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Abstract

We study the Muskat problem for one fluid in an arbitrary dimension, bounded
below by a flat bed and above by a free boundary given as a graph. In addition
to a fixed uniform gravitational field, the fluid is acted upon by a generic force
field in the bulk and an external pressure on the free boundary, both of which
are posited to be in traveling wave form. We prove that, for sufficiently small
force and pressure data in Sobolev spaces, there exists a locally unique traveling
wave solution in Sobolev-type spaces. The free boundary of the traveling wave
solutions is either periodic or asymptotically flat at spatial infinity. Moreover, we
prove that small periodic traveling wave solutions induced by external pressure
only are asymptotically stable. These results provide the first class of nontrivial
stable solutions for the problem.

1. Introduction

In this paper we study traveling wave solutions to the one-phase Muskat prob-
lem, which concerns the dynamics of the free boundary of a viscous fluid in homo-
geneously permeable porous media. The n-dimensional (n � 2) wet region �ζ(·,t)
lies above the flat bed of depth b > 0 and below the free boundary that is the graph
of an unknown time-dependent function ζ , i.e.

�ζ(·,t) = {x ∈ � × R | − b < xn < ζ(x ′, t)}, (1.1)

where the cross-section � is either R
n−1 or T

n−1 := R
n−1/(2πZ

n−1). Here, for
any point x ∈ �×Rwe split its horizontal and vertical coordinates as x = (x ′, xn).
We denote the free-boundary and the flat bed respectively by �ζ(·,t) and �−b; that
is,

�ζ(·,t) = {x ∈ � × R | xn = ζ(x ′, t)} and �−b = {x ∈ � × R | xn = −b}. (1.2)
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We posit that when the cross-section is R
n−1, the free boundary ζ(x ′, t) decays as

|x ′| → ∞.
The fluid is acted upon in the bulk by a uniform gravitational field−en pointing

downward, where en is the upward pointing unit vector in the vertical direction,
and a generic body force f̃(·, t) : �ζ(·,t) → R

n . Then the fluid motion in the porous
medium is modeled by the Darcy law

w + ∇P = −en + f̃ and divw = 0 in �ζ(·,t), (1.3)

where, for the sakeof simplicity,wehavenormalized the dynamic viscosity, thefluid
density, and the permeability of the medium to unity. Here, w and P respectively
denote the fluid velocity and pressure. On the surface, the fluid is acted upon by a
constant pressure P0 from the dry region above �ζ(·,t) and an externally applied
pressure φ(·, t) : �ζ(·,t) → R. This leads to the boundary condition

P = P0 + φ on �ζ(·,t). (1.4)

The no-penetration boundary condition is assumed on the flat bed:

wn = 0 on �−b. (1.5)

Finally, the free boundary evolves according to the kinematic boundary condition

∂tζ = w · (−∇′ζ, 1) on �ζ(·,t). (1.6)

We shall refer to the following system as the (one-phase) Muskat problem
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w + ∇P = −en + f̃ in �ζ(·,t)
divw = 0 in �ζ(·,t)
∂tζ = w · (−∇′ζ, 1) on �ζ(·,t)
P = P0 + φ on �ζ(·,t)
wn = 0 on �−b.

(1.7)

In the absence of the body force and the external pressure, i.e. f̃ = 0 and φ = 0,
(1.7) is called the freeMuskat problem.

The free Muskat problem can be recast as a nonlocal equation for the free
boundary function η (see (2.17)). It was proved in [12] that the problem is locally-
in-time well-posed for large data η0 ∈ Hs(�) for any 1 + n−1

2 < s ∈ R, which
is the lowest Sobolev index guaranteeing that η0 ∈ W 1,∞(�). We also refer to [3]
for local well-posedness for the case of non-graph free boundary. The free Muskat
problem admits the following trivial stationary solutions

(w, P, ζ ) =
{

(0,−xn + P0, 0) if � = R
n−1,

(0,−xn + c + P0, c), c ∈ R if � = T
n−1.

(1.8)

In fact, under mild regularity and decay assumptions, (1.8) are the only station-
ary solutions. They have been proved to be stable in various norms [4,5,11,13]. To
the best of our knowledge, (1.8) are the only solutions that are known to be stable.
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In this paper we are interested in the construction of nontrivial special solu-
tions and the stability of them. In view of the translation invariance of (1.7) in the
horizontal directions, it is natural to consider traveling wave solutions. These are
solutions that propagate along a fixed direction, which without loss of generality we
may assume is the x1-direction, with constant velocity γ . To this end, we assume
that

φ(x, t) = ϕ(x − γ te1) and f̃(x, t) = f(x − γ te1) (1.9)

and make the traveling wave ansatz

ζ(x ′, t) = η(x ′ − γ te1). (1.10)

This determines the unknown domain �η = {x ∈ � × R | − b < xn < η(x ′)}
as well as the free boundary �η = {x ∈ � × R | xn = η(x ′)} as before. We then
define the traveling wave unknowns v : �η → R

n and q : �η → R via

w(x, t) = v(x − γ te1) and P(x, t) = P0 − xn + q(x − γ te1). (1.11)

In the latter we have subtracted off the hydrostatic pressure, as is often convenient.
The new equations for (v, q, η) read

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v + ∇q = f in �η

div v = 0 in �η

−γ ∂1η = v · N on �η

q − η = ϕ on �η

vn = 0 on �−b,

(1.12)

where
N = (−∇′η, 1). (1.13)

We pause to remark that the only solutions to the free version of (1.12) (f = 0
and φ = 0) are the trivial solutions as given in (1.8). Indeed, assuming that (v, q, η)

is a decaying solution, then using Green’s theorem and the boundary conditions for
v and q, we obtain

∫

�η

|v|2dx = −
∫

�η

v · ∇qdx = −
∫

�η

q

(

v · N

|N |
)

dS

−
∫

�−b

qvndS +
∫

�η

q div vdx = γ

∫

�

η∂1ηdx = 0. (1.14)

It follows that v = 0 and hence q = c, a constant. Consequently η(x ′) =
q(x ′, η(x ′)) = c. When � = R

n−1 this implies that η = q = 0 since η de-
cays. Thus (v, q, η) = (0, 0, 0) is the trivial solution when � = R

n−1. In the
periodic case, � = T

n−1, we obtain the trivial solutions (v, q, η) = (0, c, c), for
c ∈ R (one can uniquely determine c by fixing a mass of the fluid). This is not a
surprise since for free Muskat problem, the energy dissipates, so it cannot sustain
the permanent structure of traveling waves. It is therefore necessary to have some
sort of external energy in order for traveling wave solutions to exist. In the context
of (1.12), this is provided by the external bulk force f and the external pressure φ.
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Our first main result states that for suitably small f and φ, there exists a lo-
cally unique traveling wave solution to (1.12) in Sobolev-type spaces. Note that in
the following statement we employ a reformulation of the problem (1.12) as well
as some nonstandard function spaces; these will be explained after the theorem
statement:

Theorem 1.1. (Proved in Sect. 4.2) Let n
2 − 1 < s ∈ N and consider the open set

Us
δ = {(u, p, η) ∈ nH

s+1(�; R
n) × Hs+2(�) × Hs+3/2(�) | ‖η‖Hs+3/2 < δ}

(1.15)
with δ > 0 as constructed in Theorem 4.3. Define the open set C ⊆ R to be R if
� = T

n−1 and R\{0} if � = R
n−1. Then there exist open sets

Ds ⊆ C×Hs+3/2(�)×Hs+3(�×R)×Hs+1(�; R
n)×Hs+2(�×R; R

n) and Ss ⊆ Us
δ

(1.16)
such that the following hold:

(1) C × {0} × {0} × {0} × {0} ⊆ Ds and (0, 0, 0) ∈ Ss .
(2) For each (γ, ϕ0, ϕ1, f0, f1) ∈ Ds there exists a locally unique (u, p, η) ∈ Ss

classically solving
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u + ∇A p + ∇APη = JMT [f0 + f1 ◦ Fη] in � := � × (−b, 0)

div u = 0 in �

−γ ∂1η = un on � := � × {0}
p = ϕ0 + ϕ1 ◦ Fη on �

un = 0 on �−b.

(1.17)

(3) The mapDs 
 (γ, ϕ0, ϕ1, f0, f1) �→ (u, p, η) ∈ Ss is C1 and locally Lipschitz.

Some remarks are in order.

(1) (1.17) is a reformulation of (1.12) in the fixed domain � and with f(x) =
f0(x ′) + f1(x) and ϕ(x) = ϕ0(x ′) + ϕ1(x). See Sect. 2.1 for the derivation of
(1.17) and for the precise meaning of A, J, M and Fη. The preceding forms
of f and ϕ are imposed since we assume less regularity for f and ϕ when they
are independent of the vertical variable xn . Note also that the integer constraint
for the regularity parameter s comes from the need to verify that the maps
(f1, η) �→ f1 ◦ Fη and (ϕ1, η) �→ ϕ1 ◦ Fη are C1. If these forcing terms are
ignored, then we may relax this requirement for s: see Theorems 6.1 and 6.3.

(2) The space nHs+1(�; R
n) is defined in Definition 3.13.

(3) When the cross-section is T
n−1, the boundary function η is constructed in

H̊ s(Tn−1), the usual Sobolev space of zero-mean functions. On the other hand,
when the cross-section is R

n−1, then η belongs to the anisotropic Sobolev

space Hs+ 3
2 (Rn−1), as defined in Definition A.1. At high frequencies this

space provides standard Hs+3/2 Sobolev control, but at low frequencies it only
controls ∫

B(0,1)

ξ21 + |ξ |4
|ξ |2 |̂η(ξ)|2dξ. (1.18)
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The modulus
ξ21+|ξ |4

|ξ |2 naturally arises from the linearized operator ∂1 − |D|
tanh(b|D|) and the following structure of the nonlinearity at low frequencies:
N = |D|Ñ . The anisotropic Sobolev spaceHs(Rd), which satisfies the inclu-
sions Hs(Rd) ⊂ Hs(Rd) ⊆ Hs(Rd)+C∞

0 (Rd), was introduced in [9] for the
construction of traveling wave solutions to the free boundary Navier–Stokes
equations and plays a key role in our construction here. We recall the definition
and basic properties of Hs in Appendix A.1.

(4) Theorem 1.1 asserts the uniqueness of traveling wave solutions in the small but
does not exclude the possibility of nonuniqueness in the large.

Our proof of Theorem 1.1 is based on the implicit function theorem, applied
in a neighborhood of the trivial solutions obtained with γ ∈ C, f0 = f1 = 0,
ϕ0 = ϕ1 = 0, u = 0, p = 0, and η = 0. In order for this strategy to work, we need
a good understanding of the solvability of the linear problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u + ∇ p + ∇Pη = F in �

div u = G in �

un + γ ∂1η = H on �

p = K on �

un = 0 on �−b,

(1.19)

which is obtained by linearizing the flattened reformulation of (1.12) given in (1.17)
around the trivial solutions.More precisely,we need to identify appropriate function
spaces E and F for which the linear map E 
 (u, p, η) �→ (F,G, H, K ) ∈ F

induced by (1.19) is an isomorphism. When � = T
n−1 the function spaces we

employ are standard L2−Sobolev spaces, but when � = R
n−1 even identifying

appropriate spaces turns out to be quite delicate for a couple reasons. First, in
L2−Sobolev spaces on the infinite domain � = R

n−1 × (−b, 0) there are some
subtle compatibility conditions that the data tuple (F,G, H, K ) need to satisfy, and
these need to be encoded in F. Second, as mentioned in the above remarks, even
when the data satisfy the appropriate compatibility conditions, the free surface
function η necessarily lives in the strange anisotropic Sobolev spaces given in
Definition A.1, which behave like standard L2−based Sobolev spaces at large
frequencies but have unusual anisotropic behavior at low frequencies (for instance,
these spaces are not closed under composition with rotations). Similar issues arose
in the second author’s recent work on the construction of traveling wave solutions
to the incompressible Navier–Stokes system [7,9,14], and fortunately, we were
able to adapt some of the techniques used in those works to handle the Muskat
construction of Theorem 1.1.

In identifying the appropriate function spaces, we also uncover the method for
showing that (1.19) induces an isomorphism. We first take the divergence of the
first equation and eliminate u to arrive at a problem for p and η only, (3.1). To
solve this problem we initially ignore the η terms and view the resulting problem
as an overdetermined problem for p, (3.13). This overdetermined problem is only
solvable for data satisfying certain compatibility conditions, reminiscent of those
from the closed range theorem, which we identify in Sect. 3.2. These turn out to be
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the key to solving (3.1), as they lead us to a pseudodifferential equation for η that
can be solved independently of p:

[−iγ ξ1 + |ξ | tanh(|ξ | b)] η̂(ξ) = ψ(ξ). (1.20)

Hereψ is a specific function determined linearly by the data in (3.1) (see (3.59) for
the precise definition). It is this equation that forces η into the anisotropic Sobolev
spaces, but in turn the spaces allow us to construct η and verify that it is a reasonably
nice function. Note that when � = R

n−1 we require γ 
= 0 precisely because this
term is responsible for ensuring that η is a nice function; in the case γ = 0 we lose
the ability to verify this. With η in hand, we can then solve for p and show that
(3.1) induces an isomorphism (see Theorem 3.12). Then in Theorem 3.17 we show
that we can return to (1.19) and uncover an isomorphism. Finally, in Sect. 4, we
verify that our function spaces are nice enough to be used in an implicit function
theorem argument and then employ the IFT to prove Theorem 1.1.

It is natural to investigate the stability of the travelingwave solutions constructed
in Theorem 1.1, and we next turn to this topic. We expect that the stability analysis
depends on the type and form of external forces. In our second main result, we
prove that under the sole effect of the external pressure (i.e. f0 = f1 = 0), the small
periodic traveling wave solutions constructed in Theorem 1.1 are asymptotically
stable. For simplicity we state the result for ϕ(x) = ϕ0(x ′).

Theorem 1.2. (Proved in Sect. 6.2 ) Let γ ∈ R and 1+ n−1
2 < s ∈ R. There exists

a small positive constant ε∗ = ε∗(s, b, n) such that if ‖∇ϕ0‖
Hs− 1

2 (Tn−1)
< ε∗,

then the unique steady solution η∗ ∈ H̊ s(Tn−1) of (2.17) with ϕ(x) = ϕ0(x ′) is
asymptotically stable in H̊ s(Tn−1). More precisely, there exist positive constants
ν and δ, both depending only on (s, b, n), such that if η0 ∈ H̊ s(Tn−1) satisfies
‖η0 − η∗‖H̊ s < δ, then the dynamic problem (2.17) with initial data η0 has a
unique solution η ∈ η∗ + BYs ([0,T ])(0, ν) for all T > 0, where

Y s([0, T ]) = L̃∞([0, T ]; H̊ s(Tn−1)) ∩ L2([0, T ]; H̊ s+ 1
2 (Tn−1)); (1.21)

moreover, we have the estimates

‖η(t) − η∗‖Hs � ‖η0 − η∗‖Hs e−c0t ∀t > 0 (1.22)

and ∫ ∞

0
‖η(t) − η∗‖2

Hs+ 1
2
dt � 1

2c0
‖η0 − η∗‖2Hs , (1.23)

where c0 = c0(s, b, d).

To be best of our knowledge, Theorem 1.2 provides the first class of nontrivial
stable solutions to the one-phase Muskat problem with graph free boundary.

Inspired by the proof of stability of the trivial solution for theMuskat problem in
[11], we obtain the stability of small periodic travelingwave solutions by linearizing
the Dirichlet–Neumann operator about the flat surface,

G(η)h = m(D)h + R(η)h, m(D) = |D| tanh(b|D|), (1.24)
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and establish good boundedness and contraction estimates for the remainder R(η).
More precisely, the results obtained in Sect. 5 imply the estimates

‖|D|− 1
2 R(η)h‖Hs (Td ) � ‖η‖Hs (Td )‖∇h‖

Hs− 1
2 (Td )

+ ‖η‖
Hs+ 1

2 (Td )
‖∇h‖Hs−1(Td )

(1.25)
and

‖|D|− 1
2 {R(η1)h − R(η2)h} ‖Hs (Td )

� ‖ηδ‖Hs (Td )

(
‖∇h‖

Hs− 1
2 (Td )

+ ‖η1‖
Hs+ 1

2 (Td )
‖∇h‖Hs−1(Td )

)

+ ‖ηδ‖
Hs+ 1

2 (Td )
‖∇h‖Hs−1(Td ),

(1.26)

where ηδ = η1 − η2 and d = n − 1. The estimates in Sect. 5 for the Dirichlet–
Neumann operator are obtained for the free boundary belonging to the anisotropic
Sobolev spaces Hs(�), � ∈ {Rd , T

d}, and are of independent interest.
Now, fix a traveling wave solution η∗ with data ϕ0. The perturbation f = η−η∗

then satisfies

∂t f = γ ∂1 f −m(D) f + [R(η∗)(η∗ + ϕ0) − R(η∗ + f )(η∗ + ϕ0)]− R(η∗ + f ) f.
(1.27)

Assuming that f0 has zero mean in Hs(Td), then f (t) has zero mean for t > 0.
When performing the Hs energy estimate, the dissipation term m(D) yields a gain
of 1

2 derivative:

(m(D) f, f )Hs (Td ) � c0(s, b, d)‖ f ‖2
Hs+ 1

2 (Td )
. (1.28)

On the other hand, by virtue of (1.25) and (1.26), we can control the nonlinear

terms in (1.27) in Hs− 1
2 (Td) by

C
(
α + ‖ f ‖Hs (Td )

)‖ f ‖2
Hs+ 1

2 (Td )
, (1.29)

where the coefficient α is small when ϕ0 and η∗ are small. Therefore, if ‖ f (t)‖Hs is
small globally, then it decays exponentially. On the other hand, the global existence
and smallness of ‖ f (t)‖Hs are proved by appealing to the estimates (1.25) and
(1.26) again for the mild-solution formulation of (1.27).

2. Problem Reformulations

In this section we present two reformulations we will use in proving our two
main theorems. The first one is a reformulation for the general traveling wave
system (1.12) in a flattened domain. When the generic body force f is absent, we
present a reformulation for the dynamic problem (1.7) using theDirichlet–Neumann
operator.
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2.1. Flattening the Traveling Wave System

Consider the flat domain� := �0 = �×(−b, 0) andwrite� = �0 = �×{0}.
We define the Poisson extension operator P as in Appendix 7. Assuming that
η ∈ Hs+3/2(�) (see Definition A.1 for the precise definition of this anisotropic
Sobolev space), we define the flattening map Fη : �̄ → �̄η via

Fη(x) = (x ′, xn + Pη(x)(1 + xn/b)) = x + Pη(x) (1 + xn/b) en . (2.1)

Note that Fη|�−b = I and Fη(�) = �η. We compute

∇Fη(x) =
(

In−1 0(n−1)×1
(1 + xn/b)∇′Pη(x) 1 + Pη(x)/b + ∂nPη(x)(1 + xn/b)

)

. (2.2)

We define the functions J,K : � → (0,∞) via

J(x) = det∇Fη(x) = 1 + Pη(x)/b + ∂nPη(x)(1 + xn/b) and K(x) = 1/J(x).
(2.3)

It will be useful to introduce the matrix field M : � → R
n×n via

M(x) = (∇Fη(x))
−T =

(
In−1 −K(x)(1 + xn/b)∇′Pη(x)

01×(n−1) K(x)

)

. (2.4)

Our interest in the field M comes from a trio of useful identities it satisfies.
The first is Piola identity,

∂ j [JMi j ] = 0 for 1 � i � n. (2.5)

The second and third are a pair of identities on � and �−b:

JMen|� = (−∇′η, 1) and JMen|�−b = en . (2.6)

To see the utility of the Piola identity note that v : �η → R
n satisfies div v = 0

if and only if v̂ = v ◦ Fη : � → R
n satisfies JMi j∂ j v̂i = 0 (the summation

convention is used here), but

JMi j∂ j v̂i = ∂ j [JMi j v̂i ] = ∂ j [JMT
ji v̂i ], (2.7)

so a further equivalent condition is that u = JMT v̂ : � → R
n satisfies div u = 0.

