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Abstract

We prove the nonlinear asymptotic stability of stably stratified solutions to the
IncompressiblePorousMedia equation (IPM) for initial perturbations in Ḣ1−τ (R2)∩
Ḣ s(R2) with s > 3 and for any 0 < τ < 1. Such a result improves upon the ex-
isting literature, where the asymptotic stability is proved for initial perturbations
belonging at least to H20(R2). More precisely, the aim of the article is threefold.
First, we provide a simplified and improved proof of global-in-time well-posedness
of the Boussinesq equations with strongly damped vorticity in H1−τ (R2)∩ Ḣ s(R2)

with s > 3 and 0 < τ < 1. Next, we prove the strong convergence of the Boussi-
nesq system with damped vorticity towards (IPM) under a suitable scaling. Lastly,
the asymptotic stability of stratified solutions to (IPM) follows as a byproduct. A
symmetrization of the approximating system and a careful study of the anisotropic
properties of the equations via anisotropic Littlewood-Paley decomposition play
key roles to obtain uniform energy estimates. Finally, one of the main new and
crucial points is the integrable time decay of the vertical velocity ‖u2(t)‖L∞(R2)

for initial data only in Ḣ1−τ (R2) ∩ Ḣ s(R2) with s > 3.

1. Introduction

The Incompressible Porous Media (IPM) system in two space dimensions is an
active scalar equation

⎧
⎪⎨

⎪⎩

∂tη + u · ∇η = 0,

u = −κ∇P + gη, g = (0,−g)T , (Darcy law)

∇ · u = 0,

(1)

modeling the dynamics of a fluid of density η = η(t, x, y) : R
+ × R

2 → R

through a porous medium according to the Darcy law, where κ > 0 and g > 0
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are the permeability coefficient and the gravity acceleration respectively, which
hereafter are assumed to be κ = g = 1. We refer to [6] and references therein for
further explanations on the physics and the applications of the model. The active
scalar velocity u = (u1, u2) of system (1) can be reformulated in terms of a singular
integral operator of degree 0

u = (−R2,R1)R1ρ, (2)

where (R1,R2) is the two-dimensional Riesz transform, i.e.

R1 = (−�)−1/2∂x , R2 = (−�)−1/2∂y . (3)

We are interested in the stability properties of the stratified steady state ρeq(y) =
ρ0 − y, where ρ0 > 0 is a constant averaged density. Introducing the perturbed
unknown ρ = ρ(t, x, y) such that η(t, x, y) = ρeq(y)+ρ(t, x, y), the perturbation
ρ satisfies

∂tρ − R2
1ρ = (R2R1ρ,−R2

1ρ) · ∇ρ. (IPM-diss)

The nonlinear asymptotic stability of the stratified steady state ρeq(y) = ρ0− y
in the whole space R

2 has been first established by Elgindi [16], for initial data at
least in H20(R2).The analogous result but in the periodic finite channelT×[−π, π ]
is due to Castro et al. [6] under slightly less restrictive regularity assumptions. We
remark that the linear operator

∂tρ − R2
1ρ = 0

in frequency space ξ = (ξ1, ξ2) ∈ R
2 is dissipative everywhere but the hyperplane

ξ1 = 0 thanks to the monotonicity ρ̄′
eq(y) < 0 (stable stratification, see [15,19]).

Therefore, it appears natural to approximate (IPM-diss) by a system with a (par-
tially) dissipative linear part. In this regard, it turns out that the two-dimensional
Boussinesq equations in vorticity form with strongly damped vorticity is a good
approximation to (IPM-diss) under a suitable scaling of time and unknowns. To the
best of our knowledge, the approximation of (IPM-diss) via the Boussinesq system
with damped vorticity is new and establishing its rigorous validity in the sense of
strong convergence of solutions is in the scope of the present work.
The two-dimensional Boussinesq equations with damped velocity with gravity ac-
celeration g = 1 and background density profile ρeq(y) = ρ0 − y read as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t b − u2 = −(u1∂xb + u2∂yb),

∂t u1 + ∂x P = −u1
ε

− (u1∂xu1 + u2∂yu1),

∂t u2 + ∂y P = −b − u2
ε

− (u1∂xu2 + u2∂yu2),

∂xu1 + ∂yu2 = 0.

(4)

Here u = (u1, u2) ∈ R
2 is the velocity field, b is the buoyancy term and P

is the incompressible pressure. This system is obtained by a linearization of the



Arch. Rational Mech. Anal. (2024) 248:2 Page 3 of 35 2

density-dependent incompressible Euler equations with damped velocity around
the hydrostatic stratified steady state

(ρeq(y), (0, 0), Peq(y)) with P
′
eq(y) = −ρeq(y). (5)

Several mathematical works in the existing literature have been devoted to this
system. Besides explaining the applications of (4) to electrocapillarity, Castro et
al. [7] (see also references therein) establish the global-in-time well-posedness of
system (4) in the bounded domain T × [0, 1]. In the whole space, global smooth
solutions have been first provided byWan [35] bymeans of Green function analysis
and energy methods.

We refer to [3,7] for a (formal) derivation of (4) by a linearization of the density-
dependent incompressible Euler equations around the hydrostatic stratified steady
state under the strong Boussinesq approximation ρ ∼ ρ0 [15].
For our scopes, it is convenient to rewrite the system in vorticity ω and stream
function φ formulation where u = ∇⊥φ with the sign convention (as in [16])
∇⊥ = (∂y,−∂x ), which gives

⎧
⎪⎪⎨

⎪⎪⎩

∂t b − (−�)−1∂xω = −u · ∇b,

∂tω + ω

ε
− ∂xb = −u · ∇ω,

�φ = ω.

(2D-Bouss)

Our first goal is to establish a systematic and improved proof of the global-in-
time existence of smooth solutions for small data to (2D-Bouss) (in Theorem 2.1),
exploiting the anisotropic nature of the system bymeans of anisotropic Littlewood-
Paley decomposition of the Fourier space (ξ1, ξ2) ∈ R

2 as introduced in [8,21,
33]. Since the linear and undamped approximation of the system supports the
propagation of anisotropic waves of dispersion relation ±ξ1/|ξ | = ∓iR̂1 (see
[2,15]), it is not surprising that the horizontal anisotropic decomposition of the
phase space plays a key role in our refined analysis. In our case, the linear part
of system (2D-Bouss) is dissipative provided that ξ1 �= 0, therefore it is natural
to build an energy functional with an anisotropic Fourier multiplier as a weight
(multiplier method). This idea allows us to prove that ‖u2(t)‖L∞(R2) is integrable in
time without assuming any additional L1(R2) integrability of the initial data. More
precisely, the control of ‖u2‖L1

T L
∞(R2) without L

1-integrability and high regularity
assumptions is new and this is a striking point to provide a substantially improved
global-in-time well-posedness of (2D-Bouss) for small data only in Ḣ1−τ (R2) ∩
Ḣ s(R2) with 0 < τ < 1 and s � 3 + τ .

For convenience of the reader, we point out that our small-data global-in-time
existence in Theorem 2.1 could be reformulated as a result of nonlinear asymptotic
stability of the hydrostatic steady state (5)withρeq(y) = ρ0−y, under the evolution
of the Boussinesq system

⎧
⎪⎨

⎪⎩

∂tη + u · ∇η = 0,

∂tu + u · ∇u + ∇P = ηg, g = (0,−g),

∇ · u = 0.

(E)
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This reformulation holds for system (E) with initial density ηin(x, y) such that
‖ηin − ρeq‖X 
 1 for a suitable functional space X , in the same spirit of [7].

Our second and main goal is to rigorously justify the relaxation limit of the
two-dimensional Boussinesq equations with damped vorticity (2D-Bouss) towards
(IPM-diss) under a suitable scaling that we introduce later on. To the best of our
knowledge, this relaxation approximation is new.

Finally, as a byproduct of the relaxation limit and the global well-posedness of
(2D-Bouss), we provide a newproof of existence of global smooth solutions inR

2 to
the equation (IPM-diss) for the perturbation ρ, with small initial data ρ(0, x, y) =
ρin(x, y) ∈ Ḣ1−τ (R2)∩ Ḣ s(R2) with 0 < τ < 1 and s � 3+ τ . Again, this result
can be reformulated in terms of the solution η to (1), for an initial datum ηin(x, y) =
ρeq(y) + ρin(x, y) such that ‖ηin(x, y) − ρeq(y)‖X = ‖ρin(x, y)‖Ḣ1−τ ∩Ḣ s 
 1.
Such reformulation yields the nonlinear asymptotic stability of equation (1) around
the stratified steady state ρeq(y), namely the setting of Elgindi [16] that proves
the result in H20(R2), while in our Theorem 2.3 we only need that the initial
perturbation ρin(x, y) ∈ Ḣ1−τ (R2) ∩ Ḣ s with s > 3.

1.1. A New Formulation

A first key element of our approach is the use of the symmetrized variables
introduced in [3]. With the notation


 = (−�)1/2 =
√

ξ21 + ξ22 ,

where ξ = (ξ1, ξ2) ∈ R
2 denotes the frequency coordinate in Fourier space, we

introduce the new unknown

� := 
−1ω, (6)

so that system (2D-Bouss) can be as rewitten
⎧
⎨

⎩

∂t b − R1� = (R2�,−R1�) · (∇b),

∂t� + �

ε
− R1b = 
−1[(R2�,−R1�) · (∇
�)], (2D-B)

whereR j , j ∈ {1, 2} are the components of the Riesz transform as in (3). Now, we
introduce the auxiliary variable

z := � − εR1b. (7)

The system in (b, z) then reads as follows:
⎧
⎨

⎩

∂t b − εR2
1b = R1z + (R2�,−R1�) · ∇b,

∂t z + z

ε
= −εR2

1�−εR1[(R2�,−R1�) · ∇b] + 
−1[(R2�,−R1�) · (∇
�)]. (8)

Such formulation partially diagonalizes the linear part of the system, except two
linear terms in the right-hand side of (8) that in the energy estimates are absorbed
by the left-hand side. This allows us to avoid hypocoercivity techniques [1,12],
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obtaining a priori estimates simply based on the energy method. We point out that
these a priori estimates are uniform in the vanishing parameter ε, which is a key
point to justify the relaxation towards (IPM-diss).

The use of the good unknown z = �−εR1b is inspired both by thework ofHoff
and Haspot in [22,23], where the authors introduce the effective velocity for the
compressible Navier–Stokes equations and the results of Crin-Barat and Danchin
in [10,11,13] on partially dissipative hyperbolic systems. In the aforementioned
works, this reformulation is only possible in some specific frequency regime (high
frequencies forNavier–Stokes and low frequencies for partially dissipative systems)
where the eigenvalues of the linear operator are real. In the present paper, the
particular form of the Riesz transform (an operator of degree 0) allows us to use
such diagonalization in all frequencies as the eigenvalues λ± of the linear part of
system (2D-B )

λ± = 1

2ε
± 1

2ε

√

1 − 4ε2ξ21
|ξ |2

are real in the whole frequency space for any ε � 1/2, so that the variable z in (7)
is a good unknown in all frequency regimes.

1.2. Formal Justification of the Relaxation Limit as ε → 0

Taking inspiration from the theory of partially dissipative systems (see for in-
stance [4,9,24,25,28,31,32,36] and references therein), one can expect to rigor-
ously justify the relaxation limit from (2D-B ) towards (IPM-diss) as ε → 0, by
applying the following scaling:

(̃bε, �̃ε)(τ, x) � (b,
�

ε
)(t, x) with τ = εt. (9)

The system (2D-B ) in the scaled unknowns (̃bε, �̃ε) reads as follows:
{

∂t b̃
ε − R1�̃

ε = (R2�̃
ε)∂x b̃

ε − (R1�̃
ε)∂y b̃

ε,

ε2∂t �̃
ε − R1b̃

ε + �̃ε = ε2
−1[(R2�̃
ε,−R1�̃

ε) · (∇
�̃ε)]. (10)

• Our first result is a systematic and improved proof of the global-in-time
well-posedness, with uniform estimates in the relaxation parameter ε � 1

2 , of the
above system with initial data (bin,�in) ∈ Ḣ1−τ ∩ Ḣ s for any 0 < τ < 1 and
s � 3 + τ . The approach is based on the use of the anisotropic Littlewood-Paley
decomposition that allows to capture the (anisotropic) nature of the equation in a
nearly optimal way. For references on the use of anisotropic Besov spaces in the
analysis of incompressible flows we refer to [21] and we mention [17] for a study
of the effect of anisotropy (the Riesz transform) in low regularity.

