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Abstract

A variational model for the interaction between homogenization and phase
separation is considered. The focus is on the regime where the latter happens at a
smaller scale than the former, and when the wells of the double well potential are
allowed to move and to have discontinuities. The zeroth and first order �-limits
are identified. The topology considered for the latter is that of two-scale, since it
encodes more information on the asymptotic local microstructure. In particular,
when the wells are non-constant, the first order �-limit describes the contribution
of microscopic phase separation, even in situations where there is no macroscopic
phase separation.As a corollary, theminimumof themass constrainedminimization
problem is characterized, and it is shown to depend on whether or not the wells are
discontinuous. In the process of proving these results, the theory of inhomogeneous
Modica Mortola functionals is strengthened.
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1. Introduction

The Modica–Mortola functional is the prototypical mathematical model for
phase separation in a homogeneous material. After the initial works [24,25] by
Modica and Mortola that proved the conjecture by Gurtin (see [20]) in the scalar
case, several variants of the functional were studied in the literature (see, for in-
stance, [18,21,30]) to prove the sharp interface limit in full generality. We refer
to [10] for a more comprehensive overview of the gradient theory of phase sepa-
ration. From the mathematical point of view, the main feature of such models is
that both the potential and the wells do not depend on the spatial point, modeling
homogeneity of the medium.

Modern technologies, such as temperature-responsive polymers, take advantage
of engineered inclusions or natural heterogeneities of the medium to obtain novel
composite materials with specific physical properties. To model such situations by
using a variational approach based on the gradient theory, the potential and the
wells have to depend on the spatial point, even in a discontinuous way.

The study of phase separation in heterogeneous media with inhomogeneous
conditions is a challenging mathematical problem that has recently drawn the at-
tention of researchers. Amathematical model for phase separation of homogeneous
materials in an inhomogeneous setting was considered in the scalar case by Bou-
chitté [4], by using techniques heavily relying on the scalar nature of the functions.
A similar problem was also considered by Sternberg [30] in the two dimensional
setting and with a double well required to satisfy strong regularity assumptions.
The first author and Gravina [10] have recently extended the above mentioned re-
sults to the vector-valued case under some strict conditions on the behavior of the
double well potential around the wells. A first result in understanding phase sep-
aration in heterogeneous media was obtained by Braides and Zeppieri [5], where
the interaction between periodic microstructure and interfacial energies is studied
in the scalar case in dimension one for inhomogeneous conditions. While on the
one hand, the authors consider several regimes and higher order � expansion, on
the other hand their approach relies heavily on the explicit choices of the potential
and on the wells, and on the many advantages of working in the one dimensional
scalar case. In particular, the several limiting functionals identified in their work
are with respect to weak-L2 convergence, and the techniques used are not easily
extended to the multidimensional vectorial case. In [8] (see also [9]) the authors
analyzed the case when the scale of the periodic microstructure and interface are
of the same order, in the case of fixed wells, but without any restriction on the
dimensions. Finally, we should mention that in [3], the homogenization is in the
singular perturbation term which leads to fundamentally different phenomenon.

In this paper, we consider a variational model for phase separation within a
periodically heterogeneous composite material with inhomogeneous conditions,
when wells may depend on the spatial variable and have discontinuities. Fixed
ε, δ > 0, the energy can be written as

Gε,δ(u) :=
∫

�

[
W

( x
δ
, u(x)

)
+ ε2|∇u(x)|2

]
dx . (1.1)
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Here� ⊂ R
N is an open bounded Lipschitz set, and u ∈ W 1,2(�;RM ). The double

well potential W is Q-periodic in the spatial variable, where Q := (−1/2, 1/2)N ,
modeling a periodic structure of the material. In the functional Gε,δ , the parameter
ε relates to the scale of the diffuse transition layer, while the scale of the periodic
microstructure is δ. Themain novelty of the paper is the general framework inwhich
the asymptotic behaviour of the functional Gε,δ is studied: first of all there is no
restriction on the dimensions N , M ≥ 1; moreover, for each x ∈ �, the potentialW
vanishes on twowells a(x), b(x) ∈ R

M , where the Q-periodic functions x �→ a(x)
and x �→ b(x) are allowed to have discontinuities. These assumptions extend
significantly those in previous works. Indeed, in [8] (see also [9]) the vectorial
wells were required to be fixed, and in [5] only the case N = M = 1 is considered
and an explicit potential W and wells a, b are used.

The core of this work is to identify the first order �-limit with respect to the
two-scale convergence in the regime where ε is negligible with respect to δ, namely
when the heterogeneities of the material are of a larger scale than that of the dif-
fuse interface between different phases. The choice of working with the two-scale
convergence is to maintain in the limit fine information about the asymptotic lo-
cal microstructure. The second order �-limit, as well as other regimes, will be the
content of forthcoming investigations.

Finally, we note that this regime is of particular relevance to the biological
phenomenon of lipid rafts. This is the theory that within the cell membrane there
aremany coexisting fluid phases consisting of various varieties of bonded lipids and
disordered lipid phases. It was shown through the work of many collaborators (see
[29] for a summary) that at physiological parameters, the phase separation occurs
at the scale of nanometers which is inaccessible to microscopes. Furthermore, in
[27] it is noted that there is no macroscopic phase separation and that thermal
fluctuations play a role in the formation of these nanodomains. This provides an
apt setting to use the tools of homogenization to derive an effective theory for the
material consisting of these nanodomains.

1.1. Main Results

In this paper, we consider the regime ε � δ, namely when the phase separation
process happens at a finer scale than that of the heterogeneities of the material. Our
main result is the integral representation of the �-expansion of order one of Gε,δ ,
that rigorously justifies the equation

Gε,δ = G0 + ε

δ
G1 + o

(ε

δ

)
. (1.2)

Weexplicitly identify the functionalsG0 andG1. Themainnovelty of thismanuscript
is in the characterization of the scale ε

δ
and the functional G1. Despite being more

classical, for completeness, we also include a description of the functionalG0. This
zeroth order �-limit captures the averaging effect of the mixing of the two phases

G0(u) :=
∫

�

W hom(u(x))dx,
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Fig. 1. A prototypical case showing that the energy of a recovery sequence needed to tran-
sition from a local microstructure to another is negligible in the limit. The grid is meant to
represent cubes of side δ, in which a different microstructure has to be approximated

where W hom is the homogenized functional (see Definition 4.1 for the precise
definition), which gives the best way to obtain a local density u(x) without caring
about the energy given by the singular perturbation. Moreover, as we show in
Corollary 4.4, the minimum of G0 is zero.

The functional G1, on the other hand, exhibits an interaction between the peri-
odic microstructure and phase separation. In order to maintain the information on
the local microstructure, we use the notion of two-scale�-convergence (see [6]), so
that G1 is defined on the space L1(�; L1(Q;RM )). The first order limiting energy
has the character of a bulk energy in the first variable, and of an interfacial energy
in the second variable, namely it is of the form

G1(u) :=
∫

�

G̃1(̃u(x, ·)) dx, (1.3)

where, for each x ∈ �, ũ(x, ·) is the Q-periodic extension of the function y �→
u(x, y), and G̃1 is the local energy of the microstructure defined, for a function
v ∈ BVloc(RN ;RM ), as

G̃1(v) :=
∫
Q̃∩Jv

dW(y, v−(y), v+(y))dHN−1(y).

Here Q̃ := [−1/2, 1/2)N , dW is a degenerate geodesic distance related to the
double well potential

√
W (y, ·) (see Definition 5.3), and Jv is the jump set of the

function v. Due to the technical nature of all of the assumptions and the definitions
required to properly introduce all of the functionals above, in this section we prefer
to sacrifice rigor and to focus on commenting on the peculiarities and the difficulties
of the proofs. The precise assumptions are introduced and discussed in Sect. 3, while
the zeroth and the first order limiting functionals are introduced in Sect. 4 and 5,
respectively.

First of all, we note that the asymptotic expansion (1.3) does not depend on the
rate at which ε/δ goes to zero. Another interesting observation we gain from the
form of G1 is that, at first order, there is no energy penalty to pass from one local
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microstructure to another. To be precise, consider the situation in Fig. 1. Given a
function u : � × Q → R

M we refer to u(x, ·) : Q → R
M as the local microstruc-

ture at the point x ∈ �. As expected, this function will takes values in the wells
a, b. Assume that u is piecewise constant in the first variable, namely that it equals
some u1 : Q → R

M in the blue region, and some other function u2 : Q → R
M

in the green region. Then a recovery sequence for u will have to approximate a
δQ-periodic structure in the blue region, to transition between the two microstruc-
tures in the purple region, and to approximate another δQ-periodic structure in the
green region. It is possible to construct the recovery sequence in such a way that the
energy in each cube does not depend on the parameters ε and δ. Therefore, since
the number of such cubes is asymptotically negligible with respect to the total num-
ber of cubes, also the energetic contribution of the recovery sequence in this region
will be asymptotically negligible. In particular, the energy of the recovery sequence
will essentially be the sum of the energies needed to recover the two Q-periodic
microstructures. This is the reason why in the functional G̃1 the jump set on Q̃ is
considered.

The choice of working with a potential vanishing on only two wells is based on
convenience of notation; indeed, our proofs directly extend to the case of multiple
wells satisfying assumptions similar to these we use here.

We also would like to stress the following difference with the case of a potential
W that does not depend on the spatial position: in such a case, this intermediate
scaling ε/δ would lead to a trivial �-limit; the relevant scaling would be ε that is
expected to capture amacroscopic phase separation. On the other hand, in our case,
at first order we see amicroscopic phase separation (namely in the second variable),
but not a macroscopic phase separation, since this is averaged over the entire do-
main. At the next order of the �-expansion, we expect to see a macroscopic phase
separation of a similar form as the one arising from homogenization of interfaces.
However, this problem will be more challenging as minG1 can be nonzero (see
Corollary 5.11), and the structure of minimizers of the mass constrained minimiza-
tion problem (which is what is most interesting for applications) might be hard to
identify.

Finally, for more general singular terms, namely when |∇u|2 is replaced by a
general function of the form h(x,∇u(x)), we also expect the �-limit to capture
microscopic, but not macroscopic, phase separation. The only difference would be
in the formula for the computation of the limiting energy density of G̃1: in our
case, it is given by a one dimensional profile, while in the more general case, as it
happens for the homogeneous case (see [17]), a more involved cell formula will be
needed.

1.2. Outline of the Paper and Comments on the Proofs

The paper is divided in two parts: the first is devoted to the zeroth order �-limit,
and the second to the first order expansion.

In the realm of solid-solid phase separation, the zeroth order �-limit is a well-
studied problem. Francfort and Müller [19] have studied this problem in a similar
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framework, which was later extended by Shu [28] to many regimes including di-
mension reduction. The strategy for the proof of the zeroth order �-limitG0 we use
here is, in most aspects, similar to previous work, though in the limsup inequality
we employ an argument based on two-scale convergence and measurable selec-
tions. The study of the minimization problem carried out in Corollary 4.4 allows
to identify the general structure of minimizers of G0, which are of the form

u(x) =
∫
Q

μ(x, y)a(y)dy +
∫
Q
[1 − μ(x, y)]b(y)dy

for some μ ∈ L2 (�; L∞(Q; [0, 1])). In particular, the minimum of the zeroth
order asymptotic energy is zero.

Next step is to identify a class of minimizers we are interested in, and hopefully
to characterize such a class by the rate of convergence to zero of the energy of
a recovery sequence. Our focus will be on the class of functions that describe a
geometric microstructure. Namely, those for which, for almost every x ∈ �, the
function y �→ μ(x, y) is a function of bounded variation taking values in {0, 1}.
By some heuristic computations addressed at the beginning of Sect. 5, we get that
for a function u of this form, the energy of a optimal recovery sequence is of the
order ε/δ. Therefore, to study the behaviour of the energy Gε,δ , we multiply it by
δ/ε, and unfold it using the two-scale unfolding operator. We study the �-limit of
the rescaled functional which, up to a negligible error, can be written as

G1
ε,δ(u) :=

∫
�

[ ∫
Q

[
δ

ε
W (y, u(x, y)) + ε

δ
|∇yu(x, y)|2

]
dy

]
dx . (1.4)

Note that the nature of the limiting functional G1 is clear from (1.4). Compactness
for sequences of uniformly bounded energy (see Lemma 5.12) follows from an
application of the Chacon biting lemma (see [16, Lemma 2.63]) together with Vi-
tali Convergence Theorem. The proofs of the first order �-limit (see Theorem 5.8)
improve the results of [10] to get the inner functional G̃1, namely that relate to the
phase separation in Q. Since in this paper we work with more general assumptions,
the results of [10] cannot be directly applied, and a uniform bound on the Euclidean
length of a family of geodesic problems has to be proved. Section5.4.1 is entirely
devoted to the proof of such bound. In particular, the result of Sect. 5.4.1 can also be
applied to the functional studied in [10] (phase separation without homogenization)
but with the potential satisfying the weaker assumptions considered in here. With
these theorems at our disposal, which gives the liminf inequality for the internal en-
ergy, the liminf inequality for the whole functional follows by using Fatou’s lemma
(see Proposition 5.13). The proof of the limsup inequality (see Proposition 5.23) is
based on an approximation argument. First, we consider the case where the limiting
function u ∈ L1(�; L1(Q;RM )) is piecewise constant in the first variable, namely,
when

u(x, y) =
m∑
i=1

ui (y)1�i (x), (1.5)

where �1, . . . , �m is a polyhedral partition of �, and the functions of bounded
variation ui ’s take values on the wells. It is possible to identify each of such ui ’s
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with a set of finite perimeter Ai ⊂ Q, by setting Ai := {ui = a}. In this case, the
recovery sequences for each of the microstructures ui provided by [10] are glued
together in such a way that the transition between them has an asymptotically
negligible energy (see Fig. 1). In order to obtain a recovery sequence for a general
function u ∈ L1(�; L1(Q;RM )), we use a density argument. This requires to
being able to construct, for each ε > 0, a function v of the form (1.5) such that

‖u − v‖L1×L1 ≤ ε, |G1(u) − G1(v)| ≤ ε.

