
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-023-01921-5
Arch. Rational Mech. Anal. (2023) 247:93

Optimal Estimates on the Propagation of
Reactions with Fractional Diffusion

Yuming Paul Zhang & Andrej Zlatoš

Communicated by P. Rabinowitz

Abstract

We study the reaction-fractional-diffusion equation ut + (−�)su = f (u) with
ignition and monostable reactions f , and s ∈ (0, 1). We obtain the first optimal
bounds on the propagation of front-like solutions in the cases where no traveling
fronts exist. Our results cover most of these cases, and also apply to propagation
from localized initial data.

1. Introduction

In this paper we consider the Cauchy problem for the reaction-fractional-
diffusion equation

ut + (−�)su = f (u), (1.1)

with (t, x) ∈ [0,∞) × R
d and f a Lipschitz reaction function. One frequently

assumes that f (0) = f (1) = 0, and considers solutions 0 ≤ u ≤ 1 that model
transitions between two equilibrium states (i.e., u ≡ 0 and u ≡ 1), driven by the
interplay of the two physical processes involved: reaction and diffusion. Our goal
is to obtain optimal estimates on the speed of invasion of one equilibrium (u ≡ 0)
by the other (u ≡ 1), so we will study the speeds of propagation of solutions with
front-like (see (1.10) below) and localized initial data. Note that the comparison
principle shows that in the case of front-like initial data, it suffices to consider (1.1)
in one spatial dimension d = 1, that is,

ut + (−∂xx )
su = f (u) (1.2)

on [0,∞) × R. We will do that here when we discuss such initial data, while for
localized data we will consider (1.1) with d ≥ 1. The distinction between these
two cases is marginal when s = 1, but this is not anymore the case when s ∈ (0, 1)
and diffusion has long range kernels.
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The classical diffusion case s = 1 goes back to pioneering works by Kol-
mogorov, Petrovskii, and Piskunov [28], and Fisher [19], and it is now well-known
that solutions with both types of initial data propagate ballistically for all reaction
functions of interest — monostable, ignition, as well as (unbalanced) bistable [4].

We will therefore concentrate here on the fractional diffusion case s ∈ (0, 1),
with the fractional Laplacian given by

(−�)su(x) = cs,d p.v.
∫
Rd

u(x) − u(y)

|x − y|d+2s dy, (1.3)

where cs,d := cs
(∫

Rd−1(1 + h2)− d
2 −sdh

)−1
and cs = cs,1 > 0 is an appro-

priate constant. Then (1.1) models reactive processes subject to non-local dif-
fusion, mediated by Lévy stochastic processes with jumps (see, e.g., [33] and
references therein), and the question of propagation of solutions turns out to be
much more complicated. Its study was initiated by Cabré and Roquejoffre in [10],
who considered (1.1) with Fisher-KPP reactions (specifically, concave ones with
f ′(0) > f (0) = 0 = f (1) > f ′(1)), which are a special case of 1-monostable
reactions from Definition 1.1 below. They proved that solutions to (1.2) with front-
like initial data propagate exponentially, in the sense that u(t, ·) → 1 uniformly on
{x ≤ eσ t } for each σ <

f ′(0)
2s , while u(t, ·) → 0 uniformly on {x ≥ eσ t } for each

σ >
f ′(0)
2s . They also considered localized (non-zero non-negative fast-decaying)

initial data for (1.1) and showed that in that case one has u(t, ·) → 1 uniformly on
{|x | ≤ eσ t } for each σ <

f ′(0)
d+2 s , while u(t, ·) → 0 uniformly on {|x | ≥ eσ t } for

each σ >
f ′(0)
d+2s . We note that prior to [10], exponential propagation for Fisher-KPP

reactions and continuous diffusion kernels with algebraically decreasing tails (from
compactly supported initial data in one dimension) was established byGarnier [20].
While there are many other papers studying such questions for various diffusion
operators (see, e.g., [2,8] and references therein), we will restrict our presentation
here to (1.1).

The exponential propagation rates for Fisher-KPP reactions and s < 1 are due
to interaction between the long range kernels of the fractional diffusion and a strong
hair-trigger effect of the reaction. These contrast with the case s = 1, when level
sets of solutions are located in an o(t) neighborhood of the point x = ct (for front-
like data) resp. the sphere ∂Bct (0) (for localized data), with the spreading speed
c depending only on f (for all the above types of reactions [4]). It turns out that
they are in fact a special feature of 1-monostable reactions, and the situation is very
different for all the other reaction types. Let us now define these.

Definition 1.1. Let f : [0, 1] → R be a Lipschitz continuous functionwith f (0) =
f (1) = 0.

(i) If there is θ0 ∈ (0, 1) such that f (u) = 0 for all u ∈ (0, θ0] and f (u) > 0 for
all u ∈ (θ0, 1), then f is an ignition reaction and θ0 is the ignition temperature.

(ii) If f (u) > 0 for all u ∈ (0, 1), then f is a monostable reaction. If we also have
that

γ uα ≤ f (u) ≤ γ ′uα for all u ∈ (0, θ0] (1.4)
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and some α ≥ 1, θ0 ∈ (0, 1), and γ, γ ′ > 0, we say that f is an α-monostable
reaction.

(iii) If there is θ0 ∈ (0, 1) such that f (u) < 0 for all u ∈ (0, θ0) and f (u) > 0 for
all u ∈ (θ0, 1), as well as

∫ 1
0 f (u)du > 0, then f is an (unbalanced) bistable

reaction.

Ignition reactions are used to model combustive processes, while monostable
reactions model phenomena such as chemical kinetics and population dynamics [6,
18,22,34]. Bistable reactions are used inmodels of phase transitions and nerve pulse
propagation [3,5,31], and the unbalanced condition

∫ 1
0 f (u)du > 0 guarantees at

least ballistic propagation for all non-negative solutions that are initially larger than
θ (for any θ > θ0) on some large-enough ball (of θ -dependent radius). This is also
the case for all ignition and monostable reactions (with θ > 0 in the latter case).

In particular, the following holds for all the reactions from Definition 1.1: if
0 ≤ u ≤ 1 is a solution to (1.2) with either lim infx→−∞ u(0, x) > θ0 for ignition
and bistable f , or lim inf x→−∞ u(0, x) > 0 for monostable f , then for any λ ∈
(0, 1), we have

lim inf
t→∞

xλ(t; u)

t
> 0, (1.5)

where, for t ≥ 0, we let

xλ(t; u) := inf
{
x ∈ R

∣∣ u(t, x) ≤ λ
}

(1.6)

be the left end of the λ-level set of u(t, ·). If we instead let

xλ(t; u) := inf
{|x | ∣∣ u(t, x) ≤ λ

}
, (1.7)

this claim also extends to solutions to (1.1) in any dimension and with
inf |x |≤Rθ u(0, x) ≥ θ , where θ must satisfy either θ > θ0 for ignition and bistable
f , or θ > 0 for monostable f (and Rθ also depends on s, f, d). Both of these
claims easily follow from the proof of the last claim in Lemma 2.6 below. (We note
that when f is sufficiently small near u = 0, solutions with small enough initial
data may be quenched in the sense that limt→∞ ‖u(t, ·)‖∞ = 0.)

Ballistic propagation for u is therefore equivalent to

lim sup
t→∞

xλ(t; u)

t
< ∞

for all λ ∈ (0, 1), where for front-like data and (1.2) we let

xλ(t; u) := sup
{
x ∈ R

∣∣ u(t, x) ≥ λ
}

(≥ xλ(t; u)) (1.8)

be the right end of the λ-level set of u(t, ·), and for localized data and (1.1) we let
xλ(t; u) := sup

{|x | ∣∣ u(t, x) ≥ λ
}

(≥ xλ(t; u)). (1.9)

The comparison principle shows that this holds whenever we have either u(0, ·) ≤
θχ(−∞,R) or u(0, ·) ≤ θχBR(0) for some θ < 1 and R ∈ R, provided (1.2) has
a traveling front. The latter is a solution of the form ũ(t, x) = U (x − ct), with



93 Page 4 of 33 Arch. Rational Mech. Anal. (2023) 247:93

limx→−∞ U (x) = 1 and limx→∞ U (x) = 0 (i.e., U must satisfy
−cUx + (−∂xx )

sU = f (U )). In fact, it suffices to have u(0, ·) ≤ χ(−∞,R) or
u(0, ·) ≤ χBR(0) as long as a traveling front exists for (1.2) with some f̃ ≥ f in
place of f , such that f̃ (1 + δ) = 0 and f̃ > 0 on [1, 1 + δ) for some δ > 0 (then
of course limx→−∞ U (x) = 1 + δ, and one only needs u(0, ·) to be dominated by
some shift of U ). Hence, in the rest of this discussion, we will assume that

θχ(−∞,0) ≤ u(0, ·) ≤ χ(−∞,R) (1.10)

for front-like data and

θχBR′ (0) ≤ u(0, ·) ≤ χBR(0) (1.11)

for localized data, with some θ, R, R′ > 0 (and θ > θ0 when f is ignition or
bistable).

Proving the existence of traveling fronts for (1.2), and hence ballistic propa-
gation of solutions, requires one to solve only a (non-local) ODE, and this was
indeed achieved in a number of cases. These include all the above reactions with
s = 1 [4,5], where diffusion is local, as well as all C2 bistable reactions with
any s ∈ (0, 1) [1,14,24], where the negative values of f near u = 0 suppress
the effects of long range dispersal. The cases of ignition and monostable reac-
tions with s ∈ (0, 1) are more delicate, and depend intimately on the interplay of
the long range diffusion and the strength of f near u = 0. Nevertheless, Mellet,
Roquejoffre, and Sire proved that traveling fronts still exist for ignition reactions
with f ′(1) < 0 when s > 1

2 [30], while Gui and Huan later showed that they do
not exist when s ≤ 1

2 , as well as that they exist for α-monostable reactions (and
s ∈ (0, 1)) precisely when s ≥ α

2(α−1) [23] ( f was assumed to satisfy additional

hypotheses in [23] when s > 1
2 ).We note that since the comparison principle can be

used to estimate propagation of solutions for monostable reactions that lie between
multiples of two distinct powers of u near u = 0, it makes sense to concentrate
only on α-monostable reactions among the monostable ones; we will do so here.

