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Abstract

A classical problem in fluid mechanics concerns the stability and instability of

different hydrodynamic patterns in various physical settings, particularly in the high
Reynolds number limit of laminar flows with boundary layers. Despite extensive
studies when the fluid is governed by incompressible Navier-Stokes equations, there
are very few mathematical results on the compressible fluid. This paper aims to
introduce a new approach to studying the compressible Navier—Stokes equations in
the subsonic and high Reynolds number regime, where a subtle quasi-compressible
and Stokes iteration is developed. As a byproduct, we show the spectral instability
of subsonic boundary layers.
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1. Introduction

One of the most fundamental problems in fluid mechanics is understanding
the physical mechanisms that lead to the stability or instability of hydrodynamic
patterns. Most laminar flows are unstable at the high Reynolds number, and small
perturbations will eventually cascade into turbulence. Under many circumstances,
the early stage of such transition is the instability induced by viscous disturbance
wave, now called Tollmien—Schlichting or T-S wave. For incompressible flow, the
physical description of T-S waves can be found, for instance, in the pioneering
work by Heisenberg, C.C. Lin, Tollmien and Schlichting, cf. [5,15,21,33], and
Wasow [38] established a formal construction of them. Until recently, the most
rigorous mathematical justification was given by Grenier—Guo—Nguyen [7].

From the physical point of view, it is important to study the compressible flow
with boundary layers that arises from, for instance, the flow near the airfoil. The
theoretical investigation can be traced back to Lees—Lin [19], in which Rayleigh’s
criterion for inviscid flow was extended to the compressible subsonic flow. Later
on, the asymptotic expansion used in [19] near the critical layer was rigorously
justified by Morawitz [29]. For more investigation from the physical perspective,
we refer readers to [5,20,21,33] and the references therein. It is worth noting that
the instability mechanisms studied in the literature are inviscid in nature, while the
viscous transition mechanisms still need to be investigated. This paper aims to fill
this gap by rigorously justifying the presence of T-S waves in the compressible
boundary layer.

1.1. Problem and Main Result

Consider the 2D compressible Navier—Stokes equations for isentropic flow in
half-space {(x,y) [x € T,y € Ry}

dp+ V- (pU) =0,

p8,U + pU - VU + VP(p) = ueAU + 2eV(V -U) + pF, (1.1

Uly=o = 0.
In the above equations p, U= (u, v) and f(p) stand for the density, velocity field
and pressure of the fluid. The vector field F is a given external force. The constants
w > 0,1 = 0 are rescaled shear and bulk viscosity, respectively, while 0 < ¢ <« 1
is a small parameter which is proportional to the reciprocal of the Reynolds number.
For simplicity and without loss of generality, the constant u is set to 1 throughout
paper.

A laminar boundary layer flow is defined by

def

(s, Up) £ (1, Us(Y),0), ¥ := with Us(0) = 0, lim Uy (Y) = 1.
Y—+oo

>
ﬁv

It is a steady solution to (1.1) with external force F = (—8)2, Uy, 0).
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In this work, to understand the (in)stability properties of the above boundary
layer profile, we study the compressible Navier—Stokes system linearized around
(ps, Uy). Denote the Mach number by m := 1 - The linearization gives

W
00+ Ugdep+V-u=0,1r>0, (x,y) €T x Ry,

il + Uydyii + m ™2V p + v3,Uyé) — eAii — 1eV(V - ii) — pF =0,
iily=0 = 0.

(1.2)

To study (1.2), we use the rescaled variable

t

NIRRNCRA
and then look for solution to the linearized compressible Navier—Stokes system in
the following form:

(B i1, D)(Y)e X,

Plugging this ansatz into (1.2) yields to the system (we replace (p, i, v) by (p, u, v)
for simplicity of notation)

ia(Ug —c)p + divy (u, v) =0,
VeAqu 4 Miay/edivy (u, v) — ia(Us — c)u — (iam ™ + /ed2Uy)p — vdy Uy = 0,
VEAGU 4 A2y divg (1, v) — ia(Us — c)v — m 23y p = 0,

(1.3)

with no-slip boundary conditions
uly=0 = vly=0 = 0. (1.4)

In (1.3), Ay, = (8)2, — &?) and divg (1, v) = iau + dyv denote the Fourier modes
of Laplacian and divergence operators respectively. For convenience, we denote by
L (p, u, v) the linear operator (1.3). If for some ¢ € C with positive imaginary part
Imc > 0 and wave number @ € R, the boundary value problem (1.3) with (1.4) has
a non-trivial solution, then the boundary layer profile (ps, Uy) is spectral unstable.
Otherwise, thus is spectral stable.

In the analysis, we focus on a class of laminar boundary layer flows that satisfy
the following assumptions:

e UseC 3(E) and satisfies

Us(0) = 0. Us(¥) > 0, _lim Us(Y) =1, and Ul0) =1. (1.5)
—>+00

e There exist positive constants s, s1 and s, such that

5170V < 9y U (Y) < spe™ Y, vy > 0. (1.6)
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e Theboundary layer flow is assumed to be uniformly subsonic, thatis m € (0, 1).
Moreover, there exists a constant o1 = o1 (m) > 0 such that forall Y = 0, it
holds

def —B%US(I - szsz) - 2'WL2UA'|3YUA‘|2 >
= 01

HY)= 1.7
185Us| + 18y Us |2
e There exists a constant o > 0 such that for any ¥ = 0, it holds

3 2

OyUs)  1pU) 120 (1.8)
8}2, Us aY Us 3Y Us -

Note that this class of profiles include the exponential profile Uy (Y) = 1 — e~ ¥
with o1 (m) = 1—;;12 and so) = §1 = so = 0p = 1. Moreover, from (1.7), we have
—0RULY) 2 — S [ay U ()P, VY 20, (1.9)

1—m

Hence, the profiles in this class are strictly concave.
The main result in the paper can be stated as follows:

Theorem 1.1. Let the Mach number m € (0, %). There are positive constants
Ko > 1 and ey € (0, 1), such that for any ¢ € (0, &9) and any wave number
o = Keé with K = K, there exists ¢, € C with almc, ~ 8%, such that the
linearized compressible Navier—Stokes system (1.2) admits a solution (p, u, v) in
the form of

(0, 1, V)1, x, y) = e D (5 i H)(Y), ¥ = == (1.10)

/e

Here the profile (p,ii,7) € H'(Ry) x (H*(Ry) N HOI(R+))2 and satisfies the
eigenvalue problem (1.3).

Remark 1.2. In what follows, we present several remarks on Theorem 1.1.

(a) As shown in the proof, the bounds on the solution depend on some negative
power of 1 — m that are uniform when m is in a compact set of [0, %).
Therefore, by taking the vanishing Mach number limit, we have the Tollmien—
Schlichting wave solution for the incompressible flow that was analyzed in [7]
by Grenier—Guo—Nguyen.

(b) The restriction of Mach number m € (0, %) should be technical and it is only
used in obtaining a positive lower bound of w — Usw in the proof of Lemma
3.4. However, the main purpose of this paper is to introduce a new approach to
the stability and instability analysis on compressible fluid with strong boundary
layers. Therefore, we will not pursue how the Mach number can be close to one
in this work.
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(c) The growing modes are supported in the frequency regime n = %< = K s_%

5=
and grow like exp(K _%n%t) with K >> 1. These parameters indicate a spectral
instability in Gevrey space with index equal to % How to justify the stability
in Gevrey % class for the linear problem (1.2) that shares the same index as in
the incompressible case studied in [12] will be discussed in our future work.

(d) By constructing a suitable approximate growing mode, we can also obtain the
same results as in Theorem 1.1 for the wave number & = Csf, with C > 0
and 8 € (1/12, 1/8). Here we will not give the detailed analysis in this regime
because we focus on the most unstable mode when 8 = 1/8. We refer to [22]
on the incompressible MHD system for the related discussions and analysis.

1.2. Relevant Literature

Since this paper is motivated by the study of inviscid limit and Prandtl boundary
layer expansion for incompressible Navier—Stokes equations, we briefly summarize
some related works in this direction. Indeed, there are two main destabilizing mech-
anisms in the boundary layer that makes inviscid limit problem very challenging.
The first one is induced by the inflexion points inside the boundary layer profile. In
this case, the linearized Navier—Stokes system exhibits a strong ill-posedness below
the analyticity regularity, cf. [6,8]. Therefore, the results of inviscid limit can be ob-
tained only when the data is analytic at least near the boundary, cf. [18,25,30,32,34].
The second one is induced by the small disturbance around a monotone and con-
cave boundary layer profile, called Tollmien—Schlichting instability that has been
extensively studied in physical literatures and was justified rigorously in Grenier—
Guo—Nguyen [7] by constructing a growing mode in Gevrey 3 /2 space to linearized
incompressible Navier—Stokes equations. The main idea in [7] is to use the stream
function and vorticity, that is, the Orr—Sommerfeld (OS) formulation, and then to
solve it via an iteration based on Rayleigh and Airy equation that can be viewed as
the inviscid and viscous approximation to the original OS equation. We also refer to
Grenier-Nguyen [9] for a result of nonlinear instability for small data that depend on
viscosity coefficient. On the other hand, this instability result was complemented by
the work of Gérard-Varet-Maekawa-Masmoudi [12, 13] that establishes the Gevrey
stability of Euler plus Prandtl expansion with critical Gevrey index 3/2; see also [2]
for aresult in L°°-setting. Most recently, the formation of boundary layer is studied
by Maekawa [26] using the Rayleigh profile. For the Sobolev data, the boundary
layer expansion is only valid under certain symmetry assumptions or for steady
flows, cf. [11,14,16,24,28] and the references therein. Finally, we refer to [3,4,10]
for the instability analysis of boundary layer profile in different settings.

For compressible flow, even though there are many interesting results on the
Navier—Stokes equations at high Reynolds number in different settings, cf. [1,23,31,
35-37,39,40] and the references therein, to our knowledge, the stability/instability
properties of strong boundary layer for compressible Navier—Stokes equations have
not yet been investigated. Compared to the incompressible Navier—Stokes equa-
tions, the major difficulty comes from the fact that the Orr—Sommerfeld formulation
is no longer available for the compressible case. As a result, Rayleigh—Airy itera-
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tion approach used in [7] can not be applied, either the approaches used in [12,13].
Therefore, the novelty of this paper is to introduce a new iteration approach to study
compressible flow in the subsonic and high Reynolds number regime. We believe
that the analytic techniques developed in this work can be used in other related
problems for subsonic flows.

In the next subsection, we present the strategy of the proof for better under-
standing of the detailed analysis in the follow sections.

1.3. Strategy of Proof

The instability analysis is based on several steps.
Step 1. Construction of the approximate growing mode. Similar as in the incom-
pressible case [7], the TS instability is driven by the interaction of inviscid and
viscous perturbations. Set the approximate growing mode (its precise definition
will be given in (2.32)) Eapp = (Dapps Uapps Vapp) a5

vgpp(O; c) ( f

Il
vg;p(O; 3 Papps Uapp» Vapp) - (1.11)

(S s s
(papp7 Uapp, Uapp) - (papp’ Uapp» Uapp) -

N S
app Vapp

system, the fast mode ( pg;p, u;{pp, v;{pp) is an approximate solution to the full system
(1.3) which exhibits viscous boundary layer structure near ¥ = 0; see (2.19) and
(2.30) for the precise definition of slow and fast modes respectively. Note that the
approximate solutions defined in (1.11) have zero normal velocity at the boundary,
that is vapp(0; ¢) = 0. Then, to recover the no-slip boundary condition, inspired

. of aop(056)  F
by [3,4], we analyze the zero point of Fypp(c) = Uypp (0 €) — %M%Ipp((); c)
Vapp (Vi€

by applying Rouché’s Theorem. Precisely, we study the equation Fp,(c) = 0 in
a family of e-dependent domains Dy (see (2.34)). Then, by Rouché’s Theorem,
we can show that F,pp(c) has the same number of zero points as a linear function
Fret(c) defined by (2.41). In addition, we prove that | F,pp(c)| has a strictly positive
lower bound on 9 Dy.

