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Abstract

We are interested in the regularity of weak solutions u to the elliptic equation
in divergence form as in (1.1), and more precisely in their local boundedness and
their local Lipschitz continuity under general growth conditions, the so called p,q-
growth conditions, as in (1.2) and (1.3) below.We found a unique set of assumptions
to get all of these regularity properties at the same time; in the meantime we also
found theway to treat amore general context, with explicit dependence on (x, u), in
addition to the gradient variable ξ = Du. These aspects require particular attention,
due to the p,q-context, with some differences and new difficulties compared to the
standard case p = q.
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1. Introduction

We consider elliptic equations of the form

n∑

i=1

∂

∂xi
ai (x, u (x) , Du (x)) = b (x, u (x) , Du (x)) , x ∈ �, (1.1)

where the vector field a (x, u, ξ) = (
ai (x, u, ξ)

)
i=1,...,n is locally Lipschitz con-

tinuous in�×R×R
n , and the right hand side b (x, u, ξ) is a Carathéodory function

in �×R×R
n . Our assumptions are characterized by the fact that the second order

elliptic equation in divergence form (1.1) explicitly depends on (x, u) ∈ � × R,
where � is an open set in R

n , n � 2, other than on the gradient variable ξ ∈ R
n .

Further characteristics are the ellipticity and growth condition in general form, the
so called p,q-conditions as in (1.2) and (1.3) below.

We are interested in the regularity of the weak solutions u to (1.1), and more
precisely in their local boundedness, their local Lipschitz continuity and higher
differentiability under general growth conditions. The effect of these results, the
gradient Du being a-posteriori locally bounded, is that the growth properties of
the differential operator reduce to the so called natural growth conditions (a name
which usually denotes the case p = q). Thus, having in force the local Lipschitz
continuity considered in this manuscript, also the C1,α regularity can be deduced
by the classical literature on regularity under the same assumptions made in the
context of natural growth, for instance as in [42, Chapter 4, Section 61] or in [40];
see the p,q- growth cases in [48, Section 7, Theorem D] and in [49, Corollary 2.2].
Regarding the higher regularity and Hölder continuity of the gradient, see also [26].

A few words about the well-known classical results on regularity for weak
solutions to elliptic equations as in (1.1). A primary tool is the fundamental Hölder
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continuity result by De Giorgi [21], which has been extensively considered also in
the book by Ladyzhenskaya-Ural’tseva [42, Chapter 4]. We also refer to the article
by Evans [37], with explicit dependence of

(
ai
)
i=1,...,n in (1.1) only on the gradient

variable and with right hand side b = 0; the celebrated paper by DiBenedetto [29]
on theC1,α-regularity for weak solutions of a class of degenerate elliptic equations;
the famous C1,α-regularity result by Tolksdorf [59]; the article by Manfredi [46]
on the p−Laplacian type integrals of the Calculus of Variations. Later, see also
the well known articles by Lieberman [44] and Marcellini [49], the book by Giusti
[40], the results by Duzaar-Mingione [32] and Cianchi-Maz’ya [9].

Our points of view are the p,q-growth conditions (2 � p � q) with respect to
the gradient variable ξ := Du, in this general context with (x, u) explicit depen-
dence too. More precisely, the p-ellipticity

n∑

i, j=1

∂ai

∂ξ j
λiλ j � m

(
1 + |ξ |2

) p−2
2 |λ|2 (1.2)

is valid for a positive constant m and for every λ, ξ ∈ R
n and (x, u) ∈ � ×R; and

the q-growth
∣∣∣∣
∂ai

∂ξ j

∣∣∣∣ � M

((
1 + |ξ |2

) q−2
2 + |u|α

)
, (1.3)

for M > 0, 0 � α < (q − 2) p∗
p (if q = 2 then α = 0) and for all (x, u, ξ) ∈

� × R × R
n and i, j ∈ {1, 2, . . . , n}.

The interest in existence and regularity for weak solutions to elliptic equations
in divergence form, under general growth conditions, has risen in the last decades,
starting from the first related results in the 90’s. Nowadays the literature on p,q-
problems is large, and maybe there is no need to enter too much into details.
However, we emphasize that a bound on the ratio q

p of the type

1 � q
p < 1 + O

( 1
n

)
(1.4)

is necessary and, at the same time, another bound on the ratio q
p of the same type

is also sufficient for regularity. The first approach can be found in [48–51]. Not
only in the p, q−context, but also for general nonuniformly elliptic problems, see
[31,50–52].

We already said that a large literature exists on this subject. Recently Mingione
gave a strong impulse with the introduction of the terminology (and not only ter-
minology, but also fine results obtained with some colleagues of him, as detailed
below) of double phase integrals, of the type

∫

�

{
1
p |Du|p + 1

q a (x) |Du|q
}
dx (1.5)

and also their nondegenerate version
∫

�

{
1
p

(
1 + |Du|2

) p
2 + 1

q a (x)
(
1 + |Du|2

) q
2
}

, (1.6)
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whose Euler’s first variation give rise to the differential equation in divergence form

n∑

i=1

∂

∂xi

{((
1 + |Du|2

) p−2
2 + a (x)

(
1 + |Du|2

) q−2
2

)
uxi

}
= 0, x ∈ �.

(1.7)

here the coefficient a (x) is either Hölder continuous or local Lipschitz continuous
in �. However, even more relevant, a (x) is greater than or equal to zero in �, with
the possibility to be equal to zero on a closed not empty subset of �. Therefore
the energy integral in (1.5) or in (1.6), and the equation in (1.7) too, when p < q
behaves like a q-Laplacian in the subset of � where a (x) > 0 (and in this case the
p-addendum plays the role of a “lower order term”), while it is a p-Laplacian in
the subset of � where a (x) = 0.

The double phase integrals in (1.5) and in (1.6) are relevant examples of energy
integrals with p,q-growth; many other examples exist: p-power times a logarithm,
variable exponents p (x), anisotropic integrands such as

∑n
i=1

∣∣uxi
∣∣pi with p =

mini {pi } and q = maxi {pi }, and so on. Note, in particular, that the equation in
(1.7) satisfies the p, q-growth conditions stated in (1.2), (1.3).

A special consideration about the recent interesting article byDeFilippis-Mingione
[26], related to the regularity of local minimizers of a class of integrals of the calcu-
lus of variations which do not necessarily satisfy the Euler-Lagrange equation. In
order to allow a comparison with the context considered here, since in [26, Section
2.2] the energy integral is expressed in a splitting separated sum with respect to
the gradient dependence and on the u-dependence, we discuss a particular case
of (1.1),

n∑

i=1

∂

∂xi

{
ai (Du)

}
= b (x, u) ; (1.8)

here the vector field
{
ai (ξ)

}
i=1,2,...,n in the left hand side does not explicitly de-

pend on x and u. In [26, Section 2.2] DeFilippis-Mingione allow a very general
x-dependence of the right hand side b (x, u); in fact they assume that the primitive
h (x, u) = ∫ u

0 b (x, t) dt is a Carathéodory function, with h (x, ·) Hölder con-
tinuous (and thus b (x, ·) as derivative of h (x, ·) may not exist) and h (·, u) in a
suitable Lorentz class for every fixed u. The opposite situation here: the vector field{
ai (x, u, ξ)

}
i=1,2,...,n depends on (x, u) too, with more strict assumptions on the

x and u dependence in the right hand side b (x, u, ξ), which here may also depend
on the gradient variable ξ . Other differences are in force; for instance in the context
of this paper we allow general elliptic equations without the symmetric assumption
∂ai
∂ξ j

= ∂a j

∂ξi
, see (2.5) below.

Zhikov [62,63] first studied similar kinds of integrals with general growth in the
context of homogenization and the Lavrentiev’s phenomenon (in this context see
also the recent article [23]). More recent contributions to regularity to minimizers
of double phase integrals and for weak solutions to double phase equations are due
to Baroni, Colombo and Mingione in [2,12].Double phase and variable exponents
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are studied byByun-Oh [6],Ragusa-Tachikawa [57], Fang-Rădulescu-ChaoZhang-
Xia Zhang [38]. In the context of variable exponents and Orlicz–Sobolev spaces
we mention Zhang-Rădulescu [61]. For Orlicz–Sobolev spaces see the Springer
Lecture Notes by Diening-Harjulehto-Hästö-Ruzicka [30], the reference paper by
Chlebicka [7]; see also Chlebicka-DeFilippis [8], Hästö-Ok [41]. About quasi-
convex integrals of the calculus of variations under general growth conditions see
in particular [4,13,20,39,47]; about partial regularity, after Schmidt [58] more re-
cently DeFilippis [22] and DeFilippis-Stroffolini [28].

Recently many authors obtained new regularity results, mainly in local bound-
edness, higher summability, local Lipschitz continuity, C1,α . Most of the results
deal with interior regularity, apart from Cianchi-Maz’ya [9,10], Bögelein-Duzaar-
Marcellini-Scheven [5], DeFilippis-Piccinini [27], who proved Lipschitz continuity
of weak solutions up to the boundary. About interior regularity for nonuniformly
elliptic energy integrals with p,q-growth and general growth we quote for instance
[3,15,16,19]; see also [1,34,35,60] and the references in the reviewarticles [53,56].

What seems in the literature not often studied is the case when the differential
equation is not the Euler’s first variation of an energy integral. Not always the vector
field a (x, u, ξ) = (

ai (x, u, ξ)
)
i=1,...,n in the left hand side of the Equation (1.1)

is the gradient, with respect to the variable ξ ∈ R
n , of a function f (x, u, ξ); on the

contrary, in the literature on this subject, often the condition ai = ∂ f/∂ξi , which
simplifies the framework, is one of the main assumption. If f is of class C2 in ξ

then this variational assumption ai = ∂ f/∂ξi implies that

∂ai

∂ξ j
= ∂2 f

∂ξi∂ξ j
= ∂2 f

∂ξ j∂ξi
= ∂a j

∂ξi
,

so that the n × n matrix
(

∂ai
∂ξ j

)
is symmetric. In this manuscript we do not assume

that this matrix is symmetric. Instead we assume a condition of the type (when u is
bounded; see more precisely below in (2.5))

∣∣∣∣
∂ai

∂ξ j
− ∂a j

∂ξi

∣∣∣∣ � M
(
1 + |ξ |2

) p+q−4
4

, (1.9)

which requires an “intermediate growth" with respect to |ξ | (in fact the exponent
p+q−4

2 is “intermediate", that is it is the average between p − 2 and q − 2) of the

antisymmetric terms of the matrix
(

∂ai
∂ξ j

)
. Condition (1.9) is automatically satisfied,

for instance, either when the vector field
(
ai (x, u, ξ)

)
i=1,...,n has the variational

structure ai = ∂ f/∂ξi , or if p = q. This second possibility explains why in the
literature the assumption (1.9) is not considered under the so called natural growth
conditions (that is, when p = q); in fact if p = q then (1.9) is an elementary
consequence of the triangular inequality and of the growth assumption (1.3) when
u is bounded.

An example can be easily constructed by adding to a p-Laplacian a perturbation
of the r -Laplacian and one partial derivative for instance with respect to xn . That



60 Page 6 of 45 Arch. Rational Mech. Anal. (2024) 248:60

is for p � r < (p + q) /2, by adding an operator of the type

∂

∂xn

((
1 + ∣∣uxn

∣∣2
) q−2

2
uxn

)

+
n∑

i=1

∂

∂xi

{
a0 (x)

((
1 + |Du|2

) r−2
2

uxi + gi (Du)

)}
,

with a not symmetric and sufficiently small matrix
(

∂gi

∂ξ j

)
, in order to maintain

the ellipticity of this operator. Then the vector field, obtained by the sum of the
two operators, is p-elliptic, has q-growth, satisfies condition (1.9), but has not
a variational structure, in the sense that it is not the Euler’s first variation of an
energy integral. Another even simpler example of elliptic operator satisfying the
same p,q-growth conditions is

∂

∂xn

((
1 + ∣∣uxn

∣∣2
) q−2

2
uxn

)
+

n∑

i=1

∂

∂xi
ai (x, u (x) , Du (x)) ,

the first addendum with q-exponent being as before, while the second addendum
is uniformly elliptic with ellipticity and growth of order p. Finally, a third example
can be of the form

n∑

i=1

∂

∂xi
fξi (u (x) , Du (x)) +

n∑

i=1

∂

∂xi
ai (x, u (x) , Du (x)) ,

with f = f (u, ξ) being a convex function with respect to the gradient variable
ξ ∈ R

n , whose quadratic form of its second order derivatives is semidefinite positive

and has a q-growth, that is 0 �
∑n

i, j=1
∂2 f

∂ξi ∂ξ j
λiλ j � M(1 + |ξ |2) q−2

2 |λ|2 ; while
as before the second addendum is uniformly elliptic of order p < q, not necessarily
being the Euler’s first variation of an energy functional.

