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Abstract

We show that particle trajectories for positive vorticity solutions to the 2D Euler
equations on fairly general bounded simply connected domains cannot reach the
boundary in finite time. This includes domains with possibly nowhere C1 bound-
aries and having corners with arbitrary angles, and can fail without the sign hypoth-
esis when the domain has large angle corners. Hence, positive vorticity solutions on
such domains are Lagrangian, and we also obtain their uniqueness if the vorticity
is initially constant near the boundary.

1. Introduction and Main Results

In this paper we study the Euler equations

∂t u + (u · ∇) u = −∇ p, (1.1)

∇ · u = 0 (1.2)

on simply connected bounded open domains� ⊆ R
2 with singular boundaries and

at times t > 0, with u being the fluid velocity and p its pressure. These PDE model
the motion of two-dimensional ideal fluids and it is standard to assume the no-flow
(or slip) boundary condition

u · n = 0 (1.3)

on (0,∞) × ∂� (pointwise when ∂� is C1), with n being the unit outer normal to
�. These PDE can be equivalently reformulated as the active scalar equation

∂tω + u · ∇ω = 0 (1.4)

on (0,∞) × �, with

ω := ∇ × u = ∂x1u2 − ∂x2u1
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being the vorticity of u. This of course means that the velocity in (1.4) is uniquely
determined from the vorticity via u = ∇⊥�−1ω, and we can then call ω a solution
rather than u.

A natural class of solutions are those with bounded ω [16], and we provide the
definition of weak solutions from this Yudovich class at the start of the next section.
We will only consider such solutions on the time interval (0,∞), when they are
called global weak solutions, because they exist for all initial values ω0 ∈ L∞(�)

on very general domains � [5] (nevertheless, our results equally apply to solutions
on finite time intervals (0, T )).

It is well known that the velocity u is spatially log-Lipschitz on each compact
K ⊆ � when ω is bounded (uniformly in time, see (2.1) below). Hence for each
x ∈ � there is a unique solution to the ODE

d

dt
Xx
t = u(t, Xx

t ) and Xx
0 = x (1.5)

on an interval (0, tx ) such that

tx := sup{t > 0 | Xx
s ∈ � for all s ∈ (0, t)}

(so if Xx
t reaches ∂�, then tx is the first such time); that is, {Xx

t }t∈[0,tx ) is the Euler
particle trajectory for the particle starting at x ∈ �. We note that while, a priori,
the ODE only holds for almost all t ∈ (0, tx ) (with Xx

t being continuous in time),
u can be shown to be continuous when ω is bounded, so that (1.5) in fact holds for
each t ∈ [0, tx ) (see Sect. 2.1 below). Since (1.4) is a transport equation, it is then
natural to ask whether general weak solutions are transported by u in the sense that
ω(t, Xx

t ) = ω0(x) for a.e. t ∈ (0,∞) and a.e. x ∈ � such that tx > t . This is
indeed the case [7, Lemma 3.1], but that does not a priori exclude the possibility of
vorticity creation and depletion on ∂� unless tx = ∞ for a.e. x ∈ � (then∇ ·u ≡ 0
shows that |�\{Xx

t | x ∈ � and tx > t}| = 0). If both these properties hold, so that
ω(t, ·) is the push-forward of ω0 via Xx

t for each t ∈ (0,∞), we call such ω

a Lagrangian solution. It is currently an open question whether non-Lagrangian
solutions can exist on (sufficiently singular) two-dimensional domains.

The existence of non-Lagrangian solutions would imply non-uniqueness of
weak solutions, but even if all weak solutions are Lagrangian on some domain,
this does not immediately yield their uniqueness. In fact, while weak solutions are
known to be unique on rectangles [2] and on domains that areC1,1 except at finitely
many corners that are all exact acute angle sectors [4,11], this remains an open
question on more singular domains. The main issue is that the velocity typically is
not log-Lipschitz near corners with angles greater than π

2 , which removes a crucial
ingredient from the proof of uniqueness. However, one can sometimes obtain a
partial result via [12, Proposition 3.2], which shows that a Lagrangian solution
remains unique as long as it remains constant near the singular portion of ∂�. In
particular, if ω0 is constant near ∂� and each Euler particle trajectory associated
with a corresponding solution ω can be shown to never reach ∂� (in which case
dist({Xx

t | x ∈ K }, ∂�) > 0 for any compact K ⊆ � and any t > 0), then ω is the
unique Lagrangian solution with initial value ω0, and if all weak solutions within
some class are proved to be Lagrangian, this will yield uniqueness of ω in that
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class. We note that a similar idea was used in [1] to prove uniqueness of solutions
on a sector in R

2 with an obtuse angle, for initial data ω0 ≥ 0 that are supported
in some sub-sector (and hence ω0 need not be constant near the obtuse corner). If
that sub-sector does not extend all the way to the left side of the sector, suppω(t, ·)
will be instantly carried away from the corner and any solution will vanish in its
vicinity for each t > 0, which [1] was then able to leverage to obtain uniqueness
of such solutions.

The above approach was successfully used by Lacave for solutions ω ≥ 0 on
domains that are C1,1 except at finitely many corners that are all exact sectors with
angles > π

2 [10], and later without the sign restriction on ω by Lacave and the
second author on domains that are C1,1 except at finitely many corners with angles
in (0, π) [12], as well as by both authors on domains with much lower boundary
regularity [7] (including infinitely many corners with angles in (0, π)). The latter
paper, in fact, contains a sharp criterion for the geometry of ∂� that guarantees
that no weak solution has a particle trajectory that reaches ∂� in finite time. This
criterion is slightly stronger than exclusion of cornerswith angles> π (in particular,
it is satisfied by all convex domains), and it was demonstrated in [9,12] that particle
trajectories for bounded ω on domains that do have such corners can reach ∂� in
finite time.

The examples in [9,12] all involve sign-changing solutions, so in view of [10]
it is natural to ask whether signed solutions can exhibit such singular behavior on
more irregular domains than those considered in [10]. Themain result of the present
paper is a negative answer to this question onmuchmore general domains, allowing
both infinitelymany corners without size or shape restrictions and considerably less
boundary smoothness in-between them. In particular, we show that positive (and
then obviously also negative) weak solutions on such domains are Lagrangian, with
particle trajectories approaching ∂� no faster than double-exponentially, and that
these solutions are also unique when ω0 is constant near ∂�.

