into the equation (18), we obtain the Prandtl
equations:

(ω0qe(s) + u P
τ )∂s(ω0qe(s) + u P

τ )

+ vP
n ∂Z (ω0qe(s) + u P

τ ) − ω2
0qe(s)q

′
e(s) − ∂2Z u P

τ = 0

∂s(ω0qe(s) + u P
τ ) + ∂ZvP

n = 0.

Define the von Mises variables (s, ψ) such that

∂Zψ(s, Z) = ω0qe(s) + u P
τ (s, Z), −∂sψ(s, Z) = vP

n (s, Z).

Let q = q(s, ψ) = ω0qe(s) + u P
τ , the Prandtl equation becomes

q(∂sq − vP
n ∂ψq) + qvP

n ∂ψq − 1

2
∂s

(
ω2
0qe(s)

2
)

− q∂ψ(q∂ψq) = 0

which reduces to

∂sq2 − ω2
0∂sq2

e − q∂2ψq2 = 0.

Letting Q = q2 − ω2
0q2

e , the above equation becomes (10), namely (See Fig. 3 for
a visualization)

∂s Q − q∂2ψ Q = 0.
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3. Proof of Theorem 1: Absence of Turbulence

Let vν = uν − ue be the difference of solutions of Euler and Navier–Stokes,
where Navier–Stokes is forced by Euler’s slip velocity. On general domains M , it
satisfies

∂tv
ν + (vν + ue) · ∇vν + vν · ∇ue = −∇q + ν�vν + ν�ue in M,

∇ · vν = 0 in M,

vν · n̂ = 0 on ∂ M,

vν · τ̂ = 0 on ∂ M.

Whence the error energy (which holds for Leray-Hopf solutions in dimension two)
satisfies

1

2

d

dt
‖vν‖2L2 ≤ −

ˆ

M
vν · ∇ue · vνdx − ν‖∇vν‖2L2 + ν

ˆ
vν · �ue.

In general, we may bound

1

2

d

dt
‖vν‖2L2 ≤

(
‖∇ue‖L∞ − νλ1

2

)
‖vν‖2L2 + 2ν

λ1
‖�ue‖2L2 ,

since vν |∂D = 0 so we may apply the Poincaré inequality λ1‖vν‖L2 ≤ ‖∇vν‖2
L2

where λ1 is the first positive eigenvalue of−�D on M . We remark, using the results
of [38, Chapter 7] (which establish uniform bounds on the steady states), a similar
energy identity can be used to prove global attraction of the unique steady state for
Navier–Stokes forced by imposed slip on any domain, provided viscosity is large
enough.

On the disk M = D, if ue = usb = ω0x⊥ so that ∇usb = ω0

(
0 −1
1 0

)
and

�ue = 0, we have
ˆ

D

vν · ∇usb · vνdx =
ˆ

D

vν · (vν)⊥dx = 0.

On the disk of radius R, this is λ1 = ( j0/R)2 where j0 is the first zero of J0 the
Bessel function of the first kind and order zero). We thus have the stated result.

Remark. On the ellipse usb = ω0(−y, αx) so that ∇usb = ω0

(
0 −1
α 0

)
and v ·

∇usb · v = ω0(α − 1)v1v2. It follows that provided

ν > ν∗ := ω0λ
−1
1 (1 − α),

then the solid body rotation solution is the global attractor. In particular, as the
eccentricity of the elliptical domain goes to zero, α → 1 and the critical viscosity
ν∗ goes to zero. Curiously, all flows in this elliptical family are isochronal [41],
meaning that the period of revolution of a particle does not depend on the particular
streamline. As such, the form examples of cut points in group of area preserving
diffeomorphisms of those domains, see discussion in [9,11]. The lack of differential
rotation in the Euler solution may have important consequences for the asymptotic
stability and realizability in the inviscid limit.
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4. Proof of Theorem 2: Prandtl–Batchelor Theory

First, by [6, Lemma 5], under the stated assumptions we have that

�ψ = F(ψ) on M,

ψ = c∗ on ∂ M

for some C1 function F : R → R and constant c∗ ∈ R. Suppose without loss of
generality that {ψ = 0} is the unique critical point in M , so that rang(ψ) = [0, c∗].
By the assumption (6), we have the convergence ψν → ψ in H7/2+(U ) and thus
in C1(U ) for all interior open subsets U ⊂ M . It follows that we have convergence
of the streamlines (level sets of ψν). Specifically, for any c ∈ rang(ψ), the set
{ψν = c} is a closed streamline (at least for sufficiently small ν := ν(c)) converging
to {ψ = c}. In what follows, for fixed c we assume ν is sufficiently small for the
above to hold.

Integrating the Navier–Stokes vorticity balance in the sublevel set {ψν ≤ c}

0 =
ˆ

{ψν≤c}

[
uν · ∇ων − ν�ων

]
dx

=
ˆ

{ψν=c}

[
(uν · n̂ν)ων − νn̂ν · ∇ων

]
d� = −ν

ˆ

{ψν=c}
n̂ν · ∇ωνd�,

where n̂ν = ∇ψν/|∇ψν | is the unit normal to streamlines {ψν = c}. Thus
ˆ

{ψ=c}
n̂ · ∇ωd� =

ˆ

{ψ=c}
n̂ · ∇ωd� −

ˆ

{ψν=c}
n̂ν · ∇ωνd�

=
ˆ

{ψν=c}
n̂ν · ∇(ω − ων)d� −

ˆ

�

�F(ψ)1{ψν=c}�{ψ=c}dx

where A�B denotes the symmetric difference between two sets. Under our as-
sumptions, there exists an open set O ⊂ M containing the streamline {ψν = c}
uniformly in ν. By the trace theorem,

ˆ

{ψν=c}
nν · ∇(ων − ω)d� � ‖nν‖H1/2+(O)‖ων − ω‖H3/2+(O)

� ‖ων‖H3/2(O)‖ων − ω‖H3/2+(O).

Combined with the fact that ω = F(ψ), we find

F ′(c)
ˆ

{ψ=c}
u · d� =

ˆ

{ψν=c}
�(ων − F(ψ))dx −

ˆ
�F(ψ)1{ψν=c}�{ψ=c}dx .

Thus, for any δ > 0, we have the bound
∣∣∣∣F ′(c)

ˆ

�(c)
u · ds

∣∣∣∣ � ‖ων‖H3/2(O)‖ων − ω‖H3/2+(O)

+ ‖�F(ψ)‖L1+δ(M)

(
Area

({ψν = c}�{ψ = c}))1/δ .
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Consequently, using (6) and taking the limit of the upper bound, we have

F ′(c)
ˆ

�(c)
u · ds = 0.

By our hypotheses that ψ has a single stagnation point {ψ = 0} in M , the
circulation

¸
{ψ=c} u · d� �= 0 for all c �= 0. Thus, since F ′ is continuous, we must

have that F ′(c) = 0 for all c ∈ rang(ψ) so that F = ω0 for some ω0 ∈ R.

5. Proof of Theorem 3

5.1. Iteration and Bootstraps

Here we produce a unique solution (Q, ω0) of

∂s Q − q∂2ψ Q = 0,

Q := q2 − ω2
0q2

e ,

Q(s, 0) = εω0q2
e (s) + 2εg(s)qe(s) + ε2g2(s),

Q(s,∞) = 0, (19a)

on (s, ψ) ∈ T×R
+, for arbitrary g : T → R and sufficiently small ε := ε(g; qe).

Here, ω0 is to be determined together with Q, and we introduced ω0 ∈ R (antici-
pated to be an O(1) quantity as it depends on ε) defined by

1 − ω2
0 = εω0.

To prove this result, it is convenient to rewrite (19) as

∂s Q − ω0qe∂
2
ψ Q =

(
1 − ω0qe√

ω2
0q2

e +Q

)
∂s Q. (20)

We will study of following iteration scheme

∂s Qn − ω0n−1qe∂
2
ψ Qn =

(
1 − ω0n−1qe√

ω0
2
n−1q2

e +Qn−1

)
∂s Qn−1, (21)

Qn(s, 0) = (1 − ω0
2
n)q

2
e (s) + 2εg(s)qe(s) + ε2g2(s)

= εω0nq2
e (s) + 2εg(s)qe(s) + ε2g2(s),

Qn(s,∞) = 0,

with Q−1 = 0, ω0−1 = 1. Schematically, we think that (ω0n−1, Qn−1) �→ ω0n �→
Qn , that is ω0n is determined on the onset by a compatibility condition for the
linear problem which depends on the prior iterate, and Qn is subsequently solved
for ω0n−1. Let

f (Q, s;ω0) :=
(
1 − ω0qe√

ω2
0q2

e +Q

)
∂s Q =

(
1 −

√
1 − Q

ω2
0q2

e + Q

)
∂s Q. (22)
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In this system ω0n is chosen to enforce that

ω0n =
ffl
TL

(2gq2
e + εg2qe)ds
ffl
TL

q3
e ds

− 1

ω0n−1ε

´∞
0 y f (Qn−1(y, s), s;ω0n−1)dy

ffl
TL

q3
e ds

.