Sending ε → 0 in system (10), one formally obtains that �̃ε → � and b̃ε → ρ,
where ρ satisfies the Incompressible Porous Media equation (IPM-diss) and the
Darcy law

� − R1ρ = 0. (11)
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We improperly call diffusive scaling the change of coordinates (9). Of course it
is not the usual diffusive scaling (t/ε2, x/ε, y/ε) under which the heat equation is
invariant, but inserting (11) into the linear part of the equation for b̃ε in (10) yields

∂tρ − R2
1ρ = 0,

where R2
1 = (−�)−1∂xx is a partially dissipative operator.

• Our next result is a mathematical proof of the relaxation limit of (10) towards
(IPM-diss) as ε → 0. To the best of our knowledge, the relaxation approximation
of (IPM-diss) provided by (2D-B ) is new as well as its rigorous justification.

On the limit system (IPM-diss), the existence of global-in-time smooth solutions
to (IPM-diss)with small data (or, equivalently, the asymptotic stability of (1) around
the stratified steady state) has been first proved by Elgindi in [16], both in the
full space R

2 and in T
2. In particular, Elgindi shows that the stratified steady

state ρeq(y) = ρ0 − y is asymptotically stable in Hs(R2), for s � 20, with the
additional integrability assumption that initial perturbations ρin(x, y) belong to the
L1-based Sobolev spaceW 4,1 (this is also a key hypothesis to use dispersion effects
in [18]). Although groundbreaking, the result in [16] requires very high regularity
of solutions.

• As a byproduct of the relaxation limit, in this article we provide a new proof
of existence of global-in-time smooth solutions to (IPM-diss), only assuming that
the initial datum ρin(x, y) ∈ Ḣ1−τ ∩ Ḣ s for any 0 < τ < 1 and s � τ + 3.

RB thanks Ángel Castro for several useful discussions on the (IPM) equa-
tion, Klaus Widmayer for pointing out the use of anisotropic Besov spaces in
fluid-dynamics problems. She also expresses her gratitude to Tarek M. Elgindi for
insightful conversations and valuable suggestions.

2. Main Results

Recalling the notation 
 = (−�)
1
2 , we introduce the homogeneous Sobolev

space for s ∈ R

‖ f ‖Ḣ s = ‖
s f ‖L2(R2) =
(ˆ

R2
|ξ |2s | f̂ (ξ)|2 dξ

) 1
2

. (12)

We also use the notation, for any s, s′ ∈ R,

‖ f ‖Ḣ s∩Ḣ s′ = ‖ f ‖Ḣ s + ‖ f ‖Ḣ s′ . (13)

Our main results hold in Sobolev spaces, however we will rely on the properties
of anisotropic Besov spaces to obtain some estimates that play a crucial role in our
proof. Such anisotropic spaces allow to perfectly capture the anisotropic nature
of the 2D Boussinesq system. Similar approaches have been applied to the MHD
system by Lin and Zhang in [29,30] and to the incompressible Navier–Stokes equa-
tions by Chemin and Zhang [8] and Paicu [33]. More recently, an approach based
on anisotropic Besov spaces has been developed for 3D rotating incompressible
fluids by Guo, Pausader and Widmayer [21].
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Ourfirst result concerns theuniformglobalwell-posedness of system (2D-Bouss).
For any r > 0, we define the following functional

Mr (T ) := ‖(b,�, z)‖L∞
T (Ḣr ) + √

ε‖R1b‖L2
T (Ḣr )

+ 1√
ε
‖�‖L2

T (Ḣr ) + 1√
ε
‖z‖L2

T (Ḣr ). (14)

We obtain the following.

Theorem 2.1. (Global existence for (2D-B )) For any 0 < ε � 1/2 and any 0 <

τ < 1, let s � 3+τ . For any couple of initial data (bin,�in) ∈ Ḣ1−τ (R2)∩Ḣ s(R2),
there exists a constant value 0 < δ0 
 1 such that, under the following assumption
that

M(0) = ‖(bin,�in)‖Ḣ1−τ ∩Ḣ s � δ0, (15)

there exists a unique global-in-time smooth solution (b,�) to system (2D-B ) sat-
isfying the following inequality for all times T > 0

X (T ) := M(T ) + ‖∇u2‖L1
T (L∞) + ‖
u2‖L1

T (L∞) � M(0), (16)

where

u2 = (−�)−1/2∂x� = R1�, (17)

and

M(T ) := M1−τ (T ) + Ms(T ). (18)

Remark 2.1. (On the expression ofM(t)) The functionalM(t) in (18) is the sum
of two terms, i.e. M1−τ (t) and Ms(t), defined in (14), which are both crucial for
the embedding into anisotropic Besov spaces Ḣ s ∩ Ḣ1−τ ⊂ Bs1,s2 in Lemma 3.2.
This is a key point: in fact, although the core of our analysis will be developed in
anisotropic Besov spaces Bs1,s2 (introduced in Section3.1), however the final result
is stated in Sobolev regularity precisely thanks to the embedding Ḣ s ∩ Ḣ1−τ ⊂
Bs1,s2 .

Remark 2.2. (Our setting and comparison with the result of Wan [35]) The global
well-posedness of the 2D Boussinesq system with damping (4) in R

2 was first
established by Wan in [35]. Besides providing a more systematic and shorter proof
(of Theorem 2.1) that exploits the anisotropic nature of the system, the present work
improves several points.

• The regularity assumptions are lowered: [35] requires b ∈ Ḣ−1 ∩ Ḣ s0 , ω ∈
Ḣ−2 ∩ Ḣ s0−1 with s0 � 6, while here we only need b ∈ Ḣ1−τ ∩ Ḣ s, ω ∈
Ḣ−τ ∩ Ḣ s−1 for any 0 < τ < 1 and s � 3 + τ .

• While [35] only bounds ‖u2‖
L

4
3
T L∞

relying on spectral analysis and sophisti-

cated estimates, hereweprovide a control of‖u2‖L1
T L

∞ thanks to the anisotropic

Littlewood-Paley approach; notice that the L1
T control of ‖u2‖L∞ with u2 =

R1� is natural as ‖R1�‖L∞ is expected to decay at integrable rate like ∇u2
(see Proposition 3.4 in [16], [3], and Remark 4.2 in [35]).
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• In stark contrast with [35] where b ∈ Ḣ−1 (see Remark 4.1 in [35]), we stress
that here we do not need any unnatural assumption on b, which simply belongs
to Ḣ1−τ ∩ Ḣ s, s � 3 + τ, 0 < τ < 1.

• Finally, it is interesting to point out that in our framework b ∈ Ḣ1−τ ∩ Ḣ s (ho-
mogeneous spaces with positive indexes) is not required to be square integrable,
which is natural as both the Boussinesq equations (2D-Bouss) and the incom-
pressible porous media equation (IPM-diss) are invariant by the transformation
b → b + C , for any constant C ∈ R.

Remark 2.3. (On the Ḣ1−τ estimate) As just remarked before, we only take (bin,
�in) ∈ Ḣ1−τ ∩ Ḣ s without involving any negative Sobolev space (in [35] bin ∈
Ḣ−1 ∩ Ḣ s0 and ωin ∈ Ḣ−2 ∩ Hs0−1 with s0 � 6). However, we point out that
there is no need of ω ∈ Ḣ−τ (i.e. � ∈ Ḣ1−τ ) in the first part, namely the proof
of Proposition 4.1. The assumption �in ∈ Ḣ1−τ is only used in the anisotropic
Besov part (more precisely in the control of the Y (t) functional in (35)) to bound

‖�‖
L∞
T (B

1
2 , 12 )

by means of the embedding (Lemma 3.2) Ḣ s ∩ Ḣ1−τ ⊂ B
1
2 , 12 , and

therefore to control M1−τ .

The result below concerns the justification of the relaxation limit.

Theorem 2.2. (Relaxation limit) Let the hypotheses of Theorem 2.1 be fulfilled and
let (̃bε, �̃ε) be the unique solution, scaled with (9), associated to the initial data
(bin,�in) as in Theorem 2.1.

Then, for any 0 < s′ < s and 0 < τ < τ ′ < 1, one has the limit as ε → 0,

b̃ε → ρ strongly in C([0, T ], Ḣ1−τ ′
loc ∩ Ḣ s−s′

loc ),

where ρ is the unique solution of (IPM-diss) associated to the initial data bin.
Moreover, it holds that

‖ρ(·, t)‖Ḣ1−τ ∩Ḣ s � C‖(bin,�in)‖Ḣ1−τ ∩Ḣ s ,

where the constant C is independent of ε.
Finally, we recover the Darcy law in the following sense:

‖�̃ε − R1b̃
ε‖

L1
T (B

3
2 , 12 ∩B

1
2 , 12 )

� εM(0). (19)

Remark 2.4. (On theDarcy law)Note that applying the operator∇⊥· to the velocity
u in (1) with κ = g = 1 (and replacing the notation η by ρ) yields

ω = ∇⊥ · u = ∂xρ,

which in terms of the variables (�, ρ) reads exactly � = R1ρ.

Our analysis also provides a new proof of existence of global-in-time smooth
solutions to the incompressible porous media equation (IPM-diss) for small data.
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Theorem 2.3. (Existence for (IPM-diss)) For any 0 < τ < 1, let s � 3+τ . For any
initial datum ρin ∈ Ḣ1−τ (R2)∩ Ḣ s(R2), there exists a constant value 0 < δ0 
 1
such that, under the assumption

‖ρin‖Ḣ1−τ ∩Ḣ s � δ0,

there exists a unique global-in-time smooth solution ρ to system (IPM-diss) satis-
fying the following inequality for all times t > 0

X (t) := ‖ρ‖L∞
T (Ḣ1−τ ∩Ḣ s ) + ‖R1ρ‖L2

T (Ḣ1−τ ∩Ḣ s )

+ ‖(∇R2
1ρ,
R2

1ρ)‖L1
T (L∞) � ‖ρin‖Ḣ1−τ ∩Ḣ s .

Remark 2.5. (Comparisonwith the result ofElgindi [16])Theglobalwell-posedness
of (IPM-diss) for small data, namely the asymptotic stability of (1) around the
stratified steady state ρeq(y) = ρ0 − y, was first proved by Elgindi in [16] taking
b ∈ W 4,1 ∩ Hs0 , s0 � 20.

Our Theorem 2.3 provides a new proof of Elgindi’s result, which allows to
substantially lower the regularity assumption of [16], taking only b ∈ Ḣ1−τ ∩ Ḣ s

with 0 < τ < 1 and s � 3 + τ . Once again, we take advantage of the anisotropic
Littlewood-Paley decomposition and anisotropic Besov spaces that capture the
time-integrability of the solution without relying on Green function estimates of
the linearized problem. We also mention the asymptotic stability result by Castro-
Córdoba-Lear [6] of (1) around the stratified steady state ρeq = ρ0 − y in the
domain T × [−π, π ].
Remark 2.6. (Asymptotic stability on the torus T

2 and near more general density
profiles) Besides the whole space R

2, Elgindi [16] provides asymptotic stability
of (IPM-diss) on the 2D torus T

2 and near more general density profiles. We will
discuss the adaptations of our proof to these cases in Section7.