In order to get the second inequality, as it iswell known in theCalculus ofVariations,
the partition �1, . . . , �m cannot be imposed a priori, but it has to be determined
by the function u itself. In particular, for measurability reasons, we need to have at
our disposal a countable family C = {Ci }i∈N of sets of finite perimeter in Q such
that

|G̃1(Ai ) − G̃1(Ck)| ≤ ε

for some j ∈ N, wherewe naturally see the functional G̃1 as a geometric functional.
The family C is constructed in Lemma 5.25.

The first order � expansion can also be considered with respect to the weak-L2

topology (see Corollary 5.9). Moreover, the proofs we present are stable for the
addition of a mass constraint to the functional (see Corollary 5.10). Finally, the
minimization problem for the functional G1 is investigated in Corollary 5.11.

2. Preliminaries

2.1. Two-Scale Convergence and Unfolding

Two-scale convergence is a powerful tool, first introduced by Nguetseng [26]
and developed further in [1]. Later, it was separately established by Visintin [31,
32] and Cioransecu, Damlamian, and Griso [7] to be equivalent to a topology on
the product space via the use of an ’unfolding’ operator. We present here some
definitions and basic results obtained in the above references, which we will use in
the sequel.

We begin with the classical definitions of weak and strong two-scale conver-
gence.

Definition 2.1. We say that {uδ}δ>0 ⊂ L2(�;RM ) weakly two-scale converge to

v in L2(�; L2(Q;RM )), and we write uδ
2−s
⇀ v, if

lim
n→∞

∫
�

uδ(x) · ϕ
(
x,

x

δ

)
dx =

∫
�

∫
Q

v(x, y) · ϕ(x, y) dy dx

for every ϕ ∈ L2(�;Cper(Q;RM )). Here Cper(Q;RM ) is the space of periodic
continuous functions on R

N with period Q.

Two-scale convergence encodes more information than classical weak-L2 con-
vergence. This property is highlighted in the following compactness result.
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Proposition 2.2. Let {uδ}δ>0 ⊂ L2(�;RM ) be bounded. Then, there exists v ∈
L2(�; L2(Q;RM )) such that, up to the extraction of a (not relabeled) subsequence,

uδ
2−s
⇀ v. Additionally,

uδ ⇀ u :=
∫
Q

v(x, y) dy

weakly in L2(�;RM ).

Now we recall the unfolding operator, with a definition that is tailored to the
use that we will make of this tool.

Definition 2.3. For δ > 0, let

�̂δ :=
⋃
zi∈Iδ

(
zi + δQ

) ∩ �, �δ := � \ �̂δ,

where Iδ is the set of points zi ∈ δZN such that zi + δQ ⊂ �. The unfolding
operator Tδ : L2(�;RM ) → L2(�; L2(Q;RM )) is defined as

Tδ(u)(x, y) :=

⎧⎪⎨
⎪⎩
u
(
δ
⌊
x
δ

⌋
+ δy

)
for x ∈ �̂δ, y ∈ Q,

a(y) if x ∈ �δ, y ∈ Q.

(2.1)

where, given an enumeration {zi }i∈N of ZN ,

�x� := zi i := min
{
j ∈ N : z j ∈ argmin{|z − x | : z ∈ Z

N }
}

(2.2)

is the integer part of x ∈ R
N , and a : � → R

M is the function given in (W3) in
Sect. 4.

Remark 2.4. This definition of the unfolding operator is nonstandard aswemake the
unfolding operator nonzero in the small boundary set �δ × Q. While this prevents
our definition of the unfolding operator from being linear, it still preserves the main
compactness property (see Theorem 2.5), and allows us to simplify some algebraic
arguments.

Theorem 2.5. Given {uδ}δ>0 ⊂ L2(�;RM ) and v ∈ L2(�; L2(Q;RM )), the
following conditions are equivalent:

(i) uδ
2−s
⇀ v weakly two scale in L2(�; L2(Q;RM )),

(ii) Tδuδ ⇀ v weakly in L2(�; L2(Q;RM )).

Finally, we use the unfolding operator to define a variant of two-scale conver-
gence that will be useful in proving our results.

Definition 2.6. A sequence {uδ}δ>0 ⊂ L1(�;RM ) is said to converge strongly
two-scale in L1(�; L1(Q;RM )) to u ∈ L1(�; L1(Q;RM )) if Tδuδ → u strongly
in L1(�; L1(Q;RM )).
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2.2. Measurable Selection

Here, we recall the measurable selection theorem tailored to our usage that will
be needed for the construction of the recovery sequences. For a further reference,
see [16, Sect. 6.1].

Definition 2.7. A multifunction F : � → 2Y \{∅}, where Y is a topological space,
is said to be Lebesgue measurable if for every closed set S ⊂ Y the set

F−(S) := {x ∈ � : F(x) ∩ S �= ∅}
belongs to the Lebesgue σ−algebra on �.

The next result ensures the existence of a measurable selection (see [16, Theo-
rem 6.10]).

Theorem 2.8. LetY bea complete separablemetric space, and consider aLebesgue
measurable multifunctionF : � → 2Y \{∅} be with values on a closed subsets of Y .
Then there exists a sequence of Lebesgue measurable selections for un : � → Y ,
n ∈ N, such that {un(x)}n is dense in F(x) for every x ∈ �.

2.3. Sets of Finite Perimeter

We recall the definition and somewell known facts about sets of finite perimeter.
For more details, we refer the reader to [2,15,23].

Definition 2.9. Let E ⊂ R
M with |E | < ∞, and let A ⊂ R

M be an open set. We
say that E has finite perimeter in A if

P(E; A) := sup

{∫
E
divϕ dx : ϕ ∈ C1

c (A;RM ), ‖ϕ‖L∞ ≤ 1

}
< ∞.

Remark 2.10. A set E ⊂ R
M is a set of finite perimeter in A if and only if

χE ∈ BV (A), i.e., the distributional derivative DχE is a finite vector valued Radon
measure in A, with ∫

RM
ϕ dDχE =

∫
E
divϕ dx

for all ϕ ∈ C1
c (A;RM ), and |DχE |(A) = P(E; A). In particular, the outer regular-

ity property of Radon measures, allows us to define the perimeter of a set E ⊂ R
M

in a Borel set D ⊂ R
M as

P(E; D) := inf { P(E; A) : D ⊂ A, A open } .

Definition 2.11. Let E ⊂ R
M be a set of finite perimeter in the open set A ⊂ R

M .
We define ∂∗E , the reduced boundary of E , as the set of points x ∈ R

M for which
the limit

νE (x) := − lim
r→0

DχE (x + r Q)

|DχE |(x + r Q)

exists and is such that |νE (x)| = 1. The vector νE (x) is called themeasure theoretic
exterior normal to E at x .
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We now recall the De Giorgi’s structure theorem for sets of finite perimeter.

Theorem 2.12. Let E ⊂ R
M be a set of finite perimeter in the open set A ⊂ R

M.
Then

(i) for all x ∈ ∂∗E the set Er := E−x
r converges locally in L1(RM ) as r → 0 to

the halfspace orthogonal to νE (x) and not containing νE (x);
(ii) DχE = −νE HN−1 ¬

∂∗E;
(iii) the reduced boundary ∂∗E isHN−1-rectifiable, i.e., there exist Lipschitz func-

tions fi : RM−1 → R
M, i ∈ N, such that

∂∗E =
∞⋃
i=1

fi (Ki ),

where each Ki ⊂ R
M−1 is a compact set.

We now recall a strong approximation result by Gromard (see [13], and also
[12]).

Theorem 2.13. Let A ⊂ R
M be an open set, and let E ⊂ A be a set of finite

perimeter in A. Then, for each ε > 0 there exist a set F ⊂ A of finite perimeter in
A, and a compact set C ⊂ A such that

(i) ∂F ∩ A is contained in a finite union of C1 hypersurfaces;
(ii) ‖1E − 1F‖BV (A) < ε;
(iii) HN−1(∂F ∩ A \ ∂∗E) < ε;
(iv) F ⊂ E + B(0, ε), and D \ F ⊂ (A \ E) + B(0, ε);
(v) C ⊂ A ∩ ∂∗E ∩ ∂F;
(vi) νE (x) = νF (x) for all x ∈ C;
(vii) |D1E |(D \ C) < ε.

3. Assumptions

Let � ⊂ R
N be a bounded open set, and N , M ≥ 1. Let Q := (−1/2, 1/2)N

be the unit cube in RN , and write LN -a.e. point x ∈ � as

x = �x� + y, (3.1)

where y ∈ Q, and �x� is the integer part of x ∈ R
N , defined in (2.2). Consider

measurable functionsW : �×R
M → [0,+∞) and a, b : � → R

M , and pairwise
disjoint open sets E1, . . . , Ek ⊂ Q with piecewise affine boundary and with

Q =
k⋃

i=1

(
Ei ∩ Q

)
,

such that the following assumptions are satisfied:

(W1) For all p ∈ R
M , the function x �→ W (x, p) is Q-periodic;
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(W2) For LN -a.e. x ∈ �, by using the writing in (3.1), it holds

W (x, p) =
k∑

i=1

χEi (y)Wi (y, p),

where, for each i ∈ {1, . . . , k}, the function Wi : Ei × R
M → [0,∞) is

locally Lipschitz continuous;
(W3) For LN -a.e. x ∈ �, it holds

a(x) =
k∑

i=1

χEi (y)ai (y), b(x) =
k∑

i=1

χEi (y)bi (y),

where, for each i ∈ {1, . . . , k}, the functions ai , bi : Ei → R
M are Lipschitz

continuous. Moreover, for LN -a.e. x ∈ �, it holds

W (x, p) = 0 if and only if p ∈ {a(x), b(x)};
(W4) For every i ∈ {1, . . . ,m}, and for LN -a.e. y0 ∈ Ei \ {ai = bi }, there exist

μ > 0, R > 0, c1 > 0, such that, for all y ∈ B(y0, μ),

1

c1
|p − ai (y)|2 ≤ Wi (y, p) ≤ c1|p − ai (y)|2,

if |p − ai (y)| ≤ R, and

1

c1
|p − bi (y)|2 ≤ Wi (y, p) ≤ c1|p − bi (y)|2,

if |p − bi (y)| ≤ R;
(W5) There exists c2 > 0 such that, for LN -a.e. x ∈ �,

W (x, p) ≥ 1

c2
|p|2,

if |p| ≥ c2, and

W (x, p) ≤ c2(1 + |p|2),
for every p ∈ R

M .

We would like to make several comments on the assumptions made.

Remark 3.1. (Axes of periodicity) The periodicity of the potential W and of the
wells a and b are meant to model a situation of a periodic medium, while the
dependence on x of all of the above functions allow to consider more general
physical settings, like an inhomogeneous one. The choice of asking for periodicity
with respect to the principal axes is not restrictive: our results hold also in the case
of periodicity with respect to any basis of RN .
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Remark 3.2. (Discontinuities of the wells) The possible discontinuities of the po-
tential W and on the wells a and b make the model suitable for studying material
inclusion. Our framework includes the assumptions used in the work by Braides
and Zeppieri [5], where W : R × R → [0,∞) is given by

W (y, s) :=
{
W̃ (s − k) y ∈ (

0, 1
2

)
,

W̃ (s + k) y ∈ ( 1
2 , 1

)
,

with W̃ (t) := min{(t − 1)2, (t + 1)2}, and thus the wells are

a(y) =
{
1 − k for y ∈ (

0, 1
2

)
,

1 + k else,
, b(y) =

{
−1 − k for y ∈ (

0, 1
2

)
.

