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Abstract

We introduce the notion of entropy solutions (e.s.) to a conservation law with
an arbitrary jump continuous flux vector and prove the existence of the largest and
the smallest e.s. to the Cauchy problem. The monotonicity and stability properties
of these solutions are also established. In the case of a periodic initial function, we
derive the uniqueness of e.s. Generally, the uniqueness property can be violated,
which is confirmedby an example. Finally,we prove that in the case of a single space
variable a weak limit of a sequence of e.s. is an e.s. as well (under the requirement
of the spatial periodicity of the limit Young measure).

1. Introduction

In the half-space � = R+ × R
n , where R+ = (0,+∞), we consider the

conservation law

ut + divx ϕ(u) = 0 (1.1)

with a jump continuous (frequently called regulated) flux vector ϕ(u) = (ϕ1(u),

. . . , ϕn(u)). This means that at each point u∗ ∈ R there exist one-sided limits
lim

u→u∗±
ϕ(u)

.= ϕ(u∗±). For example, if the components ϕi (u), i = 1, . . . , n, are

BV-functions then the vector ϕ(u) is jump continuous. Equations of such a type
arise in numerous physical applications, for example in phase transitions [5], in
elasticity [23], in models of material flow on conveyor belts [8] and in many others.
In the one-dimensional case n = 1 Cauchy problem for Eq. (1.1) was first studied
in [7] by the wave front tracking method. In this paper the author constructed a
semigroup of weak solutions, however no entropy conditions were formulated.
In the present study we will follow another approach, first developed by Carrillo
[4] for an initial boundary value problem in a bounded domain; it is based on
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a relevant continuous parametrization of the curve (u, ϕ(u)), which allows us to
reduce Eq. (1.1) to the well established case of conservation laws with continuous
flux vector. The same approach was also exploited in papers [2,3,9] for the Cauchy
problem. In these papers the authors supposed that u(t, ·) ∈ L∞(Rn)∩ L1(Rn) and
that the flux vector is Hölder continuous at zero with the exponent α � (n − 1)/n.
In the present paper we study the general case when u ∈ L∞(�) and when ϕ(u) is
an arbitrary jump continuous flux vector. Moreover, we also take into account the
values ϕ(u∗) at discontinuity points, which may be different from ϕ(u∗±). In this
general situation the uniqueness of e.s. may fail and it is useful to select e.s. with
additional properties. We will prove the existence of the largest and the smallest
e.s. This allows us to prove the uniqueness in the case of periodic initial data. In
the one-dimensional situation we also establish that, despite of nonlinearity, a weak
limit of e.s. is an e.s. as well. This extends results [19] to the case of discontinuous
flux.

It is known that the set

D = { u∗ ∈ R | |ϕ(u∗+) − ϕ(u∗)| + |ϕ(u∗) − ϕ(u∗−)| > 0 }
of discontinuity points of the vector ϕ(u) is at most countable (and may be an
arbitrary at most countable set in R). We use above and will use in the sequel the
notation | · | for Euclidean finite-dimensional norms (including the absolute value
in one-dimensional case). We will treat ϕ(u) as a multi-valued vector function with
values ϕ̄(u) = [ϕ(u−), ϕ(u)] ∪ [ϕ(u), ϕ(u+)] being a union of two segments in
R
n . This set is different from a singleton only at discontinuity points u∗ ∈ D. Let

us demonstrate that the graph of ϕ̄(u) admits a continuous parametrization

u = b(v), b ∈ C(R), ϕ̄(u) � g(v), g ∈ C(R,Rn), (1.2)

such that the function b(v) is non-strictly increasing and coercive, i.e., b(v) → ±∞
as v → ±∞, and that on each segment b−1(u∗), u∗ ∈ D, g(v) is the concate-
nation of (possibly non-strictly) monotone parametrizations of the linear paths
[ϕ(u∗−), ϕ(u∗)] and [ϕ(u∗), ϕ(u+)] (this means that the distance from a point
of such path to its starting point increases). We call parametrizations (1.2) with
the indicated properties admissible. The existence of an admissible parametriza-
tion (1.2) was shown in paper [2], but only in the case when the set D admits
monotone numeration D = {uk}, k ∈ N, uk+1 > uk ∀k ∈ N, i.e., when D is a
completely ordered subset of R. In the following lemma we construct the required
parametrization for the general case:

Lemma 1. There exists an admissible parametrization (1.2) of the graph of ϕ̄.

Proof. We consider the more complicated case when D is infinite (in the case
of finite D we only need to replace the set N in the proof below by its finite
subset). We numerate set D: D = {uk}k∈N and choose positive numbers hk such

that
∞∑

k=1

hk = c < ∞ (in particular, we can take hk = 2−k). We define the finite

discrete measure μ(u) =
∞∑

k=1

hkδ(u − uk), where by δ(u − uk) we denote the
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Dirac mass at the point uk . Then we introduce the strictly increasing function
α(u) = u + μ((−∞, u)) with jumps at points in D. Notice that

u � α(u) � u + c; α(u2) − α(u1) � u2 − u1 ∀u1, u2 ∈ R, u2 > u1. (1.3)

The function b(v) is defined as the inverse to the function α(u) considered as maxi-
mal monotone graph, that is, the value b(v) is such u ∈ R that v ∈ [α(u−), α(u+)].
It follows from (1.3) that v − c � b(v) � v. If v1 < v2 then denoting ui = b(vi ),
i = 1, 2, we have v1 � α(u1+) � α(u2−) � v2 whenever u1 < u2. This re-
lation implies that v2 − v1 � α(u2−) − α(u1+) � u2 − u1 = b(v2) − b(v1).
Hence, b(v2) − b(v1) � v2 − v1. In the case u1 = u2 we see that b(v2) = b(v1)
and the inequality b(v2) − b(v1) � v2 − v1 is evident. The obtained inequality
can be written in the form |b(v2) − b(v1)| � |v2 − v1|. We find that b(v) is Lip-
schitz continuous. Notice also that b(v) takes values uk ∈ D on the segments
[ak, bk] = [α(uk−), α(uk+)] of length hk > 0. To define the vector g(v), we have
to set g(v) = ϕ(b(v)) whenever b(v) /∈ D. If b(v) = uk ⇔ v ∈ [ak, bk] we
introduce the constants

l±k = |ϕ(uk±) − ϕ(uk)|, ck = (l+k ak + l−k bk)/(l
+
k + l−k ) ∈ [ak, bk]

and set

g(v) =

⎧
⎪⎨

⎪⎩

(ck − v)ϕ(uk−) + (v − ak)ϕ(uk)

ck − ak
, ak � v � ck, ck > ak,

(bk − v)ϕ(uk) + (v − ck)ϕ(uk+)

bk − ck
, ck � v � bk, bk > ck,

(1.4)

so that g(v) is a piecewise linear function on [ak, bk]. Let us show that the vector
g(v) is continuous on R. We verify that g(v) is continuous at each point v0 ∈ R.
It is clear if v0 ∈ (ak, bk) for some k ∈ N, in view of (1.4). Further, suppose that
v0 /∈ [ak, bk] for all k ∈ N. This means that u0 = b(v0) /∈ D and ϕ(u) is continuous
at u0. Therefore, for every ε > 0, there exists such a δ > 0 that |ϕ(u)−ϕ(u0)| < ε

in the interval |u − u0| < 2δ. This implies that

max(|ϕ(u) − ϕ(u0)|, |ϕ(u−) − ϕ(u0)|, |ϕ(u+) − ϕ(u0)|)
� ε ∀u ∈ R, |u − u0| < δ. (1.5)

If |v − v0| < δ then |b(v) − u0| � |v − v0| < δ and taking into account (1.4) and
(1.5) we conclude

|g(v) − g(v0)| � max(|ϕ(b(v)) − ϕ(u0)|, |ϕ(b(v)−)

−ϕ(u0)|, |ϕ(b(v)+) − ϕ(u0)|) � ε.

Since ε > 0 is arbitrary, this means continuity of g(v) at point v0. By the similar
reasons we prove that

lim
v→ak−

g(v) = ϕ(uk−) = g(ak), lim
v→bk+

g(v) = ϕ(uk+) = g(bk) ∀k ∈ N.
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Since, in view of (1.4),

lim
v→ak+

g(v) = g(ak), lim
v→bk−

g(v) = g(bk),

we find that the vector g(v) is continuous at the remaining points v = ak, bk , k ∈ N.
The proof is complete. ��
Remark 1. Notice that the parametrization described in Lemma 1, which will be re-
ferred as standard, isminimal in the sense that for any other admissible parametriza-
tion u = b1(w), ϕ̄(u) � g1(w) there exists a continuous nondecreasing surjection
V (w) such that b1(w) = b(V (w)), g1(w) = g(V (w)). In fact, V (w) is the unique
value of the standard parameter v corresponding to the point (b1(w), g1(w)) of the
graph of ϕ̄ whenever this parameter is uniquely determined. Otherwise, necessarily
b1(w) = uk ∈ D, both segments I− = [ϕ(uk−), ϕ(uk)], I+ = [ϕ(uk+), ϕ(uk)]
are nontrivial, and one of them contains the other. We choose the segment [α, β] =
b−1
1 (uk) and a parameter w = γ such that g1(γ ) = ϕ(uk). Since, as follows from
the continuity of g1, g1(α) = ϕ(uk−), g1(β) = ϕ(uk+), then α < γ < β. We set
V (w) = v− � ck , the smaller value of standard parameter v corresponding to the
point (b1(w), g1(w)) if w ∈ [α, γ ], V (w) = v+ � ck , the larger value of standard
parameter v corresponding to the point (b1(w), g1(w)) if w ∈ [γ, β]. Notice that
v− = v+ = ck at the point γ , which readily implies that V (w) is continuous on
[α, β] as required. Since g1(w) forms increasing parametrizations of the segments
I−, I+ when w ∈ [α, γ ], respectively when w ∈ [γ, β], we conclude that V (w) is
a nonstrictly increasing function. Evidently, the function V (w) takes all values of
the standard parameter v ∈ R, i.e., it is a surjection.

At least formally, after the change u = b(v), Eq. (1.1) reduces to the equation

b(v)t + divx g(v) = 0 (1.6)

with already continuous flux (b(v), g(v)) ∈ R
n+1.

Recall that an entropy solution (e.s.) of Eq. (1.6) is a function v = v(t, x) ∈
L∞(�) satisfying the Kruzhkov entropy condition: ∀k ∈ R

|b(v) − b(k)|t + divx [sign(v − k)(g(v) − g(k))] � 0 (1.7)

in the sense of distributions on� (inD′(�)). This means that for each test function
f = f (t, x) ∈ C1

0(�), f � 0
∫

�

[|b(v) − b(k)| ft + sign(v − k)(g(v) − g(k)) · ∇x f ]dtdx � 0. (1.8)

Taking k = ±‖v‖∞, we derive from (1.7) that b(v)t +divx g(v) = 0 inD′(�) and
e.s. v = v(t, x) of (1.6) is a weak solution of this equation. We study the Cauchy
problem for Eqs. (1.1), (1.6) with initial condition

u(0, x) = b(v)(0, x) = u0(x) ∈ L∞(Rn). (1.9)

This condition is understood in the sense of the relation

ess lim
t→0

u(t, ·) = u0 in L1
loc(R

n). (1.10)
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It is well known (cf. [18, Proposition 2]) that conditions (1.7), (1.10) can be written
in the form of single integral inequality similar to (1.8): for all k ∈ R and each
non-negative test function f = f (t, x) ∈ C1

0(�̄), where �̄ = [0,+∞) × R
n is

the closure of �,
∫

�

[|b(v) − b(k)| ft + sign(v − k)(g(v) − g(k)) · ∇x f ]dtdx

+
∫

Rn
|u0(x) − b(k)| f (0, x)dx � 0. (1.11)

Notice that any jump continuous function is Borel and locally bounded. Therefore,
ϕ(u) ∈ L∞(�) for all u = u(t, x) ∈ L∞(�), and we can define the notion of e.s.
of original problem (1.1), (1.9) by the standard Kruzhkov relation like (1.11)

∫

�

[|u − k| ft + sign(u − k)(ϕ(u) − ϕ(k)) · ∇x f ]dtdx

+
∫

Rn
|u0(x) − k| f (0, x)dx � 0 (1.12)

for all k ∈ R, f = f (t, x) ∈ C1
0(�̄), f � 0. But such e.s. may not exist, see

Example 2 below. For the correct definition we need multivalued extension of the
flux at discontinuity points and the described above reduction to thewell established
case of continuous flux.