Remark 2.7. (Instability results from Kiselev-Yao) A consequence of the recent
result [26, Theorem1.5] byKiselev andYao is that there exists an initial perturbation
ρin(x, y) satisfying ‖ρin‖H2−γ (T×[−π,π ]) 
 1 for any γ > 0, such that the solution
ρ(t, x, y) to (IPM-diss) (provided it remains smooth for all times) displays the time
growth

lim sup
t→∞

t−
s
2 ‖ρ(t)‖Ḣ s+1(T×[−π,π ]) = +∞

for all s > 0. In [26, Remark 1.6], the authors ask whether ρin(x, y) can be made
small in higher Sobolev spaces, while ρ(t, x, y) still displays time growth. Even
though in the present work we study the case of the full space R

2 rather than
the bounded periodic channel, we underline that our Theorem 2.3 states that all
perturbations ρin that are small in Hs(R2) with s > 3 generate solutions ρ(t, x, y)
that remain small for all times. Thus, if a blow-up in finite time or a time-growth
happens for solutions in the whole space R

2, the initial perturbation must have less
regularity than Hs(R2), s > 3.



2 Page 10 of 35 Arch. Rational Mech. Anal. (2024) 248:2

Remark 2.8. (On the regularity assumption) As mentioned previously, our regu-
larity setting is b ∈ Ḣ1−τ ∩ Ḣ s, ω ∈ Ḣ−τ ∩ Ḣ s−1 for any 0 < τ < 1 and
s � 3 + τ . While our results are significantly sharper than the previous ones,
an interesting problem that remains open is the proof of asymptotic stability of
stratified solutions to the IPM equation for s > 2 (i.e. H2(R2) is a critical space
for the IPM equation). The primary obstacle preventing us from reaching critical
regularity lies in controlling the nonlinearity within anisotropic Besov spaces. For
instance, the first term of the right-hand side of the estimate (51) requires a control
of ‖∂yb‖

B
3
2 , 12

� ‖∂yb‖Ḣ2−τ ∩Ḣ2+τ � ‖b‖Ḣ3−τ ∩Ḣ3+τ . To overcome this difficulty,

the use of product rules in the proof of Proposition 4.2 should be replaced by suit-
able commutator estimates. However, as far as our knowledge extends, commutator
estimates within anisotropic Besov spaces have yet to be presented in existing lit-
erature. Providing such estimates would entail a considerable amount of technical
effort and would stand as an independent achievement.

3. Anisotropic Besov Spaces

3.1. Anisotropic Littlewood–Paley Decomposition

We introduce the following anisotropic Littlewood-Paley decompositions: for
j, q, k ∈ Z, we denote that

• �̇ j are the blocks associated to the Littlewood-Paley decomposition in |ξ |;
• �̇h

q are the blocks associated to the Littlewood-Paley decomposition in the
direction ξ1,

• �̇v
k are the blocks associated to the Littlewood-Paley decomposition in the

direction ξ2,

such that, denoting by F the Fourier transform,

�̇ j u = F−1(ϕ(2− j |ξ |)̂u)�̇h
qu = F−1(ϕ(2−qξ1)̂u) and �̇v

ku = F−1(ϕ(2−kξ2)̂u),

where ϕ(ξ) = φ(ξ/2) − φ(ξ) and φ ∈ C∞
c is such that φ = 1 for |ξ | � 1/2

and φ(ξ) = 0 for |ξ | � 1. We define the following homogeneous and anisotropic
Besov semi-norms:

‖ f ‖Ḃs
p,r

�
∥
∥2 js‖�̇ j f ‖L p(Rd )

∥
∥

�r ( j∈Z)
,

‖ f ‖Ḃs1,s2
p,r

�
∥
∥2 js12qs2‖�̇ j �̇

h
q f ‖L p(Rd )

∥
∥

�r ( j∈Z,k∈Z)
.

Hereafter we will omit the dot (standing for homogeneous spaces) and the
second and third Besov indexes will be dropped as well for lightening the notation

‖ f ‖Bs1,s2 � ‖ f ‖Ḃs1,s2
2,1

.
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3.2. Technical Results in Anisotropic Besov Spaces

We now state an anisotropic version of Bernstein’s lemma, the proof of which
can be found in [30,33].

Lemma 3.1. (Bernstein-type inequalities) For x = (x1, x2) ∈ R
2, let B1 be a ball

of Rx1 , B2 be a ball of Rx2 , C1 be an annulus of Rx1 and C2 an annulus of Rx2 . Let
1 � p1 � p2 � ∞ and 1 � q1 � q2 � ∞. Then, we have that

• If the support of â is included in 2q B1, then

‖∂sx1a‖L p2
x1 (L

q1
x2 )

� 2
q(|s|+( 1

p1
− 1

p2
))‖a‖L p1

x1 (L
q1
x2 )

.

• If the support of â is included in 2k B2, then

‖∂sx2a‖L p1
x1 (L

q2
x2 )

� 2
k(|s|+( 1

q1
− 1

q2
))‖a‖L p1

x1 (L
q1
x2 )

.

• If the support of â is included in 2qC1, then

‖a‖L p1
x1 (L

q1
x2 )

� 2−q|s|‖∂sx1a‖L p1
x1 (L

q1
x2 )

.

• If the support of â is included in 2kC2, then

‖a‖L p1
x1 (L

q1
x2 )

� 2−k|s|‖∂sx2a‖L p1
x1 (L

q1
x2 )

.

Embeddings of Sobolev spaces into anisotropic Besov spaces are provided by
the result below.

Lemma 3.2. (Embedding inSobolev space, [29, Lemma3.2]) Let s1, s2, τ1, τ2 ∈ R

such that τ1 < s1 + s2 < τ2 and s2 > 0. If a ∈ Ḣ τ1(R2)∩ Ḣ τ2(R2) and a ∈ Bs1,s2 ,
then

‖a‖Bs1,s2 � ‖a‖Bs1+s2 � ‖a‖Ḣ τ1 + ‖a‖Ḣ τ2 .

We will rely on the embeddings B
3
2 , 12 ↪→ Lip, B

1
2 , 32 ↪→ Lip(R1·) and

B− 1
2 , 52 ↪→ Lip(R2

1·), where for n = 1, 2, the notation Lip(Rn
1 ·) denotes the space

of functions whose Riesz transform of order n is Lipschitz, cf. the left-hand sides
of (20) for the associated norms.

Lemma 3.3. (Embeddings in Lip) Let a ∈ B
3
2 , 12 ∩ B

1
2 , 12 ∩ B

1
2 , 32 ∩ B− 1

2 , 52 . The
following inequalities hold:

‖a‖L∞ � ‖a‖
B

1
2 , 12

, ‖∇a‖L∞ � ‖a‖
B

3
2 , 12

and ‖
a‖L∞ � ‖a‖
B

3
2 , 12

.

When the Riesz operator in the direction x is involved, one has

‖∇R1a‖L∞ � ‖a‖
B

1
2 , 32

, ‖
R1a‖L∞ � ‖a‖
B

1
2 , 32

and ‖∇R2
1a‖L∞ � ‖a‖

B− 1
2 , 52

.

(20)
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Proof. Using the anisotropic Bernstein Lemma 3.1, one obtains

‖∇a‖L∞ �
∑

j,q∈Z2

2 j‖�̇ j �̇
h
qa‖L∞ �

∑

j,q∈Z2, j�k

2 j‖�̇ j �̇
h
q�̇

v
ka‖L∞

�
∑

j,q,k∈Z3, j�k

2 j2
q
2 2

k
2 ‖�̇ j �̇

h
q�̇

v
ka‖L2

�
∑

j,q∈Z2

2
3 j
2 2

q
2 ‖�̇ j �̇

h
qa‖L2

� ‖a‖
B

3
2 , 12
2,1

.

When replacing the operator ∇ by 
, the proof follows exactly the same lines.
The estimates involving the Riesz operatorR1 can be obtained in a similar manner
noticing that, for s ∈ {1, 2}

‖∇Rs
1a‖L∞ �

∑

j,q∈Z2

2 j2−s j2sq‖�̇ j �̇
h
qa‖L∞ .

��

4. Proof of Theorem 2.1

The proof of Theorem 2.1 is divided in two main steps. We first provide the es-
timates in Sobolev spaces, namely we control the functionalM(t) in (18). The out-
come of those estimates in Proposition 4.1 involves the quantities ‖∇u2‖L1

T (L∞), ‖

u2‖L1

T (L∞), whose control is not provided by the energy functionalM(t). Thus,
in a second step in Section4.2, we rely on anisotropic Besov spaces to estimate the
aforementioned quantities and to conclude the proof.

4.1. I. Control of M(t)

The estimates in homogeneous Sobolev spaces are provided by the result below.

Proposition 4.1. Let (b,�) be a smooth solution to system (2D-B ). Then the fol-
lowing holds

M(T ) � X (0) + X3(T ).

Proof. The estimate of M(t) is divided in two parts.
i) Control of Ms(t), with s � 3 + τ . We consider the equations for the

unknowns (b, z) in system (8),
applying the operator 
s = (−�)

s
2 to each term with the notation (ḃ, ż, �̇) =

(
sb,
s z,
s�).
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Noticing that 
sR1 = 
s−1∂x , the quasi-linearized system reads as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t ḃ − εR2
1ḃ = R1 ż + (R2�,−R1�) · ∇ḃ + [
s ,R2�]∂xb − [
s ,R1�]∂yb

:= R1 ż + I1 + C1,1 − C1,2,

∂t ż + ż

ε
= −εR2

1�̇ − ε((R2�,−R1�) · ∇R1ḃ) + (R2�, −R1�) · ∇�̇

+ [
s−1,R2�]∂x
� − [
s−1,R1�]∂y
�

− ε[
s−1∂x ,R2�]∂xb + ε[
s−1∂x ,R1�]∂yb
=: −εR2

1�̇ − I2 + I3 + C2,1 − C2,2 − C3,1 + C3,2.

(21)

Similarly, the quasi-linearized equation for � (from (2D-B )) reads as

∂t �̇ + �̇

ε
= R1ḃ + ((R2�,−R1�) · (∇�̇))

+ [
s−1,R2�]∂x
� − [
s−1,R1�]∂y
�. (22)

Let us provide the desired estimate.
The linear evolution

We first look at the linear terms, neglecting the nonlinearity. Using the skew-
symmetry of the Riesz transform (R1 ż, ḃ)L2 = −(ż,R1ḃ)L2 and (R2

1�̇, ż)L2 =
−(R1�̇,R1 ż)L2 ,

1

2

d

dt
(‖b‖2

Ḣ s + ‖�‖2
Ḣ s + ‖z‖2

Ḣ s ) + ε‖R1b‖2Ḣ s +1

ε
‖z‖2

Ḣ s + 1

ε
‖�‖2

Ḣ s

= −(R1ḃ, ż)L2 + ε(R1�̇,R1 ż)L2 .

Using the Cauchy-Schwarz inequality

|(R1ḃ, ż)L2 | � ε

2
‖R1b‖2Ḣ s + 1

2ε
‖z‖2

Ḣ s ,

ε|(R1�̇,R1 ż)L2 | � ε2

2
‖R1b‖2Ḣ s + 1

2
‖R1z‖2Ḣ s

and the continuity of the Riesz transform ‖R j a‖L2 � ‖a‖L2 for any a ∈ L2, the
last two terms are absorbed by the linear dissipation, yielding the inequality

1

2

d

dt
(‖b‖2

Ḣ s + ‖�‖2
Ḣ s + ‖z‖2

Ḣ s ) + ε

4
‖R1b‖2Ḣ s + 1

4ε
‖z‖2

Ḣ s + 1

ε
‖�‖2

Ḣ s � 0.