In light of the previous calculations, we use Fη andM to rephrase the traveling
wave Muskat system (1.12) in the fixed domain � by defining u = JMT v ◦ Fη

and p = −Pη + q ◦ Fη. The new system reads
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u + ∇A p + ∇APη = JMT f ◦ Fη in �

div u = 0 in �

−γ ∂1η = un on �

p = ϕ ◦ Fη on �

un = 0 on �−b,

(2.8)
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where A : � → R
n×n
sym is defined by

A(x) = J(x)MT (x)M(x)

=
(

J(x)In−1 −(1 + xn/b)∇′Pη(x)

−(1 + xn/b)∇′Pη(x) K(x) + K(x)(1 + xn/b)2
∣
∣∇′Pη(x)

∣
∣2

)

,

(2.9)

and we write
∇Aψ = A∇ψ. (2.10)

2.2. Dirichlet–Neumann Reformulation

We consider the dynamic Muskat problem (1.7) with f̃ = 0 and φ(x, t) =
ϕ(x −γ te1). In the moving frame x �→ x −γ te1, we make the change of variables

ζ(x ′, t) = η(x ′ − γ te1, t), w(x, t) = v(x − γ te1, t),

P(x, t) = P0 − xn − q(x − γ te1, t) (2.11)

to obtain the system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v + ∇q = 0 in �η,

div v = 0 in �η,

∂tη − γ ∂1η = v · (∇′η, 1) on �η,

q = η + ϕ on �η,

vn = 0 on �−b,

(2.12)

This problem can be recast on the free boundary by means of the Dirichlet–
Neumann operator (2.14) defined as follows. Let ψ be the solution of

⎧
⎪⎨

⎪⎩

�ψ = 0 in �η,

ψ = f on �η,

∂nψ = 0 on �−b.

(2.13)

The Dirichlet–Neumann operator associated to � is denoted by G(η) and

[G(η) f ](x ′) := N (x ′) · (∇ψ)(x ′, η(x ′)), N (x ′) = (−∇′η(x ′), 1). (2.14)

By taking the divergence of the first equation in (2.12), we deduce that q satisfies
⎧
⎪⎨

⎪⎩

�q = 0 in �η,

q = η + ϕ(·, η(·)) on �η,

∂nq = 0 on �−b,

. (2.15)

It follows from the third equation in (2.12) that

v · (−∇′η, 1) = −∇q · (−∇′η, 1) = −G(η)
(
η + ϕ(·, η(·))), (2.16)

where G(η) denotes the Dirichlet–Neumann operator for �η. Therefore, η obeys
the equation

∂tη = γ ∂1η − G(η)
(
η + ϕ(·, η(·))) on R

n−1 × R+. (2.17)
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3. Linear Analysis for the Traveling Wave System

In this section we study the linearization of (2.8) around the trivial solution,
which is the system (1.19), where (F,G, H, K ) are given data. Note that for the
purposes of studying the linearization of (2.8) we could reduce to the case G = 0
and H = 0; we have retained these terms here for the sake of generality.

We can eliminate u to get an equivalent formulation of the problem. Indeed, we
take the divergence of the first equation and then use the first equation to remove u
from the boundary conditions. This results in the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�p = G − div F in �

−∂n p − ∂nPη + γ ∂1η = H − Fn(·, 0) on �

p = K on �

−∂n p − ∂nPη = −Fn(·,−b) on �−b.

(3.1)

We will study this form of the problem and eventually show that it is equivalent to
(1.19).

Remark 3.1. Throughout what follows we will often abuse notation by identifying

� � �−b � � ∈ {Rn−1, T
n−1} (3.2)

in order to allow us to handle linear combinations of functions defined on �, �−b,
and � in a simple way. In reality we actually identify these through the natural
isometric isomorphism, but this is obvious and the corresponding notation is too
cumbersome to introduce.

3.1. The upper-Dirichlet–lower-Neumann Isomorphism

Consider the problem
⎧
⎪⎨

⎪⎩

−�p = f in �

p = k on �

−∂n p = l on �−b

(3.3)

for given ( f, k, l) ∈ Hs(�)× Hs+3/2(�)× Hs+1/2(�−b). Associated to this PDE
is the bounded linear map

T0 : Hs+2(�) → Hs(�) × Hs+3/2(�) × Hs+1/2(�−b) (3.4)

given by

T0 p = (−�p, p|�,−∂n p|�−b ). (3.5)

Theorem 3.2. The map T0 is an isomorphism for every 0 � s ∈ R.
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Proof. To see that T0 is injective we suppose that T0 p = 0, multiply the resulting
equation −�p = 0 by p and integrate by parts. Using the boundary conditions
contained in the identity T0 p = 0, we deduce that

∫

�
|∇ p|2 = 0, and so p = 0 in

� since p = 0 on �. Thus p = 0, and injectivity is proved.
It remains to prove that T0 is surjective, and this ultimately boils down to the

weak solvability and elliptic regularity associated to the problem (3.3), which we
will briefly sketch. We initially define the space 0H1(�) = { f ∈ H1(�) | f =
0 on �}, which we can equip with the inner-product ( f, g)0H1 = ∫

�
∇ f · ∇g.

This in indeed an inner-product and generates the usual H1 topology thanks to a
Poincaré-type inequality provided by the vanishing on �. Then by Riesz repre-
sentation, for any F ∈ (0H1(�))∗, there exists a unique p ∈ 0H1(�) such that
∫

�

∇ p · ∇q = 〈F , q〉 for all q ∈ 0H1(�), and ‖p‖0H1 = ‖F‖(0H1(�))∗ . (3.6)

Next we consider s ∈ N and data f ∈ Hs(�) and l ∈ Hs+1/2(�−b). According
to standard trace theory and the above, we can then find a unique p ∈ 0H1(�) such
that
∫

�

∇ p · ∇q =
∫

�

f q +
∫

�−b

lq for all q ∈ 0H1(�), and ‖p‖0H1 � ‖ f ‖Hs + ‖l‖Hs+1/2 .

(3.7)
Standard interior elliptic regularity shows that p ∈ Hs+2

loc (�) and −�p = f in �.
Using horizontal difference quotients, we may deduce in turn that

∑

|α|�s+1,αn=0

∥
∥∂α p

∥
∥
0H1 � ‖ f ‖Hs + ‖l‖Hs+1/2 . (3.8)

We then recover control of the vertical derivatives by using the identity −∂2n p =
�′ p + f together with a simple iteration argument; this yields the inclusion p ∈
Hs+2(�) with the estimate

‖p‖Hs+2 � ‖ f ‖Hs + ‖l‖Hs+1/2 . (3.9)

Returning to the weak formulation and integrating by parts, we find that
∫

�

(−�p − f )q =
∫

�−b

(l + ∂n p)q for all q ∈ 0H1(�), (3.10)

and hence that −∂n p = l on �−b. Thus, p ∈ Hs+2(�) ∩ 0H1(�) satisfies T0 p =
( f, 0, l).

For each s ∈ N this analysis defines a bounded linear map S0 : Hs(�) ×
Hs+1/2(�−b) → Hs+2(�) ∩ 0H1(�) via S0( f, l) = p. Employing the usual
Sobolev interpolation theory (see, for instance, [2,15]), we deduce that S0 extends
to a map between the same spaces but for all 0 � s ∈ R.

Now suppose that f ∈ Hs(�), k ∈ Hs+3/2(�), and l ∈ Hs+1/2(�−b) for
some 0 � s ∈ R. By trace theory, we can pick K ∈ Hs+2(�) such that P = k
on �b H: K = k on �. Using the above, we then find P = S0( f + �K , l +
∂nK ) ∈ Hs+2(�) ∩ 0H1(�), which satisfies T0P = ( f + �K , 0, l + ∂nK ). Then
p := P + K ∈ Hs+2(�) satisfies T0 p = ( f, k, l), and we conclude that T0 is
surjective. ��
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Later in our analysis we will need to consider the following bounded linear
operator:

Definition 3.3. We define the bounded linear map � : Hs+3/2(�) → Hs+2(�)

via �k = T−1
0 (0, k, 0).

The next result records a crucial property of �.

Theorem 3.4. The map � from Definition 3.3 satisfies �̂k(ξ, xn) = k̂(ξ)Q(ξ, xn)
for ξ ∈ �̂, where Q : R

n−1 × (−b, 0) → R is defined by

Q(ξ, xn) = cosh(|ξ | (xn + b))

cosh(|ξ | b) . (3.11)

Note that in the case � = T
n−1 we have that the dual group is �̂ = Z

n−1 ⊂ R
n−1

and Q is given by restriction to �̂.

Proof. Write p = T−1
0 (0, k, 0) ∈ Hs+2(�), and let p̂ denote its horizontal Fourier

transform. Then p̂ satisfies the ordinary differential boundary value problem
⎧
⎪⎨

⎪⎩

(− |ξ |2 + ∂2n ) p̂(ξ, xn) = 0 for xn ∈ (−b, 0)

p̂(ξ, 0) = k̂(ξ)

∂n p̂(ξ,−b) = 0.

(3.12)

From this it’s an elementary exercise to verify that p̂(ξ, xn) = k̂(ξ)Q(ξ, xn), and
the result follows. ��

3.2. The Over-Determined Problem: Compatibility Conditions

Consider the over-determined problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�p = f in �

p = k on �

−∂n p = h+ on �

−∂n p = h− on �−b

(3.13)

for given ( f, h+, h−, k) ∈ Hs(�) × Hs+1/2(�) × Hs+1/2(�−b) × Hs+3/2(�).
Associated to (3.13) are a pair of compatibility conditions. The first actually is

associated to a sub-system of (3.13).

Proposition 3.5. Suppose that ( f, h+, h−) ∈ Hs(�)×Hs+1/2(�)×Hs+1/2(�−b)

and p ∈ Hs+2(�) satisfy
⎧
⎪⎨

⎪⎩

−�p = f in �

−∂n p = h+ on �

−∂n p = h− on �−b.

(3.14)

Then the following hold:
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(1) If � = R
n−1, then

∫ 0

−b
f (·, xn)dxn − (h+ − h−) ∈ Ḣ−2(�) ∩ Ḣ−1(�) (3.15)

and we have the bounds
[∫ 0

−b
f (·, xn)dxn − (h+ − h−)

]

Ḣ−2
� ‖p‖L2

and

[∫ 0

−b
f (·, xn)dxn − (h+ − h−)

]

Ḣ−1
�
∥
∥∇′ p

∥
∥
L2 . (3.16)

(2) If � = T
n−1, then

∫ 0

−b
f̂ (0, xn)dxn − (ĥ+(0) − ĥ−(0)) = 0. (3.17)

Proof. We will only record the proof for � = R
n−1, as the other case follows from

similar but simpler analysis. We have that

∫ 0

−b
f (·, xn)dxn =

∫ 0

−b
−�′ p(·, xn)dxn −

∫ 0

−b
∂2n p(·, xn)dxn . (3.18)

We then compute

∫ 0

−b
−�′ p(·, xn)dxn = −�′

∫ 0

−b
p(·, xn)dxn (3.19)

and
∫ 0

−b
∂2n p(·, xn)dxn = ∂n p(·, 0) − ∂n p(·,−b) = −(h+ − h−). (3.20)

Combining these, we see that

∫ 0

−b
f (·, xn)dxn − (h+ − h−) = −�′

∫ 0

−b
p(·, xn)dxn, (3.21)

and the Ḣ−2 inclusion and estimate then follow from an application of Cauchy–
Schwarz, Fubini–Tonelli, and Parseval:

[

−�′
∫ 0

−b
p(·, xn)dxn

]2

Ḣ−2
=
∫

Rn−1

(|ξ |2)2
|ξ |4

∣
∣
∣
∣

∫ 0

−b
p̂(ξ, xn)dxn

∣
∣
∣
∣

2

dξ

� b2
∫

Rn−1

∫ 0

−b

∣
∣ p̂(ξ, xn)

∣
∣2 dxndξ �

∫

�

|p(x)|2 dx . (3.22)

The Ḣ−1 inclusion and estimate follow similarly. ��



5 Page 14 of 58 Arch. Rational Mech. Anal. (2024) 248:5

Next we identify the formal adjoint of the over-determined problem as an under-
determined problem, given here in homogeneous form:

{
−�q = 0 in �

−∂nq = 0 on �−b.
(3.23)

We can augment this problem with an extra Dirichlet condition at the upper bound-
ary in order to introduce the upper-Dirichlet–lower-Neumann problem (3.3). In-
deed, we can parameterize solutions to (3.23) by letting q = �ψ for some k ∈
Hs+3/2(�), where � is as in Definition 3.3. With this in mind we borrow an idea
from the closed range theorem to deduce a second compatibility condition.

Proposition 3.6. Suppose that ( f, h+, h−, k) ∈ Hs(�) × Hs+1/2(�) ×
Hs+1/2(�−b) × Hs+3/2(�) and p ∈ Hs+2(�) satisfy (3.13). Then the data
( f, h+, h−, k) satisfy both of the following equivalent conditions:

(1) For everyψ ∈ Hs+3/2(�), if we let q = �ψ ∈ Hs+2(�) for� as in Definition
3.3, then ∫

�

f q −
∫

�

k∂nq + h+ψ +
∫

�−b

h−q = 0. (3.24)

(2) For a.e. ξ ∈ �̂ we have that

0 =
∫ 0

−b
f̂ (ξ, xn)

cosh(|ξ | (xn + b))

cosh(|ξ | b) dxn − k̂(ξ) |ξ | tanh(|ξ | b) − ĥ+(ξ)

+ĥ−(ξ) sech(|ξ | b). (3.25)

Proof. Let ψ ∈ Hs+3/2(�) and write q = �ψ ∈ Hs+2(�). Multiplying the first
equation in (3.13) by q and integrating by parts, we find that

∫

�

f q =
∫

�

−�pq =
∫

�

−�qp +
∫

∂�

p∂νq − ∂ν pq

=
∫

�

p∂nq − ∂n pq −
∫

�−b

p∂nq − ∂n pq

=
∫

�

k∂nq + h+ψ −
∫

�−b

h−q. (3.26)

Rearranging yields (3.24). It remains to prove that (3.25) is equivalent to this.
Viewing k, h+, and h− as functions on �̂ in the natural way, we may rearrange

(3.26) and apply Fubini–Tonelli to see that
∫

�̂

[∫ 0

−b
f (·, xn)q(·, xn)dxn − k∂nq(·, 0) − h+ψ + h−q(·,−b)

]

= 0. (3.27)

From this, Parseval’s theorem, and Theorem 3.4, we then find that
∫

�̂

[∫ 0

−b
f̂ (ξ, xn)Q(ξ, xn)dxn − k̂(ξ)∂nQ(ξ, 0) − ĥ+(ξ) + ĥ−(ξ)Q(ξ,−b)

]

ψ̂(ξ)dξ

= 0 (3.28)
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for all ψ ∈ Hs+3/2(�). This implies the identity

0 =
∫ 0

−b
f̂ (ξ, xn)Q(ξ, xn)dxn − k̂(ξ)∂nQ(ξ, 0) − ĥ+(ξ) + ĥ−(ξ)Q(ξ,−b)

(3.29)

for a.e. ξ ∈ �̂, and (3.25) then follows by employing the formula for Q(ξ, xn) from
Theorem 3.4. The fact that (3.25) implies (3.24) is readily seen by multiplying

(3.25) by ψ̂ and then working backward through the above argument with Parseval
and Fubini–Tonelli. ��

Next we show that data obeying the conditions identified in this result must also
obey an estimate in Ḣ−2 as in Proposition 3.5.

Proposition 3.7. If ( f, h+, h−, k) ∈ Hs(�) × Hs+1/2(�) × Hs+1/2(�−b) ×
Hs+3/2(�) satisfy either (and thus both) of the conditions in Proposition 3.6. Then
the following hold.

(1) If � = R
n−1, then

∫ 0

−b
f (·, xn)dxn − (h+ − h−) ∈ Ḣ−2(Rn−1) (3.30)

and
[∫ 0

−b
f (·, xn)dxn − (h+ − h−)

]

Ḣ−2
� ‖ f ‖L2 + ‖h+‖L2 + ‖h−‖L2 + ‖k‖L2 .

(3.31)
(2) If � = T

n−1, then

∫ 0

−b
f̂ (0, xn)dxn − (ĥ+(0) − ĥ−(0)) = 0. (3.32)

Proof. We will only record the proof when � = R
n−1 as the other case is simpler.

The condition (3.25) implies that
∫ 0

−b
f̂ (ξ, xn)dxn − (ĥ+(ξ) − ĥ−(ξ)) =

∫ 0

−b
f̂ (ξ, xn)

[

1 − cosh(|ξ | (xn + b))

cosh(|ξ | b)
]

dxn

+k̂(ξ) |ξ | tanh(|ξ | b) + ĥ−(ξ) [1 − sech(|ξ | b)] . (3.33)

Upon making routine Taylor expansions and applying Cauchy–Schwarz and Par-
seval, we see that

∫

B(0,1)

1

|ξ |4
∣
∣
∣
∣

∫ 0

−b
f̂ (ξ, xn)dxn − (ĥ+(ξ) − ĥ−(ξ))

∣
∣
∣
∣

2

dξ

�
∫

B(0,1)

[∣
∣
∣k̂(ξ)

∣
∣
∣
2 +

∣
∣
∣ĥ−(ξ)

∣
∣
∣
2 +

∫ 0

−b
x2n

∣
∣
∣ f̂ (ξ, xn)

∣
∣
∣
2
dxn

]

dξ

� ‖k‖2L2 + ‖h−‖2L2 + ‖ f ‖2L2 . (3.34)
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This yields the low frequency control of the Ḣ−2 seminorm, but the high frequency
control comes directly from Cauchy–Schwarz and Parseval:

∫

B(0,1)c

1

|ξ |4
∣
∣
∣
∣

∫ 0

−b
f̂ (ξ, xn)dxn − (ĥ+(ξ) − ĥ−(ξ))

∣
∣
∣
∣

2

dξ � ‖ f ‖2L2 +‖h+‖2L2 +‖h−‖2L2 .

(3.35)
Thus, the inclusion (3.30) holds, and upon summing (3.34) and (3.35) we deduce
the estimate (3.31). ��

3.3. A Pair of Useful Function Spaces

We now introduce a couple function spaces that will be useful in our study of
the over-determined problem (3.13).