In the sequel, we need the more general class of measure-valued solutions.
Recall (see [6,24,25]) that a measure-valued function (a Young measure) on � is
a weakly measurable map (t, x) → νt,x of � into the space Prob0(R) of proba-
bility Borel measures with compact support in R. The weak measurability of νt,x
means that for each continuous function p(v), the function (t, x) → 〈νt,x , p(v)〉 .=∫
p(v)dνt,x (v) is Lebesgue-measurable on �. We say that a measure-valued func-

tion νt,x is bounded if there exists such R > 0 that supp νt,x ⊂ [−R, R] for almost
all (t, x) ∈ �. We shall denote by ‖νt,x‖∞ the smallest of such R. Finally, we
say that measure-valued functions of the kind νt,x (v) = δ(v − v(t, x)), where
v(t, x) ∈ L∞(�) and δ(v − v∗) is the Dirac measure at a point v∗ ∈ R, are reg-
ular. We identify these measure-valued functions and the corresponding functions
v(t, x), so that there is a natural embedding L∞(�) ⊂ MV(�), where by MV(�)

we denote the set of bounded measure-valued functions on �. Measure-valued
functions naturally arise as weak limits of bounded sequences in L∞(�) in the
sense of the following theorem by L. Tartar [25].

Theorem 1. Let vk(t, x) ∈ L∞(�), k ∈ N, be a bounded sequence. Then there
exist a subsequence (we keep the notation vk(t, x) for this subsequence) and a
bounded measure valued function νt,x ∈ MV(�) such that

∀p(v) ∈ C(R) p(vk) ⇀
k→∞〈νt,x , p(v)〉 weakly- ∗ in L∞(�). (1.13)

Besides,νt,x is regular, i.e.,νt,x (v) = δ(v−v(t, x)) if andonly ifvk(t, x) →
k→∞ v(t, x)

in L1
loc(�) (strongly).
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More generally, the followingweak precompactness property holds for bounded
sequences of measure valued function, see for instance [16, Theorem 2]:

Theorem 2. Let νkt,x ∈ MV (�), k ∈ N, be a bounded sequence (this means that
the scalar sequence ‖νkt,x‖∞ is bounded). Then there exists a subsequence νkt,x (not
relabeled) weakly convergent to a bounded measure valued function νt,x ∈ MV(�)

in the sense of relation

∀p(v) ∈ C(R) 〈νkt,x , p(v)〉 ⇀
k→∞〈νt,x , p(v)〉 weakly-∗ in L∞(�). (1.14)

Obviously, in the case when the sequence νkt,x consists of regular functions vk ,
relation (1.14) reduces to (1.13). Remark that in Theorems 1, 2 the half-space �

may be replaced by arbitrary finite-dimensional domain �.
Recall (see [6,17,24]) that a measure valued e.s. of (1.6), (1.9) is a bounded

measure valued function νt,x ∈ MV(�), which satisfies the following averaged
variant of entropy relation (1.11): for all k ∈ R, f = f (t, x) ∈ C1

0(�̄), f � 0
∫

�

[∫
|b(v) − b(k)|dνt,x (v) ft

+
∫

sign(v − k)(g(v) − g(k))dνt,x (v) · ∇x f

]
dtdx

+
∫

Rn
|u0(x) − b(k)| f (0, x)dx � 0. (1.15)

Now we are ready to define the notion of e.s. of original problem (1.1), (1.9).

Definition 1. (cf. [2]) A function u = u(t, x) ∈ L∞(�) is called an e.s. of problem
(1.1), (1.9) if there exists a measure valued e.s. νt,x (v) of (1.6), (1.9) such that the
push-forward measure b∗νt,x (u) coincides with the Dirac mass δ(u − u(t, x)) for
a.e. (t, x) ∈ �.

In view of the requirement b∗νt,x (u) = δ(u − u(t, x)) entropy relation (1.15)
can be written as

∫

�

[
|u − b(k)| ft +

∫
sign(v − k)(g(v) − g(k))dνt,x (v) · ∇x f

]
dtdx

+
∫

Rn
|u0(x) − b(k)| f (0, x)dx � 0. (1.16)

Remark 2. If u(t, x) is an e.s. of (1.1), (1.9), then u = −u(t, x) is an e.s. of the
problem

ut − divx ϕ(−u) = 0, u(0, x) = −u0(x) (1.17)

regarding the continuous parametrization u = −b(−v),−ϕ̄(−u) � −g(−v) of the
flux. In fact, let νt,x be a measure valued e.s. of (1.6), (1.9) such that b∗νt,x (u) =
δ(u − u(t, x)). Then the measure valued function ν̃t,x = l∗νt,x ∈ MV(�), where
l(v) = −v, is a measure valued e.s. of the problem (1.17). In fact, for each k ∈ R,

∫
| − b(−v) − (−b(−k))|d ν̃t,x (v) =

∫
|b(v) − b(−k)|dνt,x (v) = |u − b(−k)|,
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∫
sign(v − k)(−g(−v) − (−g(−k)))d ν̃t,x (v) =

∫
sign(v + k)(g(v) − g(−k))dνt,x (v),

| − u0(x) − (−b(−k))| = |u0(x) − b(−k)|,
and these equalities imply that, for every f = f (t, x) ∈ C1

0(�̄), f � 0,
∫

�

[∫
| − b(−v) − (−b(−k))|d ν̃t,x (v) ft

+
∫

sign(v − k)(−g(−v) − (−g(−k)))d ν̃t,x (v) · ∇x f

]
dtdx

+
∫

Rn
| − u0(x) − (−b(−k))| f (0, x)dx

=
∫

�

[∫
|b(v) − b(−k)|dνt,x (v) ft +

∫
sign(v + k)(g(v) − g(−k))dνt,x (v) · ∇x f

]
dtdx

+
∫

Rn
|u0(x) − b(−k)| f (0, x)dx � 0,

by the entropy relation (1.15) with k replaced by −k. Further more,

(−b(−·))∗ν̃t,x (u) = (−b)∗νt,x (u) = l∗δ(u − u(t, x)) = δ(u − (−u(t, x))).

We conclude that −u(t, x) satisfies all the requirement of Definition 1 for the
problem (1.6).

Remark 3. Thenotionof e.s. does not dependon the choice of admissible parametriza-
tion (1.2). In fact, let

u = b1(w), ϕ̄(u) � g1(w) (1.18)

be an admissible parametrization of ϕ̄(u), and u(t, x) be an e.s. of (1.1), (1.9)
corresponding to this parametrization. According to Definition 1, there exists a
measure valued e.s. ν̃t,x (w) of the problem

b1(w)t + divx g1(w) = 0, b1(w(0, x)) = u0(x) (1.19)

such that (b∗
1 ν̃t,x )(u) = δ(u − u(t, x)). In view of entropy relation (1.16) for each

k ∈ R and and all f = f (t, x) ∈ C1
0(�̄), f � 0

∫

�

[
|u − b1(k)| ft +

∫
sign(w − k)(g1(w) − g1(k))d ν̃t,x (w) · ∇x f

]
dtdx

+
∫

Rn
|u0(x) − b1(k)| f (0, x)dx � 0. (1.20)

Further more, by Remark 1 there exists a continuous nondecreasing surjection
v = V (w) such that

b1(w) = b(V (w)), g1(w) = g(V (w)),

where u = b(v), ϕ̄(u) � g(v) is the standard parametrization of the graph of ϕ̄

given in Lemma 1. Notice that by monotonicity of V

sign(w − k)(g1(w) − g1(k)) = sign(V (w) − V (k))(g(V (w)) − g(V (k)))
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and therefore relation (1.20) turns into
∫

�

[
|u − b(l)| ft +

∫
sign(v − l)(g(v) − g(l))dνt,x (v) · ∇x f

]
dtdx

+
∫

Rn
|u0(x) − b(l)| f (0, x)dx � 0, (1.21)

where νt,x (v) = (V ∗ν̃t,x )(v) is the push-forward measure and l = V (k). Observe
that

(b∗νt,x )(u) = (b(V )∗ν̃t,x )(u) = (b∗
1 ν̃t,x )(u) = δ(u − u(t, x)).

Since l = V (k) takes all real values, it follows from (1.21) that νt,x (v) is a measure
valued e.s. of (1.6), (1.9). According to Definition 1, u(t, x) is an e.s. of (1.1), (1.9)
corresponding to the standard parametrization.

Conversely, any such e.s. u(t, x) satisfies (b∗νt,x )(u) = δ(u − u(t, x)), where
νt,x (v) is ameasure valued e.s. of (1.6), (1.9). Since the functionV is a surjection,we
can find a Young measure ν̃t,x (w) on� such that νt,x (v) = (V ∗ν̃t,x )(v). In view of
equivalence of relations (1.20) and (1.21), we find that (1.20) holds, that is, ν̃t,x (w)

is ameasure valued e.s. of (1.19). Since (b∗
1 ν̃t,x )(u) = (b∗νt,x )(u) = δ(u−u(t, x)),

we find that u(t, x) is an e.s. corresponding to the admissible parametrization (1.18).

In [2] (also see [3,9]) the existence and uniqueness of e.s. were established
only in the case of integrable initial function u0 ∈ L1(Rn) and under assumption of
Hölder continuity of the flux vector ϕ(u) at zero with the exponent α � (n− 1)/n.
Usingmethods of [11,12], one can prove the uniqueness under aweaker anisotropic
conditions on the continuity moduli of the flux functions at a point c when u0 ∈
c+ L1(Rn)∩ L∞(Rn). In a general situation the uniqueness may fail and our main
result on existence of the largest and the smallest e.s. of (1.1), (1.9) seems to be
useful.

The uniqueness of e.s. follows from our result in the particular case when initial
function u0 is periodic. This extends results of [18]. In the case n = 1 we also prove
the weak completeness of the set of spatially periodic e.s., generalizing results of
[19] to the case of discontinuous flux.

In the next section we establish some important properties of e.s. including
maximum/minimum and comparison principles.

2. Some Properties of e.s.

We denote z± = max(±z, 0), sign+ z = (sign z)+, sign− z = − sign+(−z)
(so that sign± z = d

dz z
±).

Proposition 1. If u = u(t, x) is an e.s. of (1.1), (1.9), c ∈ R, then for a.e. t > 0
∫

Rn
(u(t, x) − c)±dx �

∫

Rn
(u0(x) − c)±dx

(these integrals are allowed to be infinite).
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Proof. Without loss of generality we will suppose that
∫
Rn (u0(x) − c)±dx < ∞,

otherwise the required estimate is evident. It follows from (1.16) with k = ±M ,
M � ‖νt,x‖∞, that, for each f = f (t, x) ∈ C1

0(�̄),

∫

�

[
u ft +

∫
g(v)dνt,x (v) · ∇x f

]
dtdx +

∫

Rn
u0(x) f (0, x)dx = 0. (2.1)

Taking into account that, for every constant k ∈ R,
∫

�

[b(k) ft + g(k) · ∇x f ]dtdx +
∫

Rn
b(k) f (0, x)dx = 0,

we can rewrite the previous identity in the form

∫

�

[
(u − b(k)) ft +

∫
(g(v) − g(k))dνt,x (v) · ∇x f

]
dtdx+

∫

Rn
(u0(x) − b(k)) f (0, x)dx = 0.

Putting this equality together with entropy inequality (1.16) and taking into account
that |z| + z = 2z+, sign z + 1 = 2 sign+ z, we arrive at the relation

∫

�

[
(u − b(k))+ ft +

∫
sign+(v − k)(g(v) − g(k))dνt,x (v) · ∇x f

]
dtdx

+
∫

Rn
(u0(x) − b(k))+ f (0, x)dx � 0. (2.2)

By coercivity condition there is such d ∈ R that c = b(d). Let m � n, δ >

0, β(s) = min((s/δ)+, 1)m . Integrating the inequality (2.2) over the measure
β ′(b(k) − c)db(k), we arrive at the relation

∫

�

[
η(u − c) ft +

∫
q(v)dνt,x (v) · ∇x f

]
dtdx +

∫

Rn
η(u0(x) − c) f (0, x)dx � 0, (2.3)

where

η(b(v) − c) =
∫ v

d
(b(v) − b(k))+β ′(b(k) − c)db(k) =

∫ v

d
β(b(k) − c)db(k) =

{
((b(v) − c)+)m+1/((m + 1)δm) , b(v) − c < δ,

b(v) − c − mδ/(m + 1) , b(v) − c � δ,

q(v) =
∫ v

d
sign+(v − k)(g(v) − g(k))β ′(b(k) − c)db(k).

In particular, if supp νt,x ⊂ [−M, M] a.e. on �, and C = 2 max
|v|�M+d

|g(v)| then
for all v ∈ [−M, M]

|q(v)| � C
∫ v

d
β ′(b(k) − c)db(k) = Cβ(b(v) − c),
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which implies that
∣∣∣∣
∫

q(v)dνt,x (v)

∣∣∣∣ � C
∫

β(b(v) − c)dνt,x (v) = Cβ(u − c). (2.4)

Now we fix ε > 0. Since β(s) = 1 for s > δ, the function γ (s)
.= β(s)

η(s) + ε
decreases on [δ,+∞). This implies that

max γ (s) = max
s∈[0,δ] γ (s) � max

s>0

(s/δ)m

δ(s/δ)m+1/(m + 1) + ε

= max
σ=s/δ>0

m + 1

δσ + (m + 1)εσ−m
.