−1 + k else

Finally, note that there is no loss of generality in assuming that the partition
E1, . . . , Ek is the same for all of the functions, and that we are also including
the case where the previous functions are continuous along ∂Ei ∩ ∂E j .

Remark 3.3. (Assumptions on the wells) We note that in the work [10] of the first
author and Gravina, a stronger condition than (W2) was assumed, i.e, that the
potential W is exactly quadratic near the well. This restriction is relaxed in here,
by asking only for quadratic bounds. Moreover, here we also allow wells to merge;
namely, we do not impose them to be well separated.

Remark 3.4. (On the sets Ei ’s) Assuming that the sets Ei ’s to have piecewise affine
boundaries is just for reader’s convenience. Indeed, the only technical point where
we use this assumption is in the construction of the recovery sequence for the first
order �-limit (see Proposition 5.27). In particular, the piecewise affine regularity
of the ∂Ei ’s allows us to apply directly the limsup inequality proved in [10]. For a
partition with piecewise C1 boundaries, a careful adaptation of the argument used
to prove [10, Proposition 4.3], should give the result also in that case. Finally, if the
boundaries are only Lipschitz continuous, then a Lusin type approximation with
piecewise C1 sets will allow to conclude.

Remark 3.5. (Growth at infinity of the potential) Finally, the quadratic growth of
W can be generalized to any q-growth for q > 1. If only the results for mass-
constrained functional is of interest, then the growth can also be linear, as proved
in [22]. In all of these cases, the results will hold with the space L2 substituted by
the space Lq .

Remark 3.6. (Lower bound on the potential) Using assumptions (W2), (W3), (W4),
and (W5), it is possible to show that, for every r > 0, there exists Cr > 0 such that

inf {W (x, p) : x ∈ �, min{|p − a(x)|, |p − b(x)|} ≥ r} ≥ Cr .

Remark 3.7. (Extension tomultiple wells) Finally, we note that the choice of having
two wells a and b is only for notational convenience. A similar result holds if any
number of wells satisfying the above assumptions is considered.

We are now in position to define the sequence of functionals that will be studied
in this paper.
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Definition 3.8. Let {εn}n, {δn}n be infinitesimal sequences such that

lim
n→∞

εn

δn
= 0.

For n ∈ N, define the functional Gn : L2(�;RM ) → [0,+∞] as

Gn(u) :=
{∫

�

[
W

(
x
δn

, u(x)
)

+ ε2n|∇u(x)|2
]
dx if u ∈ W 1,2(�;RM ),

+∞ else.

Remark 3.9. The choice of writing the functionals by using sequences instead of
using the notation Gε,δ is purely based on convenience, because when proving a
�-convergence result, we would have had to fix some {εn}n, {δn}n . In particular,
note that, as long as they satisfy the required rate of convergence, the choice of
sequences do not affect the results we present. Furthermore, the two scale results
hold even when considering the subsequences indexed in n.

4. Zeroth-Order �-Expansion

This section is devoted to proving the zeroth order �-expansion of the func-
tionals Gn (see Definition 3.8). We start by introducing the limiting functional.

Definition 4.1. Define the functional G0 : L2(�;RM ) → [0,+∞] as

G0(u) :=
∫

�

W hom(u(x))dx,

where, for p ∈ R
M ,

W hom(p) := min

{∫
Q
W ∗∗(y, p + ϕ(y)) dy : ϕ ∈ L2(Q;RM ),

∫
Q

ϕ dy = 0

}
.

Here, for each y ∈ Q, the function p �→ W ∗∗(y, p) is the convex envelope of the
function p �→ W (y, p).

Remark 4.2. By using the upper and lower bounds onW (see (W5)), it is easy to see
that, for p ∈ R

M , the minimization problem defining W hom(p) has a minimizer φ.
To be precise, this occurs becauseW does not take the value+∞ and grows at least
quadratically at infinity,whichmeanswecanfind an affine function in the p-variable
below W (y, p). In this scenario, it is classical that the bipolar W ∗∗(y, ·), can be
identified with the convex envelope ofW (y, ·) and it is known that functionals with
convex integrands are weakly lower semicontinuous (see [16, Propositions 6.31,
6.43, and Theorem 6.54]).
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Themain result of this section is the characterization of the zeroth order effective
energy through �−convergence. A similar theorem has been proven before by
Francfort and Müller [19] for the case of solid to solid phase separation where they
consider the same energy, with u,∇u replaced by∇u,∇2u. While they use delicate
approximation techniques to prove their result, we give an alternate proof through
two-scale and measurable selection techniques to embody the spirit of this paper.
In particular, techniques used in the proof will be later used when we will consider
the first order �-limit.

Theorem 4.3. (0th-order�-convergence) Let {εn}n, {δn}n ⊂ (0, 1) be infinitesimal
sequences such that

lim
n→∞

εn

δn
= 0.

Let {un}n ⊂ W 1,2(�;RM ) with

sup
n

Gn(un) < +∞.

Then, up to a subsequence (not relabeled), un ⇀ u in L2(�;RM ) for some u ∈
L2(�;RM ) with G0(u) < ∞. Moreover, Gn

�→ G0 with respect to the weak-L2

convergence.

Proof of Theorem 4.3. Part 1: Compactness.
Consider a sequence {un}n ⊂ W 1,2(�;RM ) with

sup
n

Gn(un) < +∞.

The lower bound (W5) ensures pre-compactness in the weak-L2(�;RM ) topology.
The fact that any cluster point has finite G0 energy will follow from next step.

Part 2: Liminf inequality. Let {un}n ∈ W 1,2(�;RM ) be such that un ⇀ u in
L2(�;RM ). Since {un}n is bounded in L2, Proposition 2.2, we may find a function
u ∈ L2(�; L2(Q;RM )) such that

un
2−s
⇀ u(x, y) and un ⇀ u(x) :=

∫
Q
u(x, y)dy.

Assume that lim inf
n→∞ Gn(un) < +∞, as otherwise the inequality is satisfied triv-

ially. Firstly, we drop the gradient term, and rewrite the energy using the unfolding
operator to obtain

Gn(un) ≥
∫

�

W

(
x

δn
, un(x)

)
dx ≥

∫
�̂δn

W ∗∗
(
x

δn
, un(x)

)
dx,

=
∫

�̂δn

∫
Q
Tδn

[
W ∗∗

(
x

δn
, un

)]
dydx

=
∫

�̂δn

∫
Q
W ∗∗ (

y, Tδn un
)
dydx,
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=
∫

�

∫
Q
W ∗∗ (

y, Tδn un
)
dydx .

Note in the last equality we have used the fact that W ∗∗(y, a(y)) = 0. By The-
orem 2.5 and the definition of two-scale convergence, we know that Tδn un ⇀

u(x, y) = u(x)+v(x, y) for some v ∈ L2(�; L2(Q;RM ))with
∫
Q v(x, y)dy = 0.

Now the desired inequality comes directly from Remark 4.2, using the fact that the
bipolar is convex and thus is weakly lower semicontinuous. We conclude that

lim inf
n→∞ Gn(un) ≥ lim inf

n→∞

∫
�

∫
Q
W ∗∗ (

y, Tδn un
)
dydx,

≥
∫

�

∫
Q
W ∗∗ (y, u(x) + v(x, y)) dydx ≥ G0(u).

Part 3: Limsup inequality. We divide the argument in several steps.
Step 1. Firstly, we note that it suffices to show the limsup inequality for u ∈
C∞
c (�;RM ).
Indeed, foru ∈ L2(�;RM )wecanfindbydensity a sequence {u j } ⊂ C∞

c (�;RM )

such that u j → u strongly in L2. Furthermore, using the fact that the �-limsup is
lower semicontinuous [11, Proposition 6.8] with respect to weak-L2, and that G0

is upper-semicontinuous with respect to strong L2 convergence, we have

� − lim sup
n→∞

Gn(u) ≤ lim inf
j

[
� − lim sup

n→∞
Gn(u j )

]

≤ lim sup
j

G0(u j ) ≤ G0(u),

for all u ∈ L2(�;RM ).
Step 2. For u ∈ C∞

c (�;RM ) and ϕ ∈ C∞
c (�;C∞

per(Q;RM )) with
∫
Q

ϕ(x, y)dy = 0,

define

uϕ
n (x) := u(x) + ϕ

(
x,

x

δn

)
.

Then, we have that

� − lim sup
n→∞

Gn(u) ≤ lim
n→∞Gn(u

ϕ
n )

= lim
n→∞

∫
�

[
W

(
x

δn
, uϕ

n (x)

)
+ ε2n|∇uϕ

n |2
]
dx

= lim
n→∞

∫
�

W

(
x

δn
, uϕ

n (x)

)
dx,

where in the last step we used that

sup
n

|∇uϕ
n |2 ≤ C

δ2n
and

εn

δn
→ 0.
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Applying the unfolding operator to this functional and noting that

Tδn

[
ϕ

(
x,

x

δn

)]
= ϕ

(
δn

⌊ x

δn

⌋
+ δn y, y

)
=: Tδnϕn,

we obtain

� − lim sup
n→∞

Gn(u) ≤ lim
n→∞

[∫
�

∫
Q
W (y, Tδn u + Tδnϕn) dydx

+
∫

�\�̂δn

W (y, uϕ
n (x)) dx

]

Thanks to the equiboundedness of uϕ
n (x), the boundary term vanishes in the

limit. Furthermore, using the convergences Tδn u → u and Tδnϕn → ϕ strongly in
L2(�; L2(Q;RM )), we conclude that

� − lim sup
n→∞

Gn(u) ≤
∫

�

∫
Q
W (y, u(x) + ϕ(x, y)) dydx

By taking an infimum over all admissible ϕ, we can see that

� − lim sup
n→∞

Gn(u) ≤ Ĝ0(u),

where

Ĝ0(u) := inf
{∫

�

∫
Q
W (y, u(x) + ϕ(x, y)) dydx : ϕ ∈ C∞

c (�;C∞
per(Q;RM )),

∫
Q

ϕ(x, y)dy = 0
}
.

Step 3. We claim that

Ĝ0(u) = min
{∫

�

∫
Q
W ∗∗(y, u(x) + ϕ(x, y)) dydx : ϕ ∈ L2(�; L2(Q;RM )),

∫
Q

ϕ(x, y)dy = 0
}
. (4.1)

where W ∗∗ is the convexification of W with respect to the second variable.
Consider the functional H : L2(�; L2(Q;RM )) → [0,∞] defined as

H(v) :=
{∫

�

∫
Q g(x, y, v(x, y)) dydx if

∫
Q v(x, y) dy = 0 LN − a.e. x ∈ �,

+∞ else,

where g(x, y, v) := W (y, u(x) + v(x, y)).
Then, by definition and density, it is possible to see that

Ĝ0(u) = inf{H(v) : v ∈ L2(�; L2(Q;RM ))}. (4.2)
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Since it is not clear that H has minima, we relax the functional H . A stan-
dard relaxation theorem (see [16, Theorem 6.68]), together with the fact that the
constraint is continuous, yields

lsc(H)(v) :=
{∫

�

∫
Q g∗∗(x, y, v(x, y)) dydx if

∫
Q v(x, y) dy = 0 LN − a.e. x ∈ �,

+∞ else,

where g∗∗ is the convexification of g with respect to the last variable. A direct
computation shows that

g∗∗(x, y, p) = W ∗∗(y, u(x) + p),

for all x ∈ �, y ∈ Q, and p ∈ R
M . This, together with (4.2), and the fact that H

is coercive in L2 (thanks to (W5)), proves (4.1).
Step 4. In order to finish the proof of the recovery sequence, we will show that

Ĝ0(u) = G0(u).
It is easy to see that Ĝ0(u) ≥ G0(u). Next, we will show the other inequality.

Note that by Remark 4.2, for every x ∈ �, we can find minimizers ϕx such that:

W hom(u(x)) =
∫
Q
W ∗∗(y, u(x) + ϕx (y)) dy.

We use Theorem 2.8 in order to extract a measurable selection. By coercivity of
W ∗∗ and since ‖u‖∞ < +∞, there exists R0 > 0 such that any minimizer ϕx

must be contained in the closed ball B := B(0, R0) ⊂ L2(Q;RM ). We consider
Y := B equipped with the weak topology, which is metrizable since L2(Q;RM )

is reflexive. In particular, it is separable and complete as well, and so satisfies the
conditions in Theorem 2.8. Define the multifunction

F(x) :=
{
ϕ ∈ Y :

∫
Q

ϕ dy = 0 and ϕ attains the minimum W hom(u(x))

}
.