Definition 3.8. For 0 � s ∈ R we define the following spaces:

(1) For � = R
n−1 and 0 < t ∈ R we define the space

Y s
t = {( f, h+, h−, k) ∈ Hs(�) × Hs+1/2(�) × Hs+1/2(�) × Hs+3/2(�−b) |

∫ 0

−b
f (·, xn)dxn − (h+ − h−) ∈ Ḣ−t (�)} (3.36)

and endow this space with the square-norm

‖( f, h+, h−, k)‖2Y s
t

= ‖ f ‖2Hs + ‖h+‖2Hs+1/2 + ‖h−‖2Hs+1/2 + ‖k‖2Hs+3/2

+
[∫ 0

−b
f (·, xn)dxn − (h+ − h−)

]2

Ḣ−t
(3.37)

and its associated inner-product.
(2) For � = T

n−1 and 0 < t ∈ R we define the space

Y s
t = {( f, h+, h−, k) ∈ Hs(�) × Hs+1/2(�) × Hs+1/2(�) × Hs+3/2(�−b) |

∫ 0

−b
f̂ (0, xn)dxn − (ĥ+(0) − ĥ−(0)) = 0} (3.38)

and endow this space with the square-norm

‖( f, h+, h−, k)‖2Y s
t

= ‖ f ‖2Hs + ‖h+‖2Hs+1/2 + ‖h−‖2Hs+1/2 + ‖k‖2Hs+3/2

(3.39)

and its associated inner-product.
(3) We define the space

Zs = {( f, h+, h−, k) ∈ Hs(�) × Hs+1/2(�) × Hs+1/2(�−b) × Hs+3/2(�) |
∫

�

f q −
∫

�

k∂nq + h+ψ +
∫

�−b

h−q = 0 for every ψ ∈ Hs+3/2(�),

where q = �ψ}. (3.40)
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Here we recall that � : Hs+3/2(�) → Hs+2(�) is defined in Definition 3.3.
We endow Zs with the square norm

‖( f, h+, h−, k)‖2Zs = ‖ f ‖2Hs + ‖h+‖2Hs+1/2 + ‖h−‖2Hs+1/2 + ‖k‖2Hs+3/2

(3.41)

and its associated inner-product.

The next result establishes some key properties of these spaces.

Proposition 3.9. Let 0 � s ∈ R, 0 < t ∈ R, and let Y s
t and Zs be as in Definition

3.8. Then the following hold.

(1) Y s
t and Zs are Hilbert spaces.

(2) If t < r ∈ R then we have the continuous inclusion Y s
r ↪→ Y s

t .
(3) We have the continuous inclusion Zs ↪→ Y s

2 .

Proof. The completeness of Y s
t is routine to verify, and since � is a bounded

linear map it is easy to see that Zs is a closed subspace of Hs(�) × Hs+1/2(�) ×
Hs+1/2(�−b) × Hs+3/2(�) and thus complete. This proves the first item. The
second item is trivial when � = T

n−1, and when � = R
n−1 it follows from the

fact that
∫

B(0,1)

1

|ξ |2t |ψ(ξ)|2 dξ �
∫

B(0,1)

1

|ξ |2r |ψ(ξ)|2 dξ (3.42)

when t < r andψ is measurable. The continuous inclusion Zs ↪→ Y s
2 follows from

Proposition 3.7. ��

3.4. The Over-Determined Problem: Isomorphism

We now aim to establish an isomorphism associated to the over-determined
problem (3.13).

Theorem 3.10. The bounded linearmap T1 : Hs+2(�) → Zs associated to (3.13),
which is given by

T1 p = (−�p,−∂n p|�,−∂n p|�−b , p|�), (3.43)

is well-defined and is an isomorphism for every 0 � s ∈ R.

Proof. The map T1 is obviously a bounded linear map into Hs(�)× Hs+1/2(�)×
Hs+1/2(�−b)× Hs+3/2(�), but the range of T1 lies in Zs by virtue of Proposition
3.6. Thus, T1 : Hs+2(�) → Zs is a well-defined and bounded linear map. If
T1 p = 0, then in particular T0 p = 0, where T0 is the isomorphism from Theorem
3.2, and so p = 0. This means that T1 is injective.
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Now let ( f, h+, h−, k) ∈ Zs . Then Theorem 3.2 allows us to set
p = T−1

0 ( f, k, h−) ∈ Hs+2(�). Set H+ = −∂n p|� ∈ Hs+1/2(�). Then p
solves the over-determined problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�p = f in �

p = k on �

−∂n p = H+ on �

−∂n p = h− on �−b,

(3.44)

and so Proposition 3.6 tells us that
∫

�

f q −
∫

�

k∂nq +
∫

�−b

h−q =
∫

�

H+ψ (3.45)

for everyψ ∈ Hs+3/2(�), where q = �ψ ∈ Hs+2(�) for� defined by Definition
3.3. On the other hand, the compatibility condition on ( f, h+, h−, k) built into the
definition of Zs requires that

∫

�

f q −
∫

�

k∂nq +
∫

�−b

h−q =
∫

�

h+ψ (3.46)

for all such ψ and q. Equating these then shows that
∫

�

(h+ − H+)ψ = 0 for all ψ ∈ Hs+3/2(�), (3.47)

from which we conclude that h+ = H+. Hence p solves (3.13), or equivalently
T1 p = ( f, h+, h−, k). Thus T1 is surjective and so defines an isomorphism. ��

3.5. The Isomorphism for the Pressure-Free Surface System

Next we aim to show that the PDE system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�p = f in �

−∂n p − ∂nPη + γ ∂1η = h+ on �

p = k on �

−∂n p − ∂nPη = h− on �−b

(3.48)

induces an isomorphism between appropriate Banach spaces. As a first step, in the
next lemma we establish that the linear mapping associated to our PDE system
actually takes values in Y s

1 and is bounded.

Lemma 3.11. Let 0 � s ∈ R. If (p, η) ∈ Hs+2(�)×Hs+3/2(�) then we have the
inclusion

(−�p,−∂n p|� − ∂nPη|� + γ ∂1η,−∂n p|�−b − ∂nPη|�−b , p|�) ∈ Y s
1 , (3.49)

and
∥
∥(−�p,−∂n p|� − ∂nPη|� + γ ∂1η,−∂n p|�−b − ∂nPη|�−b , p|�)

∥
∥
Y s
1

� ‖p‖Hs+2 + ‖η‖Hs+3/2 . (3.50)
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Proof. Write the tuple in (3.49) as ( f, h+, h−, k). From Theorems A.2, A.4, A.7
and standard trace theory we see that

‖ f ‖Hs + ‖h+‖Hs+1/2 + ‖h−‖Hs+1/2 + ‖k‖Hs+3/2 � ‖p‖Hs+2 + ‖η‖Hs+3/2 ,

(3.51)

and so in particular ( f, h+, h−, k) ∈ Hs(�) × Hs+1/2(�) × Hs+1/2(�−b) ×
Hs+3/2(�).

Suppose now that � = R
n−1. Proposition 3.5 implies that

[∫ 0

−b
f (·, xn)dxn − (h+ + ∂nPη|� − γ ∂1η − h− − ∂nPη|�−b )

]

Ḣ−1
� ‖p‖Hs+2 .

(3.52)
We know fromTheoremA.2 that [∂1η]Ḣ−1 � ‖η‖Hs+3/2 , and we know from Propo-
sition A.8 that

[
∂nPη|� − ∂nPη|�−b

]

Ḣ−1 � ‖η‖Hs+3/2 , (3.53)

so we deduce that

[∫ 0

−b
f (·, xn)dxn − (h+ − h−)

]

Ḣ−1
� ‖p‖Hs+2 + ‖η‖Hs+3/2 . (3.54)

Thus ( f, h+, h−, k) ∈ Y s
1 and the estimate (3.50) holds when � = R

n−1.
Now consider the case � = T

n−1. In this case Proposition 3.5 shows that

∫ 0

−b
f̂ (0, xn)dxn − (ĥ+(0)+ ̂∂nPη|�(0)−γ ∂̂1η(0)− ĥ−(0)− ̂∂nPη|�−b(0)) = 0,

(3.55)
but Proposition A.8 shows ̂∂nPη|�(0) = ∂̂1η(0) = ̂∂nPη|�−b (0) = 0, so

∫ 0

−b
f̂ (0, xn)dxn − (ĥ+(0) − ĥ−(0)) = 0. (3.56)

Thus, ( f, h+, h−, k) ∈ Y s
1 and the estimate (3.50) holds when � = T

n−1. ��

We can now state our isomorphism theorem associated to (3.48).

Theorem 3.12. If � = R
n−1, then assume that γ 
= 0. Then the bounded linear

map T2 : Hs+2(�) × Hs+3/2(�) → Y s
1 associated to (3.48), which is defined by

T2(p, η) = (−�p,−∂n p|� − ∂nPη|� + γ ∂1η,−∂n p|�−b − ∂nPη|�−b , p|�),

(3.57)
is an isomorphism for every 0 � s ∈ R.
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Proof. First note that Lemma 3.11 tells us that T2 is a well-defined bounded linear
map. If T2(p, η) = 0, then

0 =
∫

�

div(−∇ p − ∇Pη)(p + Pη) =
∫

�

|∇ p + ∇Pη|2

−
∫

∂�

∂ν(p + Pη)(p + Pη)

=
∫

�

|∇ p + ∇Pη|2 +
∫

�

−∂n(p + Pη)(p + Pη)

=
∫

�

|∇ p + ∇Pη|2 +
∫

�

−γ ∂1ηη =
∫

�

|∇ p + ∇Pη|2 , (3.58)

and so p +Pη = C for some constant C ∈ R. However, on � we have that p = 0
andPη = η, so η = C . In turn this requires that η = 0 (since η ∈ Hs+3/2(�)) and
p = 0, and so T2 is injective.

Now let ( f, h+, h−, k) ∈ Y s
1 . Define the function ψ : �̂ → C via

ψ(ξ) =
∫ 0

−b
f̂ (ξ, xn)

cosh(|ξ | (xn + b))

cosh(|ξ | b) dxn − k̂(ξ) |ξ | tanh(|ξ | b) − ĥ+(ξ)

+ĥ−(ξ) sech(|ξ | b). (3.59)

Note that we may rewrite

ψ(ξ) =
∫ 0

−b
f̂ (ξ, xn)dxn − (ĥ+(ξ) − ĥ−(ξ))

+
∫ 0

−b
f̂ (ξ, xn)

[
cosh(|ξ | (xn + b))

cosh(|ξ | b) − 1

]

dxn

−k̂(ξ) |ξ | tanh(|ξ | b) + ĥ−(ξ) [sech(|ξ | b) − 1] . (3.60)

When � = R
n−1, we readily deduce from this and standard Taylor expansion that

∫

B(0,1)
|ξ |−2 |ψ(ξ)|2 dξ �

[∫ 0

−b
f (·, xn)dxn + (h+ − h−)

]2

Ḣ−1

+‖ f ‖2L2 + ‖h−‖2L2 + ‖k‖2L2

� ‖( f, h+, h−, k)‖2Y s
1
. (3.61)

Similarly, when � = T
n−1, we must have that ψ(0) = 0. On the other hand, in

both cases we can bound
∫

B(0,1)c
(1 + |ξ |2)s+1/2 |ψ(ξ)|2 dξ � ‖ f ‖2Hs + ‖h+‖2Hs+1/2

+‖h−‖2Hs+1/2 + ‖k‖2Hs+3/2 � ‖( f, h+, h−, k)‖2Y s
1
. (3.62)

Combining these bounds shows that
∫

B(0,1)
|ξ |−2 |ψ(ξ)|2 dξ +

∫

B(0,1)c
(1+|ξ |2)s+1/2 |ψ(ξ)|2 dξ � ‖( f, h+, h−, k)‖2Y s

1

(3.63)
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with the understanding that the first integral is replaced with 0 when � = T
n−1.

Next note that for ξ ∈ �̂ we have that

|−iγ ξ1 + |ξ | tanh(|ξ | b)|2 = γ 2ξ21 + |ξ |2 tanh2(|ξ | b)

�
{

γ 2ξ21 + |ξ |4 b2 for |ξ | � 0

(1 + γ 2) |ξ |2 for |ξ | � ∞,
(3.64)

and in particular the quantity on the left side vanishes if and only if ξ = 0. Con-
sequently, we can define the measurable function η̂ : �̂ → C via the identity

[−iγ ξ1 + |ξ | tanh(|ξ | b)] η̂(ξ) = ψ(ξ) (3.65)

for ξ 
= 0 and η̂(0) = 0. It may be easily checked that since the data are real-valued
we have that ψ(ξ) = ψ(−ξ). The multiplier on the left side of (3.65) satisfies the
same identity, and so we conclude that η̂(ξ) = η̂(−ξ), which means that η is also
real-valued. Synthesizing (3.63) and (3.64), we see from (3.65) that η ∈ Hs+3/2(�)

and

‖η‖2Hs+3/2 �
∫

B(0,1)

γ 2ξ21 + |ξ |4
|ξ |2

∣
∣η̂(ξ)

∣
∣2 dξ +

∫

B(0,1)c
(1 + |ξ |2)s+3/2

∣
∣η̂(ξ)

∣
∣2 dξ

�
∫

B(0,1)
|ξ |−2 |ψ(ξ)|2 dξ +

∫

B(0,1)c
(1 + |ξ |2)s+1/2 |ψ(ξ)|2 dξ

� ‖( f, h+, h−, k)‖2Y s
1
, (3.66)

again with the understanding that the integrals over B(0, 1) are replaced by 0 when
� = T

n−1, and recalling that Hs+3/2(Tn−1) = Hs+3/2(Tn−1).
We nowknow that η ∈ Hs+3/2(�), sowe can use TheoremA.7 to see thatPη ∈

P
s+2(�), as defined inDefinitionA.3. In particular, this, TheoremA.4, and standard

trace theory show that ∂nPη|� ∈ Hs+3/2(�) and ∂nPη|�−b ∈ Hs+3/2(�−b).
Moreover, a simple computation shows that

∂̂nPη|�(ξ) = |ξ | η̂(ξ) and ∂̂nPη|�−b (ξ) = |ξ | e−|ξ |bη̂(ξ) (3.67)

for ξ ∈ �̂. From these and the properties ofHs+3/2(�) given in Theorem A.2, we
readily deduce that we have the inclusion

( f, h+ − γ ∂1η + ∂nPη|�, h− + ∂nPη|�−b , k) ∈ Hs(�) × Hs+1/2(�)

×Hs+1/2(�−b) × Hs+3/2(�).

(3.68)

We claim that, in fact, this modified tuple belongs to the space Zs . To show this
it suffices to check that the modified tuple satisfies the compatibility condition of
Proposition 3.6. Using the identities (3.67), we compute

−(ĥ+(ξ) − γ ∂̂1η(ξ) + ̂∂nPη|�(ξ)) + (ĥ−(ξ) + ̂∂nPη|�−b (ξ)) sech(|ξ | b)
= −ĥ+(ξ) + ĥ−(ξ) sech(|ξ | b) − [−iγ ξ1 + |ξ | tanh(|ξ | b)] η̂(ξ). (3.69)
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Thus, the identity

0 =
∫ 0

−b
f̂ (ξ, xn)

cosh(|ξ | (xn + b))

cosh(|ξ | b) dxn − k̂(ξ) |ξ | tanh(|ξ | b)

−(ĥ+(ξ) − γ ∂̂1η(ξ) + ̂∂nPη|�(ξ)) + (ĥ−(ξ) + ̂∂nPη|�−b (ξ)) sech(|ξ | b)
(3.70)

is equivalent to the identity (3.65), which is satisfied by the construction of η. Thus,
for the modified tuple we have the inclusion

( f, h+ − γ ∂1η + ∂nPη|�, h− + ∂nPη|�−b , k) ∈ Zs (3.71)

as claimed.
In light of (3.71) and Theorem 3.10 we may then define

p = T−1
1 ( f, h+ − γ ∂1η + ∂nPη|�, h− + ∂nPη|�−b , k) ∈ Hs+2(�), (3.72)

which satisfies ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�p = f in �

p = k on �

−∂n p = h+ − γ ∂1η + ∂nPη|� on �

−∂n p = h− + ∂nPη|�−b on �−b.

(3.73)

Thus, T2(p, η) = ( f, h+, h−, k), and we conclude that T2 is surjective and hence
an isomorphism. ��

3.6. The Isomorphism for the Velocity-Pressure-Free Surface System

Finally, we aim to show that the PDE system (1.19) induces an isomorphism be-
tween appropriate Hilbert spaces. First we must identify the domain and codomain
by introducing two definitions. The first defines a closed subspace of Hs(�; R

n).

Definition 3.13. For 1/2 < s ∈ R we define the space

nH
s(�; R

n) = {u ∈ Hs(�; R
n) | un|�−b = 0}. (3.74)

Standard trace theory shows that this is a closed subspace of Hs(�; R
n) and thus

a Hilbert space.

The second definition introduces a container space for the data in the problem
(1.19).

Definition 3.14. Let 0 � s ∈ R. For � = R
n−1 we define the space

V s = {(F,G, H, K ) ∈ Hs+1(�; R
n) × Hs(�) × Hs+1/2(�) × Hs+3/2(�) |

∫ 0

−b
(G − div F)(·, xn)dxn − (H − Fn|� + Fn|�−b ) ∈ Ḣ−1(�)}

(3.75)



Arch. Rational Mech. Anal. (2024) 248:5 Page 23 of 58 5

and endow it with the square norm

‖(F,G, H, K )‖sV s = ‖F‖2Hs+1 + ‖G‖2Hs + ‖H+‖2Hs+1/2 + ‖K‖2Hs+3/2

+
[∫ 0

−b
(G − div F)(·, xn)dxn − (H − Fn |� + Fn |�−b )

]2

Ḣ−1

(3.76)

and the associated inner-product. On the other hand, for � = T
n−1 we define the

space

V s = {(F,G, H, K ) ∈ Hs+1(�; R
n) × Hs(�) × Hs+1/2(�) × Hs+3/2(�) |

∫ 0

−b
(Ĝ − d̂iv F)(0, xn)dxn − (Ĥ(0) − F̂n|�(0) + F̂n|�−b (0)) = 0} (3.77)

and endow it with the square norm

‖(F,G, H, K )‖sV s = ‖F‖2Hs+1 + ‖G‖2Hs + ‖H+‖2Hs+1/2 + ‖K‖2Hs+3/2 (3.78)

and the associated inner-product. It’s easy to see that in both cases V s is a Hilbert
space.

Remark 3.15. Note that
∫ 0

−b
− div F(·, xn)dxn = − div′

∫ 0

−b
F ′(·, xn)dxn − Fn|� + Fn|�−b (3.79)

and so
∫ 0

−b
− div F(·, xn)dxn + Fn|� − Fn|�−b = − div′

∫ 0

−b
F ′(·, xn)dxn . (3.80)

When � = R
n−1 this provides the estimate

[∫ 0

−b
− div F(·, xn)dxn + Fn|� − Fn|�−b

]

Ḣ−1
�
∥
∥F ′∥∥

L2 , (3.81)

and this means that the term appearing in the Ḣ−1 seminorm in the definition of
the V s norm can be replaced with

[∫ 0

−b
G(·, xn)dxn − H

]

Ḣ−1
(3.82)

to produce an equivalent norm. Similarly, when � = T
n−1 these calculations show

that a data tuple (F,G, H, K ) ∈ Hs+1(�; R
n)×Hs(�)×Hs+1/2(�)×Hs+3/2(�)

belongs to V s if and only if

∫ 0

−b
Ĝ(0, xn)dxn − Ĥ(0) = 0. (3.83)
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Our next lemma shows that the linear map associated to (1.19) takes values in
V s and is bounded.

Lemma 3.16. Let 0 � s ∈ R. Suppose (u, p, η) ∈ nHs+1(�; R
n) × Hs+2(�) ×

Hs+3/2(�) and set

F = u + ∇ p + ∇Pη,G = div u, H = un + γ ∂1η, and K = p. (3.84)

Then (F,G, H, K ) ∈ V s, (G−div F, H −Fn|�,−Fn|�−b , K ) ∈ Y s
1 , and we have

the bound

‖(F,G, H, K )‖V s + ∥
∥(G − div F, H − Fn|�,−Fn|�−b , K )

∥
∥
Y s
1

� ‖u‖Hs+1 + ‖p‖Hs+2 + ‖η‖Hs+3/2 . (3.85)

Proof. We may readily bound

‖F‖Hs+1 +‖G‖Hs +‖H‖Hs+1/2 +‖K‖Hs+3/2 � ‖u‖Hs+1 +‖p‖Hs+2 +‖η‖Hs+3/2 .