Step 2. Stability of the approximate growing mode. Since the approximate solu-

Here the slow mode (pgpp, u ) is an approximate solution to the inviscid

tion éapp exhibits the instability already, this step is to show the existence of an
exact solution near Ejpp. This is the most difficult and key step. For this, we study
the resolvent problem

ia(Us — c)p + divy (u, v) =0,
VeAyu + rian/edivy (u, v) — ia(Us — c)u — vy Uy — (iam ™2 + Jed2U)p = fus
VA + A/edydive (u, v) — ia(Uy — c)v — m ™ 2dyp = f,.

vly—o =0,

(1.12)

with a given inhomogeneous source term (f,, f,). Here, we emphasize that in
(1.12) only normal velocity field v is prescribed on the boundary. Even though we
relax the boundary constraint on u in (1.12), it is still difficult for existence because
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the presence of stretching term vdy Uy. This difficulty is overcome by the following
three ingredients:

e Quasi-compressible approximation. When the inhomogeneous source ( f;,, fy) €

H'(R,)?, we introduce the following quasi-compressible system

ic(Us —c)o +iau+ dyv =0,
VeAy [u+ (Us — 0)g] — ia(Us — e)u— vy Us —iam ™20 = f,,

VeAg0 —ia(Us — )b — m_28yQ = fu,
oly=0 =0,
(1.13)

which will be denoted by L (0, u, v) = (0, f,, fu). Note that the inviscid part
of the original linear operator oL is kept in Lo, while the diffusion terms are
modified to be divergence free. It turns out that for Mach number m € (0, 1),
the system (1.13) exhibits a similar stream function-vorticity structure as the
incompressible Navier—Stokes equations. In fact, if we introduce the “effective
stream function” W associated to the modified velocity variable (u + (Uy —
c)o, v) which satisfies

yV =u+ (U —C)Q, —iaV =y, \I’|y:0 =0,

then (1.13) can be reformulated in terms of W as

OScns (W) := ;;A(Aa‘lf) + (Us — ) A (W) — dy (A" oy U)W
(1.14)

1
= fy — —0oy(A" ),
L

wheren = o/ /g, A(Y) = 1 —m?(Uy—c)* and A(¥) = dy (A~ 9y W) —a? W,
Note that A(Y) is invertible at least for m € (0, 1) and ¢ near the origin. When
the Mach number m = 0, we have A = A, and A(Y) = 1. Thus OScys in
this case reduces to the classical Orr—Sommerfeld operator for incompressible
Navier—Stokes system. Therefore, OScns can be viewed as the compressible
counterpart of the Orr—Sommerfeld equation, which to our best knowledge is
for the first time derived in the literatures. This formulation motivates the notion
“quasi-compressible” approximation.

We solve (1.14) with artificial boundary conditions ¥|y—g = A(¥)|y—=0 =0
that allows us to obtain the weighted estimates on A(W¥). One can see that
when m = 0, these boundary conditions are simply the perfect-slip boundary
conditions used in [2,11,13] for the study of incompressible Navier—Stokes
equations. However, for the problem considered in this paper, the multiplier
w(Y) = —dy (A~ 19y Uy) is not real. Therefore both its leading and first order
terms wo, w1 (see Lemma 3.3 for the precise definitions) play a role in the
energy estimates. For the bound estimations, we essentially use m € (0, %)

and the new structural condition (1.7) of the profile in order to show that the
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function wo — Usw has a positive lower bound, cf. (3.29) in the proof of
Lemma 3.4.

After we obtain W which solves (1.14), the solution (g, u, v) to (1.13) can be
recovered in terms of W, cf. (3.11) and (3.12). Here we would like to mention
that (1.13) has a regularizing effect on density. That is, formally by applying
div, to the momentum equation in (1.13) and by noting that the diffusion term
lies in the kernel of divy, we have Ayo € L?*(R.). This reveals an elliptic
structure for the linearized compressible Navier—Stokes equations in the sub-
sonic regime.

e Stokes approximation. Note that (g, u, v) is not an exact solution to (1.12) and
its error is

def

EQ(Q’ u, U) = I(Q’ u, U) - LQ(Q? u, U)
= (0, —VeAy [(Us — 0)o] + A/eiadive (u, v),
Vedydivg (u, v)) . (1.15)

This error term involves a small factor of (/& but lies only in L?(R,). This
fact prevents us from using the standard fixed point argument to solve (1.12).
To recover the regularity, we introduce another operator Lg that we call Stokes
approximation. It is obtained from £ by removing the stretching term, that is,

def

LS(S? ¢’ 1/’) = l)(gv ¢)7 W) + (0, waYUS? O)

To eliminate the error E¢ (o, u, v), we then take (£, ¢, V) as the solution to

LS(&! d)’ ¢) = _EQ(Q7 u, U)7 8Y¢|Y:0 = Ip'Y:O =0.

By using the energy approach in the same spirit as Matsumura-Nishida [27]
and Kawashima [17], we are able to show (&, ¢, ¥) isin H'(R4) x H>(R,)>.
Thus, the error term Es(&, ¢, ) := (0, ¥y Us, 0) is in the weighted space
H% (R4 ) so that we can treat it as source term of L . Therefore, we can iterate
the above two approximations.

e Quasi-compressible-Stokes iteration. Recall that we have the following two
decompositions of the linear operator L :

L =Lop+Eg=Ls+ Es.

The solvability to (1.12) can be justified via an iteration scheme that is illustrated
as follows. Assume that at the N-th step we have an approximate solution in
the form of Z;V:o E; which satisfies

N

L3 & | =0 fu. ) +8n.

j=0

Here &y is an error term at this step. Provided that &y is smooth enough and
has zero value at its first component, we can introduce a corrector

Ev+1=—Lg (6y) + L5 0 Eg oLy (En),
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where Lél and Lgl denote respectively the solution operators to quasi-compressible
and Stokes approximate systems. The approximate solution at the N + 1-step
is therefore defined by ZN +01 E;. Then we have

N+1 R
LY &) | =00, fur f) +Enra
j=1
= (0. fu fu) + Eso Ly 0 Eg o L' (Ew).

A combination of the smallness of E g, the regularizing effect of Lgl and the
strong decay property of Eg yrelds the contraction in H Ry) of truncated
error operator EsolLyg 'oEgo L, !'so that the convergence of series Y °° j=158j
in H'(Ry) x H 2(R+)2 follows, cf. the proof of Proposition 3.1.

Step. 3. Recovery of the no-slip boundary condition. We look for solutions to the
original system (1.3) with v|y—o = O in the form of (p, u, v) = (0app, Uapp, Vapp) —
(pr, uR, vg).Heretheremainder (pg, ug, vg) solves L (pg, ur, vg) = E, vgly—0=
0, where E is the error due to the approximation (0app, Uapp, Vapp)- In this step, we
need to decompose the error into regular and smallness parts as in (2.44). The
remainder is divided accordingly into g R = ére + ésm. The reason for such
decomposition is that the regular part E. coming from the rough approximation
to Rayleigh equation has a worse bound than the smallness part so that we can
compensate some extra order of ¢ by the favorable bounds of Ere due to strong
decay and H !-regularity of Er, cf. Proposition 3.1. Eventually, we can prove that

lugr(0;c)| < Csl% on d Dy, which is smaller than |u,pp(0; ¢)|. Then we conclude
Theorem 1.1 by Rouché’s Theorem.

The rest of the paper is organized as follows: in the next section, we will con-
struct the approximate growing mode. In Sect. 3, we will show the solvability of the
linearized system (1.3) with zero normal velocity condition in order to resolve the
remainder due to the approximation. The proof is divided into several steps. Firstly,
two approximate systems, that is, Quasi-compressible and Stokes approximations
will be introduced in Sects. 3.1 and 3.2 respectively. Based on these two systems,
the iteration scheme will be analyzed in Sect. 3.3. The proof of Theorem 1.1 will be
given in the final section. In the Appendix, we will give the proof of the invertibility
of operator A that is used in the construction of solution to the equation (3.16).

In the paper, for any z € C\ R_, we take the principle analytic branch of log z
and X, k € (0, 1), that is

2 |z|kel* A Argz € (—m, 7]

logz £ Log|z| +iArgz, ¥
Notations: Throughout the paper, C denotes a generic positive constant and C,
means that the generic constant depending on a. These constants may vary from
line to line. A < B and A = O(1)B mean that there exists a generic constant C
such that A £ CB. And A <, B implies that the constant C depends on a. Similar
definitions hold for A 2 B and A 2, B. Moreover, we use notation A ~ B if
A<Band A > B.|-|2and || - ||z denote the standard L?(R.) and L>(R)
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norms respectively. For any n > 0, L‘;o (R) denotes the weighted Lebesgue space
with the norm ||f||Lgo £ SUPy e, |e’7Yf(Y)|. And the weighted Sobolev space

W,’;’OO(RJr) (k € N) has the norm ||f||W,l)c,oc =2 i<k ||8§f||L;c.

2. Approximate Growing Mode

In the following three subsections, we will construct the approximate growing
mode that satisfies the no-slip boundary condition. Similar to the incompressible
Navier—Stokes equations, this is based on the superposition of the slow mode and
the fast mode that represent the interaction of the inviscid and viscous effects near
the boundary.

2.1. Slow Mode

In this subsection, we will construct the slow mode to capture the inviscid
behavior. For this, we consider the following system denoted by J(p, u, v) = 0:

ia(Us — c)p + dive(u, v) =0,
ia(Us — c)u +m %iap + vdyUs =0, 2.1
ia(Us — c)v+m2dyp = 0.
By introducing a new function ® = (;;v, from (2.1);, we have
u=09dyd— (Us—c)p. 2.2)
Substituting this into (2.1); yields
—m 2AY)p = (Us — )3y ® — Py Uy,
where
def

AY) ZE1 - m>Us — o). (2.3)

Note that for the uniformly subsonic boundary layer, that is m € (0, 1), when
lc] < 1, A(Y) is invertible so that we can represent p in terms of ® by

p=-m?A"NY) [(Us — ¢)dy ® — Py Us]. (2.4)

Plugging (2.4) into (2.1)3, we derive the following equation for ®, which can be
viewed as an analogy of the classical Rayleigh equation in the compressible setting:

Raycys = dy [A_l [(Us =)oy ® — (DaYUs]} —@*(Us — )@ =0. (2.5
We remark that the equation (2.5) was firstly derived by Lees-Lin in [19] for the

study of stability of shear flow in inviscid fluid. Thus (2.5) is sometimes referred
to as Lees-Lin equation.
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The slow mode will be constructed based on an approximate solution to (2.5).
Since (2.5) has similar structure of the Rayleigh equation, the construction is similar
as [7,22] for incompressible flow. In what follows we sketch the key steps to make
the paper to be self-contained.

Starting from o = 0, the equation (2.5) admits following two independent
solutions

e+ (Y) = (Us — o),

1

Y
o_(Y) = (Us — c)f1 mclx — m?*(Us — ¢)Y, forImc > 0.

For a > 0, to capture the decay property of the solution, we set

1
BEwAL, where Ao = Yl_i)TOOA(Y) =1-—m*(1—¢)?

=1—m?+ 0)|c|, for|c| < 1.
(2.6)

Then we define

ora¥) = Mo V), o a(¥) =Pl ). 2.7)
Direct computation yields the following error terms:
Rayens (¢+.0) = —2BA770y U o + A7 (Us = (B> = * Mg, (28)
Rayens (9—a) = —28A720y Usp— o + A7 (Us — ) (B* — a? A)p— o — 2B FY.

(2.9)

To have a better approximate solution for (2.5) up to O (a?), the following approx-
imate Green’s function is needed:
e P M- (%), X <.
e P X0 (X)p_(Y), X > Y.

Go(X,Y) = —(Us(X) — o) {
Then we define a corrector

def

¢1a(Y) = 2/ G(X, YA (X)dy Us(X)g4 o (X)dX, (2.10)
0

and set

Oy (Y3 0) = 910 + BP1La- (2.11)
Hence, by (2.8) and (2.9), we have

oo
Rayexs (Plpp) = — 26247201 o + 4p% 7 /Y AT XU (X4 (X)dX

+ AT (Us = (B — P A) DY,

=0 (1) |9y Us). (2.12)

N

In summary, ;.

is the slow mode with properties given in the following lemma:
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Lemma 2.1. Let the Mach number m € (0, 1). Then for each Y 2 0, @ZPP(Y; c)
is holomophic in the upper-half complex plane {c¢ € C | Imc > 0}. Moreover; there
exists y1 € (0, 1), such that if Imc > 0 and |c| < y1, the boundary values 0f®flpp
have the following expansions:

®;,,(0; ¢) = —c + ———— + O(alclog Imc], 2.13)
(1—m?)2
BYCDZPP(O; c) =1+ O()a|logImc|. (2.14)
Proof. Since Imc > 0, Us(Y) — ¢ # 0, VY = 0. The analyticity of ®§pp follows

from the explicit formula (2.7), (2.10) and (2.11). Now we derive the boundary
values <I>§pp(0; ¢) and dy d>§pp(0; c).
Firstly, note that

Y
1Y) =—2eP g (V) /0 - (X)AT2(X)dy Uy (X)dX

o
—2e PV _(v) / 0+ (X)AT2(X)dy Uy (X)dX. (2.15)
Y
Then it holds that

¢1,(0;0) = —2<p—(0)/ AT (X)(Us — 0)dy Us(X)dX
0

I ()R
=

- _‘”;n(g) (A—1(+oo) - A—1(0)> -

d -
— (A7 )dX
dX( )

—_(0)(1 —2¢)
[1 —m2(1 —¢)2][1 — m2c?]

1
=—¢_(0) < 5+ 0(1)|c|> , for|c| < 1. (2.16)
1—-m
Then by using (2.11) and the fact that 8 = «[(1 — mz)% + O(1)|c]], one has

1
®3,0(0: ) = 91.a(0.0) + f1.a (0, ) = —c — ag_(0) <—2 + 0<1>|c|> .
2

(I —=m?)