Now we deal with the nonlinearity of system (21).
Estimates of the nonlinear term Consider the quasi-linearized terms I j for j ∈
{1, 2, 3}. The divergence-free condition and integration by parts yield

(I1, ḃ)L2 = ((R2�,−R1�) · ∇ḃ, ḃ)L2 = 0.

Furthermore, it is easy to see that

−I2 + I3 = (R2�,−R1�) · ∇ ż,
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readily implying, using again the divergence free condition, that (−I2+I3, ż) = 0.
Next, let us focus on the commutators.
Commutator estimates We begin with the terms of type (C2, j , ż)L2 , (C3, j , ż)L2 for
j ∈ {1, 2}, which are easier being quadratic in (some norm of) the dissipative
variable z. Notice indeed that as the products (C1, j , ḃ)L2 are quadratic in b, they
require a more careful treatment since the L2

T control of the (spatial norm of the)
variable b is not provided by the energy functional (one only controlsR1b, see the
definition of Mτ (T ) in (14)).
Let us first look at C2,1 = [
s−1,R2�]∂x
�. By applying the commutator esti-
mates in Lemma B.3 (in the “Appendix”) with s � 3 + τ > d

2 + 2, one has

‖C2,1‖L2 � ‖∇R2�‖L∞‖R1�‖Ḣ s + ‖∂x
�‖L∞‖R2�‖Ḣ s−1 .

Now, applying first Lemma 3.3 and after Lemma 3.2with 1−τ = τ1 < 2 < s = τ2,
we have

‖∇R2�‖L∞ � ‖R2�‖
B

3
2 , 12

� ‖R2�‖Ḣ1−τ ∩Ḣ s .

1Similarly, using again Lemma 3.3 and Lemma 3.2

‖∂x
�‖L∞ � ‖
2R1�‖L∞ � ‖
�‖
B

1
2 , 32

� ‖
�‖Ḣ2−τ ∩Ḣ2+τ

� ‖�‖Ḣ3−τ ∩Ḣ s , (s � 3 + τ),

where now, using the interpolation Lemma B.4

‖�‖Ḣ3−τ � ‖�‖θ

Ḣ1−τ ‖�‖1−θ

Ḣ s , with θ = s + τ − 3

s + τ − 1
.

Finally, the Young inequality ab � a p

p + bq
q with p = 1

θ
, q = 1

1−θ
gives

‖�‖Ḣ3−τ � ‖�‖Ḣ1−τ + ‖�‖Ḣ s .

In the same way, using that ‖R1a‖Ḣ s � ‖a‖Ḣ s for any s � 0 and a ∈ Ḣ s , by
interpolation

‖R2�‖Ḣ s−1 � ‖�‖Ḣ s−1 � ‖�‖θ̃

Ḣ1−τ ‖�‖θ̃

Ḣ s

� ‖�‖Ḣ1−τ + ‖�‖Ḣ s , with θ̃ = 1

s + τ − 1
.

1 Note that the controls ‖�‖Ḣ2−τ , ‖b‖Ḣ2−τ would be enough and there is no need of
‖�‖Ḣ1−τ , ‖b‖Ḣ1−τ at this stage.
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Altogether, this it yields that

ˆ T

0
|(C2,1, ż)L2 | dt �

ˆ T

0
‖C2,1‖L2‖z‖Ḣ s dt

�
ˆ T

0
‖�‖Ḣ1−τ ∩Ḣ s‖�‖Ḣ1−τ ∩Ḣ s‖z‖Ḣ s dt

� (‖�‖L∞
T (Ḣ1−τ ) + ‖�‖L∞

T (Ḣ s ))(‖�‖L2
T (Ḣ1−τ )

+ ‖�‖L2
T (Ḣ s ))‖z‖L2

T (Ḣ s )

� M3(T ).

The commutator C2,2 is completely analogous, we omit it. Let us consider
C3,1 = ε[
s−1∂x ,R2�]∂xb, which gives

‖C3,1‖L2 � ε(‖∇R2�‖L∞‖R1b‖Ḣ s + ‖∂xb‖L∞‖R1R2�‖Ḣ s ).

Now note that, applying the same reasoning as before (Lemmas 3.3, 3.2),

‖∂xb‖L∞ � ‖
R1b‖
B

1
2 , 12

� ‖
R1b‖Ḣ1−τ ∩Ḣ s−1 � ‖R1b‖Ḣ2−τ ∩Ḣ s ,

where, again,

‖R1b‖Ḣ2−τ � ‖R1b‖θ

Ḣ1−τ ‖R1b‖1−θ

Ḣ s � ‖R1b‖Ḣ1−τ + ‖R1b‖Ḣ s , θ = s + τ − 2

s + τ − 1
.

This way,

ˆ T

0
|(C3,1, �̇)L2 | dt � ε

ˆ T

0
(‖∇R2�‖L∞‖R1b‖Ḣ s + ‖∂xb‖L∞‖R2�‖Ḣ s )‖�‖Ḣ s dt

� ε

ˆ T

0
‖�‖2

Ḣ1−τ ∩Ḣ s‖b‖Ḣ s + ‖R1b‖Ḣ1−τ ∩Ḣ s‖�‖2
Ḣ s dt

� ε2‖b‖L∞
T (Ḣ1−τ ∩Ḣ s ) ×

‖�‖2
L2
T (Ḣ1−τ ∩Ḣ s )

ε

� M3(T ).

The commutator C3,2 is bounded similarly.
Now we deal with the more delicate estimates involving the commutators

C1, j for j ∈ {1, 2} in the equation of ḃ. Let us start with the term with C1,1 =
[
s,R2�]∂xb, where it is easy to reconstruct the termR1ḃ, which is controlled in
L2
T by the energy functional M(T ). We have, applying the above reasoning, that

‖C1,1‖L2 � ‖∇R2�‖L∞‖∂xb‖Ḣ s−1 + ‖R2�‖Ḣ s‖∂xb‖L∞

� ‖�‖Ḣ1−τ ∩Ḣ s‖R1b‖Ḣ s + ‖R1b‖Ḣ1−τ ∩Ḣ s‖�‖Ḣ s ,
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so that
ˆ T

0
|(C1,1, ḃ)L2 | dt �

ˆ T

0
‖C1,1‖L2‖b‖Ḣ s dt

�
ˆ T

0

1√
ε
‖�‖Ḣ1−τ ∩Ḣ s‖R1b‖Ḣ1−τ ∩Ḣ s

√
ε‖b‖Ḣ s dt

� 1√
ε
‖�‖L2

T (Ḣ1−τ ∩Ḣ s )‖b‖L∞
T (Ḣ s )

√
ε‖R1b‖L2

T (Ḣ1−τ ∩Ḣ s )

� M3(T ).

The next commutator C1,2 = [
s,R1�]∂yb requires a more careful treatment. We
rely on the fractional Leibniz rule, which is an extension, due to Li [27] (see also
D’Ancona [14]) of the Kenig–Ponce–Vega inequality to the case s � 1.

We introduce the notation α = (α1, α2) ∈ N
2 (β = (β1, β2) ∈ N

2) and
∇α = (∂

α1
x , ∂

α2
y ), while the operator 
s,α is defined via Fourier transform as


̂s,α f (ξ) = 
̂s,α(ξ) f̂ (ξ), 
̂s,α(ξ) = i−|α|∂α
ξ (|ξ |s), (23)

where |α| = α1+α2 (resp. |β| = β1+β2). Notice that
s,α is a pseudo-differential
operator of order s − |α|. Now, we apply Lemma B.6, with s1 = 1, s2 = s − 1,
which gives

∥
∥
∥
∥
∥
∥
C1,2 −

∑

|α|=1

1

α!∇
αR1�
s,α∂yb −

∑

|β|�s−2

1

β!∇
β∂yb


s,βR1�

∥
∥
∥
∥
∥
∥
L2

� ‖
R1�‖BMO‖∂yb‖Ḣ s−1 . (24)

Then we write the scalar product adding and subtracting the above right-hand
side as

(C1,2, ḃ)L2 =
⎛

⎝C1,2 −
∑

|α|=1

1

α!∇
αR1�
s,α∂yb −

∑

|β|�s−2

1

β!∇
β∂yb


s,βR1�, ḃ

⎞

⎠

L2

+
∑

|α|=1

1

α! (∇
αR1�
s,α∂yb, ḃ)L2 +

∑

|β|�s−2

1

β! (∇
β∂yb


s,βR1�, ḃ)L2 ,

yielding, thanks to (24),

|(C1,2, ḃ)L2 | � ‖
R1�‖BMO‖∂yb‖Ḣ s−1‖b‖Ḣ s + |J1| + |J2|, (25)

where we denote that

J1 : =
∑

|α|=1

1

α! (∇
αR1�
s,α∂yb, ḃ)L2 and J2

:=
∑

|β|�s−2

1

β! (∇
β∂yb


s,βR1�, ḃ)L2 .
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Now note that J1 can be rewritten as
∑

|α|=1

∇αR1�
s,α∂yb = −s(∇R1�)(
s−2∇∂yb) = −s(∇R1�)(
s−1∇R2b),

so that using the continuity of R2 in L2,

|J1| � ‖∇R1�‖L∞‖
sR2b‖L2‖b‖Ḣ s � ‖∇R1�‖L∞‖b‖2
Ḣ s , (26)

and integrating in time, recalling that u2 = −R1�,ˆ T

0
|J1| dt � ‖∇R1�‖L1

T (L∞)‖b‖2L∞
T (Ḣ s )

� ‖∇u2‖L1
T (L∞)Ms(T ) � X (T )3.

Now let us dealwithJ2. AsR1 = 
−1∂x , we integrate by parts in the horizontal
direction

J2 =
∑

|β|�s−2

((∇β∂yb)

s−1,β∂x�, ḃ)L2 = −

∑

|β|�s−2

((∇β∂2xyb)

s−1,β�, ḃ)L2

−
∑

|β|�s−2

((∇β∂yb)

s−1,β�, ∂x ḃ)L2 .

(27)

Now, we deal with the last term in (27). Using that ∂x ḃ = 
(∂x

s−1b) and the

symmetry of 
, it can be written as
∑

|β|�s−2

((∇β∂yb)

s−1,β�, ∂x ḃ)L2 =

∑

|β|�s−2

(
(∇β∂yb

s−1,β�), ∂x


s−1b)L2

=
∑

|β|�s−2

(
(∇β∂yb

s−1,β�),R1ḃ)L2 .

Now, we deal with the last term in (27). Using that ∂x ḃ = 
(∂x

s−1b) and the

symmetry of 
, it can be written as
∑

|β|�s−2

((∇β∂yb)

s−1,β�, ∂x ḃ)L2 =

∑

|β|�s−2

(
(∇β∂yb

s−1,β�), ∂x


s−1b)L2

=
∑

|β|�s−2

(
(∇β∂yb

s−1,β�),R1ḃ)L2 .

We use the following decomposition:
∑

|β|�s−2

(
(∇β∂yb

s−1,β�),R1ḃ)L2

= (
(∂yb

s−1�),R1ḃ)L2 +

∑

|β|=1 andβ=(1,1)

(
(∇β∂yb

s−1,β�),R1ḃ)L2

+
∑

2�|β|�s−2 andβ �=(1,1)

(
(∇β∂yb

s−1,β�),R1ḃ)L2

= J a
2 + J b

2 + J c
2 .
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By virtue of the product Lemma B.2, one obtains

J a
2 � ‖R1b‖Ḣ s (‖
∂yb‖L∞‖
s−1�‖L2 + ‖∂yb‖L∞‖
s�‖L2) (β = (0, 0))

J b
2 � ‖R1b‖Ḣ s (‖
∇∂yb‖L2‖
s−3∇�‖L∞

+ ‖∇∂yb‖L∞‖
s−2∇�‖L2) (|β| = 1andβ = (1, 1))

J c
2 � ‖R1b‖Ḣ s

∑

2�|β|�s−2

(‖
∇β∂yb‖L2‖
s−1,β�‖L∞

+ ‖∇β∂yb‖L2‖
s,β�‖L∞) (|β| � 2).