Let � ⊆ R
2 be a bounded open Lipschitz domain with ∂� a Jordan curve, let

L := |∂�| be the arc-length of ∂�, and let σ : [0, L] → C be a counter-clockwise
arc-length parametrization of ∂� (so σ(L) = σ(0)). For any θ ∈ [0, L), the unit
forward tangent vector to � at σ(θ) is the unit vector

τ̄ (θ) := lim
φ→θ+

σ(φ) − σ(θ)

|σ(φ) − σ(θ)| , (1.6)

provided that the limit exists (we also let τ̄ (L) := τ̄ (0)). If it does for each θ ∈
[0, L), and τ̄ has one-sided limits everywhere on [0, L], then τ̄ is a regulated
function (see [3, p.145]) and the domain� is also called regulated (see [13, p.59]). In
that case τ̄ is right-continuous, and ifwe identifyR

2 withC and let arg(z) ∈ (−π, π ]
for z 
= 0, then

ᾱ(θ) := arg

(
τ̄ (θ)

limφ→θ− τ̄ (φ)

)
∈ (−π, π) (1.7)

for θ ∈ (0, L] is such that π − ᾱ(θ) is the interior angle of � at σ(θ). Note that
ᾱ(0) is not defined, and ᾱ(θ) ∈ (−π, π) for θ ∈ (0, L] because � is Lipschitz.
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Thus corners of � are precisely the points σ(θ) with θ ∈ (0, L] and ᾱ(θ) 
= 0,
and regulated domains clearly have countably many of them. If we also have that∑

θ∈(0,L] |ᾱ(θ)| < ∞, then

β̄c(θ) := ¯arg (τ̄ (θ)) −
∑
θ ′≤θ

ᾱ(θ ′) (1.8)

is a continuous function on [0, L] provided we let ¯arg(τ̄ (θ)) be the argument of
τ̄ (θ) plus an appropriate θ -dependent integer multiple of 2π (essentially, β̄c is the
argument of the curve that we obtain if we successively eliminate all corners σ(θ)

by rotating σ([θ, L]) around σ(θ) counterclockwise by angle α(θ)). We will also
assume that β̄c is Dini continuous on [0, L], that is, it has a modulus of continuity
m : [0, L] → [0,∞) with

∫ L
0

m(r)
r dr < ∞ (i.e., |β̄c(θ) − β̄c(θ

′)| ≤ m(|θ − θ ′|)
holds for all θ, θ ′ ∈ [0, L]). We recall that any Hölder modulus of continuity is
also a Dini modulus, whilem withm(r) = 1

| log r | for r ∈ (0, 1
2 ) is not. We can now

state our main result.

Theorem 1.1. Assume that a bounded open Lipschitz domain � ⊆ R
2 with ∂� a

Jordan curve is regulated. Let τ̄ be the forward tangent vector to � from (1.6), let
ᾱ be from (1.7), and assume that

∑
θ∈(0,L] |ᾱ(θ)| < ∞ and β̄c from (1.8) is Dini

continuous. Consider any 0 ≤ ω0 ∈ L∞(�) and let ω ≥ 0 from the Yudovich class
be any global weak solution to the Euler equations on� with initial value ω0 (such
ω is known to exist by [5]).

(i) We have tx = ∞ for all x ∈ � and {Xx
t | x ∈ �} = � for all t > 0, and there

is a constant Cω < ∞ such that for any ε > 0 and all large enough t > 0,

sup
dist(x,∂�)≥ε

dist(Xx
t , ∂�) ≥ exp(−eCωt ). (1.9)

Moreover,ω(t, Xx
t ) = ω0(x) for a.e. (t, x) ∈ (0,∞) × � (i.e.,ω is Lagrangian),

and u is continuous on [0,∞) × � and (1.5) holds pointwise.
(ii) If supp (ω0 − a) ∩ ∂� = ∅ for some a ≥ 0, then ω is the unique non-negative

weak solution with initial value ω0.

Remarks. 1. Hence the well-known double-exponential bound on the rate of ap-
proach of particle trajectories to the boundaries of smooth domains (going back to
[8,15]) still holds on the domains considered here, even though u can be far from
log-Lipschitz near ∂� and even unbounded at corners with angles > π . A partial
explanation is that ω ≥ 0 forces u to “circulate” around ∂� counter-clockwise,
thus keeping any particle trajectory near any corner for only a short time during
each passage through its neighborhood. However, our domains can even have ev-
erywhere singular boundaries (e.g., a dense set of corners), so all of ∂� could be
the set of potential trouble spots rather than just a few individual corners.

2. Part (i) of this result suggests a natural open question: is there any planar
domain � and a weak solution ω ≥ 0 to the Euler equation on it that has a particle
trajectory starting inside� and reaching ∂� in finite time? Of course, a second one
is whether such solutions, if they exist, can fail to be Lagrangian (this is currently
open even for unsigned ω).
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Let us briefly discuss our approach and its relation to [7,10,12]. In all four
papers, the central ingredient is a non-negative Lyapunov functional on (0,∞)×�

that vanishes only on (0,∞) × ∂� and its change on Euler particle trajectories
can be controlled sufficiently well to show that it can never become 0 unless it is 0
initially. Lacave first chose this functional to be the stream function � := −�−1ω

of the fluid velocity u [10] because its rate of change in the flow direction u is 0.
Whenω does not have a sign, then� can vanish inside�, and [7,12] therefore used
instead the time-independent function 1 − |T (x)|, with T : � → D a Riemann
mapping. In the present paper we consider again solutions ω ≥ 0, and so revisit the
idea of using the stream function. However, in Lemmas 2.2–2.5 we obtain sharper
and more general estimates on � and ∂t� than [10], which allows us to include
much more general domains, with arbitrary corners as well as considerably less
regular boundaries overall.

In the next section we state these estimates and use them to prove Theorem
1.1, leaving the proofs of the estimates and of a formula for ∂t� for the last two
sections.

2. Proof of Theorem 1.1

We complete the proof in three steps. We always assume that � satisfies the
hypotheses from Theorem 1.1, and (ω, u) is a weak solution to (1.1)–(1.3) on
(0,∞) × �, as defined next.