2.17)

To estimate the boundary value dy @;pp (0; ¢), differentiating (2.15) yields that

e1a(Y;c) =— Be1a(Y;e)+ULY)(Us — ) ' o1.a(Y;c)
—2ePYA(Y)(Uy — o) / h P+ (X)A2(X)dy Uy(X)dX.
Y
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Similar to (2.16), by using U;(0) = 1, we obtain

Ay 91.4(0; ¢) = —Bp1.4(0; ¢) — ¢ L9140 ¢)

+2¢71A(0) / h P+ (X)AT2(X)dy Ug(X)dX
0
1
= —B1.a(0;¢) — ¢ 91 4(0; c>+c—1A(0>< +0<1>|c|)

1
= ey T -+ 0MUA+e-OD.

Here we have used (2.16) in the last identity. Consequently, it holds that

Iy Papp (05 ©) = Ay 91,0 (0; ©) + By ¢1,0(0; )

=14+ —2  (I4¢_(0) + 0OM)al(I +lp_©O)]). (2.18)
c(1 —m?)2

Finally, we have ¢_(0) = —1 4+ O(1)|clogImc|, cf. Lemma 3.1 in [22]. Then by
substituting this into (2.17) and (2.18), we obtain (2.13) and (2.14). The proof of
Lemma 2.1 is completed. O

. s Ll s K
With @3, we can define the slow mode of fluid quantities & uapp Papp> Wapp:

) by using (2.2) and (2.4) as follows:

Vapp
Vipp =~ @Yy, = —m? AT [(Uy — 0y ®Y, — @30y U ]
Uypp = Oy Popp — (Us — €) papp- (2.19)
One can directly check that & Eipp satisfies
9(ES,p) = (0.0, Rayeyg (P5)). (2.20)
where the error Raycns (@) is given in (2.12). Therefore, & Eipp 1 an approximate

solution to the inviscid equation (2.1) up to O (a?).

2.2. Fast Mode

To capture the viscous effect of (1.3) in the boundary layer, we need to construct
a boundary sublayer corresponding to the fast mode in the approximate solution.
Letz = §~'Y. Here 0 < 8 <« 1 is the scale of boundary sublayer which will be
determmed later. Now we scale the density and velocity fields in the sublayer by
setting

p(2) = pY), UR) =uY), V()= (ad) v(). (2.21)
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This leads to the following rescaled system associated to (1.3):

Us —o)p+U+3.V =0, (2.22)
2 .02 . o3rq/ 2. 2 242
;U —ind“(Us — c)U —ind" UV — (m™“ind” + 89y Us)p
—a?8* [(1+ MU+ 23,V] =0, (2.23)
920 — in82 (U — )V — 2670 + A0, (U + 8.V) + im 262~ 9.p = 0.
(2.24)

Here the constant is n = %, which is the rescaled frequency. Recalling U;(0) = 1,
we can rewrite Ug(Y) — ¢ as

Us(Y) = ¢ = UJ(0)Y — ¢ + [Us(Y) = UJ(0)Y] = 6(z + 20) + O(1)|8[* 2],
(2.25)

where z = —8~ !¢, and
U,(Y)=U(0)+ U, (Y)—U0) =1+ O0(1)|8]lz|. (2.26)

In view of (2.22)—(2.26), it is natural to set

1 .

§=e06"'n"3,

Wal—

so that ind> = 1. Formally, we have the expansion
p=po+dpr+---, U=Up+U---, V=U+---.

Inserting this expansion into (2.22)—(2.24) and taking the leading order, we can
derive the following system for (pg, Uo, Vo)

po(z) = Uo(z) + 3,V (2) =0, (2.27)
92Uo(z) — (z 4+ 20)Uop(z) — V() = 0, (2.28)

where the variable z lies in the segment 57 R, . From (2.27), we observe that the
leading order terms of the density and divergence of velocity field vanish in the
sublayer. We also require (U, $jy) to concentrate near the boundary, that is,

lim (U, th) = 0.

7—>00,z€6™ R,
Differentiating (2.28), by (2.27), we obtain
3 — (2 +20)820p = 0. (2.29)
Therefore, from (2.27) and (2.29) we have

_Ai(l, z+20)
Ai(2, zo)

_ Ai2, 2+ z20)

Uo(z) = , W) = A2, 20)



Arch. Rational Mech. Anal. (2023) 247:83 Page 15 0of 53 83

Here Ai(1, z) and Ai(2, z) are respectively the first and second order primitives of
the classical Airy function Ai(z) which is the solution to Airy equation

97Ai — zAi = 0.

Ai(2, z), Ai(l, z) and Ai(z) all vanish at infinity along e%"iR+. They satisfy the
relations d;Ai(k, z) = Ai(k — 1,z), k = 1,2, where Ai(0, z) = Ai(z). For the
detailed construction of these profiles, we refer to [12].

Finally, by rescaling the leading order profile (pg, Uo, $b) via (2.21), we define
the fast mode as

Egpp = (,og;p, ua’;p, Ué{;p)(Y) = 0, Up, ia(Wo)(S_lY). (2.30)
Obviously,
Ai(17 ZO) .
F )= 0 f (0 0) =
uapp(O, c) = 220 vapp(O, c) =ial. (2.31)

2.3. Approximate Growing Mode

Based on slow and fast modes constructed in the above two subsections, we
are now ready to construct an approximate growing mode to (1.3) with boundary
condition (1.4). Set

vgpp(O; c) =7

Eapp (Y5 0)

Eapp(Y§ c) = (,Oappa Uapp, Uapp)(Y§ ) = E;PP(Y; c) —
Vapp(0; )

= Ejp(Yi o)+ 87 @} (0: B, (Y: o), (2.32)
where égpp, é{pp aredefinedin (2.19), (2.30) respectively, and the function Qgpp(Y; c)
is defined in (2.11) with boundary data satisfying (2.13) and (2.14). Thanks to
(2.31), the normal velocity v,pp satisfies the zero boundary condition, that is,
Vapp(0; ) = 0. Therefore, the approximate solution (2.32) satisfies the full no-
slip boundary condition (1.4) if and only if the following function vanishes at some
point c:

Ai(1, zo(c))

Fapp(€) = ttapp (03 €) = By P (05 €) + €03 (05 €) = 871 D (0 €)= 220D’

app

To find the zero point of F,pp(c), we consider the Mach number m € (0, 1) and

the wave number o = K &% with K = 1 being a large but fixed real number. Set

ool—

o K 11
o & (—1+K_1(1 —mz)iei’”)a (2.33)

(1 —m?)2
and define a disk centered at co by

Do & {ce(C||c—co| gK—l—Q(l—mz)za%}, (2.34)
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with some constant 0 € (0, 1). Clearly, for any m € (0, 1), there exists a positive
constant 79 > 0 (tp — 0 as m — 1), such that for sufficiently large K, the
following estimates hold for any ¢ € Dy:

Imc ztol(’lg% 0 < arge < 0K 2,
Kl —1K™? K{ K2
ang KUZW0K D) 4 o1 < KUK D) ¢ (2.35)
(1 - m2)2 (I— m2)2

oo

With the above preparation, we will prove the following proposition about the
existence of approximate growing mode:

Proposition 2.2. Let m € (0, 1). There exists a positive constant Ky > 1, such
that if K 2 K, then there exists €1 € (0, 1), such that for o = Ksé and ¢ € Dy
with ¢ € (0, €1), the function Fypp(c) has a unique zero point in Dy. Moreover, on
the circle 0 Dy, it holds that

|
|Fapp(©)] 2 5K -, (2.36)

Proof. The proof follows the approach used in Proposition 3.2 in the authors’ paper
[22] with Liu on the incompressible MHD system. For completeness, we sketch
the main steps as follows. Firstly, we take K sufficiently large so that (2.35) holds
in the disk Dg. Then for = Kaé and any ¢ € Dy, by (2.13), (2.14) and (2.35),
we have

3,0 ¢) = —c + ———— + O(De¥| logel,
1—m )2
8yd>app(0; c)=1+ 0(1)8§|10g8|. 2.37)

Thus from (2.4) the expression for pgpp, one obtains

0; ¢)

S
Papp

m2A~10) <C3Y 5

(0; ¢) + U(O) 3, (0; c))

m2

R — L 0)ed|logel
— m*“c (1—m )2

O(1)e¥. (2.38)

Next, we consider the ratio W Recall zo(c) = =8 lc = —etTiK s s,
(2.35) implies that

4

K3 5 5 2
|zo] = —(H—roK ) and — —mw <argzg < ——nm+19K -, Vce Dy.
(1—m?2)z 6 6

(2.39)
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Then using the asymptotic behavior of Airy profile (for example cf. [12]) and by
(2.39), we obtain

Ai(l, 1 3 .
ALz _ s oyl = R oK Ko L.
Ai(2, z0) (1 — m2)1
(2.40)
Now we set
def _ Lo o 1 1 o
Gref(c) =1+ #7"K(Q —m*) 478 | —c+ —— | . (2.41)
(1-m?)?

On one hand, there exists a unique zero point cg in (2.33) to the mapping Fef(c).
On the boundary d Dy, it holds that

|Fre(c)| = K. (2.42)

On the other hand, we can show that Fre(c) is the leading order of Fpp(c). In fact,
by (2.37), (2.38) and (2.40), we have the following estimate on the difference:

11 a Ai(1, zo)
| Fapp(€) — Fret(0)| S |1+ 6™ K375 (c— a 2)5) A2, 20) —gref(c)‘
_m 9
+ Cx.me¥|loge|
. 1
< 1+e%mK%87% c— Ll Zé — Fret(€)
(1 —m?)2

+ CmK ™2+ Cx.me¥|loge
<CmK 2+ Ckymeé |log s|.
Here the positive constants Cyy, are independent of K and ¢ and Ck ¢, depends on

K and Mach number m, but not on . Now we take K larger if needed and then
take &1 € (0, 1) suitably small such that for ¢ € (0, ;) and K = Ky, it holds that

-2 1 | S
CmK ™"+ Ckx mes|loge| < EK .
Consequently, one obtains
1
|‘7app(c) — Fret ()| £ §|9;ef(6)|, Yc € 0Dyg.

Combining this with (2.42) yields (2.36). Moreover, since Ai(l, z) and Ai(2, z)
are analytic functions and Ai(2, zg) # 0 due to (2.40), both Fypp(c) and Fret(c)
are analytic in Dy. Therefore, by Rouché’s Theorem, Fpp(c) and Fref(c) have the
same number of zeros in Dy. The proof of Proposition 2.2 is then completed. O
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We now conclude this subsection by summarizing the relations between the
parameters n (rescaled frequency), § (scale of sublayer), @ (wave number) and &
(viscosity) that will be used frequently later:

=

o 1.
n=—; andd =e 6" 'n"3.
NG
. . 1
If, in particular, « = Ke% and ¢ € Dy, then
1 1

ax|cl~Imc~|§|~n 3 ~¢s8, (2.43)

where the relations may depend on K but not on ¢.

2.4. Estimates on Error Terms

In this subsection, we will give the detailed estimate on the error of the approx-
imate solution (2.32) by using a decomposition that takes the decay and regularity
in Y into consideration.

“Regular + Smallness”decomposition : Precisely, the approximate solution

éapp to (1.3) has the following error representation:
L(Eapp) = (0,0, Ey 1) + (0, Eum, Ev,m)- (2.44)
Here the regular part

Eyre = Rayeys (Php) (2.45)

with Rayng (q>gpp) defined in (2.12). Observe that E, r has strong decay in Y due

to the background boundary layer profile, and the smallness part reads

Eysm = \/EAaugpp + Man/edivy (tapps Vapp) — Jed? Us Papp + n\/Eaqupp
—ian(Us(Y) = UL O)Y)uly, — nvlo, By U (Y) — 3y Us (0)),

Eysm = VeV, + A/Edydive (. i) + 1v/EAGV], — ian(Us — o)v) .
(2.46)

where 7 = 8_ld>gpp (0; ¢). As we will see, the error terms E,, ¢, and E,, gy, are of

higher order in ¢ than E, r..
The estimates on these error terms are summarized in the next proposition. Let
us first define some weighted Sobolev spaces for later use:

def

Ly (Ry) = {f e L*(Ry)

def

Il &

_1
183 UsI72 fll 2 < oo},

def

Hy (Ry) = [f e HY(Ry)

def

N
||f||H$r = Z ||3)]'f||L?,, < 00, N is a positive integer ¢ .

=0

(2.47)

Recall Ko = 1 and ¢; € (0, 1) are constants given in Proposition 2.2. For
K = Kpande € (0, €1), the disk Dy is defined in (2.34). The following proposition
gives the precise error bound estimates:
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Proposition 2.3. Let the Mach number m € (0, 1). There exists e € (0, 1), such

1
that for ¢ € (0, &2), « = Ke8 and c € Dy, the error terms Ey re, Ey gm and Ey gy
satisfy the estimates

3

[Evre( 5 Ol Sk €76, (2.48)

IEusm( 5 g2 + 1Evsm( 5 0)llL2 Sk €76, (2.49)

=l

Here the constant K is uniform in €.

The proof of Proposition 2.3 follows from a series of estimations on approx-
imate solutions. First of all, we show some properties of corrector ¢; , and the

approximate solution ®;,, to Rayleigh operator that are defined in (2.10) and
def |

(2.11) respectively. Fix m € (0, 1) and set 8; = 5(1 — mz)%a.