By direct computations we find that

min
σ>0

(δσ + (m + 1)εσ−m) = δ(m + 1)

m

(
m(m + 1)ε

δ

) 1
m+1

.

Therefore,

γ (s) � m

δ

(
δ

m(m + 1)

) 1
m+1

ε− 1
m+1 .

This, together with estimate (2.4), implies that
∣∣∣∣
∫

q(v)dνt,x (v)

∣∣∣∣ � N (η(u − c) + ε), (2.5)

where

N = N (ε) = Cm

δ

(
δ

m(m + 1)

) 1
m+1

ε− 1
m+1 . (2.6)

Since
∫
�

ftdtdx + ∫
Rn f (0, x)dx = 0 we can write (2.3) in the form

∫

�

[
(η(u − c) + ε) ft +

∫
q(v)dνt,x (v) · ∇x f

]
dtdx

+
∫

Rn
(η(u0(x) − c) + ε) f (0, x)dx � 0. (2.7)

Let E be a set of t > 0 such that (t, x) is aLebesguepoint ofu(t, x) for almost all x ∈
R
n . It iswell-known (see for example [21, Lemma1.2]) that E is a set of fullmeasure

and t ∈ E is a common Lebesgue point of the functions t → ∫
Rn u(t, x)h(x)dx

for all h(x) ∈ L1(Rn). Since every Lebesgue point of a bounded function u is also
a Lebesgue point of p(u) for an arbitrary function p ∈ C(R), we may replace u
in the above property by p(u), and in particular by η(u − c) + ε. We choose a
function ω(s) ∈ C∞

0 (R) such that ω(s) � 0, suppω ⊂ [0, 1], ∫ ω(s)ds = 1, and
define the sequences ωr (s) = rω(rs), θr (s) = ∫ s

−∞ ωr (σ )dσ = ∫ rs
−∞ ω(σ)dσ ,

r ∈ N. Obviously, the sequence ωr (s) converges as r → ∞ to the Dirac δ-measure
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weakly inD′(R)while the sequence θr (s) converges to the Heaviside function θ(s)
pointwise and in L1

loc(R). Now we take the test function in the form

f = f (t, x) = hθr (t0 − t), h = ρ(N (t − t0) + |x | − R),

where ρ(σ) ∈ C∞(R) is a decreasing function such that ρ(σ) = 1 for σ � 0 and
ρ(σ) = 0 for σ � 1 (we can take ρ(σ) = 1− θ1(σ )), R > 0, and t0 ∈ E . Observe
that f = θr (t0 − t) in a vicinity |x | < R of the singular point x = 0 and therefore
f ∈ C∞(�̄), f � 0. Applying (2.7) to the test function f , we arrive at the relation

∫

Rn
(η(u0(x) − c) + ε)h(0, x)dx −

∫

�

(η(u − c) + ε)hωr (t0 − t)dtdx

+
∫

�

[
N (η(u(x) − c) + ε) +

∫
q(v)dνt,x (v) · x

|x |
]

× ρ′(N (t − t0) + |x | − R)θr (t0 − t)dtdx � 0 (2.8)

for sufficient large r ∈ N such that r t0 > 1. In view of (2.5) and the condition
ρ′(σ ) � 0, the last integral in (2.8) is non-positive and it follows that

∫

�

(η(u − c) + ε)hωr (t0 − t)dtdx �
∫

Rn
(η(u0(x) − c) + ε)h(0, x)dx .

Dropping ε in the left integral, we obtain the inequality
∫ ∞

0

(∫

Rn
η(u(t, x) − c)h(t, x)dx

)
ωr (t0 − t)dt �

∫

Rn
(η(u0(x) − c) + ε)h(0, x)dx .

Since t0 ∈ E is a Lebesgue point of the function t → ∫
Rn η(u(t, x) − c)h(t, x)dx ,

we can pass to the limit as r → ∞ in the above inequality, resulting in
∫

Rn
η(u(t0, x) − c)h(t0, x)dx �

∫

Rn
(η(u0(x) − c) + ε)h(0, x)dx .

Revealing this relation, we get
∫

Rn
η(u(t0, x) − c)ρ(|x | − R)dx �

∫

Rn
(η(u0(x) − c) + ε)ρ(|x | − Nt0 − R)dx

�
∫

Rn
η(u0(x) − c)dx + ε

∫

Rn
ρ(|x | − Nt0 − R)dx . (2.9)

With the help of (2.6), we obtain that for some constants c1, c2 = c2(R, δ)

ε

∫

Rn
ρ(|x | − N (ε)t0 − R)dx � c1ε(N (ε)t0 + R + 1)n � c2ε(1 + t0ε

− 1
m+1 )n →

ε→0+ 0

(recall that m + 1 > n). Therefore, passing to the limit in (2.9) as ε → 0+, we
obtain that for all t0 ∈ E

∫

Rn
η(u(t0, x) − c)ρ(|x | − R)dx �

∫

Rn
η(u0(x) − c)dx . (2.10)
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Now observe that 0 � η(s) � s+ and η(s) → s+ as δ → 0. By Lebesgue
dominated convergence theorem it follows from (2.10) in the limit as δ → 0 that
for a.e. t = t0 > 0

∫

Rn
(u(t, x) − c)+ρ(|x | − R)dx �

∫

Rn
(u0(x) − c)+dx < +∞.

By Fatou’s lemma this implies, in the limit as R → ∞, that
∫

Rn
(u(t, x) − c)+dx �

∫

Rn
(u0(x) − c)+dx, (2.11)

as required. In view of Remark 2 the function −u(t, x) is an e.s. of the problem
ut−divx ϕ(−u)x−0, u(0, x) = −u0(x). Applying (2.11) to this e.s. with c replaced
by −c, we obtain the inequality

∫

Rn
(u(t, x) − c)−dx �

∫

Rn
(u0(x) − c)−dx ∀t ∈ E . (2.12)

��
Corollary 1. Any e.s. u = u(t, x) of (1.1), (1.9) satisfies the maximum/minimum
principle

a = ess inf u0(x) � u(t, x) � b = ess supu0(x) for a.e. (t, x) ∈ �.

Proof. The maximum/minimum principles directly follows from (2.11) and (2.12)
with k = b and k = a, respectively. ��

Putting inequalities (2.11), (2.12) together and using the known relation |z| =
z+ + z−, we obtain the following:

Corollary 2. If u(t, x) is an e.s. of (1.1), (1.9) then for a.e. t > 0
∫

Rn
|u(t, x) − c|dx �

∫

Rn
|u0(x) − c|dx .

If u1, u2 is a pair of e.s. and ν
(1)
t,x , ν

(2)
t,x are the corresponding measure valued

e.s. of (1.6) then by a measure-valued analogue of the doubling variable method,
developed in [24] (also see [17]), we have the relation

∂

∂t

∫∫
(b(v) − b(w))+dν(1)

t,x (v)dν(2)
t,x (w)

+ divx

∫∫
sign+(v − w)(g(v) − g(w))dν(1)

t,x (v)dν(2)
t,x (w) � 0 in D′(�).

Since b(v) = u1(t, x), b(w) = u2(t, x) on supp ν
(1)
t,x , supp ν

(2)
t,x , respectively, then

the above relation can be written as

∂

∂t
(u1 − u2)

+ + divx

∫∫
sign+(v − w)(g(v)

−g(w))dν(1)
t,x (v)dν(2)

t,x (w) � 0 in D′(�). (2.13)
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Proposition 2. Let u1, u2 be e.s. of (1.1), (1.9) with initial functions u10, u20,
respectively. Assume that, for every T > 0,

meas{ (t, x) ∈ (0, T ) × R
n | u1(t, x) � u2(t, x) } < +∞.

Then, for a.e. t > 0,
∫

Rn
(u1(t, x) − u2(t, x))

+dx �
∫

Rn
(u10(x) − u20(x))

+dx .

In particular, u1(t, x) � u2(t, x) a.e. in � whenever u10(x) � u20(x) a.e. in R
n

(the comparison principle).

Proof. Let, as above, ν(1)
t,x , ν

(2)
t,x be measure valued e.s. of (1.6) corresponding to u1,

u2. Let E ⊂ R+ be a set of full measure similar to one in the proof of Proposition 1
consisting of values t > 0 such that (t, x) is a Lebesgue point of (u1(t, x) −
u2(t, x))+ for a.e. x ∈ R

n . Then t ∈ E is a commonLebesgue point of the functions
t → ∫

(u1(t, x) − u2(t, x))+h(x)dx , h(x) ∈ L1(Rn). Let t0, t1 ∈ E , t0 < t1,
χr (t) = θr (t − t0) − θr (t − t1), where the sequence θr (t), r ∈ N, was defined
in the proof of Proposition 1. Applying (2.13) to the nonnegative test function
f (t, x) = χr (t)q(x/R), where q = q(y) ∈ C1

0(R
n), 0 � q � 1, q(0) = 1, and

R > 0, we get
∫

�

(u1(t, x) − u2(t, x))
+(ωr (t − t0) − ωr (t − t1))q(x/R)dtdx

+ 1

R

∫

�

∫∫
sign+(v − w)(g(v) − g(w))dν(1)

t,x (v)dν(2)
t,x (w) · ∇yq(x/R)χr (t)dtdx � 0.

Since ti , i = 1, 2, are Lebesgue points of the functions
∫
Rn (u1(t, x) − u2(t, x))+

q(x/R)dx while the sequence χr (t) is uniformly bounded and converges pointwise
to the indicator function of the interval (t0, t1], we can pass to the limit as r → ∞
in the above relation and get

∫

Rn
(u1(t1, x) − u2(t1, x))

+q(x/R)dx �
∫

Rn
(u1(t0, x) − u2(t0, x))

+q(x/R)dx

+ 1

R

∫

(t0,t1)×Rn

∫∫
sign+(v − w)(g(v) − g(w))dν(1)

t,x (v)dν(2)
t,x (w) · ∇yq(x/R)dtdx .

(2.14)

It follows from the inequality

|(u1(t0, x) − u2(t0, x))
+ − (u10(x) − u20(x))

+|
� |u1(t0, x) − u10(x)| + |u2(t0, x) − u20(x)|

and initial relation (1.10) that

ess lim
t0→0

(u1(t0, x) − u2(t0, x))
+ = (u10(x) − u20(x))

+ in L1
loc(R

n).

This allows us to pass to the limit as t0 → 0 in (2.14), resulting in the relation:
for a.e. T = t1 > 0

∫

Rn
(u1(T, x) − u2(T, x))+q(x/R)dx �

∫

Rn
(u10(x) − u20(x))

+q(x/R)dx
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+ 1

R

∫

(0,T )×Rn

∫∫
sign+(v − w)(g(v) − g(w))dν(1)

t,x (v)dν(2)
t,x (w) · ∇yq(x/R)dtdx

�
∫

Rn
(u10(x) − u20(x))

+dx + 1

R

∫

(0,T )×Rn
G(t, x) · ∇yq(x/R)dtdx, (2.15)

where

G = G(t, x)
.=

∫∫
sign+(v − w)(g(v) − g(w))dν(1)

t,x (v)dν(2)
t,x (w).

By Definition 1 b(v) ≡ u1(t, x) on supp ν
(1)
t,x , b(w) ≡ u2(t, x) on supp ν

(2)
t,x and

if u1(t, x) < u2(t, x) then v < w whenever v ∈ supp ν
(1)
t,x , w ∈ supp ν

(2)
t,x , and it

follows that G(t, x) = 0. Therefore, the vector-function G can be different from
zero vector only on the set {u1(t, x) � u2(t, x)}, which has finite measure in any
layer �T = (0, T ) × R

n . Thus, denoting DT = { (t, x) ∈ �T | u1(t, x) �
u2(t, x) }, we find

∣∣∣∣
∫

(0,T )×Rn
G(t, x) · ∇yq(x/R)dtdx

∣∣∣∣

=
∣∣∣∣
∫

DT

G(t, x) · ∇yq(x/R)dtdx

∣∣∣∣ � ‖G‖∞‖∇yq‖∞ meas DT < ∞

(notice that ‖G‖∞ � 2 max
|v|�M

|g(v)|, where M = max(‖ν(1)
t,x ‖∞, ‖ν(2)

t,x ‖∞)). We

see that the last term in (2.15) disappears in the limit as R → ∞ due to the factor
1/R. Hence, passing to the limit as R → ∞ and using Fatou’s lemma (observe that
q(x/R) →

R→∞ q(0) = 1), we arrive at the desired relation: for all T ∈ E ,

∫

Rn
(u1(T, x) − u2(T, x))+dx �

∫

Rn
(u10(x) − u20(x))

+dx .

��

The nest result asserts the strong completeness of the set of e.s. of the problem
(1.1), (1.9). More precisely, we consider the approximate problem

ut + divx g(v) = 0, u = br (v); u(0, x) = ur0(x), (2.16)

where br (u) ∈ C(R), r ∈ N, is a sequence of non-strictly increasing functions
approximating b(u) (in the sense indicated in the next proposition).