Concerning the first term of J2 in (27), one has
∑

|β|�s−2

|((∇β∂2xyb)

s−1,β�, ḃ)L2 | �

∑

|β|�s−2

‖(∇β∂2xyb)

s−1,β�‖L2‖b‖Ḣ s .

For β = (0, 0), we have

‖(∂2xyb)
s−1�‖L2 � ‖∂xyb‖L∞‖�‖Ḣ s−1 � ‖R1b‖Ḣ3−τ ∩Ḣ3+τ ‖�‖Ḣ s−1 .

The remaining terms yield
∑

|β|=1 andβ=(1,1)

|((∇β∂2xyb)

s−1,β�, ḃ)L2 |

�
∑

|β|=1 andβ=(1,1)

‖∇β∂2xyb‖L2‖
s−1,β�‖L∞‖b‖Ḣ s

� ‖�‖Ḣ3−τ ∩Ḣ3+τ ‖b‖2Ḣ s

and
∑

2�|β|�s−2

|((∇β∂2xyb)

s−1,β�, ḃ)L2 |

�
∑

2�|β|�s−2

‖∇β∂2xyb‖L2‖
s−1,β�‖L∞‖b‖Ḣ s .

Altogether, appealing to the embeddings of Lemma 3.3 and Lemma 3.2 (s �
3 + τ ), one obtains

J2 � (‖R1b‖Ḣ1−τ + ‖R1b‖Ḣ s )(‖b‖Ḣ1−τ + ‖b‖Ḣ s )(‖�‖Ḣ1−τ + ‖�‖Ḣ s ),

so that
ˆ T

0
|J2| dt � (‖R1b‖L2

T (Ḣ1−τ ) + ‖R1b‖L2
T (Ḣ s ))(‖b‖L∞

T (Ḣ1−τ ) + ‖b‖L∞
T (Ḣ s ))

× (‖�‖L2
T (Ḣ1−τ ) + ‖�‖L2

T (Ḣ s ))

� M(T )3.
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Inserting the latter in (25) together with (26) and using the embedding L∞ ↪→
BMO yields

ˆ T

0
|(C1,2, ḃ)L2 | dt � (‖
R1�‖L1

T (L∞) + ‖∇R1�‖L1
T (L∞))M2(T ) + M3(T ).

To control the terms ‖∇R1�‖L1
T (L∞), ‖
R1�‖L1

T (L∞), we shall rely on
anisotropic Besov spaces in Step II (Section4.2).

ii) Control of M1−τ (t), 0 < τ < 1. We apply 
1−τ to system (8), yielding
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t ḃ − εR2
1ḃ = R1 ż + 
1−τ ((R2�,−R1�) · ∇b),

∂t ż + ż

ε
= −εR2

1�̇ − ε
1−τR1((R2�,−R1�) · ∇b)

+ 
−τ ((R2�,−R1�) · (∇
�)).

(28)

Moreover, the equation for �̇ reads as

∂t �̇ + �̇

ε
= 
−τ ((R2�,−R1�) · (∇
�)).

The linear terms work exactly the same way as before, thus we focus on the non-
linearities. We begin with

(
1−τ ((R2�,−R1�) · ∇b), ḃ)L2 =: I1 + I2.
Let us start with I1. Appealing to the product estimate (Lemma B.2) with p1 =
r1 = ∞ yields

I1 = (
1−τ (R2�∂xb), ḃ)L2

� (‖R2�‖L∞‖∂xb‖Ḣ1−τ + ‖
1−τR2�‖L2‖∂xb‖L∞)‖b‖Ḣ1−τ ,

where interpolation (Lemma B.4) and Young inequality give

‖∂xb‖Ḣ1−τ � ‖R1b‖Ḣ2−τ � ‖R1b‖θ

Ḣ1−τ ‖R1b‖1−θ

Ḣ s , θ = s + τ − 2

s + τ − 1
.

This yields

ˆ T

0
I1 dt �

√
ε(‖R1b‖L2

T (Ḣ1−τ ) + ‖R1b‖L2
T (Ḣ s ))‖b‖L∞

T (Ḣ1−τ )

1√
ε
(‖�‖L2

T (Ḣ1−τ )

+ ‖�‖L2
T (Ḣ s ))

� M3(T ).

We cannot use the same trick for the next term, which gives

ˆ T

0
I2 dt � ‖b‖L∞

T (Ḣ1−τ )(‖b‖L∞
T (Ḣ s ) + ‖b‖L∞

T (Ḣ1−τ ))‖R1�‖L1
T (W 1,∞)

� ‖u2‖L1
T (W 1,∞)M2(T ) � X3(T ).
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Next, it is easy to see that εR1(R2�,−R1�) · ∇b is very similar to the terms
treated before, then it is omitted.

It remains to deal with the last term in the equation of ż (which, in the energy
estimate, is multiplied both by ż and by �̇, but the computations are identical,
so that we only detail one case). Using the symmetry of the multiplier 
−τ , one
obtains

I3 : = (
−τ ((R2�,−R1�) · (∇
�)), ż)L2

= ((R2�,−R1�) · (∇
�),
1−2τ z)L2 .

Now, we integrate by parts in x the first addend and in y the second one. As the
termR2∂x� − R1∂y� = 0 (by definition of the Riesz Transform), it remains

I3 = −(R2�
�,
1−2τ ∂x z)L2 + (R1�
�,
1−2τ ∂yz)L2

= −(R2�
�,
2(1−τ)R1z)L2 + (R1�
�,
2(1−τ)R2z)L2

= −(
1−τ (R2�
�),
1−τR1z)L2 + (
1−τ (R1�
�),
1−τR2z)L2

=: Ia
3 + Ib

3 .

This way

|Ia
3 | � ‖
1−τ (R2�
�)‖L2‖z‖Ḣ1−τ ,

and using the product Lemma B.2, Lemma 3.3 and Lemma 3.2,

‖
1−τ (R2�
�)‖L2 � ‖R2�‖Ḣ1−τ ‖
�‖L∞ + ‖R2�‖L∞‖
�‖Ḣ1−τ

� (‖�‖Ḣ1−τ + ‖�‖Ḣ s )
2.

The estimate of Ib
3 is identical. Finally,

ˆ T

0
I3 dt � ε(‖�‖L∞

T (Ḣ1−τ ) + ‖�‖L∞
T (Ḣ s ))

1√
ε
(‖�‖L2

T (Ḣ1−τ )

+ ‖�‖L2
T (Ḣ s ))

1√
ε
‖z‖L2

T (Ḣ1−τ )

� εM3(T ).

The proof of Proposition 4.1 is concluded. ��

4.2. II. L∞ and Lipschitz bounds for u2 = R1�

The purpose of this section is to prove the following proposition:

Proposition 4.2. For ε > 0, let (b, z) be a smooth solution of (2D-B ). One has

‖(∇R1�,
R1�)‖L1
T (L∞) + ‖R1�‖L1

T (L∞) � X (0) + X (t)2.
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4.3. Linear a Priori Estimates in Anisotropic Spaces

Applying �̇ j �̇
h
q to the linear part of (8), we obtain

⎧
⎨

⎩

∂t b j,q − εR2
1b j,q = R1z j,q + h j,q ,

∂t z j,q + z j,q
ε

= −εR2
1� j,q + g j,q ,

(29)

where h = (R2�,−R1�) ·∇b and g = −εR1(R2�,−R1�) ·∇b+
−1((R2�,

−R2�) · (∇
�)). Performing standard energy estimates, one obtains

1

2

d

dt
‖b j,q‖2L2 + ε‖R1b j,q‖2L2 � ‖R1z j,q‖L2‖b j,q‖L2 + ‖h j,q‖L2‖b j,q‖L2 .

(30)

UsingFourier-Plancherel theoremand the anisotropicBernstein inequality inLemma
3.1 yields

1

2

d

dt
‖b j,q‖2L2 + 2−2 j22qε‖b j,q‖2L2 � ‖R1z j,q‖L2‖b j,q‖L2 + ‖h j,q‖L2‖b j,q‖L2 .

(31)

Now, applying LemmaB.1, multiplying by 2 js12qs2 and summing on j, k ∈ Z give,
that

‖b‖L∞
T (Bs1,s2 ) + ε‖b‖L1

T (Bs1−2,s2+2) � ‖b0‖Bs1,s2 + ‖z‖Bs1−1,s2+1 + ‖h‖L1
T (Bs1,s2 )

(32)

Following a similar procedure for z, one infers that

‖z‖L∞
T (Bs1′ ,s2′ ) + 1

ε
‖z‖

L1
T (Bs′1,s′2 )

� ‖z0‖Bs′1,s′2 + ε‖�‖Bs1−2,s2+2 + ‖g‖L1
T (Bs1′ ,s2′ ).

(33)

Notice that the linear term ‖z‖Bs1−1,s2+1 in (32) can be absorbed by the left-hand
side of (33) if s′

1 � s1 and s′
2 � s2 via Lemma B.5 with s = 1. The linear term

‖�‖Bs1−2,s2+2 will be absorbed in a similar fashion once the estimates for � are
obtained.

Since � = z + εR1b, this linear analysis together with Lemma 3.3 suggests us
to choose that

s1 = s′
1 = 3

2
and s2 = s′

2 = 1

2
, to ensure that one controls‖∇R1�‖L1

T (L∞),

s1 = s′
1 = 1

2
and s2 = s′

2 = 1

2
, to ensure that one controls ‖R1�‖L1

T (L∞).

Remark 4.1. The term ‖R1�‖L1
T (L∞) is not needed to close the a priori esti-

mates in Sobolev spaces (proof of Proposition 4.1), but it is actually crucial to
deal with some nonlinear terms appearing in this anisotropic analysis. The control
of ‖R1�‖L1

T (W 1,∞) requires a priori estimates in two different regularity settings
(as just remarked above).
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With these regularity indexes, one obtains

‖b‖
L∞
T (B

3
2 , 12 )

+ ε‖b‖
L1
T (B− 1

2 , 52 )
+ √

ε‖b‖
L2
T (B

1
2 , 32 )

� ‖b0‖
B

3
2 , 12

+ ‖h‖
L1
T (B

3
2 , 12 )

,

‖b‖
L∞
T (B

1
2 , 12 )

+ ε‖b‖
L1
T (B− 3

2 , 52 )
+ √

ε‖b‖
L2
T (B− 1

2 , 32 )
� ‖b0‖

B
1
2 , 12

+ ‖h‖
L1
T (B

1
2 , 12 )

,

and

‖z‖
L∞
T (B

3
2 , 12 )

+ 1

ε
‖z‖

L1
T (B

3
2 , 12 )

+ 1√
ε
‖z‖

L2
T (B

3
2 , 12 )

� ‖z0‖
B

3
2 , 12

+ ‖g‖
L1
T (B

3
2 , 12 )

,

‖z‖
L∞
T (B

1
2 , 12 )

+ 1

ε
‖z‖

L1
T (B

1
2 , 12 )

+ 1√
ε
‖z‖

L2
T (B

1
2 , 12 )

� ‖z0‖
B

1
2 , 12

+ ‖g‖
L1
T (B

1
2 , 12 )

,

where we used interpolation inequalities to recover the L2
T terms. Since � =

z − εR1b, one derives the following bounds

‖�‖
L∞
T (B

3
2 , 12 )

+ ‖�‖
L1
T (B

1
2 , 32 )

+ ‖�‖
L2
T (B

3
2 , 12 )

� ‖(�0, b0)‖
B

3
2 , 12

+ ‖(g, h)‖
L1
T (B

3
2 , 12 )

,

‖�‖
L∞
T (B

1
2 , 12 )

+ ‖�‖
L1
T (B− 1

2 , 32 )
+ ‖�‖

L2
T (B

1
2 , 12 )

� ‖(�0, b0)‖
B

1
2 , 12

+ ‖(g, h)‖
L1
T (B

1
2 , 12 )

.