This leaves one with an expectation of super-ballistic (i.e., accelerating) prop-
agation in the cases of ignition reactions with s ≤ 1

2 and α-monostable reactions
with s < min{ α

2(α−1) , 1}. For front-like initial data and (1.2), this has indeed been

confirmed in all these cases except for ignition reactions with s = 1
2 . The result for

concave Fisher-KPP reactions in [10] immediately yields exponential propagation
for all 1-monostable reactions and s ∈ (0, 1), albeit with the lower and upper expo-
nential rates being γ

2s and γ ′
2s , respectively. More recently, Coville, Gui, znd Zhao

[15] proved for α-monostable reactions with α > 1 and s < min{ α
2(α−1) , 1} that

0 < lim inf
t→∞ t−

max{α−1,1}
2s(α−1) xλ(t; u) and lim sup

t→∞
t−

α
2s(α−1) xλ(t; u) < ∞

for all λ ∈ (0, 1) (assuming in addition that f is C1 and f ′(1) < 0), which then
also yields, for ignition reactions with s ∈ (0, 1

2 ], that

lim sup
t→∞

t−
1
2s −ε xλ(t; u) < ∞ (1.12)
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for all ε > 0 and λ ∈ (0, 1). We note that while [15, Theorem 1.3] may appear to

also imply lim inf t→∞ t− 1
2 s xλ(t; u) > 0 for ignition reactions and all λ ∈ (0, 1),

Proposition 3.1 in its proof in fact assumes f to be monostable. Nevertheless, we
still have (1.5) in this case.

While these results cover all the cases of interest in which traveling fronts do
not exist, in all of them there is a gap between the powers of time resp. exponential
rates in the best available lower and upper bounds on the dynamic: an infinitesimal
one for concave Fisher-KPP reactions and for ignition reactions with s = 1

2 , and a
positive one in all the other cases.

In the first main result of the present paper, we fully close this gap in all the
latter cases, proving that xλ(t; u) and xλ(t; u) both have the exact power behavior

O(t
α

2s(α−1) ) in time for all α-monostable reactions with α > 1, and O(t
1
2s ) for all

ignition reactions (so we improve both the lower and upper bounds in the ignition
case). We do so for all the values of s for which traveling fronts do not exist,
except for ignition reactions with s = 1

2 , where almost-ballistic propagation (which
follows from (1.5) and (1.12)), remains the best result.

Theorem 1.2. Let 0 ≤ u ≤ 1 be a solution to (1.2) such that (1.10) holds for some
θ, R > 0, and let xλ(t; u) and xλ(t; u) be from (1.6) and (1.8). Then,

(i) If f is an ignition reaction with ignition temperature θ0 ∈ (0, θ) and s ∈ (0, 1
2 ),

for each λ ∈ (0, 1) we have

0 < lim inf
t→∞ t−

1
2s xλ(t; u) ≤ lim sup

t→∞
t−

1
2s xλ(t; u) < ∞;

(ii) If f is an α-monostable reaction for some α > 1 and s ∈ (0,min{ α
2(α−1) , 1}),

then for each λ ∈ (0, 1) we have

0 < lim inf
t→∞ t−

α
2s(α−1) xλ(t; u) ≤ lim sup

t→∞
t−

α
2s(α−1) xλ(t; u) < ∞.

Remark. 1. The leading orders of the propagation rates in both (i) and (ii) only
depend on s and the qualitative behavior of f near 0, and in (ii) they are
independent of γ, γ ′ from (1.4). In contrast, for Fisher-KPP reactions they also
depend on f ′(0) [10], and so their dependence on f for general 1-monostable
reactions will be much more sensitive.

2. As Theorem 3.4 below shows, (i) extends to the case when u(0, ·) ≤ χ(−∞,R)

is replaced by lim supx→∞ x−2su(0, x) < ∞. The supersolutions constructed

in [15] show that in (ii) we can instead allow lim supx→∞ x− 2 s
α u(0, x) < ∞.

3. One-sided bounds in (1.4) obviously yield one-sided bounds in (ii).
4. For any s ∈ (0, 1

2 ), (i) can be regarded as the α → ∞ limit of (ii).
To the best of our knowledge, these are thefirst qualitatively optimal propagation

results for front-like solutions in situations where no traveling fronts exist.
When it comes to localized initial data and (1.1), the corresponding Fisher-KPP

result from [10] was improved by Coulon and Yangari in [16]. They proved for each
λ ∈ (0, 1) that

0 < lim inf
t→∞ e− f ′(0)

d+2s t xλ(t; u) ≤ lim sup
t→∞

e− f ′(0)
d+2s t xλ(t; u) < ∞
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for solutions with fast-decaying initial data when s ∈ (0, 1) and f is any C1

1-monostable reaction with f (u)− f ′(0)u = O(u1+δ) (for some δ > 0). This also
implies exponential propagation for general 1-monostable reactions, albeit with the
lower and upper exponential rates being γ

d+2 s and
γ ′

d+2 s , respectively.
An interesting feature of the results in [10,16] is that, for Fisher-KPP reactions

and s < 1, the exponential propagation rates for localized initial data differ from
those for front-like data, and they also depend on the dimension. These phenomena
happen neither when s = 1 (for any reaction), because the diffusion kernel is short
range, nor for bistable reactions and s ∈ (0, 1), when ballistic propagation from
localized data at the same speed as from front-like data follows from existence of
traveling fronts.

It is therefore not obviouswhich propagation rates one should expect for ignition
and α-monostable reactions with α > 1 when s ∈ (0, 1) and initial data are
localized. One obviously has the ballistic lower bound (1.5), and the same upper
bounds as for front-like data (which follow immediately by comparison). However,
we are not aware of other relevant prior results for (1.1) in this setting. Our second
main theorem therefore appears to provide the first non-trivial such result, and is
again also qualitatively optimal. It shows that in all the cases from Theorem 1.2,
propagation rates for localized data do coincide with those for front-like data. In
particular, unlike for 1-monostable reactions, they do not depend on the dimension.

Theorem 1.3. Let 0 ≤ u ≤ 1 be a solution to (1.1) such that (1.11) holds for some
θ, R > 0 and large enough R′ (depending on f, s, θ ), and let xλ(t; u) and xλ(t; u)

be from (1.7) and (1.9). Then both parts of Theorem 1.2 hold.

Remark. We can obviously again replace u(0, ·) ≤ χBR(0) by lim sup|x |→∞ |x |−2 s

u(0, x) < ∞ in (i), and by lim sup|x |→∞ |x |− 2 s
α u(0, x) < ∞ in (ii).

The proofs of Theorems 1.2 and 1.3 rest on finding appropriate sub- and su-
persolutions � satisfying xλ(t;�) = O(tβ) = xλ(t;�), with β = 1

2s for ignition
reactions and β = α

2s(α−1) for α-monostable reactions. Since these will accelerate
in time, one cannot use the traveling front ansatz �(t, x) ∼ ϕ(x − ct) in their con-
struction, because then their transition regions (where they decrease from values
close to 1 to those close to 0) would only travel with constant speed c. One might
instead hope to have �(t, x) ∼ ϕ(x − ctβ), which does travel with the right speed
O(tβ−1). However, it turns out that the acceleration of propagation also forces sub-
and supersolutions to have transition regions that stretch in time (see also [21]).

We will therefore construct localized subsolutions of the form �(t, x) ∼
ϕ(ct− 1

2s x) in the proof of Theorems 1.2(i) and 1.3(i). Such functions propagate

with speeds O(t
1
2s −1) but also “flatten” in space, having transition regions of widths

O(t
1
2s ) (so the latter stretch with roughly the same speeds O(t

1
2s −1)). This will be

sufficient for subsolutions, but we will have to employ a much more complicated
construction for front-like supersolutions. Their propagation speeds will again be

O(t
1
2s −1), but we will need their stretching speeds to also depend on the value of�,

and they will in fact grow from O(t
1
2s −2)where� ≥ θ0 to O(t

1
2s −1)where� ∼ 0.

Of course, this stretching will then accumulate over time to transition regions be-

tween different values of � having lengths from O(t
1
2s −1) to O(t

1
2s ), meaning
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that these supersolutions will be flattened in a spatially non-uniform manner. This
approach, which seems to be necessary in the hunt for qualitatively optimal super-
solutions in the ignition case (and hence optimal upper bounds in Theorems 1.2(i)
and 1.3(i)), makes this effort significantly more challenging and explains the com-
plexity in our construction in Sect. 3 below.

This type of construction appears to be new, as all previous ones that we are
aware of involve spatially uniform stretching rates. In particular, the supersolu-
tions for α-monostable reactions with α > 1 constructed in [15], which propagate
with optimal speeds O(t

α
2s(α−1) −1

), have transition regions that stretch with speeds
O(t

α
2s(α−1) −2

). The subsolutions we construct below in this case will have the same
propagation and stretching speeds. However, unlike for ignition reactions, we are
only able to achieve these optimal speeds with localized but not compactly sup-
ported subsolutions. This, and the fact that we need to find them in all dimensions
d ≥ 1, further complicate this part of our work.

Finally,we note that smoothing properties of the fractional parabolic dynamic of
(1.1) mean that the sense in which our functions solve the PDE is not consequential
here. While we consider below mild solutions with uniformly continuous initial
data, Theorem 2.5 shows that these immediately become classical. This is also true
for bounded weak solutions, via an argument as in the proof of Theorem 2.5 (based
on the regularity results in [17,27]), so these three notions of solutions coincide here.
This means that our propagation results hold as well for not necessarily uniformly
continuous initial data, due to the comparison principle. Since we were not able to
locate a suitable version of the latter in the literature, we prove it in Theorem 2.4
below (which is hence of independent interest). We in fact state it for distributional
sub- and supersolutions (seeDefinition 2.3) because the supersolutionswe construct
here will only be Lipschitz continuous.

We also highlight here Lemma 2.6, below, which constructs compactly sup-
ported stationary subsolutions to (1.1). These then provide initially compactly sup-
ported time-increasing solutions, which can be very convenient in the analysis of
long-time dynamics of solutions (and specifically, construction of subsolutions in
Sect. 4). We are not aware of such a result for (1.1) with s ∈ (0, 1) prior to our
work, although its s = 1 version is well known, and in [9] it was also obtained for
diffusion operators with integrable kernels.

Remark. Shortly before we finished writing this paper in May 2021, we informed
E. Bouin, J. Coville, and G. Legendre about it. They posted the preprints [7,
8] on arXiv immediately afterwards, just days before we posted ours. The main
results claimed in [7,8] correspond to the first inequalities in Theorem 1.2(i,ii),
respectively, which are our optimal lower bounds for front-like initial data (both
[7,8] consider more general diffusion kernels in one dimension, with x−1−2s decay
at±∞). Unlike our constructions in Sects. 4 and 5 below, the subsolution candidate
functions presented in [7,8] are front-like, so they would not yield localized initial
data results such as Theorem 1.3 (even when d = 1 because the diffusion kernels
are long range for all s ∈ (0, 1)). However, the 23-page May 2021 version of [8] is
incomplete, and was replaced in July 2022 by a 45-page version with a much longer
proof containing many changes and additions. Moreover, the May 2021 version of
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[7] is clearly very preliminary and no other version seemed to be available at the
time the present paper went into press in August 2023. Neither preprint appears to
have been peer reviewed by that time either.

Organization of the Paper In Sect. 2 we collect various preliminary results,
including a comparison principle for (1.1). We then prove parts (i) of Theorems 1.2
and 1.3 in Sects. 3 and 4, and parts (ii) in Sect. 5 (these three sections are completely
independent and can be read in any order).