2.1. Weak solutions and space-time differentiability of the stream function

We consider here weak solutions to (1.1)–(1.3) from the Yudovich class
{
(ω, u) ∈ L∞ (

(0, ∞); L∞(�) × L2(�)
) ∣∣ ω = ∇ × u and (1.2)−(1.3) all hold weakly

}
,

where the weak form of (1.2)–(1.3) is∫
�

u(t, x) · ∇h(x) dx = 0 ∀h ∈ H1
loc(�) with∇h ∈ L2(�)

for a.e. t ∈ (0,∞) (see [5,6]). It is well-known that ∇ × u ∈ L∞((0,∞) × �)

implies that u is bounded and log-Lipschitz on any compact K ⊆ � at a.e. time
t ∈ (0,∞) (and uniformly in these times), after possibly redefining it on a measure
zero spatial set for each such t . If we also redefine u at the exceptional measure-zero
set of times (and also at t = 0), then for any compact K ⊆ � we will have

sup
t≥0

sup
x,y∈K

(
|u(t, x)| + |u(t, x) − u(t, y)|

|x − y|max{1,− ln |x − y|}
)

< ∞ (2.1)

(this is also shown in the proof of Lemma 2.1 below). Now let Xs,x
t for (s, x) ∈

[0,∞) × � be the unique continuous function satisfying

d

dt
Xs,x
t = u(t, Xs,x

t ) and Xs,x
s = x (2.2)
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a.e. on the maximal interval I s,x ⊆ [0,∞) (containing s) such that Xs,x
t ∈ � for all

t ∈ I s,x\∂ I s,x . That is, I s,x is the (backward and forward) life-span of the particle
trajectory Xs,x

t . Of course, X0,x
t = Xx

t and I 0,x = [0, tx ] (or [0,∞) if tx = ∞) for
all x ∈ �.

We say that (ω, u) from the Yudovich class is a weak solution to (1.1)–(1.3) on
(0, T ) × � (for some T ∈ (0,∞]) with some initial condition ω0 ∈ L∞(�), if

∫ T

0

∫
�

ω (∂tϕ + u · ∇ϕ) dxdt = −
∫

�

ω0(x)ϕ(0, x) dx ∀ ϕ ∈ C∞
c ([0, T ) × �) .

(2.3)

This is in fact the definition of a weak solution ω to the transport equation (1.4)
when u is some given vector field, but it is also equivalent to the relevant weak
velocity formulation of the Euler equations on � (see [6, Remark 1.2]). When
T = ∞, we call such solutions global. The existence of a global weak solution is
guaranteed by [5] for anyω0 ∈ L∞(�) on very general domains (while uniqueness
is still open on most singular domains), and so for the sake of notational simplicity
we will always assume that T = ∞.

Lemma 3.1 in [7] now shows that for a.e. t ∈ (0,∞), a weak solution (ω, u)

satisfiesω(t, Xx
t ) = ω0(x) for a.e. x ∈ � such that tx < t .Wecan therefore redefine

ω on a set of measure 0 so that ω(t, Xx
t ) = ω0(x) holds for all x ∈ � and all t ∈

(0, tx ). Let now s1 ∈ (0,∞) be any Lebesgue point of ω as a function from (0,∞)

to L1(�). Replacingϕ in (2.3) byϕψε, whereψε ∈ C∞([0,∞)) satisfiesχ[s1,∞) ≤
ψε ≤ χ[s1−ε,∞), and taking ε → 0 shows that (ω, u) is also a weak solution to
(1.1)–(1.3) on (s1,∞) × � with initial condition ω(s1, ·) (i.e., (2.3) holds with
(0, ω0) replaced by (s1, ω(s1, ·)). Doing the same with any ϕ ∈ C∞

c ((0,∞) × �)

and χ[0,s1] ≤ ψε ≤ χ[0,s1+ε] shows that (ω, u) is also a weak solution to (1.1)–(1.3)
on (0, s1)×�with terminal condition ω(s1, ·) (which becomes an initial condition
if we reverse the direction of time and replace u by−u). This and Lemma 3.1 in [7]
show that we can redefine ω on a set of measure 0 so that ω(t, Xs1,x

t ) = ω(s1, x)
holds for all x ∈ � and all t ∈ I s1,x\∂ I s1,x (clearly the values on the curve
(t, Xs1,x

t ) will not change for any x such that 0 ∈ I s1,x ). We can continue this way,
with s2, s3, . . . consecutively in place of s1, where {s j } j≥1 is dense in (0,∞). This
allows us to change ω on a measure zero set so that for all s ∈ [0,∞) (and with
ω(0, ·) := ω0) we will from now have

ω
(
t, Xs,x

t
) = ω(s, x) ∀x ∈ � and t ∈ I s,x \ ∂ I s,x . (2.4)

It is well known that since � is simply connected, ω from any weak solution
(ω, u) uniquely defines the velocity u via its stream function

�(t, ·) := −�−1ω(t, ·)
for all t ≥ 0 (the negative sign is chosen so that� ≥ 0 when ω ≥ 0). Namely, after
redefinition of u on a measure zero set we have u = −∇⊥�, where (v1, v2)

⊥ :=
(−v2, v1) and ∇⊥ := (−∂x2 , ∂x1). We can now use (2.4) to show that � is space-
time differentiable (we postpone the proof of this to the last section).
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Lemma 2.1. We have � ∈ C1([0,∞) × K ) for each compact K ⊆ �, and ∇� =
u⊥ and

∂t�(t, x) = − 1

2π

∫
�

( T (y) − T (x)

|T (y) − T (x)|2 − T (y) − T (x)∗
|T (y) − T (x)∗|2

)T
DT (y) u(t, y) ω(t, y)dy

(2.5)

for each (t, x) ∈ [0,∞) × �, where T : � → D is any Riemann mapping.

Note that while (2.5) formally follows from the definition of � and (1.4), we
will mainly need to know later that � is C1. Since Lemma 2.1 now shows that
u = −∇⊥� is continuous on [0,∞) × �, this version of u still satisfies (2.1).
Since u is uniquely determined by ω, from now on we will refer to ω as a weak
solution to (1.4) (with u := ∇⊥�−1ω), instead of to (ω, u) as a weak solution to
(1.1)–(1.3).