Proposition 3. Let ur0 = ur0(x), r ∈ N, be a bounded sequence in L∞(Rn),
and ur = ur (t, x) be a sequence of e.s. of (2.16). Assume that br (u) → b(u) as
r → ∞ uniformly on any segment, and that the sequences ur0 → u0 = u0(x),
ur → u = u(t, x) in L1

loc(R
n), L1

loc(�), respectively. Then u is an e.s. of (1.1),
(1.9) with initial data u0.
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Proof. Let M = sup
r∈N

‖ur0‖∞. By Corollary 1 we see that ‖ur‖∞ � M for all

r ∈ N. By Definition 1 there exists a sequence νrt,x ∈ MV(�) such that

b∗
r ν

r
t,x (u) = δ(u − ur (t, x)), (2.17)

and that, for all k ∈ R for every f = f (t, x) ∈ C1
0(�̄), f � 0,

∫

�

[
|ur − br (k)| ft +

∫
sign(v − k)(g(v) − g(k))dνrt,x (v) · ∇x f

]
dtdx

+
∫

Rn
|ur0(x) − br (k)| f (0, x)dx � 0. (2.18)

By the coercivity assumption, there exist such a constant R > 0 that b(−R) < −M ,
b(R) > M . Since br (±R) → b(±R) as r → ∞, we find that br (−R) < −M ,
br (R) > M for sufficiently large r . Without loss of generality we can suppose that
these inequalities hold for all r ∈ N. Then, in view of (2.17), supp νrt,x ⊂ [−R, R].
Therefore, the sequence of measure valued functions νrt,x is bounded and by The-
orem 2 some subsequence of νrt,x converges weakly to a bounded measure valued
function νt,x (in the sense of relation (1.14)). We replace the original sequences
ur0, ur , νrt,x by the corresponding subsequences (keeping the notations), and pass
to the limit as r → ∞ in (2.18). As a result, we get

∫

�

[
|u − b(k)| ft +

∫
sign(v − k)(g(v) − g(k))dνt,x (v) · ∇x f

]
dtdx

+
∫

Rn
|u0(x) − b(k)| f (0, x)dx � 0 (2.19)

for all k ∈ R and each f = f (t, x) ∈ C1
0(�̄), f � 0. Moreover, passing to the

limit as r → ∞ in the relation (following from (2.17))

∫
q(br (v))dνrt,x (v) = q(ur (t, x)) ∀q(u) ∈ C(R),

with the help of the relation q(br (v)) − q(b(v)) ⇒ 0 uniformly on [−R, R], we
obtain that for a.e. (t, x) ∈ �

∫
q(b(v))dνt,x (v) = q(u(t, x)). (2.20)

A set of full measure E of points (t, x), for which relation (2.20) holds can be
chosen common for all q from a countable dense subset ofC(R). By the density, this
relation remains valid for all q ∈ C(R), which evidently means that b∗νt,x (u) =
δ(u − u(t, x)) for all (t, x) ∈ E . In particular, it follows from (2.19) that the
entropy relation (1.15) is fulfilled, and νt,x is a measure valued e.s. of (1.6), (1.9).
In correspondence with Definition 1, we conclude that u is an e.s. of (1.1), (1.9),
as required. ��
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3. Existence of e.s.: The Case of Integrable Initial Data

In this section we assume that the initial function is integrable, u0 ∈ L1(Rn) ∩
L∞(Rn). The general casewill be treated in the next section,wherewewill establish
existence of the largest and the smallest e.s. for arbitrary u0 ∈ L∞(Rn).

We introduce the approximations br (u) = b(u)+u/r , r ∈ N, of b(u) by strictly
increasing functions. Then the equation in (2.16) can bewritten in the standard form

ut + divx ϕr (u) = 0, (3.1)

where ϕr (u) = g((br )−1(u)) ∈ C(R,Rn). As was established in [1], there exists
the unique largest e.s. ur = ur (t, x) of the Cauchy problem for Eq. (3.1) with initial
data u0(x). Moreover, after possible correction on a set of null measure, ur (t, ·) ∈
C([0,+∞), L1(R)), and for each fixed r ∈ N the maps u0 → ur (t, ·), t � 0, are
nonexpansive in L1(Rn). It is clear that for every �x ∈ R

n the shifted functions
ur (t, x + �x) are the largest e.s. of (3.1) with the initial functions u0(x + �x).
This implies the uniform estimate
∫

Rn
|ur (t0, x + �x) − ur (t0, x)|dx �

∫

Rn
|u0(x + �x) − u0(x)|dx ∀t0 > 0.

It follows from this estimate that
∫

Rn
|ur (t0, x + �x) − ur (t0, x)|dx � ωx (|�x |), (3.2)

where ωx (h) = sup
|�x |<h

∫
Rn |u0(x + �x) − u0(x)|dx is the continuity modulus of

u0 in L1(Rn). We then proceed as in [10] to get a similar estimate for shifts of
the time variable. For the sake of completeness we provide the details. We choose
an averaging kernel β(y) ∈ C1

0(R
n) with the properties: β(y) � 0, suppβ(y) ⊂

B1(0) = {y ∈ R
n | |y| � 1}, ∫

Rn β(y)dy = 1. For a function q(x) ∈ L∞(Rn) we
consider the corresponding averaged functions

qh(x) = h−n
∫

q(y)β((x − y)/h)dy, h > 0,

which are the convolutions q ∗ βh(x), where βh(x) = h−nβ(x/h). It is clear that
qh(x) ∈ C1(Rn) for each h > 0, ‖qh‖∞ � ‖q‖∞, and qh → q as h → 0 a.e. in
R
n . Moreover, since ∇qh = q ∗ ∇βh(x), we have

‖∇qh‖∞ � ‖q‖∞‖∇βh‖1 = c

h
‖q‖∞, c = ‖∇yβ‖1. (3.3)

Applying (3.1) with u = ur to the test function

f = (θν(t − t0) − θν(t − t0 − �t))p(x),

where t0,�t > 0, p = p(x) ∈ C1
0(R

n), ν ∈ N, and passing to the limit as ν → ∞,
we get

∫

Rn
(ur (t0 + �t) − ur (t0, x))p(x)dx =

∫

(t0,t0+�t)×Rn
ϕr (ur ) · ∇ pdx . (3.4)
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By Corollary 1 ‖ur‖∞ � M = ‖u0‖∞ for every r ∈ N. It follows from the
coercivity assumption that there is such R > 0 that b(−R) < −M , b(R) > M . All
the more, br (−R) < b(R) < −M , br (R) > b(R) > M for all r ∈ N. This implies
that (br )−1([−M, M]) ⊂ (−R, R) and therefore for a.e. (t, x) ∈ �

|ϕr (ur )| = g((br )
−1(ur )) � N

.= max
|v|�R

|g(v)|.

It now follows from (3.4) that

∣∣∣∣
∫

Rn
(ur (t0 + �t) − ur (t0, x))p(x)dx

∣∣∣∣ � N‖∇ p‖1�t. (3.5)

Further more, we make use of the following variant of Kruzhkov’s lemma [10,
Lemma 1] (for the sake of completeness, we provide it with the proof):

Lemma 2. Let w(x) ∈ L1(Rn). Then, for each h > 0,

∫

Rn
||w(x)| − w(x)(signw)h(x)|dx � 2ωw(h),

where ωw(h) = sup
|�x |<h

∫
Rn |w(x + �x) − w(x)|dx is the continuity modulus of w

in L1(Rn).

Proof. First, notice that, for each x, y ∈ R
n ,

||w(x)| − w(x) signw(y)| = ||w(x)| − (w(x) − w(y)) signw(y) − w(y) signw(y)|
= ||w(x)| − |w(y)| − (w(x) − w(y)) signw(y)|
� ||w(x)| − |w(y)|| + |w(x) − w(y)| � 2|w(x) − w(y)|.

With the help of above inequality we obtain

∫

Rn
||w(x)| − w(x)(signw)h(x)|dx

=
∫

Rn

∣∣∣∣
∫

Rn
(|w(x)| − w(x) signw(x − y))βh(y)dy

∣∣∣∣ dx

�
∫

Rn

∫

Rn
||w(x)| − w(x) signw(x − y)|βh(y)dydx

�
∫

Rn

∫

Rn
2|w(x) − w(x − y)|βh(y)dydx

= 2
∫

|y|�h

(∫

Rn
|w(x) − w(x − y)|dx

)
βh(y)dy � 2ωw(h),

as was to be proven. ��
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As it readily follows from Lemma 2, for any ρ = ρ(x) ∈ C1
0(R

n)

∣∣∣∣
∫

Rn
|w(x)|ρ(x)dx −

∫

Rn
w(x)ρ(x)(signw)h(x)dx

∣∣∣∣

�
∫

Rn
||w(x)| − w(x)(signw)h(x)|ρ(x)dx � 2‖ρ‖∞ωw(h).

(3.6)

We apply this relation to the function w(x) = ur (t0 + �t, x) − ur (t0, x) for fixed
t0,�t > 0, r ∈ N. In view of estimate (3.2), for every �x ∈ R

n , |�x | < h,
∫

Rn
|w(x + �x) − w(x)|dx �

∫

Rn
|ur (t0, x + �x) − ur (t0, x)|dx+

∫

Rn
|ur (t0 + �t, x + �x) − ur (t0 + �t, x)|dx � 2ωx (h),

so that ωw(h) � 2ωx (h). It follows from (3.6), (3.5), and (3.3) that
∫

Rn
|w(x)|ρ(x)dx �

∣∣∣∣
∫

Rn
w(x)ρ(x)(signw)h(x)dx

∣∣∣∣ + 4‖ρ‖∞ωx (h)

=
∣∣∣∣
∫

Rn
(ur (t0 + �t, x) − ur (t0, x))ρ(x)(signw)h(x)dx

∣∣∣∣ + 4‖ρ‖∞ωx (h)

� N‖∇(ρ(x)(signw)h(x))‖1�t + 4‖ρ‖∞ωx (h) � cρ(�t/h + ωx (h)),

(3.7)

where 0 < h < 1, and cρ is a constant depending only on ρ. Since the left hand
side of this estimate does not depend on h, we arrive at the estimate

∫

Rn
|ur (t0 + �t, x) − ur (t0, x)|ρ(x)dx � cρωt (�t), (3.8)

where ωt (�t) = inf
0<h<1

(�t/h + ωx (h)). Taking h = (�t)1/2, we find ωt (�t) �
(�t)1/2 + ωx ((�t)1/2) for all �t ∈ (0, 1). Thus, ωt (�t) → 0 as �t → 0. Both
estimates (3.2), (3.8) are uniform with respect to t0 > 0 and r ∈ N. By the known
compactness criterium they imply pre-compactness of the sequence ur in L1

loc(�).
Therefore, passing to a subsequence, we can assume that ur → u as r → ∞ in
L1
loc(�). We conclude that all the requirements of Proposition 3 are satisfied (with

the constant sequence ur0 = u0), and by this proposition u = u(t, x) is an e.s. of
(1.1), (1.9).

For more general initial functions u0(x) ∈ (c + L1(Rn)) ∩ L∞(Rn), where
c ∈ R, one can make the change ũ = u − c. As is easy to verify, u is an e.s. of
(1.1), (1.9) if and only if ũ is an e.s. to the problem

ut + divx ϕ(c + u) = 0, u(0, x) = u0(x) − c,

corresponding to the parametrization u = b(v)−c, ϕ̄(c+u) � g(v). The existence
of such an e.s. has been just shown. This yields the existence of e.s. to the original
problem. Thus, we have the following result:
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v1

u=b(v)

v100

H(u) g(v)-

Fig. 1. Parametrization of H̄(u)

Theorem 3. For every initial function u0 ∈ (c+ L1(Rn))∩ L∞(Rn), where c ∈ R,
there exists an e.s. of problem (1.1), (1.9).

Concerning the uniqueness, it may fail even if n = 1 and u0 ∈ L1(R)∩L∞(R).