(3.86)
On the other hand, if we define f = G − div F ∈ Hs(�), h+ = H − Fn|� ∈
Hs+1/2(�), h− = −Fn|�−b ∈ Hs+1/2(�−b), and k = K ∈ Hs+3/2(�), then we
see that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�p = G − div F = f in �

−∂n p − ∂nPη + γ ∂1η = H − Fn(·, 0) = h+ on �

p = K = k on �

−∂n p − ∂nPη = −Fn(·,−b) = h− on �−b,

(3.87)

and so Lemma 3.11 implies that ‖( f, h+, h−, k)‖Y s
1

� ‖p‖Hs+2 +‖η‖Hs+3/2 .When

� = R
n−1, the Ḣ−1 control provided by the Y s

1 norm is exactly the Ḣ−1 control in
the V s norm, and the stated estimate follows by summing our two bounds. Similarly,
when � = T

n−1, the vanishing zero mode condition required for inclusion in Y s
1

corresponds with the vanishing condition needed for inclusion in V s . ��
Finally, we can state the isomorphism theorem for the map associated to (1.19).

Theorem 3.17. Assume that 0 � s ∈ R, and if� = R
n−1, then assume that γ 
= 0.

Then the bounded linear map T3 : nHs+1(�; R
n)×Hs+2(�)×Hs+3/2(�) → V s

associated to (1.19), which is defined by

T3(u, p, η) = (u + ∇ p + ∇Pη, div u, un|� + γ ∂1η, p|�), (3.88)

is an isomorphism.

Proof. Lemma 3.16 tells us that T3 is well-defined and bounded. If T3(u, p, η) = 0,
then in particular u + ∇ p + ∇Pη = 0, and in turn this means that T2(p, η) = 0.
Theorem 3.12 then implies that p = 0 and η = 0, and so u = 0 as well. Thus, T3
is injective.

Now let (F,G, H, K ) ∈ V s . Lemma 3.16 shows that

( f, h+, h−, k) := (G − div F, H − Fn|�,−Fn|�−b , K ) ∈ Y s
1 , (3.89)
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and so we may use Theorem 3.12 to define (p, η) = T−1
2 ( f, h+, h−, k) ∈ Hs+2

(�) × Hs+3/2(�). In other words, (p, η) satisfy
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−�p = G − div F in �

−∂n p − ∂nPη + γ ∂1η = H − Fn(·, 0) on �

p = K on �

−∂n p − ∂nPη = −Fn(·,−b) on �−b,

(3.90)

and upon setting u = F − ∇ p − ∇Pη ∈ nHs+1(�; R
n) (where we have used

Theorems A.2, A.4, A.7 to handle the ∇Pη term) we deduce that T3(u, p, η) =
(F,G, H, K ). Thus, T3 is surjective and so is an isomorphism. ��

4. Nonlinear Analysis for the Traveling Wave System

Now we aim to invoke the implicit function theorem to solve (2.8).

4.1. The Nonlinear Mapping

To employ the implicit function theorem we first check that a number of basic
nonlinear maps are well-defined.

Proposition 4.1. Let s > n/2− 1. Then there exists δ0 > 0 such that the following
hold:

(1) If η ∈ Hs+3/2(�) and ‖η‖Hs+3/2 < δ0, then
∥
∥
∥b−1Pη + b̃∂nPη

∥
∥
∥
C0
b

� 1

2
, (4.1)

where b̃(x) = 1+ xn/b. In particular, for such η the functionsK andA, defined
in terms of η via (2.3) and (2.9), are well-defined.

(2) If η ∈ Hs+3/2(�) and ‖η‖Hs+3/2 < δ0, then the flattening map Fη : � → �η

given by (2.1) is a C1+�s−n/2+1� orientation-preserving diffeomorphism.
(3) For η ∈ Hs+3/2(�) such that ‖η‖Hs+3/2 < δ0, the functions J and K, given in

terms of η as in (2.3), define Hs+1(�) multipliers. Moreover, the maps

BHs+3/2(�)(0, δ0) 
 η �→ J ∈ L(Hs+1(�)) and

BHs+3/2(�)(0, δ0) 
 η �→ K ∈ L(Hs+1(�))
(4.2)

are smooth.
(4) For η ∈ Hs+3/2(�) such that ‖η‖Hs+3/2 < δ0, the functions M and A, given

in terms of η as in (2.4) and (2.9), define Hs+1(�; R
n) multipliers. Moreover,

the maps

BHs+3/2(�)(0, δ0) 
 η �→ M ∈ L(Hs+1(�; R
n)) and

BHs+3/2(�)(0, δ0) 
 η �→ A ∈ L(Hs+1(�; R
n))

(4.3)

are smooth.
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Proof. Wewill only provide the proof for the case� = R
n−1, as the case� = T

n−1

is similar but simpler. Since s + 1 > n/2, the existence of a δ1 > 0 such that
‖η‖Hs+3/2 < δ1 implies the bound (4.1) follows readily from the results inTheorems
A.4 and A.7, which show thatPη ∈ P

s+2(�) ↪→ C1
b(�). With this bound in hand,

we may appeal to (2.3) to write

K = J−1 =
(
1 + b−1Pη + b̃∂nPη

)−1 =
∞∑

m=0

(−1)m(b−1Pη + b̃∂nPη)m .

(4.4)

In turn, (2.4) allows us to write

B := M − I = (−Kb̃∇′Pη,K − 1) ⊗ en, (4.5)

and we conclude that K and B, and hence J = K−1, M = I + B, and A =
J(I + B)T (I + B) are well-defined when ‖η‖Hs+3/2 < δ1.

Next we use Theorem A.5 (again noting that s+1 > n/2) to see that the power
series

P
s+1(�) 
 z �→

∞∑

m=0

(−1)mzm ∈ L(Hs+1(�)) (4.6)

converges and defines an analytic function for ‖z‖Ps+1 < δ2, for some δ2 > 0.Again
employing TheoremsA.4 andA.7, wemay choose δ3 > 0 such that ‖η‖Hs+3/2 < δ3

implies that
∥
∥
∥b−1Pη + b̃∂nPη

∥
∥
∥
Ps+1

< δ2.

Set δ0 = min{δ1, δ2, δ3}. Then for ‖η‖Hs+3/2 < δ0 we have that K, J, M, and
A are well-defined pointwise, and the formulas (4.4) and (4.5) then show that the
maps given in (4.2) and (4.3) are smooth.

Finally, suppose ‖η‖Hs+3/2 < δ0. Then according to Theorems A.7 and A.4, the
mapFη isC1+�s−n/2+1�.Moreover, the bound (4.1) implies that for each x ′ ∈ R

n−1,
the map (−b, 0) 
 xn �→ en · Fη(x ′, xn) ∈ (−b, η(x ′)) is increasing since its
derivative is greater than 1/2 everywhere. From this and the fact that Fη(x)′ = x ′
we conclude that Fη is a bijection from � to �η. On the other hand, the bound
(4.1) also shows that det∇Fη(x) � 1/2 for x ∈ �, so Fη is a C1+�s−n/2+1�
diffeomorphism by virtue of the inverse function theorem. ��

We next introduce some useful notation.

Definition 4.2. Let 0 � s ∈ R and V be a finite dimensional real inner-product
space. We define the bounded linear map L� : Hs(�; V ) → Hs(�; V ) via
L� f (x) = f (x ′).

The next theorem verifies that the nonlinear maps associated to the problem 2.8
are well-defined and C1, which is essential for our subsequent use of the implicit
function theorem.
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Theorem 4.3. Let n/2 − 1 < s ∈ N and for δ > 0 define the set

Us
δ = {(u, p, η) ∈ nH

s+1(�; R
n) × Hs+2(�) × Hs+3/2(�) | ‖η‖Hs+3/2 < δ}.

(4.7)
There exists a constant δ > 0 such that if γ ∈ R, ϕ0 ∈ Hs+3/2(�), ϕ1 ∈ Hs+3(�×
R), f0 ∈ Hs+1(�; R

n), f1 ∈ Hs+2(� × R; R
n), and (u, p, η) ∈ Us

δ , and we define
F : � → R

n, G : � → R, and H, K : � → R via

F = u + ∇A p + ∇APη − JMT [L�f0 + f1 ◦ Fη

]
, G = div u,

H = un + γ ∂1η, K = p − ϕ0 − ϕ1 ◦ Fη|�,

(4.8)
where Fη, J,M, and A are determined by η via (2.1), (2.3), (2.4), and (2.9), then
(F,G, H, K ) ∈ V s, where V s is as in Definition 3.14. Moreover, the map

� : R×Hs+3/2(�)×Hs+3(�×R)×Hs+1(�; R
n)×Hs+2(�×R; R

n)×Us
δ → V s

(4.9)
defined by �(γ, ϕ0, ϕ1, f0, f1, u, p, η) = (F,G, H, K ) is C1.

Proof. Again, we will only write the proof for the case � = R
n−1, as the case

� = T
n−1 is similar but simpler.

Let δ > 0 be the smaller of δ0 > 0 from Proposition 4.1 and δ∗ > 0 fromCorol-
lary A.12. Proposition 4.1, Theorems A.4 and A.7, and the first item of Corollary
A.12, applied with r = σ = s + 1, show that the map

(f0, f1, u, p, η) �→ u + ∇A p + ∇APη − JMT [L�f0 + f1 ◦ Fη

] ∈ Hs+1(�; R
n)

(4.10)
is well-defined and C1. Next, we note that the maps

u �→ div u ∈ Hs(�) and (γ, u, η) �→ un|� + γ ∂1η ∈ Hs+1/2(�) (4.11)

are smooth since the former is linear and the latter is a sum of the linear trace map
and a quadratic map. Finally, Proposition 4.1 and the second item of Corollary
A.12, applied with r = σ + 1 = s + 2, show that the map (ϕ0, ϕ1, p, η) �→
p − ϕ0 − ϕ1 ◦ Fη|� is C1. These combine to show initially that � is well-defined
and C1 as a map into Hs+1(�; R

n) × Hs(�) × Hs+1/2(�) × Hs+3/2(�).
On the other hand, the map

(γ, u, η) �→
∫ 0

−b
(div u)(·, xn)dxn − (un|� + γ ∂1η)

= div′
∫ 0

−b
u′(·, xn)dxn − γ ∂1η ∈ Ḣ−1(�) (4.12)

iswell-defined (thanks toTheoremA.2) and quadratic, and thus smooth. Combining
the above observations with Remark 3.15, we conclude that � is actually a C1

mapping into the space V s . ��
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4.2. Invoking the Implicit Function Theorem: Proof of the Main Existence
Theorem

Finally, we are ready to invoke the implicit function theorem to prove the exis-
tence of solutions to the system (2.8).

Proof of Theorem 1.1. For the sake of brevity, write Xs = R × Hs+3/2(�) ×
Hs+3(� × R) × Hs+1(�; R

n) × Hs+2(� × R; R
n) and Ws = nHs+1(�; R

n) ×
Hs+2(�) × Hs+3/2(�) and note that Us

δ ⊆ Ws is an open subset. Let � :
Xs × Us

δ → V s be the C1 map given in Theorem 4.3 and note that a given tuple
(γ, ϕ0, ϕ1, f0, f1, u, p, η) ∈ Xs × Us

δ satisfies (1.17) if and only if �(γ, ϕ0, ϕ1,

f0, f1, u, p, η) = (0, 0, 0, 0) ∈ V s .
Given the product structure � : Xs × Us

δ → V s , we can construct the partial
derivatives of � with respect to each factor:

D1� : Xs ×Us
δ → L(Xs; V s) and D2� : Xs ×Us

δ → L(Ws; V s). (4.13)

It is then a simple matter to check that, for γ ∈ C,

�(γ, 0, 0, 0, 0, 0, 0, 0) = (0, 0, 0, 0) and that D2�(γ, 0, 0, 0, 0, 0, 0, 0) = T3,
(4.14)

where T3 : Ws → V s is the isomorphism constructed in Theorem 3.17. For
any γ∗ ∈ C we may then employ the implicit function theorem to find open sets
Ds(γ∗) ⊆ Xs and Ss(γ∗) ⊆ Us

δ and a C1 and Lipschitz function �γ∗ : Ds(γ∗) →
Ss(γ∗) such that (γ∗, 0, 0, 0, 0) ∈ Ds(γ∗), (0, 0, 0) ∈ Ss(γ∗), and

�(γ, ϕ0, ϕ1, f0, f1, �γ∗(γ, ϕ0, ϕ1, f0, f1)) = (0, 0, 0, 0) (4.15)

for all (γ, ϕ0, ϕ1, f0, f1) ∈ Ds(γ∗). The implicit function theorem also guarantees
that �γ∗ parameterizes the unique such solution within Ss(γ∗).

We now define the open sets

Ds =
⋃

γ∗∈C
Ds(γ∗) ⊆ Xs and Ss =

⋃

γ∗∈C
Ss(γ∗) ⊆ Us

δ . (4.16)

By construction, we have the inclusions listed in the first item. Using the above
analysis, we can define the map � : Ds → Ss via �(γ, ϕ0, ϕ1, f0, f1) = �γ∗
(γ, ϕ0, ϕ1, f0, f1) whenever (γ, ϕ0, ϕ1, f0, f1) ∈ Ds(γ∗). This is well-defined, C1,
and locally Lipschitz by the above consequences of the implicit function theorem.
The secondand third items then followby setting (u, p, η) = �(γ, ϕ0, ϕ1, f0, f1). ��

5. Analysis of the Dirichlet–Neumann Operator

This section is devoted to the analysis of the Dirichlet–Neumann operatorG(η)

when η is small inHs . Sincewewill primarilyworkwith the horizontal coordinates,
it ismore convenient to denote a point in�η by (x, y),where x ∈ R

d ,d = n−1 � 1,
and y ∈ R. Then, we recall that

[G(η) f ](x) = N (x) · (∇x,yψ)(x, η(x)), N (x) = (−∇ f (x), 1), (5.1)
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where ψ solves the problem
⎧
⎪⎨

⎪⎩

�x,yψ = 0 in �η,

ψ = f on �η,

∂yψ = 0 on �−b.

(5.2)

We straighten the domain �η = {(x, y) ∈ R
d × R : −b < y < η(x)} using

the mapping

Fη : (x, z) 
 �η = Md×(−b, 0) �→ (x, �(x, z)) ∈ �η, �(x, z) = z + b

b
ez|D|η(x)+z.

(5.3)
Note that Fη is the mapping (2.1) written our new notation. Since

∂z�(x, z) = 1

b
ez|D|η(x) + z + b

b
ez|D||D|η(x) + 1, (5.4)

if
‖ez|D|η‖L∞ + b‖ez|D||D|η‖L∞ < b (5.5)

then Fη is a Lipschitz diffeomorphism. A direct calculation shows that if g : �η →
R then g̃(x, z) := (g ◦ Fη)(x, z) = g(x, �(x, z)) satisfies

divx,z(A∇x,z g̃)(x, z) = ∂z�(�x,yg)(x, �(x)), (5.6)

where

A =
[

∂z�Id −∇x�

−(∇x�)T
1+|∇x�|2

∂z�

]

, (5.7)

Id being the d×d identity matrix.A is the matrix (2.9) written in our new notation.
Since ψ is harmonic in �η, v = ψ ◦ Fη satisfies divx,z(A∇x,zv) = 0 in �η. We
write A as a perturbation of the identity matrix

A = Id+1+
⎡

⎣

1
b e

z|D|η(x) + z+b
b ez|D||D|η(x) − z+b

b ez|D|∇η

− z+b
b ez|D|∇ηT

(
z+b
b

)2|ez|D|∇η|2− 1
b e

z|D|η(x)− z+b
b ez|D||D|η(x)

1
b e

z|D|η(x)+ z+b
b ez|D||D|η(x)+1

,

⎤

⎦

(5.8)
Consequently, v satisfies

�x,zv = ∂z Qa[v] + divx Qb[v], (5.9)

where

Qa[v] = z + b

b
ez|D|∇η · ∇xv − ( z+b

b )2|ez|D|∇η|2 − 1
b e

z|D|η(x) − z+b
b ez|D||D|η(x)

1
b e

z|D|η(x) + z+b
b ez|D||D|η(x) + 1

∂zv,

Qb[v] = −
(
1

b
ez|D|η(x) + z + b

b
ez|D||D|η(x)

)

∇xv + z + b

b
ez|D|∇η∂zv.

(5.10)
Setting

D(z) = |D| tanh((z + b)|D|), (5.11)
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we decompose �x,z = (∂z + D(z))(∂z − D(z)). Then, (5.9) is equivalent to the
following system of forward and backward parabolic equations

(∂z + D(z))w = divx Qb[v] − D(z)Qa[v], (5.12)

(∂z − D(z))v = w + Qa[v]. (5.13)

Since D(−b) = 0 and ∂zv(x,−b) = ∂z�(x,−b)∂yφ(x,−b) = 0, we have
Qa[v](x,−b) and w(x,−b) = 0.

By the chain rule and (5.13), the Dirichlet–Neumann operator can be written
in terms of f and w as

G(η) f =
(

− ∇x� · ∇xv + 1 + |∇x�|2
∂z�

∂zv
)
|z=0 = ∂zv|z=0

+
(

− ∇x� · ∇xv + (1 + |∇x�|2
∂z�

− 1
)
∂zv
)
|z=0

=
(
D(z)v + w + Qa[v]

)
|z=0 − Qa[v]|z=0 = m(D) f + w|z=0,

(5.14)

where we have denoted
m(D) = |D| tanh(b|D|). (5.15)

Using the identities

(∂z + D(z))w = [cosh((z + b)|D|)]−1∂z

{
cosh((z + b)|D|)w

}

(∂z − D(z))v = cosh((z + b)|D|)∂z
{
[cosh((z + b)|D|)]−1v

}
,

(5.16)

we can integrate (5.12) and (5.13) to obtain

w(z) =
∫ z

−b

cosh((z′ + b)|D|)
cosh((z + b)|D|)

{
divx Qb[v](z′) − D(z)Qa[v](z′)} dz′, (5.17)

v(z) = cosh((z + b)|D|)
cosh(b|D|) f −

∫ 0

z

cosh((z + b)|D|)
cosh((z′ + b)|D|)

{
w(z′) + Qa[v](z′)} dz′

(5.18)

for z ∈ [−b, 0]. It then follows from (5.14) that

G(η) f = m(D) f + R(η) f, (5.19)

R(η) f =
∫ 0

−b

cosh((z′ + b)|D|)
cosh(b|D|)

{
divx Qb[v](z′) − |D| tanh(b|D|)Qa[v](z′)} dz′.