2.2. Formulation on the unit disc via Riemann mapping

Let next T : � → D be a Riemann mapping as in Lemma 2.1, extended
continuously to ∂�, and let S := T −1. We will now use T to rewrite u and ∂t� in
terms of integrals over D. We have

�(t, x) = −
[
�−1ω(t, ·)

]
(x) = − 1

2π

∫
�

ln
|T (x) − T (y)|

|T (x) − T (y)∗||T (y)| ω(t, y)dy,

(2.6)
and then

u(t, x) = −∇⊥�(t, x) = 1

2π
DT (x)T R(t, T (x)) (2.7)

for any (t, x) ∈ [0,∞) × �, where

R(t, ξ) :=
∫
D

(
ξ − z

|ξ − z|2 − ξ − z∗

|ξ − z∗|2
)⊥

det DS(z) ω(t,S(z))dz (2.8)

for (t, ξ) ∈ [0,∞) × D. We note that the second equality in (2.7) holds because
T = (T 1, T 2) is analytic, which means that

DT =
(

∂x1T 1 ∂x2T 1

∂x1T 2 ∂x2T 2

)
=

(
∂x1T 1 ∂x2T 1

−∂x2T 1 ∂x1T 1

)
(2.9)

and so for any v ∈ R
2 we have

((
∂x1T 1 ∂x1T 2

∂x2T 1 ∂x2T 2

)
v

)⊥
=

(
∂x2T 2 −∂x2T 1

−∂x1T 2 ∂x1T 1

)
v⊥,

Lemma 2.1 and u · ∇� ≡ 0 now yield for any x ∈ � and t ∈ [0, tx ),



84 Page 8 of 22 Arch. Rational Mech. Anal. (2023) 247:84

d

dt
�(t, Xx

t ) = − 1

2π

∫
�

( T (y) − T (Xx
t )

|T (y) − T (Xx
t )|2

− T (y) − T (Xx
t )

∗

|T (y) − T (Xx
t )

∗|2
)T

DT (y) u(t, y) ω(t, y)dy

(the parenthesis is replaced by T (y)
|T (y)|2 when T (Xx

t ) = 0). If we substitute (2.7)
here and use

DT (y)DT (y)T = det DT (y) I2 (2.10)

(note that det DT = (∂x1T 1)2 + (∂x2T 1)2 > 0), after a change of variables we
obtain

d

dt
�(t, Xx

t ) = − 1

4π2

∫
D

(
z − T (Xx

t )

|z − T (Xx
t )|2 − z − T (Xx

t )∗
|z − T (Xx

t )∗|2
)

· R(t, z) ω(t,S(z))dz.

Finally, from this and the identity∣∣∣∣ z

|z|2 − w

|w|2
∣∣∣∣ = |z − w|

|z| |w| (2.11)

for all z, w ∈ C \ {0}, we see that (with the fraction below replaced by 1
|z| when

T (Xx
t ) = 0)∣∣∣∣ ddt �(t, Xx

t )

∣∣∣∣ ≤ 1

4π2

∫
D

|T (Xx
t ) − T (Xx

t )
∗|

|z − T (Xx
t )| |z − T (Xx

t )
∗| |R(t, z)| |ω(t,S(z))|dz.

(2.12)
It will also be convenient to re-parametrize the forward tangent vector τ̄ to �

to

τ(θ) := lim
φ→θ+

S(eiφ) − S(eiθ )

|S(eiφ) − S(eiθ )| ,

with θ ∈ R. Then of course τ(θ) = τ̄ (�(eiθ )) for all θ ∈ R, where � :=(
σ |(0,L]

)−1 ◦ S. We now let {θ̄ j } j≥1 ⊆ (0, L] be the set of all points such that
� has a corner at σ(θ̄ j ), and define

θ j := π + arg
(
−�−1(θ̄ j )

)
∈ (0, 2π ] and α j := ᾱ(θ̄ j )

π
∈ (−1, 0) ∪ (0, 1)

for j ≥ 1. That is, � has corners at {S(eiθ j )} j≥1 with angles {π − πα j } j≥1. Then
we define

βc(θ) := β̄c(�(eiθ )) and βd(θ) := π
∑
θ j≤θ

α j

for θ ∈ (0, 2π ] and extend these two functions to R so that for all θ ∈ R we have

βc(θ + 2π) = βc(θ) + 2πκ and βd(θ + 2π) = βd(θ) + 2π(1 − κ),

where κ := β̄c(L)−β̄c(0)
2π (which means that

∑
θ∈(0,L] ᾱ(θ) = 2π(1 − κ)). Then of

course βc is continuous, βd is piecewise constant, and β := βc+βd is the argument
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of τ in the sense that eiβ(θ) = τ(θ) for all θ ∈ R (we also have β(θ + 2π) =
β(θ) + 2π ).

Lemma 1 in [14] shows that � and �−1 are both Hölder continuous, which
means that βc is Dini continuous because β̄c is. Indeed, if m̄ is a modulus of
continuity for β̄c, then βc has modulus of continuity m(r) := m̄(Crγ ) for some
C, γ > 0, and a simple change of variables shows that

∫ 1
0

m̄(Crγ )
r dr < ∞ if and

only if
∫ 1
0

m̄(r)
r dr < ∞.

We next state the following important formula for det DS:

Lemma 2.2. We have

det DS(z) = det DS(0)� j≥1|z − eiθ j |−2α j

exp

(
− 2

π

∫ 2π

0
Im

z

eiθ − z
(βc(θ) − κθ) dθ

)

for each z ∈ D (this holds even without βc being Dini continuous), as well as

sup
z∈D

∣∣∣∣
∫ 2π

0
Im

z

eiθ − z
(βc(θ) − κθ) dθ

∣∣∣∣ < ∞.

Proof. Since S is analytic, det DS(z) = |S ′(z)|2, where S ′ is the complex deriva-
tive when S is considered as a function on C. Since � is regulated, Theorem 3.15
in [13] shows that

S ′(z) = |S ′(0)| exp
(

i

2π

∫ 2π

0

eiθ + z

eiθ − z

(
β(θ) − θ − π

2

)
dθ

)

for all z ∈ D, and from
∫ 2π
0

eiθ+z
eiθ−z

dθ = 2π ∈ R and Im eiθ+z
eiθ−z

= 2Im z
eiθ−z

we get

det DS(z) = det DS(0) exp

(
− 2

π
Im

∫ 2π

0

z

eiθ − z
(β(θ) − θ) dθ

)
(2.13)

(note that β(θ) − θ is 2π -periodic). We split the integral into two parts, one of
which is∫ 2π

0

z

eiθ − z
(βd(θ) − (1 − κ)θ) dθ = i

∫ 2π

0
ln(1 − ze−iθ ) d (βd(θ) − (1 − κ)θ) ,

where we used integration by parts. Since
∫ 2π
0 ln(1 − ze−iθ )dθ = ln 1 = 0, it

follows that

exp

(
− 2

π
Im

∫ 2π

0

z

eiθ − z

(
βd(θ) − (1 − κ)θ

)
dθ

)

= exp

(
− 2

π

∫ 2π

0
ln |eiθ − z| dβd(θ)

)

= � j≥1|z − eiθ j |−2α j .