(23)

Conceptually, it is clearer to separate out the explicit component of ω0n , which is
O(1) and independent of n, and the smaller amplitude implicit component of ω0n
as follows

ω0n = ω0∗ + ω0Err,n,

ω0∗ :=
ffl
TL

(2gq2
e + εg2qe)ds
ffl
TL

q3
e ds

,

ω0Err,n := − 1

ω0n−1ε

´∞
0 y
´ L
0 f (Qn−1(y, s), s;ω0n−1)dsdy

ffl
TL

q3
e ds

. (24)

With this, we can solve the above equation for Qn . For ψ ≥ 0, we define

〈ψ〉 = 1 + ψ

For a function f = f (s, ψ) defined on TL × R+, we define

‖ f ‖2Xk,m
=

k∑
k′=0

m∑
m′=0

{
‖〈ψ〉m′

∂k′
s f ‖2L2(TL×R+)

+ ‖〈ψ〉m′
∂k′+1

s f ‖2L2(TL×R+)

}

+
k∑

k′=0

m∑
m′=0

{
‖〈ψ〉m′

∂ψ∂k′
s f ‖2L2(TL×R+)

+ ‖〈ψ〉m′
∂2ψ∂k′

s f ‖2L2(TL×R+)

}
.

(25)

We will construct the unique solution of the Eq. (20) in the space X2,50. By the
standard Sobolev embedding, we also have

‖ f ‖L∞ � ‖ f ‖L2 + ‖∂s f ‖L2 + ‖∂ψ f ‖L2 + ‖∂s∂ψ f ‖L2 � ‖ f ‖X1,0 .

Remark. (Exponential decay of Q for ψ � 1) In fact, one can prove existence
in a space encoding exponential decay in ψ , as should be expect for a (nonlinear)
heat equation with data at ψ = 0. For simplicity of presentation, we prove only
algebraic decay but the requisite modifications involving exponential weights are
standard.

Indeed, we have the following result that tells us this iteration is well-defined.

Lemma 4. Let n ≥ 0. Assume that Qn−1 ∈ X2,50, and that (27)–(28) are valid
until index n − 1. Assume further that ω0n is defined according to (23). Then, there
exists a unique solution, Qn to the system (21).
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Proof. We first of all write the system (21) as follows

∂s Qn − ω0n−1qe∂
2
ψ Qn = Fn−1,

Qn(s, 0) = bn−1(s),

Qn(s,∞) = 0,

We introduce the variable

t = J (s),
dt

ds
= J ′(s) = ω0n−1qe(s).

We notice that dt
ds is bounded above and below and hence determines an invertible

transformation due to the fact that ω0n−1qe(s) > 0. We also note that by writing
ω0n−1qe(s) = 〈ω0n−1qe〉 + (ω0n−1qe − 〈ω0n−1qe〉), we have

t = 〈ω0n−1qe〉s +
ˆ s

0
ω0n−1(qe − 〈qe〉)ds′,

which maps TL into Tω0n−1〈qe〉L . We next introduce

Vn(t, ψ) = Vn(J (s), ψ) = Qn(s, ψ).

This object satisfies the system

∂t Vn − ∂2ψ Vn = Fn−1

ω0n−1qe
=: Gn−1.

We expand the solution of Vn in a Fourier basis in the t variable as follows

ikV̂ k
n − ∂2ψ V̂ k

n = Ĝk
n−1.

The zero mode equation is exactly the Feynman-Lagerstrom formula, (23). For the
k’th mode, where k �= 0, we write the explicit formula:

V̂ k
n = e−√

ikψ b̂k
n−1 + 1

2
√

ik

ˆ ∞

0

(
e−√

ik(ψ+ψ ′) − e−√
ik|ψ−ψ ′|) Ĝk

n−1dψ ′,

where
√

ik is the complex square root of ik with positive real part. We now observe
that for Gn−1 ∈ X2,50, the above integrals converge to zero as ψ → ∞ (when
k �= 0). This completes the proof.

We define the differences �ω0n and �Qn to be

�ω0n = ω0n−1 − ω0n,

= 1

ω0n−1ε

´∞
0 y
´ L
0 f (Qn−1(y, s), s;ω0n−1)dsdy

ffl
TL

q3
e ds

− 1

ω0n−2ε

´∞
0 y
´ L
0 f (Qn−2(y, s), s;ω0n−2)dsdy

ffl
TL

q3
e ds

,

�Qn = Qn − Qn−1.
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Differences in Q obey:

∂s(Qn − Qn−1) − ω0n−1qe∂
2
ψ(Qn − Qn−1)

=
(
1 − ω0n−1qe√

ω0
2
n−1q2

e +Qn−1

)
∂s Qn−1 −

(
1 − ω0n−2qe√

ω0
2
n−2q2

e +Qn−2

)
∂s Qn−2,

+ (ω0n−1 − ω0n−2)∂
2
ψ Qn−1,

(Qn − Qn−1)(s, 0) = ε(ω0n − ω0n−1)q
2
e (s),

Qn(s,∞) = 0. (26)

Remark. (Obtaining the sharper bounds stated in Theorem 3) In what follows, we
will bootstrap bounds of ε1−, specifically ε0.97 for |ω0Err,n| and ε0.99 for ‖Qn‖X2,50 ,
although any power less than 1 would suffice by the same argument given below.
This is not essential, it is to avoid keeping track of large constants for simplicity
of the bootstrap argument. In fact, from these bounds one can deduce a posteriori
sharper estimates of the form |ω0Err,n| ≤ C1ε and ‖Qn‖X2,50 ≤ C2ε for some,
possibly large, constants C1, C2 > 0 by taking the proved bounds on ω0 and Q,
returning to the equation, and performing the estimate again.

We will establish the following bounds

|ω0Err,n| ≤ ε0.97, (27)

‖Qn‖X2,50 ≤ ε0.99, (28)

|�ω0n| ≤ ε1.97|�ω0n−1| + ε−0.02‖�Qn−1‖X1,4 , (29)

‖�Qn‖X2,50 ≤ ε
3
4 ‖�Qn−1‖X2,50 + ε

1
2 |�ω0n| + ε

3
2 |�ω0n−1|, (30)

which immediately imply themain result. The bounds (27)–(28) show that (ω0Err,n,

Qn) ∈ Bε1.99,ε0.99 ⊂ R × X2,50, whereas the bounds (29)–(30) show that iteration
converges to a unique fixed point. A standard fixed point result imply that these
bootstrap bounds give the main theorem:

Proof. We insert the bound (29) into the second term on the right-hand side of (30)
in order to get the following

|�ω0n| ≤ ε1.97|�ω0n−1| + ε−0.02‖�Qn−1‖X2,50 ,

‖�Qn‖X2,50 ≤ ε
1
4 ‖�Qn−1‖X2,50 + ε

3
2 |�ω0n−1|.

Define Yn := (�Qn, ε�ω0n) ∈ X2,50 ×R, endowed with the product norm. Then

‖Yn‖X2,50×R ≤ ε
1
5 ‖Yn−1‖X2,50×R.

It is therefore clear that

‖Yn‖X2,50×R ≤ ε
n
5 ‖Y0‖X2,50×R

≤ ε
n
5 (‖Q−1‖X2,50 + ‖Q0‖X2,50 + ε|ω0−1| + ε|ω00|)
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≤ Cε
n
5 .

This then implies that (Qn, ω0n) is a Cauchy sequence in X2,50 × R, and hence
converges to a limit, (Q∞, ω0∞). We can therefore pass to the limit in Eq. (21) as
well as in (23) to conclude that (Q∞, ω0∞) satisfy the system (19).

We now prove uniqueness. We assume that (Q1, ω0,1) and (Q2, ω0,2) are two
solutions to (19) in the space X2,50 × R. We may therefore write an analogous
Eq. (26) on Q1 − Q2 (without the iteration), which reads:

∂s(Q1 − Q2) − ω0,1qe∂
2
ψ(Q1 − Q2)

=
(
1 − ω0,1qe√

ω0
2
,1q2

e +Q1

)
∂s Q1 −

(
1 − ω0,2qe√

ω0
2
,2q2

e +Q2

)
∂s Q2,

+ (ω0,1 − ω0,2)∂
2
ψ Q2,

(Q1 − Q2)(s, 0) = ε(ω0,1 − ω0,2)q
2
e (s),

(Q1 − Q2)(s,∞) = 0,

as well as the analogue of expression (26) (again without the iteration)

ω01 − ω02 = 1

ω0,2ε

´∞
0 y
´ L
0 f (Q2(y, s), s;ω0,2)dsdy

ffl
TL

q3
e ds

− 1

ω0,1ε

´∞
0 y
´ L
0 f (Q1(y, s), s;ω0,1)dsdy

ffl
TL

q3
e ds

.

Re-applying the a-priori estimates on these systems results in the following bounds:

|ω0,1 − ω0,2| ≤ ε1.97|ω0,1 − ω0,2| + ε−0.02‖Q1 − Q2‖X2,50 ,

‖Q1 − Q2‖X2,50 ≤ ε
3
4 ‖Q1 − Q2‖X2,50 + ε

1
2 |ω0,1 − ω0,2|,

which are the analogues of (29)–(30). The two bounds above clearly imply that
ω0,1 = ω0,2 and Q1 = Q2. This proves uniqueness.

5.2. ω0Err,n Estimates

Here, we will establish the bootstrap bound (27). Indeed,

Lemma 5. Assume (27)–(30) are valid until the index n −1. Then ω0Err,n satisfies:

|ω0Err,n| ≤ ε0.97.