The right hand side b in (1.1) may explicitly depend on all variables (x, u, ξ) ∈
� × R × R

n . Our growth assumption for b is

|b (x, u, ξ)| � M
(
1 + |ξ |2

) p+q−2
4 + M |u|δ−1 + b0 (x) (1.10)

for almost every x ∈ �, 1 � δ <
np
n−p =: p∗ (when p < n) and b0 ∈ Ls0

loc (�)

for some s0 > n. The general growth condition in the right hand side of (1.10)
explicitly depends on (x, u, ξ) and does not allow us to assume the summability
considered for instance by DeFilippis-Mingione [25] and by DeFilippis-Piccinini
[27], with b0 in the Lorentz space L (n, 1) (�), but however with M = 0 in (1.10),
and with the functional inclusion Ln+ε (�) ⊂ L (n, 1) (�) ⊂ Ln (�) for all ε >

0. Note however that the Lebesgue summability b0 ∈ Ls0
loc (�) with s0 > n is

naturally assumed in the literature for regularity, see for instance Colombo-Figalli
[11, Theorem 1.1] and [5, Theorem 1.1]. Moreover it is sharp: in fact the weaker
condition b0 ∈ Ln

loc (�) is not sufficient for the local Lipschitz continuity of the
weak solution.
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The principal part of the equation also depends on all variables (x, u, ξ) ∈
�×R×R

n and the growth assumptions for the variables (x, u) are (see the details
in (2.3), (2.6))

∣∣∣∣
∂ai

∂u

∣∣∣∣ � M

((
1 + |ξ |2

) p+q−4
4 + (1 + |u|)β−1

)
,

∣∣∣∣
∂ai

∂xs

∣∣∣∣ � M (|u|)
(
1 + |ξ |2

) p+q−2
4

, (1.11)

for x ∈ �, 0 � β <
n(p−1)
n−p =: (p − 1) p∗

p (when p < n) and for every ξ ∈ R
n ,

i, s = 1, 2, . . . , n.With respect to the x-dependencewe could expect amore general
assumption depending on a Sobolev summability; for instance of the type

∣∣∣∣
∂ai

∂xs

∣∣∣∣ � M (x, |u|)
(
1 + |ξ |2

) p+q−2
4

,

where, for |u| � L with L fixed, M ∈ Lr
loc (�) for some r > n. In this case we

believe that the localLipschitz continuity of theweak solution should be provedwith
a boundon the ratioq/p as in (1.4) depending on r too; precisely q

p < 1+ 1
n− 1

r . This
Lebesgue summability was introduced in a simpler context by Eleuteri-Marcellini-
Mascolo [33] and later considered by DeFilippis-Mingione [24] too. Note that
(1.11)2 corresponds to r = +∞.

This research takes its origin from the authors’ papers [17,55], where the local
boundedness and the local Lipschitz continuity of weak solutions of the Equa-
tion (1.1) was studied, although with different assumptions in the two cases. The
effort here was to find a unique set of assumptions to get all these regularity prop-
erties at the same time; in the meantime we also found the way to treat a more
general context. The final regularity results, the local Lipschitz continuity and the
higher differentiability, are stated in Section2; the starting step for these regularity
results, that is the local boundedness of the weak solutions, is stated and proved in
Section4.

In our opinion a relevant application of the regularity results proved in this
manuscript relies in the authors’ forthcoming paper [18], devoted to the existence—
in the sense of Leray-Lions [43]—ofweak solutionsW 1,q (�) to theDirichlet prob-
lem associated to the elliptic differential Equation (1.1): an aspect which requires
particular attention due to the p,q-context when q �= p, with some differences and
new difficulties compared to the standard case p = q, andwith a crucial application
of the local regularity estimates obtained here.

2. Main Results

2.1. Assumptions

We study the elliptic Equation (1.1) under the following general growth con-
ditions on the gradient variable ξ = Du, named p, q-conditions. In order to state
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the assumptions on vector field a = a (x, u, ξ) = (ai (x, u, ξ)
)
i=1,...,n , we start by

the ellipticity, valid for some exponents p, q (2 � p � q), a constant m > 0 and,
for every λ, ξ ∈ R

n , (x, u) ∈ � × R,

n∑

i, j=1

∂ai

∂ξ j
λiλ j � m

(
1 + |ξ |2

) p−2
2 |λ|2 . (2.1)

For the same p, q, (x, u, ξ) ∈ � × R × R
n and for all i, j = 1, 2, . . . , n we

consider the growth conditions, for a constant M > 0,

∣∣∣∣
∂ai

∂ξ j

∣∣∣∣ � M(1 + |ξ |2) q−2
2 + M |u|α , (2.2)

∣∣∣∣
∂ai

∂u

∣∣∣∣ � M(1 + |ξ |2) p+q−4
4 + M (1 + |u|)β−1 , (2.3)

0 � α < (q − 2) p∗
p and 0 � β < (p − 1) p∗

p (2.4)

(if q = 2 the first condition in (2.4) has to be read as α = 0), where, as usual,
p∗ := np

n−p if p < n. If p � n the conditions (2.4) simply reduces to α, β � 0,
since in this case p∗ is an arbitrary real number greater than p that we will assume
satisfy (4.3); see Section4 for more details.

Moreover, for every open set�′, whose closure is contained in�, and for every
L > 0, there exists a positive constant M (L) (depending on �′ and L) such that,
for every x ∈ �′, ξ ∈ R

n and for |u| � L ,

∣∣∣∣
∂ai

∂ξ j
− ∂a j

∂ξi

∣∣∣∣ � M (L) (1 + |ξ |2) p+q−4
4 , (2.5)

∣∣∣∣
∂ai

∂xs

∣∣∣∣ � M (L) (1 + |ξ |2) p+q−2
4 , (2.6)

i, j, s = 1, 2, . . . , n. We also assume that

|a (x, 0, 0)| ∈ Lγ
loc(�), ∀ i = 1, 2, . . . , n (2.7)

for an exponent γ > max
{ n
p−1 ; p

p−1

}
. In particular (2.7) is satisfied if a (x, 0, 0)

is a constant vector, or more generally if it is locally bounded in �.
The Carathéodory function b (x, u, ξ) in the right hand side of (1.1), b : � ×

R × R
n → R, for a nonnegative constant M satisfies the condition

|b (x, u, ξ)| � M
(
1 + |ξ |2

) p+q−2
4 + M |u|δ−1 + b0 (x) (2.8)

for almost every x ∈ �, for the same exponents p, q, for 1 � δ < p∗ (see (4.4))
and for b0 ≥ 0, b0 ∈ Ls0

loc (�) with s0 > n (see (5.18), (5.21)).
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2.2. Discussion and Statement of a First Regularity Result

In the context of general growth conditions it is necessary to specify the func-
tional class where to look for weak solutions. For instance, if we are studying a
double phase equation as in (1.7), then this class can be defined by the functions in
W 1,1

loc (�) which make finite the energy integral (1.6), or in the degenerate case the
integral in (1.5) which turns out to be an equivalent condition. More generally, if
the differential equation is the Euler’s first variation of an energy integral, then the
natural class of functions where to look for a minimizer is the class which makes
finite the energy integral. More difficult is the general case of a differential equation
which is not the Euler’s first variation of an integral, like in the context considered
in this manuscript.

Under p,q-growth conditions with p � q the Sobolev class W 1,q
loc (�) is the

natural class where to look for solutions; see Definition 4.1 below, see also [55,
Section 3.1] for a discussion about this aspect. At this stage we also use the summa-
bility b0 ∈ Lq′

loc (�), which is consequence of the assumption b0 ∈ Ls0
loc (�) with

s0 > n; in fact, since q � 2, s0 > n � 2 � q
q−1 =: q ′. We note that in some

cases, by using the a-priori regularity result in W 1,∞
loc (�), we can also show the

existence of weak solutions of the associated Dirichlet problems in the Sobolev
class W 1,p (�) ∩W 1,q

loc (�); see [49, Section 4], [14,18,33]. When the differential
equation is the Euler’s first variation of an energy integral then we can look directly
to minimizers. In this case we refer for instance to the higher integrability results
for minimizers of energy integrals in [51, Theorem 2.1 and Remark 2.1] and in the
well known article by Esposito-Leonetti-Mingione [36].

A main step in the proof of the following Theorem 2.1 is the local boundedness
result for the weak solution obtained in Section4. Therefore we adopt here the
bound in (4.2)

q
p < 1 + 1

n . (2.9)

However, if the weak solution u to the PDE (1.1) is a-priori also locally bounded,
that is if a-priori u ∈ W 1,q

loc (�) ∩ L∞
loc (�), then Theorem 2.1 also holds under the

bound q
p < 1 + 2

n instead of (2.9); see [55, Theorem 3.3].
Addendum to the updated version of this manuscript: We thank the referee for

her/his careful reading of the manuscript. She/he suggested to emphasize the way
of choosing the Sobolev class where to look for solutions. We already described
above in this section some details, in particular wementioned the Sobolev classes of
functions in W 1,1

loc (�) with “finite energy”, and W 1,q
loc (�). To make the distinction

even clearer let us consider an integral of the calculus of variations to minimize,
for instance of the simplest type

u ∈ W 1,1
loc (�) →

∫

�

f (Du) dx, (2.10)

where f : R
n → R is a given convex function. If f is bounded from below

the integral in (2.10) is well defined, possibly with value +∞. If f is coercive
with power p > 1, that is f (ξ) � c |ξ |p for some positive constant c and for some
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exponent p > 1, then for any bounded open set� the direct methods of the calculus
of variations immediately show the existence of a minimizer in W 1,p

0 (�) + u0,
as soon as it has been fixed u0 ∈ W 1,p (�) with finite energy, that is such that
f (Du0) ∈ L1 (�). Therefore, in this simpler context the natural class where to
look for local minimizers is u ∈ W 1,p

loc (�) with f (Du) ∈ L1
loc (�), which by the

coercivity assumption is equivalent to u ∈ W 1,1
loc (�) and f (Du) ∈ L1

loc (�). This
was the approach adopted in [51, Theorem 2.1], one of the first regularity results—
maybe the first after [48]—for minimizers under general growth conditions; there
some more general growth conditions were considered, such as exponential growth
too. In the special case of p,q-growth, it was proved [51, Remark 2.1] that if
q/p < 1 + 2/n, then every local minimizer of (2.10) u ∈ W 1,1

loc (�), with finite
energy f (Du) ∈ L1

loc (�), is locally Lipschitz continuous in�. See also the article
[36] already cited above. Many relevant regularity results have been obtained when
the variational problem is governed by an energy integral as in (2.10). An example
is given by the anisotropic case, when the energy integral (2.10) assumes the form

∫

�

{
|Du|p +

∑

i∈I

∣∣uxi
∣∣pi
}

dx, I ⊂ {1, 2, . . . , n} ,

where I can be any proper not empty subset of {1, 2, . . . , n}, all pi � 1 and
q = max {pi : i ∈ I } � p. In this case the energy integrand f (ξ) = |ξ |p +∑

i∈I |ξi |pi satisfies p,q-growth; the natural Sobolev space where to look for local
minimizers is defined by the condition f (Du) = |Du|p+∑i∈I

∣∣uxi
∣∣pi ∈ L1

loc (�)

and explicitly gives the functional set
{
u ∈ W 1,p

loc (�) : uxi ∈ L pi ∀ i ∈ I
}
; a first

regularity result for this anisotropic growth was obtained in [48], but of course [51,
Theorem2.1] applies too. Similarly, for functions f = f (x, ξ)with x-dependence,
for instance related to the so-called double phase integrals as in (1.5), (1.6), where
the natural Sobolev class of functions u with finite energy is u ∈ W 1,p

loc (�) with
f (x, Du) � |Du|p + a (x) |Du|q ∈ L1

loc (�); see the relevant papers [2,12]
and more recently [25,28,33] under some more general conditions, noting that
sometimes also a relaxed energy functional comes into play.

Different is the case considered in this manuscript, when u is a weak solution
to a differential equation which does not admit a corresponding energy functional.
Unless the differential equation has a special structure and/or is the Euler’s first
variation of a functional, in general under p, q−growth conditions an optimal class
where to look for solutions is an open problem if p �= q. Imagine for instance to
start again by minimizing the energy integral (2.10) in the class W 1,p

0 (�) + u0
by assuming that c1 |ξ |p � f (ξ) � c2

(
1 + |ξ |q) for some c1, c2 > 0, p > 1

and u0 ∈ W 1,p (�), f (Du0) ∈ L1 (�); let us denote by u ∈ W 1,p
0 (�) + u0 a

minimizer obtained by the direct methods of the calculus of variations. Now the
question is: does u is a weak solution to the related Euler’s equation? By the bound
f (ξ) � c2

(
1 + |ξ |q) and the Lebesgue dominated convergence theorem, if q = p

the answer is positive. But if q > p the answer is: it depends, in general we do
not know. The weak formulation in this general context could be meaningless, the
pairings could be not well defined. A correct sufficient condition for u to be a
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weak solution of the Euler’s equation is to belong to W 1,q
loc (�). We hope, we are

confident that W 1,q
loc (�) is a sharp Sobolev class for a general situation. See the

Definition 4.1 below for details, see also [49], [55, Section 3.1]. However existence
in W 1,q

loc (�) of weak solutions to the elliptic Equation (1.1) does not come for
free; that is, if q �= p it is not a direct consequence of the classical existence
theorems in functional analysis. However, if the vector field

(
ai (x, u, ξ)

)
i=1,...,n in

the Equation (1.1) does not explicitly depend on u, also if the differential equation
is not the Euler’s first variation of a functional, it is possible (see [49, Theorem
4.1], [14]) to give conditions for existence of weak solutions in the classW 1,q

loc (�).
With u-dependence the regularity results of Theorems 2.1, 2.2 below have been
used by the authors in [18] as a main ingredient to existence of weak solutions in
W 1,p

0 (�)∩W 1,q
loc (�), in the spirit of the celebrated Leray-Lions existence theorem

[43], proved by Jean Leray and Jacques-Louis Lions in 1965 for the case q = p.
Here is one of our regularity results with u-dependence:

Theorem 2.1. Under the ellipticity and growth conditions (2.1)–(2.8), if the ex-
ponents q � p � 2 satisfy the bound q

p < 1 + 1
n , then every weak solution

u ∈ W 1,q
loc (�) to the differential Equation (1.1) is of class W 1,∞

loc (�) ∩ W 2,2
loc (�).