Lemma 2.4. Let y| be the constant given in Lemma 2.1. There exists vy, € (0, y1),
such that for any c lies in the half disk {c € C | Imc > 0, |c| < 2} and a € (0, 1),
the corrector ¢ o satisfies

1
lorally +oZllprale <1, (2.50)
loygrallze S 1+ oghmel, 3y @rallz2 S 1, (2.51)
_1 —
l67 01l + Ume) 2 95¢1all,2 < (Ume)™", (2.52)
_1 —
16301l + Ume) 213 ¢1all,2 < (Ume) 2. (2.53)

1
Moreover, if, in addition, « = Ke¥ and ¢ € Dy, we have the following uniform
bounds:

1
o wiee o+ (me)? 15

+ Imc|| 95 ®S

ol S 1. (2.54)

Proof Recall that 8 = « [(1 —m2)? O(l)|c|] from (2.6) and A(Y) =

m2U2+0(1)|c| frorn (2.3). Taking y» € (0, y1) suitably small, we have Ref > 8
and |[A71] < m < 1 for |c| < y». Then the proof of (2.50)—(2.53) follows
from an argument exactly as in Lemma 3.6 in [22] by using the explicit expression

(2.15). Hence, we omit it for brevity.
For (2.54), we recall (2.11) and observe that

1
a2tz + 119y ot allg2 + ||<P+,a||W§.oo S (2.55)
1

By (2.43), we have «/Imc¢ < 1. Thus putting (2.50)—(2.53) and (2.55) together

yields the desired estimate (2.54). The proof of the lemma is then completed. O

By] Lemma 2.4, we can immediately obtain the following estimates on the slow
mode B app given in (2.19):
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Corollary 2.5. If o = KeS and c € Do N{c e C||c| < yr}, the slow mode éflpp
satisfies the following estimates:

m 215l + el + 05l 2 S 1. (2.56)
_ ) _1
m 205 05,122 + 197Ul 2 S UIme) 2. (2.57)

Proof. The estimate on ngp follows from (2.54) directly. For pgpp, using (2.54)
gives

m 2ol 2 S 10y Dol 2 + 13y Usll 2 [ @5yl < 1.

Differentiating (2.4) with respect to Y yields the formulas

mfzaypgpp = —mfzp;ppAflA’
—A Uy — )3y Y, + D3, AT 07U
and
m 0y oy = —2m AT 9y Ady p, — mTPAT 0F Aps,

—A gy [(Us — DY, — cbgppaﬁUs] .
Taking L2-norm and by (2.54), we obtain
m 20y pipplle S m 2l ogpll 2 + 195 Pyl 2 + 193l 195Ul 2 S 1,
and
m 2107 oappllzz S m 2 (03pps By pipp) 122+ 1y Pl L2 + 105 Ul 2 (| @5l oo
< (Ime)~2.

The velocity field u;.pp can be estimated in the same way so that we omit the details.
And this completes the proof of the corollary. O

The next lemma gives some pointwise estimates on the fast mode (u {;,P, vg,’;p)
defined in (2.30). The proof follows from Lemma 3.9 in [22] by using the pointwise
estimate of Airy profiles. Thus, we omit the details, for brevity.

Lemma 2.6. The fast mode (uf,cpp, vé;,p) has the pointwise estimates

1

Bl (Vo) Snberm Y k=012 (2.58)
_ 1

o ug, (0| Sn'Fe ™Y k=0,1,2, (2.59)

for some constant T1 > 0 which does not depend on n.

With the above estimates, we are now ready to prove Proposition 2.3 as follows:
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Proof of Proposition 2.3. We start with proving (2.48) for Ey, .. Recall the defini-
tion (2.45) and explicit formula (2.12). By taking &> > 0 suitably small, such that
Do C {Imc > 0, |c| £ y»}, we have Re > B; and |A| = 1. Then thanks to (1.8),
(2.6), the bounds (2.50)—(2.54) and the fact that

18% — A S &P A(00) — A(Y)| S @21 — Uy(Y),
we have
|Evre(V)| S @?dyUs(e™ P Lol + o™ (1= Us())

+ 182 = a? Al @l

Sy Us(e P lpralliy +o?e™ 1A = Us) (A + 1955l
<ate P Yoy Ul (Y).

This, combined with the concavity (1.9), gives the following weighted estimate:
|Evrellz S 0211030 20y Uslizolle 7 [,2 Saf Sefs. (2.60)
Moreover, differentiating (2.12) yields
0 Evel S 02 (10r Us 2 + 07Ul ) loral + o1y Usl (7 + oy g1.al
DS, | + |ayq>;pp|) .
With this, by the bounds (2.50)—(2.54) and the concavity (1.9), we obtain

— _1
19y Eurellzz, S e Iz (14 103U =20y Ul )

X (1 + ||§01,a||Wé.eo + |I®§ppllwg.oc>
1 1

v

[S]
5w

<a?<e (2.61)
Putting (2.60) and (2.61) together yields the estimate (2.48) on part of the error
with decay.

Now we turn to estimate the part of error with smallness (E, sm, £y sm) Which
is defined in (2.46). Keeping in mind the bounds of parameters (2.43) and

Inl = 18171 @5 (0; )| Sk 1, Ve e Dy,

pp

because of (2.13). Note that also |Us(Y) — U (0)Y| < Y2, |0y Uy (Y) — dy Uy (0)] <
Y and

1dive lpps Vipp) 111 S Cllaspg a1 + Cllwspp ll2-
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By the bounds on (ugpp, v;pp) and (u;fbp, v;ﬁ;p) given in Corollary 2.5 and Lemma
2.6, we have

1Ewsmllz2 S Vel gz + 105pp 2 + 1 o3ppll22) + v/ [ufppll 2
+allYul e + 1Yol 2
1 1 1
S Ve + [Ime|72) + Ve e | 2 + o] Y2e T 2
2 1
+n73Ye Y
1 1 5 7 7
< Vel 4 [Ime|™2) 4+ /ea’n"6 +an" 6 +n"6 <gels, (2.62)

and

| Evsmllzz S VEUWppll 2 + Niedppll ) + VElvdp a2

+a (lelllufpllz2 + 1Y odpll 21Y Uy 120

1 5 1 1
SVe+ele ™ |+ an”3 <|c|||e—f1"”||Lz + ||Ye‘“"”||Lz)

< Vel +n~8) +aleln™3 +an~8 <g e?. (2.63)

Estimates (2.62) and (2.63) give the bound (2.49) for (E, sm, Ev,sm). Then the
proof of the proposition is completed. O

3. Solvability of Remainder System

In this section, we will construct a solution to the resolvent problem

ia(Ug —c)p + divg (u, v) =0,
VeAgu + ria/edivg (u, v) — ia(Us — o)u — vdyUs — (m ™ %ia + edgU)p = fus
VEALU + Ay/Edydive (u, v) — ia(Uy — c)v —m ™23y p = f,.

vly=0 =0,

3.1)

where (f,, fv) is a given inhomogeneous source term. If (f,,, f,) € H 1 (IR+)2, we
define the operator

def

1
Q(fus fo) = fo— aay(A_lfu)- (3.2)

Recall (2.47) the weighted function space L%) (R). The following is the main result
in this section:

Proposition 3.1. (Solvability of resolvent problem) Let the Mach number m €
(0, %). There exists e3 € (0, 1), such that for any ¢ € (0,¢&3), @ = K&t and
c € Dy, the following two statements hold.
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(1) If (fu, fv) € L2(R+)2, then there exists a solution & = (p,u,v) €
H'(R}) x H2(R4)? to (3.1) which satisfies thefollowing estimates:

lom ™o u, 2 S —— a(, o | flliz. (33)
Im=2ay pll 2 + Idive (u, V)| 1 S a(, e I 2 (B)
@y, y o)l 2 S mn(ﬁ,, ol G5

17, 930) 12 S —— 1 (Fur 12 (3.6)

(2) If in addition we have (fu, fo) € H'(Ry)?* with ||Q(fu, fo)ll2 < oo,

then there exists a solution & = (p, u,v) € H! Ry) x HZ(RJ,_)Z to (3.1) which
satisfies the following improved estimates

- 1 1 :
lom ™" o, u, v) g S T 12 s folllzz + I full 1 follz2 +dive Cfus fo)ll 2.

3.7)
n®
@y 950)l12 S — IR f)llzg
(Imc)2
1 1
+ 1 (gnfun + 1 full2 + diva (fus fu)an> NER)

_ Moreover, if (fy, fu)(-;c) is analytic in ¢ with values in L2, then the solution
E(-; ¢) is analytic with values in H! Ry) x H2(R+)2.

Remark 3.2. (a) By Sobolevembedding H! (R ) < L*°(R. ), the mapping u(0; c) :
Dy — C is analytic.

(b) The solutions to (3.1) are in general not unique because we do not prescribe the
boundary data at Y = O for u.

(c) The constants in estimates (3.3)—(3.8) are uniform for m € (0, mo] with any

mo € (0, 7).
(d) As one can see from the proof, the argument also works for a wider regime of
parameters:
@St <t L Ly (3.9)
o , le , — , . .
~ Imc n(Imc)?

In fact, the boundedness of wave number « is essentially used in the proof. In
addition, we require ¢ to satisfy (3.103) so thatc € X N X where X and X
are resolvent sets of L g and L respectively. Moreover, in view of (3.114), we
require smallness of nhll—c)z in order to establish the convergence of iteration.
These requirements can be fulfilled by the smallness in (3.9).

As mentioned in the Introduction, the proof of Proposition 3.1 is based on
the following two newly introduced decompositions, that is, quasi-compressibile
approximation and the Stokes approximation.
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3.1. Quasi-Compressible Approximation

Following the strategy described in the Introduction, we first consider the ap-
proximate problem

ia(Ug — c¢)o + divy (u, 0) =0,

VEAg U+ (Ug — ¢)0) — ia(Us — c)u — 03y Uy — iam ™20 = s
VEAD — ia(Us =)o — m ™20y = 53,

oly=0 =0,

" (3.10)

with a given inhomogeneous source term (s1, 52).
By the continuity equation (3.10)1, we can define an “effective stream function”
W satisfying that

oyWV =u+ (Us; —c)o, —ia¥ =v, W|]y_o=0. (3.11)

Then, by (3.10)2, we can express the density p in terms of W as

m oY) = —A"N(Y) [%Aaay‘ll + Uy =)oy ¥ — Woy U, + (ia)_lﬁ} .
(3.12)

Substituting (3.12) into (3.10)3, we derive the following equation for ¥ which can
be viewed as the Orr—Sommerfeld equation in the compressible setting:

def

i
OScns (W) = ;A(Aa‘~1’)+(Us—C)A(‘I’)—3Y(A_18yUs)‘IJ=Q(Sl, 52), ¥ > 0.

(3.13)
Here the modified vorticity operator A is given by
A H*(Ry) N H](Ry) — L*(Ry), G
AW) E 5y (A~ 19y W) — oW, '
and € is given in (3.2).
In order to solve (3.13), we consider the following boundary condition:
Yy—0o = A(W)|y=0 = 0. (3.15)

If W solves problem (3.13) with boundary conditions (3.15), it is straightforward
to check that (p, u, v) defined by (3.11) and (3.12) is a solution to (3.10).
Thus, in what follows, we consider the boundary value problem

OScns(W) =h, ¥ >0, W]y—o = A(W)|y=0 =0, (3.16)

with a given inhomogeneous source i € sz(RJr). Let us first introduce the multi-
plier

def

w(Y) & (ay (A_layUs»_l . (.17

A straightforward computation yields the properties of w stated in the following
lemma:
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Lemma 3.3. Let m € (0, 1) and Uy satisfy (1.5)—(1.8). There exists y3 > 0, such
that if |c| < y3, w(Y) has the expansion

w = wo + cwi + O()|c|?|83U,| 7" (3.18)
Here wq and w1 are given by

(1 —m2U2)? 4m?Us(1 — m*U2)
H (1oyUs|? + 193 Us|) H (|oyUs|? + 195 Usl)
2m?(1 = m*UD)?* (18y Us|* — Usd7Us)

5 , (3.19)
H2 (|ay Us|? + 103 U )
where the function H(Y) is defined in (1.7). Moreover, it holds that
wo(Y) & lw(Y)| ~ 95U (V)| (3.20)

Set the function space

def

X 2w e H3®;) N HI R, AW)ly=o =0
‘ oy W, @ Wl + A2 + 9y AW 2 < oo} .

For the problem (3.16), we have

Lemma 3.4. (A priori estimates) Let m € (0, %) and ¥V € X be a solution to
(3.16). There exists y4 € (0, y3), such that for a € (0, 1) and c lies in

o ZiceC|Ime>max{y, el v, 'n™"), lel < yal, (3.21)

then \V satisfies the following estimates

C
oy, aW)| ;2 AW ;2 £ —|h|;2, 3.22
1@y, a®)llz + A3 < = Il (3.22)
1
Cn2
| @y ACW), @A) 2 € ——lIhll 3 - (323)
) (Imc)2

Proof. Taking inner product of (3.16) with the multiplier —w A (V) leads to

—i/ wA(Aa\IJ)A(\Il)dY—i—/ — (U, —c)w|A(\If)|2dY+/ WA@Y
nJo 0 0
Ji D 3
+/ hwA(W)dY = 0. (3.24)
0

—_—
Jy
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Now we estimate J; — J4 separately. Let us consider J3 first. By integrating by
parts and using the boundary condition W|y—o = 0, we obtain

o0
J3:/ Aoy W% + o?| v dy. (3.25)
0

Recalling (2.3) about the definition of A(Y), we have
A = (1 —mPUuH 7 —2mPU; (1 — mPUH T2+ 0(D)el?