Proof. Recall the expression (24), after which we estimate as follows

|ω0Err,n| ≤ 1

ε

∣∣∣∣
ˆ ∞

0
y
ˆ L

0
f (Qn−1(y, s), s;ω0n−1)dsdy

∣∣∣∣

� 1

ε

∥∥∥∥∥

(
1 − ω0n−1qe√

ω0
2
n−1q2

e +Qn−1

)
∂s Qn−1〈ψ〉4

∥∥∥∥∥
L2
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� 1

ε

∥∥∥∥∥

(
1 − ω0n−1qe√

ω0
2
n−1q2

e +Qn−1

)
‖L∞‖∂s Qn−1〈ψ〉4

∥∥∥∥∥
L2

= 1

ε

∥∥∥∥∥1 −
√
1 − Qn−1

ω0
2
n−1q2

e + Qn−1

∥∥∥∥∥
L∞

∥∥∥∂s Qn−1〈ψ〉4
∥∥∥

L2

� 1

ε

∥∥∥∥∥
Qn−1

ω0
2
n−1q2

e + Qn−1

∥∥∥∥∥
L∞

∥∥∥∂s Qn−1〈ψ〉4
∥∥∥

L2
� 1

ε
ε0.99ε0.99 < ε0.97,

where we have invoked the bootstrap bound (28) in the final step, as well as the
L∞ estimate

∥∥∥∥∥
Qn−1

ω0
2
n−1q2

e + Qn−1

∥∥∥∥∥
L∞

� 1

ω0
2
n−1q2

e − ‖Qn−1‖L∞
‖Qn−1‖L∞

� 1

ω0
2
n−1q2

e − ‖Qn−1‖X1,0

‖Qn−1‖X1,0

� 1

ω0
2
n−1q2

e − Cε0.99
ε0.99 � ε0.99.

Above, we have used the following Sobolev inequality on T × R+, which reads
‖ f ‖L∞ � ‖ f ‖X1,0 . This Sobolev embedding will be used repeatedly to estimate
nonlinear terms.

5.3. �ω0n Estimates

Here we prove the following lemma.

Lemma 6. Assume (27)–(30) are valid until the index n − 1. Assume (27) and (28)
are valid until index n. Then the following bound holds

|�ω0n| ≤ ε1.97|�ω0n−1| + ε−0.02‖�Qn−1‖X1,4 .

Proof. We use the expression

�(ω0n) = ω0n−1 − ω0n

:= 1

ω0n−1ε

´∞
0 y
´ L
0 f (Qn−1(y, s), s;ω0n−1)dsdy

ffl
TL

q3
e ds

− 1

ω0n−2ε

´∞
0 y
´ L
0 f (Qn−2(y, s), s;ω0n−2)dsdy

ffl
TL

q3
e ds

= 1

ω0n−1ε

´∞
0 y
´ L
0 f (Qn−1(y, s), s;ω0n−1)dsdy

ffl
TL

q3
e ds

− 1

ω0n−2ε

´∞
0 y
´ L
0 f (Qn−1(y, s), s;ω0n−1)dsdy

ffl
TL

q3
e ds



55 Page 20 of 41 Arch. Rational Mech. Anal. (2024) 248:55

+ 1

ω0n−2ε

´∞
0 y
´ L
0 f (Qn−1(y, s), s;ω0n−1)dsdy

ffl
TL

q3
e ds

− 1

ω0n−2ε

´∞
0 y
´ L
0 f (Qn−2(y, s), s;ω0n−2)dsdy

ffl
TL

q3
e ds

= I1 + I2.

To estimate I1, we have

|I1| = |ω0n−2 − ω0n−1|
εω0n−1ω0n−2

| ´∞
0 y
´ L
0 f (Qn−1(y, s), s;ω0n−1)dsdy|

ffl
TL

q3
e ds

� 1

ε
|ω0n−2 − ω0n−1|‖〈ψ〉4 f (Qn−1, s;ω0n−1)‖L2

� 1

ε
|ω0n−2 − ω0n−1|ε0.99ε0.99

= 1

ε
|ω0

2
n−2 − ω0

2
n−1||ω0n−2 + ω0n−1|−1ε0.99ε0.99

� 1

ε
ε|ω0n−2 − ω0n−1|ε0.99ε0.99

≤ 1

2
ε1.97|�ω0n−1|.

To estimate I2, we need to use the identity (22) to estimate

f (Q, ω0) − f (Q, ω0) =
(
1 −

√
1 − Q

ω2
0q2

e + Q

)
∂s Q

−
(
1 −

√
1 − Q

ω0
2q2

e + Q

)
∂s Q

=
(
1 −

√
1 − Q

ω2
0q2

e + Q

)
∂s Q

−
(
1 −

√
1 − Q

ω2
0q2

e + Q

)
∂s Q

+
(
1 −

√
1 − Q

ω2
0q2

e + Q

)
∂s Q

−
(
1 −

√
1 − Q

ω0
2q2

e + Q

)
∂s Q

= B D1 + B D2.

Clearly, using the inequality |1 − √
1 − x | ≤ |x | for x ≤ 1, we have

‖B D1〈ψ〉4‖L2 �
∥∥∥∥∥1 −

√
1 − Q

ω2
0q2

e + Q

∥∥∥∥∥
L∞

‖∂s(Q − Q)〈ψ〉4‖L2
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� ‖Q‖X1,0‖Q − Q‖X0,4 .

and, using the inequality |√1 − x − √
1 − y| � |x − y| for x, y � 1, we have

‖B D2〈ψ〉4‖L2 � ‖∂s Q〈ψ〉4‖L2

∥∥∥∥∥
Q

ω2
0q2

e + Q
− Q

ω0
2q2

e + Q

∥∥∥∥∥
L∞

� ‖∂s Q〈ψ〉4‖L2

∥∥∥∥∥
ω0

2Q − ω2
0Q

(ω2
0q2

e + Q)(ω0
2q2

e + Q)

∥∥∥∥∥
L∞

� ‖∂s Q〈ψ〉4‖L2

∥∥Q − Q
∥∥

L∞ + ‖∂s Q〈ψ〉4‖L2‖Q‖L∞|ω2
0 − ω0

2|
� ‖Q‖X0,4‖Q − Q‖X1,0 + ‖Q‖X0,4‖Q‖X1,0 |ω2

0 − ω0
2|.

Therefore, we have

|I2| � 1

ε
‖Qn−1‖X1,0‖Qn−1 − Qn−2‖X0,4 + 1

ε
‖Qn−2‖X0,4‖Qn−1 − Qn−2‖X1,0

+ 1

ε
‖Qn−2‖X0,4‖Qn−1‖X1,0 |ω0

2
n−1 − ω0

2
n−2|

� 1

ε
ε0.99‖�Qn−1‖X1,4 + 1

ε
ε0.99ε0.99ε|ω0n−1 − ω0n−2|

≤ ε−0.02‖�Qn−1‖X1,4 + ε1.97

2
|ω0n−1 − ω0n−2|.

Pairing these bounds together, we get the desired result.

5.4. Abstract Q Estimates

For future use, it turns out we will have a need to develop our estimates on a
slightly more abstract system. Therefore, we consider

∂s Q − ω0qe∂
2
ψ Q = F + ∂2ψ G, (31)

Q(s, 0) = b(s),

Q(s,∞) = 0.

We develop a high-order energy method to treat equation (31). We commute ∂k
s to

obtain

∂s Q(k) − ω0qe∂
2
ψ Q(k) = F (k) + ∂2ψ G(k) + Acomm,k, (32)

Q(k)(s, 0) = b(k)(s),

Q(k)(s,∞) = 0,

where the commutator term

Acomm,k :=
k−1∑
k′=0

(
k

k′

)
∂k−k′

s qe∂
2
ψ Q(k′),

andwherewe adopt the short-hand f (k)(s, ψ) := ∂k
s f (s, ψ) for an abstract function

f (s, ψ).
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Proposition 7. Assume that the boundary condition b(s) and the source term F +
∂2ψ G satisfy the Feynman–Lagerstrom compatibilty condition (23). Then the solu-
tion Q to (31) obeys the following inequality:

‖Q‖Xk,m �
k∑

k′=0

‖∂k′
s F〈ψ〉m+4‖L2 +

k∑
k′=0

2∑
j=0

‖∂k′
s ∂

j
ψ G〈ψ〉m‖L2 + ‖b‖Hk+1

s
.