As expected, via Lemma 3.3, one has that

‖∇R1�‖L1
T (L∞) � ‖�‖

L1
T (B

1
2 , 32 )

and ‖R1�‖L1
T (L∞) � ‖�‖

L1
T (B− 1

2 , 32 )
. (34)

Accordingly, we define the functional

Y (t) = ‖(b, z,�)‖
L∞
T (B

1
2 , 12 ∩B

3
2 , 12 )

+ ε‖b‖
L1
T (B− 3

2 , 52 ∩B− 1
2 , 52 )

+ √
ε‖b‖

L2
T (B− 1

2 , 32 ∩B
1
2 , 32 )

+ 1

ε
‖z‖

L1
T (B

3
2 , 12 ∩B

1
2 , 12 )

+ 1√
ε
‖z‖

L2
T (B

3
2 , 12 ∩B

1
2 , 12 )

+ ‖�‖
L1
T (B− 1

2 , 32 ∩B
1
2 , 32 )

+ ‖�‖
L2
T (B

3
2 , 12 ∩B

1
2 , 12 )

, (35)

which will be useful to close the estimates.

5. Estimates of the Nonlinearities

The term ‖(h, g)‖
L1
T (B

3
2 , 12 ∩B

1
2 , 12 )

is bounded by the following lemma:

Lemma 5.1. Let (b,�) be a smooth solution of (2D-B ), then one has the following
estimate:

‖(h, g)‖
L1
T (B

3
2 , 12 ∩B

1
2 , 12 )

� Y (t)2 + Y (t)X (t) + X (t)2

The proof of Lemma 5.1 is postponed to Section A and it is based on product laws
in anisotropic Besov spaces (again, postponed to Section A).

Proof of Proposition 4.2. It is a direct consequence of Lemma 5.1. ��
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5.1. Conclusion of the Proof of Theorem 2.1

Gathering the estimates from Proposition 4.1 and 4.2, we obtain

X (t) � X (0) + X (t)3 + X (t)2 + Y (t)X (t) + Y (t)2. (36)

Then, by Lemma 3.2, one has

Y (t) � X (t),

which yields

X (t) � X (0) + X (t)2 + X (t)3. (37)

From there, a standard bootstrap argument leads to the existence of global-in-time
solutions of (2D-B ). Then the uniqueness follows from stability estimate below
and Theorem 2.1 is proven.

5.2. Uniqueness: Stability Estimate

Let (ρ1, ρ2) be two solutions of (IPM-diss) associated to the same initial data.
We Defining that w = ρ1 − ρ2, thus satisfies that

∂tw − R2
1w = (R2R1ρ1)∂xρ1 − (R2

1ρ1)∂yρ1 − (R2R1ρ2)∂xρ2 + (R2
1ρ2)∂yρ2.

(38)

The right-hand side terms may be rewritten as follows:

∂tw − R2
1w = (R2R1w,−R2

1w) · ∇ρ1 + (R2R1ρ2,−R2
1ρ2) · ∇w. (39)

Applying 
s = (−�)
s
2 to (39) and using the notation ẇ = 
sw, one infers that

∂t ẇ − R2
1ẇ = 
s((R2R1w,−R2

1w) · ∇ρ1) + 
s((R2R1ρ2,−R2
1ρ2) · ∇w).

(40)

Combining the use of commutator estimates for the nonlinear terms (as in the
previous section) with the bounds on (ρ1, ρ2) from Theorem 2.1 and the Gronwall
inequality easily gives w = 0, from which the uniqueness of smooth solutions
for (IPM-diss) follows. Analogous arguments lead to the uniqueness of smooth
solutions to system (2D-B ).
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6. Proof of the Relaxation Limit Theorem 2.2

Recall the scaled variables

(̃bε, �̃ε)(τ, x) � (b,
�

ε
)(t, x) with τ = εt.

The system reads as
{

∂t b̃
ε − R1�̃

ε = (R2�̃
ε)∂x b̃

ε − (R1�̃
ε)∂y b̃

ε,

ε2∂t �̃
ε − R1b̃

ε + �̃ε = ε2
−1[(R2�̃
ε,−R1�̃

ε) · (∇
�̃ε)]. (41)

Let (̃bε, �̃ε) be the unique solution of (41) from Theorem 2.1. Under such
scaling, that satisfies the following estimate:

‖b̃ε‖L∞
T (Ḣ1−τ ∩Ḣ

s
)
+ ε‖�̃ε‖L∞

T (Ḣ1−τ ∩Ḣ s ) + ‖R1b̃
ε‖L2

T (Ḣ1−τ ∩Ḣ s )

+ ‖�̃ε‖L2
T (Ḣ1−τ ∩Ḣ s ) + ‖�̃ε − R1b̃

ε‖L2
T (Ḣ1−τ ∩Ḣ s ) � M̃0. (42)

there M̃0 = ‖b̃ε
0‖Ḣ1−τ ∩Ḣ s + ‖�̃ε

0‖Ḣ1−τ ∩Ḣ s . Owing to (42), ε�̃ε and �̃ε (and
thereforeR1� andR2�) are uniformlybounded in the spaces L∞(R+; Ḣ1−τ ∩Ḣ s)

and L2(R+; Ḣ1−τ ∩ Ḣ s), respectively. This implies that

ε2
−1[(R2�̃
ε,−R1�̃

ε) · (∇
�̃ε)] → 0 in L2(R+; Ḣ s−1).

Therefore ε2∂t �̃
ε goes to 0 in the sense of distributions. Putting this information

into the second equation of (41), one infers that

�̃ε − R̃1b
ε ⇀ 0 in D′(R+ × R

d). (43)

Concerning the other unknown, b̃ε is uniformly bounded in L∞(R+; Ḣ1−τ ∩ Ḣ s)

and ∂t b̃ε is bounded in L2
T Ḣ

s−1. Therefore, there exists ρ ∈ L∞(R+; Ḣ1−τ ∩ Ḣ s)

such that, up to subsequence,

b̃ε ∗
⇀ ρ in L∞(R+; Ḣ1−τ ∩ Ḣ s) ∩ H1(R+; Ḣ s−1). (44)

Then, as the bounds from (42) easily ensure bounds for the time-derivative of the
solution (∂t b̃ε, ∂t �̃

ε), a standard procedure involving compactness argument and
Aubin-Lions lemma leads to b̃ε → ρ strongly2 in C([0, T ], Ḣ1−τ ′

loc ∩ Ḣ s−s′
loc ) for

0 < τ < τ ′ < 1 and 0 < s′ < s. For more details, we refer to Coulombel and
Lin in [28] or Xu and Wang in [36] for the relaxation limit of the compressible
Euler system with damping in the inhomogeneous Sobolev and Besov settings
respectively. Now, defining

Z̃ ε := �̃ε − R1b̃
ε (45)

2 At first, the convergence takes place only for a subsequence, then it is deduced for the
whole sequence because the limit system has a unique solution so all the sequences will
converge to the same limit.
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the first equation of (41) may be rewritten as

∂t b̃
ε − R2

1b̃
ε = S̃ε with S̃ε = R1 Z̃

ε + (R2�̃
ε,−R1 := �̃ε) · ∇b̃ε. (46)

Hence, combining (42), (43), (44) and (45), one can deduce that ρ satisfies

∂tρ − R2
1ρ = −(R2R1ρ,−R2

1ρ) · ∇ρ. (47)

The convergence rate of Z̃ ε stated in (19) comes directly from the control of Y (t)
(35), which is ensured by Theorem 2.1.

7. Extensions

In this section, we discuss the adaptations of our proof to the case of the periodic
domain T

2 and slightly more general density profiles.

7.1. Asymptotic Stability on the Torus T
2

from the whole space R
2, Elgindi [16] provides asymptotic stability of (IP-

M-diss) on the 2D torus T
2. His proof is completely different from the analogous

result in the whole space. In particular, in the periodic domain T
2 the density ρ

does not decay in L2(T2) and proving decay requires a loss of derivatives. It is
natural to inquire whether our approach is also applicable to the torus T

2. We
observe that the anisotropic Littlewood-Paley decomposition (anisotropic Besov
spaces) and anisotropic Bernstein inequalities indeed extend to the torus T

2. Our
approach of exploiting the anisotropic dissipation through a suitable (anisotropic)
functional space works on T

2 as well. The only additional difficulty lies in the
control of the horizontal average of the density ρ̃(y) = ffl ρ(x, y) dx . To over-
come this problem, we can rely on Elgindi’s idea (see also [34]) of decomposing
ρ(x, y) = ρ̄(x, y) + ρ̃(y) and writing the two equations

∂t ρ̄ − R2
1ρ̄(1 − ∂y ρ̃) = −u · ∇ρ̄, (48)

∂t ρ̃ + ˜∂y(u2ρ̄) = 0 ⇔ ∂t ρ̃ + ∂y(ρ̄R2
1ρ̃) = 0. (49)

As showed by Elgindi in the proof of [16, Proposition 4.1], the horizontal average
ρ̃ is preserved by the linear evolution, i.e. neglecting the nonlinear terms yields

∂t ρ̃ = ∂t

ˆ π

−π

ρ(t, x, y) dx =
ˆ π

−π

R2
1ρ(1 − ∂y ρ̃) dx

=
ˆ π

−π

∂x (−�)s−1∂xρ(1 − ∂y ρ̃) dx = 0,

as well as any vertical derivative d
dt ∂

i
y ρ̃ = 0, i.e. ∂ iy ρ̃(t) = ∂ iy ρ̃0 for all i ∈ N.

On the other hand, the linear evolution of ρ̄ displays anisotropic dissipation and
decay. Towards a proof of our result on T

2, taking horizontal average at the initial
time ‖ρ̃0‖Ḣ1−τ ∩Ḣ s � δ0 with δ0 small enough (and s > 3) we should achieve the
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control of our functional X (t) in (16) (adjusted for ρ̄) with very similar computa-
tions. More precisely, the Sobolev estimates for controllingM(t) would resemble
the computations in Section4.1, further capitalizing on the smallness of ρ̃. The pri-
mary challenge lies in the (linear part of the) Besov estimate in Section4.2. More
precisely, using the same ideas requires controlling the term ‖�̇ j �̇

h
q(∂y ρ̃R2

1ρ̄)‖L2 .
Being ∂y ρ̃ a function of y only, it commutes with �̇h

q and therefore that term can be
written as ‖�̇ j (∂y ρ̃R2

1�̇
h
q ρ̄)‖L2 . In turn, the latter can be bounded using the usual

(isotropic) product laws in Besov spaces, yielding

‖2 3
2 j2

q
2 ‖�̇ j (∂y ρ̃R2

1�̇
h
q ρ̄)‖L2(R2)‖�1 � ‖∂y ρ̃‖L∞‖R2

1ρ̄‖
Ḃ

3
2 , 12

+ ‖∂y ρ̃‖
Ḃ

3
2 , 12

‖R2
1ρ̄‖L∞

� ‖∂y ρ̃‖Ḃ1‖ρ̄‖
Ḃ− 1

2 , 52
+ ‖∂y ρ̃‖

Ḃ
3
2
‖ρ̄‖

Ḃ− 3
2 , 52

.

Integrating in time,
ˆ t

0
‖2 3

2 j2
q
2 ‖�̇ j (∂y ρ̃R2

1�̇
h
q ρ̄)‖L2(R2)‖�1 dt

� ‖∂y ρ̃‖L∞
T Ḃ1‖ρ̄‖

L1
T Ḃ

− 1
2 , 52

+ ‖∂y ρ̃‖
L∞
T Ḃ

3
2
‖ρ̄‖

L1
T Ḃ

− 3
2 , 52

,

where ‖ρ̄‖
L1
T Ḃ

− 1
2 , 52

and ‖ρ̄‖
L1
T Ḃ

− 3
2 , 52

would be controlled by (the adaptation to ρ̄ of)

the functional Y (t) in (35). Of course some extra work would be needed to manage

(and ensure the smallness of) the additional term ∂y ρ̃ in Ḃ1 ∩ Ḃ
3
2 . In summary,

we believe that our results for R
2 can be extended to the torus T

2 under the same
regularity setting.