With this identity, the assumption m € (0, 1), and (1.5) for the positivity of Uy,
we can deduce from (3.25) that

ReJs 2 o[ W[2, + (1 — O(D)c)[dy W2, (3.26)
and

ImJ; > Ime||m|Us |20y W2, — O(1)|c? |0y ¥ |2 (3.27)
3 ~ N Y L2 Y LZ’

where the constants may depend on m but not on either ¢ or c.
For J,, we obtain from the expansion (3.18) and bound (3.20) that
—(Us — Ow = —Uswo + (wo — Uyw) ¢ + O(De[og U, 7' (3.28)

Using the explicit formula (3.19) of wo and w gives

(1—m?U?)

H2 (|ay Uy |2 + 192 U5 )

2m2(1 — m2U2)(Us |3y Us|? — U292 Us)

|0y Us|? + 103 Us | }
(1—-m?U?)

H2 (|oy Us |2 + |93 U

wo — Ugwy = {(1 —5mPUY)H

J’_

% =(1 — 5m2U?) [(1 — m2U2)92U,|

—2m2U, |y Uy | + 2m> (1 = m2U2) (U, 10y Uy + Uf\aﬁuyn}

B (1 —m?*U?)
H2 (|19y Us|? + 193 Us |

)2 i(l —3m2U)(1 — m*UH)|ei U
+8m4US3|8yUS|2}. (3.29)
Since m € (0, %), we have (1 — 3m?U2?) > (1 — 3m?) > 0. Thus, by (1.9)
and (3.29), it holds that
C1103U,| ™" £ wo — Uswr < CaloyU |7, (3.30)

where the positive constants C; and C3 are uniform in ¢ and c. Therefore, taking
real and imaginary part of J, respectively and using the bounds (3.20), (3.28) and
(3.30) yield

Ress| S CIAMW)IE, (3.31)
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and
(3.32)

ImJ> > (Imc - 0(1)|c|2> IAW)I2, .

For Ji, we rewrite

Ji = _71/ WALAWV)AW)AY + %/ WAy, AJ(W)AW)AY = J11 + Ji2,
0 0
(3.33)

where [Ay, A](W) is the commutator A, [A(W)] — A [Ay(W)]. By integrating by
parts and using the boundary condition A (¥)|y—o = 0, we obtain
Y 2 2 2 Lo NG
Ji = - w(layA(\I')I + o |A(W)| )dY + - dywady A(W)A(W)dY.
0 0

(3.34)

Then by (1.8) and (3.20), we have
Lo = 0203 (A7 By U7 U1

oy woiu,
< JwdF Uyl (y Uyl + 1103 U~ 1oy Us e

103U 1183 Usll ) £ C.
Thus the last integral on the right hand side of (3.34) is bounded by

< oy wddUs Il llay ACW) 2 A2

‘i/ Ay wdy A(V)A(W)dY !

0 n
1

= (3.35)

< ~llay AW 2 AW 2.

n
By taking real and imaginary parts of J1| respectively and using (3.35), we deduce

that
l oo

Resul S o [ muwl (Jay AP + 0 ACWP) a¥
n Jo

1
+ - oy AC) Iz AW 22 ,

Ic] 2 1
S 7|I(3yl\(‘l’), aA(W))l7s + ;HBYA(“II)”L%,”A(“II)Hszv (3.36)

~

and
1 *© 2 2 2 1
/iy 2 = | Rew 1oy AP + o2 [AW)P) dY = — oy AWl 3 1AW
1 1
2 ;Il(ayA(‘I’),aA(‘I’))Ililzﬂ - ;Ilayl\(‘l’)ll%lll\(‘l’)ll%, (3.37)

where we have used the fact that
[Imw| < [Imefwy + O(D)]c?|93Us |1 < lel|03Us| !
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and
Rew > wo — |c|lwi| — O(Del*85Us| " 2 85U ™!

by the expansion (3.18).
Next we estimate Ji3. Recall (3.14) the definition of A. We have

[Ag, AI(P) = Ag[A(W)] — A[Ag(¥)] = 37 (A~ "oy W) — ay (A~ '950)
=20y (A7 Ha3 W 4+ 303 (A" Hag v + 83 (A" Hay w. (3.38)
We rewrite 8}2,\11 and 8;,\11 as
W = AA(W) + A"y Ady W + o2 AW,
BW = Ady A(W) + 2A W)y A + dy W (A—la%;A + a2A> 2020y A.
By « € (0, 1), it holds that

0791 S AW+ [y W + ], [95W] S [0y A )| +HA )| +]dy W [+a| ],
(3.39)

By (1.8), we have

[ov(a7h)] £ clayusl,

0}A™H| £ ClajUs| + Clay Uy < Clay Uy,
‘aé(m‘)) < Cla3U,| + Cla2Udy Uy | + CloyUs P < CloyUs|.  (3.40)
Then applying the bounds (3.39) and (3.40) to (3.38) gives
I[Ag, AJ(W)| < [0y Us| (10y ACW)| + [A(W)| + [0y W] + o[ W]),
which by (1.9) implies

1
I[Aq, AWz, S |H812/Us|773YUs”L°°(HaYA(“I/)”L2 + A2 + 10y Wil 2 +01||\P||L2>
Sy AW 2 + AW 2 + 10y Wl 2 + W]l 2. (3.41)

Substituting (3.41) into Jq2 and using Cauchy-Schwarz inequality yield

1
2l £ < 100 Usllooe [AMW)] 23 1 Aas AN 13

1
< EHA(\D)nLg,<||8YA(W>||L30 + AW 2 + ||(ayw,a\D)||Lz>, (3.42)
where we have used (3.20). By (3.36), (3.37) and (3.42), we can deduce from real
and imaginary parts of (3.33) that

||

ReJi] S ||(3yA(‘lf),0tA(‘If))lligj

n
1
+ 1AM (IlayA(‘l’)lngU + AW + |I(3Y‘l’,a\1’)llL2),
(3.43)
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and

! 2
ImJ; Z;II@YA(‘I’), a ACU)II

~ %MA(\I/)nLg,(naYA(\v)nL,zﬂ AWz + [0y @, awuLz)-
(3.44)
Finally, for J4, we have by Cauchy-Schwarz inequality that
i S IwddUsllz=llhll 2 1A 2 < 2 A2 - (3.45)

Thus, we have completed the estimation on J; — J4.
By taking imaginary part of (3.24) and using previous bounds (3.27), (3.32),
(3.44) and (3.45) for J; — J4, we have

1 1
@y AW, @A)}, +Ime (JAMWIE, + Im|Us 7oy Wi )
1
S SIAWI 3 (I0y AWz + 1AW + 1@y ¥ W)l 2)
+1el (IAIZ, + 10y, aW)2,) + Al 2 1AW 2. (3.46)
Similarly, taking real part of (3.24) and using (3.26), (3.31), (3.43) and (3.45) give

1
1@y %, a7 S 1AWz 10y AWz + 1AW + Gy ¥ )12 )

|l

AT + @y AY), AT + 17l 3 I AP 13-

v

(3.47)

n

Multiplying estimate (3.47) by Imc, suitably combining it with (3.46) and using
Young’s inequality, we can obtain that

! Ay AW), a A(W))||2, +1 AW)|? Ay, aW)|?
@y AW). A ()T, +1me (1AW, + 16y ¥, a )]} )

1
S SIAW)I (I0y AL + IAW) I + @y ¥ aW)ll2)

B
+ 1o (1A, + 1@y Y, e W) )2, ) +

+ 1l AP 2

— @y A(®), a A(W))][7,
n w

1 Clc 1 C Clc|?
< (L + 9 oy Ay, ancwy 2, 4 1me (£ + -S4 €
2n n w 2 nlme Imc
2 2 C 2
x (1AW, + 1@y W, a®)[}2) + [ (3.48)

By taking y4 € (0, y3) suitably small such that

C Clc|? 1
and +£ <2Cy < 7 Ve € Xg,

1
Cle| £Cys £ -,
el = Cra = 4 nlmc Imc
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we can absorb the first and second terms on the right hand side of (3.48) by the left
hand side. Thus,

C
IACD) 3 + @y W, a2 < kil and By ACY). A(P)] Lz

1
Cn2
< ikl
(Imc)2

The above two inequalities immediately imply the estimates (3.22) and (3.23). The
proof of the lemma is completed. O

With the a priori estimates in Lemma 3.4, we can prove the existence, uniqueness
and analytic dependence on ¢ of the solution to the compressible Orr—Sommerfeld
equation (3.16) in the following lemma:

Lemma 3.5. (Construction of the solution) Let m € (0, \%), a € (0,1)andc €
Y. If ||h||L%! < 00, there exists a unique solution ¥ € X to (3.16) which satisfies
estimates (3.22) and (3.23). Moreover, if h(- ; ¢) is analytic in c in Lﬁ)(RJF), then
W (- ;c) is analytic in X.

Remark 3.6. By elliptic regularity, the solution W is in H*(Ry) N H (R4).

Proof. The proof is based on a cascade of approximate process and a continuity
argument. First of all, we set W £ A(¥) and reformulate (3.16) as

i -1 a1
—AAGAT W Ug — o)W A W=h,Y >0,
" (Ay )+ (U =)W +w > (3.49)

Wly=o = 0.

Here the inverse operator A~V LRy — HXRL) N H(} (R) is constructed in
Lemma 5.1. If one can show the solvability of (3.49) in HJ) (R4), then by Lemma

def

5.1, W = A~(W) e X and it solves the equation (3.16). Now we elaborate the
construction of solution to (3.49) in the following three steps.
Step 1. Fix any parameter / > 0. We start from an auxiliary problem

TIW) £ ZAGW + (Uy —c — i)W + w ' A™'W = h, Wly—o=0. (3.50)
n
We claim that there exists Iy > 0, such that if ¢ € X and ||h||L%' < 00, then
(3.50) admits a unique solution W € H,% RN HOl (R.) and the solution operator
Tlo_1 : Li(R.Q — H,% (R4) is analytic in c. To prove this claim, we define a
sequence of approximate solutions { Wy }22 , by the following equations

[Airy — (c +iD)] (Wir)) = h — w™ ' AT Wi, Wegt|y_y =0, Wo =0,
3.51)

where Airy = LA, + Uy : H2(Ry) N HY (Ry) — L2 (Ry) is the Airy operator.
For any ¢ € X and [ > 0, by direct energy method, it is straightforward to check
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that ¢ + i/ lies in the resolvent set of Airy operator. Thus by an inductive argument,
we can solve W and establish its analytic dependence on ¢ from (3.51). In order to
take the limit k — oo, we need some uniform estimates. Applying the multiplier
(33Us) "' Wiy1 to (3.51), we have

l' o0 B _ o B )
;/0 (33 Us) 1Wk+1AaWk+1dY+/0 O3Us) " (Us — ¢ — iD)| Wit [dY

o0 o
=— / B2U) M P AT (W) Wiy dY + / (02U) ' hWyp14Y.
0 0
(3.52)
By Cauchy-Schwarz inequality, we deduce that

oo
/0 (a%US>—1hWk+1dY‘ < Cllaliz Wil 2 (3.53)

By using (3.20) and the bound in (5.1) for A~!, we have

w

o0
_ _ _ = _ _1 _
V @3U)'w A 1<Wk)Wk+1dY‘§C|||w| NoZU, 172 [l oo Wit Il 22 1A (W)l 2
0
< ClWarllz 1+ Y) Wil 2
< ClWistllz2 1 Will 2 - (3.54)
Integration by parts yields
i

i [ 1
= @00 W BaWinndr == (10y W, + oI Wen )
O w w

i [ 05U .
+ - ——— 0y Wit Wiq1dY.
0

n (33 U;)2
(3.55)
By (1.8), the last integral in the above equality is bounded by
i [~ U . 133U
— | Sy Wi WyedY | S — | dy W, W,
- W nd?| £ L Wi Wl
C
< — 0y Wi 152 | W 3. (3.56)

By taking the imaginary part of (3.52), and using the bounds obtained in (3.53)-
(3.56) with Young’s inequality, we have

1
~ (10y Wi 13, +a IWeil17; ) + (me + DI Wi I,

1
< Cl[Westll 2 (nhnLg, +IWellzg, + 19y Wices ||Lgu)

Loy W2, + 20— € Y w2
= gy Y R, 2 n(me + 1) ) MRS

(a2 + 1wl ) - (3.57)

IN

_I_

Ime +1
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We choose y4 > 0 smaller if needed so that nl(fn - < %, forany ¢ € X . Then (3.57)
gives

Wenilzg, € g (Wl + WAL ).
Cnt
n
@y Wi, aWiesDll g, £ ——— (IWillza, + i1z )
(Imc +1)2

Now we take the difference Wi — Wj. A Similar argument gives

Wit1 — W < Wi — Wy— ,
IWeer = Willzz = (=7 IWe = Wil
Cn?
n
9y Wir — 9y Will 2 = ——— Wi — Wit ll 2 -
(Imc +1)2

By taking / suitably large, such that ﬁ < % < %, {Wi}32, is aCauchy sequence
in Hul) (R4). This implies the existence of a limit function W = limy_, o Wi in
HIL (R) that is the solution to (3.50). By the elliptic regularity, Wy converges to W
in H,% (R4). Moreover, by induction, each Wy is analytic in ¢, so is W by uniform
convergence. This justifies the claim and step 1 is completed.