(33)

The first task is we lift the boundary condition b(s) by considering the lift
function

L(s, ψ) := L[b](s, ψ) := e−ψb(s)

and consequently

Q̊ := Q − L[b],
which satisfies the following system

∂s Q̊ − ω0qe∂
2
ψ Q̊ = F + ∂2ψ G + GLift, (34)

Q̊(s, 0) = 0,

Q̊(s,∞) = 0

where

GLift := e−ψ(ω0qeb(s) − b′(s)). (35)

We will need to work in higher order norms. Therefore, we present the equations
upon commuting ∂k

s to (34), which yield

∂s Q̊(k) − ω0qe∂
2
ψ Q̊(k) =F (k) + ∂2ψ G(k) + G(k)

Lift + Ccomm,k,

Q̊(k)(s, 0) =0,

Q̊(k)(s,∞) =0. (36)

Above, we define the commutator term as follows:

Ccomm,k := ω01k≥1

k−1∑
k′=0

(
k

k′

)
∂k−k′

s qe∂
2
ψ Q̊(k′). (37)

Lemma 8. For any δ > 0 the following bounds hold (where the constant Cδ ↑ ∞
as δ ↓ 0):

‖∂ψ Q(k)〈ψ〉m‖2L2 ≤ Cδ‖F (k)〈ψ〉m‖2L2 + Cδ‖∂2ψ G(k)〈ψ〉m‖2L2 + Cδ‖b‖2
Hk+1

s

+ δ‖Q(k)〈ψ〉m‖2L2 + Cδ1k≥1

k−1∑
k′=0

‖∂ψ Q(k′)〈ψ〉m‖2L2

+ 1m≥1‖Q(k)〈ψ〉m−1‖2L2 . (38)
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Proof. We multiply (36) by Q̊(k)〈ψ〉2m and integrate by parts to get the identity

∂s

2

ˆ

R+
|Q̊(k)|2〈ψ〉2mdψ + ω0qe(s)

ˆ

R+
|∂ψ Q̊(k)|2〈ψ〉2mdψ

=
ˆ

(F (k) + ∂2ψ G(k))Q̊(k)〈ψ〉2mdψ +
ˆ

G(k)
Lift Q̊

(k)〈ψ〉2mdψ

+ 2m(2m − 1)

2
ω0qe(s)

ˆ
|Q̊(k)|2〈ψ〉2m−2dψ

−
ˆ

ω01k≥1

k−1∑
k′=0

(
k

k′

)
∂k−k′

s qe∂ψ Q̊(k′)∂ψ Q̊(k)〈ψ〉2mdψ

−
ˆ

ω01k≥1

k−1∑
k′=0

(
k

k′

)
∂k−k′

s qe∂ψ Q̊(k′) Q̊(k)2m〈ψ〉2m−1.

We now integrate in s ∈ T, and the ∂s term drops out due to periodicity. This
implies

∥∥∥∂ψ Q̊(k)〈ψ〉m
∥∥∥
2

L2
�

∣∣∣∣
ˆ ˆ

(F (k) + ∂2ψ G(k))Q̊(k)〈ψ〉2mdψds

∣∣∣∣

+
∣∣∣∣
ˆ ˆ

G(k)
Lift Q̊

(k)〈ψ〉2mdψds

∣∣∣∣

+
∥∥∥Q̊(k)〈ψ〉m−1

∥∥∥
2

L2

+
∣∣∣∣∣
ˆ ˆ

ω01k≥1

k−1∑
k′=0

(
k

k′

)
∂k−k′

s qe∂ψ Q̊(k′)∂ψ Q̊(k)〈ψ〉2mdψds

∣∣∣∣∣

+
∣∣∣∣∣
ˆ ˆ

ω01k≥1

k−1∑
k′=0

(
k

k′

)
∂k−k′

s qe∂ψ Q̊(k′) Q̊(k)〈ψ〉2m−1dψds

∣∣∣∣∣ .

This implies

∥∥∥∂ψ Q̊(k)〈ψ〉m
∥∥∥
2

L2
≤ δ

∥∥∥Q̊(k)〈ψ〉m
∥∥∥
2

L2
+ Cδ

∥∥∥F (k)〈ψ〉m
∥∥∥
2

L2
+ Cδ

∥∥∥∂2ψ G(k)〈ψ〉m
∥∥∥
2

L2

+ Cδ‖b‖Hk+1
s

+ C01{m≥1}
∥∥∥Q̊(k)〈ψ〉m−1

∥∥∥
2

L2

+ Cδ1k≥1

k−1∑
k′=0

∥∥∥∂ψ Q̊(k′)〈ψ〉m
∥∥∥
2

L2
+ δ

∥∥∥∂ψ Q̊(k)〈ψ〉m
∥∥∥
2

L2
,

where δ > 0 is small and Cδ ∼ δ−1. The result follows immediately, using the fact
that

Q̊(k) = Q(k) − e−ψb(k)(s).

This concludes the proof of the lemma.
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Lemma 9. Let k ≥ 0, m ≥ 0. The solution Q(k) to (32) satisfies the following
estimate:

‖∂s Q(k)〈ψ〉m‖2L2 � ‖F (k)〈ψ〉m‖2L2 + ‖∂2ψ G(k)〈ψ〉m‖2L2 + ‖b‖2
Hk+1

s

+ 1m≥1‖∂ψ Q(k)〈ψ〉m−1‖2L2 + 1k≥1

k−1∑
k′=0

‖∂2ψ Q(k′)〈ψ〉m‖2L2 .

(39)

Proof. We multiply (36) by 1
qe(s)

∂s Q̊(k)〈ψ〉2m and integrate by parts to produce

ˆ
1

qe(s)
(F (k) + ∂2ψ G(k))∂s Q̊(k)〈ψ〉2mdψ +

ˆ
1

qe(s)
G(k)

Lift∂s Q̊(k)〈ψ〉2mdψ

+
ˆ

1

qe(s)
Ccomm,k∂s Q̊(k)〈ψ〉2mdψ

=
ˆ

1

qe(s)
|∂s Q̊(k)|2〈ψ〉2mdψ + ω0

ˆ
∂2ψ Q̊(k)∂s Q̊(k)〈ψ〉2mdψ

=
ˆ

1

qe(s)
|∂s Q̊|2〈ψ〉2mdψ − ω0

∂s

2

ˆ
|∂ψ Q̊|2〈ψ〉2mdψ

− ω02m
ˆ

∂ψ Q̊(k)∂s Q̊(k)〈ψ〉2m−1dψ.

Above, we have used the homogeneous boundary condition for Q̊ to integrate by
parts. We now integrate over s ∈ TL and use periodicity to eliminate the second
term on the right-hand side above, which results in

ˆ ˆ
1

qe(s)

∣∣∣∂s Q̊(k)
∣∣∣
2 〈ψ〉2mdψds

≤ Cδ

∥∥∥F (k)〈ψ〉m
∥∥∥
2

L2
+ Cδ

∥∥∥∂2ψ G(k)〈ψ〉m
∥∥∥
2

L2

+ Cδ

∥∥∥G(k)
Lift〈ψ〉m

∥∥∥
2

L2
+ Cδ

∥∥Ccomm,k〈ψ〉m
∥∥2

L2

+ δ

∥∥∥∂s Q̊(k)〈ψ〉m
∥∥∥
2

L2
+ Cδ

∥∥∥∂ψ Q̊(k)〈ψ〉m−1
∥∥∥
2

L2
.

Recalling (37), (35) and absorbing the last term on the right-hand side to the left,
we get

∥∥∥∂s Q̊(k)〈ψ〉m
∥∥∥

L2
≤ Cδ

(∥∥∥F (k)〈ψ〉m
∥∥∥
2

L2
+

∥∥∥∂2ψ G(k)〈ψ〉m
∥∥∥
2

L2
+ ‖b‖2

Hk+1
s

)

+ Cδ1k≥1

k−1∑
k′=0

∥∥∥∂2ψ Q̊(k′)〈ψ〉m
∥∥∥
2

L2
.

We conclude the proof of the lemma, upon using the fact that Q̊(k) = Q(k) −
e−ψb(k)(s).
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We now need to estimate the zero mode of Q(k). Clearly, this is nontrivial only
for k = 0 (when k ≥ 1 there is no zero mode).

Lemma 10. The zero mode, Q(=0), to the solution of (31), satisfies the following
bound:

‖Q(=0)〈ψ〉m‖2
L2

ψ

� ‖Q( �=0)〈ψ〉m‖2
L2

ψ

+ ‖F〈ψ〉m+4‖2L2 + ‖G〈ψ〉m‖2L2 . (40)

Proof. We integrate Eq. (31) to generate the identity for each ψ ∈ R+:

∂2ψ

ˆ L

0
qe(s)Q(s, ψ)ds = − 1

ω0

ˆ L

0
(F + ∂2ψ G)ds,

after which we integrate twice from ∞ to get
ˆ L

0
qe(s)Q(s, ψ)ds = − 1

ω0

ˆ ∞

ψ

ˆ ∞

ψ ′

ˆ L

0
(F + ∂2ψ G)dsdψ ′′ψ ′

= − 1

ω0

ˆ ∞

ψ

ˆ ∞

ψ ′

ˆ L

0
Fdsdψ ′′ψ ′ − 1

ω0

ˆ L

0
Gds.

We now separate out the left-hand side
ˆ L

0
qe(s)Q(s, ψ)ds = 〈qe〉Q(=0)(ψ) +

ˆ L

0
(qe(s) − 〈qe〉)Q(s, ψ)ds

= 〈qe〉Q(=0)(ψ)+
ˆ L

0
(qe−〈qe〉)

(
Q(=0)(ψ)+Q( �=0)(s, ψ)

)
ds

= 〈qe〉Q(=0)(ψ) +
ˆ L

0
q( �=0)

e (s)Q( �=0)(s, ψ)ds.

This implies

Q(=0)(ψ) = − 1

ω0〈qe〉
ˆ ∞

ψ

ˆ ∞

ψ ′

ˆ L

0
Fdsdψ ′′dψ ′ − 1

ω0〈qe〉
ˆ L

0
Gds

− 1

〈qe〉
ˆ L

0
q( �=0)

e (s)Q( �=0)(s, ψ)ds.

