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Abstract

We provide a refined explicit estimate of the exponential decay rate of under-
damped Langevin dynamics in the L2 distance, based on a framework developed in
Albritton et al. (Variational methods for the kinetic Fokker–Planck equation, arXiv
arXiv:1902.04037, 2019). To achieve this, we first prove a Poincaré-type inequality
with a Gibbs measure in space and a Gaussian measure in momentum. Our estimate
provides a more explicit and simpler expression of the decay rate; moreover, when
the potential is convex with a Poincaré constant m � 1, our estimate shows the
decay rate of O(

√
m) after optimizing the choice of the friction coefficient, which

is much faster than m for the overdamped Langevin dynamics.

1. Introduction

We consider the convergence rate for the following underdamped Langevin
dynamics (xt , vt ) ∈ R

d × R
d :{

dxt = vt dt

dvt = −∇U (xt ) dt − γ vt dt +√
2γ dWt .

(1)

Have U (x) is the potential energy, γ > 0 is the friction coefficient, and Wt is a d-
dimensional standard Brownianmotion; themass and temperature are set to be 1 for
simplicity. The law of the process (1), ρ(t, x, v), satisfies the kinetic Fokker–Planck
equation

∂tρ = −v · ∇xρ + ∇xU · ∇vρ + γ (�vρ + ∇v · (vρ)) . (2)

It is well-known (see for example [45, Proposition 6.1]) that under mild assump-
tions, (2) admits a unique stationary density function given by

dρ∞(x, v) = dμ(x) dκ(v), (3)
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where

dμ(x) = 1

ZU
e−U (x) dx, dκ(v) = 1

(2π)d/2 e− |v|2
2 dv, ZU =

∫
Rd

e−U (x) dx .

When γ → ∞, the rescaled dynamics x (γ )
t :=xγ t converges to the Smoluchowski

SDE, also known as the overdamped Langevin dynamics (see e.g., [45, Sec. 6.5]),
which is given by

dx (∞)
t = −∇U (x (∞)

t ) dt + √
2 dBt .

An equivalent formalism of (2) is the following backward Kolmogorov equation:

∂t f = L f, L = Lham + γLFD, f (0, x, v) = f0(x, v). (4)

HaveLham is theHamiltonian transport operator andLFD is thefluctuation-dissipation
term {

Lham = v · ∇x − ∇xU · ∇v

LFD = �v − v · ∇v.
(5)

Indeed, (4) could be derived from (2) by considering ρ(t, x, v) = f (t, x,−v)ρ∞
(x, v) [45]; since by L2-duality, ‖ρ − ρ∞‖L2(ρ−1∞ )

≡ ∥∥ f − ∫
f dρ∞

∥∥
L2(ρ∞)

, the
exponential convergence of the solution ρ(t, ·, ·) of (2) to ρ∞ is equivalent to the
exponential decay of f (t, ·, ·) to zero, provided that ∫ f0 dρ∞ = 0. Similarly, one
could obtain the backward Kolmogorov equation for the overdamped Langevin
dynamics, which is given by

∂t h = −∇xU · ∇x h + �x h, h(0, x) = h0(x). (6)

If μ satisfies a Poincaré inequality, one could show that the generator in the above
equation (6) is self-adjoint and coercive with respect to L2(μ). As a consequence,
if
∫

h0 dμ = 0, then h(t, x) decays to zero exponentially fast as t → ∞, see for
example [6, Theorem 4.2.5].

Unlike the generator of (6), the generatorL in (4) for the underdampedLangevin
is not uniformly elliptic. As a result, proving the exponential convergence of
ρ(t, ·, ·) to the equilibrium ρ∞ is more challenging. With extensive works through-
out the years, the exponential convergence of the underdamped Langevin dynamics
is now better understood in various norms (see Section 1.2 below for a review).

Our goal in this work is to provide an explicit estimate of the decay rate in L2 for
the semigroup in (4), based on a framework proposed in [1] which implicitly uses
Hörmander’s bracket conditions [32]. In particular, under some mild assumptions
of U , we obtain explicit estimates for some universal constant C > 1 independent
of U, γ, d and some ν > 0 such that for any possible f = f (t, x, v) satisfying (4)
and

∫
f0 dρ∞ = 0, we have

‖ f (t, ·, ·)‖L2(ρ∞) � Ce−νt ‖ f0‖L2(ρ∞) . (7)
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In the rest of this section, we will first present our assumptions andmain results.
Next, we will briefly review existing approaches to study the exponential conver-
gence of (4) (or equivalently (2)) in Section 1.2, and compare our estimate of the
decay rate ν with some previous works aiming at explicit estimates [9,16,40,47].
We would like to comment here that convergence results are also obtained in earlier
works [17,26], although their rates are only explicit in γ .

Notations

Throughout the paper we assume I to be the time interval (0, T ), and we use
dλ(t) = 1

T χ(0,T )(t) dt to denote the rescaled Lebesgue measure on I so that dλ(t)
denotes a probability measure. For any probability measure ρ, we use L2(ρ) (and
similarly H1(ρ), H2(ρ)) to denote the standard Sobolev spaces, and H−1(ρ) to
denote the dual space of H1(ρ). For the Gaussian probability measure κ in velocity
space, we also use L2

κ , H1
κ , H−1

κ to denote the corresponding spaces. Moreover,
we use H1

0 (λ ⊗ μ) to denote the H1(λ ⊗ μ) functions that vanish at both time
boundaries t = 0 and t = T . By abuse of notation, we denote the canonical pairing
〈·, ·〉H−1(ρ),H1(ρ) between f ∈ H1(ρ) and g ∈ H−1(ρ) by∫

f g dρ:=〈g, f 〉H−1(ρ),H1(ρ).

For f ∈ H−1(ρ), we use the notation ( f )ρ :=〈 f, 1〉H−1(ρ),H1(ρ). For an arbitrary
Banach space V and time interval I equipped with Lebesgue measure dλ(t), we
denote by L p(λ ⊗ μ; V ) the Banach space of functions f (t, x, v) with norm

‖ f ‖L p(λ⊗μ;V ):=
(∫

I×Rd
‖ f (t, x, ·)‖p

V dλ(t) dμ(x)

) 1
p

.

Inspired by [1], we define the Banach space

H1
hyp(λ ⊗ μ):=

{
f ∈ L2(λ ⊗ μ; H1

κ ) : ∂t f − Lham f ∈ L2(λ ⊗ μ; H−1
κ )

}
.

We define a projection operator for φ(t, x, v) ∈ L2(λ ⊗ ρ∞) by

(�vφ)(t, x):=
∫
Rd

φ(t, x, v) dκ(v). (8)

Equivalently, �v is used to obtain the marginal component of φ in L2(λ⊗μ). By a
slight abuse of notation, for φ(x, v) ∈ L2(ρ∞), we also use the same notation�v to
represent the similar projection, i.e., (�vφ)(x):= ∫

Rd φ(x, v) dκ(v). The adjoints
of ∇x and ∇v in the Hilbert space L2(ρ∞) are respectively given by ∇∗

x F = −∇x ·
F +∇xU · F and∇∗

v F = −∇v · F +v · F for any vector field F(x, v) : R2d → R
d .

Thus we can rewrite operators Lham and LFD as

Lham = ∇∗
v ∇x − ∇∗

x ∇v, LFD = −∇∗
v ∇v. (9)
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For time-augmented state space I × R
d equipped with measure λ ⊗ μ, we use

the convention ∂x0 :=∂t , the short-hand notation �∇:=(∂t ,∇x )
�, and the notation

L := − ∂t t + ∇∗
x ∇x to denote the “Laplace” operator on L2(λ ⊗ μ). We use C to

denote a universal constant independent of all parameters that may change from
line to line.

1.1. Assumptions and Main Results

Assumption 1. (Poincaré inequality for μ)Assume that the potentialU (x) satisfies
a Poincaré inequality in space∫

Rd

(
f −

∫
Rd

f dμ

)2

dμ � 1

m

∫
Rd

|∇x f |2 dμ, ∀ f ∈ H1(μ). (10)

Assumption 2. The potential U ∈ C2(Rd), and there exist constants M > 0 and
δ ∈ (0, 1) such that

|∇2
x U (x)|2 =

d∑
i, j=1

|∂xi x j U (x)|2 � M2(d + |∇xU (x)|2),

and �xU (x) � Md + δ

2
|∇xU (x)|2 ∀ x ∈ R

d . (11)

for some constant M � 1.

Assumption 3. The embedding H1(μ) ↪→ L2(μ) is compact.

Remark 1.1. (i) Assumption 1 guarantees that the elliptic equation ∇∗
x ∇x u = h

has a unique solution u ∈ H2(μ) for any h ∈ L2(μ) satisfying (h)μ = 0 (see
for example [19, Proposition 5]). Hence, together with Assumption 3, we derive
from Fredholm alternative that L2(μ) has an orthonormal basis {1} ∪ {wα}α>0
where wα ∈ H2(μ) are eigenfunctions of ∇∗

x ∇x with eigenvalue α2 for a
discrete set of α > 0 (see [22, Chapter 6] for an argument with bounded
domains):

∇∗
x ∇xwα = α2wα.

Further, by Assumption 1, any eigenvalue α2 of ∇∗
x ∇x satisfies α ≥ √

m, in
fact, the smallest α is precisely

√
m, the square root of the Poincaré constant;

the spectrum of ∇∗
x ∇x is unbounded from above.

(ii) Assumption 3 is satisfied when

lim|x |→∞
U (x)

|x |β = ∞

for some β > 1 (see [31] for a proof). We would like to comment here that we
require Assumption 3 only for technical purposes, more precisely in the proof
of Lemma 2.6 where we used the spectral decomposition of the elliptic operator
∇∗

x ∇x to construct the test functions we desire. We believe that the assumption
is not necessary for our main results to hold. We leave this for future research.
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(iii) Similar versions of Assumption 2 is commonly used in the literature, see e.g.,
the books [45,54] and the papers [18,19], and is satisfied whenU grows at most
exponentially fast as x → ∞. Herewe adopt themore natural dimension scaling
in [10, Assumption 1] (in particular, we take c1 = c3 = M in their setting),
since in the case of separable potential U (x) = ∑d

i=1 u(xi ), this amounts to
the more natural one-dimensional estimate |u′′|2 � M(1 + |u′|2).