Step 2. (Bootstrap from Tlo_l to To_l). Consider the equation (3.50) for any fix
I € [0, lo] with W as its solution. Applying the multiplier —w W’ and using the
same argument as in Lemma 3.4, we can show that W! satisfies

1
Cn2

C
IWhleg < c—lhllzg, 1@y W' aWhig <

Ikl , ¥e € Zo,
Imc)z w

(3.58)

where the constant C is uniform in [ € [0, [y]. Now we take [ = Iy — A for some
fixed constant 0 < A < 2C _1y4_1n_1 and construct the solution Wi = Tll_l(h)
through the following iteration

wh

= Tlo_l (—iAW,ﬁl +h) , Wél =0.

Applying the a priori estimate (3.58) to Wl£1+1 - W,ﬁl yields that

WD = Wil < Wi — Wi
+ w = Imc —
1 ! ! Lo !
= m”wkl -Wlille = §||Wk1 - Wil
1
! ! Cin2 !
|9y Wk:—l —dy Wkl ”L% = —IHWkl - Wk1—1”L2w
(Imc)2

< CIW = Wil ll2 . Ye € Bg.
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Hence, {W,ﬁl }2° , isa Cauchy sequence in H! andithasalimit W' = limj_, W,il .
It is straightforward to check that Wi is in Hl% RN H(} (R4) and satisfies (3.50)
with [ = [;. Moreover, from the previous step we have already shown that each
W,ﬁl is analytic in c. Thus analyticity of W' follows from the uniform convergence.
Thus we have completed the construction solution operator Tll_l Noting that W
satisfies the a priori estimate (3.58), we can take [, = /1 — XA and construct the
solution operator TI;I in the same way. Repeating the same procedure, we can
eventually establish the existence and analytic dependence on c¢ of the solution
operator To_l.

Step 3. We now solve the original system (3.49) by using the following iteration:

i _
To(Wiy1) = h + p [Ag, AT(AT (WR)), ¥ > 0, Wigily=0 =0, Wo(¥) =0.

By using the bounds in (3.41) and (5.1) on the commutator [A,, A] and A1
respectively, we have

[[Aa. ATAT Wi 2 < € (I1By Well 2 + [Well 2 + @y A Wi, e A" Wil 2)
< C (lay Wall 2 + WL+ )1 12) £ ClWill g -

Then applying the a priori bound (3.58) to Wy — Wy, gives

C
Wikt = Willz = o — Wk = Wity

10y Wir1 — 0y Wil 2 = Wi — Wit ll g -

n > (Imc)2

1 1
By taking y4 > 0 smaller if needed such that —C— + S < Cy 2 (14+y)]) < %

nime n2Imc2

for c € X, we show that {W;}7°, is a Cauchy sequence in Hl}) (Ry). Let W :=
limg— - Wi. By the elliptic regularity and Hl}]—convergence, it is straightforward
to check that Wy converges to W in Hu% (R4) and W is a solution to (3.49). More-
over, since each Wy is analytic in ¢ and the convergence is uniform in ¢ € Xy,
we conclude that W is analytic in c. The uniqueness of solution follows from
the a priori estimates obtained in Lemma 3.4. Then the proof of the lemma is
completed. O

Now let W be the solution to (3.16) with 7 = Q(s1, s2) and 2 defined in (3.2).
In terms of the fluid variables (g, u, v) given in (3.11) and (3.12), we have the
following proposition for the solvability of the quasi-compressible approximation
system (3.10):

Proposition 3.7. (Solvability of quasi-compressible system) Under the same as-
sumption on parameters m, « and ¢ as in Lemma 3.5, if 5 = (s1, s2) € H'(Ry)?
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and ||2(s1, 52) ||leu < 09, there exists a solution (o, u, v) € HZ(R+)3 to the quasi-
compressible approximation system (3.10). Moreover, (0, u, v) satisfies the esti-
mates

g1 + 1m0, 0) | 2 + & | dive (u, 0) | 1

1 1 .
S — 101, s2)llz2 + —=llstllz2 + lIs2ll 2 + dive (s1, $2) 172, (3.59)
Imc v

and

1
n2 1 .
97l 2 < P12 Gs1ss2) M2 + —llsilig2 + szl 2 + [1dive (s1, s2) [l 2
(Imc)2 o

(3.60)

Furthermore, if both s(- ; ¢) and Q- ; ¢) are analytic in ¢ in H! R4) and sz(R+)
respectively, then (o, u, v)(- ; ¢) is analytic in c in H2(R+).

Remark 3.8. If divy (s1, s2) = 0, then by (3.11), (3.67) and regularity of W it is easy
to deduce that (o, u, v) € H 3 (R+)3. This reveals the elliptic structure for linearized
compressible Navier—Stokes equations around the subsonic boundary layer profile.

Proof. 1t is straightforward to check that (g, u, v) satisfies (3.10). The analyticity
directly follows from Lemma 3.4. It remains to show the estimates (3.59) and (3.60).

Firstly, by using bounds given in (3.22), (3.23) with & = Q(sy, s2) and (3.39), we
obtain that

1
193wl 2+ Oy W, W) [l 2 S A [ 24 By ¥, @ W)l 2 S Tme I52(s1 s2)l 2
(3.61)

and

193 Wllz2 S 10y AC) 22 + A (W)l 2 + 1Oy W, W) 2

Nl—=

1
n2 1 n
S L+ ——— ) 1RG22 S 1S2(s1, 52) M1 22
(Imc)2 n2(Imc)2 (Imc)2

(3.62)

where we have used nlmc 2 1 for ¢ € Xp. Then by v = —iaW, (3.61) and
a € (0, 1), it holds that

1
ol S 105 W 2 + 10y W, @) 12 < Tme 182610 52) 2 (3.63)

Next we estimate o. Recall (3.12) for its representation. Since W|y—o = 0, we
can use Hardy inequality || ¥ ~1W/| 12 < 2||dy ¥ || 12, and the bounds givenin (3.61),
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(3.62) to obtain

_ 1 o’ _
m2oll 2 §;||a§wny+(1+7)||ayw||Lz+||Y Y| 2 11Y By Us || 1o

1
+ —llstllz2
o

1., 1
S ;Ilay\IJIIL2 + oy Wil + ;”SIHLZ

1 1 1
S|\t | 1G22 + —llsiliz2
n2(Imc)z Imc a

1 1
S Ime 1€2Cst, s2) M2 + —lIstllzz- (3.64)
mc v

For dy o, differentiating (3.12) yields that

i i
—m ™ 29yo = OScns (W) + o (;Aaw + (U — c)w) — aaym—lsl)
= Q(s1, 50) + &’ (l—Aa\D (U, — c)\IJ) —Layatsy)
n o

=55 + o> (;—lAa\y (U, — c)\I/> , (3.65)

where we have used the equation (3.13) in second identity. Taking L?-norm in
(3.65) and using bound (3.61), we can further deduce that

2 2
) < o 2 o
m llovellzz S llsalizz + —= M0y Wiz +a(l 4+ -l

Slsallz + 1939l 2+l W2

1
S 1 126152z + szl 2 (3.66)

Now we estimate 8}2,9. By using (3.12) and (3.65), we have
—m 2 Ago = divy (s1, 52) + > (Uy — ¢)%0 + 22> Way Uy. (3.67)
Then taking L? norm leads to
m 2070l 2 S Ildive(si. sl 2 + (1 +m ) oll 2 + [ W] 2
< dive(s1, s2) 12 +m 2ol 2 + all Wil

1 1 .
S — QG sl 2 + —lisill2 + lIdive (s1, s2) 2. (3.68)
Imc v

Here we have used (3.61) and (3.64) in the last inequality. Therefore, H 2_estimate
of o follows from (3.64), (3.66) and (3.68). Since divy (1, v) = —ia(Us — ¢)o, by
using (3.64) and (3.66) we have

’ ~ ~ ImC ’ w o '
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Finally, for u, by using (3.11), (3.61), (3.62), (3.64), (3.66) and (3.68), we obtain
that

1 1
Il S N0y Wl + llellg S —— 112G, s2) M2, + allﬁ 2 + lls2ll 2.

Imc
(3.70)
2 3 Vl% 1
loyullz S 10y W2 + llollg2 S r1S2Gst )l 2 + —lstllz2
(Imc)2 @
+ lIs2llz2 + 1dive (s1, 52) 11 2. (3.71)

Putting the estimates in (3.63), (3.64), (3.66), (3.68)—(3.70) together yields the
estimate (3.59). Note that (3.60) directly follows from (3.71). Then the proof of
proposition is completed. O

3.2. Stokes Approximation

In this section, we study the Stokes system with advection

ia(U_y - C)E + diva(¢9 w) =40,
VEAG + Aia/edive (@, ¥) — ia(Uy — o) — (iam ™ + JE02U,E = q1.
VA + Aedydiva(¢, ¥) — ia(Us — )Y —m~2dyE = o,

oydly=0 = ¥|ly=0 =0,
(3.72)

with a given inhomogeneous source term ¢ = (¢o, g1, ¢2) € H'(Ry) x L*(R ).
Compared with original system (3.1), in (3.72) we remove the stretching term
—1rdy U, in the momentum equation. We impose the Neumann boundary condition
dydly=0 = 0 on the tangential velocity for obtaining estimates on the higher order
derivatives. The following proposition gives the solvability of (3.72):

Proposition 3.9. Let m € (0, 1). Assume that a € (0, 1) and % = “/?g & 1. There
exists y5 € (0, 1), such that for any c lies in

BsZ{ceC|Ime>ys'n™", || < ys)h, (3.73)
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the system (3.72) admits a unique solution (£,¢,¥) € H'(R;) x H*(R,)%
Moreover, (&, ¢, V) satisfies the following estimates:

C
lm ™', ¢, ¥)ll 2 < al—ll(m 'q0, 91, 42l .2 (3.74)
Cnf _
[@yd, ad)ll 2 + oy Y, a2 = ——1(m ™ q0, g1, 92) 1.2, (3.75)
a(Imc)?

. _ c . _
Idive (@, )|l g1+ m 20y &l 2 < Tl (m 90, a1, )l 2 + Cligoll g1,
(3.76)

Cn _
[Aa, Aag¥) 2 = mll(m 'q0. 91,92l 12 + Cliqoll 1
(3.77)

Here the positive constant C does not depend on either « or €. Furthermore, if
q(-;¢) is analytic in ¢ in HI(R+) X L2(R+)2, then (&, ¢, V) (- ; ¢) is analytic in
cin H'(Ry) x H*(R4)>.

Remark 3.10. We will use the bounds given in (3.74)—(3.77) only when gp = 0 in
the proof of convergence of iteration.

Remark 3.11. In view of (3.75)—(3.77) with go = 0, the divergence part divy (¢, V)
and the density & of the solution have better estimates than other components
because there is no strong sublayer related to these two fluid components. This
stronger estimate is crucial in the proof of convergence of the iteration later.

Proof. We firstfocus on the a priori estimates (3.74)—(3.77). By taking inner product

of (3.72) and (3.72)3 with —¢ and —1/ respectively then integrating by parts, we
obtain

Ve (||(ay¢, a)ll7, + @y, aw)uiz) + e lldive (@, Y117,
+ia/ s —o (18P + 1w P) ar
0
— 2 /0 §dva (@, P)dY = fo (g1 + VERUE)F — aiidY.
(3.78)

By Cauchy-Schwarz and Young’s inequalities, it holds that

‘/0 (q1 + Ve U £) +q21/_/dY‘ S g1, @)z 1@, Wl 2 + Velgll 2l

S @ a2l ¥z + CVeEN T + ¢172).
(3.79)



83 Page 38 of 53 Arch. Rational Mech. Anal. (2023) 247:83

By using the continuity equation, divy (¢, V) = ia(Us — E)§ + qo, and the
Cauchy-Schwarz inequality, we get

Re (—m2 /OOO £dive (@, w)dY> =Re (—iam2 /OOO(US — 5)|g|2dy)

— m *Re (/w gq'ody>
0

> admellm™'&)17, — m21IE ] 12 llqoll 2
(3.80)

By (3.79) and (3.80), the real part of (3.78) gives that

Ve (I1@r . ad) 2 + 1@y v )22 ) + Av/eldive (@, )13
+alme|(m™ '8, ¢, Y7,

< CVE(ENT + 1817.) + Cllom ™', ¢, ¥)ll 211 (m ™ g0, g1, q2) I 12
(3.81)

By taking y5 € (0, 1) sufficiently small so that Cve < € < Cys <1 veexsg,

almec = nlme =

we can absorb the first term on the right hand side of (3.81) by the left hand side.
Thus we get

_ C _
lom™E, ¢, )2 < ——llm Y90, 91, 9l 12,

and

1 1
1@y a2 + @y v vl 2 < Ce [ (m ™€, ¢, ¥) 2% I (m g0, q1. 4211

C _
< ————lm g, 91,922
e4a?(Ime)2
1
Cn2 _
< ———1m g0, g1, g2l 2 (3.82)
a(Imc)2

This completes the proof of (3.74) and (3.75).