We therefore obtain

‖Q(=0)〈ψ〉m‖2
L2

ψ

�
ˆ

R+

( ˆ L

0
q( �=0)

e (s)Q( �=0)(s, ψ)ds
)2〈ψ〉2mdψ

+
ˆ

R+
〈ψ〉2m

( ˆ ∞

ψ

ˆ ∞

ψ ′

ˆ L

0
F

)2
dψ + ‖G(=0)〈ψ〉m‖2

L2
ψ

=: I1 + I2 + I3.
Clearly, I3 is majorized by the last term on the right-hand side of (40). We will
estimate the first term above, which we call I1. Using Hölder’s inequality, we get

I1 :=
ˆ

R+
〈ψ〉2m

( ˆ L

0
q( �=0)

e (s)Q( �=0)(s, ψ)ds
)2
dψ
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� ‖Q( �=0)〈ψ〉m‖2L2 .

To estimate I2, we need to pay weights as follows using Cauchy-Schwartz:

∣∣∣
ˆ ∞

ψ ′

ˆ L

0
F

∣∣∣ � ‖F〈ψ〉m+4‖L2〈ψ ′〉−m− 7
2 ,

which therefore implies that |I2| � ‖F〈ψ〉m+4‖L2 . This completes the proof.

Lemma 11. Let k ≥ 0, m ≥ 0. The solution Q(k) to (32) satisfies the following
estimate:

‖∂2ψ Q(k)〈ψ〉m‖2L2 � ‖∂s Q(k)〈ψ〉m‖2L2 + ‖F (k)〈ψ〉m‖2L2 + ‖∂2ψ G(k)〈ψ〉m‖2L2

+ 1k≥1

k−1∑
k′=0

‖∂2ψ Q(k′)〈ψ〉m‖2L2 . (41)

Proof. We simply rearrange Eq. (32) and apply L2 norm to both sides.

Proof of Proposition 7. Consolidating the bounds (38), (39), (40), (41), we proved
(33).

5.5. Qn Estimates

Lemma 12. Assume (27) is valid up to index n and (28) is valid up to index n − 1.
Then

‖Qn‖X2,50 ≤ ε0.99.

Proof. For this bound, motivated by Eq. (21), we set

F :=
(
1 − ω0n−1qe√

ω0
2
n−1q2

e +Qn−1

)
∂s Qn−1,

G := 0,

b := εω0nq2
e (s) + 2εg(s)qe(s) + ε2g2(s).

According to (33), we fix k = 2, m = 50, which results in

‖Qn‖X2,50 �
2∑

k′=0

‖∂k′
s F〈ψ〉54‖L2 + ‖b‖H3

s
. (42)

We therefore estimate the two quantities appearing on the right-hand side above.
To make notation simpler, we define

Un−1 := Qn−1

ω0
2
n−1q2

e + Qn−1
, (43)
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then

F =
(
1 − √

1 − Un−1

)
∂s Qn−1.

By a direct calculation, we have the following identities

∂sUn−1 = ∂s Qn−1

ω0
2
n−1q2

e + Qn−1
− Qn−1

(ω0
2
n−1q2

e + Qn−1)2
(ω0

2
n−1∂sq2

e + ∂s Qn−1),

∂2s Un−1 = ∂2s Qn−1

ω0
2
n−1q2

e + Qn−1
− 2

∂s Qn−1

(ω0
2
n−1q2

e + Qn−1)2
(ω0

2
n−1∂sq2

e + ∂s Qn−1)

+ 2
Qn−1

(ω0
2
n−1q2

e + Qn−1)3
(ω0

2
n−1∂sq2

e + ∂s Qn−1)
2

− Qn−1

(ω0
2
n−1q2

e + Qn−1)2
(ω0

2
n−1∂

2
s q2

e + ∂2s Qn−1).

First we estimate ‖F〈ψ〉54‖L2 . We have

‖F〈ψ〉54‖L2 � ‖Un−1〈ψ〉4‖L∞‖∂s Qn−1〈ψ〉50‖L2

� 1

1 − ‖Qn−1‖L∞
‖Qn−1〈ψ〉4‖L∞‖∂s Qn−1〈ψ〉50‖L2

� 1

1 − ε0.99
‖Qn−1〈ψ〉4‖X1,4‖∂s Qn−1〈ψ〉50‖L2

� ‖Qn−1‖X1,4‖Qn−1‖X0,50

� ε0.99ε0.99.

We now show that
∥∥∂s F〈ψ〉54∥∥L2 � ε0.99ε0.99. We have

∂s F = (1 − √
1 − Un−1)∂

2
s Qn−1 + 1

2
(1 − Un−1)

− 1
2 ∂sUn−1∂s Qn−1

=: A1 + A2.

We first bound A1. We have

‖A1〈ψ〉54‖L2 � ‖Un−1〈ψ〉4‖L∞‖∂2s Qn−1〈ψ〉50‖L2

� 1

1 − ‖Qn−1‖L∞
‖Qn−1〈ψ〉4‖L∞‖∂2s Qn−1〈ψ〉50‖L2

� 1

1 − ε0.99
‖Qn−1‖X1,4‖∂2s Qn−1〈ψ〉50‖L2

� ‖Qn−1‖X1,4‖Qn−1‖X1,50

� ε0.99ε0.99.

We now estimate A2. We have

‖A2〈ψ〉54‖L2 � ‖∂sUn−1〈ψ〉4‖L∞‖∂s Qn−1〈ψ〉50‖L2

� ‖Qn−1‖X2,4‖Qn−1‖X0,50
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� ε0.99ε0.99.

We now show that
∥∥∥∂2s F〈ψ〉54

∥∥∥
L2

� ε0.99ε0.99.

By a direct calculation, we get

∂2s F = (1 − √
1 − Un−1)∂

3
s Qn−1 + (1 − Un−1)

− 1
2 ∂sUn−1∂

2
s Qn−1

+ (1 − Un−1)
− 1

2 ∂2s Un−1∂s Qn−1 + (1 − Un−1)
− 3

2 |∂sUn−1|2∂2s Qn−1

=: B1 + B2 + B3 + B4.

We first establish the following bounds on the auxiliary quantities Un−1. We have

‖∂sUn−1〈ψ〉m‖L∞ � ‖∂s Qn−1〈ψ〉m‖L∞ + ‖Qn−1〈ψ〉m‖L∞(1 + ‖∂s Qn−1‖L∞)

� ‖Qn−1‖X2,m + ‖Qn−1‖X2,m (1 + ‖Qn−1‖X2,0)

� ‖Qn−1‖X2,m .

Similarly, we have

‖∂2s Un−1〈ψ〉m‖L2 � ‖∂2s Qn−1〈ψ〉m‖L2 + ‖∂s Qn−1〈ψ〉m‖L2(1 + ‖∂s Qn−1‖L∞)

+ ‖Qn−1〈ψ〉m‖L2(1 + ‖∂s Qn−1‖L∞)2

+ ‖Qn−1〈ψ〉m‖L∞(1 + ‖∂2s Qn−1‖L2)

� ‖Qn−1‖X2,m .

We can now estimate of
∥∥∂2s F〈ψ〉54∥∥L2 . We first bound B1. We have

‖B1〈ψ〉54‖L2 � ‖Un−1〈ψ〉4‖L∞‖∂3s Qn−1〈ψ〉50‖L2

� 1

1 − ‖Qn−1‖L∞
‖Qn−1〈ψ〉4‖L∞‖∂3s Qn−1〈ψ〉50‖L2

� 1

1 − ε0.99
‖Qn−1‖X1,4‖Qn−1‖X2,50

� ‖Qn−1‖X1,4‖Qn−1‖X2,50

� ε0.99ε0.99.

We next move to B2, for which we have

‖B2〈ψ〉54‖L2 � ‖∂sUn−1〈ψ〉4‖L∞‖∂2s Qn−1〈ψ〉50‖L2

� ‖Qn−1‖X2,4‖Qn−1‖X1,50

� ε0.99ε0.99.

As for B3, we have

‖B3〈ψ〉54‖L2 � ‖∂2s Un−1〈ψ〉50‖L2‖∂s Qn−1〈ψ〉4‖L∞

� ‖∂2s Un−1〈ψ〉50‖L2‖∂s Qn−1〈ψ〉4‖H1
s H1

ψ
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� ‖Qn−1‖X2,50‖Qn−1‖X2,4

� ε0.99ε0.99.

We finally conclude with an estimate on B4, for which we have

‖B4〈ψ〉54‖L2 � ‖∂sUn−1〈ψ〉2‖2L∞‖∂2s Qn−1〈ψ〉50‖L2

� ‖Qn−1‖2X2,2
‖Qn−1‖X1,50

� ε0.99ε0.99ε0.99.

To conclude the proof of lemma, we need to estimate the H3
s norm of b,

‖b‖H3
s

� ε|ω0n|‖qe‖H3
s

+ ε‖g‖H3
s
‖qe‖H3

s
+ ε2‖g‖2H3

s
� ε.

Therefore, according to (60), the lemma is proven.

5.6. �Qn Estimates

Our main objective in this section is to close the final bootstrap bound, (30).
We begin with a lemma which allows us to control our auxiliary quantity, Un−1,
introduced in (43).