Theorem 1. Under Assumptions1,2, and3, there exist a constant ν > 0and univer-
sal constants C, c independent of all parameters such that, for every f (t, x, v) satis-
fying the backward Kolmogorov equation (4)with initial condition f0 ∈ L2(μ; H1

κ )

and

( f0)ρ∞ = 0, (12)

we have, for every t ∈ (0,∞),

‖ f (t, ·)‖L2(ρ∞) � C exp(−νt)‖ f0‖L2(ρ∞).

Moreover, ν can be made explicit as

ν = mγ

c(
√

m + R + γ )2
(13)

with some constant R > 0 given by

(i) If U is convex, then

R = 0.

(ii) If the Hessian of U is bounded from below

∇2
x U (x) � −K Id, ∀ x ∈ R

d (14)

for some constant K � 0, then

R = √
K .

Note that if K = 0, we recover the estimate in case (i).
(iii) In the most general case without further assumptions,

R = M + M
3
4 d

1
4 .

Remark 1.2. (i) If we fix m = O(1), then, when γ → 0 (resp. γ → ∞), our
estimate provides an estimate on decay rate of O(γ ) (resp. O(γ −1)). This is
consistent with [17,26,47] and also the isotropic Gaussian case when U (x) =
m
2 |x |2 (see Appendix A).

(ii) In the convex case, if we optimize with respect to γ by choosing γ = √
m, then

ν =
√

m

4c
.

As is shown in Appendix A, the scaling on m is optimal in the regime m → 0,
as it is the rate even for isotropic quadratic potential. We refer the readers to
Appendix B for the corresponding results from theDMSmethod, with a slightly
more explicit estimate compared to [47].
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(iii) In the case where condition (14) is satisfied, e.g. for the double well potential
U (x) = (|x |2 − 1)2 with K = 4, our scaling on K is consistent with [36,
Theorem 1] and [37, Sec. 5]. Similar assumption is also used in [44, Theorem
1] for functional inequalities.

(iv) It is well-known that for overdamped Langevin dynamics, the decay rate is
simply m in L2(μ) for (6). By part (ii) of this remark, when m � 1, the
underdamped Langevin dynamics (1) could converge to its equilibrium ρ∞ at
a rate O(

√
m) for convex potentials, which is much faster than the overdamped

Langevin dynamics.
(v) Due to the relation (see e.g., [48])

1√
2

‖ρ − ρ∞‖TV �
√
KL (ρ ‖ ρ∞) �

√
χ2(ρ, ρ∞)

≡ ‖ρ − ρ∞‖L2(ρ−1∞ )
≡
∥∥∥∥ f −

∫
f dρ∞

∥∥∥∥
L2(ρ∞)

,

where f = dρ/ dρ∞, and the Talagrand inequality [44] W2(ρ, ρ∞) �√
2

CL SI
KL(ρ‖ρ∞) where CL SI is the logarithmic Sobolev constant, Theorem 1

implies that ρ(t, ·, ·) converges to ρ∞ with rate 2ν in both χ2-divergence and
relative entropy, and with rate ν in total variation and (ifμ satisfies log-Sobolev
inequality) 2-Wasserstein distance. On the other hand, our result does not imply

d(ρt , ρ∞) � C exp(−νt)d(ρ0, ρ∞)

where d(ρ, π) = T V (ρ, π), W2(ρ, π) or KL(ρ‖π). It is interesting to study if
one could establish the same convergence rate withWasserstein distance (which
is the same as asking if one could establish a coupling argument for our result)
or relative entropy.

Our decay estimate is based on the following Poincaré-type inequality in time-
augmented space:

Theorem 2. Under Assumptions 1, 2, and 3, there exist a universal constant C
independent of all parameters, and a constant R < ∞ (the same constant as in
Theorem 1) such that for every f ∈ H1

hyp(λ ⊗ μ), we have

‖ f − ( f )λ⊗ρ∞‖L2(λ⊗ρ∞) � C

((
1 + RT + 1

(1 − e−√
mT )2

+ R√
m(1 − e−√

mT )2

)
‖(I − �v) f ‖L2(λ⊗ρ∞)

+
(

1√
m(1 − e−√

mT )
+ T

)
‖∂t f − Lham f ‖L2(λ⊗μ;H−1

κ )

)
. (15)

Let us give a brief introduction on the strategy of the proof, which is strongly
motivated by the work of Armstrong and Mourrat [1]. A naive energy estimate and
Gaussian Poincaré inequality yields

d

dt
‖ f (t, ·)‖2L2(ρ∞)

= −2γ ‖∇v f (t, ·)‖2L2(ρ∞)
� −2γ ‖(I − �v) f (t, ·)‖2L2(ρ∞)

.
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While the above establishes the L2 energy decay, it does not directly yield expo-
nential decay rate. In particular, the energy dissipation is only present in velocity
variable. However, instead of looking at single time slice, we should look at time in-
tervals, since after time propagation, the dissipation in v together with the transport
terms in x will lead to dissipation in x . Moreover, in the analysis, we are essen-
tially treating the time variable t as another space variable alongside x . With the
help a Poincaré-type inequality in the time-augmented state space established in
Theorem 2, we can prove exponential convergence still using the standard energy
estimate, in line with the moral “hypocoercivity is simply coercivity with respect
to the correct norm”, quoted from [1, Page 4].

To prove Theorem 2, as an educated reader might realize from [19], the elliptic
regularity in x variable plays an important role in the estimates, which in Lemma 2.4
wemade amild generalization to the time-augmented space L2(λ⊗μ). However, in
the proof of Theorem 2 when applying integration by parts, we need test functions
that vanish at both boundary layers t = 0 and t = T , which is not necessarily
satisfied by the derivatives of the solution to the elliptic equation (22). This is
why we resort to Lemma 2.6 (also an extension of Bogovskii’s operator [11] to
(I × R

d , λ ⊗ μ)) for the solution of the divergence equation (25), which is a
cornerstone of this proof. In particular, even for convex U , the constants in (15)
blow up as T → 0, which can be traced down to the estimate of ψ ′

2,α in (35), and
thus prevents us from working on single time slices.

1.2. A Literature Review and Comparison

Kinetic Fokker–Planck equation was first studied by Kolmogorov [34], and was
the main motivation for Hörmander’s theory on hypoelliptic equations [32], which
gave an almost complete classification of second-order hypoelliptic operators. The
earliest result regarding its exponential convergence were established in [52] for
potentials with bounded Hessian, which was later generalized in [41,51,55]. There
is a substantial amount of works in the literature for studying the exponential con-
vergence of the underdamped Langevin dynamics. Below, we shall categorize them
based on the norms and approaches to characterize the convergence.

(i) (Convergence in H1(ρ∞) norm). The exponential convergence of the kinetic
Fokker–Planck equation in H1(ρ∞) was proved by Villani in [54, Theorem
35], which was inspired by early works of [27,29]. See also [53] for a brief
overview of main ideas. The earlier work of [43] proved similar results on the
torus without forcing term. Since L2(ρ∞) norm is controlled by H1(ρ∞) norm,
this result automatically implies the convergence of (4) in L2(ρ∞). However,
the decay rate therein is quite implicit; see [54, Sec. 7.2]. This approach is
extended in [9] to possibly singular potentials with convergence rates given in
certain cases.

(ii) (Convergence in a modified L2(ρ∞) norm). A more direct approach for con-
vergence in L2(ρ∞) was developed by Dolbeault, Mouhot and Schmeiser in
[18,19], see also earlier ideas in [28]. They identified a modified L2(ρ∞) norm,
denoted by E, such that E(ρ(t, x, v)) → 0 exponentially fast for ρ(t, ·, ·)
evolving according to (2).
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This hypocoercivity method was revisited and adapted in [17,26,47] to deal
with the backward Kolmogorov equation (4), i.e., to show that E( f (t, ·, ·))
decays to zero exponentially fast. In Appendix B.1, we will briefly revisit how
to choose the Lyapunov function E, based on [16, Sec. 2], because their setup
is consistent with our L2(ρ∞) estimate in Section 1.1 above. We would like
to remark that while [47] gets some rate, for which the scalings in d and γ

are known, it is difficult to determine the optimal γ for their convergence rate
estimates.
As a remark, the DMS method [18,19] has been extended or adapted to study
the convergence of spherical velocity Langevin equation [25], non-equilibrium
Langevin dynamics [33], Langevin dynamics with general kinetic energy [49],
temperature-acceleratedmolecular dynamics [50], adaptiveLangevin dynamics
[38], dynamics with Boltzmann-type dissipation [2], dynamics with singular
potentials [12], just to name a few. It might be interesting to study whether the
variational framework [1] we based on can be extended to these cases.

(iii) (Convergence inWasserstein distance). Baudoin discussed a general framework
of the Bakry–Émery methodology [5] to hypoelliptic and hypocoercive opera-
tors, based on which the exponential convergence of the kinetic Fokker–Planck
equation (quantified by aWasserstein distance associated with a special metric)
was proved under certain assumptions on the potential U (x) [7, Theorem 2.6];
see also [8].
A different approach is the coupling method for underdamped Langevin dy-
namics (1). In [16, Sec. 2], for strongly convex potentialU , Dalalyan and Riou-
Durand considered the mixing of the marginal distribution in the x coordinate,
by a synchronous coupling argument; an estimate of the convergence rate was
also explicitly provided, quantified by W2 distance [16, Theorem 1]. For more
general potentials, Eberle, Guillin and Zimmer developed a hybrid coupling
method, composed of synchronous and reflection couplings, to study the expo-
nential convergence of probability distributions for the underdamped Langevin
dynamics (1), quantified by a Kantorovich semi-metric [20]. Unfortunately,
their rates are dimension dependent in general.

(iv) (Convergence in relative entropy) Villani [54] obtained exponential conver-
gence of kinetic Fokker–Planck in the case of potentials with bounded Hessian,
which is extended in [8]. A more quantitative convergence rate is obtained in
[40]. All of them essentially used Gamma calculus on a twisted metric so that
derivatives in x direction can be introduced. In [13], exponential convergence
of entropy is established for potentials that may not have bounded Hessians but
satisfy a stronger weighted log-Sobolev inequality.