Next we estimate ||0y&||;2 and ||dive (¢, ¥)| 1. Define @ = dy¢ — iay and
denote @ := divy (¢, ). Then

Ay = Oyw +ia®D, Ay = —iaw + 0y D, (3.83)

and w|y=¢ = 0 because of the boundary conditions in (3.72). Thus, we can rewrite
(3.72)7 and (3.72)3 as

iam 2k = Vedyw + Ve(l + ViaD — ia(Uy — )¢ — q1 — ed Usé,
(3.84)

m2yE = —Jeiaw + Vel + My D — ia(Us — )V — go. (3.85)
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By taking inner product of (3.84) and (3.85) with —i aé and Byé respectively, we
deduce that

o0 [o¢]
m7E|oyE, ekl = JE/ —dywiaE — iawdyEdY +e(1 + A)/ o> DE 4 dyDoyEdY
0 0

Js Jo

+ [ (@1 + VERUE)ia — qrayEdY + / ia(Us — o) (iakd — YayE)ay .
0 0

J7 Jg

(3.86)
Integrating by parts and using boundary condition w|y—o = 0 yield that
Js = ia/eEw|y—o = 0. (3.87)
For Je, by using the continuity equation (3.72);, we have

D = —ia(Us — c)§ +qo, dyD = —ia(Us — c)dy§ — iadyUg§ + dyqo,
(3.88)

which implies that
o0
Jo = — a1 + A)/ ia(Us — o) (|ayE +a2leP)dY
0
m —
iaJE(l+ 1) f dyU,EdyEdY
0

o0
+VE(L4+2) / drqodyE + a’qoEdY.
0

For last two terms on the right hand side, we obtain by Cauchy-Schwarz and Young’s
inequalities that

ia«/§(1+k)/0 8YUs§3Y§dY‘ S CVelloyéllalletll 2

< CVe(|9yEllT 2 + o?(§1172),

and

o0
Vel + 1) M) Iy qodyé +f¥2£10§dY‘ < CVell(0yE, aé) 1211y o, @qo) 12
m=? 2 2 2
= TII(3YS,<1$)IIL2 + Cm7ell(3yqo, aqo)ll7--
Thus, taking real part of Jg gives

-2
ReJs < — almey/a(1 4 2)[|(dyE, a)|7, + (Cﬁ + %) 1(3vE. a&)7,

+ Cm?e ]| 3y g0, ¢g0) |1
m—? 2 2 2
== 1@y a7 + Cm*ell By go. 2go) 7. (3.89)
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for 0 < ¢ « 1 being sufficiently small. Again, by Young’s inequality, we get

C
1771+ 1781 = C (g1 @) ll2 + el (@, ¥ 2) 1By E, ad)l 2 + Tﬁllaélliz

-2
< T l0yE.ad) I3 + Cm(l(gr. a2 13 + 1@ W)I2),

(3.90)

where we have used % = ‘/75 < 1. By (3.87), (3.89) and (3.90), the real part of
(3.86) yields

m 2 ByE, @bl 2 < Cllgr. g2)ll 2 + CVell By qo, aqo)ll 2 + Call(g, W)l 2.
(3.91)

Moreover, by (3.88) and (3.91), we obtain

Idive (¢, Yl g1 = ClIAyE, aé)li2 + Cligoll g
S Cli(q1, g2z + Cligol g1 + Call(@. ¥)ll2. (3.92)

Putting the bound (3.74) on ||(¢, ¥)]| ;2 into (3.91) and (3.92) yields the estimate

. - 1 -
Idive (6, ¥)ll g1 +m 2 1OyE, @)l 2 < C(1 + Tme) 1om '90. 91, 92112
+ C(1+ V) llgoll 1
<

¢ -1
Tmelm g0 a1, @)l 2 + ol 1

Hence, (3.76) holds.
Finally, we derive the estimate on || (dyw, aw)||;2. By taking inner products of
(3.84) and (3.85) with dy® and ia® respectively then using the fact that

o o0
/ (iaDiyw + icwdyD)dY = / (iaédyw + dy&iaw)dY =0,
0 0
we obtain

o0
Vel (yw, aw)ll3 =/ (g1 + Ve UE)dyd + qoicodY
0

+ /OO ia(Usg —c¢) (poyw + Yiaw)dY
0

= C(Iq1, @)l 2 + Veléll 2 +all@, ¥)li2) 1@y w, o)l 2,

which implies

C
Qyw, aw)llz2 < —=I(q1, 92)I2 + Cnll(€, ¢, V)l 2

NG
Cn 1

S —— (1 +Imo)|[(m™ qo.q1,92)l 12
alme
Cn _

< l(m™"q0. q1. 2) .2 (3.93)

alme
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By combining this with the bound (3.76) on ||divy (¢, ¥)|| g1 and recalling (3.83),
we have

(A, Aa¥) | = Cll(Oyw, aw)z2 + Clidiva (@, ¥)ll g1

Cn
< — (1 -1 C
= e (1+ &) Im™"q0, 1. 92) |l 12 + Cligoll g
< Cn 1
S ——|[(m™ g0, 491, 92) 2 + Cligoll g1,
almce

which is (3.77). The uniqueness of solution follows from the a priori bounds (3.74)—
(3.77).

As for the construction of solution, we introduce a parameter n € [0, 1] and
study a sequence of auxiliary problems L , (§", ¢", ¥") = (qo, q1, g2) as follows:

ian(Us — 0)&" + dive (@7, ¥") = qo.
VeAgp" + nhia/edivg (@7, Y1) — ian(Us — )" — (lam ™2 + n/c02Us)E" = qi,
VEDY + nii/edydive (97, ¥T) — ian(Us — o)y — m™2dyE" = g,

9" ly=0 = ¥"y—0 =0.
(3.94)

When 1 = 0, (3.94) reduces to the classical Stokes system for incompressible
flow:

dive (#°, ¥°) = g0, VeAad? —iam 2" = g1, Ve ¥' — m2ayE" = g,
dy°ly—o0 = ¥ ly=0 = 0.

It is standard to show the existence and uniqueness of solution (£ 0.¢% v9 e
H'(R}) x H*(R4)? for any (g0, g1, g2) € H'(R}) x L*(R4)%. Moreover, by
repeating previous energy estimates to (3.94) and slightly modifying the proof of
bounds (3.82), (3.91), (3.92) and (3.93), one can deduce the following estimates

on (§7, ¢", Y)
1 1
1@y ", g™z + 1@y v a2 < Ce™4[[(m™ €7, ¢", ¥,

1
lm ™" q0. g1, g2) | 2.
m 2 @yE", &Ml 2 + [1dive (@, ¥ | < Cllgr, g2)ll 2
+ Cligoll g1 + Call(@", ¥l 2,

C
@y ", a2 = g1, a2l
+Cnl(m™'E, ", Y| 2,

where w" = dy¢" — iay” and the constant C > 0 does not depend on 7. Putting
above inequalities together yields the following uniform-in-7 estimate

IE g1 + 1@, ¥z < Cle, ) (m ™" q0, g1, 92)lI 12 + Cle, ) llgoll 1
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where the constant C (e, @) may depend on ¢ and «, but not on 1 € [0, 1]. Thus
the existence of solution to (3.72) as well as its analytic dependence on ¢ can be
established by the same bootstrap argument as in Lemma 3.5. By uniqueness, the
solution obtained satisfies the bounds (3.74)—(3.77). And this completes the proof
of the proposition. 0O

3.3. Quasi-Compressible-Stokes Iteration

>
~
®

In this subsection, we will construct a solution & = (g, u, v) to the linearized
system (3.1) via an iteration scheme based on the solutions to quasi-compressible
and Stokes approximations given in Propositions 3.7 and 3.9.

We first consider the case when source term (fy, f,) € L*(R;)?. At zeroth
step, we define éo = (&0, ¢0, Y¥o) as the solution to Stokes approximate system

LS(éOv ¢09 WO) = (07 fus fv)s (395)

which yields an error

o £ L (&0, po, Vo) — Lo (&, ¢0, ¥0) = (0, —=dy Uy, 0) .

Because of the regularizing effect of solution operator to_Stokes approximation
L, this error has higher regularity and fast decay so that &y € Hl% (R4). We can
then eliminate it by considering (o1, 41, v1) as the solution to quasi-compressible
approximation

Lo(o1,u1,01) = —&. (3.96)
Then we have
L(o1,u1,01) — Lo(o1,u1,01) = Eg(01, u1, v1), (3.97)

where the error operator E¢ is defined in (1.15). According to Proposition 3.7,
the solution (o1, uy, v1) is in H2(R+)3. Thus the error term Eg (01, U1, 1) is in
LZ(R+). This allows us to correct this error by using the solution (&1, ¢1, Y1) to
the Stokes approximate system again:

Ls(&1, ¢1, Y1) = —Eg(o1,u1,01) (3.98)

Now we set E1 = (01, u1, v1) + (&1, ¢1, Y1) as the approximate solution as the
first step, which together with E( generates an error term

& L L(Eo+ E1) — (0, fu, fr) = 0, =Yy Us, 0).

Now we can iterate the above process. Given the approximate solution Z; as well
as the error

& = (0, —y,8y Uy, 0)

in the j-th (j = 1) step, we define the j + 1-order approximate solution 2 j+1as

o

j+1 = @1, i1, 0j401) + Ejrt, @it ¥jt1),
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where (041,141, b;41) is the solution to quasi-compressible system

Lo(@j+1,uj+1,0j4+1) = =&, (3.99)

and (§j41, ¢j+1, ¥j+1) solves the Stokes approximate system

LsEjr1,0j11,¥j11) = —Eg(0j+1, Ujt1,941). (3.100)
Observe that for each positive integer N 2 0, it holds that

N
LD &) | =0 fu. fo) +En.

j=0
where the error term in N ;th step is é N = (0, =¥y 0y Uy, 0). Therefore, at this
point, formally the series E = Z?io E; gives a solution to the original system
3.1).

If in addition f,, fy, € Hl(R+) and |2 (fy, fv)”Li < 00 where operator €2 is

defined in (3.2), then we introduce (g, 1o, v9) € H 2(R+)3 as the solution to the
quasi-compressible system

L g(00, uo, v0) = (0, fu, fu), (3.101)

which yields an error term
E_1 = L(00, 1, v9) — Lo(00, 10, v0)

= (0, —VeA[(Uy — 0)oo] + Miay/edive (ug, bo)

— Ved3Uy00, A/2dydivg (1o, Uo))
= E (00, ug, v0)- (3.102)

The new error term &_; is in L>(R;)3. So we can take T = (p, 1, v) as the
solution to original linear system (3.1) with inhomogeneous source term —&_1,
that is I(?) = —é_l. Then it is clear that & = (00, up, Vo) + Y defines a solution
to (3.1).

The above iteration can be rigorously justified by proving the convergence of
iteration that is given in Proposition 3.1.

Proof of Proposition 3.1. Recall the bounds on the parameters |c| and n in (2.43).

We can take 0 < ¢ < 1 suitably small such that the following bounds hold for any

ce Dy:

el < min{ya, ys), nIme 2 ™% = max{2y; ", 257"), Jel2Ime 2 78 2 297",
(3.103)

Here the constants y4 and ys are given in Proposition 3.7 and 3.9 respectively.
Thus, we have Dy C X N Xy, where X and X are resolvent sets of Ly and
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Lg, which are defined in (3.21) and (3.73) respectively. From (3.99), we know that
(Qj+1,uj+1, vj41)is the solution to quasi-compressible approximation (3.10) with
inhomogeneous source term s1,j+1 = ¥;dy Uy, 52, j+1 = 0. Then we have

i _ i i
Q51,152,541 =~y (A7 Uy ) = —=w ™y + AT oy Usdy g

To eliminate the singular factor a1, we use the fact that dy Y =dive (¢, ¥j) —
iag;, the two bounds given in (1.9), (3.20) and Hardy inequality to obtain

1 _1 _
1905141, 52,40z, S — P72 [l Yl Y 9512
I 5 1
+ —OFUs| ™20y Uil oy sl .2

1 L.
S allawlfjllm S alldlva(dy, Uilllzz + 119l 2.

(3.104)
Similarly, we get
Istjtillze S YOy Uslizoe 1Y " il 2 S N0yl 2
S dive (@), vz + alldjllg2. (3.105)
Idive (s1,j+1, 52, j+ D2 S @llsijrilize S @lldiva (@, ¥)llz2 + o161 2.
(3.106)

Thus, by applying bounds given in (3.59) and (3.60) in Proposition 3.7 to (041,
Ujy1,0j41) and using (3.104)—(3.106), we obtain

_2 “1ya:
lwjsillgr + 1m0 41, 04Dl g2 + o dive (W41, 041 | g1
1
-1
S m||9(51,j+1, s2,j+0 02 +o (s jrilize +allsz, j1llz2)

+ [1dive (s1, 41, 52, j+1)1 12

1
< (1 +a? + E) (" Ndiva @y, )l 22 + 155112 )

1 -_— .
S Tme (" Idiva @), w2 + gyl (3.107)
and
:
n p—
97 j410z2 £ == IRt 152,50l e s jallzz Fellsa el 2)
(Imc)2

+ [1dive (s1, j+1, 82, j+1) 1 12

1
S <l+a2+ i 1)(a‘||diva(¢>,-,w,-)||Lz+||¢,-||Lz)

S —— (o« diva @y vl + 1g511.2) (3.108)
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Here we have also used o € (0, 1).
Next according to (3.100), we solve (§j41, ¢j+1, ¥j+1) from the Stokes ap-
proximation (3.72) with inhomogeneous source term qo, j+1 = 0,
q1.j+1 = VeA[(Us — 0)gjt1] — Aeiadivy (ujs1, vj41) + VedgUsoj41,
@2, j+1 = —A/edydive (U1, 0j41).