Lemma 13. Let 0 ≤ m ≤ 50. Assume (27) - (30) are valid until the index n − 1.
Assume (27) - (29) are valid until the index n. The quantities Un−1, Un−2 satisfy:

1∑
j=0

‖(∂ j
s Un−1 − ∂

j
s Un−2)〈ψ〉m‖L∞ � ‖�Qn−1‖X2,m + ε1.99|�ω0n−1|, (44)

2∑
j=0

‖(∂ j
s Un−1 − ∂

j
s Un−2)〈ψ〉m‖L2 � ‖�Qn−1‖X2,m + ε1.99|�ω0n−1|. (45)

Proof. Recalling (43), we have

Un−1 − Un−2 =
( Qn−1

ω0
2
n−1q2

e + Qn−1
− Qn−2

ω0
2
n−1q2

e + Qn−1

)

+ Qn−2

( 1

ω0
2
n−1q2

e + Qn−1
− 1

ω0
2
n−2q2

e + Qn−2

)

= �Qn−1

ω0
2
n−1q2

e + Qn−1
+ Qn−2

(ω0
2
n−1q2

e + Qn−1)(ω0
2
n−2q2

e + Qn−2)
�Qn−1

+ Qn−2

(ω0
2
n−1q2

e + Qn−1)(ω0
2
n−2q2

e + Qn−2)
q2

e (ω0
2
n−2 − ω0

2
n−1)

= α�Qn−1 + γ ε|�ω0n−1|, (46)

where the coefficients are defined by

α := 1

ω0
2
n−1q2

e + Qn−1
+ Qn−2

(ω0
2
n−1q2

e + Qn−1)(ω0
2
n−2q2

e + Qn−2)
,



55 Page 30 of 41 Arch. Rational Mech. Anal. (2024) 248:55

γ := Qn−2

(ω0
2
n−1q2

e + Qn−1)(ω0
2
n−2q2

e + Qn−2)
q2

e .

According to our bootstraps, we claim the following bounds. There exists a decom-
position of ∂2s α = αA + αB such that

‖α‖L∞ + ‖∂sα‖L∞ � 1, (47)

‖αA‖L∞ + ‖αB‖L2 � 1, (48)

‖γ 〈ψ〉m‖L∞ + ‖∂sγ 〈ψ〉m‖L∞ � ε0.99, (49)

‖∂2s γ 〈ψ〉m‖L2 � ε0.99, (50)

‖γ 〈ψ〉m‖L2 + ‖∂sγ 〈ψ〉m‖L2 � ε0.99. (51)

We will prove these bounds as follows. First, we define

α(1) := 1

ω0
2
n−1q2

e + Qn−1
= 1

Dn−1
,

α(2) := Qn−2

(ω0
2
n−1q2

e + Qn−1)(ω0
2
n−2q2

e + Qn−2)
= Qn−2

Dn−1Dn−2
,

Dn := ω0
2
nq2

e + Qn .

after which the following identities are valid:

α = α(1) + α(2), γ = q2
e α(2). (52)

We will henceforth prove the following bounds. We claim there exists a decompo-
sition of ∂2s α(1) = α

(1)
A + α

(1)
B , where

‖α(1)‖L∞ + ‖∂sα
(1)‖L∞ � 1, (53)

‖α(1)
A ‖L∞ + ‖α(1)

B ‖L2 � 1, (54)

‖α(2)〈ψ〉m‖L∞ + ‖∂sα
(2)〈ψ〉m‖L∞ � ε0.99, (55)

‖∂2s α(2)〈ψ〉m‖L2 � ε0.99, (56)

‖α(2)〈ψ〉m‖L2 + ‖∂sα
(2)〈ψ〉m‖L2 � ε0.99, (57)

upon which using (52), we obtain (47), (48), (49), (50), and (51).

Proof of (53). Clearly, we have

‖α(1)‖L∞ � 1

inf |Dn−1| � 1

ω0
2
n−1q2

e − ‖Qn−1‖L∞
� 1

1 − ε0.99
� 1.

Next, we have the identity ∂sα
(1) = ∂s Dn−1

D2
n−1

. Since we have already established a

lower bound on Dn−1, it suffices to estimate ∂s Dn−1:

‖∂sα
(1)‖L∞ �‖∂s Dn−1‖L∞ � ‖ω0

2
n−1∂s{q2

e }‖L∞ + ‖∂s Qn−1‖L∞ � 1 + ε0.99 � 1,

where we have invoked the bootstraps (27) and (28). This proves the bound (53).
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Proof of (54). For this bound, we differentiate once more to find the identity

∂2s α(1) = ∂2s Dn−1

D2
n−1

− 2
|∂s Dn−1|2

D3
n−1

= [ 1

D2
n−1

ω0
2
n−1∂

2
s {q2

e } + ∂s Dn−1

D3
n−1

ω0
2
n−1∂s{q2

e }]

+ [ 1

D2
n−1

∂2s Qn−1 + ∂s Dn−1

D3
n−1

∂s Qn−1]

=: α
(1)
A + α

(1)
B .

We estimate

‖α(1)
A ‖L∞ � |ω0n−1|2 + ‖∂s Dn−1‖L∞|ω0n−1|2 � 1,

and

‖α(1)
B ‖L2 � ‖∂2s Qn−1‖L2 + ‖∂s Dn−1‖L∞‖∂s Qn−1‖L2 � ε0.99.

This proves the bound (54).

Proof of (55). We turn now to the definition of α(2). We will use freely the bounds
|Dn−1| + |Dn−2| � 1 and ‖∂s Dn−1‖L∞ + ‖∂s Dn−2‖L∞ � 1, which have already
been established. First, we have

‖α(2)〈ψ〉m‖L∞ � ‖Qn−2〈ψ〉m‖L∞ � ‖Qn−2‖X2,m � ε0.99.

Next, we have the identity

∂sα
(2) = ∂s Qn−2

Dn−1Dn−2
− Qn−2∂s{Dn−1Dn−2}

D2
n−1D2

n−2

, (58)

from which we obtain

‖∂sα
(2)〈ψ〉m‖L∞ �‖∂s Qn−2〈ψ〉m‖L∞ +‖Qn−2〈ψ〉m‖L∞(‖Dn−1‖L∞‖∂s Dn−2‖L∞

+ ‖Dn−2‖L∞‖∂s Dn−1‖L∞)

� ‖ Qn−2‖X2,m + ‖Qn−2‖X1,m (‖Dn−1‖L∞‖∂s Dn−2‖L∞

+ ‖Dn−2‖L∞‖∂s Dn−1‖L∞)

� ε0.99.

This proves the bound (55).

Proof of (56). We differentiate (58) again to obtain the identity

∂2s α(2) = ∂2s Qn−2

Dn−1Dn−2
− 2

∂s Qn−2∂s{Dn−1Dn−2}
D2

n−1D2
n−2

+ 2
Qn−2|∂s{Dn−1Dn−2}|2

D3
n−1D3

n−2

,

after which we obtain the bound

‖∂2s α(2)〈ψ〉m‖L2 � ‖∂2s Qn−2〈ψ〉m‖L2 + ‖∂s Qn−2〈ψ〉m‖L2‖∂s{Dn−1Dn−2}‖L∞
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+ ‖Qn−2〈ψ〉m‖L2‖∂s{Dn−1Dn−2}‖2L∞

� ‖Qn−2‖X2,m

� ε0.99.

This proves the bound (56).

Proof of (57). We have

‖α(2)〈ψ〉m‖L2 � ‖Qn−2〈ψ〉m‖L2 � ‖Qn−2‖X2,m � ε0.99,

and upon using (58), we have

‖∂sα
(2)〈ψ〉m‖L2 � ‖∂s Qn−2〈ψ〉m‖L2 + ‖Qn−2〈ψ〉m‖L2(‖Dn−1‖L∞‖∂s Dn−2‖L∞

+ ‖Dn−2‖L∞‖∂s Dn−1‖L∞)

� ‖Qn−2‖X2,m + ‖Qn−2‖X1,m (‖Dn−1‖L∞‖∂s Dn−2‖L∞

+ ‖Dn−2‖L∞‖∂s Dn−1‖L∞)

� ε0.99.

We have therefore established (53)–(57) and hence (47)–(51). From here, the
desired estimates, (44)–(45), follow from an application of the product rule applied
to the identity (46). Indeed, we have:

‖(Un−1 − Un−2)〈ψ〉m‖L∞ � ‖α‖L∞‖�Qn−1〈ψ〉m‖L∞ + ‖γ 〈ψ〉m‖L∞ε|�ω0n−1|
� ‖�Qn−1‖X2,m + ε1.99|�ω0n−1|,

where we have used the bounds (47) and (49). In L2, we similarly have

‖(Un−1 − Un−2)〈ψ〉m‖L2 � ‖α‖L∞‖�Qn−1〈ψ〉m‖L2 + ‖γ 〈ψ〉m‖L2ε|�ω0n−1|
� ‖�Qn−1‖X2,m + ε1.99|�ω0n−1|,

where we have used the bounds (47) and (51).
Next, we have upon differentiating (46), the identity

∂s{Un−1 − Un−2} = α∂s�Qn−1 + �Qn−1∂sα + ε|�ω0n−1|∂sγ,

after which we have the following L∞ bound:

‖∂s{Un−1 − Un−2}〈ψ〉m‖L∞ � ‖α‖L∞‖∂s�Qn−1〈ψ〉m‖L∞

+ ‖∂sα‖L∞‖�Qn−1〈ψ〉m‖L∞

+ ε‖∂sγ 〈ψ〉m‖L∞|�ω0n−1|
� ‖�Qn−1‖X2,m + ε1.99|�ω0n−1|,

where we have invoked (47) and (49). In L2, we similarly have

‖∂s{Un−1 − Un−2}〈ψ〉m‖L2 � ‖α‖L∞‖∂s�Qn−1〈ψ〉m‖L2

+ ‖∂sα‖L∞‖�Qn−1〈ψ〉m‖L2

+ ε‖∂sγ 〈ψ〉m‖L2 |�ω0n−1|
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� ‖�Qn−1‖X2,m + ε1.99|�ω0n−1|,
where we have used the bounds (47) and (51).