This and (2.13) prove the first claim.
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Let β̃(θ) = βc(θ)− κθ , which is also 2π -periodic. If βc has a Dini modulus of
continuity m, then β̃ has Dini modulus m̃(r) := m(r)+ |κ|r . So for any z ∈ D and

θz := arg(z)we obtain using Im z
ei(−θ+θz )−z

= −Im z
ei(θ+θz )−z

and
∣∣∣ z
ei(θ+θz )−z

∣∣∣ ≤ π
2|θ |

for any θ ∈ R the estimate

∣∣∣∣
∫ 2π

0
Im

z

eiθ − z
β̃(θ)dθ

∣∣∣∣ =
∣∣∣∣
∫ π

−π

Im
z

ei(θ+θz) − z

(
β̃(θ + θz) − β̃(θz)

)
dθ

∣∣∣∣
≤

∣∣∣∣π2
∫ π

−π

m̃(|θ |)
|θ | dθ

∣∣∣∣ .
Since this is finite, the second claim follows. ��

In view of (2.12), (2.8), and this lemma, of particular concern to us will be
corners corresponding to α j > 0 (i.e., those with angles less than π ; note that
the velocity u on � in fact vanishes at these, while it may be infinite at the other
corners). We therefore let α+

j := max{α j , 0} and define β+
d (θ) := π

∑
θ j≤θ α+

j for

all θ ∈ (0, 2π ].We then extendβ+
d toR so thatβ+

d (θ+2π) = β+
d (θ)+π

∑
j≥1 α+

j ,

and choose δ ∈ (0, 1
8 ] such that

β+
d (θ + 3δ) − β+

d (θ − 3δ)

π
≤ α∗ := 1 + max j≥1 α+

j

2
(2.14)

for each θ ∈ R. Note that α∗ ∈ [ 12 , 1) because max j≥1 α+
j < 1 by

∑
j≥1 |α j | < ∞.

2.3. Estimates on the stream function and conclusion of the proof

We now state the following three crucial estimates, whose proofs we postpone
to the next section. In them, constants C� and C ′

� only depend on �.

Lemma 2.3. There is C� > 0 such that for each (t, ξ) ∈ [0,∞) × D we have

|�(t,S(ξ))| ≤ C�‖ω(t, ·)‖L∞(1 − |ξ |)2min{1−α∗,1/4}.

Lemma 2.4. If ω ≥ 0, then for each (t, ξ) ∈ [0,∞) × D we have

�(t,S(ξ)) ≥ 1 − |ξ |
100π

∫
D

(1 − |z|) det DS(z)

max{|z − ξ |, 1 − |ξ |}2 ω(t,S(z))dz.

Lemma 2.5. There is C ′
� > 0 such that for each (t, ξ) ∈ [0,∞) × (D\B(0, 3

4 ))

we have
∫
D

|R(t, z)|
|z − ξ ||z − ξ∗|dz ≤ C ′

�| ln(1 − |ξ |)|
(∫

D

(1 − |z|) det DS(z)

max{|z − ξ |, 1 − |ξ |}2 |ω(t,S(z))|dz + ‖ω(t, ·)‖L∞
)

.
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Remarks. 1.Lemmas2.3 and2.4 are sharper andmore general versions ofLemmas
3.1 and 3.2 in [10]. Our use of Lemma 2.5 to estimate ∂t� is analogous to the use
of Proposition 2.4 and Lemma 3.5 in [10], but instead of bounding |R| above by
essentially ‖ω‖L∞ and leaving ω as a function, we bound ω by ‖ω‖L∞ and leave
|R| in (2.12). This is because for the domains � considered here, R can blow up at
∂D (see (4.2) below). In particular, this happens at corners with angles ≤ π

2 , which
is why such corners had to be excluded in [10].

2. Lemma 2.5 easily extends to ξ ∈ B(0, 3
4 ) but we will not need this.

From now assume also that ω ≥ 0. Since (1−|z|) det DS(z) is bounded below
by a positive constant on B(0, r) for any r < 1 due to Lemma 2.2, for any a > 0
there is ca > 0 such that∫

D

(1 − |z|) det DS(z)

max{|z − ξ |, 1 − |ξ |}2 |ω(t,S(z))|dz ≥ ca‖ω(t, ·)‖L∞

whenever ‖ω(t, ·)‖L1 ≥ a‖ω(t, ·)‖L∞ . From this, the above lemmas, and (2.12)
it follows that when |T (Xx

t )| ≥ 3
4 (in which case also |T (Xx

t ) − T (Xx
t )

∗| ≤
3(1 − |T (Xx

t )|)), then we have∣∣∣∣ ddt �(t, Xx
t )

∣∣∣∣ ≤ 75C ′
�

π

1 + ca
ca

‖ω(t, ·)‖L∞| ln(1 − |T (Xx
t )|)|�(t, Xx

t )

≤ Ca,�‖ω(t, ·)‖L∞�(t, Xx
t )

∣∣∣∣ln �(t, Xx
t )

C�‖ω(t, ·)‖L∞

∣∣∣∣ , (2.15)

where Ca,� > 0 is some constant that only depends on (a,�).
For each ε > 0 let �ε := �\⋃

x∈∂� B(x, ε). For each ε > 0 such that
�2ε 
= ∅, let

Tε := dist(�2ε,� \ �ε)‖u‖−1
L∞((0,∞)×�ε)

> 0.