Moreover, for every open set �′ compactly contained in �, there exist constants
c, c′, α0, γ > 0 (depending on the L∞ (�′) norm of u and on the data, but not on
u) such that, for every � and R with 0 < � < R and BR(x0) ⊂ �′,

‖Du‖L∞(B�;Rn) �
(

c

(R − �)n

∫

BR

(1 + |Du|2) p
2 dx

) α0
p

=
for n>2

(
c

(R − �)n

∥∥∥(1 + |Du|2) 1
2

∥∥∥
p

L p(BR)

) 2
(n+2)p−nq

. (2.11)

For the n × n matrix D2u of the second derivatives of u the following estimates
hold:

∫

B�

∣∣∣D2u
∣∣∣
2
dx � c

(R − �)2

∫

BR

(
1 + |Du|2

) q
2
dx (2.12)

� c′

(R − �)2

(
1

(R − �)γϑ(q−p)

∫

BR

(1 + |Du|2) p
2 dx

) α0q
ϑp

.

The explicit expression of α0 in the gradient bound (2.11) is given by

α0 := ϑ
p
q

1 − ϑ(1 − p
q )

=
for n>2

2p

(n + 2) p − nq
, (2.13)

where ϑ � 1 is the value ϑ := 2∗−2
2∗ p

q −2
=

forn>2

2q
np−(n−2)q and γ = n

qϑ . Note that

α0 � 1 (in fact ϑ
p
q � 1 − ϑ(1 − p

q ) = 1 − ϑ + ϑ
p
q is equivalent to ϑ � 1) and,

for the same reason, α0 = 1 if and only if ϑ = 1, which is equivalent to q = p.
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2.3. Statement of a Second Regularity Result

We may look for a W 1,∞
loc (�)− regularity result when in the above growth as-

sumptions the average exponent p+q
2 , middle point between p and q, is replaced by

q; in this case—a priori—we consider less restrictive assumptions. More precisely,
in view of the next Theorem 2.2, compared with Section2.1 we now have the less
restrictive growth conditions (obtained when in (2.3), (2.6), (2.8) p+q

2 is replaced
by q)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣ ∂a
i

∂ξ j

∣∣∣ � M
(
1 + |ξ |2)

q−2
2 + M |u|α

∣∣∣ ∂a
i

∂u

∣∣∣ � M
(
1 + |ξ |2)

q−2
2 + M (1 + |u|)β−1

∣∣∣ ∂a
i

∂xs

∣∣∣ � M (L)
(
1 + |ξ |2)

q−1
2

∣∣ai (x, 0, 0)
∣∣ ∈ Lγ

loc(�)

|b (x, u, ξ)| � M
(
1 + |ξ |2)

q−1
2 + M |u|δ−1 + b0 (x)

(2.14)

for every ξ ∈ R
n , i, j, s = 1, 2, . . . , n, u as before. The parameters satisfy the

bounds
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 � α < (2q − p − 2) p∗
p

0 � β < (p − 1) p∗
p

γ > max
{ n
p−1 ; p

p−1

}

1 � δ < p∗
b0 ∈ Ls0

loc (�) , s0 > n.

(2.15)

When in (2.5) we replace p+q
2 by q we get

∣∣∣ ∂a
i

∂ξ j
− ∂a j

∂ξi

∣∣∣ � M (L) (1 + |ξ |2) q−2
2 ;

we do not need to state it among the other growth assumptions, since this time it is
automatically satisfied as consequence of (2.14)1 when |u| � L .

Aswe said above, the next theoremholdswith the growth assumptions in (2.14),
which are less restrictive than those of Theorem 2.1, however with a stronger a-
priori summability condition on the weak solution u, a more restrictive bound for
α in (2.15)1 and for the quotient q

p .

Theorem 2.2. Under the ellipticity (2.1) and the p, q-growth conditions (2.14),
(2.15), if q � p � 2 satisfy the bound q

p < 1 + 1
2n , then every weak solution

u ∈ W 1,2q−p
loc (�) to the elliptic Equation (1.1) is of class W 1,∞

loc (�) ∩ W 2,2
loc (�)

and, for every open set �′ whose closure is contained in �, there exist constants
c, α1, R0 > 0 (depending on the L∞ (�′) norm of u and on the data, but not on u)
such that, for every � and R with 0 < � < R and BR(x0) ⊂ �′,

‖Du‖L∞(B�;Rn) �
(

c

(R − �)n

∫

BR

(
1 + |Du|2

) p
2
dx

) α1
p

=
for n>2

(
c

(R − �)n

∥∥∥∥
(
1 + |Du|2

) 1
2

∥∥∥∥
p

L p(BR)

) 1
(n+1)p−nq

. (2.16)
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Moreover the L2-local estimates (2.12) for thematrix D2u of the second derivatives
hold when we replace q by 2q − p.

The exponent α1 in (2.16), when n > 2, is given by

α1 := p

(n + 1) p − nq
. (2.17)

Similarly to α0 in (2.13), α1 is also equal to 1 if and only if q = p; note that α1
is well defined as a positive real number since (n + 1) p − nq > 0, being this
equivalent to the bound: q

p < 1 + 1
n . We recall again that Theorem 2.2 holds for

general differential Equation (1.1) without the symmetric assumption ∂ai
∂ξ j

= ∂a j

∂ξi
.

Remark 2.3. If a-priori we know that the weak solution is locally bounded, then
Theorem 2.1 also holds under the weaker bound q

p < 1 + 2
n , while Theorem 2.2

also holds under the bound q
p < 1 + 1

n . The reason relies on the fact that in this
case it is not necessary to apply the local boundedness result of Theorem 4.2 and
we can modify and adapt the method in [55] to the context considered here.

2.4. The Classical Case Under the So-called Natural Growth Conditions

Finally we observe that all the results of this paper hold in the particular case
q = p, when the bound q

p < 1+ 1
n in (2.9) of course is satisfied. When q = p the

statements of the two Theorems 2.1 and 2.2 coincide each other; the ellipticity (2.1)
and the growth conditions (2.14), (2.15) can be read with q = p for the validity of
the regularity in W 1,∞

loc (�) ∩ W 2,2
loc (�) of the weak solutions u ∈ W 1,p

loc (�) to the
elliptic Equation (1.1). We already observed that in the gradient estimate (2.11) the
exponent α0, defined in (2.13), is greater than or equal to 1 and α0 = 1 if and only
if q = p. Therefore in this case the L∞-gradient local bound (2.11) for u takes the
form

‖Du‖L∞(B�;Rn) �
(

c

(R − �)n

∫

BR

(1 + |Du|2) p
2 dx

) 1
p

, (2.18)

while the L2 (�)-local bound for the n × n matrix D2u of the second derivatives
of u is

∫

B�

∣∣∣D2u
∣∣∣
2
dx � c

(R − �)2

∫

BR

(1 + |Du|2) p
2 dx . (2.19)

3. Linking Lemma

As before we use the notation a (x, u, ξ) = (ai (x, u, ξ)
)
i=1,...,n ; moreover, as

usual, (a (x, u, ξ) , ξ) is the scalar product in Rn of a (x, u, ξ) and ξ .
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Lemma 3.1. Under the ellipticity condition (2.1), the order-one growth conditions
(2.2), (2.3), the bounds 2 � p � q < p + 2, 0 � α < (q − 2) p∗

p (α = 0 if

q = 2) and 0 � β < (p − 1) p∗
p , the following coercivity and zero-order growth

conditions hold:

(1) For some positive constants c1, c2 and for all x ∈ �, u ∈ R and ξ ∈ R
n

(a (x, u, ξ) , ξ) � c1 |ξ |p − c2 (1 + |u|)θ − b1 (x) , (3.1)

with

θ := max
{ 2p
p−q+2 , β

p
p−1

}
(3.2)

andb1 (x) := const ·{1+|a (x, 0, 0)| p
p−1
} ∈ L

γ
p−1
p

loc withγ > max
{ n
p−1 ; p

p−1

}
;

(2) For some positive constants c3, c4 and for all x ∈ �, u ∈ R, ξ ∈ R
n

|a (x, u, ξ)| � c3 |ξ |q−1 + c4 (1 + |u|)λ + b2 (x) , (3.3)

where λ, when q > 2, is given by

λ := max
{
2 q−1
q−p+2 ; β; α

q−1
q−2

}
, (3.4)

while if q = 2, then λ := max {1; β}; moreover b2 (x) := |a (x, 0, 0)| ∈ Lγ
loc.

We recall that γ is defined in (2.7) and the summability condition here is the
same as that one in the following Section, with s1 := γ

p−1
p > 1 and Lγ (p−1)/p

loc =
Ls1
loc, s1 > n

p .

Proof. We start proving (1). We first observe that, for every ε > 0, by Young’s
inequality with conjugate exponents p

p−1 and p,

|(a (x, 0, 0) , ξ)| � |a (x, 0, 0)| |ξ | � p−1
p ε

− p
p−1 |a (x, 0, 0)| p

p−1 + 1
p ε p |ξ |p .

(3.5)

Moreover, with the component notation ξ = (ξi )i=1,...,n , we have

(a (x, u, ξ) , ξ) − (a (x, 0, 0) , ξ)

=
n∑

i=1

{
ai (x, u, ξ) − ai (x, 0, 0)

}
ξi

=
∫ 1

0

d

dt

n∑

i=1

ai (x, tu, tξ) ξi dt

=
∫ 1

0

⎧
⎨

⎩

n∑

i=1

aiu (x, tu, tξ) ξi u +
n∑

i, j=1

aiξ j (x, tu, tξ) ξiξ j

⎫
⎬

⎭ dt. (3.6)
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By the growth condition (2.3) and the ellipticity assumption (2.1) we get that

(a (x, u, ξ) , ξ) − (a (x, 0, 0) , ξ)

�
∫ 1

0

{
−nM

((
1 + |tξ |2

) p+q−4
4 |ξ | |u| + |ξ | (1 + |u|)β

)

+m
(
1 + |tξ |2

) p−2
2 |ξ |2

}
dt

=
∫ 1

0

{
−nM

((
1 + |tξ |2

) p−2
4 |ξ |

(
1 + |tξ |2

) q−2
4 |u| + |ξ | (1 + |u|)β

)

+ m
(
1 + |tξ |2

) p−2
2 |ξ |2

}
dt

�
∫ 1

0

{
−nM

(
ε2

2

(
1 + |tξ |2

) p−2
2 |ξ |2 + 1

2ε2

(
1 + |tξ |2

) q−2
2 |u|2

+ |ξ | (1 + |u|)β)+ m
(
1 + |tξ |2

) p−2
2 |ξ |2

}
dt.

For ε > 0 sufficiently small we deduce that there exists a constant c > 0 such that

(a (x, u, ξ) , ξ) − (a (x, 0, 0) , ξ)

�
∫ 1

0

{
−c
(
1 + |tξ |2

) q−2
2 |u|2 − nM |ξ | (1 + |u|)β

+m
2

(
1 + |tξ |2

) p−2
2 |ξ |2

}
dt. (3.7)

Let us first consider the case q > 2. In the first addendum we take t = 1 and
we apply Young’s inequality with conjugate exponents p

q−2 and p
p−q+2 (here we

use the assumption q < p + 2), while in the second addendum we consider the
conjugate exponents p and p

p−1 :

(a (x, u, ξ) , ξ) − (a (x, 0, 0) , ξ) � − c q−2
p ε

p
q−2

(
1 + |ξ |2

) p
2

− c p−q+2

pε
p

p−q+2
(1 + |u|) 2p

p−q+2

− nM
p ε p |ξ |p − nM(p−1)

p ε
p

p−1
(1 + |u|)β p

p−1

+ m
2 |ξ |2

∫ 1

0

(
1 + |tξ |2

) p−2
2

dt. (3.8)

If we “just forget 1+” we have

m
2 |ξ |2

∫ 1

0

(
1 + |tξ |2

) p−2
2

dt � m
2 |ξ |p

∫ 1

0
t p−2dt = m

2(p−1) |ξ |p . (3.9)



60 Page 16 of 45 Arch. Rational Mech. Anal. (2024) 248:60

Moreover, for θ defined in (3.2) θ := max
{

2p
p−q+2 ; β

p
p−1

}
,wehave (1 + |u|)β p

p−1 +
(1 + |u|) 2p

p−q+2 � 2 (1 + |u|)θ . Therefore, for ε > 0 sufficiently small, taking into
account (3.5), (3.8), (3.9) we obtain the statement in (1).

Finally, if q = 2 then p = 2. The inequality (3.7) implies

(a (x, u, ξ) , ξ) − (a (x, 0, 0) , ξ) � −c (1 + |u|)2 − nM
2 ε2 |ξ |2

− nM
2 ε2

(1 + |u|)2β + m
2 |ξ |2 ,

and we obtain the statement in (1) also in this case.
To prove (3.3) in (2) we fix i ∈ {1, 2, . . . , n} and we consider assumptions (2.2)

and (2.3). We get

∣∣∣ai (x, u, ξ) − ai (x, 0, 0)
∣∣∣ =

∣∣∣∣
∫ 1

0

d

dt
ai (x, tu, tξ) dt

∣∣∣∣

=
∣∣∣∣∣∣

∫ 1

0

⎧
⎨

⎩a
i
u (x, tu, tξ) u +

n∑

j=1

aiξ j (x, tu, tξ) ξi

⎫
⎬

⎭ dt

∣∣∣∣∣∣

� M
(
(1 + |ξ |2) p+q−4

4 |u| + (1 + |u|)β
)

+ nM
(
(1 + |ξ |2) q−2

2 + 1
2 + |ξ | |u|α

)
. (3.10)

Again, let us first consider the case q > 2. Similarly as before, we use Young’s
inequality with conjugate exponents 2 q−1

p+q−4 and 2 q−1
q−p+2 in the first addendum

and with conjugate exponents q − 1 and q−1
q−2 in the last addendum. We obtain

∣∣∣ai (x, u, ξ) − ai (x, 0, 0)
∣∣∣

� M

(
1
2
p+q−4
q−1

(
1 + |ξ |2

) q−1
2 + 1

2
q−p+2
q−1 |u|2 q−1

q−p+2 + (1 + |u|)β
)

+ nM
(
1 + |ξ |2

) q−1
2 + nM

(
1

q−1 |ξ |q−1 + q−2
q−1 |u|α q−1

q−2

)

≤ c(M, n, p, q)

{(
1 + |ξ |2

) q−1
2 + (1 + |u|)λ

}
(3.11)

with λ in (3.4), that is λ := max
{
2 q−1
q−p+2 ; β; α

q−1
q−2

}
, and (3.3) follows.