Differentiating (46) twice in s, we obtain the identity

∂2s {Un−1 − Un−2} = α∂2s �Qn−1 + �Qn−1∂
2
s α + 2∂s�Qn−1∂sα + ε|�ω0n−1|∂2s γ

= α∂2s �Qn−1 + �Qn−1αA + �Qn−1αB + 2∂s�Qn−1∂sα

+ ε|�ω0n−1|∂2s γ,

where we use the decomposition ∂2s α = αA + αB . We now estimate the L2 norm
as follows:

‖∂2s {Un−1 − Un−2}〈ψ〉m‖L2

� ‖α‖L∞‖∂2s �Qn−1〈ψ〉m‖L2 + ‖αA‖L∞‖�Qn−1〈ψ〉m‖L2

+ ‖�Qn−1〈ψ〉m‖L∞‖αB‖L2 + ‖∂s�Qn−1〈ψ〉m‖L2‖∂sα‖L∞

+ ε‖∂2s γ 〈ψ〉m‖L2 |�ω0n−1|
� ‖∂2s �Qn−1〈ψ〉m‖L2 + ‖�Qn−1〈ψ〉m‖L2 + ‖�Qn−1〈ψ〉m‖L∞

+ ‖∂s�Qn−1〈ψ〉m‖L2 + ε1.99|�ω0n−1|
� ‖�Qn−1‖X2,m + ε1.99|�ω0n−1|,

wherewe have used the bounds (47)–(50).We have therefore established the bounds
(44)–(45), and this concludes the proof of the lemma.

Lemma 14. Assume (27)–(30) are valid until the index n − 1. Assume (27)–(29)
are valid until the index n. Then

‖�Qn‖X2,50 ≤ε
3
4 ‖�Qn−1‖X2,50 + ε

1
2 |�ω0n| + ε

3
2 |�ω0n−1|. (59)

Proof. For this estimate, motivated by (26), we set

F :=
(
1 − ω0n−1qe√

ω0
2
n−1q2

e +Qn−1

)
∂s Qn−1 −

(
1 − ω0n−2qe√

ω0
2
n−2q2

e +Qn−2

)
∂s Qn−2,

G := (ω0n−1 − ω0n−2)Qn−1,

b := ε(ω0n − ω0n−1)q
2
e (s).

According to (33), we fix k = 2, m = 50, which results in

‖�Qn‖X2,50 �
2∑

k′=0

‖∂k′
s F〈ψ〉54‖L2 +

2∑
k′=0

2∑
j=0

‖∂k′
s ∂

j
ψ G〈ψ〉50‖L2 + ‖b‖H3

s
.

(60)

We therefore estimate the two quantities appearing on the right-hand side above.
We first address the term F , which we rewrite as follows

F = (1 − √
1 − Un−1)∂s Qn−1 − (1 − √

1 − Un−2)∂s Qn−2
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= (1 − √
1 − Un−1)∂s�Qn−1 + ∂s Qn−2(

√
1 − Un−1 − √

1 − Un−2) := F1 + F2.

An identical calculation to the estimate of the forcing, F , in Lemma 12 results in
the bound

‖F1〈ψ〉54‖H2
s L2

ψ
� ε0.99‖�Qn−1‖X2,50 .

We develop the following identities

∂s F2 = ∂2s Qn−2

(√
1 − Un−1 − √

1 − Un−2

)

− 1

2
∂s Qn−2

( ∂sUn−1√
1 − Un−1

− ∂sUn−2√
1 − Un−2

)

= ∂2s Qn−2

(√
1 − Un−1 − √

1 − Un−2

)

− 1

2
∂s Qn−2

∂sUn−1 − ∂sUn−2√
1 − Un−1

− 1

2
∂s Qn−2

( ∂sUn−2√
1 − Un−1

− ∂sUn−2√
1 − Un−2

)

= C1 + C2 + C3.

We estimate ∂s F2 as follows. First,

‖C1〈ψ〉54‖L2 � ‖(√1 − Un−1 − √
1 − Un−2)〈ψ〉4‖L∞‖∂2s Qn−2〈ψ〉50‖L2

� ‖(Un−1 − Un−2)〈ψ〉4‖L∞‖∂2s Qn−2〈ψ〉50‖L2

� ‖(Un−1 − Un−2)〈ψ〉4‖L∞‖Qn−2‖X1,50

� ε0.99‖(Un−1 − Un−2)〈ψ〉4‖L∞ .

Next, to estimate C2, we have

‖C2〈ψ〉54‖L2 � ‖∂s Qn−2〈ψ〉50‖L∞‖(∂sUn−1 − ∂sUn−2)〈ψ〉4‖L2

� ‖∂s Qn−2‖X2,50‖(∂sUn−1 − ∂sUn−2)〈ψ〉4‖L2

� ε0.99‖(∂sUn−1 − ∂sUn−2)〈ψ〉4‖L2 .

Finally, to estimate C3, we have

‖C3〈ψ〉54‖L2 �
∥∥∥∂s Qn−2〈ψ〉50

∥∥∥
L2

‖∂sUn−2〈ψ〉4‖L∞‖Un−1 − Un−2‖L∞

� ‖Qn−2‖X0,50‖Qn−2‖X2,4‖Un−1 − Un−2‖L∞

� ε0.99ε0.99‖Un−1 − Un−2‖L∞ .

We now move to the second derivative, ∂2s F2, which we will treat as follows:

∂2s F2 = ∂sC1 + ∂sC2 + ∂sC3.

We have

∂sC1 = ∂3s Qn−2(
√
1 − Un−1 − √

1 − Un−2)
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− 1

2
∂2s Qn−2

( ∂sUn−1√
1 − Un−1

− ∂sUn−2√
1 − Un−2

)

= ∂3s Qn−2(
√
1 − Un−1 − √

1 − Un−2) − 1

2
∂2s Qn−2

(∂sUn−1 − ∂sUn−2√
1 − Un−1

)

− 1

2
∂2s Qn−2

( ∂sUn−2√
1 − Un−1

− ∂sUn−2√
1 − Un−2

)

=: C1,1 + C1,2 + C1,3.

First, we estimate

‖C1,1〈ψ〉54‖L2 �
∥∥∥(

√
1 − Un−1 − √

1 − Un−2)〈ψ〉4
∥∥∥

L∞

∥∥∥∂3s Qn−2〈ψ〉50
∥∥∥

L2

�
∥∥∥(Un−1 − Un−2)〈ψ〉4

∥∥∥
L∞ ‖∂3s Qn−2〈ψ〉50‖L2

�
∥∥∥(Un−1 − Un−2)〈ψ〉4

∥∥∥
L∞ ‖Qn−2‖X2,50

� ε0.99‖(Un−1 − Un−2)〈ψ〉4‖L∞ .

Next, to estimate C1,2, we have

‖C1,2〈ψ〉54‖L2 � ‖∂2s Qn−2〈ψ〉50‖L2‖(∂sUn−1 − ∂sUn−2)〈ψ〉4‖L∞

� ‖Qn−2‖X1,50‖(∂sUn−1 − ∂sUn−2)〈ψ〉4‖L∞

� ε0.99‖(∂sUn−1 − ∂sUn−2)〈ψ〉4‖L∞ .

Next, to estimate C1,3, we have

‖C1,3〈ψ〉54‖L2 � ‖∂2s Qn−2〈ψ〉50‖L2‖∂sUn−2〈ψ〉4‖L∞‖Un−1 − Un−2‖L∞

� ‖Qn−2‖X1,50‖Qn−2‖X2,4‖Un−1 − Un−2‖L∞

� ε0.99ε0.99‖Un−1 − Un−2‖L∞ .

We next move to the ∂sC2 contributions, for which we record the identity

∂sC2 = −1

2
∂2s Qn−2

∂sUn−1 − ∂sUn−2√
1 − Un−1

− 1

2
∂s Qn−2

∂2s Un−1 − ∂2s Un−2√
1 − Un−1

+ 1

4
∂s Qn−2∂sUn−1(1 − Un−1)

− 3
2 (∂sUn−1 − ∂sUn−2)

=: C2,1 + C2,2 + C2,3.

We first estimate C2,1 for which we have

‖C2,1〈ψ〉54‖L2 � ‖∂2s Qn−2〈ψ〉50‖L2‖(∂sUn−1 − ∂sUn−2)〈ψ〉4‖L∞

� ‖Qn−2‖X1,50‖(∂sUn−1 − ∂sUn−2)〈ψ〉4‖L∞

� ε0.99‖(∂sUn−1 − ∂sUn−2)〈ψ〉4‖L∞ .