2. Well-posedness and a Comparison Principle

In this section we collect some basic well-posedness and regularity results for
(1.1). We also prove two important (and to the best of our knowledge new) results
here. The first is a comparison principle, Theorem 2.4, which removes certain re-
strictive hypotheses from previous results (see the paragraph before Definition 2.3).
The second is Lemma 2.6, which constructs initially compactly supported time-
increasing solutions to (1.1) for ignition (and therefore also for α-monostable)
reactions and all s ∈ (0, 1).

We start with the notion of mild solutions, defined via Duhamel’s formula (see
[10,32]). We use Cb,u(X) to denote the space of bounded uniformly continuous
functions on X (with the supremumnorm), and St to denote the semigroupgenerated
by (−�)s on R

d .

Definition 2.1. We say that u ∈ C([0, T );Cb,u(R
d)) is a mild solution to (1.1)

(and that it is global if T = ∞) if for each t ∈ [0, T ) we have

u(t, ·) = St [u(0, ·)] +
∫ t

0
St−τ [ f (u(τ, ·))]dτ.

Remark. Notice that if u ∈ C([T0, T1];Cb,u(R
d)) for some T0 < T1, then it

is also uniformly continuous in time on [T0, T1] and it follows that in fact u ∈
Cb,u([T0, T1] × R

d).
We now have the following global well-posedness result:

Theorem 2.2. If s ∈ (0, 1) and f is Lipschitz continuous, then for any u0 ∈
Cb,u(R

d), there is a unique global mild solution u to (1.1) with u(0, ·) = u0.

Remark. Theorem 2.2 can be proved via a standard fixed point argument using that

N [u](t, ·) := St [u(0, ·)] +
∫ t

0
St−τ [ f (u(τ, ·))]dτ

defines a contraction mapping N on the subspace of u ∈ C([0, T ];Cb,u(R
d))

with u(0, ·) = u0 when T is sufficiently small, see for instance [10,29] (both these
papers concernmoregeneral diffusionoperators than (−�)s ).Wenote that although
f ′ ∈ Cb,u(R) is assumed in [10, Sections 2.3 and 2.4], this can easily be relaxed to
f being Lipschitz (we prefer to consider here this case instead of f ∈ C1([0, 1])).
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We also mention that a viscosity-solutions-based approach to well-posedness, via
maximum principles for general non-local nonlinear PDEs and Perron’s method,
was used in [11,13,25].

We next turn to a comparison principle for (1.1), and the related definition of
sub- and supersolutions. We were not able to use in this work comparison prin-
ciples that we found in the literature, as these do not quite apply to the Lipschitz
continuous sub- and supersolutions we construct below (mild solutions have bet-
ter regularity, see Theorem 2.5). For instance [10, Proposition 2.8] only applies to
classical sub- and supersolutions that satisfy an extra hypothesis on their order as
|x | → ∞ at all times t ≥ 0, while [10, Proposition 2.11] only applies to mild
solutions to ut + (−�)su = h(t, x) with uniformly continuous h. We therefore
prove here a comparison principle without extra hypotheses and in the more gen-
eral distributional sense, which then also applies to mild solutions due to Remark
2 below.

Definition 2.3. We say that u ∈ C((T0, T1);Cb,u(R
d)) is a subsolution (superso-

lution) to (1.1) if for each 0 ≤ ϕ ∈ C∞
c ((T0, T1) × R

d) we have

∫ T1

T0

∫
Rd

[−u(t, x)ϕt (t, x) + u(t, x)(−�)sϕ(t, x) − f (u(t, x))ϕ(t, x)
]
dxdt

≤ 0 (≥ 0).

Remark. 1. Note thatwhen s ∈ (0, 1
2 ), anyboundedLipschitz continuous function

u has bounded (−�)su; and if it satisfies ut + (−�)su − f (u) ≤ 0 (≥ 0) for
a.e. (t, x), then it is clearly a subsolution (supersolution) to (1.1).

2. It is easy to show that a mild solution u to (1.1) on time interval [0, T ) is both
a sub- and a supersolution on time interval (0, T ). Indeed, let uε := φε ∗ u,
with φε a smooth space-time mollifier as in the following proof. Then uε is a
classical solution to ut + (−�)su = fε(t, x) on time interval (T0 + ε, T1 − ε),
where fε := φε ∗ ( f ◦ u). Since uε → u, and fε → f ◦ u uniformly on
[t0, t1] × R

d for any [t0, t1] ⊆ (T0, T1) (see the remark after Definition 2.1),
this yields the claim.

Theorem 2.4. Let s ∈ (0, 1) and f be Lipschitz. If u, v ∈ C([0, T );Cb,u(R
d))

are, respectively, a subsolution and a supersolution to (1.1) on time interval (0, T )

and satisfy u(0, ·) ≤ v(0, ·) on Rd , then u ≤ v on [0, T ) × R
d .

Proof. It suffices to prove that u ≤ v on [0, T ′] × R
d for any T ′ < T , so we can

assume that T < ∞ and u, v ∈ C([0, T ];Cb,u(R
d)). Let K := max{‖ f ′‖∞,

‖u‖∞, ‖v‖∞}, and then let

ũ(t, x) := eK tu(t, x), ṽ(t, x) := eK tv(t, x), g(t, u) := Ku + eK t f (e−Ktu).

Then ũ and ṽ are, respectively, a subsolution and a supersolution to (1.1) with
f (u) replaced by g(t, u), on time interval (0, T ). Moreover, max{‖ũ‖∞, ‖ṽ‖∞} ≤
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KeKT , and if we let S := [0, T ] × [−KeKT , KeKT ], then for all (t, u) ∈ S we
have

0 ≤ gu(t, u) ≤ 2K and |gt (t, u)| ≤ KeKT ‖ f |[−K ,K ]‖∞ + K 3 =: K ′.
(2.1)

Finally, we have ũ(0, ·) ≤ ṽ(0, ·), and proving u ≤ v is equivalent to proving
ũ ≤ ṽ. We will therefore slightly abuse notation, and write below u, v instead of
ũ, ṽ.

For any small ε ∈ (0, 1), fix a smoothmollifier φε ≥ 0 with suppφε ⊆ Bε(0) ⊆
R
d+1 and

∫
Rd+1 φε(t, x)d(t, x) = 1. Then for (t, x) ∈ [0, T − 2ε] × R

d let

uε(t, x) := (φε ∗ u)(t + ε, x) and vε(t, x) := (φε ∗ v)(t + ε, x)

(the ε-shifts in time allow us to define uε, vε at t = 0). The remark after Defini-
tion 2.1 shows that there is ωε ≥ 0 such that limε→0+ ωε = 0 and

sup
(t,x),(τ,y)∈[0,T ]×R

d ,
max{|t−τ |,|x−y|}≤2ε

max{|u(t, x) − u(τ, y)|, |v(t, x) − v(τ, y)|} ≤ ωε. (2.2)

Then on [0, T − 2ε] × R
d we have

max{|uε − u|, |vε − v|} ≤ ωε. (2.3)

Now consider any (t, x) ∈ [0, T − 2ε] × R
d . If there is (t ′, x ′) ∈ Bε(t + ε, x)

such that u(t ′, x ′) ≤ v(t ′, x ′), then it follows from (2.1) and (2.2) that

(φε ∗ [g(·, u(·, ·)) − g(·, v(·, ·))]) (t + ε, x)

≤ g(t ′, u(t ′, x ′)) − g(t ′, v(t ′, x ′)) + 4ε‖gt |S‖∞ + 2ωε‖gu |S‖∞
≤ 4εK ′ + 4Kωε.

If, instead, u ≥ v on Bε(t + ε, x), then gu ≤ 2K yields

(φε ∗ [g(·, u(·, ·)) − g(·, v(·, ·))]) (t + ε, x) ≤ 2K (φε ∗ (u − v))(t + ε, x)

≤ 2K (uε(t, x) − vε(t, x)).

From these estimates, and from u and v being, respectively, a sub- and a super-
solution, we get for wε := uε − vε and ω′

ε := 4εK ′ + 4Kωε (→ 0 as ε → 0)
that

hε := (wε)t + (−�)swε ≤ (φε ∗ [g(·, u(·, ·)) − g(·, v(·, ·))]) (· + ε, ·)
≤ max{2Kwε, ω

′
ε}.

Duhamel’s principle for smooth solutions to the linear PDE

wt + (−�)sw = h(t, x)

(see [10,29,32]) now yields

wε(t, x) ≤ St [wε(0, ·)](x) +
∫ t

0
St−τ [max{2Kwε(τ, ·), ω′

ε}](x) dτ
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for all (t, x) ∈ [0, T − 2ε] × R
d . Since St preserves order and St [1] ≡ 1, we

have St [wε(0, ·)] ≤ 2ωε on R
d (by u(0, ·) ≤ v(0, ·) and (2.3)), and if we let

ξ(t) := max{supx∈Rd wε(t, x), 0}, then

ξ(t) ≤ 2ωε + Tω′
ε +

∫ t

0
2K ξ(τ ) dτ

for each t ∈ [0, T − 2ε]. Grönwall’s inequality now yields

ξ(t) ≤ (2ωε + Tω′
ε) e

2KT

for t ∈ [0, T − 2ε], hence
lim sup

ε→0
sup

(t,x)∈[0,T−2ε]×Rd
wε(t, x) = 0.

This shows that u ≤ v on [0, T ] × R
d , finishing the proof. ��

Similarly to parabolic PDE with classical diffusion, the dynamics of (1.1) pro-
vides certain smoothing,which is the basis of relevant regularity results. The follow-
ing theorem, in which we suppress dependence of all constants on d in the notation,
is consequence of results from [17,27] (we also refer the reader to [12,13,26] for
the viscosity solutions setting):

Theorem 2.5. Let s ∈ (0, 1) and f be Lipschitz, and let u ∈ C([0, T );Cb,u(R
d))

be a bounded mild solution to (1.1). There is σ = σ(s) > 0 such that for any
τ ∈ (0, T ) there is C = C(s, f, ‖u‖∞, τ ) > 0 such that

‖u‖C1+σ/2s,2s+σ ([τ,T )×Rd ) ≤ C.

In particular, u is a classical solution to (1.1).

Proof. For any ε ∈ (0, τ
4 ), let φε be the space-time mollifier from the proof of

Theorem 2.4. If fε := φε ∗ ( f ◦u), then uε := φε ∗u satisfies in the classical sense
the linear PDE

(uε)t + (−�)suε = fε(t, x) (2.4)

on ( τ
4 , T − ε) × R

d . Since ‖u‖∞ < ∞, we have

max{‖uε‖∞, ‖ fε‖∞} ≤ C1 := | f (0)| + (1 + ‖ f ′‖∞)(1 + ‖u‖∞).