Example 1. We will study the problem

ut + H(u)x = 0, u(0, x) = u0(x)
.= 1

1 + x2
, (3.9)

where H(u) = sign+ u is the Heaviside function. The natural solution of this
problem is the stationary solution u(t, x) ≡ u0(x). To construct other e.s., we
choose the appropriate continuous parametrization of the flux (it corresponds (1.4)
if we set H(0) = 1/2)

u = b(v) =
⎧
⎨

⎩

v, v < 0,
0, 0 � v � 1,
v − 1, v > 1,

H̄(u) � g(v) =
⎧
⎨

⎩

0, v < 0,
v, 0 � v � 1,
1, v > 1,

(3.10)

where H̄(u) = H(u), u �= 0, H̄(0) = [0, 1], see Fig. 1.
We are going to find an e.s. of (3.9) in the form

u(t, x) =
{
1/(1 + x2), x > x(t),
0, x < x(t),

where x(t) ∈ C1((α, β)), 0 � α < β � +∞; x ′(t) > 0, lim
t→α+ x(t) = −∞,

lim
t→β− x(t) = +∞ if β < +∞. The corresponding measure valued e.s. νt,x is

assumed being regular, i.e., it is an e.s. v = v(t, x) ∈ L∞(�) of the conser-
vation law b(v)t + g(v)x = 0 such that u = b(v). In particular, v(t, x) =
1 + 1/(1 + x2) if x > x(t) and v(t, x) ∈ [0, 1] if x < x(t). Since in the lat-
ter case vx = b(v)t + g(v)x = 0 in the sense of distributions, we claim that
v does not depend on x , i.e., v = v(t) in the domain x < x(t). As is easy to
realize, both the Rankine-Hugoniot and the Oleinik conditions (see [15]) should
be fulfilled on the discontinuity line x = x(t). These mean, respectively, that
x ′(t) coincides with the slope of the chord connected the points (b(v−), g(v−)),
(b(v+), g(v+)) of the graph of the flux function ϕ ∈ H̄(u), and that this graph
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u

1
v(t)

φ

0

Fig. 2. The Rankine–Hugoniot and the Oleinik conditions

x

0

t

0

x=tg(t-t )0

Fig. 3. Nonstationary entropy solution

lies above of the indicated chord then v runs between v− = lim
x→x(t)− v(t, x) = v(t)

and v+ = lim
x→x(t)+ v(t, x) = 1 + 1/(1 + x(t)2) > v−, see Fig. 2.

Notice that the Oleinik condition is automatically satisfied while the Rankine-
Hugoniot condition provides the differential equation x ′(t) = (1 + x2)(1 − v(t)).
In particular, taking v(t) ≡ 0 and solving the above equation, we obtain the dis-
continuity curve x = x(t) = tg(t − t0), t0 −π/2 < t < t0 +π/2 with the required
properties for all t0 � π/2, see Fig. 3.

Varying v(t), we can construct many other e.s. For example, choosing v(t) =
t2/(1+ t2) and a particular solution x = −1/t of the differential equation x ′(t) =
(1+ x2)(1−v(t)) = (1+ x2)/(1+ t2), we find the e.s. u = 1/(1+ x2) if xt > −1,
u = 0 if xt < −1. We conclude that an e.s. of (3.9) is not unique. In the case
of merely continuous flux vector an e.s. of the problem (1.1), (1.9) may also be
non-unique but only if n > 1, see [11,12]. If n = 1 and u0 ∈ L1(R) ∩ L∞(R)

then the uniqueness can be proved under the assumption on continuity of the flux
function at zero. Hence, it is essential for our example that 0 is a discontinuity point
of the flux H(u).

4. Existence of the Largest and the Smallest e.s. The General Case
u0 ∈ L∞(Rn)

To construct the largest e.s., we choose a strictly decreasing sequence dr > d =
ess supu0(x), r ∈ N, and the corresponding sequence ur of e.s. of (1.1), (1.9) with
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initial functions

u0r (x) =
{
u0(x), |x | � r,
dr , |x | > r.

Since u0r ∈ (dr + L1(Rn)) ∩ L∞(Rn) an e.s. ur actually exists by Theorem 3.
Observe that ∀r ∈ N

u0(x) � u0r+1(x) � u0r (x) � dr a.e. on R
n, and lim

r→∞ u0r (x) = u0(x).

Denote δr = dr − dr+1 > 0. By the maximum principle ur � dr for all r ∈ N.
Therefore,

{(t, x) | ur+1(t, x) � ur (t, x)} ⊂ {(t, x) | dr+1 � ur (t, x)}
= {(t, x) | dr − ur (t, x) � δr }.

By Chebyshev’s inequality and Corollary 2, for each T > 0,

meas{ (t, x) ∈ (0, T ) × R
n | ur+1(t, x) � ur (t, x) }

� meas{ (t, x) ∈ (0, T ) × R
n | dr − ur (t, x) � δr }

� 1

δr

∫

(0,T )×Rn
|dr − ur |dtdx � T

δr

∫

Rn
|dr − u0r |dx

= T

δr

∫

|x |<r
(dr − u0)dx < +∞.

We see that the assumption of Proposition 2 regarded to the e.s. ur+1 and ur is
satisfied and by this proposition ur+1 � ur a.e. on �. Since u0r � u0 � a

.=
ess infu0(x) then ur � a, by the minimum principle. Hence, the sequence

ur (t, x) →
r→∞ u+(t, x)

.= inf
r>0

ur (t, x)

a.e. on �, as well as in L1
loc(�). By Proposition 3 the limit function u+ is an e.s. of

original problem (1.1), (1.9). Let us demonstrate that u+ is the largest e.s. of this
problem. For that, we choose an arbitrary e.s. u = u(t, x) of (1.1), (1.9). By the
maximum principle, u � d. Therefore, for each r ∈ N

{(t, x) ∈ �T = (0, T ) × R
n | u � ur } ⊂ {(t, x) ∈ �T | d � ur }

= {(t, x) ∈ �T | dr − ur � dr − d}
and consequently

meas{(t, x) ∈ �T | u � ur } � 1

dr − d

∫

�T

|dr − ur |dx

� T

dr − d

∫

|x |<r
(dr − u0)dx < +∞,

whereweuse againChebyshev’s inequality andCorollary 2.Hence, the requirement
of Proposition 2, applied to the e.s. u and ur , is satisfied and, by the comparison
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principle, the inequality u0 � u0r implies that u � ur a.e. on �. In the limit as
r → ∞ we conclude that u � u+ a.e. on �. Hence, u+ is the unique largest e.s.
The smallest e.s. u− can be found as u− = −ũ+, where ũ+ is the largest e.s. to the
problem (1.6).

We have established the existence of the largest and the smallest e.s. Let us
demonstrate that these e.s. satisfy the stability and monotonicity properties with
respect to initial data.

Theorem 4. Let u1+, u2+ ∈ L∞(�) be the largest e.s. of (1.1), (1.9) with initial
functions u10, u20, respectively. Then for a.e. t > 0

∫

Rn
(u1+(t, x) − u2+(t, x))+dx �

∫

Rn
(u10(x) − u20(x))

+dx .

In particular, if u10 � u20 a.e. in Rn then u1+ � u2+ a.e. in �.

Proof. We choose a decreasing sequence dr > d = max(ess supu10(x),
ess supu20(x)), r ∈ N, and define the following sequences of initial functions:

u01r (x) =
{
u10(x), |x | � r,
dr , |x | > r,

u02r (x) =
{
u20(x), |x | � r,
dr + 1, |x | > r.

Let u1r = u1r (t, x), u2r = u2r (t, x) be e.s. of problem (1.1), (1.9) with initial
functions u01r , u

0
2r , respectively. As was demonstrated above, the sequences u1r ,

u2r decrease and converge in L1
loc(�) to the largest e.s. u1+, u2+, respectively. By

the maximum principle u1r � dr a.e. in � and therefore, for each T > 0,

{(t, x) ∈ �T | u1r (t, x) � u2r (t, x)} ⊂ {(t, x) ∈ �T | dr � u2r (t, x)}
⊂ {(t, x) ∈ �T | dr + 1 − u2r (t, x) � 1}.

By Chebyshev inequality and Corollary 2

meas{(t, x) ∈ �T | u1r (t, x) � u2r (t, x)}
� meas{(t, x) ∈ �T | dr + 1 − u2r (t, x) � 1}
�

∫

�T

|dr + 1 − u2r (t, x)|dtdx � T
∫

Rn
|dr + 1 − u02r (x)|dx

= T
∫

|x |<r
(dr + 1 − u20(x))dx < ∞,

which allows us to apply Proposition 2 and conclude that, for a.e. t > 0 and all
r ∈ N,

∫

Rn
(u1r (t, x) − u2r (t, x))

+dx �
∫

Rn
(u01r (x) − u02r (x))

+dx

=
∫

|x |<r
(u10(x) − u20(x))

+dx �
∫

Rn
(u10(x) − u20(x))

+dx .

To complete the proof, it remains only to pass to the limit as r → ∞ in above
relation with the help of Fatou’s lemma. ��
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Corollary 3. With notations of Theorem 4 for a.e. t > 0
∫

Rn
|u1+(t, x) − u2+(t, x)|dx �

∫

Rn
|u10(x) − u20(x)|dx .

Proof. By Theorem 4 we find that, for a.e. t > 0,
∫

Rn
(u1+(t, x) − u2+(t, x))+dx �

∫

Rn
(u10(x) − u20(x))

+dx,
∫

Rn
(u2+(t, x) − u1+(t, x))+dx �

∫

Rn
(u20(x) − u10(x))

+dx .

Putting these inequalities together, we derive the desired result. ��
The analogues of Theorem 4 and Corollary 3 for the smallest e.s. follows from

the results for the largest e.s. to the problem (1.17) after the change u → −u.
Let us return to the problem (3.9) from Example 1 and find the largest and the

smallest e.s. explicitly. First, we demonstrate that the largest e.s. u+ coincides with
the stationary solution u0 = 1/(1 + x2). Since the e.s. u+ is the largest one, then
u+ � u0. Further more, by Proposition 1, for a.e. t > 0,
∫

R

u+(t, x)dx =
∫

R

(u+(t, x) − 0)+dx �
∫

R

(u0(x) − 0)+dx =
∫

R

u0(x)dx,

which implies the inequality
∫

R

(u+(t, x) − u0(x))dx � 0.

Since u+ � u0, we conclude that u+ = u0(x) a.e. in �, as was claimed.
Let us show that the smallest e.s. of (3.9) is given by the expression

u−(t, x) = ũ(t, x)
.=

{
1/(1 + x2), x > tg(t − π/2),
0, x < tg(t − π/2),

where we agree that tg z = ±∞ if ±z � π/2. In particular, ũ ≡ 0 for t � π . As
was shown in Example 1, ũ is indeed an e.s. of (3.9). Therefore, the smallest e.s.
u− � ũ. By the minimum principle we also claim that u− � 0. Direct calculation
shows that

∫
ũ(t, x)dx =

∫ +∞

tg(t−π/2)

dx

1 + x2
= (π − t)+. (4.1)

Let ν−
t,x be a measure valued e.s. to the problem (1.6), (1.9) corresponding to the

smallest e.s. u− of problem (3.9). In view of identity (2.1)we find that (u−)t+Gx =
0 in D′(�), where G = G(t, x) = ∫

g(v)dν−
t,x (v) ∈ [0, 1] because g(v) =

max(0,min(1, v)) ∈ [0, 1], see (3.10). This easily implies that, for a.e. r > 0,

d

dt

∫ r

−r
u−(t, x)dx = G(t,−r) − G(t, r) � −1 in D′(R),
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which, in turn, implies the estimate
∫ r
−r u−(t, x)dx �

∫ r
−r u0(x)dx − t. Passing in

this estimate to the limit as r → +∞, we find that
∫
u−(t, x)dx �

∫
u0(x)dx−t =

π − t. Taking also into account that u− � 0, we see that for a.e. t > 0

∫
u−(t, x)dx � (π − t)+.

Comparing this inequality with (4.1), we get
∫

(ũ(t, x) − u−(t, x))dx � 0

for a.e. t > 0. Since ũ � u−, this implies the desired identity u− = ũ(t, x).
In the end of this section we put the example promised in Introduction, which

shows the necessity of the multi-valued extension of the flux.

Example 2. Let n = 1 and χ0(u) be a function that is different from zero only at
the zero point, where it equals 1, i.e. χ0(u) is the indicator function of the singleton
{0}. We consider the Riemann problem

ut + (χ0(u))x = 0, u(0, x) = H(x),

where H(x) is the Heaviside function. Assume that there exists an e.s. u = u(t, x)
of this problem in the sense of relation (1.12). Putting this entropy relation

|u − k|t + [sign(u − k)(χ0(u) − χ0(k))]x � 0

together with the identities

± ((u − k)t + (χ0(u) − χ0(k))x ) = 0,

we get that for each k ∈ R

((u − k)±)t + [sign±(u − k)(χ0(u) − χ0(k))]x � 0 in D′(�). (4.2)

It follows from this inequality that ((u − 1)+)t � 0, ((u + ε)−)t � 0 in D′(�) for
each ε > 0 and since 0 � u(0, x) � 1, we find that (u − 1)+ = (u + ε)− = 0, that
is, −ε � u � 1 a.e. in �. In view of arbitrariness of ε > 0, we see that 0 � u � 1
a.e. in �. It again follows from (4.2) that ((u − ε)+)t � 0 in D′(�) for every
ε > 0. This implies that (u − ε)+ � (H(x) − ε)+ = 0 a.e. in the quarter-plane
t > 0, x < 0. Since ε > 0 is arbitrary, we conclude that u(t, x) = 0 in this
quarter-plane. Now, we will demonstrate that u = 1 a.e. in the quarter-plane t > 0,
x > 0. For that, we apply the relation (1 − u)t − χ0(u)x = 0 to the test function
f = p(min(R + T − t − x, x))h(t), where T > 0, R > 2, p(v) ∈ C1(R) is a
function with the properties p′ � 0, p(v) = 0 for v � 0, p(v) > 0 for v > 0,
p(v) = 1 for v � 1; h(t) ∈ C1

0((0, T )), h � 0 (notice that p ≡ 1 in a neighborhood
of a singular line x = R + T − t − x , t < T , which implies that f ∈ C1

0(�)). As
a result, we get
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∫

�

(1 − u)ph′(t)dtdx +
∫

x>R+T−t−x
(−(1 − u) + χ0(u))p′hdtdx

+
∫

x<R+T−t−x
(−χ0(u))p′hdtdx = 0. (4.3)

Observing that 0 � χ0(u) � 1 − u for u = u(t, x) ∈ [0, 1], and that p′ =
p′(min(R + T − t − x, x)) � 0, we find that the last two integrals in (4.3) are
non-positive and therefore for all h = h(t) ∈ C1

0((0, T )), h � 0

∫ T

0

(∫

Rn
(1 − u)p(min(R + T − t − x, x))dx

)
h′(t)dt

=
∫

�

(1 − u)ph′(t)dtdx � 0.