There are other approaches to study the long time behavior of the underdamped
Langevin dynamics, e.g., Lyapunov function [4,41,51,55] and spectral analysis [21,
35]. There are also works that extend the aforementioned approaches to dynamics
with singular potentials [9,12,14,15,30,39]. We will not go into details here.

While our work is not the first one that studies the exponential convergence of
underdamped Langevin dynamics, our estimates are more quantitative, and in cer-
tain cases, sharper than any existing result. In particular, for a large class of convex
potentials, we establish an O(

√
m) convergence rate after optimizing in γ , which is
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Table 1. Summary of the convergence rate ν depending on d, m, L under the assumption
mId � ∇2

x U � LId for the regime m � 1 � L

Convergence
rate for arbitrary
γ

Convergence rate
with optimal γ

Criterion

[9, Corollary
3.19]

O(
mγ 3

γ 4+L2 ) O( m√
L

) twisted H1

[16] Only guarantees
convergence for
γ �

√
L

O( m√
L

) W2

[40, Proposition
1] (after rescal-
ing)

Only guarantees
convergence for
γ �

√
L

O( m√
L

) twisted KL

Our work O(
mγ

m+γ 2 ) O(
√

m) L2

independent of dimension and only assumes amild upper bound (Assumption 2) on
the derivatives of the potential. To the best of our knowledge, this optimal O(

√
m)

convergence rate is new in the literature.
Table 1 summarizes the previous results [9,16,40] under the assumption mId �

∇2
x U � LId (and hence guarantee Assumptions 1–3) in the most interesting regime

m � 1 � L , with optimal choice of γ . To elaborate the comparison with result of
[40], after a rescaling, they proved exponential convergence of (4) with friction pa-
rameter (using their notations) γ

√
ξ and convergence rate O( λ√

ξ
), with constraints

that requires (see [40, Proof of Lemma 8])⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξ

2L
−
(

1

4L
+ 1

2m

)
λ > 0

γ

(
4ξ

L
+ 1

)
−
(

1

2m
+ 2

L

)
λ > 0

1

2
− ξ

2L
+
(

1

4L
+ 1

2m

)
λ − γ

(
4ξ

L
+ 1

)
+
(

1

2m
+ 2

L

)
λ � 0.

Combined, these yield ξ � O(L) and λ � O(m), which means the convergence
rate cannot exceed O( m√

L
). Moreover, they require γ � O(1), or their friction

parameter must be at least O(
√

L).
We also comment that in the case where ‖∇2

x U‖ � LId, butU is not necessarily
convex, our convergence rate is ν = O( m√

L
) after optimizing in γ by choosing

γ ∼ √
L , which matches the results of existing works [9,40].

2. Proofs

In this section, we present the statements and proofs of auxiliary lemmas, fol-
lowed by the proofs of the two main theorems. Lemmas 2.1, 2.2 and 2.3 are the
technical lemmas that prepare us for the elliptic regularity result in Lemma 2.4.
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The proof of the divergence Lemma, which builds up from elliptic regularity, is
presented in Lemma 2.6. The proof of Theorem 2 is then possible with the test
functions obtained from Lemma 2.6. Finally we present the proof of Theorem 1
which follows from Theorem 2 and energy estimate.

We start with the Poincaré inquality on tensorized space (I ×R
d , λ⊗μ), which

allows elliptic regularity to hold in the time-augmented state space. The proof is
standard and is thus omitted.

Lemma 2.1. (Poincaré Inequality) For f ∈ H1(λ ⊗ μ),

‖ f − ( f )λ⊗μ‖2L2(λ⊗μ)
� max

{
1

m
,

T 2

π2

}(
‖∂t f ‖2L2(λ⊗μ)

+ ‖∇x f ‖2L2(λ⊗μ)

)
.

(16)

The next lemma is also a technical lemma, the goal of which is to show that
under Assumption 2, |∇2U | defines a bounded operator H1(λ⊗μ) → L2(λ⊗μ),
which allows us to improve the regularity u ∈ H2(λ ⊗ μ) for u being the solution
of (22) in the proof of Lemma 2.4.

Lemma 2.2. [54, Lemma A.24] For any φ ∈ H1(λ ⊗ μ), we have

‖φ∇xU‖2L2(λ⊗μ)
� 16‖∇xφ‖2L2(λ⊗μ)

+ 4Md‖φ‖2L2(λ⊗μ)
, (17)

where M is the constant in (11).

Proof.

‖φ∇x U‖2L2(λ⊗μ)
=
∫

I×Rd
φ2∇x U · ∇x U dλ(t) dμ(x)

=
∫

I×Rd
∇x · (φ2∇x U ) dλ(t) dμ(x)

= 2
∫

I×Rd
φ∇xφ · ∇x U dλ(t) dμ(x) +

∫
I×Rd

φ2�xU dλ(t) dμ(x)

(11)
� 1

4
‖φ∇x U‖2L2(λ⊗μ)

+ 4‖∇xφ‖2L2(λ⊗μ)

+ Md‖φ‖2L2(λ⊗μ)
+ δ

2

∫
I×Rd

φ2|∇x U |2 dλ(t) dμ(x).

We thus finish the proof of (17) after rearranging and using δ < 1.

Next we present a technical lemma that prepares us for the (mixed space-time)
H2 estimates of u, the solution of the elliptic equation (22). This is a generaliza-
tion of a similar L2–H2 regularity estimate in [19, Proposition 5], where only the
spatial variable is considered, but our estimates are algebraically simpler thanks to
Bochner’s formula. Let us remark that we adopt the same scaling of parameters as
[10, Lemma 3.6], especially in the most general case (iii).

Lemma 2.3. For any u ∈ H2(λ ⊗ μ) such that �∇u ∈ H1
0 (λ ⊗ μ)d+1,

‖D2u‖2L2(λ⊗μ)
=

d∑
i, j=0

‖∂xi ∂x j u‖2L2(λ⊗μ)
� C

(
‖L u‖2L2(λ⊗μ)

+ R2‖∇x u‖2L2(λ⊗μ)

)
, (18)
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Similarly,

‖∇2
x u‖2L2(λ⊗μ)

� C
(
‖∇∗

x ∇x u‖2L2(λ⊗μ)
+ R2‖∇x u‖2L2(λ⊗μ)

)
. (19)

Here C is a universal constant whose the precise value can be traced in the proof
under different assumptions in Theorem 1, and R is defined in Theorem 1.

Proof. We only prove (18) since the proof of (19) follows from a similar argument.
The starting point of the proof is Bochner’s formula

d∑
i, j=0

|∂xi ,x j u|2 = �∇u · �∇L u − (∇x u)�∇2
x U∇x u − L

|�∇u|2
2

.

Integrate over λ ⊗ μ and (noticing the last term above has integral zero) we get

d∑
i, j=0

‖∂xi ,x j u‖2L2(λ⊗μ)
= ‖L u‖2L2(λ⊗μ)

−
∫

I×Rd
(∇x u)�∇2

x U∇x u dλ(t) dμ(x).

(20)

This already verifies the conclusion in cases (i) (setting K = 0) and (ii) withC = 1.
Now we deal with the more general case, without assuming (14). Using (17)

with φ = ∂xi u, i = 1, · · · , d,

∫
I×Rd

|∇x u|2|∇xU |2 dλ(t) dμ(x)

=
d∑

i=1

∫
I×Rd

(∂xi u)2|∇xU |2 dλ(t) dμ(x)

(17)
� 16‖D2

x u‖2L2(λ⊗μ)
+ 4Md

∫
I×Rd

|∇x u|2 dλ(t) dμ(x)

(20)= 16‖L u‖2L2(λ⊗μ)
+ 4Md

∫
I×Rd

|∇x u|2 dλ(t) dμ(x)

− 16
∫

I×Rd
(∇x u)�∇2

x U∇x u dλ(t) dμ(x)

(11)
� 16‖L u‖2L2(λ⊗μ)

+ 4Md
∫

I×Rd
|∇x u|2 dλ(t) dμ(x)

+ 16M
∫

I×Rd
|∇x u|2(√d + |∇xU |) dλ(t) dμ(x)

d�1
� 16‖L u‖2L2(λ⊗μ)

+ 20Md
∫

I×Rd
|∇x u|2 dλ(t) dμ(x)

+ 128M2
∫

I×Rd
|∇x u|2 dλ(t) dμ(x) + 1

2

∫
I×Rd

|∇x u|2|∇xU |2 dλ(t) dμ(x).
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Rearranging the terms, we arrive at∫
I×Rd

|∇x u|2|∇xU |2 dλ(t) dμ(x) � 32‖L u‖2L2(λ⊗μ)

+(40Md + 256M2)

∫
I×Rd

|∇x u|2 dλ(t) dμ(x). (21)

Therefore by (21) and triangle inequality,

‖D2u‖2L2(λ⊗μ)

(11),(20)
� ‖L u‖2L2(λ⊗μ)

+ M
∫

I×Rd
|∇x u|2(√d + |∇x U |) dλ(t) dμ(x)

� ‖L u‖2L2(λ⊗μ)

+ M
√

d‖∇x u‖2L2(λ⊗μ)
+ M‖∇x u‖L2(λ⊗μ)‖|∇x u||∇x U |‖L2(λ⊗μ)

(21)
� ‖L u‖2L2(λ⊗μ)

+ M
√

d‖∇x u‖2L2(λ⊗μ)

+ M‖∇x u‖L2(λ⊗μ)

(
6‖L u‖L2(λ⊗μ) + (16M + √

40Md)‖∇x u‖L2(λ⊗μ)

)
� 4‖L u‖2L2(λ⊗μ)

+ (19M2 + M
√
40Md)‖∇x u‖2L2(λ⊗μ)

.

One of the key lemmas of our proof is the following result on elliptic regularity
on the space (I × R

d , λ ⊗ μ) (the solution to such elliptic equation will play an
important role in the proof of Lemma 2.6):

Lemma 2.4. Consider the following elliptic equation:{
L u = h in I × R

d ,

∂t u(t = 0, ·) = ∂t u(t = T, ·) = 0 in R
d .