As noted before, this is nonempty for every x ∈ �.
Furthermore, we claim that for every x ∈ �,F(x) is a closed subset of Y under

the weak topology. Indeed, we just need to show it is sequentially closed, so take
{ϕn}n ⊂ F(x) and suppose ϕn ⇀ ϕ. Note that the zero average condition passes to
the limit, and by sequential weak lower semicontinuity of the integrand, we have

W hom(u(x)) ≤
∫
Q
W ∗∗(y, u(x) + ϕ(y)) dy

≤ lim inf
n→∞

∫
Q
W ∗∗(y, u(x) + ϕn(y)) = W hom(u(x)).

and we conclude that ϕ ∈ F(x). The last condition needed to be checked in order
to apply Theorem 2.8 is that the multifunction is Lebesgue measurable. Take S
which is closed in Y under the weak topology. We will show that F−(S), as given
in Definition 2.7, is also closed. Again it suffices to check sequential closure, so
we take {xn}n ⊂ F−(S) such that xn → x in �. By definition of F−(S), we can
find for each xn a corresponding ϕn ∈ F(xn)∩ S. The sequence {ϕn}n is uniformly
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bounded in L2(Q;RM ) by definition of Y , and so we can find a weakly converging
subsequence to some limit ϕ. Furthermore, as S is closed with respect to weak
convergence, we must have ϕ ∈ S and the zero average condition is preserved. We
pass to that subsequence in both {xn}n and {ϕn}n , without relabeling. As xn → x
in the sense of RN , by continuity of u we have u(xn) → u(x). Once again, we
can apply the sequential weak lower semicontinuity of the integrand and the upper
semicontinuity of W hom, to get

W hom(u(x)) ≤
∫
Q
W ∗∗(y, u(x) + ϕ(y)) dy

≤ lim inf
n→∞

∫
Q
W ∗∗(y, u(xn) + ϕn(y))dy

≤ lim sup
n→∞

W hom(u(xn)) ≤ W hom(u(x)).

Thus, all inequalities are actually equalities andwehave bydefinition,ϕ ∈ F(x)∩S.
This means that x ∈ F−(S), and the set is closed. Since the set is closed, it is a
Borel set, which is contained in the Lebesgue σ−algebra. This proves that the
multifunction is Lebesgue measurable, and so we have checked all the hypotheses
of Theorem 2.8. This allows us to find a measurable function v : � → Y such that
v(x) ∈ F(x). Furthermore, since v(x) ∈ Y , we have that ‖v(x)‖L2(Q;RM ) ≤ R0.
In particular, as � is a bounded set in RN , we have that∫

�

‖v(x)‖2L2(Q;RM )
dx < +∞.

Therefore, we have that v ∈ L2(�; L2(Q;RM )) and by definition of F(x), we
have

∫
Q v(x, y)dy = 0. Thus, v is an admissible competitor for the infimum in

Ĝ0(u). We deduce that

Ĝ0(u) ≤
∫

�

∫
Q
W ∗∗(y, u(x) + v(x, y)) dydx = G0(u),

and this concludes the proof. ��
It is also possible to get the explicit value of the minimum of the limiting

functional G0, as well as a characterization of the set of its minimizers.

Corollary 4.4. (Minimizers of G0) It holds that

min{G0(u) : u ∈ L2(�;RM )} = 0.

Furthermore, u ∈ L2(�;RM ) is such that G0(u) = 0 if and only if

u(x) =
∫
Q

μ(x, y)a(y)dy +
∫
Q
[1 − μ(x, y)]b(y)dy, (4.3)

where μ ∈ L2(�; L∞(Q; [0, 1])). Namely, for a.e. x ∈ �, u(x) ∈ K, where

K :=
{∫

Q
v(y)dy : v(y) ∈ [a(y), b(y)]

}
,

and such selection of elements of K is measurable.
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Proof. Step 1: Minima of Convex Envelope.
Note that W ∗∗(y, p + φ(y)) = 0 if and only if

p + ϕ(y) = f (y)a(y) + [1 − f (y)]b(y) (4.4)

for some f (y) ∈ [0, 1]. This is due to the fact that W is only zero at a, b which is
the minimum (see (W3)).
Step 2: Sufficiency. First, suppose

u(x) :=
∫
Q

μ(x, y)a(y)dy +
∫
Q
[1 − μ(x, y)]b(y)dy

for some μ ∈ L2(�; L∞(Q; [0, 1])). Consider
φx (y) := μ(x, y)a(y) + [1 − μ(x, y)]b(y) − u(x).

Note thatφx ∈ L2(Q;RM )with
∫
Q φx (y) dy = 0.Thus, it is admissible competitor

in the minimization problem definingW hom. Furthermore, using convexity, we can
deduce that

W hom(u(x)) ≤
∫
Q
W ∗∗(μ(x, y)a(y) + [1 − μ(x, y)]b(y)

)
dy

≤
∫
Q

μ(x, y)W ∗∗(y, a(y)) + [1 − μ(x, y)]W ∗∗(y, b(y)) dy = 0,

where in the last inequality we used the fact that, for every y ∈ Q,

W ∗∗(y, a(y)) = W ∗∗(y, b(y)) = 0.

Since W ≥ 0 and, in turn, W hom ≥ 0, we conclude that W hom(u(x)) = 0 for
LN -a.e. x ∈ �. Thus, we obtain G0(u) = 0.
Step 3: Necessity. Let u ∈ L2(�;RM ) be such that G0(u) = 0. In the proof of the
limsup inequality above, we showed that by a measurable selection, we can find
ϕ ∈ L2(�; L2(Q;RM )) such that

∫
Q ϕ(x, y)dy = 0 and

0 = G0(u) = Ĝ0(u) =
∫

�

∫
Q
W ∗∗(y, u(x) + ϕ(x, y)) dydx .

In particular, forLN -a.e. y ∈ Q andLN -a.e. x ∈ �,wemust have thatW ∗∗(y, u(x)+
ϕ(x, y)) = 0. Sincea, b, andϕ aremeasurable,we canfindμ ∈ L2(�; L∞(Q; [0, 1]))
such that

u(x) + ϕ(x, y) = μ(x, y)a(y) + [1 − μ(x, y)]b(y).
Integrating (4.4) in Q and using the fact that ϕ has zero average, we get (4.3). ��

Finally, as it is well-known in the general context of this work, adding a mass
constraint to the problem does not require to change significantly the proof of
Theorem 4.3.
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Definition 4.5. Let m ∈ R
M . For n ∈ N, define Gn : L2(�;RM ) → [0,+∞] as

Gn(u;m) :=
{
Gn(u) if u ∈ W 1,2(�;RM ) with

∫
�
u dx = m,

+∞ else,

and G0 : L2(�;RM ) → [0,+∞] as

G0(u;m) :=
{
G0(u) if

∫
�
u dx = m,

+∞ else.

The analogous of Theorem 4.3 and of Corollary 4.4 hold also for the mass
constrained functional. The small changes needed in the proof are classical, and
therefore we will not report them here (see, e.g., [10,18]).

Theorem 4.6. Fix m ∈ R
M. Let {un}n ⊂ W 1,2(�;RM ) be such that

sup
n

Gn(un;m) < +∞.

Then, up to a subsequence (not relabeled), un ⇀ u in weak-L2(�;RM ) for some

u ∈ L2(�;RM )with G0(u;m) < ∞. Moreover, Gn(·;m)
�→ G0(·;m)with respect

to the weak-L2 convergence. Finally,

min{G0(u;m) : u ∈ L2(�;RM )} = 0,

and u ∈ L2(�;RM ) is such that G0(u;m) = 0 if and only if

u(x) =
∫
Q

μ(x, y)a(y)dy +
∫
Q
[1 − μ(x, y)]b(y)dy,

where μ ∈ L2(� × Q; [0, 1)]) with ∫
�
u dx = m.

5. First-Order �-Expansion

In view of Corollary 4.4, we know that minimizers of G0 are of the form

u(x) =
∫
Q

μ(x, y)a(y)dy +
∫
Q
[1 − μ(x, y)]b(y)dy, (5.1)

for some μ ∈ L2 (�; L∞(Q; [0, 1])). We would like to study the behaviour of the
sequence of functionals Gn close to the subclass R of functions u as in (5.1) such
that

μ(x, y) = 1A(x)(y), (5.2)

where, for a.e. x ∈ �, the set A(x) ⊂ Q has finite perimeter. The class R corre-
sponds to geometric microstructures, and we will see that this is the only class for
which equipartition of surface energy holds. We proceed as follows: in next sec-
tion we identify the proper scalingω(ε) of the energy by using heuristic arguments,
while rigorous arguments will be employed in the following sections to prove the
�-expansion result.
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Fig. 2. The construction in each cube zi + μQ: in the pink region we set ũn(y) to be a(y),
and in the purple one to be b(y). We then have the interface (colored in green) of thickness
η, and the cut-off region (colored in blue) of thickness η

5.1. Heuristics for the Scaling Analysis

Let u0 ∈ L1(�; L1(Q;RM )), and let {un}n ⊂ W 1,2(�;RM ) be such that

un
2−s
⇀ u0. By using a change of variable, and neglecting the contribution of cells

that intersect ∂�, we have that

Gn(un) =
∑

z∈δnZN

∫
(z+δn Q)∩�

[
W

(
x

δn
, un(x)

)
+ ε2n|∇un(x)|2

]
dx

∼
∑

z∈δnZN

∫
Q

[
W (y, Tδn un(x, y)) +

(
εn

δn

)2

|∇yTδn un(x, y)|2
]
dy.

(5.3)

We will focus on the behaviour of the energy in each cube. Fix x ∈ �, n ∈ N, and
consider the function ũn : Q → R

M defined as ũn(x, y) := Tδn un(x, y). It holds
ũn ⇀ u0(x, ·).

We first assume that u0(x, y) ∈ {a(y), b(y)} almost everywhere, and iden-
tify the scaling ωn of (5.3) in each cube. Then we show that, if for a generic

u0 ∈ L1(�; L1(Q;RM )) and {un}n ⊂ W 1,2(�;RM ) with un
2−s
⇀ u0 the sequence

{Gn(un)}n behaves like the scaling ωn , then the limiting function u0 must be such
that u0(x, y) ∈ {a(y), b(y)} almost everywhere.

Let μn > 0, to be chosen later, and subdivide the cube Q into smaller cubes
μnQ. In each of these little cubes we perform the construction detailed in Fig. 2.
Namely, for γn, ηn > 0 with

ηn � μn, γn � μn, (5.4)

the function ũn(y) is either a(y) or b(y) in most of the cube, with ηn being the
thickness of the interface between a and b, and γn being the thickness of the cut-off
region. Both are needed to ensure that un(y) ∈ W 1,2(Q;RM ).
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We now evaluate the order of the energy of such a configuration. We have

1

μN
n

∫
μn Q

[
W (y, ũn(y)) +

(
εn

δn

)2

|∇nũn(y)|2
]
dy

= 1

μN
n

{[(
0 +

(
εn

δn

)2
)

(μN
n − ηnμ

N−1
n − γnμ

N−1
n )

]

+
[(

1 +
(

εn

δn

)2 1

η2n

)
(ηnμ

N−1
n )

]
+

[(
1 +

(
εn

δn

)2 1

γ 2
n

)
(γnμ

N−1
n )

]}

∼
[(

εn

δn

)2
]

+
[

ηn

μn
+

(
εn

δn

)2 1

ηnμn

]
+

[
γn

μn
+

(
εn

δn

)2 1

γnμn

]
, (5.5)

where the terms in the square parenthesis correspond to the energy of the purple
region, the green region, and the blue region respectively.

In the case u0(x, y) ∈ {a(y), b(y)} almost everywhere, we have that μn must
be of order 1. Moreover, it is possible to see that for each choice of vanishing
sequences {ηn}n, {γn}n , the first term is always of higher order than the last two. In
particular, there is no rescaling that allows to see that energy contribution (the bulk
energy). On the other hand, it is possible to make the last two terms of the same
order if and only if ηn = γn = εn

δn
. Therefore, we guess that ωn = εn

δn
.

We now show that this scaling identifies functions u0 ∈ R. Dividing (5.5) by
εn
δn

we get

εn

δn
+ 1

μn

(
ηn

δn

εn
+ 1

ηn

εn

δn

)
+ 1

μn

(
γn

δn

εn
+ 1

γn

εn

δn

)
,

which is finite as εn → 0 if and only if μn is of order 1 and γn = ηn = εn
δn
.

This is the heuristic reason to choose the scaling ωn = εn
δn
: it is expected to

give equipartition of the surface energies and to select minimizers of u0 of the form
(5.2). We will rigorously prove in the next sections that indeed, this is the correct
scaling.

5.2. The Limiting Functional

Motivated by the heuristics of the previous section, we introduce the new family
of functionals.