7.2. Nearly Linear Density Profiles

Besides the linear density profile ρ̄eq = ρ0 − y, we believe that our proof
could be extended to the slightly more general case of nearly linear density profile
ρ̄eq = ρ0 + G(y), with G ′(y) < 0 and ‖1 + G ′(y)‖Hr � δ0 with δ0 sufficiently
small and r big enough. Linearizing the IPM equation around it gives

∂tρ + G ′(y)R2
1ρ = NL ⇔ ∂tρ − R2

1ρ + (1 + G ′(y))R2
1ρ = NL,

where NL stands for the nonlinear term. While the Sobolev estimates in Sec-
tion4.1 should work similarly exploiting the smallness of ‖1 + G ′(y)‖Hr , the
delicate point would be the (linear part of the) Besov estimate in Section4.2.

Similarly to the previous case, this point requires controlling ‖2 3
2 j2

q
2 ‖�̇ j ((1 +

G ′(y))R2
1�̇

h
qρ)‖L2(R2)‖�1 , where, once again �̇h

q and 1 + G ′(y) commute.
This leads toˆ t

0
‖2 3

2 j2
q
2 ‖�̇ j ((1 + G ′)R2

1�̇
h
qρ)‖L2(R2)‖�1 dt � ‖1 + G ′‖Ḃ1‖ρ‖

L1
T Ḃ

− 1
2 , 52

+ ‖1 + G ′‖
Ḃ

3
2
‖ρ‖

L1
T Ḃ

− 3
2 , 52

,
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where ‖ρ‖
L1
T Ḃ

− 1
2 , 52

and ‖ρ‖
L1
T Ḃ

− 3
2 , 52

are controlled by the functional Y (t) in (35)

and 1 + G ′ is small enough in a sufficiently regular Sobolev space.
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Appendix A

Lemma A.1. (Anisotropic product laws) Let − 1
2 � s1 � 5

2 and − 1
2 � s2 � 1

2 .
Let δ1, δ2, δ3, δ4 � 0 and f, g be two smooth functions, one has

‖ f g‖Bs1,s2 � ‖ f ‖L∞‖g‖Bs1,s2 + ‖ f ‖Bs1,s2 ‖g‖L∞

+ ‖ f ‖
Bs1+ 1

2+δ1,−δ2
‖g‖

B−δ1,s2+ 1
2+δ2

+ ‖ f ‖
B−δ3,s2+ 1

2+δ4
‖g‖

Bs1+ 1
2+δ3,−δ4

.

Moreover,

‖ f g‖
B− 1

2 , 12
� ‖ f ‖L∞‖g‖

B− 1
2 , 12

+ ‖ f ‖
B

1
2 , 12

‖
−1g‖L∞

+ ‖ f ‖Bδ1,−δ2 ‖g‖B−δ1,1+δ2 + ‖ f ‖B−δ3,1+δ4 ‖g‖Bδ3,−δ4 .

A.1 Proof of Lemma A.1

Proof of Lemma A.1. Recalling the definitions of the Littlewood-Paley blocks �̇ j

and �̇h
q in Section3.1, we introduce the isotropic and anisotropic paradifferential

decomposition due to Bony in [5]. Let f, g ∈ S ′(Rd),

f g = T ( f, g) + R( f, g) and f g = T h( f, g) + Rh( f, g)
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where

T ( f, g) =
∑

j∈Z
S j−1 f �̇ j g and R( f, g) =

∑

j∈Z
�̇ j f S j+2g,

and in the horizontal direction

T h( f, g) =
∑

q∈Z
Sq−1 f �̇

h
qg and Rh( f, g) =

∑

q∈Z
�̇h

q f Sq+2g.

Applying the double paraproduct decomposition to f g, one has

f g = T T h( f, g) + T Rh( f, g) + RT h( f, g) + RRh( f, g). (50)

Let us estimate each of these terms separately. For the first one, we have

‖�̇ j �̇
h
qT T

1( f, g)‖L2 �
∑

| j ′− j |�4,|q ′−q|�4

‖S j ′−1Sq ′−1 f �̇ j ′�̇q ′∂yg‖L2

�
∑

| j ′− j |�4,|q ′−q|�4

‖S j ′−1Sq ′−1 f ‖L∞‖�̇ j ′�̇q ′∂yg‖L2

� c j,q2
− js12−qs2‖ f ‖L∞‖g‖Bs1,s2 .

Concerning the fourth term, one has

‖�̇ j �̇
h
q RR

1( f, g)‖L2 �
∑

| j ′− j |�4,|q ′−q|�4

‖�̇ j ′�̇q ′ f S j ′+2Sq ′+2g‖L2

�
∑

| j ′− j |�4,|q ′−q|�4

‖�̇ j ′�̇q ′ f ‖L2‖S j ′+2Sq ′+2g‖L∞

� c j,q2
− js12−qs2‖ f ‖Bs1,s2 ‖g‖L∞ .

The following computations in the special case s1 = − 1
2 and s2 = 1

2 will be needed
in the proof of Lemma A.1:

‖�̇ j �̇
h
q RR

1( f, g)‖L2 �
∑

| j ′− j |�4,|q ′−q|�4

‖�̇ j ′�̇q ′ f S j ′+2Sq ′+2g‖L2

�
∑

| j ′− j |�4,|q ′−q|�4

‖�̇ j ′�̇q ′ f ‖2‖S j ′+2Sq ′+2g‖L∞

�
∑

| j ′− j |�4,|q ′−q|�4

2 j‖�̇ j ′�̇q ′ f ‖L22− j‖S j ′+2Sq ′+2g‖L2

� c j,q2
j
2 2− q

2 ‖ f ‖
B

1
2 , 12

‖
−1g‖L∞ .
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For the third term, using the anisotropic Bernstein inequality, one has

‖�̇ j �̇
h
q T R1( f, g)‖

L2
∑

| j ′− j |�4,|q′−q|�4

‖�̇ j ′ Sq′+2 f S j ′+2�̇q′ g‖L2

�
∑

| j ′− j |�4,|q′−q|�4

‖�̇ j ′ Sq′+2 f ‖
L2x L

∞
y

‖S j ′+2�̇q′ g‖L∞
x L2y

�
∑

| j ′− j |�4,|q′−q|�4

2
j ′
2 ‖�̇ j ′ Sq′+2 f ‖

L2
2
q′
2 ‖S j ′+2�̇q′ g‖L2

� 2− js1 2−qs2
∑

| j ′− j |�4,|q′−q|�4

2
j ′(s1+ 1

2 )‖�̇ j ′ Sq′+2 f ‖
L2

2
q′(s2+ 1

2 )‖S j ′+2�̇q′ g‖L2

� 2− js1 2−qs2
∑

| j ′− j |�4,|q′−q|�4

2
j ′(s1+ 1

2+δ1)
2−qδ2 ‖�̇ j ′ Sq′+2 f ‖

L2
2
q′(s2+ 1

2+δ2)
2− j ′δ1 ‖S j ′+2�̇q′ g‖L2

� 2− js1 2−qs2 c j,q

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

‖ f ‖
B
s1+ 1

2+δ1,−δ2
‖g‖

B
−δ1,s2+ 1

2+δ2
if δ1, δ2 > 0

‖ f ‖
B
s1+ 1

2
‖g‖

B
s2+ 1

2
h

if δ1, δ2 = 0,

where Bs
h refers to the Besov spaces with horizontal localisation �̇q . Since

‖ f ‖
Bs1+ 1

2
‖g‖

B
s2+ 1

2
h

� ‖ f ‖
Bs1+ 1

2 ,0‖g‖B0,s2+ 1
2
,

we obtain the desired estimate. Similar computations lead to

‖�̇ j �̇
h
q RT

1( f, g)‖L2 � 2− js12−qs2c j,q‖ f ‖
B−δ3,s2+ 1

2+δ4
‖g‖

Bs1+ 1
2+δ3,−δ4

.

Multiplying the above estimates by 2 js12qs2 and summing on j, q ∈ Z, the desired
result follows. ��

A.2 Proof of Lemma 5.1

Proof of Lemma 5.1. I) Estimates for h = (R2�,−R1�) · ∇b. i) Applying
Lemma A.1 with f = R1�, g = ∂yb, s1 = 3

2 , s2 = 1
2 , δ1 = δ2 = 1

2 and
δ3 = δ4 = 0, one has

‖R1�∂yb‖
L1
T (B

3
2 , 12 )

� ‖R1�‖L1
T (L∞)‖∂yb‖L∞

T (B
3
2 , 12 )

+ ‖R1�‖
L1
T (B

3
2 , 12 )

‖∂yb‖L∞
T (L∞)

+ ‖R1�‖
L2
T (B

5
2 ,− 1

2 )
‖∂yb‖

L2
T (B− 1

2 , 32 )

+ ‖R1�‖L1
T (B0,1)‖∂yb‖L∞

T (B2,0). (51)

Now, using Lemma 3.2 and B.5 we have

• ‖R1�‖L1
T (L∞)‖∂yb‖L∞

T (B
3
2 , 12 )

� X (t)‖b‖L∞(Ḣ s∩H3−ε) � X (t)2,

• ‖R1�‖
L1
T (B

3
2 , 12 )

‖∂yb‖L∞
T (L∞) � Y (t)‖b‖L∞(H2+ε) � Y (t)X (t),

• ‖R1�‖
L2
T (B

5
2 ,− 1

2 )
‖∂yb‖

L2
T (B− 1

2 , 32 )
� ‖�‖

L2
T (B

3
2 , 12 )

‖b‖
L2
T (B

1
2 , 32 )

� Y (t)2,
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• ‖R1�‖L1
T (B0,1)‖∂yb‖L∞

T (B2,0) � ‖�‖L1
T (B−1,2)‖b‖L∞

T (B3,0) � ‖�‖
L1
T (B− 1

2 , 32 )

‖b‖L∞
T (B3,0) � X (t)2.

Gathering the above estimates, one obtains

‖�̇ j �̇
h
qR1�∂yb‖

L1
T (B

3
2 , 12 )

� X (t)2.

ii) Applying Lemma A.1 with f = R1�, g = ∂yb, s1 = 1
2 , s2 = 1

2 , δ1 = δ2 = 1
2

and δ3 = δ4 = 0, we get

‖R1�∂yb‖
L1
T (B

1
2 , 12 )

� ‖R1�‖L1
T (L∞)‖∂yb‖L∞

T (B
1
2 , 12 )

+ ‖R1�‖
L1
T (B

1
2 , 12 )

‖∂yb‖L∞
T (L∞)

+ ‖R1�‖
L2
T (B

3
2 ,− 1

2 )
‖∂yb‖

L2
T (B− 1

2 , 32 )

+ ‖R1�‖L1
T (B0,1)‖∂yb‖L∞

T (B1,0).