(22)

Assume h ∈ H−1(λ ⊗ μ), and (h)λ⊗μ = 0. Define the function space

V =
{

u ∈ H1(λ ⊗ μ) : (u)λ⊗μ = 0
}

.

Then

(i) There exists a unique u ∈ V which is a weak solution to (22). More precisely,
for any v ∈ H1(λ ⊗ μ), we have∫

I×Rd
(∂t u∂tv + ∇x u · ∇xv) dλ(t) dμ(x) =

∫
I×Rd

hv dλ(t) dμ(x).

Moreover, when h ∈ L2(λ ⊗ μ), we have the estimate

‖∂t u‖2L2(λ⊗μ)
+ ‖∇x u‖2L2(λ⊗μ)

� max

{
1

m
,

T 2

π2

}
‖h‖2L2(λ⊗μ)

. (23)

(ii) If h ∈ L2(λ ⊗ μ), then the solution u to (22) satisfies u ∈ H2(λ ⊗ μ).

Remark 2.5. One could in fact estimate ‖u‖H1(λ⊗μ) using only ‖h‖H−1(λ⊗μ), but

with a slightly worsened constant max{ 1
m , T 2

π2 , 1} on the rhs. Since in our applica-
tions we only use ‖h‖L2(λ⊗μ), we opt for the current version of (23) for simplicity.
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Proof. (i) V is a linear Hilbert space and has non-zero elements (any function
constant in t , and H1 and mean zero in x is included in V ). Moreover, V is a
subspace of H1(λ⊗μ), and for the rest of the paper we equip it with the H1(λ⊗μ)

norm. We also define the following inner-product:

B(u, v):=
∫

I×Rd
(∂t u∂tv + ∇x u · ∇xv) dλ(t) dμ(x).

One can easily verify B(·, ·) is an inner product onV . Notice that if B(u, u) = 0 then
∂t u = ∇x u = 0, leaving u to be a constant, which has to be 0 since (u)λ⊗μ = 0. If
u is a weak solution of (22), then for any v ∈ V , B(u, v) = ∫

I×Rd hv dλ(t) dμ(x),
and necessarily (h)λ⊗μ = 0 when we take v = 1.

Since (u)λ⊗μ = 0, by Poincaré inequality (Lemma 2.1) we can show B is
coercive under H1(λ ⊗ μ) norm in the sense of

B[u, u] = ‖∂t u‖2L2(λ⊗μ)
+ ‖∇x u‖2L2(λ⊗μ)

� 1

C
(‖∂t u‖2L2(λ⊗μ)

+ ‖∇x u‖2L2(λ⊗μ)
+ ‖u‖2L2(λ⊗μ)

)

= 1

C
‖u‖2H1(λ⊗μ)

.

We can also show B is bounded above since it is an inner-product and B[u, u] �
‖u‖2

H1(λ⊗μ)
. Define a linear functional on V : H(v):= ∫

I×Rd hv dλ(t) dμ(x). One
can verify the boundedness of H :

|H(v)| � ‖h‖H−1(λ⊗μ)‖v‖H1(λ⊗μ).

Thus by Lax–Milgram’s Theorem, the equation (22) has a unique weak solution
u ∈ V . Moreover,

(‖∂t u‖2L2(λ⊗μ)
+ ‖∇x u‖2L2(λ⊗μ)

)2 = B[u, u]2

=
(∫

I×Rd
hu dλ(t) dμ(x)

)2

� ‖h‖2L2(λ⊗μ)
‖u‖2L2(λ⊗μ)

(16)
� max

{
1

m
,

T 2

π2

}
‖h‖2L2(λ⊗μ)

(
‖∂t u‖2L2(λ⊗μ)

+ ‖∇x u‖2L2(λ⊗μ)

)
,

and the desired estimate follows.
(ii) For each i = 1, 2, · · · , d, consider the elliptic equation{

Lwi = ∂xi h − ∇x u · ∇x∂xi U in I × R
d ,

∂twi (t = 0, ·) = ∂twi (t = T, ·) = 0 in Rd .
(24)

The motivation of considering (24) is that, if we formally differentiate (22) with
respect to ∂xi , then ∂xi u satisfies precisely the equation (24) forwi . Hence, our plan
is to use part (i) to establish wi ∈ H1(λ ⊗ μ), then argue that wi − ∂xi u must be
constant.
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We first verify the rhs of (24) has total integral zero. Indeed∫
I×Rd

(∂xi h − ∇x u · ∇x∂xi U ) dλ(t) dμ(x)

=
∫

I×Rd
(h∂xi U − ∇x u · ∇x∂xi U ) dλ(t) dμ(x)

=
∫

I×Rd

(
L u∂xi U − ∇x u · ∇x∂xi U

)
dλ(t) dμ(x)

=
∫

I×Rd

(
∂t u∂t xi U + ∇x u · ∇x∂xi U − ∇x u · ∇x∂xi U

)
dλ(t) dμ(x) = 0.

The next step is to show rhs is in H−1(λ ⊗ μ). Pick a test function φ ∈ H1(λ ⊗ μ)

with ‖φ‖H1(λ⊗μ) = 1, and, by Lemma 2.2,

∫
I×Rd

(∂xi h − ∇x u · ∇x∂xi U )φ dλ(t) dμ(x)

�
∫

I×Rd
(−h∂xi φ + hφ∂xi U ) dλ(t) dμ(x) +

∫
I×Rd

|φ∇x u||∇x∂xi U | dλ(t) dμ(x)

(11)
� ‖h‖L2(λ⊗μ)(1 + ‖φ∂xi U‖L2(λ⊗μ)) + M

∫
I×Rd

|φ∇x u|(√d + |∇x U |) dλ(t) dμ(x)

� ‖h‖L2(λ⊗μ)(1 + ‖φ∂xi U‖L2(λ⊗μ)) + M‖∇x u‖L2(λ⊗μ)(
√

d + ‖φ∇x U‖L2(λ⊗μ))

(17),(23)
� C(M, d)‖h‖L2(λ⊗μ),

where C(M, d) > 0 is a constant depending on M, d. Therefore, by (i) we know
there exists a wi ∈ V which is the weak solution of (24). Finally, comparing (22)
and (24), we observe that L (wi − ∂xi u) = 0 in the sense of distributions, which
by (i) indicates wi − ∂xi u must be constant, which must be −(∂xi u)λ⊗μ, since
by construction w ∈ V and (w)λ⊗μ = 0. This also means ∂xi u ∈ H1(λ ⊗ μ)

since wi ∈ H1(λ ⊗ μ). We end the proof of u ∈ H2(λ ⊗ μ) by writing ∂t t u =
∇∗

x ∇x u − h ∈ L2(λ ⊗ μ).

We finally need a lemma for the solution of a divergence equation with Dirichlet
boundary conditions. The resolution of divergence equation is an important tool
in mathematical fluid dynamics (see the book [23, Section III.3]). However, in
order to obtain more natural estimate on the constants, instead of resorting to the
aforementioned Bogovskii’s operator, we take advantage of the structure of space
L2(μ) by eigenspace decomposition, which is made possible thanks to Assumption
3. This will provide us test functions which play a crucial role in the proof of
Theorem 2.

Lemma 2.6. For any function f ∈ L2(λ ⊗ μ) with ( f )λ⊗μ = 0, there exist two
functions φ0 ∈ H1

0 (λ⊗μ) and � ∈ H2(λ⊗μ) such that ∇x� ∈ H1
0 (λ⊗μ)d and

− ∂tφ0 + ∇∗
x ∇x� = f (25)

with estimates
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‖φ0‖L2(λ⊗μ) + ‖∇x�‖L2(λ⊗μ) � C

(
1√

m(1 − e−√
mT )

+ T

)
‖ f ‖L2(λ⊗μ)

(26)

and

‖∇xφ0‖L2(λ⊗μ) + ‖�∇∇x�‖L2(λ⊗μ) � C

(
1 + RT + 1

(1 − e−√
mT )2

+ R√
m(1 − e−√

mT )2

)
‖ f ‖L2(λ⊗μ). (27)

Here C is a universal constant and R is the constant defined in Theorem 1.

Remark 2.7. We believe the correct scaling of the rhs should be O( 1
T ) as T → 0,

which we are unable to obtain, due to the pessimistic estimates in the last two lines
of (31) that changed the scaling of the last two terms from O(1) to O(T 2), but will
not pursue further since in the proof of Theorem 1 we only take T = 1√

m
. As we

mentioned iearlier after Theorem 2, the scaling of O( 1
T ) as T → 0 should come

from (35).

Before we proceed to the proof, let us give a brief heuristic argument on why
we need to introduce the space of harmonic functions (i.e. the spaceH that appears
at the beginning of the proof) and consider orthogonal projection on it. Indeed, a
direct way to look for a solution of (25) is to look for that of (22) and set φ0 =
∂t u,� = u. However, these test functions do not satisfy the appropriate boundary
conditions. In particular, if solution of (22) satisfy ∇x u(t = 0, ·) = ∇x u(t =
T, ·) = 0, then necessarily f has to be perpendicular to the space of harmonic
functions. Meanwhile, the harmonic part of f requires special treatment from us
and brings technical difficulty to the proof. However, thanks to Assumption 3,
one can decompose the harmonic part of f using separation of variables, which
enables us to obtain the solution of divergence equation by constructing it for each
component and adding them up.