Definition 5.1. For n ∈ N, the functional G1
n : L1(�;RM ) → [0,+∞] as

G1
n(u) := δn

εn
Gn(u) =

∫
�

[
δn

εn
W

(
x

δn
, u(x)

)
+ εnδn|∇u(x)|2

]
dx .

Remark 5.2. In the following, it is convenient towrite the functionalG1
n by using the

undfolding operator. For n ∈ N, define the functional G̃n : L1(Q;RM ) → [0,∞)

as

G̃1
n(v) :=

∫
Q

[
δn

εn
W (y, v(y)) + εn

δn
|∇v(y)|2

]
dy,
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and note that it is possible to write

G1
n(u) =

∫
�

G̃1
n(Tδn u(x, ·)) dx + Rn(u),

where, recalling (2.1), we set

Rn(u) :=
∫

�δn

[
δn

εn
W

(
x

δn
, u(x)

)
+ εnδn|∇u(x)|2

]
dx

− |�δn |εnδn
∫
Q

|∇a(y)|2 dy.

In particular, we can see G1
n as a functional defined on L1(�; L1(Q;RM )) as

follows:

G1
n(v) =

∫
�

G̃1
n(v(x, ·)) dx + R̃n(v).

there

R̃n(v) :=
∫

�δn

∫
Q

[
δn

εn
W (y, v(x, y)) + εn

δn
|∇yv(x, y)|2

]
dy dx

−
∫

�δn

∫
Q

εn

δn
|∇a(y)|2 dy dx .

These representations will be useful throughout the rest of the paper.

We now introduce the interfacial energy density of the limiting functional. It is
convenient to introduce the function χ : RM → {1, . . . , k} defined as χ(y) := i
if y ∈ Ei . Note that χ ∈ SBV (RM ) and its jump set Jχ corresponds to points
y ∈ R

M such that there exist only two indexes i �= j with y ∈ ∂Ei ∩ ∂E j . It can
be identified as Sχ\Jχ , where Sχ is the set of singular points of χ .

Definition 5.3. For p, q, z0 ∈ R
M , consider the class

A(p, q, z0) :=
{
γ ∈ W 1,1([−1, 1];RM ) : γ (−1) = p, γ (0) = z0, γ (1) = q

}
.

Define dW : [ Jχ ∪ (
Q\Sχ

) ] × R
M × R

M → [0,∞) as

dW(y, p, q) := inf

{∫ 0

−1
2
√
Wi (y, γ (t))|γ ′(t)|dt +

∫ 1

0
2
√
Wj (y, γ (t))|γ ′(t)|dt

}

if χ−(y) = i and χ+(y) = j , where the infimum is taken over points z0 ∈ R
M ,

and over curves γ ∈ A(p, q, z0).
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Remark 5.4. Note that in the case χ−(y) = χ+(y), we have that

dW(y, p, q) = inf

{∫ 1

−1
2
√
Wi (y, γ (t))|γ ′(t)| dt

}
,

where the infimum is taken over curves γ ∈ W 1,1([−1, 1];RM ) such that γ (−1) =
p, and γ (1) = q.

In the case χ−(y) �= χ+(y) we cannot impose a priori the point v0 ∈ R
M

where the profile will pass through at time t = 0, and therefore we need to infimize
also over that parameter.

Definition 5.5. Let

R̃ :=
{
v ∈ L1(RN ;RM ) : v is Q-periodic, v(y) ∈ {a(y), b(y)} a.e.,
v|Q ∈ BVloc(Q0;RM )

}
,

where Q0 := Q \ {x ∈ Q : a(x) = b(x)}, and define the class

R :=
{

v ∈ L1(�; L1(Q;RM )) : ṽ(x, ·) ∈ R̃ for a.e. x ∈ �
}

,

where ṽ : RN → R
M denotes the Q-periodic extension of v ∈ L1(Q;RM ).

We are now in position to define the limiting functional.

Definition 5.6. Let G1 : L1(�; L1(Q;RM )) → [0,+∞] be defined as

G1(u) :=

⎧⎪⎨
⎪⎩

∫
�

G̃1(̃u(x, ·)) dx if u ∈ R,

+∞ else,

where, for a function v ∈ L1(RN ;RM ), we set

G̃1(v) :=
∫
Q̃∩Jv

dW(y, v−(y), v+(y))dHN−1(y),

and Q̃ := [− 1
2 ,

1
2 )

N .

Remark 5.7. Note that the energy G1 is well defined. Indeed, for u ∈ R, by using
themeasurability of x �→ ũ(x, ·), it is easy to see that the function x �→ G̃1(̃u(x, ·))
is measurable. Moreover, the jump set Jv of a measurable function v : RM → R

is HM−1-rectifiable (see [14]). Finally, as noted in [10, Remark 1.8], there are
functions v ∈ L1(RN ;RM ) for which G̃1(v) < ∞, but v �∈ BV(RN ;RM ).

The main result of this section is the following:
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Theorem 5.8. Let {εn}n, {δn}n ⊂ (0, 1) be infinitesimal sequences such that

lim
n→∞

εn

δn
= 0.

If {un}n ⊂ W 1,2(�;RM ) is such that

sup
n

G1
n(un) < +∞,

then there exists u ∈ R with G1(u) < ∞ such that, up to a subsequence (not

relabeled), un
2−s→ u strongly in L1(�; L1(Q;RM )). Moreover,

G1
n

�→ G1

with respect to strong two-scale convergence in L1(�; L1(Q;RM )).

The result of Theorem 5.8 is written in the language of two-scale convergence.
Using it we can also write the �-convergence result with respect to the weak L2

convergence without reference to the microscopic variable y.

Corollary 5.9. Let {εn}n, {δn}n ⊂ (0, 1) be infinitesimal sequences such that

lim
n→∞

εn

δn
= 0.

Then

G1
n

�→ H1

with respect to the weak L2(�;RM ) convergence. Here

H1(v) :=
∫

�

H̃1(v(x)) dx,

where

H̃1(p) := min

{
G̃1(w) : w ∈ R,

∫
Q

w(y)dy = p

}
.

Moreover, if {un}n ⊂ W 1,2(�;RM ) is such that

sup
n

G1
n(un) < +∞,

then there exists u ∈ R with H1(u) < ∞ such that, up to a subsequence (not
relabeled), un ⇀ u weakly in L2(�;RM ).

Moreover, as for the case of the zeroth order �-limit, the mass constraint passes
to the limit. Namely, the following holds:
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Corollary 5.10. Let {εn}n, {δn}n ⊂ (0, 1) be infinitesimal sequences such that

lim
n→∞

εn

δn
= 0.

Fix m ∈ R
M, and define

G1
n(u) :=

{
G1

n(u;m) if
∫
�
u dx = m,

+∞ else.

Then it holds that G1
n

�→ G1 with respect to the strong two-scale convergence in
L1(�; L1(Q;RM )), where

G1(u;m) :=
{
G1(u;m) if

∫
�

∫
Q u dy dx = m,

+∞ else.

A similar result holds, with the obvious modifications, for the functionals con-
sidered in Corollary 5.9.

Finally, we study the minimization problem for the limiting functional, with
and without mass constraint. The proofs follow easily from the definition of the
functionals, and by using a measurable selection result like that used in step 1 of
the proof of Theorem 4.3.

Corollary 5.11. It holds that

min
{
G1(u) : u ∈ R

}
= 0

if and only if the Q-periodic extension of the whole RN of the functions a and b
are continuous. Fix m ∈ R

M. Then

min
{
G1(u;m) : u ∈ R

}
= 0

if and only if the Q-periodic extension of the whole RN of the functions a and b
are continuous, and there exists u ∈ R with

∫
�

∫
Q u dy dx = m.

5.3. Compactness

This section is devoted to the proof of compactness, that we state separately.

Lemma 5.12. Let {un}n ⊂ W 1,2(�;RM ) be such that

sup
n

G1
n(un) < +∞. (5.6)

Then, up to a subsequence (not relabeled), un → u strongly two scale in L1(�;
L1(Q;RM )) for some u ∈ R with G1(u) < ∞.
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Proof. For the sake of notation, we will write ûn in place of Tδn un .
Step 1. Recalling Remark 5.2, we can write

G1
n(un) =

∫
�

G̃n(ûn(x, ·)) dx + Rn(un),

where

Rn(un) ≥ −|�δn |εnδn
∫
Q

|∇a(y)|2 dy.

Note that the right-hand side of the above inequality tends to zero as n → ∞. Thus,
from (5.6) we get that

sup
n

∫
�

G̃n(ûn(x, ·)) dx ≤ C,

for some C < ∞.
Step 2. We claim that if is possible to find a subsequence {un j } j∈N such that, for
LN -a.e. x ∈ �, it holds that

lim sup
j→∞

∫
Q

[
δn

εn
W (y, ûn j (x, y)) + εn

δn
|∇y ûn j (x, y)|2

]
dy < +∞. (5.7)

For each n ∈ N define the function fn : � → [0,+∞] by

fn(x) :=
∫
Q

[
δn

εn
W (y, ûn(x, y)) + εn

δn
|∇y ûn(x, y)|2

]
dy.

Then, by assumption, since W ≥ 0, we have supn ‖ fn‖L1(�) < +∞. By the
Chacon biting lemma (see [16, Lemma 2.63]), we have the following. There exists
a subsequence { fnk }k∈N, and a sequence {rnk }k∈N ⊂ (0,+∞) with limk→∞ rnk =
+∞ such that, setting

Fj :=
∞⋃
k= j

{
x ∈ � : fnk (x) ≥ rnk

}
,

we have |Fj | → 0 as j → ∞. Set

F :=
{
x ∈ � : lim sup

k→∞
fnk (x) = +∞

}
.

Since it is possible to write

F =
⋂
j∈N

Fj ,

and {Fj } j∈N is a decreasing sequence of sets contained in�, we obtain that |F | = 0.
Step3.Let x ∈ �\F . Considering a sequence of compact sets {Ki }i invadingQ\Q0
(where Q0 is defined in Definition 5.5), using (5.7), and [10, Proposition 4.1] (see
also the proof of Theorem 1.9 in [10]) we can extract a subsequence {unk (x, ·)}k∈N
(possibly depending on x ∈ � \ F), and find a function vx ∈ L1(Q;RM ) such that
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(i) vx (y) ∈ {a(y), b(y)} for a.e. y ∈ Q;
(ii) ûnk (x, ·) → vx strongly in L1(Q;RM ) as k → ∞;
(iii) vx ∈ BVloc(Q \ Q0;RM );
(iv) G̃1(vx ) < ∞.

We want to prove that the subsequence does not depend on the point x ∈ � \ F .
Note that (5.6) implies that

sup
n

Gn(un) < ∞,

and thus Theorem 4.3 gives the existence of a subsequence {un j } j and of a function
ũ ∈ L2(�;RM ) such that un j ⇀ ũ in L2(�;RM ). In particular, since

sup
j∈N

‖un j ‖L2(�;RM ) < ∞, (5.8)

by applying Proposition 2.2, we get that there exists a (not relabeled) subse-
quence such that un j ⇀ u weakly two-scale in L2(�; L2(�;RM )), for some
u ∈ L2(�; L2(�;RM )). Therefore

ũ(x) =
∫
Q
u(x, y) dy,

for a.e. x ∈ �, and, by using (ii), it easy to see that ûn j (x, ·) → u(x, ·) strongly in
L1(Q;RM ) for all x ∈ � \ F .

Finally, we claim that un j → u strongly two scale in L1(�; L1(Q;RM )).
Define, for each j ∈ N, g j : � → [0,∞) as

g j (x) := ‖ûn j (x, ·) − u(x, ·)‖L1(Q;RM ).

Then from (5.8) we get

sup
j∈N

∫
�

g2j dx < +∞.

Using De la Valée Poussin criteria, we have that {g j } j is equiintegrabile. Further-
more, by (ii), we get that g j → 0 pointwise almost everywhere. We can now apply
Vitali Convergence Theorem to conclude that g j → 0 in L p(�) strong for any
p ∈ [1, 2). This concludes the proof of the compactness result. ��

5.4. Liminf Inequality

The main result of this section is the following:

Proposition 5.13. Let u ∈ L1(�; L1(Q;RM )) and let {un}n ⊂ W 1,2(�;RM )with
un → u strongly two scale in L1(�; L1(Q;RM )). Then

G1(u) ≤ lim inf
n→∞ G1

n(un).
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The proof of Proposition 5.13 is based on the liminf inequality for a single
periodicity cell Q. In the language of this paper, it writes as follows:

Proposition 5.14. Let v ∈ L1(Q;RM ) such that v(y) ∈ {a(y), b(y)} for a.e.
y ∈ Q. Let {vn}n ⊂ W 1,2(Q;RM ) with vn → v in L1(Q;RM ). Then

G̃1(v) ≤ lim inf
n→∞ G̃n(vn).