When q = 2 then p = 2, α = 0. The inequality (3.10) says that
∣∣∣ai (x, u, ξ) − ai (x, 0, 0)

∣∣∣ � M
(|u| + (1 + |u|)β)+ nM

(
(1 + |ξ |2) 1

2 + |ξ |
)

� 2nM(1 + |ξ |2) 1
2 + 2M (1 + |u|)max{1,β} .

The final inequality (3.3) follows. ��
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4. Local Boundedness

In this section we prove a local boundedness result for weak solutions to the
elliptic Equation (1.1). First we recall the definition of weak solution. In fact, in the
context of p,q-growth conditions, 1 < p � q, it is necessary to use some care in
choosing the Sobolev class where to look for solutions; for a discussion about this
aspect see [55, Section 3.1], our previous Section2.2 and Remark 4.3 below. In the
following Definition 4.1 we look for solutions in the Sobolev class W 1,q

loc (�).

Definition 4.1. A function u ∈ W 1,q
loc (�) is a weak solution to (1.1) if

∫

�

{
n∑

i=1

ai (x, u, Du)ϕxi + b(x, u, Du)ϕ

}
dx = 0 (4.1)

for all ϕ ∈ W 1,q(�) with suppϕ � �.

Our aim in this section is to give conditions on the vector field a (x, u, ξ) =(
ai (x, u, ξ)

)
i=1,...,n and on the right hand side b (x, u, ξ)which guarantee the local

boundedness of all the weak solutions u to (4.1). Since a-priori u ∈ W 1,q
loc (�), then

u is also locally bounded in � when q > n, as a well known consequence of
the Sobolev-Morrey embedding theorem. Therefore, for the local boundedness, we
could limit ourselves in this section to consider the case p � q � n. However we
adopt the more general framework p, q ∈ R, p � q with the aim to get a final local
L∞-bound for u without upper restrictions on p, q, other than the natural bound
on the ratio q/p in (4.2) below.

In order to obtain a local boundedness result for the weak solutions of (1.1)
we consider the assumptions of Section2.1 and their consequences as stated in
Lemma 3.1. However it could be useful to list explicitly here the hypotheses on the
Carathéodory functions a : � × R × R

n → R
n and b : � × R × R

n → R which
we use for the local boundedness, assumptions which sometimes are less restrictive
than those of Section2.1 above. These coercivity and growth assumptions are stated
in terms of some parameters p, q, λ, θ, δ, s0, s1, s2. About p, q, we assume p > 1
and

on the ratio q
p � 1: q

p < 1 + min
{ 1
n , 1

p

}
. (4.2)

Before writing the bounds of the other parameters, we remind that p∗ denotes the
Sobolev exponent appearing in the Sobolev embedding theorem for functions in
W 1,p(�) with � bounded open set in Rn ; that is p∗ := np

n−p if p < n and p∗ equal
any fixed real number greater than p if p � n. In particular, if p � n we assume
s0, s1, s2 > 1 and, without loss of generality, we choose

p∗ > max
{

p
p−q+1 ; λp

q−1 ; θ; δ; ps0
s0−1 ; ps1

s1−1 ; ps2
s2−1

}
. (4.3)
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If p < n the conditions on the exponents λ, θ, δ, s0, s1, s2 which we consider
for the local boundedness of the weak solutions are

on θ � 0 and δ � 1: θ, δ <
np
n−p =: p∗; (4.4)

on λ � 0: λ < (q − 1) p∗
p ; (4.5)

on s0 and s1: s0, s1 > n
p ; (4.6)

on s2: s2 ≥ q
q−1 and s2 > n

p . (4.7)

We note, in particular, that s0, s1, s2 > 1.
In Section5 the parameters θ and λ will be linked to p, q, α, β as described in

(3.2) and (3.4); more precisely,

θ := max
{

2p
p−q+2 , β

p
p−1

}
, (4.8)

and, when q > 2,

λ := max
{
2 q−1
q−p+2 ; β; α

q−1
q−2

}
, (4.9)

while, if q = 2, then λ := max {1; β}.

4.1. Assumptions for the Local Boundedness

We start by (1), (2) in Lemma 3.1, in this slightly less restrictive form:

(i) There exist positive constants c1, c2, such that for almost every x ∈ � and
every u ∈ R and ξ ∈ R

n

(a (x, u, ξ) , ξ) � c1 |ξ |p − c2 (1 + |u|)θ − b1 (x) , (4.10)

with b1 � 0 and b1 ∈ Ls1
loc(�) (here s1 has the role stated in Lemma 3.1(1):

s1 = γ
p−1
p );

(ii) There exist positive constants c3, c4, such that for almost every x ∈ �, every
u ∈ R and ξ ∈ R

n

|a (x, u, ξ)| � c3 |ξ |q−1 + c4 (1 + |u|)λ + b2 (x) (4.11)

with b2 � 0 and b2 ∈ Ls2
loc(�) (here s2 has the role stated in Lemma 3.1(2):

s2 = γ );
(iii) For the same exponents p, q, for δ � 1 and for a positive constant M

|b (x, u, ξ)| � M
(
1 + |ξ |2

) p+q−2
4 + M |u|δ−1 + b0(x) (4.12)

with b0 � 0 and b0 ∈ Ls0
loc(�).



Arch. Rational Mech. Anal. (2024) 248:60 Page 19 of 45 60

4.2. Statement of the Local Boundedness Result

The next local boundedness Theorem 4.2, valid for weak solutions to the differ-
ential Equation (1.1), will be used also in the proof of the local Lipschitz continuity
Theorem 2.1.

Theorem 4.2. Let u ∈ W 1,q
loc (�) be a weak solution to (1.1) under the assumptions

(4.2)–(4.12). Consider 0 < R0 � 1 with BR0(x0) � �. Then there exists σ > 0,

with p∗−p
σ

� 1, such that

‖u‖L∞(Br/2(x0)) � c

r
p

σ(p−q+1)

(
1 + ‖u‖L p∗ (Br (x0))

) p∗−p
σ

(4.13)

for every positive r � R0, where the constant c depends on the Ls0 -norm of b0, the
Ls1 -norm of b1 in BR0 , the Ls2 -norm of b2 in BR0 and it is independent of u.

The explicit expression for σ in (4.13) is

σ := p∗ − max
{

p
p−q+1 ; λp

q−1 ; θ; δ; p∗
s2

+ 1; p∗
s0

+ 1; p∗
s1

}
, (4.14)

and we note that σ > 0; this is due to the bound (4.3) if p � n, and to the bounds
(4.2), (4.4), (4.5), (4.6) if p < n; in particularwe notice that p

p−q+1 < p∗ if and only
if q

p < 1 + 1
n , that is (4.2) holds, and, by (4.6) and (4.7), si > n

p = p∗
p∗−p >

p∗
p∗−1

for every i ∈ {0, 1, 2}. Moreover, p∗−p
σ

≥ 1, because p
p−q+1 ≥ p.

Remark 4.3. (about the summability condition on b) We discuss the summability
of the integral form (4.1) of the elliptic Equation (1.1), in particular the correctness
of the definition of the pairing

∫

�

b(x, u, Du) ϕ (x) dx . (4.15)

Since ϕ is a test function inW 1,q (�)with compact support in�, for the right hand
side b, satisfying the bound in (4.12), for the x-dependence it is natural to assume
the summability b0 ∈ Lq′

loc (�), with as usual 1
q + 1

q ′ = 1. This summability

b0 ∈ Lq′
loc (�) is a consequence of the assumption in (2.8) b0 ∈ Ls0

loc (�) with
s0 > n; in fact, since q � 2, s0 > n � 2 � q

q−1 =: q ′. However the local
boundedness result in Theorem 4.2 is obtained with the less restrictive bound in
(4.12) b0 ∈ Ls0

loc (�) with s0 > n
p . Therefore in this section still we need to

show that the pairing (4.15) is well defined. This fact is a consequence of the
imbedding of W 1,q

0 (�) into Lq∗
(�); in fact the test function ϕ ∈ Lq∗

(�) and

the integral (4.15) is also correctly defined if b0 ∈ L(q∗)′
loc (�). Let us show that

b0 ∈ Ls0
loc (�) ⊂ L(q∗)′

loc (�) when s0 > n
p and 1 � p < n. Since p � q then

p∗ � q∗ and

(q∗)′ � (p∗)′ = p∗
p∗−1 = np

np−n+p ;
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this last quantity is less than or equal to n
p if and only if p

np−n+p � 1
p , which is

equivalent to p2−(n + 1) p+n � 0; that is 1 � p � n. Therefore (q∗)′ � n
p < s0

and Ls0
loc (�) ⊂ L(q∗)′

loc (�).

If p = n the inclusion Ls0
loc (�) ⊂ L(q∗)′

loc (�) is trivially satisfied by assuming
q∗ large enough, in dependence of s0 > 1. If p > n the test functions are bounded,
therefore the pairing is well defined because b0 is locally summable.

As far as the u-dependence it is concerned, we remark that the definition of
the pairing is correct if |u|δ−1ϕ ∈ L1(�). Since, by Sobolev embedding Theorem

ϕ is in Lq∗
(�) with compact support in �, then we need u ∈ L

(δ−1) q∗
q∗−1

loc (�). By
Sobolev embedding Theorem u ∈ Lq∗

(�), therefore the needed summability for u
is satisfied if (δ − 1) q∗

q∗−1 ≤ q∗, or equivalently, δ ≤ q∗. This last condition holds,
because δ < p∗, see (4.4).

Weconcludebyconsidering theproduct |Du| p+q−2
2 ϕ thatwewant to be summable

in �. Reasoning as above, this happens if p+q−2
2

q∗
q∗−1 ≤ q. If q ≥ n it is sufficient

to choose q∗ large enough, since p < q + 2. If instead q < n then we observe that
p+q−2

2
q∗

q∗−1 ≤ q is consequence of p ≤ q.

Remark 4.4. (about the summability condition on a) We discuss the well posedness
of the pairing

∫

�

(a(x, u, Du), Dϕ (x)) dx . (4.16)

Since ϕ is a test function inW 1,q (�) with compact support in �, we need to prove
that a(x, u, Du) is locally in Lq ′

, with as usual 1
q + 1

q ′ = 1.

We use the inequality (4.11). By the Sobolev embedding theorem u ∈ Lq∗
loc,

with q∗ := nq
n−q if q < n; if instead q � n then q∗ is a real number greater than

q, that we can choose greater than q p∗
p . Therefore, to have the well posedness of

(4.16), we need |u|λ ∈ Lq ′
loc, that is λ � (q − 1) q

∗
q . This condition is satisfied

because p � q implies p∗
p � q∗

q and, by (4.5), λ < (q − 1) p∗
p � (q − 1) q

∗
q .

It remains to check if b2 ∈ Lq ′
loc; that is, we need to check if s2 ≥ q ′. This

condition is satisfied because of (4.7).
In Section5 we assume growth conditions on the derivatives of the vector field

a, under the assumptions 2 � p � q, that, as proved in Lemma 3.1(2), imply the
existence of some positive constants c3, c4 such that for all x ∈ �, u ∈ R, ξ ∈ R

n

|a (x, u, ξ)| � c3 |ξ |q−1 + c4 (1 + |u|)λ + b2 (x) , (4.17)

with b2 = |a(·, 0, 0)| and λ linked to the parameters in the assumptions on the
derivatives of a by the relationship (4.9). We claim that λ < (q − 1) p∗

p holds.

Indeed, λ < (q −1) p∗
p is equivalent to assume the following inequalities if q > 2:

2p
q−p+2 < p∗; β < (q − 1) p∗

p ; α < (q − 2) p∗
p ;
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otherwise, if q = 2, they reduce to p < p∗, β <
p∗
p . All these assumptions on α

and β are satisfied due to (2.4), while the condition on q follows because p � q
implies 2p

q−p+2 � p
p−q+1 and this last term is smaller than p∗, see (4.3) and (4.2).

We remark also that when we deal with the Lipschitz continuity we have s2 = γ .
Since γ > n

p−1 when p < n, then γ � q ′ too. Indeed, n
p−1 >

p
p−1 � q

q−1 .

Remark 4.5. (about an upper bound of θ ) In Section5 the parameter θ is as in (4.8);

that is θ := max
{

2p
p−q+2 , β

p
p−1

}
. We claim that θ < p∗. Indeed, if p ≥ n this

follows by choosing p∗ large enough, see (4.3). If p < n, it is easy to check that
if q

p < 1 + 2
n , thus in particular if (4.2) holds, then 2p

p−q+2 < p∗. Therefore the

conditions q
p < 1 + 2

n and β < (p − 1) p∗
p (see (2.4)) imply θ < p∗.

4.3. The Caccioppoli’s Inequality

We prove a Caccioppoli’s inequality for the weak solutions of (1.1) under the
assumptions stated in Section4.1.