Then Xx
t ∈ �ε for all (t, x) ∈ [0, Tε]×�2ε, and therefore (2.4) yields ω(t, Xx

t ) =
ω0(x) for all (t, x) ∈ [0, Tε] × �2ε. Taking ε → 0 we obtain

‖ω0‖L∞ ≤ lim inf
t→0

‖ω(t, ·)‖L∞ ≤ ‖ω‖L∞ ,

and then from ∇ · u ≡ 0 also

‖ω(t, ·)‖L1 ≥ ‖ω0‖L1(�2ε)
≥ ‖ω0‖L1 −|�\�2ε| ‖ω0‖L∞ ≥ ‖ω0‖L1 −|�\�2ε| ‖ω‖L∞

(2.16)

for each ε > 0 and all t ∈ [0, Tε].
If now ω0 
≡ 0, let a := 1

2‖ω0‖L1‖ω‖−1
L∞ > 0 and let ε > 0 be such that

|� \ �2ε| ≤ a. From (2.16) we obtain

‖ω(t, ·)‖L1 ≥ a‖ω‖L∞ ≥ a‖ω(t, ·)‖L∞

for all t ∈ [0, Tε]. Thus (2.15) yields∣∣∣∣ ddt �(t, Xx
t )

∣∣∣∣ ≤ Ca,�‖ω‖L∞�(t, Xx
t )

∣∣∣∣ln �(t, Xx
t )

C�‖ω‖L∞

∣∣∣∣ (2.17)



84 Page 12 of 22 Arch. Rational Mech. Anal. (2023) 247:84

for all (t, x) ∈ [0, Tε] × � such that |T (Xx
t )| ≥ 3

4 . This and Gronwall’s inequality
show that Xx

t ∈ � for all (t, x) ∈ [0, Tε] × �. Therefore ω(t, Xx
t ) = ω0(x) for all

(t, x) ∈ [0, Tε] × �, and in particular, ‖ω(Tε, ·)‖L1 = ‖ω0‖L1 . We can therefore
repeat this argument with the same a and ε on the time interval [Tε, 2Tε], then on
[2Tε, 3Tε], etc.

It follows thatω is aLagrangian solution to (1.4) on (0,∞)×� and‖ω(t, ·)‖L p =
‖ω0‖L p for all (t, p) ∈ [0,∞) × [1,∞]. Integrating (2.17) shows that there is a
constant C ′

ω (depending on ‖ω0‖L∞ , ‖ω0‖L1 ,�) such that for each ε > 0 and all
large enough t > 0 we have�(t, Xx

t ) ≥ exp(−eC
′
ωt )whenever�(0, x) ≥ ε. Since

Lemma 2.3 yields C ′′
ω > 0 such that �(t,S(ξ)) ≤ C ′′

ω(1 − |ξ |)2min{1−α∗,1/4} for
all (t, ξ) ∈ [0,∞) × D, and T is Hölder continuous on � (see [14, Lemma 1]),
this shows (1.9). Using also that (1.5) can clearly be solved backwards in time with
the same estimate on the boundary approach rate, we find that {Xx

t | x ∈ �} = �,
thus finishing the proof of Theorem 1.1(i) for ω0 
≡ 0.

If ω0 ≡ 0, then ω ≡ 0 is clearly a Lagrangian solution to (1.4) on (0,∞) × �

with Xx
t = x , which satisfies Theorem 1.1(i) except for (1.9). If ω ≥ 0 is a

different global weak solution, then the above arguments with time 0 replaced by
any T ′ > 0 such that ω(T ′, ·) 
≡ 0 show that for all t ∈ (T ′,∞), we have that
‖ω(t, ·)‖L1 = ‖ω(T ′, ·)‖L1 , but then ‖ω(t, ·)‖L1 must be constant on the time
interval (T ′′,∞), where T ′′ ∈ [0,∞) is the infimum of times t with ω(t, ·) 
≡ 0
(and that constant is then positive). This contradicts the continuity of ω as an
L1(�)-valued function of time because ω(0, ·) = ω0 ≡ 0 (note that, as in [12],
the boundedness of ω shows that u is uniformly in time bounded on any compact
subset of �, which, together with (2.4), yields ω ∈ C([0,∞); L p(�)) for any
p ∈ [1,∞)).

Theorem 1.1(ii) follows immediately from Theorem 1.1(i) and Proposition 3.2
in [12]. We note that the latter result shows that Lagrangian solutions are unique as
long as they remain constant near ∂� (more specifically, near the non-C2,γ portion
of ∂� for some γ > 0).

3. Proofs of Lemmas 2.3–2.5

Let us first state an auxiliary technical result.

Lemma 3.1. Let β be a (positive) measure on R and let I := (θ∗ − 2δ, θ∗ + 2δ)
for some θ∗ ∈ R and δ ∈ (0, π

2 ]. Let H ⊆ D be an open region such that if

rei(θ
∗+φ) ∈ H for some r ∈ (0, 1) and |φ| ≤ π , then rei(θ

∗+φ′) ∈ H whenever
|φ′| ≤ |φ| (i.e., H is symmetric and angularly convex with respect to the line
connecting 0 and eiθ

∗
). If F : [0,∞) → [0,∞) is non-decreasing and convex,

then

∫
H

f (z)F

(
g(z) + 1

β(I )

∫
I
h(|z − eiθ |)dβ(θ)

)
dz ≤

∫
H

f (z)F
(
g(z) + h(|z − eiθ

∗ |)
)
dz
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holds for any non-increasing h : (0,∞) → [0,∞) and non-negative f, g ∈ L1(H)

such that f (rei(θ
∗+φ′)) ≥ f (rei(θ

∗+φ)) and g(rei(θ
∗+φ′)) ≥ g(rei(θ

∗+φ))whenever
r ∈ (0, 1) and |φ′| ≤ |φ|.

The proof of this result is identical to that of Lemma 4.1 in [7], which was stated
with F(s) = sα for some α ≥ 1, because the only properties of F used in it were
that it is non-decreasing and convex. We will be using it here with F(s) := es ,
g ≡ 0, and h(s) := 2β(I ) ln+ 2

s , so that for any β, I, H, f as above we have

∫
H

f (z) exp

(
−2

∫
I
ln |z − eiθ |dβ(θ)

)
dz ≤

∫
H

f (z)|z − eiθ
∗ |−2β(I )dz. (3.1)

Since Lemmas 2.3–2.5 are all stated at a single time t , we will drop t from our
notation in the proofs below. Hence we will have ω(x),�(x), and R(z). For z ∈ D

we will also denote

�(z) := det DS(z) |ω(S(z))| ≥ 0.

We note that ∫
D

�(z)dz ≤ ‖ω‖L∞
∫
D

det DS(z)dz = |�| ‖ω‖L∞ , (3.2)

and that constants C1,C2, . . . below will always be allowed to depend (only) on
�.