Remark 5.15. While this result is essentially the same as [10, Proposition 4.2], we
cannot directly apply it due to our weaker assumptions onW . Thus, we need to use
a slightly different strategy and additional technical lemmata in order to achieve the
result. Indeed, Proposition 5.14 shows that the sharp interface result of [10] holds
under more general hypotheses.

We decided to show how to get Proposition 5.13 once Proposition 5.14 is es-
tablished, and then to move to the technical results needed to obtain this later.

Proof of Proposition 5.13. Let u ∈ L1(�; L1(Q;RM )), and take {un}n ⊂ W 1,2

(�;RM ) such that un → u strongly two-scale in L1(�; L1(Q;RM )). Without loss
of generality, we can assume that

lim inf
n→∞ Gn(un) < +∞,

otherwise there is nothing to prove. By the compactness result (see Lemma 5.12),
we get that u ∈ R. Therefore, recalling the arguments in the proof of Lemma 5.12
we get that

lim inf
n→∞ Gn(un) ≥ lim inf

n→∞

∫
�

G̃n(Tδn un(x, ·)) dx + Rn(un)

= lim inf
n→∞

∫
�

G̃n(Tδn un(x, ·)) dx

≥
∫

�

lim inf
n→∞ G̃n(Tδn un(x, ·)) dx

≥
∫

�

G1(u(x, ·)) dx,

where the previous to last step follows by the Fatou’s lemma, while last step is
justified by the fact that Tδn un(x, ·) → u(x, ·) for a.e. x ∈ �, together with
Proposition 5.14. This concludes the proof of the liminf inequality. ��

5.4.1. Bound on the Euclidean Length of Geodesics First, we prove a tech-
nical lemma on bounds of Euclidean length of geodesics necessary for the liminf
inequality in Q. While the overall proof strategy is similar to that in [10] and
[30], our construction by estimating the energy within each level set (see Step 2 of
Lemma 5.22) is novel.

In this section, in order to make the notation lighter, we will make the following
abuse of notation. Fix a vector ν ∈ S

N−1, a point x0 ∈ Q, and a unit square C
centered at the origin and with two faces orthogonal to ν. For t > 0, we denote by
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Q′
t := (x0 + tC) ∩ ν⊥. For y′ ∈ Q′

t and z ∈ R, we denote point y′ + zν by (y′, z).
Note that the fact that some of the above points could be outside � is of no concern
for us, since all of the functions that we consider are Q periodic, and thus can be
naturally extended from � to the whole RN .

We are now in position to introduce the minimization problem that will be
investigated in this section.

Definition 5.16. For p, q ∈ R
M , let

A(p, q) :=
{
γ ∈ W 1,1([−1, 1];RM ) : γ (−1) = p and γ (1) = q

}
.

For ε > 0, y′ ∈ Q′
ε, and p, q ∈ R

M , define

Hε(y
′, p, q) := inf

{∫ 1

−1
Fε(y

′, γ (t))|γ ′(t)|dt : γ ∈ A(p, q)

}
,

where

Fε(y
′, p) := min|z|≤ε

√
W (y′, z, p).

The main result of this section is the following:

Theorem 5.17. Fix x0 ∈ Q, ν ∈ S
N−1, and R̃ > 0. If x0 ∈ ∪k

i=1∂Ei , assume that
it belongs to only one of those sets. Then there exist ε1 > 0 and L > 0 such that,
given any ε ∈ (0, ε1), y′ ∈ Q′

ε, and p, q ∈ B(0, R̃), the minimization problem
defining Hε(y′, p, q) admits a solution γ ∈ A(p, q) such that

∫ 1

−1
|γ ′(t)|dt ≤ L .

The strategy to prove Theorem 5.17 is the following: first we consider the
case where the point x0 ∈ Q\ ∪k

i=1 ∂Ei . This means that W = Wi for some
i ∈ {1, . . . , k}, and, in particular, it is Lipschitz in the second variable. Consider
a minimizing sequence {γ j } j∈N ⊂ A(p, q) for the minimization problem defin-
ing Hε(y′, p, q). The first step is to investigate the behaviour of the sequence of
curves, for ε sufficiently small, close by and far away from the wells. In particu-
lar, in Lemma 5.22 we prove that the portion of the curves γ j that is sufficiently
close to a(y′, 0) (or to b(y′, 0)) has uniformly bounded Euclidean length. Then,
by using a lower bound on Fε far from the wells, we conclude that also the Eu-
clidean length of the sequence {γ j } j∈N is uniformly bounded in that region. The
proof of Theorem 5.17 then follows by using a standard argument based on the
Ascoli–Arzelà Theorem ensuring the existence of minimizing geodesics for the
minimization problem defining Hε(y′, p, q). We refer to (see [10, Lemma 3.1] for
details. Finally, the case x0 ∈ ∪k

i=1∂Ei may be deduced from the previous case.
We start by collecting some basic properties of Fε, which can verified easily

from the definition. In particular, for a proof of (3), we refer to [10, Proposition
3.2].

Proposition 5.18. (Properties of Fε) The following holds:
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(1) The function (y′, p) �→ Fε is Lipschitz;
(2) We have Fε(y′, p) = 0 if and only if p ∈ {a(y′, t), b(y′, t)} for some t ∈

[−ε, ε];
(3) If there is a function g : S → R

M such that

W (y′, yn, p) = |p − g(y′, yn)|2,
then Fε(y′, p) = dist(p,Grgε (y′)), where

Grgε (y
′) := {g(y′, t) : y′ ∈ Q′, |t | ≤ ε}.

Next, we state a useful property, based on the parameterization invariant char-
acteristic of the minimization problem defining Hε..

Proposition 5.19. Let p, q ∈ R
M, y′ ∈ Q′

ε, and γ ∈ A(p, q) such that

∫ 1

−1
Fε(y

′, γ (t))|γ ′(t)|dt ≤ Hε(y
′, p, q) + 1

j
,

for some j ∈ N. Then
∫ t2

t1
Fε(y

′, γ (t))|γ ′(t)|dt ≤ Hε(y
′, γ (t1), γ (t2)) + 1

j
,

for all [t1, t2] ⊂ [−1, 1].
The main idea in the proof of the bound of the Euclidean length close by the

wells is to consider level sets of F(y′, γ (·)) in the construction of a competitor for
the minimization problem defining Hε(y′, p, q).

Definition 5.20. For ε > 0, y′ ∈ Q′
ε, p, q ∈ R

M , and γ ∈ A(p, q), and k ∈ N\{0},
we define

T k
ε (y′, γ ) :=

{
t ∈ [−1, 1] : 1

(k + 1)2
< Fε(y

′, γ (t)) ≤ 1

k2

}
.

Remark 5.21. Note that by continuity of Fε, we have that

T k
ε (y′, γ ) =

{
t ∈ [−1, 1] : 1

(k + 1)2
≤ Fε(y

′, γ (t)) ≤ 1

k2

}
.

Now we are ready to prove the key technical lemma of this section.

Lemma 5.22. Let x0 ∈ Q \ ∪k
i=1∂Ei and ν ∈ S

N−1. Then there exist r0 > 0,
ε0 > 0, and L1 > 0, such that, for any 0 < ε < ε0, y′ ∈ Q′

ε, p, q ∈ Br0(y
′) :=

Br0(a(y′, 0)), the following property holds: letting {γ j } j ⊂ A(p, q) be a minimiz-
ing sequence for the minimization problem defining Hε(y′, p, q),∫

Tj

|γ ′
j (t)|dt ≤ L1,

where Tj := {t ∈ [−1, 1] : γ j (t) ∈ Br0(y
′)}. The same result holdswith Br0(y′) :=

Br0(b(y
′, 0)).
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Proof. Let R > 0 be as in (W4). We define

ε0 := min

{
R

2Lip(a)
, dist(x0,∪k

i=1∂Ei )

}
,

where Lip(a) denotes the maximum over the index i of the Lipschitz constant of ai
in Ei . Moreover, by using the uniform lower bound on W (x, ·) close to the wells,
it is possible to choose r0 > 0 so small such that

Br0(y
′) ⊂

∞⋃
k=1

{
p ∈ R

M : 1

(k + 1)2
< Fε(y

′, p) ≤ 1

k2

}

for all ε ∈ (0, ε0) and all y′ ∈ Q′
ε. Up to further decreasing the value of r0, we can

also suppose that r0 ≤ R/2.
Case 1. Assume that Hε(y′, p, q) = 0. Note that this happens if and only if

p, q ∈ Zε := {a(y′, t) : t ∈ [−1, 1]}. In this case, the solution to the minimization
problem defining H(y′, p, q) is given by the curve lying in Zε joining the two
points. By using the Lipschitz regularity of a, we get that its Euclidean length is
less than 2Lip(a)ε0.

Case 2. Assume that Hε(y′, p, q) > 0. Without loss of generality, we can
assume that ∫ 1

−1
Fε(y

′, γ j (t))|γ ′
j (t)|dt ≤ 2Hε(y

′, p, q), (5.9)

for all j ∈ N.
Step 1: Bounds on Fε. We claim that if ε ∈ (0, ε0) and r ∈ (0, r0), for all y′ ∈ Q′

ε

and z ∈ Br (y′) it holds that

1√
c1
dist(z,Graε (y

′)) ≤ Fε(y
′, z) ≤ √

c1dist(z,Gr
a
ε (y

′)). (5.10)

Indeed, by the triangle inequality and Lipschitz regularity of a, we get, for p ∈
Br0(y

′),

|p − a(y′, εt)| ≤ |p − a(y′, 0)| + Lip(a)ε|t | < r0 + Lip(a)ε0 ≤ R.

This inequality gives that Br0(y
′) ⊂ TR(Graε (y

′)), and the desired inequality follows
by applying Property 2 in Proposition 5.18.

From (5.10), we easily have the bound Fε(y′, z) ≤ √
c1R for z ∈ Br0(y

′).
Step 2: Bounding the energy in a level set. Fix j, k ∈ N\{0}. Without loss of
generality, we will suppose that

γ j

(
T k

ε (y′, γ j )
)

∩ Br0(y
′) �= ∅.

Furthermore, to ease notation, we will set

T k
ε :=

{
t ∈ T k

ε (y′, γ j ) : γ j (t) ∈ Br0(y
′)
}

.
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We want to get a uniform bound on the Euclidean length of the curves γ j ’s in the
set Tε(y′). Let

t1 := inf
{
t : t ∈ T k

ε

}
, t2 := sup

{
t : t ∈ T k

ε

}
,

and

p1 := γ j (t1), p2 := γ j (t2).

Using the definition of Lε(y′) and the choice of t1, t2, we get the following simple
lower bound on the energy:

1

(k + 1)2

∫
T k

ε

|γ ′
j (t)|dt ≤

∫
T k

ε

Fε(y
′, γ j (t))|γ ′

j (t)|dt

≤
∫ t2

t1
Fε(y

′, γ j (t))|γ ′
j (t)|dt. (5.11)

We employ the geometric property of Hε given in Proposition 5.19 and (5.10) to
deduce that for any γ ∈ A(p1, p2), we have the bound

∫ t2

t1
Fε(y

′, γ j (t))|γ ′
j (t)|dt ≤ 2Hε(y

′, p1, p2)

≤ 2
∫ 1

−1
Fε(y

′, γ (t))|γ ′(t)|dt

≤ 2
∫ 1

−1

√
c1dist(γ (t),Graε (y

′))|γ ′(t)|dt . (5.12)

In order to further bound from above the right-hand side of the above expression,
we will construct a suitable competitor γ̃ ∈ A(p1, p2). First, note that there exist
z1, z2 ∈ Graε (y

′) such that

dist(p1,Gr
a
ε (y

′)) = |p1 − z1|, dist(p2,Gr
a
ε (y

′)) = |p2 − z2|.
We define γ̃ ∈ A(p1, p2) as the union of the following three curves (see Fig. 3):

(1) The segment between p1 and z1;
(2) The portion of Graε (y

′) that connects the points z1 and z2;
(3) The segment between z2, and p2.

Note that, since the energy is parameterization invariant, we do not have to specify
the precise parametrization of γ̃ . We now estimate the energy of γ̃ . Again, by the
parametrization invariant property of the functional, we can use ±1 as initial and
final time respectively for each of the three curves. Note only the two segments
contributes to the energy of the curve, and by a direct evaluation, we get that

∫ 1

−1
dist(γ̃ (t),Graε (y

′))|γ̃ ′|dt = dist2(p1,Graε (y
′)) + dist2(p2,Graε (y

′)
2

≤ max
{
dist2(p1,Gr

a
ε (y

′)), dist2(p2,Graε (y′)
}
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Fig. 3. The construction of the competitor γ̃ carried out in step 2, in order to estimate the
length of a curve γ j in the green region, namely in the region between two level sets of
Fε(y′, ·)

≤ c1 max
{ (

Fε(y
′, p1)

)2
,
(
Fε(y

′, p2)
)2}

≤ c1
k4

, (5.13)

where the previous to last inequality follows from (5.10), while last step is justified
by the fact that, since p1, p2 ∈ γ j (Tε(y′)), it holds that

max{Fε(y
′, p1), Fε(y

′, p2)} ≤ 1

k2
.