The interiorHölder estimate [27,Theorem1.1] nowyieldsσ = σ(s) ∈ (0,min{1, 2s})
and C2 = C2(s,C1, τ ) > 0 such that

‖uε‖Cσ/2s,σ ([τ/2,T−ε)×Rd ) ≤ C2.

Since uε → u uniformly on [ τ
2 , T − δ] × R

d for any δ > 0 by the remark after
Definition 2.1, taking ε → 0 shows that

‖u‖Cσ/2s,σ ([τ/2,T )×Rd ) ≤ C2.
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This and Lipschitz continuity of f yield C3 = C3(C1,C2) > 0 such that

‖ fε‖Cσ/2s,σ ([τ/2,T−ε)×Rd ) ≤ C3

for all ε ∈ (0, τ
4 ). It now follows from (2.4) and [17, Theorem 1.1] that

‖uε‖C1+σ/2s,2s+σ ([τ,T−ε)×Rd ) ≤ C4

for these ε, with C4 = C4(s,C1,C2, τ ) > 0. Taking ε → 0 finishes the proof. ��

Finally, to obtain the lower bounds in Theorems 1.2 and 1.3, we will need to
use certain non-trivial initial data u0 : Rd → [0, 1] satisfying

− (−�)su0 + f (u0) ≥ 0 (2.5)

(note that the comparison principle then shows that solutions to (1.1) with such
initial data are time-increasing). The following lemma, whose proof we postpone
to the appendix, provides such functions for ignition reactions (see the remark
below for monostable reactions):

Lemma 2.6. Let f be an ignition reaction with ignition temperature θ0 ∈ (0, 1),
and let s ∈ (0, 1). For θ ∈ (θ0, 1), there are Rθ ≥ 1 and a non-increasing smooth
function uθ on R (both depending also on s, f, d) such that

θχ(−∞,0] ≤ uθ ≤ θχ(−∞,Rθ ], (2.6)

inf
x∈R

[−(−∂xx )
suθ (x) + f (uθ (x))

] ≥ 0, (2.7)

inf
x≤Rθ

[−(−∂xx )
suθ (x) + f (uθ (x))

]
> 0, (2.8)

and the function ūθ (x) := uθ (|x |) on R
d satisfies

inf
x∈Rd

[−(−�)s ūθ (x) + f (ūθ (x))
] ≥ 0, (2.9)

inf|x |≤Rθ

[−(−�)s ūθ (x) + f (ūθ (x))
]

> 0. (2.10)

Moreover, if 0 ≤ u ≤ 1 is a global mild solution to (1.1) and u(0, ·) ≥ ūθ (· − x0)
for some x0 ∈ R

d , then u(t, ·) → 1 locally uniformly on R
d as t → ∞.

Remark. Since for each monostable reaction f and each θ ∈ (0, 1), there is an
ignition reaction g ≤ f with ignition temperature smaller than θ , the lemma extends
to such f, θ .
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3. Supersolutions for Ignition Reactions

In this section we prove the upper bound in Theorem 1.2(i), which then auto-
matically provides the same bound in Theorem 1.3(i) via the comparison principle.
The main step is construction of a family of supersolutions � to (1.2) that satisfy

xλ(t;�) = O(t
1
2s ).

We start with a simple fractional Laplacian estimate. For A1 < A2 and θ ∈
(0, 1), let

ψA1,A2,θ (x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x ≤ A1,

1 − (1 − θ)
x − A1

A2 − A1
if x ∈ (A1, A2],

θ if x > A2.

Note that s < 1
2 and Lipschitz continuity of ψA1,A2,θ show that (−∂xx )

sψA1,A2,θ

is bounded.

Lemma 3.1. Let s ∈ (0, 1
2 ), Cα := max{ cs

2 s(1−2 s) , 1}, A1 < A2, and θ ∈ (0, 1). If
ϕ ≤ ψA1,A2,θ and ϕ(x) = ψA1,A2,θ (x) for some x ∈ R, then

(−∂xx )
sϕ(x) ≥ −Cs(1 − θ)(A2 − A1)

−2s .

Proof. By (1.3), it suffices to assume that ϕ ≡ ψA1,A2,θ . Then

ϕ(x) − ϕ(x + h) ≥ ϕ(A2) − ϕ(A2 + h)

for each h ∈ R, so it suffices to assume that x = A2. Now a direct computation
yields

(−∂xx )
sϕ(A2) = −cs(1 − θ)

∫ A1−A2

−∞
|h|−1−2sdh − cs(1 − θ)

A2 − A1

∫ 0

A1−A2

|h|−2sdh

= −cs(1 − θ)
(
(2s)−1 + (1 − 2s)−1

)
(A2 − A1)

−2s,

finishing the proof. ��
We will now construct an infinite family of supersolutions to (1.2) indexed by

k ∈ N (see (3.6) below), each defined on a finite time interval of length ee
O(k)

and
obtained by gluing together k + 3 separate pieces (all but one of them linear in
space); see the introduction for a discussion of the reasons for such a complicated
construction.

Let us take any k ∈ N, and for any n ∈ Nk := {0, 1, ..., k} let
αk
n := �n

j=1(k − n + j)(2s) j−1 and βk
n := 2−αk

n ,

where
∑0

j=1 a j := 0 (soαk
0 = 0 andβk

0 = 1).We thenhaveαk
k ≤ ∑∞

j=1 j (2 s) j−1 =
1

(1−2 s)2
, so

βk
k ≥ 2

− 1
(1−2s)2 . (3.1)
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(In fact, αk
k−n is increasing in k for each fixed n ≥ 0 and converges to 1

(1−2 s)2
+

n
1−2 s .) Also, from αk

n ≥ k − n + 1 we have

�k
n=1β

k
n ≤ 1, (3.2)

and a simple computation yields

βk
n = 2−k+n−1(βk

n−1)
2s . (3.3)

We also have the simple lemma

Lemma 3.2. If t ≥ 2
k

1−2s , then for any n ∈ Nk \ {0},
βk
n t

1
2s −(2s)n ≥ 2βk

n−1t
1
2s −(2s)n−1

. (3.4)

Proof. A direct computation shows that (3.4) is equivalent to

t (2s)
n−1−(2s)n ≥ 2k(2s)

n−1−�n−1
j=1 (2s)

j−1
.

This is equivalent to

t1−2s ≥ 2k−((2s)1−n−1)/(1−2s),

which clearly holds, by the hypothesis. ��
In the rest of this section, and in the next section, we will assume the following:

(I) Let f be an ignition reaction with ignition temperature θ0 ∈ (0, 1), and let
s ∈ (0, 1

2 ).

Let us now define θ∗ := θ0
2 . For n ∈ Nk we let

θkn := (1 − 2−k+n−1)θ∗ and θk−1 := 1,

and then for t ≥ 1

lkn(t) := �n
j=0β

k
j t

1
2s −(2s) j and lk−1(t) := 0

as well as

Lk
n(t, x) := θkn−1 − (θkn−1 − θkn )

x − lkn−1(t)

lkn(t) − lkn−1(t)
.

Therefore, the function

L̂k(t, x) := Lk
n(t, x) when x ∈ (lkn−1(t), l

k
n(t)] for some n ∈ Nk

is continuous on its domain
{
(t, x) ∈ R

2 | t ≥ 1 and x ∈ (0, lkk (t)]
}
, and piecewise

linear in x for each fixed t ≥ 1.
Finally, with Cs from Lemma 3.1, let

c∗ := max
{
Cs + 2‖ f ‖∞, (Csγ0)

1
s , (Csγ0γ

2s
1 )2

}
, (3.5)
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where

γ0 := (4θ−1∗ )
1
s and γ1 := 2

1+ 1
(1−2s)2 ,

and define the Lipschitz continuous function

�k(t, x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 x ≤ c∗t
1
2s ,

L̂k(t, x − c∗t
1
2s ) x ∈ (c∗t

1
2s , c∗t

1
2s + lkk (t)],[

(θkk )−
1
2s + c

− 1
2∗ t−

1
2s

(
x − c∗t

1
2s − lkk (t)

)]−2s

x > c∗t
1
2s + lkk (t).

(3.6)

We now show that�k is a supersolution to (1.2) on some (long for large k) time
interval.

Theorem 3.3. Let f and s satisfy (I), and let�k be from (3.6) for each k ∈ N. Then

�k is a supersolution to (1.2) on the time interval (2
k

1−2s , 2(2s)−k
).

Proof. We write � = �k for simplicity. Let Tk := 2(2s)−k
and fix any t ∈

[2 k
1−2s , Tk]. At any x < c∗t

1
2 s we clearly have �t = 0 ≤ (−∂xx )

s�, and so
�t + (−∂xx )

s� − f (�) ≥ 0 because f (1) = 0. By Remark 1 after Definition 2.3,

it suffices to extend this claim to a.e. x > c∗t
1
2s .

Next we claim that �(t, ·) is convex on [c∗t
1
2 s ,∞). The slope of Lk

n(t, ·) for
n ∈ Nk\{0} is

− θkn−1 − θkn

lkn(t) − lkn−1(t)
= − 2−k+n−2θ∗

βk
n t

1
2s −(2s)n

,

while for n = 0 it is −(1 − θk0 )t1− 1
2s . Since t ≥ 2

k
1−2 s and t1−2 s ≥ 1 ≥ θ∗

2(1−θ∗) ,

Lemma 3.2 shows that �(t, ·) is convex on [c∗t
1
2 s , c∗t

1
2 s + lkk (t)]. It is clearly also

convex on [c∗t
1
2 s + lkk (t),∞), so we only need to check one-sided derivatives at

y := c∗t
1
2s + lkk (t). We have

lim
x→y+ �x (t, x) = −2s(θkk )1+

1
2s c

− 1
2∗ t−

1
2s = −2s(2−1θ∗)1+

1
2s c

− 1
2∗ t−

1
2s , (3.7)

as well as (using also (3.2))

lim
x→y− �x (t, x) = − θkk−1 − θkk

lkk (t) − lkk−1(t)
= −θ∗

4
(βk

k )
−1 t−

1
2s +(2s)k ≤ −θ∗

4
t−

1
2s ,

which is no more than (3.7) because s < 1
2 and so c∗ ≥ 1 ≥ 16 s2(2−1θ∗)

1
s . The

claim follows.
Next consider any x ∈ (c∗t

1
2 s , c∗t

1
2 s + lk0(t)). It follows from the definition of

� that

�t (t, x) = (1 − θk0 )(c∗ + (1 − 2s)(2s)−1xt−
1
2s ) ≥ c∗(1 − θk0 ).
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Lemma 3.1 with A1 := c∗t
1
2 s , A2 := c∗t

1
2 s + lk0(t), θ := θk0 , together with

c∗ ≥ Cs + 2‖ f ‖∞, show that at such x we have

�t + (−∂xx )
s� − f (�) ≥ c∗(1 − θk0 ) − Cs(1 − θk0 )t−1+2s − ‖ f ‖∞ ≥ 0.