This means that

d

dt

∫

Rn
(1 − u)p(min(R + T − t − x, x))dx � 0 in D′((0, T )).

Taking into account the initial condition, we find that for a.e. t ∈ (0, T )

∫

Rn
(1 − u)p(min(R + T − t − x, x))dx

�
∫

Rn
(1 − u0(x))p(min(R + T − x, x))dx = 0

since u0(x) = 1 for x > 0 while p(min(R + T − x, x)) = p(x) = 0 for x � 0. In
the limit as R → +∞, this relation implies that for a.e. t ∈ (0, T )

∫

Rn
(1 − u(t, x))p(x)dx = 0.

Since p(x) > 0 for x > 0, and T > 0 is arbitrary, we conclude that u(t, x) = 1 for
a.e. (t, x) ∈ �, x > 0. We have established that our solution u = H(x). But this
function is not even a weak solution of our equation because the Rankine-Hugoniot
relation 0 = χ0(1) = χ0(0) = 1 is violated on the shock line x = 0. Hence, our
Riemann problem has no e.s. in the Kruzhkov sense. As we already know, there
exists an e.s. of our problem in the sense of Definition 1, corresponding to the
multi-valued extension χ̄0(0) = [0, 1] of the flux. The corresponding continuous
parametrization can be given by the functions

u = b(v) =
⎧
⎨

⎩

v + 1, v < −1,
0, −1 � v � 1,
v − 1, v > 1,

χ̄0(u) � g(v) =
{
0, |v| > 1,
1 − |v|, |v| � 1;

see Fig. 4.
Let us show that the stationary solution u = H(x) is an e.s. of our problem. The

corresponding e.s. v = v(t, x) of the equation b(v)t + g(v)x = 0 can be chosen
regular. For x > 0 it is uniquely determined by the requirement b(v) = u = 1
and therefore v = 2. For x < 0 one can chose v ≡ −1 or v ≡ 1 (it is even
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-1-1

Fig. 4. Parametrization of the flux χ̄0

possible to take measure valued function νt,x (v) = (1 − α)δ(v + 1) + αδ(v − 1),
α = α(t, x) ∈ [0, 1]). By the construction both the Rankine-Hugoniot and the
Oleinik conditions are satisfied in the shock line x = 0. Hence H(x) = b(v) is the
required e.s.

5. The Case of Periodic Initial Functions

Let us study the particular case when the initial function u0(x) is periodic,
u0(x + e) = u0(x) a.e. in R

n for all e ∈ L , where L ⊂ R
n is a lattice of periods.

Without loss of generality we may suppose that L is the standard lattice Zn .

Theorem 5. The largest e.s. u+ and the smallest e.s. u− of the problem (1.1), (1.9)
are space-periodic and coincide: u+ = u−.

Proof. Let e ∈ L . In view of periodicity of the initial function it is obvious that
u(t, x + e) is an e.s. of (1.1), (1.9) if and only if u(t, x) is an e.s. of the same
problem. Therefore, u+(t, x + e) is the largest e.s. of (1.1), (1.9) together with u+.
By the uniqueness u+(t, x + e) = u+(t, x) a.e. on � for all e ∈ L , that is, u+ is a
space periodic function. In the same way we prove space periodicity of the minimal
e.s. u−. Let ν±

t,x (v) be measure valued e.s. of (1.6) corresponding to the e.s. u±. In
view of (2.1), we have

(u+ − u−)t + divx

∫
g(v)d(ν+

t,x − ν−
t,x )(v) = 0 in D′(�). (5.1)

Let α(t) ∈ C1
0(R+), β(y) ∈ C1

0(R
n),

∫

Rn
β(y)dy = 1. Applying (5.1) to the test

function k−nα(t)β(x/k), with k ∈ N, we arrive at the relation

k−n
∫

�

(u+ − u−)α′(t)β(x/k)dtdx + k−n−1
∫

�

Q · ∇yβ(x/k)α(t)dtdx = 0,

(5.2)
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where the vector Q = Q(t, x) = ∫
g(v)d(ν+

t,x − ν−
t,x )(v) ∈ L∞(�,Rn). We

observe that

k−n−1
∣∣∣∣
∫

�

Q · ∇yβ(x/k)α(t)dtdx

∣∣∣∣ � k−n−1‖Q‖∞
∫

�

|∇yβ(x/k)|α(t)dtdx

= k−1‖Q‖∞
∫

�

|∇yβ(y)|α(t)dtdy = c/k, c = const.

Therefore, in the limit as k → ∞ the second integral in (5.2) disappears while (see
for example [22, Lemma 2.1])

k−n
∫

�

(u+ − u−)α′(t)β(x/k)dtdx →
∫

R+×Tn
(u+ − u−)(t, x)α′(t)dtdx,

where Tn = [0, 1)n is the periodicity cell (or, the same, the thorus Rn/Zn). Hence,
after the passage to the limit we get

∫

R+×Tn
(u+ − u−)(t, x)α′(t)dtdx = 0 ∀α(t) ∈ C1

0(R+).

This identity means that

d

dt

∫

Tn
(u+(t, x) − u−(t, x))dx = 0 in D′(R+),

and implies, with the help of initial condition (1.10), that, for a.e. t > 0,
∫

Tn
(u+(t, x) − u−(t, x))dx =

∫

Tn
(u0(x) − u0(x))dx = 0.

Since u+ � u−, we conclude that u+ = u− a.e. on �. ��
Since any e.s. of (1.1), (1.9) is situated between u− and u+, we deduce

Corollary 4. An e.s. of (1.1), (1.9) is unique and coincides with u+.

6. Weak Completeness of e.s.

In the one-dimensional case n = 1 we consider a bounded sequence ur =
ur (t, x) ∈ L∞(�), r ∈ N, of e.s. of equation (1.1) (without a prescribed initial
condition). Passing to a subsequence, we can suppose that this sequence converges
weakly-∗ in L∞(�) to a function u = u(t, x). In the case of continuous flux
function it was proved in [19] that u(t, x) is an e.s. of problem (1.1), (1.9) with
some initial function u0(x) (in [20] this result was even extended to the case of a
degenerate parabolic equation ut + ϕ(u)x = A(u)xx ). Certainly, this property is
purely one-dimensional, in the case n > 1 it is no longer valid, see [19, Remark 3].
We are going to extend the described weak completeness property of e.s. to the
case of jump-continuous flux function. Due to the lack of uniqueness we use the
additional spatial periodicity assumption on a limit Young measure corresponding
to the sequence ur . Let us formulate the main result of this section.
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Theorem 6. Let ur , r ∈ N, be a bounded sequence of e.s. of (1.1) weakly con-
vergent to u(t, x). Assume that a limit Young measure ν̄t,x corresponding to some
subsequence of ur (in accordance with Theorem 1), is space periodic, ν̄t,x+1 = ν̄t,x
a.e. in �. Then the limit function u(t, x) is an e.s. of problem (1.1), (1.9) with some
periodic initial function u0(x).

Remark 4. The periodicity of ν̄t,x holds in the particular case when all e.s. ur are
space periodic. Also observe that the limit function u(t, x) is spatially periodic, this
readily follows from the equality u(t, x) = ∫

ud ν̄t,x (u).

Remark 5. Applying Theorem 6 to the constant sequence ur = u, we obtain that
any space periodic e.s. of Eq. (1.1) admits a strong trace u0 at the initial line t = 0
in the sense of relation (1.10).

To prove Theorem 6, we will follow the scheme of paper [19]. First of all, we
will modify the technical lemma [19, Lemma 2.3].

Lemma 3. Let ν be a Borel measure with compact support in R and p(v) ∈ C(R)

be such a function that
∫

sign+(v − k)(p(v) − p(k))dν(v) = 0 ∀k ∈ [a, b], (6.1)

where a < b = max supp ν. Then p(v) ≡ const on [a, b].
Proof. We choose values k1, k2 ∈ [a, b] such that p(k1) = min[a,b] p(v), p(k2) =
max[a,b] p(v). If p(k1) < p(b) then k1 < b. Taking k = k1, we find that the integrand

in (6.1) is not negative and strictly positive in an interval (b − δ, b], δ > 0. Since
b = max supp ν then ν((b − δ, b]) > 0, therefore, the integral in (6.1) is strictly
positive, which contradicts to this condition. Hence, p(k1) = p(b). Similarly,
assuming that p(k2) > p(b) and taking k = k2 in (6.1), we come to a contradiction.
Thus, p(k2) = p(k1) = p(b), that is, min[a,b] p(v) = max[a,b] p(v). We conclude that

p(v) ≡ const on [a, b]. ��
Corollary 5. Suppose that

∫
sign−(v − k)(p(v) − p(k))dν(v) = 0 ∀k ∈ [a, b], (6.2)

where a = min supp ν < b. Then p(v) ≡ const on [a, b].
Proof. After the change v → −v, k → −k, requirement (6.2) reduces to the
following one: ∀k ∈ [−b,−a]

∫
sign+(v − k)(p(−v) − p(−k))d ν̃(v) =

−
∫

sign−(−v + k)(p(−v) − p(−k))d ν̃(v) = 0,

where ν̃ is the push-forward measure l∗ν under the map l(v) = −v. Notice that
−a = max supp ν̃. By Theorem 6 we conclude that p(−v) ≡ const on [−b,−a],
which is equivalent to the desired statement. ��
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Passing to a subsequence, we can suppose that the sequence of e.s. ur weakly
converges to a Youngmeasure ν̄t,x in the sense of relation (1.13). Let νrt,x , r ∈ N, be
a measure valued e.s. of (1.6) corresponding to the e.s. ur . Then the sequence νrt,x ,
r ∈ N, is bounded and, by Theorem 2, passing to a subsequence if necessary, we
can suppose that this sequence converges weakly as r → ∞ to a bounded measure
valued function νt,x ∈ MV(�). Since b∗νrt,x (u) = δ(u − ur (t, x)) then for each
p(u) ∈ C(R)

p(ur ) =
∫

p(b(v))dνrt,x (v) ⇀
r→∞

∫
p(b(v))dνt,x (v) weakly- ∗ in L∞(�).

This relation implies that the push-forward measure b∗(νt,x )(u) coincides with the
measure valued function ν̄t,x . Notice that, in correspondence with (1.13), the weak
limit function u(t, x) = ∫

ud ν̄t,x (u) = ∫
b(v)dνt,x (v).

Passing to the limit as r → ∞ in the entropy relation
∫

�

[∫
|b(v) − b(k)|dνrt,x (v) ft

+
∫

sign(v − k)(g(v) − g(k))dνrt,x (v) fx

]
dtdx � 0,

k ∈ R, f = f (t, x) ∈ C1
0(�), f � 0, we obtain the relation

∫

�

[∫
|b(v) − b(k)|dνt,x (v) ft

+
∫

sign(v − k)(g(v) − g(k))dνt,x (v) fx

]
dtdx � 0,

which shows that νt,x is a measure valued e.s. of (1.6).
Using compensated compactness arguments, we establish the formulated below

onemore important property of the limit measure valued e.s. νt,x . We consider even
the more general case of equations

ϕ0(v)t + ϕ1(v)x = 0, (6.3)

where ϕ0(v), ϕ1(v) are arbitrary continuous functions. Ameasure valued e.s. νt,x ∈
MV(�) of this equation is characterized by the usual Kruzhkov entropy relation:
for all k ∈ R

∂

∂t

∫
sign(v − k)(ϕ0(v) − ϕ0(k))dνt,x (v)

+ ∂

∂x

∫
sign(v − k)(ϕ1(v) − ϕ1(k))dνt,x (v) � 0 (6.4)

in D′(�). Taking k = ±R, R � ‖νt,x‖∞, we derive the identity

∂

∂t

∫
(ϕ0(v) − ϕ0(k))dνt,x (v) + ∂

∂x

∫
(ϕ1(v) − ϕ1(k))dνt,x (v)

= ∂

∂t

∫
ϕ0(v)dνt,x (v) + ∂

∂x

∫
ϕ1(v)dνt,x (v) = 0 in D′(�)
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for all k ∈ R. Putting this identity multiplied by ±1 together with (6.4), we get
another (equivalent) form of entropy relation (6.4)

∂

∂t

∫
ψ±
0k(v)dνt,x (v) + ∂

∂x

∫
ψ±
1k(v)dνt,x (v) � 0 in D′(�), (6.5)

where

ψ±
ik (v) = sign±(v − k)(ϕi (v) − ϕi (k)), i = 0, 1, k ∈ R.