(5.20)

Clearly R(η) f is a derivative.
We denote I = [−b, 0] and

Ur = L̃∞(I ; Hr (Md)) ∩ L̃1(I ; Hr+1(Md)), (5.21)

where the definition of the Chemin–Lerner spaces L̃ pHs is recalled in Definition
A.15. In Appendix A.4, we establish estimates in Chemin–Lerner norms for the
operators appearing in (5.17) and (5.18). The next proposition uncovers the low-
frequency structure and provides the boundedness of the remainder R(η).
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Proposition 5.1. Let σ � σ0 > 1 + d
2 . There exist a small positive constant c1 =

c1(σ, σ0, b, d) such that if ‖η‖Hσ0 < c1 then the following assertions hold.
(1) We have

‖∇x,zv‖Uσ−1 � C‖∇x f ‖Hσ−1 + C‖η‖Hσ ‖∇x f ‖Hσ0−1 , (5.22)

where and C = C(σ, σ0, b, d).
(2) For any continuous symbol � : R → R satisfying

�(ξ) �
{

|ξ | if |ξ | � ∞,

|ξ |2 if |ξ | � 0
, (5.23)

we have

‖�− 1
2 (D)R(η) f ‖

Hσ− 1
2 (Rd )

� C‖η‖Hσ0 (Rd )‖∇x f ‖Hσ−1(Rd )

+C‖η‖Hσ (Rd )‖∇x f ‖Hσ0−1(Rd ), (5.24)

whereC = C(�, σ, σ0, b, d).Moreover, for η, f : T
d → Rwehave R̂(η) f (0) = 0

and

‖|D|− 1
2 R(η) f ‖

Hσ− 1
2 (Td )

� C‖η‖Hσ0 (Td )‖∇x f ‖Hσ−1(Td ) + C‖η‖Hσ (Td )‖∇x f ‖Hσ0−1(Td ), (5.25)

where C = C(σ, σ0, b, d).

Proof. Applying the estimates (A.42) and (A.43) to (5.18) and (5.17), we obtain

‖∇xv‖Uσ−1 � C‖∇x f ‖Hσ−1 + C‖∇xw‖L̃1(I ;Hσ−1) + C‖∇x Qa[v]‖L̃1(I ;Hσ−1)

� C‖∇x f ‖Hσ−1 + C‖w‖L̃1(I ;Hσ ) + C‖Qa[v]‖L̃1(I ;Hσ )

(5.26)
and

‖w‖Uσ−1 � C‖ divx Qb[v]‖L̃1(I ;Hσ−1) + C‖D(z)Qa[v]‖L̃1(I ;Hσ−1)

� C‖Qb[v]‖L̃1(I ;Hσ ) + C‖Qa[v]‖L̃1(I ;Hσ ),
(5.27)

where C = C(b). It follows that

‖∇xv‖Uσ−1 � C‖∇x f ‖Hσ−1 + C‖Qa[v]‖L̃1(I ;Hσ )

+ C‖Qb[v]‖L̃1(I ;Hσ ), C = C(b). (5.28)

On the other hand, equation (5.13) gives ∂zv = D(z)v +w + Qa[v]. SinceD(z) =
|D| tanh((z + b)|D|) and 0 � tanh((z + b)|ξ |) � 1 for z ∈ [−b, 0], we obtain
‖D(z)v‖Uσ−1 � ‖∇xv‖Uσ−1 . Combining this with (5.26) and (5.27), we deduce

‖∂zv‖Uσ−1 � C‖∇x f ‖Hσ−1 + C‖Qa[v]‖Uσ−1 + C‖Qb[v]‖Uσ−1 , C = C(b).
(5.29)

For σ � σ0 > 1 + d
2 and ‖η‖Hσ0 < c1 small enough, we can apply the product

estimate (A.57) and the nonlinear estimate (A.68) to obtain
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‖(Qa[v], Qb[v])‖Uσ−1 � F(‖η‖Hσ0 )
{‖η‖Hσ0 ‖∇x,zv‖Uσ−1 + ‖η‖Hσ ‖∇x,zv‖Uσ0−1

}
,

(5.30)
where F : R

+ → R
+ is nondecreasing and depends only on (σ, σ0, b, d).

A combination of (5.28), (5.29) and (5.30) yields

‖∇x,zv‖Uσ−1

� C‖∇x f ‖Hσ−1 + F(‖η‖Hσ
0
)
{‖η‖Hσ0 ‖∇x,zv‖Uσ−1 + ‖η‖Hσ ‖∇x,zv‖Uσ0−1

}
,

(5.31)

whereC = C(σ, σ0, b, d). Applying (5.31)with σ = σ0 we deduce that there exists
c0 = c0(σ0, b, d) > 0 small enough such that if‖η‖Hσ0 < c0, then‖∇x,zv‖Uσ0−1 �
C(σ0, b, d)‖∇x f ‖Hσ0−1 . Inserting this into (5.31) yields

‖∇x,zv‖Uσ−1 � C‖∇x f ‖Hσ−1 + C‖η‖Hσ0 ‖∇x,zv‖Uσ−1

+C‖η‖Hσ ‖∇x f ‖Hσ0−1 , C = C(σ, σ0, b, d). (5.32)

Therefore, for some c1 = c1(σ, σ0, b, d) � c0 small enough, we have

‖∇x,zv‖Uσ−1 � C‖∇x f ‖Hσ−1 + C‖η‖Hσ ‖∇x f ‖Hσ0−1 (5.33)

provided that ‖η‖Hσ0 < c1. This concludes the proof of (5.22).
We turn to prove (5.24). Using the formula (5.20) and the estimate (A.44) we

obtain

‖�− 1
2 (D)R(η) f ‖

Hσ− 1
2

� ‖�− 1
2 (D) divx Qb[v]‖

L̃1(I ;Hσ− 1
2 )

+‖�− 1
2 (D)|D| tanh(b|D|)Qa[v]‖

L̃1(I ;Hσ− 1
2 )

(5.34)

Noticing that

�− 1
2 (ξ)|ξ | �

{
1 if |ξ | � 0,

|ξ | 12 if |ξ | � ∞ , (5.35)

we deduce

‖�− 1
2 (D)R(η) f ‖

Hσ− 1
2

� ‖Qb[v]‖L̃1(I ;Hσ ) + ‖ tanh(b|D|)Qa[v]‖L̃1(I ;Hσ )

� ‖Qb[v]‖L̃1(I ;Hσ ) + ‖Qa[v]‖L̃1(I ;Hσ ).
(5.36)

Therefore, (5.24) follows from (5.36), (5.30) and (5.33). Finally, (5.25) can be
proved analogously. ��

Next we establish the contraction estimate for R(η).

Proposition 5.2. Let σ � σ0 > 1 + d
2 and consider f ∈ Hσ and η j ∈ Hσ , j =

1, 2. Set ηδ = η1 − η2. There exists a positive constant c2 = c2(σ, σ0, b, d) � c1
such that if ‖η j‖Hσ0 < c2, j = 1, 2, then the following estimates hold:
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(1) For any symbol � satisfying (5.23), we have

‖�− 1
2 (D) {R(η1) f − R(η2) f } ‖

Hσ− 1
2 (Rd )

� C‖ηδ‖Hσ0 (Rd )

(
‖∇x f ‖Hσ−1(Rd ) + ‖η1‖Hσ (Rd )‖∇x f ‖Hσ0−1(Rd )

)

+ C‖ηδ‖Hσ (Rd )‖∇x f ‖Hσ0−1(Rd ),
(5.37)

where C = C(�, σ, σ0, b, d).
(2) We have

‖|D|− 1
2 {R(η1) f − R(η2) f } ‖

Hσ− 1
2 (Td )

� C‖ηδ‖Hσ0 (Td )

(
‖∇x f ‖Hσ−1(Td ) + ‖η1‖Hσ (Td )‖∇x f ‖Hσ0−1(Td )

)

+ C‖ηδ‖Hσ (Td )‖∇x f ‖Hσ0−1(Td ),
(5.38)

where C = C(σ, σ0, b, d).

Proof. We shall only prove (5.37) since the proof of (5.38) is similar. Consider
η j , f : R

d → R such that ‖η j‖Hs0 < c1. We recall from (5.20) that

R(η j ) f j (x) =
∫ 0

−b

cosh((z′ + b)|D|)
cosh(b|D|)

{
divx Qb[v](z′) − |D| tanh(b|D|)Qa[v](z′)} dz′,

(5.39)

where ‖∇x,zv j‖Uσ−1 � ‖∇x f ‖Hσ−1 by virtue of (5.22).
We shall adopt the notation gδ = g1 − g2. Arguing as in (5.36), we obtain

‖�− 1
2 (D) {R(η1) f − R(η2) f } ‖

Hσ− 1
2

� ‖((Qb[v])δ, (Qa[v])δ
)‖L̃1(I ;Hσ ) := Aσ .

(5.40)

Using the product estimate (A.57), the nonlinear estimate (A.68) and the bound

‖(ez|D|η1, ez|D|η2, ez|D|∇η1, e
z|D|∇η2

)‖L∞(I ;Hσ0−1)

)
� ‖η1‖Hσ0 + ‖η2‖Hσ0 � 1,

(5.41)

one can prove that

Aσ � ‖((ez|D|η)δ, (e
z|D|∇η)δ

)‖L∞(I ;Hσ0−1)‖∇x,zv1‖L̃1(I ;Hσ )

+‖((ez|D|η)δ, (e
z|D|∇η)δ

)‖L̃1(I ;Hσ
� )‖∇x,zv1‖L∞(I ;L∞)

+‖(ez|D|η1, ez|D|∇η1
)‖L∞(I ;Hσ0−1)‖∇x,zvδ‖L̃1(I ;Hσ )

+‖(ez|D|η1, ez|D|∇η1
)‖L̃1(I ;Hσ

� )‖∇x,zvδ‖L∞(I ;L∞). (5.42)

Combining this with the easy inequalities

‖(ez|D|g, ez|D|∇g
)‖L̃1(I ;Hσ

� )

� ‖g‖Hσ
�

� ‖g‖Hσ and ‖(ez|D|g, ez|D|∇g
)‖L∞(I ;Hσ0−1)

� ‖g‖Hσ0 , (5.43)
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we obtain

Aσ � ‖ηδ‖Hσ0 ‖∇x,zv1‖L̃1(I ;Hσ ) + ‖ηδ‖Hσ ‖∇x,zv1‖L∞(I ;L∞)

+ ‖η1‖Hσ0 ‖∇x,zvδ‖L̃1(I ;Hσ ) + ‖η1‖Hσ ‖∇x,zvδ‖L∞(I ;L∞).
(5.44)

Assuming that ‖η j‖Hσ0 < c1, we can invoke the estimate (5.22) to have

‖∇x,zv j‖L∞(I ;L∞) � ‖∇x,zv j‖L̃∞(I ;Hσ0 ) � ‖∇x f ‖Hσ0−1 ,

‖∇x,zv j‖L̃1(I ;Hσ ) � ‖∇x f ‖Hσ−1 + ‖η j‖Hσ ‖∇x f ‖Hσ0−1 .
(5.45)

Consequently,

Aσ � ‖ηδ‖Hσ0 (‖∇x f ‖Hσ−1 + ‖η1‖Hσ ‖∇x f ‖Hσ0−1) + ‖ηδ‖Hσ ‖∇x f ‖Hσ0−1

+ ‖η1‖Hσ0 ‖∇x,zvδ‖Uσ−1 + ‖η1‖Hσ ‖∇x,zvδ‖Uσ0−1 . (5.46)

On the other hand, the proof of (5.28) and (5.29) yields

‖∇x,zvδ‖Uσ−1 � ‖((Qa[v])δ, (Qb[v])δ)‖Uσ−1 . (5.47)

Arguing as in the proof of (5.46) one can show that

‖((Qa[v])δ, (Qb[v])δ)‖Uσ−1 � ‖ηδ‖Hσ0 (‖∇x f ‖Hσ−1 + ‖η1‖Hσ ‖∇x f ‖Hσ0−1)

+‖ηδ‖Hσ ‖∇x f ‖Hσ0−1 + ‖η1‖Hσ0 ‖∇x,zvδ‖Uσ−1 + ‖η1‖Hσ ‖∇x,zvδ‖Uσ0−1 .

(5.48)

It follows from (5.47) and (5.48) that

‖∇x,zvδ‖Uσ−1 � ‖ηδ‖Hσ0 (‖∇x f ‖Hσ−1 + ‖η1‖Hσ ‖∇x f ‖Hσ0−1) + ‖ηδ‖Hσ ‖∇x f ‖Hσ0−1

+ ‖η1‖Hσ0 ‖∇x,zvδ‖Uσ−1 + ‖η1‖Hσ ‖∇x,zvδ‖Uσ0−1 .
(5.49)

With σ = σ0, (5.49) implies that if ‖η j‖Hσ0 < c̃1 � c1 then

‖∇x,zvδ‖Uσ0−1 � ‖ηδ‖Hσ0 ‖∇x f ‖Hσ0−1 . (5.50)

We then insert the preceding estimate into (5.49) to obtain that if‖η1‖Hσ0 < c2 � c̃1
then

‖∇x,zvδ‖Uσ−1 � ‖ηδ‖Hσ0 (‖∇x f ‖Hσ−1 + ‖η1‖Hσ ‖∇x f ‖Hσ0−1)

+‖ηδ‖Hσ ‖∇x f ‖Hσ0−1 . (5.51)

Finally, inserting (5.51) into (5.46) we arrive at (5.37). ��
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6. Stability of Traveling Wave Solutions

In this section, we consider the Muskat problem without external bulk force
(f = 0). In order to simplify the presentation, we shall assume that the external
pressure ϕ is independent of the vertical variable, i.e. ϕ(x, y) = ϕ0(x), where we
adopt the notation (x, y) for the horizontal and vertical components of a point in
the fluid domain. More precisely, we study equation (2.17) for the free boundary
η:

∂tη = γ ∂1η − G(η)(η + ϕ0), (x, t) ∈ R
d × R+, d = n − 1 � 1. (6.1)

The proofs of all the results in this section can be generalized to the more general
case ϕ(x, y) = ϕ0(x) + ϕ1(x, y) with extra regularity assumption of ϕ1 as in
Theorem 1.1.

6.1. Existence of Traveling Wave Solutions

The existence and uniqueness of steady solutions to (6.1) have been obtained
in Theorem 1.1 by means of the implicit function theorem. In this subsection, we
shall apply the results in Sect. 5 for the Dirichlet–Neumann operator to provide
an alternative proof in this special case of the data, which serves to motivate and
inform the strategy we will employ in studying the time-dependent problem (6.1).

Solutions to the steady equation

γ ∂1η − G(η)(η + ϕ0) = 0 (6.2)

shall be constructed by afixed point argument. To this end,wefirst use the expansion
G(η) = m(D) + R(η) to equivalently rewrite (6.2) as

(γ ∂1 − m(D))η = R(η)(η + ϕ0) + m(D)ϕ0. (6.3)

We note that the symbol γ iξ1−m(ξ) vanishes only at ξ = 0, and it follows from the
definition (5.20) of R(η) that the right-hand side of (6.3) vanishes at zero frequency.
Therefore, we may seek solutions that vanish at zero frequency by solving the fixed
point problem

η = Tϕ0(η) := (γ ∂1 − m(D))−1 {R(η)(η + ϕ0) + m(D)ϕ0} , (6.4)

where we adopt the convention that T̂ϕ0(η)(0) = 0.

Theorem 6.1. Let d � 1, s > 1+ d
2 and γ ∈ R\{0}. There exist small positive con-

stants r0 and r1, both depending only on (γ, s, b, d), such that for ‖∇ϕ0‖Hs−1(Rd ) <

r1, Tϕ0 is a contraction mapping on BHs (Rd )(0, r0). Moreover, the mapping that
maps ϕ0 to the unique fixed point of Tϕ0 in BHs (Rd )(0, r0) is Lipschitz continuous.
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Proof. In the finite depth case, we have that m(D) = |D| tanh(b|D) satisfies

m(ξ) �
{

|ξ |2 for |ξ | � 0,

|ξ | for |ξ | � ∞.
(6.5)

Consequently, for low frequencies |ξ | < 1, we have
∫

|ξ |<1
ω(ξ)

∣
∣
∣F

{
(γ ∂1 − m(D))−1g

}
(ξ)

∣
∣
∣
2
dξ

=
∫

|ξ |<1

ξ21 + |ξ |4
|ξ |2

1

|γ |2ξ21 + m2(ξ)
|̂g(ξ)|2dξ

� C(γ, b)
∫

|ξ |<1

1

|ξ |2 |̂g(ξ)|2dξ.

(6.6)

where F denotes the Fourier transform. On the other hand, for high frequencies
|ξ | � 1, we have

∫

|ξ |�1
〈ξ 〉2s

∣
∣
∣F

{
(γ ∂1 − m(D))−1g

}
(ξ)

∣
∣
∣
2
dξ

� C(b)
∫

|ξ |�1
〈ξ 〉2s 1

|ξ |2 |̂g(ξ)|2dξ

� C(b)
∫

|ξ |�1
〈ξ 〉2(s− 1

2 ) 1

|ξ | |̂g(ξ)|2dξ.

(6.7)

We note that the condition γ 
= 0 was used in the low-frequency estimate (6.6) but
not in the high-frequency estimate (6.7).

It follows from (6.5), (6.6) and (6.7) that

‖(γ ∂1 − m(D))−1g‖Hs � C(γ, b)‖m− 1
2 (D)g‖

Hs− 1
2

(6.8)

From (6.8) and the definition of Tϕ0(η), we deduce

‖Tϕ0(η)‖Hs � C(γ, b)‖m− 1
2 (D) {R(η)(η + ϕ0) + m(D)ϕ0} ‖

Hs− 1
2

� C(γ, b)
{
‖m− 1

2 (D)R(η)(η + ϕ0)‖
Hs− 1

2
+ ‖m 1

2 (D)ϕ0‖
Hs− 1

2

}

� C(γ, b)
{
‖m− 1

2 (D)R(η)(η + ϕ0)‖
Hs− 1

2
+ ‖∇ϕ0‖Hs−1

}
,

(6.9)

where we have used the fact that the norms ‖m 1
2 (D)ϕ0‖

Hs− 1
2
and ‖∇ϕ0‖Hs−1 are

equivalent.
Suppose that ‖η‖Hs < c1, where c1 is given in Proposition 5.1. Then the

estimate (5.24) with σ = σ0 = s yields

‖m− 1
2 (D)R(η)(η + ϕ0)‖

Hs− 1
2

� C(s, b, d)‖η‖Hs‖∇(η + ϕ0)‖Hs−1

� C(s, b, d)‖η‖Hs
(‖η‖Hs + ‖∇ϕ0‖Hs−1

)
,

(6.10)
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where we have used the inequality ‖∇η‖Hs−1 � C‖η‖Hs .
It follows from (6.9) and (6.10) that for ‖η‖Hs < c1 we have

‖Tϕ0(η)‖Hs � C1
{‖η‖Hs

(‖η‖Hs + ‖∇ϕ0‖Hs−1
)+ ‖∇ϕ0‖Hs−1

}
, (6.11)

where C1 = C1(γ, s, b, d). If ‖∇ϕ0‖Hs−1 < 1
2C1(2C1+1) , then Tϕ0 maps the ball

BHs (0, r0) ⊂ Hs to itself,where r0 = min{c1, 1
2C1+1 }. Byvirtue of Proposition 5.2,

one can reduce the size of ‖∇ϕ0‖Hs−1 and the radius r0 so that Tϕ0 is a contraction
on BHs (0, r0). By the Banach contraction mapping principle, Tϕ0 has a unique
fixed point η in BHs (0, r0). The Lipschitz continuous dependence of η on ϕ0 again
follows from Proposition 5.2. ��

We now define the space of Sobolev functions with average zero on the torus.

Definition 6.2. For 0 � s ∈ R we define the space H̊ s(Td) = {
f ∈ Hs(Td) | ∫

Td

f = 0
}
.

We now record a variant of Theorem 6.1 for the torus case.