Using Lemma 3.2 and B.5, we have

• ‖R1�‖L1
T (L∞)‖∂yb‖L∞

T (B
1
2 , 12 )

� Y (t)‖b‖L∞
T (Ḣ s∩H2−τ ) � X (t)2,

• ‖R1�‖
L1
T (B

1
2 , 12 )

‖∂yb‖L∞
T (L∞) � Y (t)‖b‖L∞(H2+τ ) � Y (t)X (t),

• ‖R1�‖
L2
T (B

3
2 ,− 1

2 )
‖∂yb‖

L2
T (B− 1

2 , 32 )
� ‖�‖

L2
T (B

1
2 , 12 )

‖b‖
L2
T (B

1
2 , 32 )

� Y (t)2,

• ‖R1�‖L1
T (B0,1)‖∂yb‖L∞

T (B1,0) � ‖�‖L1
T (B−1,2)‖b‖L∞

T (B2,0) � ‖�‖
L1
T (B− 1

2 , 32 )

‖b‖L∞
T (B2,0) � X (t)2.

iii) For the second addend of h, applying Lemma A.1 with f = R2�, g = ∂xb,
s1 = 3

2 , s2 = 1
2 , δ1 = δ2 = 1

2 and δ3 = δ4 = 0, one obtains

‖R2�∂yb‖
L1
T (B

3
2 , 12 )

� ‖R2�‖L2
T (L∞)‖∂xb‖L2

T (B
3
2 , 12 )

+ ‖R2�‖
L2
T (B

3
2 , 12 )

‖∂xb‖L2
T (L∞)

+ ‖R2�‖
L∞
T (B

5
2 ,− 1

2 )
‖∂xb‖

L1
T (B− 1

2 , 32 )

+ ‖R2�‖L2
T (B0,1)‖∂xb‖L2

T (B2,0).

Let us deal with each r.h.s. term:

• ‖R2�‖L2
T (L∞)‖∂xb‖L2

T (B
3
2 , 12 )

� ‖R2�‖
L2
T (B

1
2 , 12 )

‖R1b‖L2
T (Ḣ s∩H3−τ ) � Y (t)

X (t),
• ‖R2�‖

L2
T (B

3
2 , 12 )

‖∂xb‖L2
T (L∞) � Y (t)X (t),

• ‖R2�‖
L∞
T (B

5
2 ,− 1

2 )
‖∂xb‖

L1
T (B− 1

2 , 32 )
� ‖R2�‖

L∞
T (B

5
2 ,− 1

2 )
‖b‖

L1
T (B− 1

2 , 52 )
� X (t)

Y (t),
• ‖R2�‖L2

T (B0,1)‖∂xb‖L2
T (B2,0) � ‖R2�‖

L2
T (B

1
2 , 12 )

‖∂xb‖L2
T (B2,0) � Y (t)X (t).
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iv) Applying Lemma A.1 with f = R2�, g = ∂xb, s1 = 1
2 , s2 = 1

2 , δ1 = δ2 = 0
and δ3 = δ4 = 0,

‖R2�∂xb‖
L1
T (B

1
2 , 12 )

� ‖R2�‖L2
T (L∞)‖∂xb‖L2

T (B
1
2 , 12 )

+ ‖R2�‖
L2
T (B

1
2 , 12 )

‖∂xb‖L2
T (L∞)

+ ‖R2�‖L2
T (B1,0)‖∂xb‖L2

T (B0,1)

+ ‖R2�‖L2
T (B0,1)‖∂xb‖L2

T (B1,0).

Again, we deal with each term separately:

• ‖R2�‖L2
T (L∞)‖∂xb‖L2

T (B
1
2 , 12 )

� ‖�‖
L2
T (B

1
2 , 12 )

‖b‖
L2
T (B

1
2 , 32 )

� Y (t)2,

• ‖R2�‖
L2
T (B

1
2 , 12 )

‖∂xb‖L2
T (L∞) � ‖�‖

L2
T (B

1
2 , 12 )

‖b‖
L2
T (B

1
2 , 32 )

� Y (t)2,

• ‖R2�‖L2
T (B1,0)‖∂xb‖L2

T (B0,1) � ‖�‖L2
T (B1,0)‖R1b‖L2

T (B2,0) � X (t)2,

• ‖R2�‖L2
T (B0,1)‖∂xb‖L2

T (B1,0) � ‖�‖L2
T (B1,0)‖R1b‖L2

T (B2,0) � X (t)2.

Gathering the above estimates yields

‖�̇ j �̇
h
qR1�∂yb‖

L1
T (B

1
2 , 12 )

� X (t)2.

Adding the estimates from i) − iv) and using that Y (t) � X (t) thanks to Lemma
3.2, one obtains

‖h‖
L1
T (B

3
2 , 12 ∩B

1
2 , 12 )

� X (t)2. (52)

II) Estimates for g = εR1(R2�,−R1�) · ∇b+
−1((R2�,−R1�) · (∇
�)).

The estimates of the first term εR1(R2�,−R1�) ·∇b can be obtained in the same
way as the previous terms. Indeed, notice that by Lemma B.5 and thanks to the
boundedness of the Riesz transform R1 : B1,0 → B1,0, one has

‖R1(R2�∂xb)‖
L1
T (B

1
2 , 12 )

� ‖R1(R2�∂xb)‖L1
T (B1,0) � ‖R2�∂xb‖L1

T (B1,0),

which is exactly the same term as the one we treated in I). A similar argument can

be applied for the bound in B
3
2 , 12 . We then turn to the second addend of g.

i) First, observing that

‖
−1((R2�,−R1�) · (∇
�))‖
B

3
2 , 12

� ‖(R2�,−R1�) · (∇
�)‖
B

1
2 , 12

and since � has better decay properties than b and we control � in L2
T (Hs) for

s > 3, we can directly deduce from our previous computations that

‖
−1((R2�,−R1�) · (∇
�))‖
B

3
2 , 12

� X (t)2.

ii) For the second regularity setting it is a bit trickier as one has

‖
−1((R2�,−R1�) · (∇
�))‖
B

1
2 , 12

� ‖(R2�,−R1�) · (∇
�)‖
B− 1

2 , 12
.
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Applying the second inequality of Lemma A.1 with f = R2�, g = ∂x
�,
s1 = − 1

2 , s2 = 1
2 , δ1 = 1, δ2 = 0 and δ3 = δ4 = 0, we obtain

‖R2�∂x
�‖
L1
T (B− 1

2 , 12 )
� ‖R2�‖L∞

T (L∞)‖∂x
�‖
L1
T (B− 1

2 , 12 )

+ ‖R2�‖
L∞
T (B

1
2 , 12 )

‖
−1∂x
�‖L1
T (L∞)

+ ‖R2�‖L2
T (B1,0)‖∂x
�‖L2

T (B−1,1)

+ ‖R2�‖L2
T (B0,1)‖∂x
�‖L2

T (B0,0).

��
Remark A.1. Alternatively, one could think to exploit the first inequality of Lemma
A.1, which would require a control of ‖R2�‖

L2
T (B− 1

2 , 12 )
‖∂x
�‖L2

T (L∞). However,

such bounds hold under additional low-regularity assumptions on the initial data,
for instance B0,0, that we want to avoid here.

We estimate the above terms as follows.

• ‖R2�‖L∞
T (L∞)‖∂x
�‖

L1
T (B− 1

2 , 12 )
� ‖�‖

L∞
T (B

1
2 , 12 )

‖�‖
L1
T (B

1
2 , 32 )

� Y (t)2,

• ‖R2�‖
L∞
T (B

1
2 , 12 )

‖
−1∂x
�‖L1
T (L∞) � ‖�‖

L∞
T (B

1
2 , 12 )

‖�‖
L1
T (B

1
2 , 32 )

� X (t)

Y (t),
• ‖R2�‖L2

T (B1,0)‖∂x
�‖L2
T (B−1,1) � ‖�‖L2

T (B1,0)‖�‖L2
T (B0,2) � ‖�‖L2

T (B1,0)

‖�‖L2
T (B2,0) � X (t)2,

• ‖R2�‖L2
T (B0,1)‖∂x
�‖L2

T (B0,0) � ‖�‖L2
T (B1,0)‖�‖L2

T (B1,1) � ‖�‖L2
T (B1,0)

‖�‖
L2
T (B

3
2 , 12 )

� X (t)Y (t).

The estimates for the last term R1�∂y
� follow the exact same lines, then we
omit them. We have therefore

‖g‖
L1
T (B

3
2 , 12 ∩B

1
2 , 12 )

� X (t)2. (53)

Adding (52) and (53) concludes the proof of Lemma 5.1. ��

Appendix B. Toolbox

We collect some technical lemmas that are used in the course of the proof the
results of this article. In some case, we provide (short) proofs, while in other cases,
appealing to the existing literature to which we refer explicitly, we omit the proofs.
When no explicit reference is provided being the results classical, the reader can
look for instance at [20].

Lemma B.1. Let X : [0, T ] → R+ be a continuous function such that X2 is
differentiable. Assume that there exists a constant B � 0 and ameasurable function
A : [0, T ] → R+ such that

1

2

d

dt
X2 + BX2 � AX a.e. on [0, T ].
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Then, for all t ∈ [0, T ], we have
X (t) + B

ˆ t

0
X � X0 +

ˆ t

0
A.

Lemma B.2. (Product estimates, [35, Lemma 2.1]) Let s > 0, 1 � p, r � ∞,
then

‖
s( f g)‖L p(R2) � ‖ f ‖L p1 (R2)‖
sg‖L p2 (R2) + ‖g‖Lr1 (R2)‖
s f ‖Lr2 (R2),

where 1 � p1, r1 � ∞ such that 1
p = 1

p1
+ 1

p2
= 1

r1
+ 1

r2
.

Lemma B.3. (Commutator estimates, [35, Lemma 2.1]) Let s > 0, 1 � p1, r1 �
∞ and 1 < p, p1, r1 < 1 such that 1

p = 1
p1

+ 1
p2

= 1
r1

+ 1
r2
. Then

‖[
s, f ]g‖L p � (‖∇ f ‖L p1 ‖
s−1g‖L p2 + ‖
s f ‖Lr1 ‖g‖Lr2 ).
Lemma B.4. (Interpolation) Let s0 � s � s1. Then, for θ ∈ (0, 1), such that
s = θs0 + (1 − θ)s1, it holds

‖ f ‖Ḣ s � ‖ f ‖θ

Ḣ s0
‖ f ‖1−θ

Ḣ s1
.

Lemma B.5. (Embedding in Besov spaces) For s > 0, s1, s2 ∈ R, one has

Bs1+s,s2−s ⊂ Bs1,s2 (54)

Proof. Let f ∈ Bs1+s,s2−s ∩ Bs1,s2 . By definition of the localisation �̇ j and �̇h
q ,

when applying �̇ j �̇
h
q to a function, one can use that there exists N0 such that

j � q − N0. This implies that
∑

j,q∈Z
2 js12qs2‖�̇ j �̇

h
q f ‖L2 �

∑

j,q∈Z
2 js12 js2− js2qs2‖�̇ j �̇

h
q f ‖L2

�
∑

j,q∈Z, j�q−N0

2 js12 js2−qs2qs2‖�̇ j �̇
h
q f ‖L2

�
∑

j,q∈Z
2 j (s1+s)2q(s2−s)‖�̇ j �̇

h
q f ‖L2 .

��
Thenext lemmaprovides a generalizedversionof theKenig–Ponce–Vega inequality
(the fractional version of the Leibniz rule) for all s > 0, see [27] and [14].
Recall the notation α, β ∈ N

2 (multi-index) and ∇α = (∂
α1
x , ∂

α2
y ), while the oper-

ator 
s,α is defined via Fourier transform as


̂s,α f (ξ) = 
̂s,α(ξ) f̂ (ξ), 
̂s,α(ξ) = i−|α|∂α
ξ (|ξ |s).

Lemma B.6. (Generalized Kenig–Ponce–Vega inequality [27, Theorem 5.1]) Let
s > 0 and 1 < p < ∞. Then, for any s1, s2 � 0 such that s1 + s2 = s, and any
f, g ∈ S(Rd),

∥
∥
∥
∥
∥
∥

s( f g) −

∑

|α|�s1

1

α! (∇
α f )(
s,αg) −

∑

|β|�s2−1

1

β! (∇
βg)(
s,β f )

∥
∥
∥
∥
∥
∥
L p

� ‖
s1 f ‖BMO‖
s2g‖L p .
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