Proposition 4.6. Let u ∈ W 1,q
loc (�) be a weak solution to (1.1) under the assump-

tions in Section4.1. Consider BR0(x0) � � and for every k ∈ R, k � 0, and every
R � R0 consider the super-level sets Ak,R := {x ∈ BR(x0) : u(x) > k}. Then
there exists c depending only on the data, but neither on u nor k, such that for every
ρ, R such that 0 < ρ < R � R0 � 1,

∫

Ak,ρ

|Du|p dx

� c

(R−ρ)
p

p−q+1

∫

Ak,R

(u − k)
p

p−q+1 dx

+ c
R−ρ

‖b2 + 1‖Ls2 (BR0 )‖u − k‖L p∗ (Ak,R)|Ak,R |1− 1
s2

− 1
p∗

+ c‖b0 + 1‖Ls0 (BR0 )‖u − k‖L p∗ (Ak,R)|Ak,R |1− 1
s0

− 1
p∗

+ c‖u − k‖λ
p

q−1

L p∗ (Ak,R)
|Ak,R |1−λ

p
p∗(q−1)

+ c ‖u − k‖θ

L p∗ (Ak,R)
|Ak,R |1− θ

p∗

+ c ‖u − k‖δ

L p∗ (Ak,R)
|Ak,R |1− δ

p∗ + c (1 + kτ )|Ak,R |
+ c‖b1‖Ls1 (BR0 )|Ak,R |1− 1

s1 , (4.18)

where

τ := max
{
λ

p
q−1 , θ, δ

}
. (4.19)

Proof. We split the proof into steps.
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Step 1 Consider BR0(x0) � �, 0 < ρ < R � R0 � 1. Let η ∈ C∞
0 (BR) be a

cut-off function, satisfying the following assumptions:

0 � η � 1, η ≡ 1 in Bρ(x0), |Dη| � 2
R−ρ

. (4.20)

For every k � 1 we define the test function ϕk as follows:

ϕk(x) := (u(x) − k)+[η(x)]μ for almost every x ∈ BR0(x0),

where (u(x) − k)+ = max{u(x) − k, 0} and

μ := p
p−q+1 . (4.21)

Notice that μ is greater than 1 because q > 1 and that ϕk ∈ W 1,q
0 (BR0(x0)),

supp ϕk � BR(x0).
Step 2 Let us consider the super-level sets: Ak,R := {x ∈ BR(x0) : u(x) > k}.
Using ϕk as a test function in (4.1) we get

I1 :=
∫

Ak,R

(a(x, u, Du), Du) ημ dx

= − μ

∫

Ak,R

(a(x, u, Du), Dη)ημ−1(u − k) dx

−
∫

Ak,R

b(x, u, Du)(u − k) ημ dx =: I2 + I3.

(4.22)

Now, we separately consider and estimate Ii , i = 1, 2, 3.

Estimate of I3. By (4.12) there exists c(M, p, q) positive constant such that

|b (x, u, ξ)| � c(M, p, q)
{
|ξ | p+q−2

2 + |u|δ−1 + b0(x) + 1
}

;

therefore

I3 � c(M, p, q)

∫

Ak,R

ημ
{
|Du| p+q−2

2 (u − k)

+|u|δ−1(u − k) + (b0 + 1)(u − k)
}
dx .

Weestimate the right-hand side using theYoung’s inequality,with exponents 2p
p+q−2

and 2p
p−q+2 . There exists c > 0, such that

c(M, p, q) |Du| p+q−2
2 (u − k)

� c1
4

|Du|p + c(u − k)
2p

p−q+2 almost everywhere in Ak,R,
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where c1 is the constant in (4.10). Therefore,

I3 � c1
4

∫

Ak,R

|Du|pημ dx

+ c
∫

Ak,R

ημ

{
(u − k)

2p
p−q+2 + |u|δ−1(u − k)

}
dx

+ c
∫

Ak,R

ημ(b0 + 1)(u − k) dx . (4.23)

Collecting (4.22), (4.23) and using (4.10), we get

3c1
4

∫

Ak,R

|Du|pημ dx � I2

+ c
∫

Ak,R

{
|u|θ + (u − k)

2p
p−q+2 + |u|δ−1(u − k) + (b0 + 1)(u − k) + b1

}
dx .

(4.24)

Estimate of I2. For almost every x ∈ Ak,R ∩ {η �= 0} we have, by (4.11),

|(a(x, u, Du), Dη)| � |Dη|
(
c3|Du|q−1 + 2λc4 |u|λ + b2 + 2λc4

)
,

where c3, c4 are the constants in (4.11). For almost every x ∈ Ak,R ∩ {η �= 0}, by
q < p+1, the Young’s inequality with exponents p

q−1 and
p

p−q+1 , and noting that,

by (4.21), μ − 1 = μ
q−1
p , we get

μc3|Du|q−1|Dη|(u − k)ημ−1 � c1
4

|Du|pημ + cμ
p

p−q+1 |Dη| p
p−q+1 (u − k)

p
p−q+1 .

Therefore,

I2 � c1
4

∫

Ak,R

|Du|pημ dx + cμ
p

p−q+1

∫

Ak,R

|Dη| p
p−q+1 (u − k)

p
p−q+1 dx

+ c
∫

Ak,R

|Dη|ημ−1 {|u|λ + b2 + 1
}
(u − k) dx .

By (4.24) and the inequality above, we get

c1
2

∫

Ak,R

|Du|pημ dx � c
∫

Ak,R

|Dη| p
p−q+1 (u − k)

p
p−q+1 dx

+ c
∫

Ak,R

|Dη| |u|λ (u − k) dx + c
∫

Ak,R

|u|δ−1(u − k) dx

+ c
∫

Ak,R

{
|u|θ + (u − k)

2p
p−q+2

}
dx + c

∫

Ak,R

|Dη|(b2 + 1)(u − k) dx

+ c
∫

Ak,R

(b0 + 1)(u − k) dx + c
∫

Ak,R

b1 dx . (4.25)
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We have |u|λ(u−k)+ � c
(|u − k|λ+1 + kλ(u − k)+

)
for some positive c depend-

ing only on p and q. By Young’s inequality with exponents p
q−1 and p

p−q+1 , we
obtain

∫

Ak,R

|Dη|(u − k)λ+1 dx � c
∫

Ak,R

|Dη| p
p−q+1 (u − k)

p
p−q+1 dx

+ c
∫

Ak,R

(u − k)λ
p

q−1 dx .

Analogously,

∫

Ak,R

|Dη|kλ(u − k) dx � c
∫

Ak,R

|Dη| p
p−q+1 (u − k)

p
p−q+1 dx + c

∫

Ak,R

kλ
p

q−1 dx .

Thus we get

∫

Ak,R

|Dη||u|λ(u − k) dx � c
∫

Ak,R

|Dη| p
p−q+1 (u − k)

p
p−q+1 dx

+ c
∫

Ak,R

{
(u − k)λ

p
q−1 + kλ

p
q−1

}
dx . (4.26)

For almost every x ∈ Ak,R |u|δ−1(u − k)+ � c(u − k)δ + ckδ and we get

∫

Ak,R

|u|δ−1(u − k) dx � c
∫

Ak,R

{
(u − k)δ + kδ

}
dx . (4.27)

Analogously, for almost every x ∈ Ak,R we have |u|θ � c(u−k)θ +ckθ ; therefore

∫

Ak,R

|u|θ dx � c
∫

Ak,R

(u − k)θ dx + ckθ |Ak,R |. (4.28)

By Hölder’s inequality, with exponents s2 and
s2

s2−1 , we get

∫

Ak,R

|Dη|(b2 + 1)(u − k) dx

� c

(∫

Ak,R

|Dη|
s2

s2−1 (u − k)
s2

s2−1 dx

)1− 1
s2

‖b2 + 1‖Ls2 (BR0 ).

Since u ∈ L p∗
(BR0) and

s2
s2−1 < p∗, by using the Hölder inequality with exponent

p∗ s2−1
s2

and (4.20),

(∫

Ak,R

|Dη|
s2

s2−1 (u − k)
s2

s2−1 dx

)1− 1
s2

� c
R−ρ

‖u − k‖L p∗ (Ak,R) |Ak,R |1− 1
s2

− 1
p∗ .
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We conclude that
∫

Ak,R

|Dη|(b2 + 1)(u − k) dx

� c
R−ρ

‖b2 + 1‖Ls2 (BR0 )‖u − k‖L p∗ (Ak,R)|Ak,R |1− 1
s2

− 1
p∗ . (4.29)

Analogously, by the integrability assumption on b0, b0 ∈ Ls0(BR0), and byHölder’s
inequality,

∫

Ak,R

(b0 + 1)(u − k) dx � c ‖b0 + 1‖Ls0 (BR0 ) ‖u − k‖L p∗ (Ak,R) |Ak,R |1− 1
s0

− 1
p∗ .

(4.30)

Of course,

∫

Ak,R

b1 dx � ‖b1‖Ls1 (BR0 )|Ak,R |1− 1
s1 . (4.31)

Let us denote τ as in (4.19); that is τ := max
{
λ

p
q−1 , θ, δ

}
; then kθ +kλ

p
q−1 +kδ �

3(1+ kτ ). Collecting this last inequality, (4.25)–(4.31) and using (4.20) we obtain

∫

Ak,ρ

|Du|p dx � c

(R−ρ)
p

p−q+1

∫

Ak,R

(u − k)
p

p−q+1 dx

+ c 1
R−ρ

‖b2 + 1‖Ls2 (BR0 )‖u − k‖L p∗ (Ak,R)|Ak,R |1− 1
s2

− 1
p∗

+ c ‖b0 + 1‖Ls0 (BR0 )‖u − k‖L p∗ (Ak,R)|Ak,R |1− 1
s0

− 1
p∗

+ c
∫

Ak,R

(
(u − k)λ

p
q−1 + (u − k)θ + (u − k)δ

)
dx

+ c (1 + kτ )|Ak,R | + c‖b1‖Ls1 (BR0 )|Ak,R |1− 1
s1 . (4.32)

Step 3 Consider

J := c
∫

Ak,R

(
(u − k)λ

p
q−1 + (u − k)θ + (u − k)δ

)
dx,

that is the last integral at the right hand side of (4.32). By the definitions of
p∗ and of τ , given in (4.19), by the assumptions (4.3), (4.2), (4.4), (4.5) we
conclude that τ < p∗. Therefore, Hölder’s inequality with exponent p∗ q−1

pλ
implies that

∫

Ak,R

(u − k)λ
p

q−1 dx � ‖u − k‖λ
p

q−1

L p∗ (Ak,R)
|Ak,R |1−λ

p
p∗(q−1) .
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Hölder’s inequality with exponent p∗
θ

gives

∫

Ak,R

(u − k)θ dx � ‖u − k‖θ

L p∗ (Ak,R)
|Ak,R |1− θ

p∗

and, using Hölder’s inequality with exponent p∗
δ
, we get

∫

Ak,R

(u − k)δ dx � ‖u − k‖δ

L p∗ (Ak,R)
|Ak,R |1− δ

p∗ .

Therefore

J � c ‖u − k‖λ
p

q−1

L p∗ (Ak,R)
|Ak,R |1−λ

p
p∗(q−1) + c ‖u − k‖θ

L p∗ (Ak,R)
|Ak,R |1− θ

p∗

+ c ‖u − k‖δ

L p∗ (Ak,R)
|Ak,R |1− δ

p∗ .

By this estimate, together with (4.32), we conclude that Caccioppoli’s inequality
(4.18) holds. ��

4.4. The Recursive Formula

Now we proceed towards the proof of our Theorem 4.2 by setting up the cele-
brated De Giorgi’s iterative method. In what follows, we tacitly understand that all
the assumptions and the notation introduced in the previous subsections do apply.

Let u ∈ W 1,q
loc (�) be a weak solution to (1.1). Fix a point x0 ∈ � and a real

R0 ∈ (0, 1] in such a way that

BR0(x0) � �. (4.33)

For every fixed R ∈ (0, R0], we then define the following (decreasing) sequences:

ρh := R
2

(
1 + 1

2h

)
and ρh := ρh+1+ρh

2 , h ∈ N ∪ {0}. (4.34)

Moreover, given any real number d � 1, we consider the (increasing) sequence

kh := d
(
1 − 1

2h+1

)
, h ∈ N ∪ {0}. (4.35)

Finally, we define a sequence (Jh)h�0 of non-negative numbers as follows:

Jh :=
∫

Akh ,ρh

(u − kh)
p∗
dx . (4.36)

Then the following result holds:
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Proposition 4.7. For every real number d � 1,

Jh+1 � c∗
( 1
R

) p∗
p−q+1

(
1 + ‖u‖p∗

L p∗ (BR)

) p∗
p max

{
1
s0

, 1
s1

, 1
s2

}

× 1

d
p∗
p σ

(
2

p∗
p p∗
)h

J
p∗
p

(
1−max

{
1
s0

, 1
s1

, 1
s2

})

h , (4.37)

where σ is defined in (4.14); that is,

σ := p∗ − max
{

p
p−q+1 ; λp

q−1 ; θ; δ; p∗
s2

+ 1; p∗
s0

+ 1; p∗
s1

}
,

and c∗ positive constant depending on the data, the Ls0 , Ls1 and the Ls2 norms in
BR0 of b0, b1, b2, respectively, but it is independent of u and d.

We notice that, by assumptions (4.3), (4.6), p∗
p

(
1 − max

{
1
s0

, 1
s1

, 1
s2

})
> 1.