Thus, combining (5.11), (5.12), and (5.13), we get

1

(k + 1)2

∫
T k

ε

|γ ′
j (t)|dt ≤ 2c

3
2
1

k4
,

which yields the upper bound, for all j ∈ N,

∫
T k

ε

|γ ′
j (t)|dt ≤ 2c

3
2
1 (k + 1)2

k4
. (5.14)

Step 3: Bounding the Euclidean length. We have that

∫
Tj

|γ ′
j (t)|dt ≤

[∫
Zε

|γ ′
j (t)|dt +

∞∑
k=1

∫
T k

ε

|γ ′
j (t)|dt

]

≤ 2 Lip(a)ε0 +
∞∑
k=1

2c
3
2
1 (k + 1)2

k4
=: L1, (5.15)

where last step follows from (5.14) and the estimate obtained in case 1. Note
that the right-hand side is independent of ε, y′, and thus we achieve the desired
result. ��

Now we are ready to prove the main result of this section.
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Proof of Theorem 5.17. Fix x0 ∈ Q, ν ∈ S
N−1, R̃ > 0. Take p, q ∈ B(0, R̃).

Case 1 Assume x0 ∈ Q\ ∪k
i=1 ∂Ei .

Step 1: Choice of ε1. Let r0, ε0 be given by Lemma 5.22. Define

ε1 := min

{
ε0,

r0
2Lip(a)

,
r0

2Lip(b)

}
.

Note that for every z /∈ Br1(b(y
′, 0))∪ Br1(a(y′, 0)) and for every |t | ≤ ε < ε1 we

have

|z − a(y′, t)| ≥ |z − a(y′, 0)| − Lip(a)|t | > r0 − Lip(a)ε2 ≥ r0
2

, (5.16)

|z − b(y′, t)| ≥ |z − b(y′, 0)| − Lip(b)|t | > r0 − Lip(b)ε2 ≥ r0
2

. (5.17)

Fix 0 < ε < ε1 and y′ ∈ Q′
ε.

Step 2: Estimate of the Euclidean length. Let {γ j } j ⊂ A(p, q) be a sequence
satisfying (5.9). We will bound the Euclidean length of each γ j in each of the
following regions separately:

R1
j := {t ∈ [−1, 1] : γ j (t) ∈ Br0(a(y′, 0))},

R2
j := {t ∈ [−1, 1] : γ j (t) ∈ Br0(b(y

′, 0))},
and

R3
j := {t ∈ [−1, 1] : γ j (t) ∈ Br0(a(y′, 0))c ∩ Br0(b(y

′, 0))c}.
We start with the last region. By (5.16) and (5.17), together with Remark 3.6, we
get that there is Cr0

2
> 0 such that

Fε ≥
√
Cr0

2
.

Therefore ∫
R3

j

|γ ′
j (t)| ≤ 1√

Cr0
2

∫
R3

j

Fε(y
′, γ j (t))|γ ′

j (t)|

≤ 1√
Cr0

2

(
Hε(y

′, p, q) + 1

j

)

≤ 1√
Cr0

2

(
m|p − q| + 1

j

)

≤ 1√
Cr0

2

(2mR̃ + 1), (5.18)

where

m := sup
{
W (y′, z, p) : y′ ∈ Q′

ε2
, z ∈ [−ε2, ε2], p ∈ B(0, R̃)

}
< ∞,
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and the previous to last step follows by considering as a competitor the segment
joining p and q.

We now bound the Euclidean length in the regionsR1
j andR2

j . By using Propo-
sition 5.19, together with Lemma 5.22, we obtain that

∫
R1

j

|γ ′
j (t)|dt +

∫
R2

j

|γ ′
j (t)|dt ≤ 2L1, (5.19)

where the constant L1 < ∞ depends only on x0 and ν.
Step 3: Existence of a geodesic. Using (5.18) and (5.19), there exists L > 0
depending only on R̃, x0, and ν, such that

∫ 1

−1
|γ ′

j (t)| dt ≤ L

for all j ∈ N. A standard argument based on the Ascoli–Arzelà Theorem (see [10,
Lemma 3.1] for more details) yields the desired result.

Case 2. Assume that x0 ∈ ∂Ei\ ∪ j �=i ∂E j , and that χ−(y) = i , χ+(y) = j .
It is easy to see that there exist S > 0, depending only on R̃, x0, and ν such that,
for every 0 < ε < ε1 and y′ ∈ Q′

ε it is possible to find z0 ∈ B(0, S) and curves
γi , γ j ∈ W 1,1([−1, 1];RM ), with

γi (−1) = p, γi (1) = z0, γ j (−1) = z0, γ j (1) = q,

such that (recall that the functional is invariant by reparametrization)

Hε(y
′, p, q) =

∫ 1

−1
Fi
e (y

′, γi (t))|γ ′
i (t)| dt +

∫ 1

−1
F j
e (y′, γ j (t))|γ ′

i (t)| dt,

where

Fi
ε (y

′, s) = min
z∈[−ε,0]

√
Wi (y′, z, s), F j

ε (y′, s) = min
z∈[0,ε]

√
Wj (y′, z, s).

Thus, by applying case 1 to γi and γ j , and S > 0, we also conclude this case. ��
We are now in position to prove the liminf inequality in Q. Since the strategy

follows a similar argument to that of [10, Proposition 4.2], we will sketch the main
ingredients of the proof, focusing on the points where the two arguments differ.

Proof of Proposition 5.14. Let {vn}n ⊂ W 1,2(Q;RM ) with vn → v in L1(Q).
Without loss of generality, we can assume that

lim sup
n→∞

G̃n(vn) < ∞.

Note that, thanks to assumption (W4), we can use the compactness argument in
[10, Proposition 4.1, and Theorem 1.9] to get that v ∈ R̃ with G̃1(v) < ∞. Fix
x0 ∈ Jv∩K , where K ⊂ Q0 is a compact set. The idea is to use a blow-up argument,
as in the proof of [10, Proposition 4.2]. Note that, thanks to the continuity of the
wells ai ’s and bi ’s, together with the fact that the blow up is a local argument, and
thanks to assumption (W4), we can use of the estimate on the Euclidean length of
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solutions to the minimization problem defining dW provided by Theorem 5.17. The
only difference with the argument used in the proof of [10, Proposition 4.2] is in
step 2, where the functional Fm (see equation (100) in [10]) is defined here as

Fm(x ′, p) := inf
{√

W ((x ′, gm(t)), p) : t ∈ (−1, 1)
}

,

where gm(t) := rmtν, for some ν ∈ S
N−1 and rm → 0 as chosen in [10]. Using

Theorem 5.17, we obtain that the Euclidean length of the solutions to the geodesic
problem

min

{∫ 1

−1
Fm(x ′, γ (t))|γ ′(t)| dt

}
,

where the infimum is taken over γ ∈ W 1,1([−1, 1];RM ) with γ (−1) = p and
γ (1) = q, are uniformly bounded with respect to rm and x ′. We now have all the
elements that allow us to conclude by following the same strategy. ��

5.5. Limsup Inequality

This section is devoted to the construction of the recovery sequence.

Proposition 5.23. Let u ∈ L1(�; L1(Q;RM )). Then there exists a sequence {un}n ⊂
W 1,2(�;RM ) with un → u strongly two scale in L1(�; L1(Q;RM )) such that
Gn(un) → G1(u) as n → ∞.

The construction of the recovery sequencewill be done in three steps: first for the
class of simple functions in B (see Definition 5.26), then, in the second step, using
a density argument based on the approximation result Lemma 5.25 to conclude in
the general case of a jump set defining a Caccioppoli partition of Q, while in the
last step follows from the density result of Caccioppoli partitions obtained in [10,
Lemma 5.3]. As usually happens, given a general u ∈ L2(�; BV (Q; {a, b})), we
cannot choose the sequence of piecewise constant functions that approximate it
both in configuration and in energy. Instead, we need to construct it based on the
function u itself to dictate such piecewise approximation. This requires to have at
our disposal a countable family C of sets of finite perimeter in Q that are dense
both in L1 and also in energy.

The goal of Lemma 5.25 is to construct such a countable family C. Note that
we have to pay extra care in the construction of the recovery sequence, since the
zeros a, b : Q → R

M might be discontinuous on ∪k
i=1∂Ei . Indeed, given A ⊂ Q

of finite perimeter, in order to approximate A both in configuration and in energy
we also need the approximating sequence {An}n ⊂ C to be such that

lim
n→∞HN−1

([
∂∗A�∂∗An

] ∩
(

k⋃
i=1

∂Ei

))
= 0.

The countable family we choose to obtain the approximation is the following:
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Definition 5.24. Let C be the family of open sets G ⊂ Q such that there exist
ν1, . . . , νm ∈ S

N−1 ∩ Q
M , and q1, . . . , qm ∈ Q

M , for which

∂G ⊂
m⋃
i=1

(qi + ν⊥
i ) ∪

k⋃
i=1

∂Ei ,

for some m ∈ N.

In the rest of the paper it will be convenient to adopt the following abuse of
notation. Given a set A ⊂ Q with finite perimeter in Q, we will write G̃1(A) in
place of G̃1(ṽA), where ṽ : Q → R

M is defined as

ṽA(y) := χA(y)a(y) + [1 − χA(y)]b(y).
Note that, using the fact that A has finite perimeter, we have that ṽA ∈ R̃ (see
Definition 5.5).

We are now in position to prove the first technical result.

Lemma 5.25. For every λ > 0 and every set of finite perimeter A ⊂ Q, there exists
E ∈ C such that

|A�E | +
∣∣∣G̃1(A) − G̃1(E)

∣∣∣ < λ.

Proof. Step 1. Without loss of generality, we can assume that

HN−1 (
∂∗A ∩ ∂Q

) = HN−1

(
k⋃

i=1

∂Ei ∩ ∂Q

)
= 0. (5.20)

Indeed, we can find v ∈ R
M such that the above condition is satisfied by the sets

A + v and Ei + v in place of A and Ei respectively. We then consider the sets
Ei + v, A + v, and use the energy G̃v

1 defined as

G̃v
1(B) :=

∫
∂∗B

dW̃ (y, ṽ+(y), ṽ−(y)) dHN−1(y), (5.21)

where W̃ (y) := W (y − v).
Step 2. Fix λ̃ > 0, that will be chosen later. Let F ⊂ Q be the set of finite perimeter
given by Theorem 2.13 relative to A and λ̃. In particular,

‖1A − 1F‖L1(Q) < λ̃,

and, using (iii), (v), and (vii) of Theorem 2.13, we obtain

|G̃1(A) − G̃1(F)| ≤
∫
Q∩∂∗A\∂F

dW(y, v+
A (y), v−

A (y)) dHN−1(y)

+
∫
Q∩∂F\∂∗A

dW(y, v+
F (y), v−

F (y)) dHN−1(y)

≤ C1

[
HN−1 (

Q ∩ ∂∗A \ ∂F
) + HN−1 (

Q ∩ ∂F \ ∂∗A
) ]
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≤ C1

[
|D1A|(D \ C) + HN−1 (

Q ∩ ∂F \ ∂∗A
) ]

≤ 2C1̃λ,

for some constant C1 > 0 depending only on the wells a and b.
Step 3. We now approximate the set F with a set G ∈ C. Note that if the wells a
and b were continuous, then the proof would be easier, since every piecewise-C1

set in Q can be approximated in the Hausdorff metric with a polyhedral set and,
every polyhedral set in Q can be approximated by a set in C. Due to the fact that
the boundary of the approximated has to coincide as much as possible with the
boundary of F on ∪k

i=1∂Ei , the construction requires a more delicate argument.
First, we isolate the singularities of ∪k

i=1∂Ei as follows. It is possible to find
S1, . . . , Sm ∈ C with ∂F orthogonal to ∂Si for each i = 1, . . . ,m, such that

k⋃
i �= j=1

(
∂Ei ∩ ∂E j

) ⊂
m⋃
i=1

Si ,

and
m∑
i=1

[
HN−1(∂Si ) + HN−1(∂F ∩ Si )

]
< λ̃. (5.22)

Now we isolate the part of ∂F on ∪k
i=1∂Ei . Set

K := ∂F ∩
(

k⋃
i=1

∂Ei

)
\

m⋃
i=1

Si .