Theorem 6.3. Let d � 1, s > 1+ d
2 and γ ∈ R. There exist small positive constants

r0 and r1, both depending only on (s, b, d), such that for ‖∇ϕ0‖Hs−1(Td ) < r1, Tϕ0

is a contraction mapping on BH̊s (Td )
(0, r0). Moreover, the mapping that maps ϕ0

to the unique fixed point of Tϕ0 in BH̊s (Td )
(0, r0) is Lipschitz continuous.

Proof. The proof mostly follows from obvious modifications to the proof of The-
orem 6.1 with the following caveat. Since the zero mode of Tϕ0 vanishes in the
periodic setting, there is no need for a low frequency estimate such as (6.6) and
only the high frequency estimate (6.7) is needed. Consequently, γ 
= 0 is not
needed, and the constants then do not depend on γ . ��

6.2. Stability of Periodic Traveling Wave Solutions

In this subsection, we prove that small periodic traveling wave solutions ob-
tained in Theorem 6.3 are nonlinearly asymptotically stable. The remainder of this
section is devoted to the proof of Theorem 1.2.

Suppose that, for fixed (γ, ϕ0), η∗ is a steady solution of (2.17). We perturb
η∗ by f0 and set f (x, t) = η(x, t) − η∗(x), where η is the solution of (2.17) with
initial data η0 = η∗ + f0. We have that

∂t f = γ ∂1 f − {
G(η∗ + f )(η∗ + f + ϕ0) − G(η∗)(η∗ + ϕ0)

}
. (6.12)

Using the expansion G(η)g = m(D)g + R(η) f we rewrite (6.12) as

∂t f = γ ∂1 f − G(η∗ + f ) f − {
G(η∗ + f )(η∗ + ϕ0) − G(η∗)(η∗ + ϕ0)

}

= γ ∂1 f − m(D) f − R(η∗ + f ) f

− {m(D)(η∗ + ϕ0) + R(η∗ + f )(η∗ + ϕ0) − m(D)(η∗ + ϕ0) − R(η∗)(η∗ + ϕ0)}
= γ ∂1 f − m(D) f + [R(η∗)(η∗ + ϕ0) − R(η∗ + f )(η∗ + ϕ0)] − R(η∗ + f ) f.

(6.13)
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The solution of (6.13) with initial data f0 will be sought as the fixed point of the
mapping

N ( f ) := e(γ ∂1−m(D))t f0 + L( f )(t) − B( f, f )(t), (6.14)

where

L( f )(t) =
∫ t

0
e(γ ∂1−m(D))(t−τ) [R(η∗)(η∗ + ϕ0) − R(η∗ + f )(η∗ + ϕ0)] (τ )dτ,

(6.15)

B(g, f )(t) =
∫ t

0
e(γ ∂1−m(D))(t−τ)[R(η∗ + g) f ](τ )dτ. (6.16)

To that end, we shall appeal to the following fixed point lemma:

Lemma 6.4. Let (E, ‖·‖) be a Banach space and let ν > 0. Denote by Bν the open
ball of radius ν centered at 0 in E. Assume that L : Bν → E and B : Bν × E → E
satisfy the following conditions.

• For all x ∈ Bν , B(x, ·) is linear.
• There exists a constant CL ∈ (0, 1) such that ‖L(x)‖ � CL‖x‖ for all x ∈ Bν .
• There exists an increasing function GB such that ‖B(x, y)‖ � GB(‖x‖)‖y‖ for
all x ∈ Bν and y ∈ E. There exists r∗ > 0 such that

CL + GB(r∗) <
1

2
. (6.17)

• There exists an increasing function FL : R+ → R+ such that

∀x1, x2 ∈ Bν, ‖L(x1) − L(x2)‖ � ‖x1 − x2‖FL(‖x1‖ + ‖x2‖). (6.18)

• There exists an increasing function FB : R+ → R+ such that

∀x1, x2 ∈ Bν, ∀y ∈ E, ‖B(x1, y) − B(x2, y)‖
� ‖x1 − x2‖‖y‖FB(‖x1‖ + ‖x2‖). (6.19)

Assume, moreover, that

FL(2ν) + GB(ν) + νFB(2ν) <
1

2
. (6.20)

Then, for all x0 ∈ E with ‖x0‖ < 1
2 min{ν, r∗}, the mapping Bν 
 x �→ N (x) :=

x0 + L(x) + B(x, x) ∈ Bν has a unique fixed point x∗ in Bν with ‖x∗‖ � 2‖x0‖.
Proof. Let x0 ∈ E , ‖x0‖ < 1

2 min{ν, r∗}. The fixed point ofN will be obtained by
the Picard iteration xn+1 = N (xn), n � 1. It can be shown using induction with
the aid of (6.17) that ‖xn‖ < 2‖x0‖ for all n � 0, hence (xn) ⊂ Bν . Using the
assumptions on L and B, we obtain

‖N (x) − N (y)‖ � ‖x − y‖ {FL(‖x‖ + ‖y‖) + GB(‖x‖) + ‖y‖FB(‖x‖ + ‖y‖)}
∀x, y ∈ Bν . (6.21)
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Combining (6.21) with (6.20) yields

‖xn+1 − xn‖ � ‖xn − xn−1‖ {FL(2ν) + GB(ν) + νFB(2ν)} � 1

2
‖xn − xn−1‖.

(6.22)

It follows that (xn) is a Cauchy sequence, hence xn → x∗ ∈ E . In particular, we
have ‖x∗‖ � 2‖x0‖ < ν, and thus (6.21) implies thatN (xn) → N (x∗). Passing to
the limit in the scheme xn+1 = N (xn) yields x∗ = N (x∗). The uniqueness of x∗
in Bν again follows from (6.21). ��

We now have all the tools needed to prove Theorem 1.2.

Proof of Theorem 1.2. We consider η∗ and ϕ0 in Hs(Td) with s > 1 + d
2 and

‖ϕ0‖Hs < c2
3 and ‖η∗‖Hs < c2

3 , where c2 is the constant given in Proposition 5.2.
We note that if

∫

Td u = 0 then �0u = 0 (see (A.33)). Consequently, for
1 � q2 � q1 � ∞, we have

‖e(γ ∂1−m(D))t u‖
L̃q1

(

[α,β];Hμ+ 1
q1 (Td )

) � C(b, d)‖u‖Hμ, (6.23)

∥
∥
∥
∥

∫ t

a
e(γ ∂1−m(D))t g

∥
∥
∥
∥
L̃q1

(

[α,β];Hμ+ 1
q1 (Td )

) � C(b, d)‖g‖
L̃q2

(

[α,β];Hμ−1+ 1
q2 (Td )

),

(6.24)

provided that u and g(·, t) have zero mean. These estimates can be proved as in
Proposition A.17 with the aid of the dyadic estimate

‖� j e
(γ ∂1−m(D))t u‖L2

x
� C(d)e−c(b,d)2 j t‖� j u‖L2

x
, j � 1. (6.25)

Set Yμ([α, β]) = L̃∞([α, β]; Hμ(Td)) ∩ L̃2([α, β]; Hμ+ 1
2 (Td)) and

‖ · ‖Yμ([α,β]) = ‖ · ‖L̃∞([α,β];Hμ(Td )) + ‖ · ‖
L̃2

(

[α,β];Hμ+ 1
2 (Td )

). (6.26)

Consider f0 ∈ H̊ s(Td) and let T > 0 be arbitrary. By Proposition 5.1 2), R always
has zero mean, and so do L and B. Therefore, using (6.23), (6.24) and the fact that

‖ · ‖L̃2([α,β];Hμ(Td )) = ‖ · ‖L2([α,β];Hμ(Td )), (6.27)

we obtain

‖e(γ ∂1−m(D))t f0‖Y s ([0,T ]) � C(b, d)‖ f0‖Hs , (6.28)

‖L( f )‖Y s ([0,T ]) � C(b, d)‖R(η∗)(η∗ + ϕ0) − R(η∗ + f )(η∗ + ϕ0)‖
L2

(

[0,T ];Hs− 1
2

),

(6.29)

‖B(g, f )‖Y s ([0,T ]) � C(b, d)‖R(g) f ‖
L2([0,T ];Hs− 1

2 )
. (6.30)
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We want to apply Lemma 6.4 with

E ≡ ET :=
{

f ∈ Y s([0, T ]) |
∫

Td
f (x, t)dx = 0 a.e. t ∈ [0, T ]

}

. (6.31)

Let Bν be the open ball in ET with center 0 and radius ν < 2c2
3 .

Let f ∈ Bν . We have ‖ f ‖L∞([0,T ];Hs ) � ‖ f ‖L̃∞([0,T ];Hs ), hence ‖ f (t)‖Hs <

ν < c2/3 a.e. t ∈ [0, T ]. Consequently, ‖η∗ + f (t)‖Hs < c2 a.e. t ∈ [0, T ] and
thus we can apply the contraction estimate (5.37) with η1 = η∗, η2 = η∗ + f ,
σ = s + 1

2 and σ0 = s,

‖R(η∗)(η∗ + ϕ0) − R(η∗ + f )(η∗ + ϕ0)‖
Hs− 1

2

� C‖ f ‖Hs

{
‖∇x (η∗ + ϕ0)‖

Hs− 1
2

+ ‖η∗‖Hs+ 1
2
‖∇x (η∗ + ϕ0)‖Hs−1

}

+C‖ f ‖Hs+ 1
2
‖∇x (η∗ + ϕ0)‖Hs−1

� C‖ f ‖
Hs+ 1

2

{
‖∇x (η∗ + ϕ0)‖

Hs− 1
2

+ ‖η∗‖
Hs+ 1

2
‖∇x (η∗ + ϕ0)‖Hs−1

}

(6.32)

a.e. t ∈ [0, T ], where C = C(s, b, d) and we have used the embedding Hμ ⊂ Hμ

for μ � 0. Combining (6.29) and (6.32) yields

‖L( f )‖Y s ([0,T ])
� C‖ f ‖

L2([0,T ];Hs+ 1
2 )

{
‖∇x (η∗ + ϕ0)‖

Hs− 1
2

+ ‖η∗‖Hs+ 1
2
‖∇x (η∗ + ϕ0)‖Hs−1

}
,

(6.33)

where C = C(s, b, d).
Next, for g ∈ Bν , we can apply the remainder estimate (5.24) with σ = s + 1

2
and σ0 = s to have

‖R(η∗ + g) f ‖
Hs− 1

2
� C‖η∗ + g‖Hs‖∇x f ‖

Hs− 1
2

+ C‖η∗ + g‖Hs+ 1
2
‖∇x f ‖Hs−1

� C‖η∗‖
Hs+ 1

2
‖∇x f ‖

Hs− 1
2

+ C‖g‖Hs‖∇x f ‖
Hs− 1

2

+ C‖g‖
Hs+ 1

2
‖∇x f ‖Hs−1 (6.34)

a.e. t ∈ [0, T ], where C = C(s, b, d). It follows from (6.30) and (6.34) that

‖B(g, f )‖Y s ([0,T ]) � C‖η∗‖
Hs+ 1

2
‖∇x f ‖

L2

(

[0,T ];Hs− 1
2

)

+C‖g‖L∞([0,T ];Hs )‖∇x f ‖
L2

(

[0,T ];Hs− 1
2

)

+C‖g‖
L2

(

[0,T ];Hs+ 1
2

)‖∇x f ‖L∞([0,T ];Hs−1)

� C
(‖η∗‖

Hs+ 1
2

+ ‖g‖Y s([0,T ])
)‖ f ‖Y s ([0,T ]), (6.35)
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where C = C(s, b, d). By a completely analogous argument, we obtain that

‖L( f1) − L( f2)‖Y s ([0,T ])
� C‖R(η∗ + f1)(η∗ + ϕ0) − R(η∗ + f2)(η∗ + ϕ0)‖

L2

(

[0,T ];Hs− 1
2

)

� C‖ f1 − f2‖L2([0,T ];Hs )

{
‖∇x (η∗ + ϕ0)‖

Hs− 1
2

+ ‖η∗‖
Hs+ 1

2
‖∇x (η∗ + ϕ0)‖Hs−1

}

+ C‖ f1 − f2‖L∞([0,T ];Hs )‖ f1‖
L2

(

[0,T ];Hs+ 1
2

)‖∇x (η∗ + ϕ0)‖Hs−1

+ C‖ f1 − f2‖
L2([0,T ];Hs+ 1

2 )
‖∇x (η∗ + ϕ0)‖Hs−1

� C‖ f1 − f2‖Y s ([0,T ])
{
‖∇x (η∗ + ϕ0)‖

Hs− 1
2

+ ‖η∗‖
Hs+ 1

2
‖∇x (η∗ + ϕ0)‖Hs−1

+‖ f1‖Y s ([0,T ])‖∇x (η∗ + ϕ0)‖Hs−1
} (6.36)

for f1, f2 ∈ Bν , and

‖B(g1, f ) − B(g2, f )‖Y s ([0,T ])
� C‖R(η∗ + g1) f − R(η∗ + g2) f ‖

L2

(

[0,T ];Hs− 1
2

)

� C‖g1 − g2‖L∞([0,T ];Hs )

×
⎧
⎨

⎩
‖∇x f ‖

L2

(

[0,T ];Hs− 1
2

) + ‖g1‖
L2

(

[0,T ];Hs+ 1
2

)‖∇x f ‖L∞([0,T ];Hs−1)

⎫
⎬

⎭

+ C‖g1 − g2‖L2([0,T ];Hs )‖η∗‖
Hs+ 1

2
‖∇x f ‖L∞([0,T ];Hs−1)

+ C‖g1 − g2‖
L2([0,T ];Hs+ 1

2 )
‖∇x f ‖L∞([0,T ];Hs−1)

� C‖g1 − g2‖Y s ([0,T ])‖ f ‖Y s ([0,T ])
(
1 + ‖η∗‖

Hs+ 1
2

+ ‖g1‖Y s ([0,T ])
)

(6.37)

for g1, g2 ∈ Bν . In both (6.36) and (6.37), C = C(s, b, d).
In viewof (6.33), (6.35), (6.36) and (6.37), we find that the conditions in Lemma

6.4 are satisfied with

CL = C
{
‖∇x (η∗ + ϕ0)‖

Hs− 1
2

+ ‖η∗‖
Hs+ 1

2
‖∇x (η∗ + ϕ0)‖Hs−1

}
,

GB(z) = C
(
‖η∗‖

Hs+ 1
2

+ z
)

,

FL(z) = C
{
‖∇x (η∗ + ϕ0)‖

Hs− 1
2

+ ‖η∗‖
Hs+ 1

2
‖∇x (η∗ + ϕ0)‖Hs−1

+ z‖∇x (η∗ + ϕ0)‖Hs−1

}
,

FB(z) = C
(
1 + ‖η∗‖

Hs+ 1
2

+ z
)

,

(6.38)

where C = C(s, b, d). According to Theorem 6.3, if ‖∇ϕ0‖
Hs− 1

2
is small enough

then ‖η∗‖
Hs+ 1

2
� C(s, b, d)‖∇ϕ0‖

Hs− 1
2
. Therefore, for sufficiently small

‖∇ϕ0‖
Hs− 1

2
, we have CL < 1

4 and the conditions (6.17) and (6.20) hold for suf-

ficiently small r∗ and ν. Therefore, by virtue of Lemma 6.4 and with the aid of
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(6.28), if ‖ f0‖Hs < 1
2 min{ν, r∗} := δ then N has a unique fixed point f in Bν ,

and

‖ f ‖Y s ([0,T ]) � C(b, d)‖ f0‖Hs ∀T > 0.

Since the smallness of ϕ0, ν and r∗ is independent of T , f is a global solution.
Next, we prove that f decay exponentially in Hs . Since f ∈ Y s([0, T ]) for

all T > 0, using (6.32) and (6.34) we deduce that ∂t f ∈ L2([0, T ]; Hs− 1
2 ) for

all T > 0. Then applying Theorem 3.1 in [10] yields f ∈ C([0, T ]; Hs) for all
T > 0. Appealing to (6.32) and (6.34) again, we deduce that

1

2

d

dt
‖ f (t)‖2Hs

= 〈∂t f, f 〉
Hs− 1

2 ,Hs+ 1
2

= 〈γ ∂1 f, f 〉
Hs− 1

2 ,Hs+ 1
2

− 〈m(D) f, f 〉
Hs− 1

2 ,Hs+ 1
2

− 〈R(η∗ + f ) f, f 〉
Hs− 1

2 ,Hs+ 1
2

+ 〈R(η∗)(η∗ + ϕ0)

− R(η∗ + f )(η∗ + ϕ0), f 〉
Hs− 1

2 ,Hs+ 1
2

� −c0‖ f ‖2
Hs+ 1

2
+ C‖ f ‖2

Hs+ 1
2

{
‖∇x (η∗ + ϕ0)‖

Hs− 1
2

+ ‖η∗‖
Hs+ 1

2
‖∇x (η∗ + ϕ0)‖Hs−1

}

+ C
{
‖η∗‖

Hs+ 1
2
‖ f ‖

Hs+ 1
2

+ ‖ f ‖Hs‖ f ‖
Hs+ 1

2

}
‖ f ‖

Hs+ 1
2
,

(6.39)

where we have used the facts that f (·, t) has zero mean to get that

〈m(D) f, f 〉
Hs− 1

2 ,Hs+ 1
2

� c0‖ f ‖2
Hs+ 1

2
, c0 = c0(s, b, d). (6.40)

It follows that

1

2

d

dt
‖ f (t)‖2Hs � −c0‖ f ‖2

Hs+ 1
2

+ C‖ f ‖2
Hs+ 1

2
{μ + ‖ f ‖Hs } , (6.41)

where

μ = ‖∇x (η∗ + ϕ0)‖
Hs− 1

2
+ ‖η∗‖

Hs+ 1
2
‖∇x (η∗ + ϕ0)‖Hs−1 + ‖η∗‖

Hs+ 1
2
.

(6.42)

We choose ‖∇xϕ0‖
Hs− 1

2
small enough so that μ < c0

3C , and assume that ‖ f0‖Hs <

min{δ, c0
3C }. Using the continuity of t �→ ‖ f (t)‖Hs , we deduce from (6.41) that

‖ f (t)‖Hs < c0
3C for all t > 0, and thus

d

dt
‖ f (t)‖2Hs � −c0

3
‖ f (t)‖2

Hs+ 1
2

� −c0
3

‖ f (t)‖2Hs . (6.43)

Therefore, we obtain the exponential decay

‖ f (t)‖Hs � ‖ f0‖Hs e− c0
6 t ∀t > 0 (6.44)
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and the global dissipation bound
∫ ∞

0
‖ f (t)‖2

Hs+ 1
2
dt � 3

c0
‖ f0‖2Hs . (6.45)

This completes the proof of Theorem 1.2. ��
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Appendix A. Analytic Tools

This appendix collects a number of analysis tools used throughout the paper.

A.1 Specialized Scales of Anisotropic Sobolev Spaces

In this subsection we recall the properties of a scale of anisotropic Sobolev spaces
introduced in [9].

Definition A.1. Let 0 � s ∈ R.

(1) We define the anisotropic Sobolev-type space

Hs(Rd) = { f ∈ S ′(Rd) | f = f̄ , f̂ ∈ L1
loc(R

d), and ‖ f ‖Hs < ∞},
(A.1)

where the square-norm is defined by

‖ f ‖2Hs =
∫

B(0,1)

ξ21 + |ξ |4
|ξ |2

∣
∣
∣ f̂ (ξ)

∣
∣
∣
2
dξ +

∫

B(0,1)c
〈ξ 〉2s

∣
∣
∣ f̂ (ξ)

∣
∣
∣
2
dξ.