Proof of Proposition 4.7. We explicitly observe that, since (ρh)h is decreasing and
(kh)h is increasing, the sequence (Jh)h is decreasing; in fact,

Jh+1 =
∫

Akh+1,ρh+1

(u − kh+1)
p∗
dx �

∫

Akh+1,ρh

(u − kh+1)
p∗
dx

�
∫

Akh+1,ρh

(u − kh)
p∗
dx �

∫

Akh ,ρh

(u − kh)
p∗
dx = Jh . (4.38)

Finally, by taking into account the definitions of Jh , kh and ρh , we have

Jh =
∫

Akh ,ρh

(u − kh)
p∗
dx �

∫

Akh+1,ρh

(u − kh)
p∗
dx

� (kh+1 − kh)
p∗ ∣∣Akh+1,ρh

∣∣ =
(

d

2h+2

)p∗ ∣∣Akh+1,ρh

∣∣.
(4.39)

Let (ηh)h�0 be a sequence inC
∞
c (R) such that (i) 0 � ηh � 1 onRn ; (ii) supp ηh ⊆

B(x0, ρh) and ηh ≡ 1 on B(x0, ρh+1); (iii) |Dηh | � 2h+4

R . In particular, ηh ≡ 1 on
Akh+1,ρh+1 , so we have

J
p
p∗
h+1 =

(∫

Akh+1,ρh+1

(u − kh+1)
p∗
dx

) p
p∗

�
(∫

B(x0,ρh)

(ηh(u − kh+1)+)p
∗
dx

) p
p∗

� C p
S

∫

B(x0,ρh)

∣∣D(ηh(u − kh+1)+)
∣∣p dx, (4.40)
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where cS is the Sobolev constant. We estimate the last integral
∫

B(x0,ρh)

∣∣D(ηh(u − kh+1)+)
∣∣p dx

�
∫

B(x0,ρh)

{
|Dηh | (u − kh+1)+ + ηh |Du| χAkh+1,ρh

}p
dx

� c

{(
2h+4

R

)p ∫

Akh+1,ρh

(u − kh+1)
p dx +

∫

Akh+1,ρh

|Du|p dx
}
. (4.41)

Collecting (4.40) and (4.41) we get

J
p
p∗
h+1 � c

{(
2h+4

R

)p ∫

Akh+1,ρh

(u − kh+1)
p dx +

∫

Akh+1,ρh

|Du|p dx
}
. (4.42)

To estimate the last integral in (4.42), we use Caccioppoli’s estimate (4.18) with
k = kh+1, ρ = ρh , R = ρh , thus obtaining
∫

Akh+1,ρh

|Du|p dx � c
(
2h+3

R

) p
p−q+1

∫

Akh+1,ρh

(u − kh+1)
p

p−q+1 dx

+ c 2
h+3

R ‖b2 + 1‖Ls2 (BR0 ) J
1
p∗
h |Akh+1,ρh |1−

1
s2

− 1
p∗

+ c ‖b0 + 1‖Ls0 (BR0 ) J
1
p∗
h |Akh+1,ρh |1−

1
s0

− 1
p∗

+ c J
λp

(q−1)p∗
h |Akh+1,ρh |1−

λp
(q−1)p∗ + c J

θ
p∗
h |Akh+1,ρh |1−

θ
p∗

+ c J
δ
p∗
h |Akh+1,ρh |1−

δ
p∗ + c (1 + kτ

h+1)|Akh+1,ρh |
+ c ‖b1‖Ls1 (BR0 )|Akh+1,ρh |1−

1
s1 . (4.43)

By (4.39) we get

∣∣Akh+1,ρh+1

∣∣ �
∣∣Akh+1,ρh

∣∣ �
(

2h+2

d

)p∗

Jh = 4p
∗
(

2h
d

)p∗

Jh . (4.44)

Collecting (4.43), (4.44), and using that kh+1 � d, we get
∫

Akh+1,ρh

|Du|p dx � c

(
2h+3

R

) p
p−q+1

∫

Akh+1,ρh

(u − kh+1)
p

p−q+1 dx

+ c 2h
R ‖b2 + 1‖Ls2 (BR0 )

(
4 2h

d

)p∗− p∗
s2

−1
J
1− 1

s2
h

+ c ‖b0 + 1‖Ls0 (BR0 )

(
4 2h

d

)p∗− p∗
s0

−1
J
1− 1

s0
h

+ c

⎧
⎨

⎩

(
4 2h

d

)p∗− λp
q−1 +

(
4 2h

d

)p∗−θ

+
(
4 2h

d

)p∗−δ

⎫
⎬

⎭ Jh

+ c (1 + dτ )

(
4 2h

d

)p∗

Jh + c ‖b1‖Ls1 (BR0 )

(
4 2h

d

)p∗− p∗
s1 J

1− 1
s1

h .

(4.45)
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We now estimate the integral at the right hand side:

∫

Akh+1,ρh

(u − kh+1)
p

p−q+1 dx

�
(∫

Akh+1,ρh

(u − kh+1)
p∗
dx

) p
p∗(p−q+1)

|Akh+1,ρh |1−
p

p∗(p−q+1) .

This, by (4.44), implies

∫

Akh+1,ρh

(u − kh+1)
p

p−q+1 dx � c

(
2h
d

)p∗(1− p
p∗(p−q+1)

)

Jh . (4.46)

Collecting (4.45), (4.46) and using kh+1 � d, we get

∫

Akh+1,ρh

|Du|p dx

� c

(
1
R

) p
p−q+1

(
1
d

)p∗(1− p
p∗(p−q+1)

)

2p
∗h Jh

+c ‖b2 + 1‖Ls2 (BR0 )
1
R

(
1
d

)p∗− p∗
s2

−1

2
p∗(1− 1

s2

)
h
J
1− 1

s2
h

+c ‖b0 + 1‖Ls0 (BR0 )

(
2h
d

)p∗− p∗
s0

−1

J
1− 1

s0
h

+c

⎧
⎨

⎩

(
2h
d

)p∗− λp
q−1 +

(
2h
d

)p∗−θ

+
(

2h
d

)p∗−δ

+ (1 + dτ )

(
2h
d

)p∗
⎫
⎬

⎭ Jh

+c‖b1‖Ls1 (BR0 )

(
2h
d

)p∗− p∗
s1
J
1− 1

s1
h , (4.47)

with a constant c dependingonn, p, q, λ, θ, δ, s0, s1, s2 and the embeddingSobolev
constant cS , but depending neither on d, h nor u. We now put together (4.42) and
(4.47); taking into account that Hölder’s inequality and (4.44) imply

∫

Akh+1,ρh

(u − kh+1)
p dx � c

(
2h
d

)p∗−p

Jh,
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we obtain

J
p
p∗
h+1 � c

⎛

⎝
(

1
R

)p(
1
d

)p∗(1− p
p∗
)

+
(

1
R

) p
p−q+1

(
1
d

)p∗(1− p
p∗(p−q+1)

)⎞

⎠ 2p
∗h Jh

+ c ‖b2 + 1‖Ls2 (BR0 )
1
R

(
1
d

)p∗− p∗
s2

−1

2
p∗(1− 1

s2

)
h
J
1− 1

s2
h

+ c ‖b0 + 1‖Ls0 (BR0 )

(
2h
d

)p∗− p∗
s0

−1

J
1− 1

s0
h

+ c

⎧
⎨

⎩

(
2h
d

)p∗− λp
q−1 +

(
2h
d

)p∗−θ

+
(

2h
d

)p∗−δ

+ (1 + dτ )

(
2h
d

)p∗
⎫
⎬

⎭ Jh

+ ‖b1‖Ls1 (BR0 )

(
2h
d

)p∗(1− 1
s1

)

J
1− 1

s1
h .

Notice that Jh � ‖u‖p∗
L p∗ (BR)

for every h ∈ N, so that

max{Jh; J
1− 1

s0
h ; J

1− 1
s1

h ; J
1− 1

s2
h }

� (1 + ‖u‖p∗
L p∗ (BR)

)
max
{

1
s0

, 1
s1

, 1
s2

}
J
1−max

{
1
s0

, 1
s1

, 1
s2

}

h .

Therefore

J
p
p∗
h+1 � c (1 + ‖u‖p∗

L p∗ (BR)
)
max
{

1
s0

, 1
s1

, 1
s2

} (
1 + ‖b2 + 1‖Ls2 (BR0 )

+‖b0 + 1‖Ls0 (BR0 ) + ‖b1‖Ls1 (BR0 )

)
×

×
{((

1
R

)p(
1
d

)p∗−p

+
(

1
R

) p
p−q+1

(
1
d

)p∗− p
p−q+1

)
2p

∗h

+ 1
R

(
1
d

)p∗− p∗
s2

−1

2
p∗(1− 1

s2

)
h +

(
2h
d

)p∗− p∗
s0

−1

+
(

2h
d

)p∗− λp
q−1 +

(
2h
d

)p∗−θ

+
(

2h
d

)p∗−δ

+ (1 + dτ )

(
2h
d

)p∗

+
(

2h
d

)p∗− p∗
s1

⎫
⎬

⎭ J
1−max

{
1
s0

, 1
s1

, 1
s2

}

h . (4.48)

We now majorize the right hand side. Since R0 � 1 and q � 1,

max

{
1; 1

R ; ( 1R
) p
p−q+1

}
�
( 1
R

) p
p−q+1 for every R ∈ (0, R0].
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Note that p ≤ p
p−q+1 . Taking into account that d � 1 and denoting σ as in (4.14),

that is

σ := p∗ − max
{

p
p−q+1 ; λp

q−1 ; θ; δ; p∗
s2

+ 1; p∗
s0

+ 1; p∗
s1

}
,

by inequality (4.48) we obtain

J
p
p∗
h+1 � c0

( 1
R

) p
p−q+1

(
1 + ‖b2 + 1‖Ls2 (BR0 ) + ‖b0 + 1‖Ls0 (BR0 ) + ‖b1‖Ls1 (BR0 )

)

× 1
dσ

(
2p

∗)h (1 + ‖u‖p∗
L p∗ (BR)

)max
{

1
s0

, 1
s1

, 1
s2

}
J
1−max

{
1
s0

, 1
s1

, 1
s2

}

h .

Raising at the power p∗
p , we get (4.37), with

c∗ := max

{
1, c

p∗
p

0

}(
1 + ‖b1 + 1‖Ls1 (BR0 ) + ‖b0 + 1‖Ls0 (BR0 )

+‖b1‖Ls1 (BR0 )

) p∗
p

. (4.49)

��

4.5. Proof of the Local Boundedness Result

With Proposition 4.7 at hand, we are ready to provide the proof of one of our
main result, namely Theorem 4.2. Before doing this, we remind the following very
classical lemma of Real Analysis (see, for example, [40, Lemma 7.1]):

Lemma 4.8. Let (zh)h�0 be a sequence of positive real numbers satisfying the
recursive relation

zh+1 � L ζ hz1+α
h (h ∈ N ∪ {0}), (4.50)

where L , α > 0 and ζ > 1. If z0 � L− 1
α ζ

− 1
α2 , then zh � ζ− h

α z0 for every h � 0.
In particular, zh → 0 as h → ∞.

Proof of Theorem 4.2. Let u ∈ W 1,q
loc (�) be a weak solution to (1.1) under the

assumptions in Section4.1. Consider BR0(x0) � � with 0 < R0 � 1. Moreover,
let d � 1 (to be chosen later on) and let (Jh)h�0 be the sequence defined in (4.36).
Owing to Proposition 4.7, for every R � R0 we have the estimate

Jh+1 � L

(
2

p∗
p p∗
)h

J 1+α
h (h ∈ N ∪ {0}), (4.51)

where α is

α := p∗
p

(
1 − max

{ 1
s0

, 1
s1

, 1
s2

})− 1, (4.52)
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and the constant L is given by

L := c∗
(
1 + ‖u‖p∗

L p∗ (BR)

) p∗
p max

{
1
s0

, 1
s1

, 1
s2

}
1

d
p∗
p σ

( 1
R

) p∗
p−q+1 ,

where σ is defined in (4.14) and c∗, independent of d, is defined as in (4.49). We
notice that α > 0, because s0, s1, s2 satisfy (4.3), (4.6), (4.7).

We now claim that it is possible to choose d � 1 in such a way that

J0 :=
∫

A d
2 ,R

(
u − d

2

)p∗
dx � L−1/α

(
2

p∗
p p∗
)−1/α2

. (4.53)

In fact, by definition of J0 and since u ∈ L p∗
loc(�), we have

J0 �
∫

BR

|u|p∗
dx < ∞;

thus, reminding that R0 � 1, condition (4.53) is clearly fulfilled if we choose

d:= (c∗)
p

p∗σ

R
p

σ(p−q+1)
2

p∗
ασ

(
1 + ‖u‖p∗

L p∗ (B(x0,R))

) pα
p∗σ

+max
{

1
s0

, 1
s1

, 1
s2

}
1
σ

,

that is, taking into account (4.52),

d:= (c∗)
p

p∗σ

R
p

σ(p−q+1)
2

p∗
ασ

(
1 + ‖u‖p∗

L p∗ (B(x0,R))

) p∗−p
p∗σ

. (4.54)

Notice that d � 1, because c∗ � 1 and R0 � 1. With (4.53) at hand and d as in
(4.54), we are entitled to apply Lemma 4.8. As a consequence, we obtain

lim
h→∞ Jh = lim

h→∞

∫

Akh ,ρh

(u − kh)
p∗
dx =

∫

Ad,R/2

(u − d)p
∗
dx = 0. (4.55)

Since, by definition, u − d > 0 on Ad,R/2, from (4.55) we then conclude that
∣∣Ad,R/2

∣∣ = 0, whence u � d for almost every x ∈ BR/2(x0).

To prove that u is locally bounded from below, we can reason analogously, using
the sub-level sets of u. Therefore we obtain that there exists c′∗ such that −u � d ′
almost everywhere in B R

2
, with

d ′ = (c′∗)
p

p∗σ

R
p

σ(p−q+1)
2

p∗
ασ

(
1 + ‖u‖p∗

L p∗ (B(x0,R))

) p∗−p
p∗σ

.