Convexity of �(t, ·) on [c∗t
1
2 ,∞) shows that for any n ∈ Nk \ {0} and any

x ∈ (c∗t
1
2 s + lkn−1(t), c∗t

1
2 s + lkn(t)) we have

�(t, ·) ≤ ψc∗t1/2s ,x,�(t,x)

on R, and thus Lemma 3.1 and the definition of lkn−1(t) yield

(−∂xx )
s�(t, x) ≥ −Cs(1 − θkn )(x − c∗t

1
2s )−2s ≥ −Cs(β

k
n−1)

−2s t−1+(2s)n .

(3.8)

Since lkn−1(t) is increasing in t ≥ 1 and βk
n ≤ 1 by (3.2), we obtain

�t (t, x) = d

dt
Lk
n(t, x − c∗t

1
2s )

≥ 2−k+n−2θ∗(βk
n )

−1
[
−t−

1
2s +(2s)n∂t (−c∗t

1
2s )

−(x − c∗t
1
2s − lkn−1(t))∂t (t

− 1
2s +(2s)n )

]

≥ 2−k+n−2θ∗(βk
n )

−1c∗(2s)−1t−1+(2s)n .

From this, (3.8), (3.3), and c∗ ≥ 4sCs
θ∗ (due to c∗ ≥ (Csγ0)

1
s and Cs ≥ 1), we

obtain �t + (−∂xx )
s� ≥ 0 at the x in question (notice that f (�(t, x)) = 0 for all

x ≥ c∗t
1
2 s + lk0(t)).

Finallyweneed to consider any x > c∗t
1
2s +lkk (t), and this is the regionwherewe

will use that t ≤ Tk . Since lkk (t) is increasing in t ≥ 1, with yt,x := x−c∗t
1
2 s −lkk (t)

we have

�t (t, x) ≥
[
(θkk )−

1
2s + c

− 1
2∗ t−

1
2s yt,x

]−1−2s (
c
− 1

2∗ t−
1
2s −1yt,x + c

1
2∗ t−1

)
.

Thus if c
− 1

2∗ t− 1
2s yt,x ≤ 1, then (θkk )− 1

2 s + 1 ≤ 2( θ∗
2 )− 1

2 s and so by s < 1
2 we have

�t (t, x) ≥ 2− (1+2s)2
2s θ

1+2s
2s∗ c

1
2∗ t−1 ≥ γ −1

0 c
1
2∗ t−1. (3.9)

And if c
− 1

2∗ t− 1
2s yt,x ≥ 1, we obtain

�t (t, x) ≥
[
(θkk )−

1
2s + 1

]−1−2s
(
c
− 1

2∗ t−
1
2s yt,x

)−1−2s

c
− 1

2∗ t−
1
2s −1yt,x

≥ γ −1
0 cs∗y−2s

t,x . (3.10)
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Since �(t, ·) is convex on [c∗t
1
2s ,∞), Lemma 3.1 shows that

(−∂xx )
s�(t, x) ≥ −Cs(x − c∗t

1
2s )−2s . (3.11)

Therefore, at all x > c∗t
1
2s + lkk (t) such that c

− 1
2∗ t− 1

2 s yt,x ≥ 1 we have

�t + (−∂xx )
s� ≥ (γ −1

0 cs∗ − Cs)y
−2s
t,x ≥ 0

by (3.10) and (3.5). If instead c
− 1

2∗ t− 1
2 s yt,x ≤ 1, we note that t ≤ Tk implies

t (2s)
k ≤ 2, so

lkk (t) ≥ βk
k t

1
2s −(2s)k ≥ 2

− 1
(1−2s)2

−1
t

1
2s = γ −1

1 t
1
2s

by (3.1). Hence (3.11) yields

(−∂xx )
s�(t, x) ≥ −Csl

k
k (t)

−2s ≥ −Csγ
2s
1 t−1,

and then (3.9) and (3.5) again show that �t + (−∂xx )
s� ≥ 0 at such x . Therefore,

� is indeed a supersolution to (1.2) on the time interval (2
k

1−2s , Tk). ��
We can now use the supersolutions from Theorem 3.3 to obtain an upper bound

for general solutions to (1.2).

Theorem 3.4. Let f and s satisfy (I), and let 0 ≤ u ≤ 1 solve (1.2). If

u(0, x) ≤ Ax−2s

for some A ≥ 1 and all x > 0, then for each λ ∈ (0, 1) there is Cλ,A > 0
(depending also on s, f ) such that for all t ≥ 0 we have

xλ(t; u) ≤ Cλ,A(1 + t)
1
2s .

Remark. It is easy to see from this that one also has xλ(t; u) ≤ Cλt
1
2s for t ≥ τλ,A,

with some τλ,A = τλ,A(s, f ) but Cλ = Cλ(s, f ) independent of A.

Proof. Let k0 be the smallest positive integer such that (2s)−k ≥ k+1
1−2s + 1 for all

k ≥ k0. Then we have
⋃
k≥k0

[
2

k
1−2s , 2(2s)−k − 2

k
1−2s

]
= [2 k0

1−2s ,∞). (3.12)

Next let k1 ≥ k0 be such that

2
k1

1−2s

(
2

1
2s θ

− 1
2s∗ c−1∗ + c

− 1
2∗
)−2s

≥ A.

It follows from (3.12) that for any T ≥ 2
k1

1−2 s , there is k ≥ k1 such that

2
k

1−2s ≤ T ≤ 2(2s)−k − 2
k

1−2s .
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Fix thisT and k, and let�k be from(3.6). Then�k(2
k

1−2 s , ·) ≡ 1on (−∞, c∗2
k

(1−2 s)2 s ],
while�k being non-increasing and θkk = θ∗

2 show that for x > c∗2
k

(1−2 s)2 s we have

�k(2
k

1−2s , x) ≥ �k(2
k

1−2s , x + lkk (2
k

1−2s )) ≥
(
2

1
2s θ

− 1
2s∗ + c

− 1
2∗ 2− k

(1−2s)2s x

)−2s

≥ Ax−2s .

Thus we have �k(2
k

1−2s , ·) ≥ u(0, ·) on R. So if we let ϕ(t, ·) :=�k(t+2
k

1−2s , ·),
then ϕ is a supersolution to (1.2) on the time interval [0, T ] with ϕ(0, ·) ≥ u(0, ·).
It now follows from the comparison principle (Theorem 2.4; see also Remark 2
after Definition 2.3) that u ≤ φ on [0, T ] × R.

Since lkk (t) ≤ 2t
1
2s by (3.2), from (3.6) we obtain for any λ ∈ (0, θ∗

2 ),

xλ(t;�k) ≤ c∗t
1
2s + lkk (t) +

(
λ− 1

2s − (θkk )−
1
2s

)
c
1
2∗ t

1
2s ≤

(
c∗ + 2 + √

c∗λ− 1
2s

)
t

1
2s

for all t ≥ 1. This and T ≥ 2
k

1−2s show that for all t ∈ [0, T ] we have

xλ(T ; u) ≤ xλ(T + 2
k

1−2s ;�k) ≤
(
c∗ + 2 + √

c∗λ− 1
2s

)
2

1
2s T

1
2s .

Since T ≥ 2
k1

1−2s was arbitrary, the result now clearly follows for any λ ∈ (0, 1),
with Cλ,A depending also on s, K , θ0 (since c∗ and k0 depend on them). ��

4. Subsolutions for Ignition Reactions

In this sectionwe prove the lower bound in Theorem1.3(i), which then automat-
ically provides the same bound in Theorem 1.2(i) via the comparison principle. We
do so by constructing appropriate subsolutions to (1.1) in the following counterpart
to Theorem 3.4:

Theorem 4.1. Let f and s satisfy (I), and let 0 ≤ u ≤ 1 solve (1.1). If

u(0, ·) ≥ θχBRθ
(0)

for some θ > θ0 and Rθ from Lemma 2.6, then for each λ ∈ (0, 1) there are
Cλ, τλ,θ > 0 (depending also on s, f, d) such that for all t ≥ τλ,θ we have

xλ(t; u) ≥ Cλ t
1
2s .

Proof. The comparison principle and Lemma 2.6 show that it suffices to prove the
result with Cλ also depending on θ , which we will do.

Let uθ , ūθ be from Lemma 2.6, and let L := ‖u′
θ‖∞ < ∞ and supp uθ =

(−∞, a] (so a ∈ (0, Rθ ]). By (2.10), there is ε > 0 such that for all x ≤ a we have

(−�)s ūθ (x) − f (ūθ (x)) ≤ −ε. (4.1)
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Next let

b := ((2sε)−1La)
1
2s and �(t, x) := ūθ (bt

− 1
2s x).

Since �(t, ·) ≥ 0 vanishes on Bb−1at1/2s (0) for each t > 0, we have

�t (t, ·) + (−�)s�(t, ·) − f (�(t, ·)) ≤ 0

there. From (4.1) and f ≥ 0 we obtain for any t ≥ b2 s and |x | ≤ b−1at
1
2 s ,

�t (t, x) + (−�)s�(t, x) − f (�(t, x))

≤ (2s)−1bt−
1
2s −1|x | ‖u′

θ‖∞ + b2s t−1
[
(−�)s ūθ (bt

− 1
2s x) − f

(
ūθ (bt

− 1
2s x)

)]

≤
(
(2s)−1La − b2sε

)
t−1,

which is ≤ 0 by the definition of b. Hence � is a subsolution to (1.1) on time
interval (b2s,∞).

Since clearly u(0, ·) ≥ ūθ = �(b2 s, ·), the comparison principle (Theo-
rem 2.4) yields

u(t, ·) ≥ �(t + b2s, ·)

for all t ≥ 0. Hence for each λ ∈ (0, θ) and t ≥ 0 we have

xλ(t; u) ≥ xλ(t;�(· + b2s, ·)) = Cλ,θb
−1(t + b2s)

1
2s , (4.2)

where Cλ,θ ∈ (0, Rθ ) is such that uθ (Cλ,θ ) = λ. The claim now follows for each
λ ∈ (0, θ).

Moreover, it follows from (4.2) that there are τ ′,C ′ > 0 such that for all t ≥ τ ′
we have

inf
|x |≤C ′t1/2s

u(t, x) ≥ θ + θ0

2

Then the last claim in Lemma 2.6 shows that for any λ ∈ [θ, 1) there is τ > 0 such
that

inf
|x |≤C ′t1/2s

u(t + τ, x) ≥ λ

for all t ≥ τ ′. It follows that for all t ≥ τ + τ ′ we have

xλ(t; u) ≥ C ′(t − τ)
1
2s

(with C ′, τ ′, τ depending on s, f, d, λ, θ ), which proves the claim for λ ∈
[θ, 1). ��
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5. Subsolutions for Monostable Reactions

In this section we prove Theorems 1.2(ii) and 1.3(ii), so we will assume the
following:

(M) Let f be an α-monostable reaction for some α > 1, and let s ∈ (0, α
2(α−1) ).