Recalling that Si ∈ C for each i = 1, . . . ,m, and thus that each Si is open, we
get that K is compact. By the outer regularity of the HN−1 measure on ∪m

i=1∂Ei ,
it is then possible to find R1, . . . , Rn ∈ C with ∂F orthogonal to ∂Ri for each
i = 1, . . . , n such that

K ⊂
n⋃

i=1

Ri ∩
k⋃

i=1

∂Ei ,

n∑
i=1

HN−1(∂Ri ) < (1 + λ̃)HN−1

(
k⋃

i=1

∂Ei

)
, (5.23)

and
n∑

i=1

HN−1(∂F ∩ Ri ) < λ̃, (5.24)

and

HN−1

(
n⋃

i=1

Ri ∩
k⋃

i=1

∂Ei \ K

)
< λ̃.
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Since K is compact, there exist smooth open set B ⊂ ∪n
i=1Ri with K ⊂ B.Without

loss of generality, we can assume that Ri ∩ K �= ∅ for all i ∈ {1, . . . , n}. Up to
rearranging the order of the sets, we can assume that

Ri ∩ ∂̃B �= ∅,

if and only if i ∈ {1, . . . , n1}, for some n1 ≤ n, where ∂̃B is the relative boundary
of B in ∪k

i=1∂Ei . In particular, this means that

∂̃K ⊂
n1⋃
i=1

Ri . (5.25)

Thanks to (5.23), we have that

n1∑
i=1

HN−1(∂Ri ) < C λ̃, (5.26)

for some C > 0.
To conclude, Let T1, . . . , Tp be the connected components of

∂F \
[

n1⋃
i=1

Ri ∪
m⋃
i=1

Si

]
.

For each i = 1, . . . , p, it is possible to find μi > 0 such that the sets Ti + B(0, μi )

are pairwise disjoint. Consider the sets F1, . . . , Fp, defined as

Fi := F ∩ [ Ti + B(0, μi ) ] .

Find Ei , . . . , Ep ∈ C such that Ei ⊂ Ti + B(0, μi ), and define

E :=
(
F \

p⋃
i=1

[ Ti + B(0, μi ) ]

)
∪

p⋃
i=1

Ei ∪
m⋃
i=1

Si ∪
n1⋃
i=1

Ri .

Up to choosing μ1, . . . , μp > 0 and λ̃ > 0 sufficiently small, thanks to (5.22),
(5.24), and (5.26), we get

|F�E | +
∣∣∣G̃1(F) − G̃1(E)

∣∣∣ < C λ̃,

for some C > 0. Thus, by using step 1 and by selecting λ̃ > sufficiently small, we
conclude. ��

We now introduce the class of piecewice constant functions for which we will
construct the recovery sequence directly.
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Definition 5.26. Denote by B the space of functions u ∈ L2(�; L1(Q;RM )) such
that

u(x, y) =
m∑
i=1

ui (y)1�i (x),

where, for each i = 1, . . . ,m, ∂�i ∩ � is a polyhedral set, and

ui (y) := 1A(x)a(y) + [
1 − 1A(x)(y)

]
b(y)

for a set A(x) ⊂ Q with finite perimeter in Q.

We recall the main result that ensures the existence of a recovery sequence for a
microstructure in the cube Q. The construction is based on [10, Theorem 1.9], with
the additional complication of having to approximate the possible discontinuity of
the wells on ∂Ei ∩ ∂E j for i �= j .

Proposition 5.27. Let v ∈ L1(Q;RM ) be such that v(y) ∈ {a(y), b(y)} for a.e.
y ∈ Q, and such that A := {v = a} has finite perimeter in Q. Then there ex-
ists a sequence of Q-periodic functions {vn}n ⊂ W 1,2(Q;RM ) with vn → v in
L1(Q;RM ) such that

lim
n→∞ G̃n(vn) = G̃1(v),

and supn ‖vn‖L∞ < ∞.

Remark 5.28. Note that we can apply the mentioned result thanks to Theorem 5.17.
Moreover, the proof presented in [10, Theorem 1.9] has to be adapted in order to
take care of the fact that here we consider the perimeter in Q seen as the periodic flat
torus: this can be done as in step 1 of the proof of Lemma 5.25. Finally, considering
zeros a, b with possible discontinuities is not an issue, since it is simply possible to
consider the functions az, . . . , ak and b1, . . . , bk as separate zeros (multiple wells).

We are now ready to prove that main result of this section.

Proof of Proposition 5.23. Without loss of generality, we can assume thatG1(u) <

∞, otherwise there is nothing to prove.
Step 1. First assume u ∈ B. Write it as

u(x, y) =
m∑
i=1

ui (y)1�i (x),

where, for each i = 1, . . . ,m, the set ∂�i ∩ � is polyhedral, and

ui (y) := 1Ai a(y) + [
1 − 1Ai (y)

]
b(y)

for a set Ai ∈ C. For each n ∈ N, consider a grid {Qn
j }knj=1 of disjoint cubes of the

form

Qn
j = δn

[
− 1

2
,
1

2

)N

+ z j ,
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for some z j ∈ δnZ
N , such that Qn

j ∩� �= ∅. For each n ∈ N and i = 1, . . . ,m, let

I i
n :=

{
j ∈ {1, . . . , kn} : Qn

j ∩ ∂�r = ∅, for all r �= i
}

,

and set

In :=
m⋃
i=1

I i
n .

Since ∂� is regular, we have that

lim
n→∞(#In)(δNn ) = |�|. (5.27)

Moreover, define

�̃n
i :=

⋃
j∈Ii

n

Qn
j ,

for each i ∈ {1, . . . , kn}. Let
S̃n := Sn \ {x ∈ � : dist(x, ∂Sn) ≥ 3εn}

and, for each n ∈ N, let ϕn : � → [0, 1] be such that

ϕn ≡ 1 on
m⋃
i=1

�̃n
i , ϕn

i ≡ 0 on S̃n,

and satisfying

|∇ϕn| ≤ C

εn
, (5.28)

for some C > 0. We remark that it is possible to construct such a family of cut-off
functions satisfying this last estimate because

dist
(
�̃n

i , �̃
n
j

)
≥ 2δn

whenever i �= j . For each i ∈ {1, . . . ,m}, let {vin}n ⊂ W 1,2(Q;RM ) be the
recovery sequence for the microstructure ui provided by Proposition 5.27. Note
that each vin is Q-periodic, and that

sup
n

‖uin‖L∞ < ∞. (5.29)

Define, for n ∈ N, the function un ∈ W 1,2(�;RM ) as

un(x) :=
m∑
i=1

[
ϕn(x)1�i (x)v

i
n

(
x

δn

)
+ (1 − ϕn(x))a

(
x

δn

)]
.
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Then it is easy to see that un
2−s→ u in L1(�; L1(Q;RM )). We now prove the

convergence in energy. Set

Sn := � \
kn⋃
i=1

�̃n
i ,

and observe that
|S̃n| ≤ Cεn, (5.30)

and that, thanks to (5.28),

|∇un| ≤ C

εn
in Sn . (5.31)

Using (5.29) and (5.31), as n → ∞ we get
∫
Sn

[
δn

εn
W

(
x

δn
, un(x)

)
+ εnδn|∇un(x)|2

]
dx

=
∫
S̃n

[
δn

εn
W

(
x

δn
, un(x)

)
+ εnδn|∇un(x)|2

]
dx +

∫
Sn\S̃n

εnδn
|∇a|2

δ2n
dx

→ 0, (5.32)

where, in the last step, the convergence of the first integral follows from (5.30),
while for the last integral from the fact that a is Lipschitz, and εn

δn
→ 0. Thus, by

using a change of variable and the fact that {vin}n , from (5.32) and (5.27), we get

lim
n→∞Gn(un) = G1(u).

This proves that {un}n is a recovery sequence.
Step 2.We now consider u ∈ L1(�; BV (Q; {a, b})). We will construct a recovery
sequence by using a diagonal argument. To be precise, fixedλ > 0wewill construct
a function vλ ∈ B with

‖vλ − u‖L1(�;L1(Q;RM )) ≤ Cλ,

∣∣∣G1(vλ) − G1(u)

∣∣∣ ≤ Cλ,

for some constantC > 0 independent of λ. Thanks to step 1, we can find a sequence
{vλ

n }n ⊂ W 1,2(�;RM ) with vλ
n → vλ as n → ∞ such that

lim
n→∞Gn(v

λ
n ) = G1(vλ).

The conclusion will follow by using the estimates above together with the arbitrari-
ness of λ and a diagonal argument.

We are now left with constructing the function vλ ∈ B. Since G1(u) < ∞, it
is possible to find μ > 0 such that

∫
E
G̃1(u(x, ·)) dx ≤ λ, (5.33)
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whenever E ⊂ � is a measurable set with |E | ≤ μ. Without loss of generality, we
can assumeμ < λ. Let C = {Fi }i∈N be the countable family given by Lemma 5.25.
The idea is to set the function vn ∈ B as

vn(x, y) :=
n0+1∑
i=1

vFi (y)1�i (x),

for some n0 ∈ N, where

vFi (y) := 1Fi (y)a(y) + [
1 − 1Fi (y)

]
b(y).

The sets �1, . . . �in will be defined in several steps. For i ∈ N, let

�̃i :=
{
x ∈ � : |A(x)�Fi | + |G̃1(A(x)) − G̃1(Fi )| ≤ λ

2i

}
\

i−1⋃
j=1

�̃ j , (5.34)

where A(x) := {y ∈ Q : u(x, y) = a(y)}, and we set �̃−1 := ∅. Note that the
sets �̃i are measurable, pairwise disjoint, and, thanks to Lemma 5.25, we also get
that

� =
∞⋃
i=1

�̃i .

Let n0 ∈ N be such that ∣∣∣∣∣� \
n0⋃
i=1

�̃i

∣∣∣∣∣ ≤ μ

2
.

Let
M := 1 ∨ max

i=1,...,n0+1
G̃1(Fi ). (5.35)

We claim that it is possible to construct a partition �1, . . . , �n0+1 of polyhedral
sets with

|�̃i��i | ≤ μ

M
(5.36)

for all i = 1, . . . , n0, and such that

|�n0+1| ≤ μ

M
. (5.37)

Indeed, since the sets �̃i are measurable, by the inner and the outer regularity of
the Lebesgue measure, for each i = 1, . . . , n0, there exist a compact set Ki and an
open set Ai with Ki ⊂ �̃i ⊂ Ai and

|Ai \ Ki | ≤ μ

2Mn0
.

By using smooth approximation of the characteristic function of Ki , we can find
a polyhedral set �i ⊂ Ai satisfying (5.36). Starting from constructing �1 and for
each i = 2, . . . , n0, substracting the union of the previous polyhedral sets from�i ,
we can assume that they are pairwise disjoint. Finally, we define
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�n0+1 := � \
n0⋃
i=1

�i .

This partition of � satisfies all of the required properties.
We now show that the desired estimates hold. First of all, we note that

‖vλ − u‖2L1(�;L1(Q;RM ))
≤

n0∑
i=1

∫
�i

[ ∫
A(x)�Fi

a(y) dy +
∫

(Q\A(x))�(Q\Fi )
b(y) dy

]

+
∫

�n0+1

‖vλ(x, ·) − u(x, ·)‖L1(Q;RM ) dx

≤ C
n0∑
i=1

∫
�i

|A(x)�Fi | dx + C |�n0+1|

≤ C
n0∑
i=1

[ ∫
�̃i

|A(x)�Fi | dx + C |�i��̃i |
]

+ C |�n0+1|

≤ Cλ + Cμ ≤ Cλ,

where the previous to last inequality follows from (5.34) and (5.37), C > 0 is a
constant depending only the wells a, b and on |�|, and we recall that in the last
inequality we used the fact that we are assuming, without loss of generality, that
μ ≤ λ. In a similar way, we have that

|G1(vλ) − G1(u)| ≤
n0∑
i=1

∫
�i

|G̃1(vλ(x, ·)) − G̃1(u(x, ·))| dx

+
∫

�n0+1

|G̃1(vλ(x, ·)) − G̃1(u(x, ·))| dx

≤
n0∑
i=1

∫
�̃i

|G̃1(vλ(x, ·)) − G̃1(u(x, ·))| dx

+
∫

�i��̃i

|G̃1(vλ(x, ·)) − G̃1(u(x, ·))| dx

+
∫

�n0+1

|G̃1(vλ(x, ·)) − G̃1(u(x, ·))| dx

≤ Cλ,

where the last inequality follows from (5.35), (5.36), and (5.37), together with the
fact that μ ≤ λ. This provides the required function vλ.
Step 3.We conclude for the case of a general case of u ∈ R by using step 2 together
with [10, Lemma 5.3]. This concludes the proof of the proposition.
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