We have thus proven that u ∈ L∞(BR/2(x0)). Due to the arbitrariness of x0 and
R0, we get u ∈ L∞

loc(�) and (4.13) follows. ��
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5. Local Lipschitz Continuity and Higher Differentiability

We start with the assumptions of Section2.1 in order to prove Theorem 2.1. The
other local Lipschitz continuity Theorem 2.2will need some specific considerations
which we will propose below. Thus again, as in Definition 4.1, we consider a weak
solution u ∈ W 1,q

loc (�) of the differential equation

n∑

i=1

∂

∂xi
ai (x, u (x) , Du (x)) = b (x, u (x) , Du (x)) , x ∈ �, (5.1)

under the ellipticity condition

n∑

i, j=1

∂ai

∂ξ j
λiλ j � m

(
1 + |ξ |2

) p−2
2 |λ|2 , (5.2)

and the order-one growth conditions (2.2), (2.3). The weak solution u is locally
bounded in�. In fact, since u ∈ W 1,q

loc (�), this property is satisfied when q > n, as
application of the Sobolev-Morrey embedding theorem. In the remaining case p �
q � n we apply Theorem 4.2; in fact, by the Linking Lemma 3.1 the assumptions
of Section4 hold, more precisely, (4.10) and (4.11) hold and, by Theorem 4.2, the
weak solution u ∈ W 1,q

loc (�) is locally bounded in �. We observe that we use the
result of Theorem 4.2 only when p � n; in this case the assumption (4.2), that
is q

p < 1 + min
{ 1
n , 1

p

}
, simply reduces to q

p < 1 + 1
n . In this section we use

the boundedness results of Theorem 4.2 with only these constraints on p, q. In
particular q < p + p

n � p + 1.

Therefore the weak solution u ∈ W 1,q
loc (�) is locally bounded in �. We read

again assumptions (2.2), (2.3) by taking into account the local boundedness of u:
for every open set �′, whose closure is contained in �, there exists a constant
L > 0 such that ‖u‖L∞(�′) � L; thus, by (2.2), (2.3), there exist a positive constant
M (L) (depending on �′ and L; precisely M (L) = 2M max{1; Lα; (1 + L)β−1})
such that, for every x ∈ �′, λ, ξ ∈ R

n and, for |u| � L

∣∣∣∣
∂ai

∂ξ j

∣∣∣∣ � M (L)
(
1 + |ξ |2

) q−2
2

,

∣∣∣∣
∂ai

∂u

∣∣∣∣ � M (L)
(
1 + |ξ |2

) p+q−4
4

. (5.3)

Conditions (5.3) correspond to the assumptions (3.7) in Marcellini [55]. Together
with the ellipticity condition (5.1) and the growth conditions (2.5), (2.6) theygive the
full landscape inorder to state that the vectorfielda (x, u, ξ) = (ai (x, u, ξ)

)
i=1,...,n

satisfies all the assumptions taken under consideration in [55] to study the local Lip-
schitz continuity of the weak solution u. To this aim, it remains only to analyze the
assumption on the right hand side b (x, u, ξ) in the differential Equation (5.1).

In this paper the growth assumption on b (x, u, ξ) in (2.8) is (herewithM (L) =
2M max{1; Lδ−1})

|b (x, u, ξ)| � M (L)
(
1 + |ξ |2

) p+q−2
4 + b0 (x) , (5.4)
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for almost every x ∈ �′, and for all λ, ξ ∈ R
n and |u| � L . The difference with

the growth assumption in [55] is the addendum b0 (x) in the right hand side of (5.4),
with b0 ∈ Ls0

loc (�) for some s0 > n, which is posed equal to zero in [55]. Therefore
in the following we analyze in which way it is possible to modify the argument of
[55] in order to handle this term.

5.1. Proof of Theorems 2.1 and 2.2

As already said, we start with the proof of Theorem 2.1. Under the notation of
Section 5 in [55] we consider the Equation (5.1) and a test function ϕ ∈ W 1,q

0

(
�′)

of the form

ϕ = �−h

(
η2g (�hu)

)
,

where �−hψ denote as usual the difference quotient of a function ψ(x) in the s-
direction and g is a Lipschitz continuous function g : R → R, with 0 < g′ (t) � L

for all t ∈ R, and η ∈ C1
0

(
�′), η � 0, �′ ⊂⊂ �. We can see that ϕ ∈ W 1,q

0

(
�′).

More precisely, following Section 5.5.2 in [55], for generic k ∈ N and β � 0 we

choose g (t) = t
(
1 + t2

)β/2
when t ∈ [−k, k] and g (t) affine out of the interval

[−k, k] in such a way that globally g ∈ C1 (R). For reader’s convenience we adopt
here the symbols in [55]; we note that β here is different and independent of the
same symbol previously used in this manuscript in Section 4. For t ∈ [−k, k] the
derivative of g holds: g′ (t) = (1 + t2

)β/2−1 (
1 + (β + 1) t2

)
, then

0 < g′ (t) � (β + 1)
(
1 + t2

)β/2
(5.5)

for all t ∈ [−k, k], and also for all t ∈ R, since g′ (t) is constant out of the interval
[−k, k]; precisely g′ (t) = g′ (k) = g′ (−k) when t /∈ [−k, k], and thus for such
t-values g′ (t) = g′ (k) � (β + 1)

(
1 + k2

)β/2 � (β + 1)
(
1 + t2

)β/2
.

We insert ϕ = �−h
(
η2g (�hu)

)
in the weak form of the differential Equa-

tion (5.1) and we obtain

∫

�

n∑

i=1

ai (x, u, Du (x))
(
�−h

(
η2g (�hu)

))

xi
dx

+
∫

�

b (x, u, Du)
(
�−h

(
η2g (�hu)

))
dx = 0. (5.6)

The integral with the vector field a (x, u, ξ) = (
ai (x, u, ξ)

)
i=1,...,n can be

estimated exactly as done in Section 5 of [55]. In fact, by proceeding as in subsection



Arch. Rational Mech. Anal. (2024) 248:60 Page 35 of 45 60

5.2 of [55], we get

1

c

∫ 1

0
dt
∫

�

η2g′ (�hu) ·

·
(
1 + | (1 − t) Du (x) + t Du (x + thes) |2

) p−2
2 |�h Du|2 dx

�
∫ 1

0
dt
∫

�

η2g′ (�hu)
(
1 + |Du (x)|2 + |Du (x + thes)|2

) q
2
dx

+
∫ 1

0
dt
∫

�

2η |Dη| · |g (�hu)|
(
1 + |Du (x)|2 + |Du (x + thes)|2

) q−1
2

dx

+
∫ 1

0
dt
∫

�

|Dη|2 · g
2 (�hu)

g′ (�hu)

(
1 + |Du (x)|2 + |Du (x + thes)|2

) q−2
2

dx

+
∫

�

b(x, u, Du)
(
�h(η

2g(�hu)
)
dx . (5.7)

5.2. Estimate of the Right Hand Side b

For the integral related to the termwith b (x, u, ξ)weuse the growth assumption

(5.4): |b (x, u, ξ)| � M (L)
(
1 + |ξ |2)

p+q−2
4 + b0 (x) and we get

∣∣∣∣
∫

�

b (x, u, Du)
(
�−h

(
η2g (�hu)

))
dx

∣∣∣∣

� M (L)

∣∣∣∣∣

∫

�

(
1 + |Du|2

) p+q−2
4 ·

(
�−h

(
η2g (�hu)

))
dx

∣∣∣∣∣

+
∣∣∣∣
∫

�

|b0 (x)| ·
∣∣∣�−h

(
η2g (�hu)

)∣∣∣ dx
∣∣∣∣ .

Reasoning as in [55] (see in particular Section5.3.7 of [55]),we represent�−h
(
η2g (�hu)

)

in this way

�−h

(
η2g (�hu)

)
=
∫ 1

0

(
2ηηxs g (�hu) + η2g′ (�hu)�huxs

)
dt,

where the arguments in the last integrands are x − thes . Therefore
∣∣∣∣
∫

�

b (x, u, Du)
(
�−h

(
η2g (�hu)

))
dx

∣∣∣∣ (5.8)

� M (L)

∫

�

(
1 + |Du|2

) p+q−2
4

·
(∫ 1

0

∣∣∣2ηηxs g (�hu) + η2g′ (�hu) �huxs

∣∣∣ dt
)

dx (5.9)

+
∫ 1

0

∣∣∣∣
∫

�

|b0 (x)| ·
∣∣∣2ηηxs g (�hu) + η2g′ (�hu) �huxs

∣∣∣ dx
∣∣∣∣ dt.
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(5.10)

The above term in (5.9) is identical to the correspondent term in [55] (see in partic-
ular Section 5.3.7 of [55]) and it can be estimated as in (5.15) of [55]. Thus we limit
here to estimate the addendum in (5.10). Recalling that g′ (t) > 0 for all t ∈ R, we
start by using the inequalities

2η
∣∣ηxs
∣∣ |b0 (x)| |g (�hu)| = 2η

∣∣ηxs
∣∣ |b0 (x)| |g (�hu)|

(g′ (�hu))1/2

(
g′ (�hu)

)1/2

� |Dη|2 g2 (�hu)

g′ (�hu)
+ η2b20 (x) g′ (�hu) ;

|b0 (x)| · ∣∣�huxs
∣∣ � ε

∣∣�huxs
∣∣2 + 1

4ε
b20 (x) .

As before we denote by �′ = supp η, which is a compact set contained in �.
Moreover, since b0 ∈ Ls0

loc (�) for s0 > n, and in particular b0 ∈ Ls0
(
�′), we can

also use Hölder’s inequality with exponents s0
2 and s0

s0−2 . From (5.10) we obtain

∣∣∣∣
∫

�

|b0 (x)| · ∣∣�−h
(
η2g (�hu)

)∣∣ dx
∣∣∣∣

=
∫ 1

0

∣∣∣∣
∫

�

|b0 (x)| · ∣∣2ηηxs g (�hu) + η2g′ (�hu)�huxs
∣∣ dx

∣∣∣∣ dt

�
∫ 1

0
dt
∫

�

|Dη|2 g2 (�hu)

g′ (�hu)
dx +

∫ 1

0
dt
∫

�

η2b20 (x) g′ (�hu) dx

+ε

∫

�

η2g′ (�hu)
∣∣�huxs

∣∣2 dx + 1

4ε

∫ 1

0
dt
∫

�

η2b20 (x) g′ (�hu) dx

�
∫ 1

0
dt
∫

�

|Dη|2 g2 (�hu)

g′ (�hu)
dx + ε

∫

�

η2g′ (�hu)
∣∣�huxs

∣∣2 dx

+
(
1 + 1

4ε

)(∫

�′
|b0 (x)|s0 dx

) 2
s0 ·
∫ 1

0
dt

(∫

�

(
η2g′ (�hu)

) s0
s0−2 dx

) s0−2
s0

.

(5.11)

With the aim to estimate the last addendum in (5.11) we observe that the exponent
s0

s0−2 > 1 is strictly less than n
n−2 , since s0 > n (for simplicity, we limit here to

consider the details for the case n > 2; for n = 2 we can proceed similarly with
small modifications). We represent s0

s0−2 as convex combination of 1 and n
n−2

s0
s0−2 = t + n

n−2 (1 − t) , with t = s0−n
s0−2 and 1 − t = n−2

s0−2 .

Let λ be a positive real parameter that we will fix later; a computation shows that

λ
− n

s0−n t+ n
n−2 (1−t) = 1. By Hölder’s inequality with exponents 1

t and
1

1−t
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∫

�

(
η2g′ (�hu)

) s0
s0−2

dx

=
∫

�

(
η2g′ (�hu)

)t+ n
n−2 (1−t)

dx

=
∫

�

(
λ

− n
s0−n η2g′ (�hu)

)t (
λη2g′ (�hu)

) n
n−2 (1−t)

dx

�
(

λ
− n

s0−n

∫

�

η2g′ (�hu) dx

)t (
λ

n
n−2

∫

�

(
η2g′ (�hu)

) n
n−2

dx

)1−t

.

We first recall that t = s0−n
s0−2 and 1 − t = n−2

s0−2 . Then, we use Young’s inequality
with exponents s0

s0−n and s0
n

(∫

�

(
η2g′ (�hu)

) s0
s0−2

dx

) s0−2
s0

�
(

λ
− n

s0−n

∫

�

η2g′ (�hu) dx

)t
s0−2
s0
(

λ
n

n−2

∫

�

(
η2g′ (�hu)

) n
n−2

dx

)(1−t)
s0−2
s0

=
(

λ
− n

s0−n

∫

�

η2g′ (�hu) dx

) s0−n
s0
(

λ
n

n−2

∫

�

(
η2g′ (�hu)

) n
n−2

dx

) n−2
s0

� s0−n
s0

λ
− n

s0−n

∫

�

η2g′ (�hu) dx + n
s0

λ

(∫

�

(
η2g′ (�hu)

) n
n−2

dx

) n−2
n

.

(5.12)

The function η has compact support in � and we can apply the Sobolev inequality
with exponents 2 and 2∗ := 2n

n−2 and with the Sobolev constant c = c(n) depending
only on the dimension n

(∫

�

(
η2g′ (�hu)

) n
n−2

dx

) n−2
n =

(∫

�

(
η
(
g′ (�hu)

) 1
2

)2∗

dx

) 2
2∗

� c(n)

∫

�

∣∣∣∣D
(

η
(
g′ (�hu)

) 1
2

)∣∣∣∣
2

dx .