3.1. Proof of Lemma 2.4

We have

|ξ − z|2
|ξ − z∗|2|z|2 = 1 − |ξ z − z∗z|2 − |ξ − z|2

|ξ − z∗|2|z|2

= 1 − (|ξ |2|z|2 − 2Re (ξ z̄) + 1) − (|ξ |2 − 2Re (ξ z̄) + |z|2)
|ξ − z∗|2|z|2

= 1 − (1 − |ξ |2)(1 − |z|2)
|ξ − z∗|2|z|2 (3.3)

for ξ, z ∈ D with z 
= 0, which also means that |ξ−z|2
|ξ−z∗|2|z|2 ∈ (0, 1) when z 
= 0, ξ .

Hence

− ln
|ξ − z|

|ξ − z∗||z| = −1

2
ln

(
1 − (1 − |ξ |2)(1 − |z|2)

|ξ − z∗|2|z|2
)

≥ 1

2

(1 − |ξ |2)(1 − |z|2)
|ξ − z∗|2|z|2 ,

and so for each ξ ∈ D we have

�(S(ξ)) ≥ 1

4π

∫
D

(1 − |ξ |2)(1 − |z|2)
|ξ − z∗|2|z|2 �(z)dz ≥ 1 − |ξ |

4π

∫
D

(1 − |z|)
|ξ − z∗|2|z|2 �(z)dz.
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Given any z, ξ ∈ D, letM := max{|z−ξ |, 1−|ξ |}. Then 1−|z| ≤ 1−|ξ |+|z−ξ | ≤
2M , so

|ξ − z∗| |z| ≤ |ξ − z| + |z − z∗| |z| = |z − ξ | + 1 − |z|2 ≤ |z − ξ | + 2(1 − |z|) ≤ 5M

when z 
= 0, and the result follows.

3.2. Proof of Lemma 2.3

Identity (3.3) and− ln(1−r) ≤ ( r
1−r )

1
2 for r ∈ [0, 1) (equality holds for r = 0

and the right-hand side has a larger derivative on (0, 1)) show that

− ln
|ξ − z|

|ξ − z∗||z| ≤ 1

2

⎛
⎝

(1−|ξ |2)(1−|z|2)
|ξ−z∗|2|z|2

|ξ−z|2
|ξ−z∗|2|z|2

⎞
⎠

1
2

≤ (1 − |ξ |) 1
2 (1 − |z|) 1

2

|ξ − z| .

Hence it suffices to show that there is C1 > 0 such that

∫
D

(1 − |z|) 1
2

|z − ξ | �(z)dz ≤ C1‖ω‖L∞(1 − |ξ |)2α̂− 1
2 , (3.4)

where α̂ := min{1 − α∗, 1
4 } (note that 2α̂ − 1

2 ≤ 0). From (3.2) we see that it in
fact suffices to replace D by A1 := B(ξ, δ) ∩ D in (3.4).

Let us decompose A1 into A2 := B(ξ, ε)∩A1 with ε := 1−|ξ |
2 , A3 := B(ξ̃ , ε)∩

A1 with ξ̃ := ξ
|ξ | , and A4 := A1\(A2 ∪ A3). Now Lemma 2.2 and (3.1) with H :=

A1, I := (arg(ξ) − 2δ, arg(ξ) + 2δ), f (z) := (1−|z|)1/2
|z−ξ | , and β := ∑

θ j∈I α+
j δθ j ,

where δθ j is the Dirac mass at θ j , yield

∫
A1

(1 − |z|) 1
2

|z − ξ | �(z)dz

≤ C2||ω||L∞
∫
A1

(1 − |z|) 1
2

|z − ξ | �θ j∈I |z − eiθ j |−2α+
j dz

≤ C2||ω||L∞
∫
A1

(1 − |z|) 1
2

|z − ξ | |z − ξ̃ |−2α∗dz

≤ C2||ω||L∞

(∫
A2

ε
1
2−2α∗

|z − ξ |dz +
∫
A3

|z − ξ̃ | 12−2α∗

ε
dz +

∫
A4

33|z − ξ |− 1
2−2α∗dz

)

≤ C3||ω||L∞ε
3
2−2α∗ ≤ 2C3||ω||L∞(1 − |ξ |)2α̂− 1

2

because (2.14) shows that
∑

θ j∈I α+
j ≤ α∗ < 1. This therefore finishes the proof

of (3.4).
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3.3. Proof of Lemma 2.5

First integrate over A0 := D\B(ξ, δ). Then (2.11), (3.2) and

|z − z̃∗| ≥ |z̃∗| − 1 ≥ |z̃ − z̃∗|
2

≥ 1 − |z̃| (3.5)

for any z, z̃ ∈ D yield∫
A0

|R(z)|
|z − ξ ||z − ξ∗|dz ≤ 1

δ2

∫
A0

∫
D

|z̃ − z̃∗|
|z − z̃||z − z̃∗|�(z̃)dz̃dz

≤ 2

δ2

∫
D

∫
A0

dz

|z − z̃|�(z̃)dz̃

≤ 4π

δ2

∫
D

�(z̃)dz̃

= 4π |�|
δ2

||ω||L∞ .

Thus it remains to integrate over A1 := B(ξ, δ) ∩ D. From (3.5), |ξ | − δ ≥ 5
8 , and

(3.2) we have∫
A1

1

|z − ξ ||z − ξ∗|
∫
B(0,1/2)

|z̃ − z̃∗|
|z − z̃||z − z̃∗|�(z̃)dz̃dz ≤ C1| ln(1−|ξ |)| ||ω||L∞,

(3.6)
where we also used that with Bξ := B(ξ,

|ξ−ξ ′|
2 ) ∩ D and Bξ ′ := B(ξ ′, |ξ−ξ ′|

2 ) ∩ D

we have
∫
D

dz

|z − ξ ||z − ξ ′| ≤ 3
∫
D\(Bξ ∪Bξ ′ )

dz

|z − ξ |2 + 4

|ξ − ξ ′|
∫
Bξ

dz

|z − ξ | ≤ 6π ln+
1

|ξ − ξ ′| + 50

(3.7)

for any ξ, ξ ′ ∈ C.
We now let ε := 1 − |ξ | and split A1 into A2 := B(ξ, ε

4 ) and A3 := A1\A2.
We start with A2, and let E1 := B(ξ, ε

2 ) and E2 := D\(B(0, 1
2 ) ∪ B(ξ, ε

2 )). We
also denote M(ξ, z) := max{|z − ξ |, 1− |ξ |}. When (z, z̃) ∈ A2 × E1, then (3.5),
|z − ξ∗| ≥ ε, and (3.7) show that

∫
A2

1

|z − ξ ||z − ξ∗|
∫
E1

|z̃ − z̃∗|
|z − z̃||z − z̃∗|�(z̃)dz̃dz ≤ 2

ε

∫
E1

�(z̃)
∫
A2

dz

|z − ξ ||z − z̃|dz̃

≤ C2

ε

∫
E1

�(z̃) | ln |z̃ − ξ || dz̃.