The relevant upper bound on xλ(t; u) for front-like data was already obtained
in [15] (for α-monostable reactions f̃ that are alsoC1 and have f̃ ′(1) < 0, but there
always exists such f̃ ≥ f , so the same bound for f follows by the comparison
principle). This immediately provides the bounds in Theorems 1.2(ii) and 1.3(ii)
via the comparison principle.

Hence it remains to show that for any λ ∈ (0, 1) and all large t we have

xλ(t; u) ≥ Ct
α

2s(α−1) . (5.1)

It suffices to do this in the setting of Theorem 1.3(ii), because then the same bound
in Theorem 1.2(ii) follows via the comparison principle. We will do this by con-
structing appropriate subsolutions to (1.1).

Let α, θ0, γ be from Definition 1.1(ii) for f , and let

β := (d + 2s)(α − 1) and κ := βα

2s(α − 1)
(> β)

(with the inequality due to (M)). Fix any θ ∈ (0, 1), let

θ1 := min

{
θ0,

θ

2

}
and θ2 := 1 + θ

2
.

Then let

ν := α − 1 and τ := min

{
τ0,

c∗
2(d+2s)/βC∗θ1

}
, (5.2)

where τ0, c∗,C∗ are from Lemma 5.1 below with β, ν, θ1 as above (so τ0, c∗,C∗
are independent from a, b in the lemma). Next let

δ := inf
u∈[τθ1,θ] f (u) > 0,

define

a3 := min

{
1,

(α − 1)γ

2κ − 1
,

(α − 1)δ

4κθα
2

}
, (5.3)

and then

a1 :=
(

(α − 1)c∗
21+(d+2s)/β(2κ − 1)

) β
2s

a
d
2s
3 and a2 := a1a3. (5.4)

Now let φθ : [0, 1] → [0, θ ] be smooth and such that

φθ (y) = y on [0, θ1] and φθ (y) = θ on [θ2, 1], (5.5)
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as well as for some Cθ > 0 we have

0 ≤ φ′
θ ≤ 1 and − Cθ ≤ φ′′

θ ≤ 0. (5.6)

Finally, define

ψθ(t, r) := (a−1
1 t1−κ(rβ − a2t

κ))−
1

α−1 (5.7)

for t > 0 and r > (a2tκ)
1
β , and then let

�θ(t, x) :=
{

φθ (ψθ (t, |x |)) |x | ≥ (θ1−α
2 a1tκ−1 + a2tκ)

1
β ,

θ otherwise.

For any u ∈ (0, θ2], we also let

Xt (u) := (u1−αa1t
κ−1 + a2t

κ)
1
β

(hence ψθ(t, Xt (u)) = u). This construction shows that �θ is a smooth function.
We will now show that it is also a subsolution to (1.1) at all large times. We note
that since we may have s > 1

2 here, this would be difficult if graphs of �θ(t, ·) (as
functions of x) had “concave” corners, which is the reason for the introduction of
the function φθ above.

We start with a technical lemma,whose proof is easywhen d = 1, but somewhat
more involved when d > 1. We postpone the proof to the appendix.

Lemma 5.1. Let θ1 ∈ (0, 1] and β > ν > 0 be such that β
ν

≥ d − 2. Let 0 < a ≤
1 ≤ b, let X (u) := (a−1(u−ν +b))

1
β for u > 0, and let ϕ : Rd → [0, 1] be smooth

and such that

ϕ(x) = (a|x |β − b)−
1
ν when |x | ≥ X (θ1)

as well as ϕ(x) ≥ θ1 when |x | ≤ X (θ1). Then for any s ∈ (0, 1), there are
c∗,C∗ > 0 and τ0 ∈ (0, 1

4 ] (depending only on s, β, ν, θ1, d) such that for all
|x | ≥ X (τ0θ1) we have

(−�)sϕ(x) ≤ −c∗X (θ1)
d |x |−d−2s + C∗|x |−2sϕ(x).

We are now ready to construct a localized subsolution for (1.1) with monostable
f .

Theorem 5.2. Let f and s satisfy (M). Then for any θ ∈ (0, 1), there is Tθ ≥ 1
such that �θ above is a subsolution to (1.1) on the time interval [Tθ ,∞).

Proof. We drop θ from φθ , ψθ ,�θ , Tθ ,Cθ in the proof. The desired T we obtain
here will depend on the various constants in the above setup, and we will always
assume that t ≥ T ≥ 1.

Let us start with estimating |ψr | from above. Since ψrr > 0 > ψr , we see that
for all r ≥ Xt (θ2) we have

|ψr (t, r)| ≤ −ψr (t, Xt (θ2)) = β

α − 1
a−1
1 t1−κθα

2 Xt (θ2)
β−1
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When β < 1, from θ2 < 1 and a1 ≥ a2 we obtain

−ψr (t, Xt (θ2)) ≤ β

α − 1
a−1
1 t1−κ(a2t

κ)
β−1
β ≤ β

α − 1
a

− 1
β

2 t
β−κ

β .

When β ≥ 1, we again use θ2 < 1 to get

θα
2 Xt (θ2)

β−1 = θ

α−1+β
β

2 (a1t
κ−1 + θα−1

2 a2t
κ)

β−1
β ≤ (a1t

κ−1 + a2t
κ)

β−1
β

≤ (a1t
κ−1)

β−1
β + (a2t

κ)
β−1
β ,

so then a2 ≤ a1 and t ≥ 1 yield

−ψr (t, Xt (θ2)) ≤ β

α − 1

(
a

− 1
β

1 t
1−κ
β + a−1

1 a
β−1
β

2 t
β−κ

β

)
≤ 2β

α − 1
a

− 1
β

2 t
β−κ

β .

It follows that if T is such that 2β
α−1a

− 1
β

2 T
β−κ

β ≤ 1 (recall that κ > β)
and XT (θ2) ≥ 1, then (5.6) and ψrr > 0 yield for any e ∈ S

d−1 and ρt :=
2β

α−1a
− 1

β

2 t
β−κ

β ≤ 1,

D2
ee�(t, x) = (x · e)2

|x |2 φ′′(ψ(t, |x |))|ψr (t, |x |)|2 + (x · e)2
|x |2 φ′(ψ(t, |x |))ψrr (t, |x |)

+ φ′(ψ(t, |x |))ψr (t, |x |) |x |
2 − (x · e)2

|x |3 ≥ −Cρ2
t − ρt ≥ −(C + 1)ρt ,

where we also used that φ′(ψ(t, |x |)) = 0 when |x | ≤ 1 (due to Xt (θ2) ≥ 1). From
this, θ < 1, and s ∈ (0, 1) we obtain (with ωd be the surface area of Sd−1)

sup
x∈Rd

(−�)s�(t, x) ≤ cs,d
2

∫
|h|≤ρ

−1/2
t

2�(t, x) − �(t, x + h) − �(t, x − h)

|h|d+2s dh

+cs,d

∫
|h|>ρ

−1/2
t

�(t, x) − �(t, x + h)

|h|d+2s dh

≤ cs,d
2

∫
|h|≤ρ

−1/2
t

(C + 1)ρt
|h|d−2+2s dh + cs,d

∫
|h|>ρ

−1/2
t

θ

|h|d+2s dh

≤ cs,dωd(C + 1)ρs
t

2s(1 − s)
=: C ′ρs

t . (5.8)

We will need another estimate for (t, x) such that �(t, x) is small. When
�(t, x) ≤ τθ1 (then �(t, x) = ψ(t, x) because τ ≤ τ0 ≤ 1), we can apply
Lemma 5.1 with ϕ(·) = �(t, ·) and β, ν, θ1 as above, provided T is large enough
so that a := a−1

1 t1−κ < 1 and b := a2a
−1
1 t ≥ 1. So when �(t, x) ≤ τθ1, then we

have

(−�)s�(t, x) ≤ −c∗|x |−d−2s Xt (θ1)
d + C∗|x |−2sψ(t, x). (5.9)
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Finally, we also note that �t (t, x) = 0 when |x | ≤ Xt (θ2), while for |x | >

Xt (θ2) we have

�t (t, x) = φ′(ψ(t, x))
ψ(t, x)αa−1

1

α − 1

(
(κ − 1)t−κ |x |β + a2

)

≤ ψ(t, x)αa−1
1

α − 1

(
(κ − 1)a1t

−1ψ(t, x)1−α + κa2
)

= κ − 1

α − 1

ψ(t, x)

t
+ a2κ

a1(α − 1)
ψ(t, x)α. (5.10)

We are now ready to show that�t+(−�)s�− f (�) ≤ 0 at all (t, x)with t ≥ T
(if T is large enough). When |x | ≤ Xt (θ2), then (5.8) and f (�(t, x)) = f (θ) ≥ δ

show that this follows from C ′ρs
t ≤ δ, which holds if T is large. Since (5.4) and

(5.3) also yield

max

{
κ − 1

α − 1

θ2

t
,

a2κ

a1(α − 1)
θα
2 , C ′ρs

t

}
≤ δ

3

if T is large, and since for |x | ∈ (Xt (θ2), Xt (τθ1)] we still have f (�(t, x)) ≥ δ, it
follows from (5.8) and (5.10) that for these x we again have

�t (t, x) + (−�)s�(t, x) − f (�(t, x)) ≤ κ − 1

α − 1

θ2

t
+ a2κ

a1(α − 1)
θα
2 + C ′ρs

t − δ

≤ 0.

It therefore remains to consider |x | > Xt (τθ1) (when �(t, x) = ψ(t, x) be-
cause τ ≤ 1). If also t�(t, x)α−1 ≤ a1

a2
, it follows from (5.9), (5.10), |x | =

(ψ(t, x)1−αa1tκ−1+a2tκ)
− 1

β , and Xt (θ1) ≥ (a2tκ)
1
β that (we drop (t, x) from the

notation for simplicity)

�t + (−�)s� − f (�) ≤ κ − 1

α − 1

ψ

t
+ a2κ

a1(α − 1)
ψα − c∗|x |−d−2s Xt (θ1)

d

+ C∗|x |−2sψ

≤ 2κ − 1

α − 1

ψ

t
− c∗(2ψ1−αa1t

κ−1)
− d+2s

β (a2t
κ)

d
β

+ C∗(ψ1−αa1t
κ−1)

− 2s
β ψ

= 2κ − 1

α − 1

ψ

t
− c∗(2a1)−

d+2s
β a

d
β

2
ψ

t

+ C∗a
− 2s

β

1 t−
(κ−1)2s

β ψ
1+ (α−1)2s

β .

Using again tψα−1 ≤ a1
a2
, we obtain

t−
(κ−1)2s

β ψ
1+ (α−1)2s

β = t
2s
β ψ

(α−1)2s
β t−

α
α−1 ψ ≤ (a1a

−1
2 )

2s
β t−

1
α−1

ψ

t
.