(A.2)

We endow the space Hs(Rd) with the obvious associated inner-product. We
writeHs(�) = Hs(Rn−1) with the usual identification of � � R

n−1.
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(2) We define

Hs(Td) = H̊ s(Td) =
{

f ∈ Hs(Td) |
∫

Td
f = 0

}

(A.3)

with the usual norm.
(3) We write Hs(�) = Hs(�) via the natural identification of � = � × {0} with

� ∈ {Rn−1, T
n−1}.

The following result summarizes the fundamental properties of this space:

Theorem A.2. Let 0 � s ∈ R. Then the following hold.

(1) Hs(Rd) is a Hilbert space, and the set of real-valued Schwartz functions is
dense inHs(Rd).

(2) Hs(Rd) ↪→ Hs(Rd), and this inclusion is strict for d � 2. If d = 1, then
Hs(R) = Hs(R).

(3) If t ∈ R and s < t , then we have the continuous inclusionHt (Rd) ↪→ Hs(Rd).
(4) For R ∈ R+ and f ∈ Hs(Rd) define the low-frequency localization fl,R =

( f̂χ B(0,R))
∨ and the high-frequency localization fh,R = ( f̂χ B(0,R)c)

∨. Then
fl,R ∈ ⋂t�0 Ht (Rd) ∩⋂k∈N Ck

0 (R
d), and fh,R ∈ Hs(Rd) ∩ Hs(Rd). More-

over, we have the estimates
∥
∥ fl,R

∥
∥Hs � ‖ f ‖Hs and

∥
∥ fh,R

∥
∥Hs � ‖ f ‖Hs (A.4)

as well as
∥
∥ fl,R

∥
∥
Ck
0

�k ‖ f ‖Hs ,
∥
∥ fl,R

∥
∥Ht � ‖ f ‖Hs , and

∥
∥ fh,R

∥
∥
Hs � ‖ f ‖Hs .

(A.5)

(5) For each k ∈ N we have the continuous inclusion Hs(Rd) ↪→ Ck
0 (R

d) +
Hs(Rd).

(6) If s > d/2 then f̂ ∈ L1(Rd ; C), and
∥
∥
∥ f̂
∥
∥
∥
L1

� ‖ f ‖Hs . (A.6)

(7) If k ∈ N and s > k + d/2, then we have the continuous inclusion Hs(Rd) ↪→
Ck
0 (R

d).
(8) If s � 1, then ‖∇ f ‖Hs−1 � ‖ f ‖Hs for each f ∈ Hs(Rd). In particular, we

have that ∇ : Hs(Rd) → Hs−1(Rd ; R
d) is a bounded linear map, and this

map is injective.
(9) If s � 1, then [∂1 f ]Ḣ−1 � ‖ f ‖Hs for f ∈ Hs(Rd). In particular, we have that

∂1 : Hs(Rd) → Hs−1(Rd) ∩ Ḣ−1(Rd) is a bounded linear map, and this map
is injective.

Proof. These are proved in Proposition 5.2 and Theorems 5.5 and 5.6 of [9]. ��
Next we recall another space introduced in [9] that will be useful in working with
the Poisson extension of functions inHs(�).
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Definition A.3. Let 0 � s ∈ R and n � 2.

(1) When � = R
n−1 we define the space

P
s(�) = Hs(�) + Hs(�) = { f ∈ L1

loc(�) | there exist g ∈ Hs(�) and h ∈ Hs(�)

such that f (x) = g(x) + h(x ′) for almost every x ∈ �}. (A.7)

We endow P
s(�) with the norm

‖ f ‖Ps = inf{‖g‖Hs + ‖h‖Hs | f = g + h for g ∈ Hs(�), h ∈ Hs(Rn−1)}.
(A.8)

(2) When � = T
n−1 we define the space P

s(�) = Hs(�) and endow it with the
usual Hs(�) norm.

The key properties of this space are recorded in the following.

Theorem A.4. Let 0 � s ∈ R and n � 2. Then the following hold.

(1) If t ∈ R and s < t , then we have the continuous inclusion P
t (�) ⊂ P

s(�).
(2) For each f ∈ Hs(�) we have that ‖ f ‖Ps � ‖ f ‖Hs , and hence we have the

continuous inclusion Hs(�) ⊂ P
s(�).

(3) If k ∈ N and s > k + n/2, then ‖ f ‖Ck
b

� ‖ f ‖Ps for all f ∈ P
s(�). Moreover,

we have the continuous inclusion

P
s(�) ⊆ { f ∈ Ck

b (�) | lim
|x ′|→∞

∂α f (x) = 0 for |α| � k} ⊂ Ck
b (�).

(A.9)

(4) If s � 1, then ‖∇ f ‖Hs−1 � ‖ f ‖Ps for each f ∈ P
s(�). In particular, we have

that ∇ : P
s(�) → Hs−1(�; R

n) is a bounded linear map.
(5) If s > 1/2, then the trace map Tr : Hs(�) → Hs−1/2(�) extends to a bounded

linear map Tr : P
s(�) → Hs−1/2(�). More precisely, the following hold.

(a) If f ∈ C0(�̄) ∩ P
s(�), then Tr f = f |� .

(b) If ϕ ∈ C1
c (R

n−1 × (−b, 0]), then
∫

�

Tr f ϕ =
∫

�

∂n f ϕ + f ∂nϕ for all f ∈ P
s(�). (A.10)

(c) We have the bound ‖Tr f ‖Hs−1/2 � ‖ f ‖Ps for all f ∈ P
s(�).

Proof. In the case� = R
n−1 these are proved in Theorems 5.7, 5.9, and 5.11 of [9].

In the case � = T
n−1 they follow from standard properties of Sobolev spaces. ��

Next we record a crucial fact about the P
s spaces: they give rise to standard Hs

multipliers.
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Theorem A.5. Let n � 2 and s > n/2. Then for 0 � r � s

‖ f g‖Hr � ‖ f ‖Ps ‖g‖Hr for all f ∈ P
s(�) and g ∈ Hr (�). (A.11)

In particular, for 1 � k ∈ N the mapping

Hr (�) ×
k∏

j=1

P
s(�) 
 (g, f1, . . . , fk) �→ g

k∏

j=1

f j ∈ Hr (�) (A.12)

is a bounded (k + 1)−linear map.

Proof. When � = T
n−1 this follows from the standard properties of Sobolev

spaces. Assume then that � = R
n−1. The bound (A.11) is proved for r = s in

Theorem 5.14 in [9]. When r = 0, the bound (A.11) follows immediately from the
third item of Theorem A.4. The general case 0 < r < s then follows from these
endpoint bounds and interpolation (see, for instance, [2,15]). ��

A.2 Poisson Extension

We now study the Poisson extension operator, first on standard Sobolev spaces.

Proposition A.6. Let −1/2 � s ∈ R. For η ∈ Hs(�) define Pη : � → R via

Pη(x) = 1

(2π)n−1

∫

�̂

eix
′·ξ e|ξ |xn η̂(ξ)dξ. (A.13)

Then Pη ∈ Hs+1/2(�) and ‖Pη‖Hs+1/2 � ‖η‖Hs . In particular, P : Hs(�) →
Hs+1/2(�) defines a bounded linear map.

Proof. We’ll only present the proof in the case � = R
n−1, and the case � = T

n−1

is similar and simpler. First note that

∫ 0

−b

∣
∣
∣e|ξ |xn

∣
∣
∣
2
dxn = 1

2 |ξ | (1 − e−2|ξ |b) �
{
b for |ξ | � 0
1

2|ξ | for |ξ | � ∞.
(A.14)

Suppose initially that m ∈ N and that η ∈ Hm−1/2(�). Using (A.14), we may
readily bound

‖Pη‖2Hm (�) �
∫

Rn−1
〈ξ 〉2m ∣∣η̂(ξ)

∣
∣2
∫ 0

−b

∣
∣
∣e|ξ |xn

∣
∣
∣
2
dxndξ

�
∫

Rn−1
〈ξ 〉2m−1

∣
∣η̂(ξ)

∣
∣2 dξ = ‖η‖2Hm−1/2 . (A.15)

Thus, P : Hm−1/2(�) → Hm(�) defines a bounded linear operator for every
m ∈ N. Standard interpolation theory (see, for instance, [2,15]) then shows that
P : Ht−1/2(�) → Ht (�) defines a bounded linear operator for every 0 � t ∈ R,
which is the desired result upon setting t − 1/2 = s. ��
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Next we consider the Poisson extension on the anisotropic spaces Hs(�), which
requires the use of the P spaces from Definition A.3.

Theorem A.7. Let 0 � s ∈ R and � = R
n−1. For η ∈ Hs(�) definePη : � → R

via

Pη(x) = 1

(2π)n−1

∫

Rn−1
eix

′·ξ e|ξ |xn η̂(ξ)dξ. (A.16)

Then the following hold:

(1) Pη − ηl ∈ Hs+1/2(�) and ‖Pη − ηl‖Hs+1/2 � ‖η‖Hs , where ηl = ηl,1 ∈
Hs+1/2(�) ∩⋂k∈N Ck

0 (�) in the notation of Theorem A.2.
(2) Pη ∈ P

s+1/2(�) and ‖Pη‖Ps+1/2 � ‖η‖Hs .
(3) The induced map P : Hs(�) → P

s+1/2(�) is bounded and linear.

Proof. We split η into its high and low frequency parts: η = ηh + ηl , where
η̂h = χ B(0,1)c η̂ and η̂l = χ B(0,1)η̂. Then we know from TheoremA.2 that ηl , ηh ∈
Hs(�) with

∥
∥η j

∥
∥Hs � ‖η‖Hs for j ∈ {l, h}. We also know that ηh ∈ Hs(�) with

‖ηh‖Hs � ‖η‖Hs . Consequently, Proposition A.6 shows that Pηh ∈ Hs+1/2(�)

with

‖Pηh‖Hs+1/2 � ‖ηh‖Hs � ‖η‖Hs . (A.17)

Now consider the function Pηl − ηl : � → R, which satisfies

Pηl(x) − ηl(x
′) = 1

(2π)n−1

∫

B(0,1)
eix

′·ξ (e|ξ |b − 1)η̂(ξ)dξ. (A.18)

We calculate
∫ 0

−b

∣
∣
∣e|ξ |xn − 1

∣
∣
∣
2
dxn = 1

2 |ξ | (−3 + 2 |ξ | b + 4e−|ξ |b − e−2|ξ |b)

�
{ |ξ |2b3

3 for |ξ | � 0

b for |ξ | � ∞.
(A.19)

For any m ∈ N this allows us to bound

‖Pηl − ηl‖2Hm �
∫

B(0,1)
〈ξ 〉2m ∣∣η̂(ξ)

∣
∣2
∫ 0

−b

∣
∣
∣e|ξ |xn − 1

∣
∣
∣
2
dxndξ

�
∫

B(0,1)
〈ξ 〉2m−1 |ξ |2 ∣∣η̂(ξ)

∣
∣2 dξ

�
∫

B(0,1)
|ξ |2 ∣∣η̂(ξ)

∣
∣2 dξ � ‖η‖2Hs . (A.20)

Thus,Pηl −ηl ∈ ⋂m∈N Hm(�), but in particular we can choose a fixed s+1/2 �
m ∈ N to see that Pηl − ηl ∈ Hs+1/2(�) with

‖Pηl − ηl‖Hs+1/2 � ‖Pηl − ηl‖Hm � ‖η‖Hs . (A.21)



5 Page 48 of 58 Arch. Rational Mech. Anal. (2024) 248:5

Finally, note that ηl ∈ ⋂t>0 Ht (�) and that

‖ηl‖Ht = ‖ηl‖Hs for all 0 � t ∈ R. (A.22)

In particular, ηl ∈ Hs+1/2(�) with ‖ηl‖Hs+1/2 � ‖η‖Hs . We may thus combine
(A.17), (A.21), and (A.22) to see that Pη = [Pηh + (Pηl − ηl)] + ηl with

‖Pηh + (Pηl − ηl)‖Hs+1/2 + ‖ηl‖Hs+1/2 � ‖η‖Hs . (A.23)

Hence, Pη ∈ P
s+1/2(�) with ‖Pη‖Ps+1/2 � ‖η‖Hs , which is the desired bound.

��

Finally,we record some results about the normal derivative of the Poisson extension.

Proposition A.8. Let 0 � s ∈ R and η ∈ Hs+3/2(�). Then the following hold.

(1) If � = R
n−1, then ∂nPη(·, 0) − ∂nPη(·,−b) ∈ Ḣ−1(Rn−1) and

[∂nPη(·, 0) − ∂nPη(·,−b)]Ḣ−1 � b ‖∇Pη‖L2 � ‖η‖Hs+3/2 . (A.24)

(2) If � = T
n−1, then ̂∂nPη|�(0) = ̂∂nPη|�−b (0) = 0.

Proof. We’ll only prove the first item, as the second is simpler and similar. Theorem
A.7 tells us that Pη ∈ P

s+2(�), and so Theorem A.4 then implies that ∂nPη ∈
Hs+1(�). Note that �Pη = 0 in �. Using this and the absolute continuity of
Sobolev functions on lines (see, for instance, Theorem 11.45 in [8]), we may then
compute

∂nPη(x ′, 0) − ∂nPη(x ′,−b) =
∫ 0

−b
∂2nPη(x ′, t)dt = −

∫ 0

−b
�′Pη(x ′, t)dt

= − div′
∫ 0

−b
∇′Pη(x ′, t)dt. (A.25)

Thus, Cauchy–Schwarz, Fubini–Tonelli, and Parseval imply that

[
∂nPη(x ′, 0) − ∂nPη(x ′,−b)

]2
Ḣ−1 =

∫

Rn−1

1

|ξ |2
∣
∣
∣
∣ξ ·

∫ 0

−b
ξP̂η(ξ, t)dt

∣
∣
∣
∣

2

dξ

� b2
∫

Rn−1

∫ 0

−b

∣
∣ξP̂η(ξ, t)

∣
∣2 dtξ � b2

∫

�

|∇Pη|2 . (A.26)

The stated inequality follows from this and Theorems A.4 and A.7. ��
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A.3 Composition

In this subsection we aim to study some composition operators. We begin by intro-
ducing some notation that allows us to extend the flattening maps to full space.

Definition A.9. Let χ ∈ C∞
c (R) be such that 0 � χ � 1, χ = 1 on [−2b, 2b], and

supp(χ) ⊂ (−3b, 3b). Given η ∈ Hσ+1/2(�) define Eη : � × R → � × R via

Eη(x) = x + χ(xn)[ηl(x ′) + E(Pη − ηl)(x)]
(
1 + xn

b

)
en, (A.27)

where E : L2(�) → L2(� × R) is a Stein extension operator, P is the Poisson
extension as defined in Proposition A.7 and Theorem A.7, and when � = R

n−1

we take ηl = ηl,1 ∈ ⋂t�0 Ht (�) ∩⋂k∈N Ck
0 (�) in the notation of Theorem A.2,

while when � = T
n−1 we take ηl = 0. Note that Proposition A.6 and Theorem A.7

show thatPη−ηl ∈ Hσ+1(�), and since the Stein extension restricts to a bounded
map E : Hσ+1(�) → Hσ+1(� × R) we have that E(Pη − ηl) ∈ Hσ+1(� × R).

Next we record some properties of these maps.

Proposition A.10. Let σ > n/2, η ∈ Hσ+1/2(�), and defineEη : �×R → �×R

as in Definition A.9. Then the following hold.

(1) The map Eη is Lipschitz and C1, and
∥
∥∇Eη − I

∥
∥
C0
b

� ‖η‖Hs+1/2 .

(2) If V is a real finite dimensional inner-product space and 0 � r � σ , then

sup
1� j,k�n

∥
∥∂ jEη · ek f

∥
∥
Hr � (1 + ‖η‖Hσ+1/2) ‖ f ‖Hr (A.28)

and

sup
1� j,k�n

∥
∥(∂ jEη · ek − ∂ jEζ · ek) f

∥
∥
Hr � ‖η − ζ‖Hσ+1/2 ‖ f ‖Hr (A.29)

for every η, ζ ∈ Hσ+1/2(�) and f ∈ Hr (� × R; V ).
(3) There exists 0 < δ∗ < 1 such that if ‖η‖Hσ+1/2 < δ∗, then Eη is a bi-

Lipschitz homeomorphism and a C1 diffeomorphism, and we have the estimate∥
∥∇Eη − I

∥
∥
C0
b

< 1/2.

Proof. First note that σ +1 > n/2+1, so Proposition A.6, Theorem A.7 and stan-
dard Sobolev embeddings show that E(Pη −ηl) ∈ C1

b(� ×R). On the other hand,
ηl ∈ ⋂

t�0 Ht (�), so Theorem A.2 shows that ηl ∈ C1
b(�). These observations

and their associated bounds then imply the first item. Next we write Eη = I + ωen
so that ∇Eη = I + en ⊗ ∇ω. To prove the second item it suffices to show that∥
∥∂ jω f

∥
∥
Hr � ‖η‖Hσ+1/2 ‖ f ‖Hr for 0 � r � σ and 1 � j � n. To establish this

we observe that on the one hand, thanks to Theorem A.2, χηl ∈ ⋂k∈N Ck
0 (� × R),

and on the other E(Pη −ηl) ∈ Hσ+1(� ×R). Thus, ∂ jω consists of linear combi-
nations of terms in

⋂
k∈N Ck

0 (� × R) and in Hσ (Rn), and so the sufficient bound
follows from standard Sobolev multiplier results (see, for instance, Lemma A.8 in
[9]).
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To prove the third item we note that if ω has Lipschitz constant less than unity, then
ωen is contractive on R

n , and so the Banach fixed point theorem implies that Eη is
a bi-Lipschitz homeomorphism. To control the Lipschitz constant of ω we use the
supercritical Sobolev embeddings as above to verify that this constant is less than
unity provided that ‖η‖Hσ+1/2 < δ∗ for some sufficiently small universal constant
δ∗ ∈ (0, 1). ��
The next result studies the smoothness properties of composition with the maps
from Definition A.9.

Theorem A.11. Let n/2 < σ ∈ N, 0 < δ∗ < 1 be as in the third item of Proposition
A.10, and V be a real finite dimensional inner-product space. Let r ∈ N satisfy
0 � r � σ + 1 and let k ∈ {0, 1}. Consider the map � : Hr+k(� × R; V ) ×
BHσ+1/2(�)(0, δ∗) → Hr (� × R; V ) given by �( f, η) = f ◦ Eη, where Eη :
� × R → � × R is as defined in Definition A.9. Then � is well-defined and Ck,
and if k = 1 then D�( f, η)(g, ζ ) = χ b̃(ηl + E(Pη − ηl)(∂n f ◦ Eη)ζ + g ◦ Eη,

where b̃(x) = (1 + xn/b).

Proof. With Proposition A.10 established, the result follows from minor and ev-
ident modifications of the argument used to prove Theorem 1.1 in [6] (see also
Theorem 5.20 in [9]). ��
Finally, as a byproduct of this theorem we obtain smoothness properties associated
to composition with the flattening maps Fη.

Corollary A.12. Let n/2 < σ ∈ N, 0 < δ∗ < 1 be as in the third item of Propo-
sition A.10, and V be a real finite dimensional inner-product space. Let r ∈ N

satisfy 0 � r � σ + 1. For η ∈ Hσ+1/2(�) define Fη : � → �η via (2.1). Then
the following hold.

(1) The map �� : Hr+1(� × R; V ) × BHσ+1/2(�)(0, δ∗) → Hr (�; V ) given by

�( f, η) = f ◦Fη is well-defined and C1 with D��( f, η)(g, ζ ) = b̃Pη(∂n f ◦
Fη)ζ + g ◦ Fη, where b̃(x) = (1 + xn/b).