(5.13)

Collecting (5.12), (5.13) we get

(∫

�

(
η2g′ (�hu)

) s0
s0−2

dx

) s0−2
s0

� s0−n
s0

λ
− n

s0−n

∫

�

η2g′ (�hu) dx

+ n
s0

λc(n)

∫

�

∣∣∣∣D
(

η
(
g′ (�hu)

) 1
2

)∣∣∣∣
2

dx .

A simple computation gives

D

(
η
(
g′ (�hu)

) 1
2

)
= Dη

(
g′ (�hu)

) 1
2 + 1

2η
(
g′ (�hu)

)− 1
2 g′′ (�hu)�h Du,
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and we continue the previous estimate with

(∫

�

(
η2g′ (�hu)

) s0
s0−2

dx

) s0−2
s0

�
∫

�

(
s0−n
s0

λ
− n

s0−n η2 + 2 n
s0

λc(n) |Dη|2
)
g′ (�hu) dx

+ 1
2
n
s0

λc(n)

∫

�

η2

(
g′′ (�hu)

)2

g′ (�hu)
|�h Du|2 dx . (5.14)

We recall that, for generic k ∈ N and β � 0, g (t) = t
(
1 + t2

)β/2
when t ∈ [−k, k]

and g (t) affine out of the interval [−k, k] in such a way that globally g ∈ C1 (R).
Its derivative g′ (t) is continuous in R, and in fact it is Lipschitz continuous in R.
For t ∈ [−k, k] we have

{
g′ (t) = (1 + t2

)β/2−1 (
1 + (β + 1) t2

)

g′′ (t) = βt
(
1 + t2

)β/2−2 (
3 + (β + 1) t2

) ;
while when t /∈ [−k, k] then g′ (t) is constant and g′′ (t) = 0. We obtain

∣∣g′′ (t)
∣∣

g′ (t)
�

β |t | (1 + t2
)β/2−2 (

3 + (β + 1) t2
)

(
1 + t2

) (
1 + t2

)β/2−2 (1 + (β + 1) t2
) � 3β

|t |
1 + t2

� 3
2β

and then, taking the square of both sides, (g′′(�hu))
2

g′(�hu)
� 9

4β
2g′ (�hu). Going back

to (5.14), we obtain

(∫

�

(
η2g′ (�hu)

) s0
s0−2

dx

) s0−2
s0

�
∫

�

(
s0−n
s0

λ
− n

s0−n η2 + 2 n
s0

λc(n) |Dη|2
)
g′ (�hu) dx

+ 9
8
n
s0

λβ2c(n)

∫

�

η2g′ (�hu) |�h Du|2 dx . (5.15)

Here we change notation, in principle by posing μ = λβ2 for every β > 0; for
β = 0 there is not necessity of this change. More precisely, with the aim to avoid
the denominator β2, which is not uniformly far from zero, we poseμ = λ

(
β2 + 1

)

and we increase the last addendum in (5.15) by changing β2 with β2 + 1; then of
course λ = μ

β2+1
and λ � μ for all β � 0. Thus

(∫

�

(
η2g′ (�hu)

) s0
s0−2

dx

) s0−2
s0

�
∫

�

(
s0−n
s0

(
β2+1

μ

) n
s0−n

η2 + 2 n
s0

μc(n) |Dη|2
)
g′ (�hu) dx

+ 9
8
n
s0

μc(n)

∫

�

η2g′ (�hu) |�h Du|2 dx . (5.16)
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By (5.11) and (5.16) we get the final estimate

∣∣∣∣
∫

�

|b0 (x)| ·
∣∣∣�−h

(
η2g (�hu)

)∣∣∣ dx
∣∣∣∣ (5.17)

�
∫ 1

0
dt
∫

�

|Dη|2 g2 (�hu)

g′ (�hu)
dx + ε

∫

�

η2g′ (�hu)
∣∣�huxs

∣∣2 dx (5.18)

+ (1 + 1
4ε

) ‖b0‖2Ls0 (�′)

{
c (n, s0, β, μ)

∫ 1

0
dt
∫

�

(
η2 + |Dη|2

)
g′ (�hu) dx

(5.19)

+ 9
8
n
s0

μc(n)

∫ 1

0
dt
∫

�

η2g′ (�hu) |�h Du|2 dx

}
, (5.20)

where c (n, s0, β, μ) = max

{
s0−n
s0

(
β2+1

μ

) n
s0−n ; 2n

s0
μc(n)

}
depends only on n, s0,

β, μ; in particular it depends on powers of the parameter β. We observe that this
constant diverges to +∞ as μ → 0+, but this fact will not be a problem, since in
the next section we will fix a (sufficiently small) value of μ > 0.

5.3. Conclusion

As explained below, all the addenda in (5.18), (5.19), (5.20) can be reabsorbed
in (5.7), and we obtain (cfr. with Section 5.4 in [55])

1

c

∫ 1

0
dt
∫

�

η2g′ (�hu)
(
1 + |(1 − t) Du (x) + t Du (x + thes)|2

) p−2
2 |�h Du|2 dx

�
∫ 1

0
dt
∫

�

(
η2 + |Dη|2) g′ (�hu)

(
1 + |Du (x)|2 + |Du (x + thes)|2

) q
2 dx

+
∫ 1

0
dt
∫

�

2η |Dη| · |g (�hu)| (1 + |Du (x)|2 + |Du (x + thes)|2
) q−1

2 dx

+
∫ 1

0
dt
∫

�

|Dη|2 · g
2 (�hu)

g′ (�hu)

(
1 + |Du (x)|2 + |Du (x + thes)|2

) q−2
2 dx .

(5.21)

In particular, the ε-addendum in (5.18) can be reabsorbed in the left side of (5.21)
if ε is sufficiently small; then the addendum in (5.20) above, although with the
large factor

(
1 + 1

4ε

)
in front (however now with ε fixed), can be reabsorbed in the

left side of (5.21) by considering μ sufficiently small. The dependence of the right
hand side of the estimate (5.21) on powers of β (precisely, the dependence of the
constant c on powers of β) is allowed.

It remains only to follow the argument of [55] (see also details in [54, Section
4]) to conclude that the gradient Du of the weak solution is locally bounded in �,
as in (2.11). In fact, by Theorem 3.3 in [55] we can say that there exist constants
c, α0, γ, R0 > 0 (depending on the L∞ (�′) norm of u and on the data, but not on
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u) such that, for every � and R such that 0 < � < R < R0,

‖Du‖L∞(B�;Rn) �
(

c

(R−�)
γ q
ϑp

∥∥∥∥
(
1 + |Du|2

) 1
2

∥∥∥∥
L p(BR)

)α0

=
for n>2

(
c

(R−�)
γ q
ϑp

∥∥∥∥
(
1 + |Du|2

) 1
2

∥∥∥∥
L p(BR)

) 2p
(n+2)p−nq

.

(5.22)

The explicit expression of the exponent α0 above (5.22) is given in (2.13), with
ϑ := 2∗−2

2∗ p
q −2

=
for n>2

2q
np−(n−2)q and γ = n

qϑ . Therefore γ q
ϑp = n

p , and also, from

(5.22),

‖Du‖L∞(B�;Rn) �
(

c
(R−�)n

∫

BR

(
1 + |Du|2

) p
2
dx

) α0
p

, (5.23)

which corresponds to the stated estimate (2.11).
The W 2,2

loc (�)-bound stated in (2.12) can be similarly obtained in this way: we

first use the bound (5.21) with g (t) as above: g (t) = t
(
1 + t2

)β/2
, β � 0.

In the special case β = 0 we have g (t) = t , g′ (t) = 1 and

1

c

∫ 1

0
dt
∫

�

η2
(
1 + |(1 − t) Du (x) + t Du (x + thes)|2

) p−2
2 |�h Du|2 dx

�
∫ 1

0
dt
∫

�

(
η2 + |Dη|2

) (
1 + |Du (x)|2 + |Du (x + thes)|2

) q
2
dx

+
∫ 1

0
dt
∫

�

2η |Dη| · |�hu|
(
1 + |Du (x)|2 + |Du (x + thes)|2

) q−1
2

dx

+
∫ 1

0
dt
∫

�

|Dη|2 · (�hu)2
(
1 + |Du (x)|2 + |Du (x + thes)|2

) q−2
2

dx .

Similarly to [55] we can go to the limit as h → 0. In the left hand side we go to the
limit by lower semicontinuity and in the limit

∣∣D2u
∣∣2 appears. In the limit as h → 0

all the three integrands in the right hand side can be estimated by the q-power of
the gradient Du. More precisely, in the limit as h → 0 we obtain (cfr. with (5.18)
in [55, Remark 5.1])

1

c

∫ 1

0
dt
∫

�

η2
(
1 + |Du|2

) p−2
2
∣∣∣D2u

∣∣∣
2
dx

�
∫ 1

0
dt
∫

�

(
η2 + |Dη|2

) (
1 + |Du|2

) q
2
dx . (5.24)

The integral with respect to t ∈ [0, 1] is not more necessary. We fix η as usual.
Precisely we consider concentric balls BR and Bρ compactly contained in �, with
� < R < R0 = R0 (ε, n, s0); then we consider a test function η ∈ C1

0 (BR),
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0 � η � 1 in BR , η = 1 in B� and |Dη| � 2/ (R − �). We obtain the simplified
version of (5.24)

∫

B�

∣∣∣D2u
∣∣∣
2
dx � c

(
1 + 4

(R−�)2

) ∫

BR

(
1 + |Du|2

) q
2
dx . (5.25)

Since 0 < � < R < R0, then 4
(R−�)2

� 4
R2
0
and thus 1 � R2

0
4

4
(R−�)2

. Therefore,

with a different constant which we continue to denote by c, we also have

∫

B�

∣∣∣D2u
∣∣∣
2
dx � c

(R−�)2

∫

BR

(
1 + |Du|2

) q
2
dx . (5.26)

Therefore the firstW 2,2
loc (�)-bound stated in (2.12) is obtained.We nowmake use of

the interpolation formula in [55, Remark 6.1] (see also [49, Theorem 3.1, formula
(3.4)])

∥∥∥∥
(
1 + |Du|2

) 1
2

∥∥∥∥
Lq(B�)

�

⎛

⎝ c

(R−�)
γ
(
q
p −1

)

∥∥∥∥
(
1 + |Du|2

) 1
2

∥∥∥∥

1
ϑ

L p(BR)

⎞

⎠
α0

,

(5.27)

where α0, ϑ are expressed in (2.13) and γ = n
qϑ . We iterate (5.26), (5.27) in Bρ ,

B(R+�)/2, BR ; more precisely we consider (5.26) with the balls B�, B(R+�)/2 and
(5.27) with B(R+�)/2, BR . With different constants c we obtain

∫

B�

∣∣∣D2u
∣∣∣
2
dx � c

(R−�)2

∥∥∥∥
(
1 + |Du|2

) 1
2

∥∥∥∥
q

Lq(B(R+�)/2)

� c

(R − �)2

⎛

⎝ 1

(R−�)
γ
(
q
p −1

)

∥∥∥∥
(
1 + |Du|2

) 1
2

∥∥∥∥

1
ϑ

L p(BR)

⎞

⎠
α0q

= c

(R − �)2

(
1

(R−�)γϑ(q−p)

∫

BR

(
1 + |Du|2

) p
2
dx

) α0q
ϑp

= c

(R−�)
2+α0γ q

(
q
p −1

)

∥∥∥∥
(
1 + |Du|2

) 1
2

∥∥∥∥

α0q
ϑ

L p(BR)

. (5.28)

This is the conclusion of theW 2,2
loc (�)-estimate, as stated in (2.12). Note that in the

special case q = p all the parameters in this estimate simplify, α0 = ϑ = 1, and
the bounds (2.19), (5.26) are reproduced.

The proof of Theorem 2.1 is now complete.
The computations in this Section5 are useful for provingTheorem2.2 too.More

precisely we are now under the ellipticity (2.1) and the p,q-growth conditions
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(2.14), (2.15). In particular, other than the ellipticity assumption (2.1), with the
growth conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∣∣∣ ∂a
i

∂ξ j

∣∣∣ � M(1 + |ξ |2) q−2
2 + M |u|α∣∣∣ ∂a

i

∂u

∣∣∣ � M(1 + |ξ |2) q−2
2 + M |u|β−1

∣∣∣ ∂a
i

∂xs

∣∣∣ � M (L) (1 + |ξ |2) q−1
2

∣∣ai (x, 0, 0)
∣∣ ∈ Lγ

loc

|b (x, u, ξ)| � M(1 + |ξ |2) q−1
2 + M |u|δ−1 + b0 (x)

(5.29)

Conditions (5.29)2, (5.29)3, (5.29)5 respectively correspond to (2.3), (2.6), (2.8)
when we replace p+q

2 by q. For a better understanding, let us denote by r := p+q
2 ;

then in accordance q = 2r− p. This means that, if for instance (5.29)2 corresponds
to (2.3) when we replace p+q

2 by q, likewise in (5.29)1 we should replace q with
2q − p. In fact, since 2q − p � q, then if (5.29)1 holds, then all the more so

∣∣∣∣
∂ai

∂ξ j

∣∣∣∣ � M(1 + |ξ |2) 2q−p−2
2 + M |u|α

when we limit α (recall that, in Theorem 2.1, 0 � α < (q − 2) p∗
p ) with the

corresponding bound

0 � α < (2q − p − 2) p∗
p ,

as stated in (2.15)1. Note that, when q = p, the two constraints for α coincide
each other. About the condition q

p < 1 + 1
n , when we replace q by 2q − p we

obtain 2q−p
p < 1+ 1

n ; that is,
q
p < 1+ 1

2n . Finally, the exponent in theW
1,∞-local

estimate (2.16), which in Theorem 2.1 when n � 3 was equal to 2p
(n+2)p−nq , now

becomes p
(n+1)p−nq . The proof of Theorem 2.2 is complete too.
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