By (3.107), we have

g1, 1. g2, j+1ll 2 S Ve (loj+1ll g2 + I1dive (g1, 040 )1 1)
) 1
< Ve (Im 20 sl + o diva (1, 0740 111 )

< Ve

<2 (@ dive (@ Yl +9l2) . (3109)

Then by applying (3.74)—(3.77) in Proposition 3.9 to (§j+1, ¢j+1, ¥j+1), using
(3.109) and @ = n./¢, we can deduce that

-1
m ™" &jr1. @1, Vit D 2

S (" Ndiva @y, ¥l 22 + 85122 ) (3.110)

oM dive (@1 YDl gt + o lm 2oy E 2
1 —_ .

S i (" diva (@, )l 22 + b5z ) G.111)

@y @j+1, 0y ¥jr)l L2
1
< (o diva (@5, vl 2 + 11,2 ) (3.112)

n?(Imc)2
1@Fdj+1. 05 ¥+l 2

s (Imc)? (a_ll|diva(¢jv Uilz + 19; ||L2> . (3.113)

Set

E;Z om0, 2+ Idive (), Yl gr + o m™2ayE 2,
j=0,1,2---.

By the estimates (3.110) and (3.111), we have

(" Idiva @y vl + 15112 )

E .
J+l n(Imc)?

C
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Recall (2.43) for the bounds on ¢ and n when a =K 8% and ¢ € Dy. By taking
g3 € (0, 1) suitably small so that TIm? = C83 < % for any ¢ € (0, €3), we can

deduce from (3.114) that

(

E; < — ) Ey < CE). 115
Z,_Z(2> 0 < CEop (3.115)

Furtherrnore by using the bounds obtained in (3.107), (3.108), (3.112)—(3.115) and
< 1 for any ¢ € Dy, we get

3 ~
n2 (Imc)2
Z||<ay¢,,ayw,)|uz< Ej < E, (3.116)
j=I n2(Imc)2 j=
o0
;Il(ay@,ayw,)ng i c)2 2:: (1mc)2E°’ (3.117)

o0 o
D lujlg + Ym0 o) g2 + o dive (uj, 0))
J

1 [ 1
< — E; | <—E,, 3.118
~ Imc Z 71~ Ime 0 ( )
J=0

n? 0 3

n
Zuayu,an < YEj| < — Ey. (3.119)

(Ime)2 \ ;5 (Imc)2

In VieW_'Of (3.115)—(3.119), we have justified the convergence of E = (p,u,v) =
Y520 Ej in H'(Ry) x H?(R4)?. This gives the existence of solution. Moreover,
Recall (3.95). By applying (3.74)-(3.77) to éo withgo =0,q1 = f, and g2 = f,
we derive the following estimates:

1
Eo S —— 1 (fus fo)ll 2, (3.120)
alme
1
1@y o, Iy o)l 2 S L]”(fua Jollg2, (3.121)
a(Imc)2

133 b0, 33 Vo)l 12 < ﬁum, ol (3.122)
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By summarizing the estimates (3.115)—(3.122), we have
o0 o0

Hem ™ oo )2 S Y Mm ™ g ¢ vl + D m™ oj.uj. 0.2
Jj=0 j=1

1 1
(1 + —) Eo S Wll(ﬁu Jollz2. (3.123)

Imc

o o0
lm ™20y pll 12 + lldive (w, V)l S D Ej+ Y lm ™ *oyo;l
j=0 j=1

o0
+ > ldive (). 0 ) 1

j=1

vt~V By — I Cfus SOl (3.124)
Ime ' Ime) °~ ame)2 /e T '

o0 o0
1@y, dyv)llz2 S 9y o, dyvoll 2 + D 19y, dy¥rjllze + Y 1@ya;, dy o)l

j=1 j=1
n? 1
< ||<fu,fv>||Lz+<1+—> Eo
a(Ime)? I
ni nt
< N —— | 1 Pl S —— 1 fas £l 2.
a(Imce)2 n2(Imc)2 a(Imc)2
(3.125)
and
107w, 33012 S I1@F b, 30 2 + Y 1@76;, 95912
j=1
+ ) 1@y, 9302
=1
] 1 n%
S o s fll + +—— | E
S s )2 ((Imc)2 amc)é> 0
< n
~ almc (1 + n(Imc)? " né(Imc)%) 1 7o)l
n
S —— 1 (fus f)ll 2. (3.126)
almce

Putting (3.123)—(3.126) together yields the estimates (3.3)—(3.6). The analytic de-
pendence on ¢ of the solution (p, u, v) follows from the uniformly convergence.
Therefore, the proof of the first part of Proposition 3.1 is completed.

Now we assume that f,,, f, € H'(Ry) and ||Q(fy, fv)||le“ < 00. As dis-
cussed in the formal presentation of the iteration scheme, we can decompose the
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solution (p, u, v) into (p,u,v) = (go.u0.v0) + T = (0o, o, vg) + (5. i, D),
where (9g, ug, vp) is the s_glution to (3.101) that generates an error §_1 defined in
(3.102), and Y solves L (T) = —&_1. By (3.59) and (3.60) in Proposition 3.7, we
have

2 1y
lwoll g1 =+ [ (m =00, Vo) 2 + @ [|dive (4o, V0) || ;11

1 1 .
S Tme 12(fus Sz + = full + 1 foll 22 + 1dive (fu, fo)llz2,
mc o

(3.127)
and
: 1
n .
[ERTPERS 12 Cfus Sl + = full + 1 foll 2 + ldive (fu, fo)llz2-
(Imc)2 o
(3.128)
Then we can estimate the L?-bound of the error é,l by
IE-1ll.2 S Ve (looll 2 + Idive (o, v0) 1 1) - (3.129)

By (3.129), applying (3.3)—(3.6) to Y= (p, u, v) leads to

1~ o~ o~
l(m™ p, i, V)|l 2 S

N Wllg—lllL2

1 .
S (Ime)? (llooll g2 + lldive (uo, ©o) [l 1) »
(3.130)

U o 1 -
lm =20y 5l 12 + IIdive (i, D)2 S —— 118112

~ a(Imc)?
1 .
S (ime)? (lleoll g2 + lldive (uo, v0) [l g11) »
(3.131)
%
Lo - n o
@yi, dy )l 2 S —— 161112
a(Imce)2
1 .
< —— (lleoll g2 + lldive (w0, ©0) [l 411) -
n2(Imc)2

(3.132)

n -
0201, 20 [l,2 < ——1E_11l,2
[[(@yu, oy V)|l Nalmcll il

1 .
— (lleoll g2 + Ildiva (u, vo) [l 1) . (3.133)

A
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By summarizing the estimates (3.127), (3.128), (3.130)—(3.133) and using the fact
that n(Imc)? > land n% (Imc)% = 1forc € Dy, we derive the following estimates:

_ 1 1 .
lom ™" o, w, V)l S EIIQ(ﬁ,, Jollz + allfull + 1 foll 2 + ldive (fus foll 22,

1
n2 1
102u, 02v)[l 2 < 1 (1+ : )IIQ(fu,fv)lle

(Imc)2 n2 (Imc)

1
+— (_”fu” + 1 follz2 + ldive (fu, fv)||L2>

Imc
1
< 1QU Al
(Imc)2
1 .
+ Ime (a”fu” + I follg2 + ||d1va(fu,fv)||L2>.

Thus, the improved estimates (3.7) and (3.8) are proved. And this completes the
proof of the proposition. O

4. Proof of Theorem 1.1

Finally, in this section, we prove Theorem 1.1. We construct the solution to
linearized system (1.3) with no-slip boundary condition (1.4) in the following form

o

(Y;¢) = Eapp(Y; ) — Bm(Y; ¢) — Bre(Y; 0), (4.1)

Here uapp is the approx1mate solution obtained in (2.32) which satisfies (2.44),
Esm = (Psm» Usm, Vsm) and Ere = (Ore, Ure, Vre) SOlve the remainder system

I(ésm) = (0, Eu,sms Ev,sm)a Vsmly=0 =0,
and

L(Ere) = (0,0, Eyre), Vrely=0 =0,

respectively. By Proposition 2.3 and 3.1,ﬁb0th ésm and ére are well-defined. More-
over, it is straightforward to check that E = (p, u, v) satisfies

L(E) =0, vly=0 =0.
To recover the no-slip boundary condition on the tangential component, we

introduce the mapping

F Dy — C, F(c) = u(; c) = app(c) — usm(0; ¢) — ure (05 ©).
On one hand, from Proposition 2.2, F,pp(c) is analytic and has a unique zero
point in Dg. On the other hand, according to Remark 3.2 (a), both Msm(Q; ¢) and
uge(0; ¢) are analytic in Dg. Then by applying estimates (3.3), (3.5) to Egy, with
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(fu, fv) = (Eusm, Ey sm), using the bound in (2.49) and the Sobolev inequality,
we deduce that

1 1
s (05 )| = Nlusm (- 5 Ol 10y usm (- 5 ) 7
1

[~

Cnd <
- 35 ”(Eu,smv Ev,sm)”L2 =

a(Imc)# a(Imc)

1
Cniel

[IA
Hlaa| N

Here we have used (2.43) in the last inequality. For u..(0; ¢), we use the bounds
given in (3.7) for |[ure || 1 With (fy, fu) = (0, Ey re) and (2.48) to get that

C
ure(0; ©)| = Clluge(- ; Ol < m”Ev,re”Li + 1 Eyrell g

1
§C<1+—>5136 < Ceo. (4.3)
Imc

Thus, by recalling the lower bound of | F,pp(c)| on the circle d Dy in (2.36), and by
using the bounds in (4.2) and (4.3), it holds that

L

|F(€) = Fapp(©)| = |utre(0; €)| + |utsm (05 ¢)] < Cet6 < —K 7

A
N

1
§|-7app(c)|, Ve € Dy,

by taking ¢ € (0, 1) suitably small. Therefore, by Rouché’s Theorem, & (c) and
Happ(c) have the same number of zero points in Dy. This justifies the existence of
a unique ¢ € Dy such that é(Y; c) defined in (4.1) solves the linear equation (1.3)
with the no-slip boundary condition (1.4). The proof of Theorem 1.1 is completed.
]
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5. Appendix

Recall (3.14) the definition of operator A.

Lemma 5.1. (The operator A~!) Let m € (0, 1) and o € (0, 1). For small |c| < 1,
if|hll;2 < oo, there exists a unique solution € H*[R)N HO1 ROtoAW)=h
in Ry, ¥|y=o = 0 which satisfies the following estimates

193 ¥ ll2 + 1@y ¥, @)l 2 S minfer il g2, 11+ Ykl o). (G.D

Moreover; the solution mapping A~ (- ;¢) : L>(Ry) — H*(R;) N HO1 Ry) is
analytic in c.

Proof. We first establish the a priori estimate (5. 1_). Denote (-, -) the standard inner
product in L?(R ). Taking inner product with — in the equation A () = h gives
that

/Ooo Aoy P + &Py PdY = (h, =), (5.2)
Note that
A =1 = m?UH T+ o)cl. (5.3)
Then for suitably small |c]|, the real part of (5.2) yields
oy ¥ li72 + ?ll¥ll72 < CIRe(h, )| < Clihll2ll¥ ]2 < Ca™?|A]7.,

which gives H !-estimate of . The estimate of 8)%1# can be obtained by using the
equation to have

1959 2 S A oy Al l|Oy ¥ ll 2 + @ [ Al 2 + | AR 2
S @y, ez + k2 S @Al . (54)

If in addition, (1+Y)h € L*>(R,), we can obtain |(h, ¥)| < [|[Y 1| 2| YAl 2
Clloy ¥ |l 211Y k|| ;2 by using the Hardy inequality for the term Y ~!4. Thus real part
of (5.2) yields the H!-estimate

1@y v, a¥)ll 2 < ClIIYhA] 2. (5.5)

The estimate on 8%,1# then follows from the equation and H '-estimate (5.5) similar
to the estimation in (5.4). Hence the estimate (5.1) holds. The uniqueness of solution
follows from the a priori estimate (5.1).

Set

Aot HXR) OV HRy) = LARy), Ao) = dy [(1 = mUD) ™ oy ] — oy

For m € (0, 1), the operator Ag is clearly uniformly elliptic and invertible in
L?*(R,). Then by (5.3), the existence and analytic dependence on ¢ of A~ follow
from the standard perturbative argument. Hence, we omit the details for brevity.
The proof of the lemma is completed. O
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