Denote by co A the convex hull of a set A ⊂ R
n . In the case when A is a compact

subset of R, co A = [min A,max A].
Proposition 4. Let νrt,x , r ∈ N, be a sequence of measure valued e.s. of Eq. (6.3)
such that for a.e. (t, x) ∈ � and all r ∈ N the function ϕ0(v) is constant on
co supp νrt,x (in particular, this condition is always satisfied when the measure val-
ued functions νrt,x are regular). Suppose that this sequence converges weakly to a
measure valued function νt,x (in the sense of relation (1.14)). Then for a.e. (t, x) ∈
� there exists a nonzero vector (ξ0, ξ1) ∈ R

2 such that ξ0ϕ0(v)+ ξ1ϕ1(v) = const
on co supp νt,x .

Proof. Since νrt,x are measure valued e.s. of (6.3) then in view of (6.5) for all k ∈ R

the distributions

α±
kr

.= ∂

∂t

∫
ψ±
0k(v)dνrt,x (v) + ∂

∂x

∫
ψ±
1k(v)dνrt,x (v) � 0 in D′(�).

By the known representation of nonnegative distributions α±
kr = −μkr , where μkr

are nonnegative locally finite measures on �. We use also that α+
kr = α−

kr because

α+
kr − α−

kr = ∂

∂t

∫
ϕ0(v)dνrt,x (v) + ∂

∂x

∫
ϕ1(v)dνrt,x (v) = 0 in D′(�).

It is clear that μkr = 0 for |k| > M = sup
r

‖νrt,x‖∞ while for |k| � M

< μkr , f >=
∫

�

[∫
ψ±
0k(v)dνrt,x (v) ft +

∫
ψ±
1k(v)dνrt,x (v) fx

]
dtdx

� 2 max
|v|�M

(|ϕ0(v)| + |ϕ1(v)|)
∫

�

max(| ft |, | fx |)dtdx .= C f

for each f = f (t, x) ∈ C1
0(�), f � 0. Since the constants C f do not depend on

r , the sequences of nonnegative measures μkr , r ∈ N, are bounded in the space
Mloc(�) of locally finite measures in � endowed with the standard locally convex
topology. By the Murat interpolation lemma [14] the sequences of distributions
α±
kr , r ∈ N are pre-compact in the Sobolev space H−1

loc (�). Recall that this space
consists of distributions α on � such that for each f ∈ C∞

0 (�) the distribution
f α lies in the space H−1(R2), which is dual to the Sobolev space H1(R2). The
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topology of H−1
loc (�) is generated by seminorms ‖ f α‖H−1 . We fix k, l ∈ R and

denote

P+
kr =

∫
ψ+
0k(v)dνrt,x (v), Q+

kr =
∫

ψ+
1k(v)dνrt,x (v),

P−
lr =

∫
ψ−
0l (v)dνrt,x (v), Q−

lr =
∫

ψ−
1l (v)dνrt,x (v).

As we already demonstrated, the sequences

α+
kr = ∂

∂t
P+
kr + ∂

∂x
Q+

kr , α−
lr = ∂

∂t
P−
lr + ∂

∂x
Q−

lr

are precompact in H−1
loc (�). By the compensated compactness theory (see [13,25]),

the quadratic functional�(λ) = λ1λ4−λ2λ3, λ = (λ1, λ2, λ3, λ4) ∈ R
4, is weakly

continuous on the sequence (P+
kr , Q

+
kr , P

−
lr , Q−

lr ). By the definition of the measure
valued limit function νt,x we find that as r → ∞

P+
kr ⇀ P+

k
.=

∫
ψ+
0k(v)dνt,x (v), Q+

kr ⇀ Q+
k

.=
∫

ψ+
1k(v)dνt,x (v),

P−
lr ⇀ P−

l
.=

∫
ψ−
0l (v)dνt,x (v), Q+

lr ⇀ Q−
l

.=
∫

ψ−
1l (v)dνt,x (v)

weakly-∗ in L∞(�). By our assumption the function ϕ0(v) is constant on the
segment co supp νrt,x for all r ∈ N. Therefore, ψ+

0k(v) ≡ P+
kr , ψ

−
0l (v) ≡ P−

lr on this
segment. It follows from this observation that

P+
kr Q

−
lr − Q+

kr P
−
lr =

∫
(ψ+

0k(v)ψ−
1l (v) − ψ+

1k(v)ψ−
0l (v))dνrt,x (v) ⇀

r→∞∫
(ψ+

0k(v)ψ−
1l (v) − ψ+

1k(v)ψ−
0l (v))dνt,x (v) weakly- ∗ in L∞(�).

On the other hand, this limit equals P+
k Q−

l − Q+
k P−

l in view of the mentioned
above weak continuity of the functional �(λ). Hence, we arrive at the relation

∫
(ψ+

0k(v)ψ−
1l (v) − ψ+

1k(v)ψ−
0l (v))dνt,x (v) =

∫
ψ+
0k(v)dνt,x (v)

∫
ψ−
1l (v)dνt,x (v)

−
∫

ψ+
1k(v)dνt,x (v)

∫
ψ−
0l (v)dνt,x (v). (6.6)

Notice that ψ+
ik (v) = 0 for v � k while ψ−

il (v) = 0 for v � l, where i = 0, 1.
Therefore, the integrand in the left hand side of (6.6) is identically zero whenever
l � k. For all such pairs (k, l) we have

∫
ψ+
0k(v)dνt,x (v)

∫
ψ−
1l (v)dνt,x (v) =

∫
ψ+
1k(v)dνt,x (v)

∫
ψ−
0l (v)dνt,x (v).

(6.7)

Let�be the set of commonLebesguepoints of the functions (t, x) → ∫
p(v)dνt,x (v),

p(v) ∈ F , where F ⊂ C(R) is a countable dense set. Since the set F is countable,�
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is a set of full measure in�. By the density of F any point (t, x) ∈ � is a Lebesgue
points of the functions

∫
p(v)dνt,x (v) for all p(v) ∈ C(R). In particular, for each

fixed (t, x) ∈ � the measure νt,x is uniquely determined. Since identity (6.7) fulfils
a.e. in �, it holds at each point of �. We fix such a point (t, x) ∈ � and denote
ν = νt,x , [a, b] = co supp ν. We have to show that ξ0ϕ0(v) + ξ1ϕ1(v) = const on
[a, b] for some ξ = (ξ0, ξ1) ∈ R

2, ξ �= 0. If ϕ0(v) ≡ const on [a, b], we can take
ξ = (1, 0), thus completing the proof. So, assume that ϕ0(v) is not constant on
[a, b] and, in particular, that a < b. We define a smaller segment [a1, b1], where

a1 = max{c ∈ [a, b] | ϕ0(v) = ϕ0(a) ∀v ∈ [a, c]},
b1 = min{c ∈ [a, b] | ϕ0(v) = ϕ0(b) ∀v ∈ [c, b]}.

If a1 � b1 then ϕ0(v) ≡ const on [a, b], which contradicts to our assumption.
Therefore,a � a1 < b1 � b andwe can choose sucha2, b2 ∈ (a1, b1) thata2 < b2.
Observe that ϕ0(v) cannot be constant on segments [a, a2], [b2, b] (otherwise, a1 �
a2, b1 � b2, respectively). Therefore, there exist such l0 ∈ [a, a2], k0 ∈ [b2, b]
that ϕ0(l0), ϕ0(k0) are extreme values of ϕ0(u) on the segments [a, a2], [b2, b],
which are different from ϕ0(a), ϕ0(b), respectively. Then, the functions ψ+

0k0
(v),

ψ−
0l0

(v) keep their sign and different from zero in neighborhoods of points b, a,
respectively. This implies that

∫
ψ+
0k0

(v)dν(v) �= 0,
∫

ψ−
0l0

(v)dν(v) �= 0.

Then, by relation (6.7) (with νt,x = ν)
∫

ψ−
1l (v)dν(v) = c

∫
ψ−
0l (v)dν(v) ∀l ∈ [a, b2], (6.8)

where

c =
∫

ψ+
1k0

(v)dν(v)/

∫
ψ+
0k0

(v)dν(v).

By relation (6.7) again
∫

ψ+
1k(v)dν(v) = c1

∫
ψ+
0k(v)dν(v) ∀k ∈ [a2, b], (6.9)

where

c1 =
∫

ψ−
1l0

(v)dν(v)/

∫
ψ−
0l0

(v)dν(v).

Moreover, c1 = c in view of (6.8). Introducing the function p(v) = ϕ1(v)−cϕ0(v),
we can write equalities (6.8), (6.9) in the form

∫
sign−(v − l)(p(v) − p(l))dν(v) = 0 ∀l ∈ [a, b2];

∫
sign+(v − k)(p(v) − p(k))dν(v) = 0 ∀k ∈ [a2, b].
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ByLemma 3 and its Corollary 5, we conclude that p(v) is constant on each segment
[a, b2], [a2, b]. Since a2 < b2, these segments intersect and therefore p(v) =
−cϕ0(v) + ϕ1(v) ≡ const on [a, b] = co supp ν, ν = νt,x . This completes the
proof. ��

Notice, that the sequence νrt,x of measure valued e.s. of Eq. (1.6) satisfies the
requirements of Proposition 4 and we conclude that for a.e. (t, x) ∈ � there is
a vector ξ = (ξ0, ξ1) ∈ R

2, ξ �= 0, such that ξ0b(v) + ξ1g(v) ≡ const on
co supp νt,x . In the case of linearly non-degenerate flux Proposition 4 implies the
strong convergence of the sequence ur , even without the periodicity requirement.

Corollary 6. Assume that the functionϕ(u) is not affine onnondegenerate intervals.
Then the sequence ur → u as r → ∞ in L1

loc(�) (strongly), and u = u(t, x) is
an e.s. of (1.1).

Proof. By Proposition 4 for a.e. (t, x) ∈ � there is a vector ξ = (ξ0, ξ1) ∈ R
2,

ξ �= 0, such that ξ0b(v)+ξ1g(v) ≡ const on co supp νt,x . Let us show that for such
(t, x) the function b(v) ≡ const on the segment co supp νt,x . In fact, assuming the
contrary, we realize that the component ξ1 �= 0 and consequently g(v) = cb(v) +
const for allv ∈ co supp νt,x ,where c = −ξ0/ξ1. Thismeans thatϕ(u) = cu+const
on the interior of the non-degenerate interval {u = b(v)|v ∈ co supp νt,x }, but this
contradicts our assumption. We conclude that b(v) is constant (equaled u(t, x))
on co supp νt,x . Therefore, the measure valued function ν̄t,x = b∗νt,x is regular,
ν̄t,x (u) = δ(u − u(t, x)). In correspondence with Theorem 1 the sequence ur
converges to u(t, x) strongly. Moreover, like in the proof of Proposition 3, we
conclude that the limit function u = u(t, x) is an e.s. of (1.1). ��

Below, we prove Theorem 6 for an arbitrary jump continuous flux. Recall that
in this general case we use the periodicity requirement ν̄t,x+1 = ν̄t,x a.e. in �.

6.1. Proof of Theorem 6.

Let E be the set of full measure inR+, introduced in the proof of Proposition 1,
consisting of such t > 0 that (t, x) is a Lebesgue point of u(t, x) for almost
all x ∈ R. We remind ourselves that t ∈ E is a common Lebesgue point of all
functions

∫
R
u(t, x)ρ(x)dx , ρ(x) ∈ L1(R). We can choose a sequence tm ∈ E

such that tm → 0 as m → ∞, and u(tm, x) ⇀ u0(x) ∈ L∞(R) weakly-∗ in
L∞(R). It is clear that u0(x) is a periodic function, and that u(t, x) ⇀ u0(x) as
E � t → 0. Let ũ = ũ(t, x) be a unique (by Corollary 4) e.s. of (1.1), (1.9) with
initial function u0, and ν̃t,x be a corresponding measure valued e.s. of Eq. (1.6).
We are going to demonstrate that u = ũ. Clearly, this will complete the proof.
Applying the equalities

∂

∂t
u + ∂

∂x

∫
g(v)dνt,x (v) = ∂

∂t
ũ + ∂

∂x

∫
g(v)d ν̃t,x (v) = 0 in D′(�)
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to the test functions f = k−nα(t)β(x/k) and passing to the limit as k → ∞, we
derive, like in the proof of Theorem 5, that

d

dt

∫ 1

0
u(t, x)dx = d

dt

∫ 1

0
ũ(t, x)dx = 0 in D′(R+).