Next, we have

‖C2,2〈ψ〉54‖L2 � ‖∂s Qn−2〈ψ〉50‖L∞‖(∂2s Un−1 − ∂2s Un−2)〈ψ〉4‖L2
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� ‖∂s Qn−2‖X2,50‖(∂2s Un−1 − ∂2s Un−2)〈ψ〉4‖L2

� ε0.99‖(∂2s Un−1 − ∂2s Un−2)〈ψ〉4‖L2 .

Finally, we have the C2,3 contribution for which we estimate

‖C2,3〈ψ〉54‖L2 � ‖∂s Qn−2〈ψ〉50‖L∞‖∂sUn−1〈ψ〉4‖L∞‖(∂sUn−1 − ∂sUn−2)‖L2

� ‖Qn−2‖X2,50‖Qn−1‖X2,4‖(∂sUn−1 − ∂sUn−2)‖L2

� ε0.99ε0.99‖(∂sUn−1 − ∂sUn−2)‖L2 .

We next compute ∂sC3, which results in the following identity,

∂sC3 = 1

2
∂2s Qn−2

( ∂sUn−2√
1 − Un−1

− ∂sUn−2√
1 − Un−2

)

+ 1

2
∂s Qn−2

( ∂2s Un−2√
1 − Un−1

− ∂2s Un−2√
1 − Un−2

)

− 1

4
∂s Qn−2∂sUn−2

1

(1 − Un−1)
3
2

(∂sUn−1 − ∂sUn−2)

− 1

4
∂s Qn−2|∂sUn−2|2

(
1

(1 − Un−1)
3
2

− 1

(1 − Un−2)
3
2

)
=:

4∑
i=1

C3,i .

We estimate first C3,1 as follows

‖C3,1〈ψ〉54‖L2 � ‖∂2s Qn−2〈ψ〉50‖L2‖∂sUn−2〈ψ〉4‖L∞‖Un−1 − Un−2‖L∞

� ‖Qn−2‖X1,50‖Qn−2‖X2,4‖Un−1 − Un−2‖L∞

� ε0.99ε0.99‖Un−1 − Un−2‖L∞ .

Next, we estimate C3,2 as follows

‖C3,2〈ψ〉54‖L2 � ‖∂s Qn−2〈ψ〉50‖L∞‖∂2s Un−2〈ψ〉4‖L2‖Un−1 − Un−2‖L∞

� ‖Qn−2‖X2,50‖∂2s Un−2〈ψ〉4‖L2‖Un−1 − Un−2‖L∞

� ‖Qn−2‖X2,50‖Qn−2‖X2,4‖Un−1 − Un−2‖L∞

� ε0.99ε0.99‖Un−1 − Un−2‖L∞ .

Next, we estimate C3,3 as follows

‖C3,3〈ψ〉54‖L2 � ‖∂s Qn−2〈ψ〉50‖L∞‖∂sUn−2〈ψ〉4‖L∞‖∂sUn−1 − ∂sUn−2‖L2

� ‖Qn−2‖X2,50‖Qn−2‖X2,4‖∂sUn−1 − ∂sUn−2‖L2

� ε0.99ε0.99‖∂sUn−1 − ∂sUn−2‖L2 .

Finally, we estimate C3,4 as follows

‖C3,4〈ψ〉54‖L2 � ‖∂s Qn−2〈ψ〉50‖L∞‖∂sUn−2〈ψ〉2‖2L∞‖Un−1 − Un−2‖L2

� ‖Qn−2‖X2,50‖Qn−2‖2X2,2
‖Un−1 − Un−2‖L2

� ε0.99ε0.99ε0.99‖Un−1 − Un−2‖L2 .
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Now, upon invoking (44)–(45), the above estimates give

‖F2〈ψ〉54‖H2
s L2

ψ

� ε0.99
( 1∑

j=0

‖(∂ j
s Un−1 − ∂

j
s Un−2)〈ψ〉4‖L∞

+
2∑

j=0

‖(∂ j
s Un−1 − ∂

j
s Un−2)〈ψ〉4‖L2

)

� ε0.99
(
‖�Qn−1‖X2,4 + ε1.99|�cn−1|

)
.

Next, we clearly have

2∑
k′=0

2∑
j=0

‖∂k′
s ∂

j
ψ G〈ψ〉50‖L2 ≤ |ω0n−1 − ω0n−2|

2∑
k′=0

2∑
j=0

∥∥∥∂k′
s ∂

j
ψ Qn−1〈ψ〉50

∥∥∥
L2

� 1∣∣ω0n−1 + ω0n−2
∣∣ |ω0

2
n−1 − ω0

2
n−2|‖Qn−1‖X2,50

� εε0.99|ω0n−1 − ω0n−2|.
Finally, we have the boundary condition

‖b‖H3
s

� ε‖qe‖3H3 |�ω0n|.
Consolidating all the above bounds with estimate (59) concludes the proof of the
lemma.
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Appendix A. Derivation of Near-Boundary Navier–Stokes Equations

In this section, we give the detailed calculations for the Navier–Stokes equations
claimed in Sect. 2. We recall the standard identities, which will be used in the next
lemmas:

n′(s) = γ (s)τ (s), τ ′(s) = γ (s)n(s).

We recall that the map

{x ∈ M : 0 < dist(x, ∂ M) < δ} → TL × (0, δ)

x → (s, z) = (s(x1, x2), z(x1, x2))

is a diffeomorphism. In this transformation, we have

∇x s = τ

J
, ∇x z = n(s).

For a vector field u : M → R
2, we also have

u1 = n2uτ − τ2un = τ1uτ − τ2un,

u2 = −n1uτ + τ1un = τ2uτ + τ1un .

Lemma 15. For any vector field u : M → R
2 and scalar function f : M → R

supported near the boundary ∂ M there holds

u · ∇ f = uτ

J
∂s f + un∂z f.

In particular, by choosing u = τ and u = n respectively, there hold

τ · ∇ f = 1

J
∂s f, n · ∇ f = ∂z f.

Proof. This follows by direct calculation. We have

u · ∇ f = u · ∇x f (s, z) = u1
(
∂s f ∂x1s + ∂z f ∂x1 z

) + u2
(
∂s f ∂x2s + ∂z f ∂x2 z

)

= u1

(
∂s f

τ1

J
+ ∂z f n1

)
+ u2(∂s f · τ2

J
+ ∂z f n2)

= u · τ

J
∂s f + (u · n)∂z f.

Lemma 16. The following identities holds for any given vector field u : M → R
2:

(u · ∇u) · τ =
(uτ

J
, un

)
· ∇s,zuτ − γ (s)

J
uτ un,

(u · ∇u) · n =
(uτ

J
, un

)
· ∇s,zun − γ (s)

J
u2

τ ,

�u · τ = 1

J
∂z(J∂zuτ ) + 1

J
∂s

(
1

J
∂suτ

)
− 1

J
∂s

(γ un

J

)
− γ

J
(γ uτ + ∂sun) ,

�u · n = 1

J
∂z(J∂zun) + 1

J
∂s

(
1

J
∂sun

)
− 1

J
∂s

(γ uτ

J

)
− γ

J
(∂suτ − γ un) ,

∇ · u = 1

J
(∂suτ − γ (s)un) + ∂zun,

∇⊥ · u = ∂1u2 − ∂2u1 = γ

J
uτ − ∂zuτ + ∂sun .



Arch. Rational Mech. Anal. (2024) 248:55 Page 39 of 41 55

Proof. We check the first, the third and the fifth identities only, and the proofs for
other identities are similar. We have

(u · ∇u) · τ = (u · ∇x u1)τ1 + (u · ∇x u2)τ2

=
(uτ

J
, un

)
· ∇s,zu1τ1 +

(uτ

J
, un

)
· ∇s,zu2τ2

=
(uτ

J
, un

)
· ∇s,zuτ − uτ

J

(
τ ′
1(s)u1 + τ ′

2(s)u2
)
.

We note that

τ ′
1u1 + τ ′

2u2 = γ n1(τ1uτ − τ2un) + γ n2(τ2uτ + τ1un)

= γ (−τ2)(τ1uτ − τ2un) + γ τ1(τ2uτ + τ1un)

= −γ τ1τ2uτ + γ τ 22 un + γ τ1τ2uτ + γ τ 21 un = γ un .

Combining the above with the previous calculation, we obtain

(u · ∇u) · τ =
(uτ

J
, un

)
· ∇s,zuτ − γ (s)

J
uτ un .

Now we show the third identity. We have

�u · τ = �u1 · τ1 + �u2 · τ2 =
2∑

i=1

1

J

(
∂z(J∂zui ) + ∂s

(
1

J
∂sui

))
τi

= 1

J
∂z(J∂zuτ ) + 1

J
∂θ

(
1

J
∂θ (u · τ)

)
− 1

J
∂s

(
1

J
u · ∂sτ

)
−

∑
i

1

J
∂suiτ

′
i

= 1

J
∂z(J∂zuτ ) + 1

J
∂θ

(
1

J
∂suτ

)
− 1

J
∂s

(γ un

J

)
− γ

J
(γ uτ + ∂sun) .

For incompressibility, we find

∇ · u = ∂x1u1 + ∂x2u2 =
∑

i

∂xi s∂sui + ∂xi z∂zui =
∑

i

τi

J
∂sui + ni∂zui

= 1

J
(∂suτ − γ (s)un) + ∂zun .

The proof is complete.
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