Proof. LetH be the subspace of L2(λ ⊗ μ) that consists of “harmonic functions”,
in other words, f ∈ H if and only ifL f = 0. We consider the decomposition f =
f (1) + f (2) where f (1) ∈ H and f (2) ⊥ H. Since 1 ∈ H we know ( f (2))λ⊗μ = 0
and hence ( f (1))λ⊗μ = 0. Therefore by linearity it suffices to consider f (1) and
f (2) separately. For f (2), the equation{

L u = f (2) in I × R
d ,

∂t u(t = 0, ·) = ∂t u(t = T, ·) = 0 in Rd
(28)

has a unique solution in V ∩ H2(λ ⊗ μ) by Lemma 2.4. Moreover, for any v ∈
H ∩ H2(λ ⊗ μ), integration by parts yields

0 =
∫

I×Rd
f (2)v dλ(t) dμ(x) = B[u, v]
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=
∫

I×Rd
uL v dλ(t) dμ(x) +

∫
Rd

(u(T )∂tv(T ) − u(0)∂tv(0)) dμ(x)

Therefore, since v is arbitrary, we have u(T ) = u(0) = 0, which implies ∇x u ∈
H1
0 (λ⊗μ)d . Also by construction of boundary conditions ∂t u ∈ H1

0 (λ⊗μ). Thus

for f (2) part, it suffices to take correspondingly φ
(2)
0 = ∂t u, �(2) = u with the

estimates

‖�∇u‖2L2(λ⊗μ)

(23)
� C max

{
1

m
, T 2

}
‖ f (2)‖2L2(λ⊗μ)

, (29)

and

‖D2u‖2L2(λ⊗μ)

(18),(29)
� C

(
1 + R2

m
+ R2T 2

)
‖ f (2)‖2L2(λ⊗μ)

. (30)

We now consider the f (1) part. Since {1} ∪ {wα} forms an orthonormal basis in
L2(μ) and ( f (1))λ⊗μ = 0, we have an orthogonal decomposition

f (1)(t, x) = f0(t) +
∑
α

fα(t)wα(x).

Since f (1) is harmonic,

0 = L f (1) = − f ′′
0 (t) +

∑
α

(− f ′′
α (t) + α2 fα(t))wα(x)

and therefore f0(t) is an affine function f0(t) = c0(t − T
2 ) for some constant c0,

as f0(t) has integral zero. Moreover for α > 0 there exist constants cα± such that

fα(t) = cα+e−αt + cα−e−α(T −t).

Therefore, by orthogonality in L2(λ ⊗ μ), we can write for some constant C ∈
(1,∞),

‖ f ‖2L2(λ⊗μ)
= ‖ f (2)‖2L2(λ⊗μ)

+ c20‖t − T

2
‖2L2(λ)

+
∑
α

‖cα+e−αt + cα−e−α(T −t)‖2L2(λ)

= ‖ f (2)‖2L2(λ⊗μ)
+ T 2c20

12
+
∑
α

((
(cα+)2 + (cα−)2

) 1 − e−2αT

2αT
+ 2cα+cα−e−αT

)

� ‖ f (2)‖2L2(λ⊗μ)
+ T 2c20

12
+
∑
α

(
(cα+)2 + (cα−)2

) (1 − e−2αT

2αT
− e−αT

)

� ‖ f (2)‖2L2(λ⊗μ)
+ T 2c20

12
+ 1

C

∑
α

(
(cα+)2 + (cα−)2

) (1 − e−αT )3

αT
. (31)

The construction of test functions for f0(t) is straightforward: We simply take
�(0) = 0 andφ

(0)
0 (t, x) = c0

2 (t2−tT ).We then constructφ0,α,�α for each compo-
nent of the sum e−αtwα(x), and therefore the functions φ0,α(T − t, ·),�α(T − t, ·)
also apply to the component e−α(T −t)wα(x), so that the eventual test functions
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φ0,� can be obtained after taking linear combination. The goal is to find φ0,α,�α

such that

−∂tφ0,α + ∇∗
x ∇x�α = e−αtwα(x).

Since wα ∈ H2(λ ⊗ μ), in order to eliminate the x part of the equation, we can
take the natural ansatz by separation of variables φ0,α = ψ1,α(t)wα(x) and �α =
ψ2,α(t)wα(x), and the two functions ψ1,α(t), ψ2,α(t) should satisfy ψ1,α(0) =
ψ1,α(T ) = ψ2,α(0) = ψ2,α(T ) = 0 as well as the equation

− ψ ′
1,α(t) + α2ψ2,α(t) = e−αt . (32)

Integrating (32) against t , we obtain the necessary and sufficient condition∫ T

0
ψ2,α(t) dt = 1 − e−αT

α3 . (33)

Of course there exists infinitelymany possible solutions, since for anyψ2,α that van-
ishes at both time boundaries and satisfies (33), the choiceψ1,α = ∫ t

0 (α2ψ2,α(τ )−
e−ατ ) dτ also vanishes at both time boundaries. Therefore we only need to choose a
particular one to satisfy the desired estimates. Let us introduce a short-hand notation
� = e−αT ∈ (0, 1). Our idea is to findψ2,α of the formψ2,α(t) = 1

α2 g(e−αt ), which

after a change of variable s:=e−αt turns the condition (33) into
∫ 1
�

g(s)
s ds = 1− �,

and the boundary conditions into g(1) = g(�) = 0. Hence, we may finish our
construction by picking g(s) = sh(s) with

h(x) = 6

(1 − �)2
(x − �)(1 − x).

From the expression we can directly derive (using α � √
m)

0 � g(s) � 3

2
s and |g′(s)| � 4

1 − �
= 4

1 − e−αT
.

One can explicitly compute

‖ψ2,α‖2L2(λ)
= 1

α4T

∫ T

0
g(e−αt )2 dt = 1

α5T

∫ 1

�

g(s)2

s
ds = 3(1 − e−2αT )

5α5T
, (34)

and ‖ψ ′
2,α‖2L2(λ)

= 1

α2T

∫ T

0
g′(e−αt )2e−2αt dt = 1

α3T

∫ 1

�

g′(s)2s ds � 8

α3T (1 − e−αT )
.

(35)

Moreover since ψ ′
1,α(t) = α2ψ2,α(t) − e−αt from (32),

‖ψ ′
1,α‖2L2(λ)

� 2α4‖ψ2,α‖2L2(λ)
+ 1 − e−2αT

αT
� 3(1 − e−2αT )

αT
. (36)

Finally since

ψ1,α(t) =
∫ t

0
(g(e−αs) − e−αs) ds = 1

α

∫ 1

e−αt
(

g(τ )

τ
− 1) dτ = 1

α
r(e−αt )
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with

r(s) =
∫ 1

s
(h(τ ) − 1) dτ = (s − �)(1 − s)(1 + � − 2s)

(1 − �)2
,

we can estimate

α2‖ψ1,α‖2L2(λ)
= 1

αT

∫ 1

�

r(t)2

t
dt = (1 − �)3

αT∫ 1

0

s2(1 − s)2(1 − 2s)2

(1 − �)s + �
ds � C(1 − e−αT )3

αT
. (37)

To sum up, our construction of test functions can be write as

φ0 = ∂t u + c0
t2 − tT

2
+
∑
α

(cα+ψ1,α(t) + cα−ψ1,α(T − t))wα(x),

� = u +
∑
α

(cα+ψ2,α(t) + cα−ψ2,α(T − t))wα(x),

here we recall that u is the solution of (28).
We now establish the estimates by direct calculations, which is possible since

the variables are separated. Notice that for α, β,

〈∇xwα,∇xwβ〉L2(μ) = 〈wα,∇∗
x ∇xwβ〉L2(μ) = β2〈wα,wβ〉L2(μ) = α2δα,β,

hence cross terms in the expansion of ‖∑α(cα+ψ2,α(t) + cα−ψ2,α(T − t))∇x

wα(x)‖2
L2(λ⊗μ)

vanish. Therefore, we can estimate

‖φ0‖2L2(λ⊗μ)
+ ‖∇x�‖2L2(λ⊗μ)

� 3

(
‖∂t u‖2L2(λ⊗μ)

+ c20
4

‖t2 − tT ‖2L2(λ)

+
∑
α

‖cα+ψ1,α(t) + cα−ψ1,α(T − t)‖2L2(λ)
‖wα‖2L2(μ)

+‖∇x u‖2L2(λ⊗μ)
+
∥∥∥∥∥
∑
α

(cα+ψ2,α(t) + cα−ψ2,α(T − t))∇xwα

∥∥∥∥∥
2

L2(λ⊗μ)

⎞
⎠

(23)
� 6

(
max{ 1

m
, T 2}‖ f (2)‖2L2(λ⊗μ)

+ c20T 4

120
+
∑
α

((cα+)2 + (cα−)2)‖ψ1,α‖2L2(λ)

+
∑
α

‖cα+ψ2,α(t) + cα−ψ2,α(T − t)‖2L2(λ)
‖∇xwα‖2L2(μ)

)

� C

(
max{ 1

m
, T 2}‖ f (2)‖2L2(λ⊗μ)

+ c20T 4

+
∑
α

((cα+)2 + (cα−)2)(‖ψ1,α‖2L2(λ)
+ α2‖ψ2,α‖2L2(λ)

)

)
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(37),(34)
� C

(
max{ 1

m
, T 2}

∥∥∥ f (2)
∥∥∥2

L2(λ⊗μ)
+ c20T 4

+
∑
α

1

α2 ((cα+)2 + (cα−)2)
(1 − e−αT )3 + 1 − e−2αT

αT

)

(31)
� C max

{
1

m(1 − e−√
mT )2

, T 2
}

‖ f ‖2L2(λ⊗μ)
. (38)

Here in the last line whenwe used (31), the worse factor (1−e−√
mT )−2 comes only

from the last term on the line above. This establishes (26). Using similar arguments,
we can estimate

‖∇xφ0‖2L2(λ⊗μ)
=
∥∥∥∇x∂t u +

∑
α

(cα+ψ1,α(t) − cα−ψ1,α(T − t))∇xwα(x)

∥∥∥2
L2(λ⊗μ)

� 2

(
‖∇x∂t u‖2L2(λ⊗μ)

+
∑
α

α2‖cα+ψ1,α(t) + cα−ψ1,α(T − t)‖2L2(λ)

)

� C

(
‖∇x∂t u‖2L2(λ⊗μ)

+
∑
α

((cα+)2 + (cα−)2)α2‖ψ1,α‖2L2(λ)

)

(37)
� C

(
‖∇x∂t u‖2L2(λ⊗μ)

+
∑
α

((cα+)2 + (cα−)2)
(1 − e−αT )3

αT

)
, (39)

as well as

‖∂t∇x�‖2L2(λ⊗μ)
=
∥∥∥∇x∂t u +

∑
α

(cα+ψ ′
2,α(t) − cα−ψ ′

2,α(T − t))∇xwα(x)

∥∥∥2
L2(λ⊗μ)

� 2

(
‖∇x∂t u‖2L2(λ⊗μ)

+
∑
α

‖cα+ψ ′
2,α(t)

−cα−ψ ′
2,α(T − t)‖2L2(λ)

‖∇xwα‖2L2(μ)

)

� C

(
‖∇x∂t u‖2L2(λ⊗μ)

+
∑
α

α2((cα+)2 + (cα−)2)‖ψ ′
2,α‖2L2(λ)

)

(35)
� C

(
‖∇x∂t u‖2L2(λ⊗μ)

+
∑
α

((cα+)2 + (cα−)2)
1

αT (1 − e−αT )

)
.