This implies that, for a.e. t > 0,
∫ 1

0
u(t, x)dx =

∫ 1

0
ũ(t, x)dx = I

.=
∫ 1

0
u0(x)dx, (6.10)

where we used the initial condition for e.s. ũ and the fact that ∀t ∈ E
∫ 1

0
u(t, x)dx =

∫ 1

0
u(tm, x)dx →

m→∞

∫ 1

0
u0(x)dx .

Moreover, it follows from the distributional relation ∂
∂t u + ∂

∂x

∫
g(v)dνt,x (v) = 0

that, for each t, τ ∈ E , t > τ and every ρ(x) ∈ C1
0(R),

∫

R

u(t, x)ρ(x)dx −
∫

R

u(τ, x)ρ(x)dx =
∫

(τ,t)×R

∫
g(v)dνs,x (v)ρ′(x)dsdx,

which implies, in the limit as τ = tm → 0, the relation
∫

R

u(t, x)ρ(x)dx −
∫

R

u0(x)ρ(x)dx =
∫

(0,t)×R

∫
g(v)dνs,x (v)ρ′(x)dsdx →

t→0
0.

Therefore, u(t, ·) ⇀ u0 as E � t → 0, that is, u0 is a weak trace of u(t, x). Since
in D′(�)

∂

∂t
(u − ũ) + ∂

∂x

(∫
g(v)dνt,x (v) −

∫
g(v)d ν̃t,x (v)

)
= 0,

there exists a Lipschitz function P = P(t, x) (a potential) such that

Px = u − ũ, Pt =
∫

g(v)d ν̃t,x (v) −
∫

g(v)dνt,x (v) in D′(�).

By the Lipschitz condition, this function admits continuous extension on the closure
�̄. Since P is defined up to an additive constant, we can assume that P(0, 0) = 0.
It is clear that Px (t, x) → Px (0, x)weakly inD′(R) as t → 0. Taking into account
that Px (t, x) = u(t, x)− ũ(t, x) ⇀ 0 as t → 0, running over a set of full measure,
we find that Px (0, x) = 0 and therefore P(0, x) ≡ P(0, 0) = 0. Further, by the
spatial periodicity of u − ũ and the condition

∫ 1

0
(u − ũ)(t, x)dx = 0

(following from (6.10)), we find that the function P(t, x) is spatially periodic as
well, P(t, x + 1) = P(t, x). Applying the doubling variables method [17] to the
pair of measure valued e.s. νt,x , ν̃t,x of Eq. (1.6), we arrive at the relation

∂

∂t

∫∫
|b(v) − b(w)|dνt,x (v)d ν̃t,x (w)
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+ ∂

∂x

∫∫
sign(v − w)(g(v) − g(w))dνt,x (v)d ν̃t,x (w) � 0 in D′(�). (6.11)

Since b(w) = ũ(t, x) on supp ν̃t,x and b∗νt,x = ν̄t,x , we can simplify the first
integral

∫∫
|b(v) − b(w)|dνt,x (v)d ν̃t,x (w) =

∫
|b(v) − ũ(t, x)|dνt,x (v)

=
∫

|u − ũ(t, x)|d ν̄t,x (u). (6.12)

We need the following key relation:
∫∫

|b(v) − b(w)|dνt,x (v)d ν̃t,x (w)Pt (t, x)

+
∫∫

sign(v − w)(g(v) − g(w))dνt,x (v)d ν̃t,x (w)Px (t, x) = 0 a.e. in �.

(6.13)

We remind ourselves that

Pt (t, x) =
∫

g(w)d ν̃t,x (w) −
∫

g(v)dνt,x (v)

= −
∫∫

(g(v) − g(w))dνt,x (v)d ν̃t,x (w),

Px (t, x) = u − ũ =
∫∫

(b(v) − b(w))dνt,x (v)d ν̃t,x (w),

and (6.13) can be written in the more symmetric form
∫∫

|b(v) − b(w)|dνt,x (v)d ν̃t,x (w)

∫∫
(g(v) − g(w))dνt,x (v)d ν̃t,x (w)

=
∫∫

(b(v) − b(w))dνt,x (v)d ν̃t,x (w)

×
∫∫

sign(v − w)(g(v) − g(w))dνt,x (v)d ν̃t,x (w). (6.14)

To prove (6.14), we introduce, like in the proof of Proposition 4, the set of full
measure � ⊂ � consisting of common Lebesgue points of the functions

(t, x) →
∫

p(v)dνt,x (v), (t, x) →
∫

p(v)d ν̃t,x (v), p(v) ∈ C(R).

For a fixed (t, x) ∈ � we then denote ν = νt,x , ν̃ = ν̃t,x , [a, b] = co supp ν,
[a1, b1] = co supp ν̃, and consider the following four cases:

(i) [a, b] ∩ [a1, b1] = ∅. In this case sign(v − w) ≡ s is constant on [a, b] ×
[a1, b1]. Therefore,
∫∫

|b(v) − b(w)|dν(v)d ν̃(w) = s
∫∫

(b(v) − b(w))dν(v)d ν̃(w),
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∫∫
sign(v − w)(g(v) − g(w))dν(v)d ν̃(w) = s

∫∫
(g(v) − g(w))dν(v)d ν̃(w)

and (6.14) follows;
(ii) [a, b] ⊂ [a1, b1]. Since b(w) is constant on [a1, b1], we find

∫∫
(b(v) − b(w))dν(v)d ν̃(w) =

∫∫
|b(v) − b(w)|dν(v)d ν̃(w) = 0 (6.15)

and (6.14) is trivial;
(iii) [a1, b1] ⊂ [a, b]. In correspondence with Proposition 4 for some nonzero

vector (ξ0, ξ1) the function ξ0b(v) + ξ1g(v) = const on [a, b]. If ξ1 = 0 then
b(v) ≡ const on [a, b], which implies (6.15), and (6.14) is trivially satisfied. For
ξ1 �= 0 we find that g(v) = cb(v) + const on [a, b], c = −ξ0/ξ1. Therefore,
∫∫

(g(v) − g(w))dν(v)d ν̃(w) = c
∫∫

(b(v) − b(w))dν(v)d ν̃(w),

∫∫
sign(v − w)(g(v) − g(w))dν(v)d ν̃(w) = c

∫∫
|b(v) − b(w)|dν(v)d ν̃(w),

and (6.14) follows;
(iv) The remaining case: a < a1 � b < b1 or a1 < a � b1 < b. We consider

only the former subcase a < a1 � b < b1, the latter subcase is treated similarly.
Since b(w) ≡ b(b1) on [a1, b1] while b(v) � b(b1) for all v ∈ [a, b], we find that

∫∫
|b(v) − b(w)|dν(v)d ν̃(w) = −

∫∫
(b(v) − b(w))dν(v)d ν̃(w). (6.16)

Besides, if b(v) ≡ const on [a, b] then b(v) ≡ const on [a, b1] = [a, b] ∪ [a1, b1]
and we again arrive at (6.15), which readily implies the desired relation (6.14).
Thus, assume that b(v) is not constant on [a, b]. In view of (6.16) relation (6.14)
will follow from the equality

∫∫
sign(v − w)(g(v) − g(w))dν(v)d ν̃(w)

= −
∫∫

(g(v) − g(w))dν(v)d ν̃(w). (6.17)

By Proposition 4 we have g(v) = cb(v) + const on [a, b], where c = −ξ0/ξ1
(remark that ξ1 �= 0, otherwise b(v) ≡ const on [a, b], which contradicts our
assumption). Therefore,

∫∫
sign(v − w)(g(v) − g(w))dν(v)d ν̃(w)

=
∫∫

[a,b]×[a1,b]
sign(v − w)(g(v) − g(w))dν(v)d ν̃(w)

−
∫∫

[a,b]×(b,b1]
(g(v) − g(w))dν(v)d ν̃(w)

= c
∫∫

[a,b]×[a1,b]
|b(v) − b(w)|dν(v)d ν̃(w)
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−
∫∫

[a,b]×(b,b1]
(g(v) − g(w))dν(v)d ν̃(w)

= −c
∫∫

[a,b]×[a1,b]
(b(v) − b(w))dν(v)d ν̃(w)

−
∫∫

[a,b]×(b,b1]
(g(v) − g(w))dν(v)d ν̃(w),

where we use that b(v) − b(w) = b(v) − b(b1) � 0 for v ∈ [a, b], w ∈ [a1, b].
On the other hand,

∫∫
(g(v) − g(w))dν(v)d ν̃(w)

=
∫∫

[a,b]×[a1,b]
(g(v) − g(w))dν(v)d ν̃(w)

+
∫∫

[a,b]×(b,b1]
(g(v) − g(w))dν(v)d ν̃(w)

= c
∫∫

[a,b]×[a1,b]
(b(v) − b(w))dν(v)d ν̃(w)

+
∫∫

[a,b]×(b,b1]
(g(v) − g(w))dν(v)d ν̃(w),

and (6.17) follows. This completes the proof of relation (6.14).
Let ρ(r) = r2/(1 + r2). Then the function q = ρ(P(t, x)) is nonnegative and

Lipschitz. Moreover, by the chain rule for Sobolev derivatives qt = ρ′(P)Pt , qx =
ρ′(P)Px . Applying (6.11) to the test function q f , where f = f (t, x) ∈ C∞

0 (�),
f � 0, we obtain the relation

∫

�

[BPt + GPx ] fρ′(P)dtdx +
∫

�

[B ft + G fx ]qdtdx � 0, (6.18)

where we denote

B = B(t, x) =
∫∫

|b(v) − b(w)|dνt,x (v)d ν̃t,x (w),

G = G(t, x) =
∫∫

sign(v − w)(g(v) − g(w))dνt,x (v)d ν̃t,x (w).

By (6.12)

B(t, x) =
∫

|u − ũ(t, x)|d ν̄t,x (u),

and it follows from the periodicity of theYoungmeasure ν̄t,x and the e.s. ũ(t, x) that
the function B(t, x) is spatially periodic. In view of relation (6.13) BPt +GPx = 0
a.e. on � and the first integral in (6.18) disappears. Therefore,

∫

�

[B ft + G fx ]qdtdx � 0.



78 Page 38 of 40 Arch. Rational Mech. Anal. (2023) 247:78

Taking in this relation f = k−1α(t)β(x/k), where α(t) ∈ C1
0(R+), β(y) ∈ C1

0(R)

are nonnegative functions,
∫

β(y)dy = 1, we arrive at the relation

k−1
∫

�

B(t, x)q(t, x)α′(t)β(x/k)dtdx

+k−2
∫

�

G(t, x)q(t, x)α(t)β ′(x/k)dtdx � 0.

In the limit, as k → ∞, the second term in this relation disappears, while the first
one is

k−1
∫

�

B(t, x)q(t, x)α′(t)β(x/k)dtdx →
k→∞

∫

R+×[0,1]
B(t, x)q(t, x)α′(t)dtdx,

where we utilize the x-periodicity of B(t, x)q(t, x), which allows us to apply [22,
Lemma 2.1]. As a result, we get

∫

R+×[0,1]
B(t, x)q(t, x)α′(t)dtdx � 0 ∀α(t) ∈ C1

0(R+), α(t) � 0.

This inequality means that

d

dt

∫ 1

0
B(t, x)q(t, x)dx � 0 in D′(R+),

and implies that, for t, τ ∈ E , t > τ ,

0 �
∫ 1

0
B(t, x)q(t, x)dx �

∫ 1

0
B(τ, x)q(τ, x)dx, (6.19)

where E ⊂ R+ is a set of full measure. Observe that 0 � q(τ, x) � |P(τ, x)| =
|P(τ, x)− P(0, x)| � Lτ , where L is a Lipschitz constant of P while the function
B(t, x) is bounded. Therefore,

∫ 1

0
B(τ, x)q(τ, x)dx →

E�τ→0
0

and it follows from (6.19) that
∫ 1
0 B(t, x)q(t, x)dx = 0. Since B, q � 0, we find

that Bq = 0 a.e. on �. Let E ⊂ � be the set where q = 0 ⇔ P = 0, that is,
E = P−1(0). By the known properties of Lipschitz functions, ∇P = 0 a.e. on E .
In particular, Px = u − ũ = 0 a.e. in E . On the other hand, for (t, x) ∈ � \ E the
function q > 0 and therefore B = 0 a.e. on this set. Since

B(t, x) =
∫∫

|b(v) − b(w)|dνt,x (v)d ν̃t,x (w) =
∫

|b(v) − ũ|dνt,x (v),

we find that b(v) = ũ on supp νt,x . In particular, again u(t, x) = ∫
b(v)dνt,x (v) =

ũ(t, x). We conclude that u = ũ a.e. in �, which completes the proof.
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