Therefore �t + (−�)s� − f (�) ≤ 0 by (5.4) if T is large enough.
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When instead |x | > Xt (τθ1) and t�(t, x)α−1 > a1
a2
, then

(a2t
κ)

1
β ≤ |x | = (ψ(t, x)1−αa1t

κ−1 + a2t
κ)

− 1
β ≤ (2a2t

κ)
1
β ,

so (5.9), Xt (θ1) ≥ (a2tκ)
1
β , ψ(t, x) ≤ τθ1 (due to |x | > Xt (τθ1)), and (5.2) show

that

(−�)s� ≤ −c∗(2a2tκ)
− d+2s

β (a2t
κ)

d
β + C∗(a2tκ)

− 2s
β ψ

≤
(
C∗τθ1 − c∗2− d+2s

β

)
a

− 2s
β

2 t−
2sκ
β ≤ 0.

This, (5.10), ψ(t,x)
t < a2

a1
ψ(t, x)α , and (M) show that

�t + (−�)s� − f (�) ≤ a2(2κ − 1)

a1(α − 1)
ψα − γψα

which is again ≤ 0 due to (5.3). This finishes the proof. ��
We can now use the constructed subsolutions to prove (5.1).

Theorem 5.3. Let f and s satisfy (M), and let 0 ≤ u ≤ 1 solve (1.1). If

u(0, ·) ≥ θχBRθ
(0)

for some θ > 0 and Rθ from Lemma 2.6, then for each λ ∈ (0, 1) there are
Cλ, τλ,θ > 0 (depending also on s, f, d) such that for all t ≥ τλ,θ we have

xλ(t; u) ≥ Cλt
α

2s(α−1) .

Proof. The comparison principle and Lemma 2.6 show that it suffices to prove the
result with Cλ also depending on θ , which we will do.

Let ūθ be from Lemma 2.6 (see the remark after that lemma), let ū be the
solution to (1.1) with initial data ūθ , and let t0 be such that ū(t0, ·) ≥ θχB1(0). Since
u0 ≥ ūθ , we have u(t0, ·) ≥ ū(t0, ·) by the comparison principle (Theorem2.4), and
then comparison principle shows that it suffices to consider u0 = ū(t0, ·) without
loss. The proof of Lemma 2.6 now shows that u is time increasing.

Similarly to [15,Theorem3.1], sinceu dominates the solution tovt+(−∂xx )
sv =

0 with initial data θχB1(0), there is C > 0 (depending only on s, d) such that if

t ≥ 1 and |x | ≥ t
1
2 s + 1, then

u(t, x) ≥ Cθ

∫
B1(x)

t−
d
2s (1 + |t− 1

2s y|d+2s)−1dy

≥ Cθωd

2d
t (|x | + 1)−d−2s ≥ c t |x |−d−2s,

where ωd
d is the volume of B1(0) and c := 2−d−2 s−1d−1Cθωd .

Now let �θ, Tθ be from Theorem 5.2 and let T := 1 + c−1a
1

α−1
1 T

κ−1
α−1

θ . If |x |
is large enough, we then have u(T, x) ≥ �θ(Tθ , x), which then yields u(t, x) ≥
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�θ(Tθ , x) for all these x and all t ≥ T because u increases in time. But we also have
u(t, x) ≥ �θ(Tθ , x) for all the other x and some t by the last claim in Lemma 2.6.
Hence there is T ′ ≥ T such that u(T ′, ·) ≥ �θ(Tθ , ·). Comparison principle now
yields

u(t + T ′, ·) ≥ �θ(t + Tθ , ·)
for all t ≥ 0, so for any λ ∈ (0, θ) and t ≥ T ′ we have

xλ(t; u) ≥ xλ(t − T ′ + Tθ ;�θ) ≥ Cλ,θ (t − T ′ + Tθ )
α

2s(α−1)

for some time-independent Cλ,θ > 0. This proves the claim for each λ ∈ (0, θ),
and for λ ∈ [θ, 1) it now follows as at the end of the proof of Theorem 4.1. ��
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Appendix A. Proof of Lemma 2.6

We will first show that it suffices to obtain existence of Rθ , uθ satisfying (2.6)
and (2.8) (note that (2.7) then follows from uθ = 0 on (Rθ ,∞)). Let us assume this
is the case, and for any R ≥ 0 and all x ∈ R let vR(x) := uθ (|x |−2R). Then vR ≡ 0
on B2R+Rθ (0)

c, so on this set we have −(−�)svR ≥ 0. Since vR = uθ (| · | − 2R)

on BR(x) when |x | ∈ [R, 2R + Rθ ] (so as R → ∞, uniformly in these x we have
local uniform (in y) convergence of vR(y + x) to uθ (y · x

|x | + |x | − 2R) in C2),
and vR ≡ θ on BR(x) when |x | ≤ R, the strict inequality in (2.8) and f (θ) > 0
guarantee that for any large enough R we have

inf|x |≤2R+Rθ

[−(−�)svR(x) + f (vR(x))
]

> 0.

(Recall also that cs,d = cs,1(
∫
Rd−1(1 + h2)− d

2 −sdh)−1.) By symmetry this also
holds with |x | ≤ Rθ + R under the inf, so (2.9) and (2.10) hold for ūθ := vR when
R is large enough (and we then replace Rθ , uθ by 2R + Rθ , uθ (· − 2R)).
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Hence to prove the first claim, it remains to find Rθ , uθ satisfying (2.6) and (2.8).
Let us now assume that there is Lipschitz continuous, piecewise smooth (and linear
on both sides of each point where it is not smooth), non-increasing ϕ : R → [0, θ ]
and R′ > 0 such that

(1) ϕ = θ on (−∞, 0] and ϕ = 0 on [R′,∞);
(2) −(−∂xx )

sϕ > 0 on the set {x ∈ R | ϕ(x) ≤ θ ′
0}, where θ ′

0 := 3θ0+θ
4 (∈ (θ0, θ));

(3) C := supx∈R (−∂xx )
sϕ(x) < ∞.

Here −(−∂xx )
sϕ is allowed to be ∞ at the (finitely many) points where ϕ is not

smooth (when s ≥ 1
2 ). If Rθ := r R′ and uθ (x) := ϕ( xr ) for some r > 0, then for

any x such that uθ (x) ≤ θ ′
0 we have

−(−∂xx )
suθ (x) + f (uθ (x)) ≥ −(−∂xx )

suθ (x) = −r−2s(−∂xx )
sϕ(xr−1) > 0.

If we let δ := infu∈[θ ′
0,θ] f (u) > 0 and r := (2C/δ)

1
2s (with C from (3)), then for

any x such that uθ (x) ≥ θ ′
0 we have

−(−∂xx )
suθ (x) + f (uθ (x)) ≥ −Cr−2s + δ > 0.

Continuity of the left-hand side in x (as a function with values in R ∪ {∞}) now
yields (2.8), and (2.6) is obvious. Finally a mollification of uθ provides the desired
smooth function thanks to the sharp inequality in (2.8).

This it remains to construct ϕ. Consider a smooth non-decreasing ψ : R → R

such that

ψ(y) = y on

(
−∞,

θ + θ ′
0

2

]
and ψ(y) = θ on [θ,∞) (A.1)

(This will play the same role as φθ in Sect. 5, preventing concave corners on the
graph of ϕ). Let N ≥ 1 be the smallest integer such that θ − θ ′

0 ≥ 2−N θ , and let
us first assume that N = 1. Set

l0(x) := θ − (θ − θ ′
0)x, k1 := θ − θ ′

0

2
, b1 := θ + θ ′

0

2
, l1(x) := b1 − k1x,

and define ϕ1 : R → [0, 1] via

ϕ1(x) :=
{

max{ψ(l0(x)), l1(x), 0} for x ≥ 0,

θ for x ≤ 0.

Then ϕ1 is clearly Lipschitz continuous and non-increasing, and from l1 < ψ ◦ l0
on (−1, 1) (note that l1 < θ = ψ ◦l0 on (−1, 0], while l1 < min{l0, θ+θ ′

0
2 } ≤ ψ ◦l0

on (0, 1)) we have

ϕ1 = ψ ◦ l0 on [−1, 1] , ϕ1(1) = θ ′
0, ϕ1 = l1 on

[
1,

b1
k1

]
,

ϕ1

(
b1
k1

)
= 0.
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Since ϕ1 is convex on [ 12 ,∞), and ψ is smooth and satisfies (A.1), we have
supx∈R(ϕ1)xx (x) > −∞. Hence a computation similar to (5.8) proves (3) for
ϕ1.

From N = 1 we see that θ ′
0 ≤ θ

2 , and so l1(1) ≤ θ
2 and b1

k1
≤ 3. Hence for any

x ∈ [1, b1
k1

] we have 2x + 1 ≥ b1
k1

and l1(x) ≤ θ
2 , which together with ϕ1 > l1 on

(−1, 1) and l1 ≥ θ on (−∞,−1] yields

−(−∂xx )
sϕ1(x) = cs

∫ ∞

0

ϕ1(x + h) + ϕ1(x − h) − 2ϕ1(x)

h1+2s dh

> cs

∫ x+1

0

l1(x + h) + l1(x − h) − 2l1(x)

h1+2s dh

+ cs

∫ ∞

x+1

θ − 2l1(x)

h1+2s dh ≥ 0.

For x ≥ b1
k1
, we obviously have −(−∂xx )

sϕ1(x) > 0 because ϕ1(x) = 0 ≤ ϕ1.
Therefore −(−∂xx )

sϕ1 > 0 on [1,∞), hence (1)–(3) follows with ϕ := ϕ1 and
R′ := b1

k1
.

Next assume that N ≥ 2, and let ψ, k1, b1, l0, l1 be as above. Since now we

have θ ′
0 − (2θ ′

0 − θ) ≤ θ−(2θ ′
0−θ)

2 (in fact, equality holds here), the above argument
applies to the function

ϕ̃1(x) :=
{

max{ψ(l0(x)), l1(x), 2θ
′
0 − θ} for x ≥ 0,

θ for x ≤ 0,

which is equal to ϕ1 above on (−∞, 3] and to 2θ ′
0 − θ on [3,∞) (because l1(3) =

2θ ′
0 − θ > 0). Hence −(−∂xx )

s ϕ̃1 > 0 on [1,∞). We will now change ϕ1 to
l2(x) := b2 − k2x on [x2, b2

k2
], where

x2 := 3, b2 := k2x2 + 2θ ′
0 − θ,

and k2 ∈ (0, k1) is to be determined (notice that l2(x2) = 2θ ′
0 − θ = l1(x2), and

hence k2 < k1 shows that b2 = l2(0) < l1(0) < θ ). So we let

ϕ2(x) :=
{

max{ψ(l0(x)), l1(x), l2(x), 0} for x ≥ 0,

θ for x ≤ 0.

Since ϕ2 → ϕ̃1 locally uniformly on R as k2 → 0, there is k2 ∈ (0, k1) such that
−(−∂xx )

sϕ2 > 0 on [1, x2]. Fix one such k2 and the corresponding ϕ2 (which again
satisfies (3) as above).