(40)

We finally treat the terms from ∇2
x �:

‖∇2
x �‖2L2(λ⊗μ)

(19)
� C

(
‖∇∗

x ∇x�‖2L2(λ⊗μ)
+ R2‖∇x�‖2L2(λ⊗μ)

)
(25),(38)

� C

(∥∥∥ f + ∂t t u + c0(t − T

2
) +

∑
α

(cα+ψ ′
1,α(t)

− cα−ψ ′
1,α(T − t))wα(x)

∥∥∥2
L2(λ⊗μ)
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+R2
(

T 2 + 1

m(1 − e−√
mT )2

)
‖ f ‖2L2(λ⊗μ)

)

� C

(
‖∂t t u‖2L2(λ⊗μ)

+ c20T 2 +
∑
α

((cα+)2 + (cα−)2)‖ψ ′
1,α‖2L2(λ)

+
(
1 + R2T 2 + R2

m(1 − e−√
mT )2

)
‖ f ‖2L2(λ⊗μ)

)
(36)
� C

(
‖∂t t u‖2L2(λ⊗μ)

+ c20T 2 +
∑
α

((cα+)2 + (cα−)2)
1 − e−2αT

αT

+
(
1 + R2T 2 + R2

m(1 − e−√
mT )2

)
‖ f ‖2L2(λ⊗μ)

)
. (41)

Adding together (39), (40) and (41), we arrive at

‖∇xφ0‖2L2(λ⊗μ)
+ ‖�∇∇x�‖2L2(λ⊗μ)

� C

(
‖D2u‖2L2(λ⊗μ)

+ c20T 2 +
∑
α

((cα+)2 + (cα−)2)
1

αT (1 − e−αT )

+
(
1 + R2T 2 + R2

m(1 − e−√
mT )2

)
‖ f ‖2L2(λ⊗μ)

)
(30),(31)

� C

(
1 + R2T 2 + 1

(1 − e−√
mT )4

+ R2

m(1 − e−√
mT )4

)
‖ f ‖2L2(λ⊗μ)

.

We are now ready to prove the main results of the paper. The proof is essentially
inspired from that of [1, Proof of Theorem 3]. In particular, to retrieve the L2(λ ⊗
μ; H−1

κ ) norm, we need to construct a test function that is in L2(λ⊗μ; H1
κ ), which

is highly related to the test functions constructed in Lemma 2.6. The differences
of these two proofs are: (1) we choose the test functions explicitly ξ0 = 1 and
ξi = vi , which are orthogonal to each other and have explicit expressions for up to
fourth moments (in particular any first and third moments vanish); (2) Instead of
using ‖�∇�v f ‖H−1(λ⊗μ) as an intermediate step, we proceed as (42) and control the
L2(λ⊗μ; H1

κ ) normof another explicitly constructed function, in order tominimize
the usage of Cauchy–Schwarz inequalities and track the dimension dependence of
constants carefully.

Proof of Theorem 2. Without loss of generality, assume ( f )λ⊗ρ∞ = 0. which
indicates (�v f )λ⊗μ = 0. Therefore, we can take φ0,� as in Lemma 2.6 with
�v f in place of f , so that −∂tφ0 + ∇∗

x ∇x� = �v f . The trick in our following
step is to introduce v variable in the calculation. Notice, by Gaussianity, that

∫
Rd

vi dκ(v) = 0,
∫
Rd

viv j dκ(v) = δi, j ,
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where δi, j is the Kronecker symbol which equals to 1 if i = j and 0 otherwise.
Thus,

‖�v f ‖2L2(λ⊗μ)
=
∫

I×Rd
�v f (−∂tφ0 + ∇∗

x ∇x�) dλ(t) dμ(x)

=
∫

I×R2d
�v f (−∂tφ0 + v · ∇xφ0 + v · ∂t∇x�

− v · ∇2
x � · v + ∇x� · ∇xU ) dλ(t) dρ∞(x, v)

=
∫

I×R2d
f (−∂tφ0 + v · ∇xφ0 + v · ∂t∇x�

− v · ∇2
x � · v + ∇x� · ∇xU ) dλ(t) dρ∞(x, v)

+
∫

I×R2d
(∂tφ0 − v · ∇xφ0 − v · ∂t∇x� + v · ∇2

x � · v

− ∇x� · ∇xU )( f − �v f ) dλ(t) dρ∞(x, v).

(42)

For the first integral on the right hand side, we use integration by parts, where it is
important that the test functions (φ0,∇x�) have Dirichlet boundary conditions in
time:

∫
I×R2d

f (−∂tφ0 + v · ∇xφ0 + v · ∂t∇x� − v · ∇2
x � · v + ∇x� · ∇x U ) dλ(t) dρ∞(x, v)

=
∫

I×R2d
(∂t f φ0 − ∂t f (v · ∇x�) − φ0(v · ∇x f ) + f φ0(v · ∇x U )

+(v · ∇x f )(v · ∇x�) − f (v · ∇x�)(v · ∇x U ) + f ∇x� · ∇x U ) dλ(t) dρ∞(x, v)

=
∫

I×R2d
(∂t f φ0 − ∂t f (v · ∇x�) − φ0(v · ∇x f ) + φ0(∇v f · ∇x U )

+(v · ∇x f )(v · ∇x�) − ∇v · ((v · ∇x�) f ∇x U ) + f ∇x� · ∇x U ) dλ(t) dρ∞(x, v)

=
∫

I×R2d
((∂t f − v · ∇x f + ∇x U · ∇v f )(φ0 − v · ∇x�)) dλ(t) dρ∞(x, v)

� ‖∂t f − Lham f ‖L2(λ⊗μ;H−1
κ )

‖φ0 − v · ∇x�‖L2(λ⊗μ;H1
κ ).

We further estimate the term ‖φ0 − v · ∇x�‖L2(λ⊗μ;H1
κ ) by explicit integration,

noticing (φ0,�) do not depend on v so that explicit moments of v can be directly
calculated:

‖φ0 − v · ∇x�‖2L2(λ⊗μ;H1
κ )

=
∫

I×Rd
‖φ0 − v · ∇x�‖2H1

κ
dλ(t) dμ(x)

=
∫

I×Rd

(
‖φ0 − v · ∇x�‖2L2

κ

+‖∇v(φ0 − v · ∇x�)‖2L2
κ

)
dλ(t) dμ(x)

=
∫

I×Rd

(∫
Rd

(φ0 − v · ∇x�)2 dκ(v)

+
∫
Rd

|∇x�|2 dκ(v)

)
dλ(t) dμ(x)
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=
∫

I×Rd

(
φ2
0 + 2|∇x�|2

)
dλ(t) dμ(x)

(26)
� C

(
1

m(1 − e−√
mT )2

+ T 2
)

‖�v f ‖2L2(λ⊗μ)
.

For the second integral in (42), we estimate again by explicit expansion in v, which
is possible since we have explicit up to fourth moments of v:

‖∂tφ0 − v · ∇xφ0 − v · ∂t∇x� + v · ∇2
x � · v − ∇x� · ∇xU‖2L2(λ⊗ρ∞)

=
∫

I×R2d
(∂tφ0 − v · ∇xφ0 − v · ∂t∇x�

+ v · ∇2
x � · v − ∇x� · ∇xU )2 dλ(t) dρ∞(x, v)

=
∫

I×R2d

(
(∂tφ0 − ∇x� · ∇xU )2 − 2(∂tφ0 − ∇x� · ∇xU )(v · ∇xφ0)

− 2(∂tφ0 − ∇x� · ∇xU )(v · ∂t∇x�) + (v · ∇xφ0)
2 + (v · ∂t∇x�)2

+ 2(∂tφ0 − ∇x� · ∇xU )v · ∇2
x � · v + 2(v · ∂t∇x�)(v · ∇xφ0)

+ (v · ∇2
x � · v)2 − 2(v · ∂t∇x�)(v · ∇2

x � · v)

−2(v · ∂xk φ0)(v · ∇2
x � · v)

)
dλ(t) dρ∞(x, v)

=
∫

I×R2d

(
(∂tφ0 − ∇x� · ∇xU )2

+
∑

i

v2i

(
(∂xi φ0)

2 + (∂t∂xi �)2 + 2∂xi φ0∂t∂xi �
)

+ 2(∂tφ0 − ∇x� · ∇xU )
∑

i

v2i ∂xi xi �

+
∑

i

v4i (∂xi xi �i )
2 + 2

∑
i �= j

v2i v2j (∂xi x j �)2

+
∑
i �= j

v2i v2j ∂xi xi �∂x j x j �

⎞
⎠ dλ(t) dρ∞(x, v)

=
∫

I×Rd

(
(∂tφ0 − ∇x� · ∇xU )2 + |∇xφ0 + ∂t∇x�|2 + 3

∑
i

(∂xi xi �)2

+ 2
∑
i �= j

(∂xi x j �)2 + 2(∂tφ0 − ∇x� · ∇xU )�x� +
∑
i �= j

∂xi xi �∂x j x j �

⎞
⎠ dλ(t) dμ(x)

�
∫

I×Rd

(
(∂tφ0 − ∇x� · ∇xU + �x�)2 + 2|∇xφ0|2 + 2|�∇∇x�|2

)
dλ(t) dμ(x)

(28)= ‖�v f ‖2L2(λ⊗μ)
+ 2‖∇xφ0‖2L2(λ⊗μ)

+ 2‖�∇∇x�‖2L2(λ⊗μ)

(27)
� C

(
1 + R2T 2 + 1

(1 − e−√
mT )4

+ R2

m(1 − e−√
mT )4

)
‖�v f ‖2L2(λ⊗μ)

.