(2) Assume r � 1. Then the map S� : Hr+1(� × R; V ) × BHσ+1/2(�)(0, δ∗) →
Hr−1/2(�; V ) given by S�( f, η) = f ◦ Fη|� is well-defined and C1 with
DS�( f, η)(g, ζ ) = η(∂n f ◦ Fη)ζ |� + g ◦ Fη|� .

Proof. The first item follows fromTheoremA.11 and the observation that��( f, η)

= R��( f, η), where R� : Hr (� × R; V ) → Hr (�; V ) is the bounded linear
map given by restriction to �. This identity follows directly from the fact that, by
construction, Eη = Fη in �. The second item follows by composing the first item
with the bounded linear trace map. ��

A.4 Littlewood–Paley Analysis for the Anisotropic Sobolev Space Hs

In this subsection we develop some Littlewood–Paley theory for the anisotropic
spaces.
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Definition A.13. Let χ ∈ C∞(Rd) be a radial function such that χ(ξ) = 1 for
|ξ | � 1

2 , χ(ξ) = 0 for |ξ | � 1. Set

ϕ(ξ) = χ(ξ) − χ(2ξ), χ j (ξ) = χ(2− jξ) for j ∈ Z, ϕ0 = χ, and

ϕ j (ξ) = ϕ(2− jξ) for j � 1. (A.30)

The Littlewood–Paley dyadic block � j is defined by the Fourier multiplier

� j = ϕ j (Dx ) for j � 0, � j = 0 for j � −1. (A.31)

The low-frequency cut-off operator S j is defined by

S j = χ j (D) =
j∑

k=0

�k for j � 0. (A.32)

The above Fourier multipliers can act on functions (distributions) defined on R
d or

T
d , and the Fourier transform is defined accordingly. In particular, for u : T

d → R

we have

�0(D)u = 1

(2π)d
û(0) = 1

(2π)d

∫

Td
u. (A.33)

Since
∑∞

j=0 ϕ j (ξ) = 1 for all ξ ∈ R
d , we have that

∑∞
j=0 � j = Id. Moreover, we

have suppϕ j ⊂ {2 j−2 < |ξ | < 2 j } for j � 1 and χϕ j = 0 for j � 2.
Bony’s decomposition for product of functions is

f g = T f g + Tg f + R( f, g), (A.34)

where

T f g =
∑

j�3

S j−3 f � j g and R( f, g) =
∑

j,k�0,| j−k|�2

� j f �kg. (A.35)

We note that supp ̂S j−3 f � j g ⊂ {2 j−3 < |ξ | < 2 j+1} for j � 1.
We recall the following result from [1].

Lemma A.14. ([1, Lemma 2.2]) Let C be an annulus in R
d , m ∈ R, and k =

2[1 + d
2 ], where [r ] denotes the integer part of r . Let σ be a k-times differentiable

function on R
d \ {0} such that for all α ∈ R

d with |α| � k, there exists a constant
Cα such that

|∂ασ (ξ)| � Cα|ξ |m−|α| for all ξ ∈ R
d \ {0}. (A.36)

There exists a constant C, depending only on the constants Cα , such that for any
p ∈ [1,∞] and any constant λ > 0, we have, for any function u ∈ L p(Md),
M ∈ {R, T}, with Fourier transform supported in λC,

‖σ(D)u‖L p � Cλm‖u‖L p . (A.37)

Next we recall the definition of the Chemin–Lerner norm.
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Definition A.15. LetM be eitherR orT. For I ⊂ R and s ∈ R, the Chemin–Lerner
norm is defined by

‖u‖2
L̃q (I ;Hs (Md ))

=
∞∑

j=0

22s j‖� j u‖2Lq (I ;L2(Md ))
. (A.38)

When the low-frequency part is removed, we denote

‖u‖2Hs
� (Md )

=
∞∑

j=1

22s j‖� j u‖2L2(Md )
and ‖u‖2

L̃q (I ;Hs
� (Md ))

=
∞∑

j=1

22s j‖� j u‖2Lq (I ;L2(Md ))
. (A.39)

It what follows, unless otherwise specified, when the set M is omitted in function
space notation, it can be either R or T. We recall another result from [1], this time
about products.

Proposition A.16. ([1, Corollary 2.54]) For I ⊂ R, q ∈ [1,∞] and s > 0, there
exists C = C(d, s) such that

‖ f g‖Hs � C‖ f ‖L∞‖g‖Hs + C‖g‖L∞‖ f ‖Hs , (A.40)

‖ f g‖L̃q (I ;Hs ) � C‖ f ‖L∞(I ;L∞)‖g‖L̃q (I ;Hs ) + C‖g‖L∞(I ;L∞)‖ f ‖L̃q (I ;Hs )

(A.41)

provided that the right-hand sides are finite.

Next we study the boundedness of some key operators in the Chemin–Lerner norm.

Proposition A.17. The following hold.

(1) There exists an absolute constant C such that for all 1 � p � ∞, σ ∈ R and
u ∈ Hσ (Rd), we have

∥
∥
∥
∥
cosh((z + b)|D|)

cosh(b|D|) u

∥
∥
∥
∥
L̃ p
z ([−b,0];Hσ+ 1

p )

� max{2b 1
p ,C}‖u‖Hσ . (A.42)

(2) There exists an absolute constant C such that for all 1 � q2 � q1 � ∞, σ ∈ R

and f ∈ L̃ p2
z ([−b, 0]; Hσ−1+ 1

p2
x ), we have

∥
∥
∥
∥

∫ z

−b

cosh((z′ + b)|D|)
cosh((z + b)|D|) f (x, z′)dz′

∥
∥
∥
∥
L̃
q1
z

(

[−b,0];Hσ+ 1
q1

)

� max

{

b
q1+q′

2
q1q

′
2 ,C

}

‖ f ‖
L̃
q2
z

(

[−b,0];Hσ−1+ 1
q2

), (A.43)
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where 1
q2

+ 1
q ′
2

= 1. In addition, for any z ∈ [−b, 0], we have
∥
∥
∥
∥

∫ z

−b

cosh((z′ + b)|D|)
cosh((z + b)|D|) f (x, z′)dz′

∥
∥
∥
∥
Hσ

� max{b
q1+q′

2
q1q

′
2 ,C}‖ f ‖

L̃
q2
z

(

[−b,0];Hσ−1+ 1
p2

), (A.44)

Proof. For all −b � z1 � z2, we have 0 � z2 − z1 � z2 + b and hence

1 � cosh((z1 + b)c)

cosh((z2 + b)c)
e(z2−z1)c = e2(z2+b)c + e2(z2−z1)c

e2(z2+b)c + 1
� 2. (A.45)

for all c � 0.
To prove the first item we note that (A.45) implies

ezc � cosh((z + b)c)

cosh(bc)
� 2ezc (A.46)

for all z ∈ [−b, 0]. Consequently, for j � 1 and u ∈ Ḣσ , we have
∥
∥
∥
∥� j

cosh((z + b)|D|)
cosh(b|D|) u

∥
∥
∥
∥
L2
x

=
∥
∥
∥
∥
cosh((z + b)|D|)

cosh(b|D|) � j u

∥
∥
∥
∥
L2
x

�
(∫

Rd
4e2z|ξ ||�̂ j u(ξ)|2dξ

) 1
2

� 2ez2
j−2‖� j u‖L2 (A.47)

since |ξ | � 2 j−2 on the support of �̂ j u(ξ). It follows that
∥
∥
∥
∥� j

cosh((z + b)|D|)
cosh(b|D|) u

∥
∥
∥
∥
L p
z ([−b,0];L2)

� C2− j
p ‖� j u‖L2 , (A.48)

where C is an absolute constant. On the other hand, the low frequency part can be
bounded as
∥
∥
∥
∥�0

cosh((z + b)|D|)
cosh(b|D|) u

∥
∥
∥
∥
L p([−b,0];L2)

� 2‖‖�0u‖L2
x
‖L p

z ([−b,0]) � 2b
1
p ‖�0u‖L2 .

(A.49)

Combining (A.48) and (A.49) yields
∥
∥
∥
∥
cosh((z + b)|D|)

cosh(b|D|) u

∥
∥
∥
∥

2

L̃ p
z ([−b,0];Hσ+ 1

p )

�
(
2b

1
p

)2 ‖�0u‖2L2 +
∞∑

j=1

C22
2 j
(
σ+ 1

p − 1
p

)

‖� j u‖2L2

� max
{
2b

1
p ,C

}2 ‖u‖2Hσ . (A.50)

This completes the proof of the first item.
We now turn to the proof of the second item. To prove (A.43), we set

g(x, z) =
∫ z

−b

cosh((z′ + b)|D|)
cosh((z + b)|D|) f (x, z′)dz′. (A.51)
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For z ∈ [−b, 0] and j � 1, using (A.45) we estimate

∥
∥� j g(·, z)

∥
∥
L2 =

∥
∥
∥
∥

∫ z

−b

cosh((z′ + b)|D|)
cosh((z + b)|D|) � j f (x, z

′)dz′
∥
∥
∥
∥
L2
x

�
∫ z

−b

∥
∥
∥
∥
cosh((z′ + b)|D|)
cosh((z + b)|D|) � j f (·, z′)

∥
∥
∥
∥
L2
x

dz′

�
∫ z

−b

(∫

Rd
e−2(z−z′)|ξ ||ϕ(2− jξ) f̂ (ξ, z′)|2dξ

) 1
2

dz′

�
∫ z

−b

(∫

Rd
e−(z−z′)2 j−1 |�̂ j f (ξ, z′)|2dξ

) 1
2

dz′

�
∫ z

−b
e−(z−z′)2 j−2‖� j f (·, z′)‖L2dz′. (A.52)

Applying Young’s inequality in z we deduce

‖� j g‖Lq1
z ([−b,0];L2)

� ‖e−z2 j−2‖Lq
z (R+)‖� j f ‖Lq2

z ([−b,0];L2)

= 1

q
1
q

2− j−2
q ‖� j f ‖Lq2

z ([−b,0];L2)

� C2− j
q ‖� j f ‖Lq2

z ([−b,0];L2)
, (A.53)

where 1
q = 1 + 1

q1
− 1

q2
and C is an absolute constant. On the other hand, it is

readily seen that

‖�0g(·, z)‖L2 � 2
∫ z

−b
‖�0 f (·, z′)‖L2dz′ � 2b

1
q′
2 ‖�0 f ‖Lq2

z ([−b,0];L2)
,

(A.54)

and hence

‖�0g‖Lq1
z ([−b,0];L2)

� 2b
q1+q′

2
q1q

′
2 ‖�0 f ‖Lq2

z ([−b,0];L2)
. (A.55)

A combination of (A.53) and (A.55) leads to (A.43).
Finally, the proof of (A.44) is similar to the case q1 = ∞ of (A.43). ��
Next we consider some more product estimates.

Proposition A.18. Let s > 0, p ∈ [1,∞], and I ⊂ R. Then, there exists C =
C(d, s) such that the estimate

‖ f g‖L̃ p(I ;Hs (Rd )) � C
(‖ f ‖L∞(I ;L∞(Rd )) + ‖χ f̂ ‖L∞(I ;L1(Rd ))

) ‖g‖L̃ p(I ;Hs (Rd ))

+ C‖g‖L∞(I ;L∞(Rd ))‖ f ‖L̃ p(I ;Hs
� (Rd ))

(A.56)

holds provided that the right-hand side is finite. Consequently, for s > 0 and
s0 > d

2 , there exists C = C(d, s, s0) such that
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‖ f g‖L̃ p(I ;Hs ) � C‖ f ‖L∞(I ;Hs0 (Rd ))‖g‖L̃ p(I ;Hs ) + C‖g‖L∞(I ;L∞)‖ f ‖L̃ p(I ;Hs
� ).

(A.57)

Proof. We first note that for M = T, (A.57) is a consequence of (A.41) and the
continuous embedding Hs0(Td) ⊂ L∞(Td) for s0 > d

2 .
To prove (A.56) and (A.57) for M = R, we shall consider functions f (x, z) and
g(x, z) defined on R

d × I . For fixed z ∈ I , we use Bony’s decomposition (A.34):
f g = T f g + Tg f + R( f, g), where T f g = ∑

j�3 S j−3 f � j g. For j � 3 we have

supp ̂S j−3 f � j g ⊂ {2 j−3 < |ξ | < 2 j+1} and hence �k(S j−3 f � j g) = 0 for all
k � 0 satisfying | j − k| � 3. Thus, for k � 0 using Bernstein’s inequality we
obtain

2sk‖�kT f g‖L2
x

= 2sk‖
∑

j�3,| j−k|�2

�k(S j−3 f � j g)‖L2
x

� C
∑

j�3,| j−k|�2

2s j‖S j−3 f � j g‖L2
x

� C‖ f ‖L∞
x

∑

j�3,| j−k|�2

2s j‖� j g‖L2
x
, (A.58)

where C = C(d, s). Since f ∈ L̃ p(I ; Hs
� ), we have � j f ∈ L2

x a.e. z ∈ I for
j � 3. Consequently, the preceding estimate for T f g also holds for Tg f ; that is,

2sk‖�kTg f ‖L2
x

� C‖g‖L∞
x

∑

j�3,| j−k|�2

2s j‖� j f ‖L2
x
. (A.59)

It follows that

‖T f g‖2L̃ p(I ;Hs )
� C‖ f ‖2L∞(I ;L∞)

∞∑

k=0

( ∑

j�3,| j−k|�2

2sk‖� j g‖L p(I ;L2)

)2

� C‖ f ‖2L∞(I ;L∞)

∞∑

j=3

22s j‖� j g‖2L p(I ;L2)
� C‖ f ‖2L∞(I ;L∞)‖g‖2L̃ p(I ;Hs

� )
,

(A.60)

and similarly we have

‖Tg f ‖L̃ p(I ;Hs ) � C‖g‖L∞(I ;L∞)‖ f ‖L̃ p(I ;Hs
� ). (A.61)

As for the remainder R( f, g) = ∑
j�0

∑
|ν|�2 � j f � j+νg, we note that supp

̂� j f � j+νg ⊂ {|ξ | < 2 j+3}. Thus �k(� j f � j+νg) = 0 for k � j + 5 and

‖�k

∑

|ν|�2

� j f � j+νg‖L2
x

�
∑

j�k−4

∑

|ν|�2

‖�k(� j f � j+νg)‖L2
x
, (A.62)

where

‖�k(� j f � j+νg)‖L2
x

� ‖� j f ‖L2
x
‖g‖L∞

x
if j � 1 (A.63)
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and

‖�k(� j f � j+νg)‖L2
x

� ‖�0 f ‖L∞
x

‖�νg‖L2
x

� ‖χ f̂ ‖L1‖�νg‖L2
x

if j = 0.

(A.64)

It follows that

2ks‖�k

∑

|ν|�2

� j f � j+νg‖L p(I ;L2)

�
{
2ks
∑

j�1, j�k−4 ‖� j f ‖L p(I ;L2)‖g‖L∞(I ;L∞) if k � 5,

2ks‖χ f̂ ‖L∞(I ;L1)‖�νg‖L p(I ;L2) if k � 4

�
{∑

j�1, j�k−4 2
js‖� j f ‖L p(I ;L2)‖g‖L∞(I ;L∞)2(k− j)s if k � 5,

‖χ f̂ ‖L∞(I ;L1)‖g‖L̃ p(I ;L2) if k � 4.
(A.65)

By Young’s inequality for series, we deduce

∥
∥
∥2ks‖�k

∑

|ν|�2

� j f � j+νg‖L p(I ;L2)

∥
∥
∥

�2({k�5}) � ‖g‖L∞(I ;L∞)‖ f ‖L̃ p(I ;Hs
� ).

(A.66)

We thus obtain

‖R( f, g)‖L̃ p(I ;Hs ) � ‖χ f̂ ‖L∞(I ;L1)‖g‖L̃ p(I ;Hs ) + ‖g‖L∞(I ;L∞)‖ f ‖L̃ p(I ;Hs
� ).

(A.67)

Combining (A.60), (A.61) and (A.67) we obtain (A.56). Finally, (A.57) follows
from (A.56) and (A.6). ��
Our next result records some estimates for nonlinear maps of the form ( f, g) �→
g(1 + f )−1.

Proposition A.19. Let I ⊂ R, p ∈ [1,∞], s > 0, and s0 > d
2 . There exists a

positive constant C = C(d, s, s0) such that if ‖ f ‖L∞(I ;Hs0 ) < 1
2C then

∥
∥
∥
∥

g

1 + f

∥
∥
∥
∥
L̃ p(I ;Hs )

� ‖g‖L̃ p(I ;Hs ) + C‖ f ‖L∞(I ;Hs0 )‖g‖L̃ p(I ;Hs )

+‖g‖L∞(I ;L∞)‖ f ‖L̃ p(I ;Hs
� ). (A.68)

Proof. By virtue of (A.6) we have ‖ f ‖L∞(I ;L∞) � C1‖ f ‖L∞(I ;Hs0 ), C1 = C1

(d, s, s0), and hence | f | � 1
2 a.e. if ‖ f ‖L∞(I ;Hs0 ) � 1

2C1
. Then the expansion

g

1 + f
=
∑

j�0

(−1) j g f j (A.69)
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holds a.e onR
d . We claim that withC2 = max{C1,C}, whereC is given in (A.57),

we have

‖g f j‖L̃ p(I ;Hs ) � C2(C2‖ f ‖L∞(I ;Hs0 ))
j−1

{
‖ f ‖L∞(I ;Hs0 )‖g‖L̃ p(I ;Hs ) + j‖g‖L∞(I ;L∞)‖ f ‖L̃ p(I ;Hs

� )

}

(A.70)

for all j � 1. Indeed, the case j = 1 follows at once from (A.57). Assume that
(A.70) holds for some j � 1. Applying (A.57) once again, we deduce

‖g f j+1‖L̃ p(I ;Hs ) = ‖ f (g f j )‖L̃ p(I ;Hs )

� C2‖ f ‖L∞(I ;Hs0 )‖g f j‖L̃ p(I ;Hs ) + C2‖g f j‖L∞(I ;L∞)‖ f ‖L̃ p(I ;Hs
� )

� C2(C2‖ f ‖L∞(I ;Hs0 ))
j
{
‖ f ‖L∞(I ;Hs0 )‖g‖L̃ p(I ;Hs )

+ j‖g‖L∞(I ;L∞)‖ f ‖L̃ p(I ;Hs
� )

}

+ C2‖g f j‖L∞(I ;L∞)‖ f ‖L̃ p(I ;Hs
� ).

(A.71)

Combining this with the estimate

‖g f j‖L∞(I ;L∞) � ‖g‖L∞(I ;L∞)‖ f ‖ j
L∞(I ;L∞)

� ‖g‖L∞(I ;L∞)(C1‖ f ‖L∞(I ;Hs0 ))
j

(A.72)

we obtain (A.70) for j + 1.
Finally, for ‖ f ‖L∞(I ;Hs0 ) � 1

2C2
we can sum (A.70) over j � 1 to obtain

∥
∥
∥
∥

g

1 + f

∥
∥
∥
∥
L̃ p(I ;Hs )

� ‖g‖L̃ p(I ;Hs ) + C

1 − C‖ f ‖L∞(I ;Hs0 )

‖ f ‖L∞(I ;Hs0 (Rd ))‖g‖L̃ p(I ;Hs )

q + C

(1 − C‖ f ‖L∞(I ;Hs0 ))
2 ‖g‖L∞(I ;L∞)‖ f ‖L̃ p(I ;Hs

� ). (A.73)

This implies (A.68). ��
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