If now N = 2, consider any x ∈ [x2, b2
k2

]. From l2(
b2−θ
k2

) = θ and l2(x2) =
2θ ′

0 − θ ≤ θ
2 we see that l2 < ϕ2 on ( b2−θ

k2
, x2), and

b2
k2

≤ 2x2 + θ−b2
k2

. Hence for
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any x ∈ [x2, b2
k2

] we have 2x + θ−b2
k2

≥ b2
k2

and l2(x) ≤ θ
2 , and so

−(−∂xx )
sϕ2(x) = cs

∫ ∞

0

ϕ2(x + h) + ϕ2(x − h) − 2ϕ2(x)

h1+2s dh

> cs

∫ x+ θ−b2
k2

0

l2(x + h) + l2(x − h) − 2l2(x)

h1+2s dh

+ cs

∫ ∞

x+ θ−b2
k2

θ − 2l2(x)

h1+2s dh ≥ 0.

(Note that this is the same argument as for N = 1, but with −1 and 1 replaced by
b2−θ
k2

and x2.) For x ≥ b2
k2
, we again have −(−∂xx )

sϕ2(x) > 0 because ϕ2(x) =
0 ≤ ϕ2. Therefore −(−∂xx )

sϕ2 > 0 on [1,∞), which yields (1)–(3) with ϕ := ϕ2
and R′ := b2

k2
.

If N ≥ 3, the above argument instead applies to

ϕ̃2(x) :=
{

max{ψ(l0(x)), l1(x), l2(x), 4θ
′
0 − 3θ} for x ≥ 0,

θ for x ≤ 0,

which is equal to ϕ2 on (−∞, 2x2 + θ−b2
k2

] and to 4θ ′
0 − 3θ on [2x2 + θ−b2

k2
,∞)

(because now l2(2x2 + θ−b2
k2

) = 2(2θ ′
0 − θ) − θ = 4θ ′

0 − 3θ > 0). Hence again
−(−∂xx )

s ϕ̃2 > 0 on [1,∞). Similarly to the case N ≥ 2, we let

x3 := 2x2 + θ − b2
k2

, b3 := k3x3 + 4θ ′
0 − 3θ, l3(x) := b3 − k3x,

with k3 ∈ (0, k2) small enough so that

ϕ3(x) :=
{

max{ψ(l0(x)), l1(x), l2(x), l3(x), 0} for x ≥ 0,

θ for x ≤ 0.

satisfies −(−∂xx )
sϕ3 > 0 on [1, x3]. If N = 3, we can use l3(x3) = 4θ ′

0 − 3θ ≤ θ
2

and k3 < k2 to again show as above that (1)–(3) hold with ϕ := ϕ3 and R′ := b3
k3
.

If N ≥ 4, this argument can be repeated finitely many times until we obtain a
function ϕN and bN , kN > 0 such that (1)–(3) hold with ϕ := ϕN and R′ := bN

kN
.

Finally, let us prove the last claim. Without loss of generality, we can assume
that x0 = 0; the comparison principle (Theorem 2.4) then shows that it suffices
to consider u(0, ·) = ūθ . We now have u(t, ·) ≥ ūθ = u(0, ·) for all t ≥ 0
by (2.5) and the comparison principle, so applying the comparison principle to u
and its time shifts now shows that u is non-decreasing in time. If we let v(x) :=
limt→∞ u(t, x) ≤ 1, Theorem 2.5 implies that v ∈ C2s+σ (Rd) for some σ > 0,
and −(−�)sv + f (v) = 0 holds in the classical sense. Since v ≥ ūθ , (2.10) shows
that v > ūθ on BRθ (0). But then u(τ, ·) ≥ sup|y|≤r ūθ (· − y) for some τ, r > 0.
By iterating this argument we obtain u(nτ, ·) ≥ sup|y|≤nr ūθ (· − y) for all n ∈ N,
so v ≥ θ . Since f > 0 on [θ, 1), it is easy to show that the only stationary classical
solution to (1.1) taking values in [θ, 1] is v ≡ 1 (note that Theorem 2.5 shows that
all such solutions are uniformly bounded in C2s+σ (Rd)), and the claim follows.
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Appendix B. Proof of Lemma 5.1

Let us fix any x ∈ R
d such that |x | ≥ X (τ0θ1), with τ0 ∈ (0, 1

4 ] to be deter-
mined. Then

c−1
s,d(−�)sϕ(x) ≤

∫
|h|≤|x |−X (θ1)

ϕ(x) − ϕ(x + h)

|h|d+2s dh

+
∫

|x |−X (θ1)≤|h|≤|x |
ϕ(x) − ϕ̃(x + h)

|h|d+2s dh

+
∫

|h|≤|x |& |x+h|≤X (θ1)

ϕ(x) − 2−1θ1

|h|d+2s dh

+
∫

|h|≥|x |
ϕ(x)

|h|d+2s dh =: I1 + I2 + I3 + I4,

where I1 is a principal value integral and

ϕ̃(·) := ϕ(·) − 2−1θ1χBX (θ1)(0)(·) ≥ 2−1θ1χBX (θ1)(0)(·).

Since ϕ(x) ≤ τ0θ1 ≤ 1
4θ1 and |x | ≥ X (θ1), there is μd > 0 (only depending on d)

such that

I3 ≤ −
∫

|h|≤|x |& |x+h|≤X (θ1)

θ1

4|h|d+2s dh ≤ −μd X (θ1)
dθ1|x |−d−2s .

We now let c∗ := cs,dμdθ1, which means that it remains to show that

I1 + I2 + I4 ≤ c−1
s,dC∗|x |−2sϕ(x),

with C∗ to be determined.

If now g(l) := (alβ − b)− 1
ν for l > (a−1b)

1
β (then g(|y|) := ϕ(y) for |y| ≥

X (θ1) > (a−1b)
1
β ), then using g(l)−ν ≤ alβ yields

g′′(l) + d − 1

l
g′(l) = ν−2(1 + ν)g(l)1+2νa2β2l2β−2

− ν−1g(l)1+νaβ(β + d − 2)lβ−2

≥ ν−2g(l)1+2νa2βl2β−2(β − ν(d − 2)).

This is≥ 0 due to β
ν

≥ d−2, so ϕ is subharmonic on
(
BX (θ1)(0)

)c ⊇ B|x |−X (θ1)(x).
Hence for any r ∈ (0, |x | − X (θ1)) we have −

∫
∂Br (x)

ϕ(y)dσ(y) ≥ ϕ(x), and so
I1 ≤ 0. We also have

I4 = ϕ(x)
∫

|h|≥|x |
|h|d+2sdh ≤ μ′

d |x |−2sϕ(x)

for some μ′
d > 0 only depending on d. It therefore remains to estimate I2.

When d = 1, we get I2 ≤ 0 because ϕ(x) − ϕ̃(x + h) is no more than
θ1
4 − θ1

2 = − θ1
4 for h ∈ [0, X (θ1)] and no more than θ1

4 for h ∈ [2x − X (θ1), 2x]
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(this is when x > 0; when x < 0, these two intervals must be reflected across 0).
This finishes the proof when d = 1.

We will need to work a little harder when d ≥ 2. Let ε1 := |x |−1X (θ1) (which
is < 1 because |x | ≥ X (τ0θ1)) and τ := ϕ(x)

θ1
≤ τ0. Let us first consider the case

when ε1 > 2
3 , so that ρ1 := 1 − ε1 < 1

3 (and then |x | − X (θ1) = ρ1|x |). There is
cd > 0 such that for all r ∈ [2ρ1|x |, |x |] we have,

Hd−1 ({
h

∣∣ |h| = r & |h + x | ≤ X (θ1)
}) ≥ cdHd−1 ({

h
∣∣ |h| = r

})
,

with Hd−1 the (d − 1)-dimensional measure. If τ0 ≤ cd
4 , then this, ϕ̃ ≥ θ1

2 on
BX (θ1)(0), and ϕ(x) ≤ τ0θ1 ≤ θ1

4 yield (with ωd the surface area of Sd−1)

∫
|h|=r

[ϕ(x) − ϕ̃(x+h)]dσ(h) ≤
∫

|h|=r
τ0θ1dσ(h)−

∫
|h|=r |h+x |≤X (θ1)

2−1θ1dσ(h)

≤ −4−1cdωdθ1r
d−1.

From this we obtain

I2 ≤
∫

ρ1|x |≤|h|≤3ρ1|x |
ϕ(x) − ϕ̃(x + h)

|h|d+2s dh

≤ −
∫ 3ρ1|x |

2ρ1|x |
cdωdθ1rd−1

4rd+2s dr +
∫

ρ1|x |≤|h|≤2ρ1|x |
ϕ(x)

|h|d+2s dh

≤ −cdωdθ1

8s
(2−2s − 3−2s)(ρ1|x |)−2s + τ0ωdθ1

2s
(1 − 2−2s)(ρ1|x |)−2s,

which is ≤ 0, provided that τ0 ≤ cd (4−s−9−s )
4(1−4−s)

.

Finally, we are left with the case ε1 ≤ 2
3 (and so ρ1 ≥ 1

3 ). Let

Ax := {
h

∣∣ |x | − Xt (θ1) ≤ |h| ≤ |x |& |x + h| ≥ X (θ1)
}
,

and let

e := |x |−1x and ε2 := |x |−1(a−1b)
1
β .

Then ε
β
1 − ε

β
2 = |x |−βa−1θ−ν

1 ≥ 0. By again using that ϕ̃ ≥ θ1
2 ≥ ϕ(x) on

BX (θ1)(0) and then changing variables via h = |x |z, we obtain

I2 ≤
∫
Ax

ϕ(x) − ϕ(x + h)

|h|d+2s dh

= |x |−2s
∫

ρ1≤|z|≤1& |e+z|≥ε1

(a|x |β − b)− 1
ν − (a|e + z|β |x |β − b)− 1

ν

|z|d+2s dz

= |x |−2sϕ(x)
∫

ρ1≤|z|≤1& |e+z|≥ε1

(|e + z|β − ε
β
2 )

1
ν − (1 − ε

β
2 )

1
ν

(|e + z|β − ε
β
2 )

1
ν |z|d+2s

dz.
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This it remains to show that

I ′
2 :=

∫
ρ1≤|z|≤1& |e+z|≥ε1

(|e + z|β − ε
β
2 )

1
ν − (1 − ε

β
2 )

1
ν

(|e + z|β − ε
β
2 )

1
ν |z|d+2s

dz

is uniformly bounded above for ρ1 ∈ [ 13 , 1], 0 ≤ ε2 ≤ ε1 ≤ 2
3 , and e ∈ S

d−1, by
a constant depending on s, β, ν, d. But when |e + z| ≥ 1, the integrand is clearly
bounded above by such a constant; and when |e + z| < 1, then it is negative. This
therefore concludes the proof.
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