Arch. Rational Mech. Anal. (2023) 247:90 Page 23 of 34 90

Combining the above estimates, we arrive at
‖�v f ‖2

L2(λ⊗μ)
� ‖∂t f − Lham f ‖

L2(λ⊗μ;H−1
κ )

‖φ0 − v · ∇x �‖L2(λ⊗μ;H1
κ )

+ ‖∂t φ0 − v · ∇x φ0 − v · ∂t ∇x � + v · ∇2
x � · v

− ∇x � · ∇x U‖L2(λ⊗ρ∞)‖ f − �v f ‖L2(λ⊗ρ∞)

� C

((
1√

m(1 − e−√
mT )

+ T

)
‖∂t f − Lham f ‖

L2(λ⊗μ;H−1
κ )

‖�v f ‖L2(λ⊗μ)

+
(
1 + RT + 1

(1 − e−√
mT )2

+ R√
m(1 − e−√

mT )2

)

‖(I d − �v) f ‖L2(λ⊗ρ∞)‖�v f ‖L2(λ⊗μ)

)
.

Finally

‖ f ‖L2(λ⊗ρ∞) � ‖(I d − �v) f ‖L2(λ⊗ρ∞) + ‖�v f ‖L2(λ⊗μ)

� C

((
1√

m(1 − e−√
mT )

+ T

)
‖∂t f − Lham f ‖L2(λ⊗μ;H−1

κ )

+
(
1 + RT + 1

(1 − e−√
mT )2

+ R√
m(1 − e−√

mT )2

)
‖(I d − �v) f ‖L2(λ⊗ρ∞)

)
,

as claimed.

With Theorem 2,we are now able to prove exponential relaxation to equilibrium
claimed in Theorem 1, which essentially follows from a standard energy estimate.

Proof of Theorem 1. We first notice that the solution f ∈ H1
hyp((0, T ) ⊗ μ) for

all T > 0. Indeed, as long as f0 ∈ L2(μ; H1
κ ), we have f (t, ·, ·) ∈ L2(μ; H1

κ )

for any t > 0 (see for example [54, Theorem 35]), and hence ∂t f − Lham f =
−γ∇∗

v ∇v f ∈ L2(λ ⊗ μ; H−1
κ ). We also have that (12) implies∫

Rd×Rd
f (t, x, v) dρ∞(x, v) = 0

for all t ∈ (0, T ). This follows from

d

dt

∫
Rd×Rd

f (t, x, v) dρ∞(x, v) = 0,

using the equation (4) and integration by parts.
For every 0 < s < t , we have the typical energy estimate (hereafter we use

L2((s, t) ⊗ ρ∞) to denote L2(λ(s,t) ⊗ ρ∞)):

‖ f (t, ·)‖2L2(ρ∞)
− ‖ f (s, ·)‖2L2(ρ∞)

= −2γ ‖∇v f ‖2L2((s,t)⊗ρ∞)
. (43)

In particular,

the mapping t �→ ‖ f (t, ·)‖2L2(ρ∞)
is nonincreasing. (44)

Since by equation (4),

−γ∇∗
v∇v f = ∂t f − Lham f,
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we have

‖∂t f − Lham f ‖L2((s,t)⊗μ,H−1
κ )

= γ ‖∇∗
v ∇v f ‖L2((s,t)⊗μ,H−1

κ )
� γ ‖∇v f ‖L2((s,t)⊗ρ∞).

Now fix T to be the length of the time interval. Denote b1 = C( 1√
m(1−e−√

mT )
+ T )

and b2 = C(1+ RT + 1
(1−e−√

mT )2
+ R√

m(1−e−√
mT )2

), and thus by Theorem 2, (43)

and (44), and Gaussian Poincaré inequality

‖(I d − �v) f ‖L2(λ⊗ρ∞) � ‖∇v f ‖L2(λ⊗ρ∞),

we have for time stamps tk = kT

‖ f (tk, ·)‖2L2(ρ∞)
− ‖ f (tk−1, ·)‖2L2(ρ∞)

� − 2γ

(b1γ + b2)2

(
b2‖∇v f ‖L2((tk−1,tk )⊗ρ∞) + b1‖∂t f

−Lham f ‖L2((tk−1,tk )⊗μ,H−1
κ )

)2
� − 2γ

(b1γ + b2)2

(
b2‖(I d − �v) f ‖L2((tk−1,tk )⊗ρ∞) + b1‖∂t f

−Lham f ‖L2((tk−1,tk )⊗μ,H−1
κ )

)2
� − 2γ

(b1γ + b2)2
‖ f ‖2L2((tk−1,tk )⊗ρ∞)

� − 2γ T

(b1γ + b2)2
‖ f (tk, ·)‖2L2(ρ∞)

.

Now for any t > 0, we pick the integer k satisfying tk � t < tk+1, so that
‖ f (t, ·)‖L2(ρ∞) � ‖ f (tk, ·)‖L2(ρ∞). Applying above inequality iteratively and us-
ing the monoticity (44), we obtain

‖ f (t, ·)‖2L2(ρ∞)
�
(
1 + 2γ T

(b1γ + b2)2

)−k

‖ f0‖2L2(ρ∞)

�
(
1 + 2γ T

(b1γ + b2)2

)− t
T +1

‖ f0‖2L2(ρ∞)

=
(
1 + 2γ T

(b1γ + b2)2

)
exp

(
− t

T
log

(
1 + 2γ T

(b1γ + b2)2

))
‖ f0‖2L2(ρ∞)

.

The prefactor

1 + 2γ T

(b1γ + b2)2
� C

⎛
⎜⎝1 + γ T(

γ√
m

+ γ T + 1
)2
⎞
⎟⎠

is bounded above by a constant. Using log(1 + x) � 1
C x for x ∈ [0, 1

C ] for some
universal constant C , and then pick T = 1√

m
, this yields exponential decay with

rate

ν � C
γ

(b1γ + b2)2
� C

γ m

(γ + R + √
m)2

,
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which is precisely (13).
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Appendix A. The Decay Rate for Isotropic Quadratic Potential

For isotropic quadratic potential, an explicit expression for the spectral gap of L
is available (thus also the decay rate in (7)). Note that while the result is stated for
d = 1, it trivially extends to arbitrary dimension for isotropic quadratic potential
as different coordinates are independent. The spectrum is also explicitly known for
V = 0 and x ∈ T

d on a torus, see [35].

Theorem 3. ([46, (10.83)], [42, Theorem 3.1]) When U (x) = m
2 |x |2, d = 1, the

spectrum of the operator −L is given by{
λi, j :=γ

2
(i + j) +

√
γ 2 − 4m

2
(i − j), i, j = 0, 1, 2, · · · .

}
.

Let λexact be the spectral gap for the real component of {λi, j }i, j�0. Notice that the
spectral gap is always achieved when i = 0 and j = 1, thus

λexact = Re

(
γ

2
−
√

γ 2 − 4m

2

)
. (45)

Corollary A.1. For any dimension d, for isotropic potential U (x) = m
2 |x |2, (7)

holds with the decay rate λexact.
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Appendix B. The DMS Hypocoercive Estimation

In this section, we will revisit the decay rate by DMS estimation [18,19], adapted
and summarized for underdamped Langevin equation in [47, Sec. 2]. In the first part
of this section, we will review the main result based on [47]; in addition, we will
provide a new estimate of the operator norm of ‖ALham(1 − �v)‖L2(ρ∞)→L2(ρ∞),
which leads into a more explicit expression of the decay rate. In the second part,
we will present the asymptotic analysis of the decay rate with respect to m and γ ,
under the assumption that ∇2

x U � −2 Id.

B.1. Revisiting the DMS Hypocoercive Estimation in L2(ρ∞)

Let us first define an operator

A = (
1 + (Lham�v)

∗(Lham�v)
)−1

(Lham�v)
∗ (46)

and a Lyapunov function E for φ(x, v) by

E(φ) = 1

2
‖φ‖2L2(ρ∞)

− ε (Aφ, φ)L2(ρ∞) , (47)

where ε ∈ (−1, 1) is some quantity depending on L, to be specified below. The
functional E is equivalent to L2(ρ∞) norm in the following sense (see e.g., [47,
Eq. (17)]),

1 − |ε|
2

‖φ‖2L2(ρ∞)
� E(φ) � 1 + |ε|

2
‖φ‖2L2(ρ∞)

. (48)

Theorem 4. (See [47, Theorem 1]) Assume that the Poincaré inequality (10) holds
and there exists Rham < ∞ such that

‖ALham(1 − �v)‖L2(ρ∞)→L2(ρ∞) � Rham. (49)

Suppose ε ∈ (−1, 1) is chosen such that λDMS = λDMS(γ, m,Rham, ε) > 0, where

λDMS:=
γ − ε

1+m −
√

ε2(Rham + γ
2 )2 +

(
γ − 2m+1

m+1 ε
)2

2(1 + |ε|) . (50)

Then for any solution f (t, x, v) of (4) with
∫

f0 dρ∞ = 0, we have

‖ f (t, ·, ·)‖L2(ρ∞) �
√
1 + |ε|
1 − |ε| ‖ f0‖L2(ρ∞) e−λDMS t .
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Notice that when ε = 0, the rate λDMS = 0, which reduces to the conclusion
that ‖ f (t, ·, ·)‖L2(ρ∞) is non-increasing in time t . The existence of Rham has been
studied under fairly general assumptions on the potential U (x) in [19, Sec. 2]. In
the Proposition B.1 below, we provide a simpler estimation of Rham only under the
assumption of lower bound on Hessian; see the Appendix B.3 for its proof. The
first part of the proof is the same as [19, Lemma 4]; the simplicity in our approach
comes from the application of Bochner’s formula. It is interesting to observe that
Rham does not depend on m when U is an isotropic quadratic potential.

Proposition B.1. Assume there exists K ∈ R such that ∇2
x U � −K Id for all

x ∈ R
d , then we can choose

Rham = √
max{K , 2}. (51)

such that (49) is satisfied.
For the isotropic case U (x) = m

2 |x |2, we have

‖ALham(1 − �v)‖L2(ρ∞)→L2(ρ∞) = √
2.

Thus the optimal choice of Rham is
√
2 and (51) is tight in this case.

As an immediate consequence, if it holds that∇2
x U � −2 Id, we can takeRham =√

2, which is tight for the isotropic case.

B.2. Asymptotic Analysis of the Decay Rate

In this subsection, we shall assume that∇2
x U � −2 Id, thus we can chooseRham =√

2, according to the Proposition B.1. To remove the dependence on the parameter
ε and to find the optimal decay rate, let us introduce

�DMS(γ, m):= sup
ε∈(−1,1)

λDMS(γ, m,
√
2, ε)

= sup
ε∈(−1,1)

γ − ε
1+m −

√
ε2(

√
2 + γ

2 )2 +
(
γ − 2m+1

m+1 ε
)2

2(1 + |ε|) ,

(52)

provided that the supremum is not achieved at the boundary i.e., ε = 1− or ε =
(−1)+. Observe that

• When ε = 0, λDMS(γ, m,
√
2, 0) = 0;

• When ε = (−1)+, λDMS(γ, m,
√
2, (−1)+) < 0.

Therefore, the supremum can only be achieved at ε = 1−, or the critical points of
the expression on the right hand side of (52). In general, it is hard to obtain a simple
explicit expression of �DMS(γ, m). Therefore, we shall consider the following
asymptotic regions:
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Proposition B.2. (i) For fixed m = O(1), we have

�DMS(γ, m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
−(1 + m)

√
3m2 + 4m + 1 + 3m2 + 3m + 1

6m2 + 8m + 3

)
γ + O(γ 2), when γ → 0;

4m2

(1 + m)2
γ −1 + O(γ −2), when γ → ∞.

(53)

(ii) Consider coupled asymptotic regime γ = b
√

m (or equivalently m = (γ /b)2)
for some b = O(1), we have

�DMS(γ, m) =

⎧⎪⎪⎨
⎪⎪⎩

γ 5

2b4
+ O(γ 6), when γ → 0;

4

γ
+ O(γ −2), when γ → ∞.

(54)

The proof can be found in Appendix B.3. The scaling in the first case is already
known in e.g., [17,26,47]; in the above proposition, we simply explicitly calculate
the leading order term. The second case is relevant when we choose γ to optimize
the convergence rate according to m and for the regime m → 0.

B.3. Proofs of the Propositions in Appendix

Proof of Proposition B.1. We first consider the case that Hessian is bounded from
below. It is equivalent to consider the operator norm of

−(1 − �v)LhamA∗ = −(1 − �v)L2
ham�v

(
1 + (Lham�v)

∗(Lham�v)
)−1

.

Notice that this operator is supported on Ran(�v) from the observation that A =
�vA, it is then equivalent to find the smallest Rham such that for any φ(x, v) with
�vφ = φ (i.e., φ(x, v) ≡ φ(x) is a function of x only), we have∥∥−(1 − �v)LhamA∗φ

∥∥
L2(ρ∞)

� Rham ‖φ‖L2(ρ∞) = Rham ‖φ‖L2(μ) . (55)

Given such a function φ with �vφ = φ, define

ϕ:= (
1 + (Lham�v)

∗(Lham�v)
)−1

φ.

It is easy to check that �vϕ = ϕ. By simplifying the above equation with (5) and
(9),

φ(x) = ϕ(x) − �xϕ(x) + ∇xU (x) · ∇xϕ = ϕ(x) + ∇∗
x ∇xϕ(x). (56)

Furthermore, by some straightforward calculation, we have

−(1 − �v)LhamA∗φ = −(1 − �v)L2
ham�vϕ = −

∑
i, j

(viv j − δi, j )∂xi ,x j ϕ.

Thus

∥∥−(1 − �v)LhamA∗φ
∥∥2

L2(ρ∞)
=
∫ ⎛
⎝∑

i, j

(viv j − δi, j )∂xi ,x j ϕ

⎞
⎠

2

dρ∞
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= 2
∑
i, j

∫ (
∂xi ,x j ϕ

)2 dμ.

Then, by Bochner’s formula,

‖−(1 − �v)LhamA∗(φ)‖2L2(ρ∞)

= 2
∫

∇xϕ · ∇x∇∗
x ∇xϕ − ∇xϕ · ∇2

x U∇xϕ − ∇∗
x ∇x

( |∇xϕ|2
2

)
dμ

= 2
∫

|∇∗
x ∇xϕ|2 − ∇xϕ · ∇2

x U∇xϕ dμ

� 2

(∫
|∇∗

x ∇xϕ|2 dμ + K
∫

|∇xϕ|2 dμ
)

� max {K , 2}
(∫

|∇∗
x ∇xϕ|2 dμ + 2

∫
|∇xϕ|2 dμ

)
.

From (56), we have

‖φ‖2L2(μ)
=
∫

ϕ2 + 2ϕ ∇∗
x ∇xϕ + ∣∣∇∗

x ∇xϕ
∣∣2 dμ

� 2
∫

|∇xϕ|2 dμ +
∫

|∇∗
x ∇xϕ|2 dμ.

By combining the last two equations,∥∥−(1 − �v)LhamA∗(φ)
∥∥2

L2(ρ∞)
� max{K , 2} ‖φ‖2L2(μ)

,

which yields (51).
We now consider the isotropic case. Recall that the operator norm ofALham(1−

�v) is the smallestRham such that (55) holds. Let us consider the elliptic PDE (56).
By the choice U (x) = m

2 |x |2,

φ(x) =
(
1 + m(x − 1

m
∇x ) · ∇x

)
ϕ(x).

Then by rescaling the variable x = y√
m
and rescaling the functions �φ(y):=φ(x) =

φ
(

y√
m

)
, �ϕ(y):=ϕ(x) = ϕ

(
y√
m

)
, we have

�φ(y) = (
1 + m(y − ∇y) · ∇y

)�ϕ(y). (57)

In addition, by rewriting (55), we need to find the smallest Rham such that

2m2
∑
i, j

∫ ∣∣∂yi ,y j �ϕ(y)
∣∣2 e− |y|2

2 dy � R2
ham

∫
�φ(y)2e− |y|2

2 dy. (58)

Next, let us expand the last equationbyprobabilists’Hermite polynomials Hk(z):=(z−
d
dz )

k · 1 for integers k � 0. Recall two important properties

H ′
k(z) = k Hk−1(z),

1√
2π

∫
Hj (z)Hk(z)e

− z2
2 dz = k! δ j,k .
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Given n = (n1, n2, · · · , nd), define

Hn(y):=Hn1(y1)Hn2(y2) · · · Hnd (yd).

By the above properties, it is easy to show that if �ϕ = Hn, then �φ = NnHn, where
Nn:=1+ m

∑
i ni . Thus if �ϕ(y) = ∑

n anHn, then we have �φ = ∑
n anNnHn. By

such an expansion, (58) can be rewritten as

2m2
∑
i, j

∑
n

a2
n(ni n j − δi, j ni )

d∏
k=1

nk ! � R2
ham

∑
n

a2
nN 2

n

d∏
k=1

nk !

Then finding the operator norm of ALham(1 − �v) is equivalent to finding the
smallest Rham such that for any n, one has

∑
i, j

(ni n j − δi, j ni ) � R2
ham

2m2 N 2
n ≡ R2

ham

2m2

(
1 + m

∑
i

ni

)2

.

When n1 → ∞ and n2, n3, · · · , nd = 0, we know that
R2
ham
2 � 1. Also observe

that

∑
i, j

(ni n j − δi, j ni ) �
(∑

i

ni

)2

= 1

m2

(
m
∑

i

ni

)2

� 1

m2

(
1 + m

∑
i

ni

)2

.

Therefore,
R2
ham
2 = 1 is sufficient.

In summary, ‖ALham(1 − �v)‖L2(ρ∞)→L2(ρ∞) = √
2 and the optimal choice of

Rham is
√
2.

Proof of Proposition B.2. We used Maple software to help verify the asymptotic
expansion.
Part (i): m = O(1).

• (when γ → 0). Via asymptotic expansion, we have

λDMS(γ, m,
√
2, 1−) = −1 + √

6m2 + 8m + 3

4(1 + m)
+ O(γ ) < 0.

Thus the supremum is not obtained at ε = 1−. Then let us consider critical
points within the domain (−1, 1), whose asymptotic expansions are

ε± = (6m2 + 5m + 1 ± √
3m2 + 4m + 1)(1 + m)

18m3 + 30m2 + 17m + 3
γ + O(γ 2) > 0.

After comparison, the larger decay rate is obtained at ε− with the value in (53).



Arch. Rational Mech. Anal. (2023) 247:90 Page 31 of 34 90

• (when γ → ∞). Similarly, via asymptotic expansion, we have

λDMS(γ, m,
√
2, 1−) = −

√
5
2 − 1

4
γ + O(1) < 0.

Thuswe need to consider the critical points. It turns out, there is only one critical
point within the domain (−1, 1), which is ε = 8m

1+m γ −1 + O(γ −2) with the
decay rate in (53).

Part (ii): γ = b
√

m with b = O(1).

• (when γ → 0). Via asymptotic expansion, one could check that

λDMS(γ, m = (γ /b)2,
√
2, 1−) = −1 + √

3

4
+ O(γ ) < 0.

Thus, we only need to consider the decay rate at critical points, which are given
by

ε1 = γ 3

b2
+ O(γ 4), ε2 = 2

3
γ + O(γ 2).

and the associated decay rates are

λDMS(γ, m = (γ /b)2,
√
2, ε1) = γ 5

2b4
+ O(γ 6) > 0;

λDMS(γ, m = (γ /b)2,
√
2, ε2) = −1

3
γ + O(γ 2) < 0.

Therefore, the optimal decay rate is obtained at ε1, which gives (54).
• (when γ → ∞). Via asymptotic expansion, one could obtain

λDMS(γ, m = (γ /b)2,
√
2, 1−) = −

√
5 − 2

8
γ + O(1) < 0.

Thus the supremum in (52) cannot be obtained at ε = 1−. Then, let us look
at the critical points. It turns out there is only one within the interval (−1, 1),
which is ε1 = 8

γ
+ O(γ −2). The optimal decay rate must be achieved at ε1,

with the expression given in (54).
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