From Lemma 2.2 and (2.14) we see that det DS(z̃) ≤ C3(1 − |z̃|)−2 for some C3
and all z̃ ∈ D, and hence
∫
B(ξ,ε2)

�(z̃) | ln |z̃ − ξ || dz̃ ≤ 4C3ε
−2||ω||L∞

∫
B(ξ,ε2)

| ln |z̃ − ξ || dz̃ ≤ C4||ω||L∞ε2| ln ε|.
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From the last two estimates and M(ξ, z̃) = ε ≤ 2(1−|z̃|) for z̃ ∈ E1 it now follows
that ∫

A2

1

|z − ξ ||z − ξ∗|
∫
E1

|z̃ − z̃∗|
|z − z̃||z − z̃∗|�(z̃)dz̃dz

≤ C2C4||ω||L∞ε| ln ε| + C2| ln ε|
ε

∫
E1

�(z̃)dz̃

≤ C5| ln ε|
(∫

E1

1 − |z̃|
M(ξ, z̃)2

�(z̃)dz̃ + ||ω||L∞
)

.

Moreover, for all (z, z̃) ∈ A2 × E2 we have |z − z̃∗| ≥ |z − z̃| ≥ |z̃−ξ |
2 ≥ 1−|ξ |

4
and |z̃ − z̃∗| ≤ 3(1 − |z̃|), therefore

∫
A2

1

|z − ξ ||z − ξ∗|
∫
E2

|z̃ − z̃∗|
|z − z̃||z − z̃∗|�(z̃)dz̃dz

≤ 48
∫
E2

1 − |z̃|
M(ξ, z̃)2

�(z̃)dz̃
∫
A2

dz

|z − ξ ||z − ξ∗|
≤ C6| ln(1 − |ξ |)|

∫
E2

1 − |z̃|
M(ξ, z̃)2

�(z̃)dz̃,

where we also used (3.7). The last two estimates and (3.6) show that

∫
A2

|R(z)|
|z − ξ ||z − ξ∗|dz ≤ (C1 + C5 + C6)| ln(1 − |ξ |)|

(∫
D

1 − |z|
M(ξ, z)2

�(z)dz + ||ω||L∞
)

,

so it remains to integrate over A3.
Let F1 := B(ξ, ε

8 ), F2 := D\(B(0, 1
2 ) ∪ B(ξ, 2δ)), and F3 := (B(ξ, 2δ) ∩

D)\B(ξ, ε
8 ). Then for all (z, z̃) ∈ A3 × F1 we have |z − z̃∗| ≥ |z − z̃| ≥ 1−|ξ |

8 ≥
|z̃ − ξ | and |z̃ − z̃∗| ≤ 3(1 − |z̃|), which together with (3.7) yields

∫
A3

1

|z − ξ ||z − ξ∗|
∫
F1

|z̃ − z̃∗|
|z − z̃||z − z̃∗|�(z̃)dz̃dz

≤ 192
∫
F1

1 − |z̃|
M(ξ, z̃)2

�(z̃)dz̃
∫
A3

dz

|z − ξ∗||z − ξ |
≤ C7| ln(1 − |ξ |)|

∫
F1

1 − |z̃|
M(ξ, z̃)2

�(z̃)dz̃.

From (3.5), (3.2), and (3.7) we obtain

∫
A3

1

|z − ξ ||z − ξ∗|
∫
F2

|z̃ − z̃∗|
|z − z̃||z − z̃∗|�(z̃)dz̃dz ≤ 2

δ

∫
F2

�(z̃)dz̃
∫
A3

dz

|z − ξ ||z − ξ∗|
≤ C8| ln(1 − |ξ |)| ||ω||L∞ .
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For the integral involving (z, z̃) ∈ A3 × F3, let F4 := F3 ∩ B(0, 1− ε
1

1−α∗ ) and
for z̃ ∈ F3 let Az̃ := B(z̃, |z̃−ξ |

2 ) ∩ A3. From |ξ |, |z̃| ≥ 1
2 and (2.11) we get

|z̃ − ξ∗| ≤ |z̃ − z̃∗| + 4|z̃ − ξ | ≤ |z̃ − z̃∗| + 8|z̃ − z| ≤ 10|z − z̃∗|
when also z /∈ Az̃ . This, (3.7), |z̃− z̃∗| ≤ 3(1−|z̃|), and |z̃− ξ∗| ≥ |z̃− ξ | ≥ 1−|ξ |

8

for z̃ ∈ F3, and |z̃ − ξ∗| ≥ |z̃−ξ |
2 show that∫

A3

1

|z − ξ ||z − ξ∗|
∫
F4

|z̃ − z̃∗|
|z − z̃||z − z̃∗|�(z̃)dz̃dz

≤ 4
∫
F4

∫
Az̃

1

|z̃ − ξ ||z̃ − ξ∗|
|z̃ − z̃∗|

|z − z̃||z − z̃∗|�(z̃)dzdz̃

+ 20
∫
F4

∫
A3\Az̃

1

|z − ξ ||z − ξ∗|
|z̃ − z̃∗|

|z̃ − ξ ||z̃ − ξ∗|�(z̃)dzdz̃

≤ C9

∫
F4

|z̃ − z̃∗|
|z̃ − ξ ||z̃ − ξ∗|�(z̃) (| ln(1 − |z̃|)| + | ln(1 − |ξ |)|) dz̃

≤ C10| ln(1 − |ξ |)|
∫
F4

1 − |z̃|
M(ξ, z̃)2

�(z̃)dz̃.

Finally, let F5 := F3\F4. From (3.5), (3.7), Lemma2.2, and (3.1)with H := F5,
I := (arg(ξ) − 3δ, arg(ξ) + 3δ), f ≡ 1, and β := ∑

θ j∈I α+
j δθ j we obtain∫

A3

1

|z − ξ ||z − ξ∗|
∫
F5

|z̃ − z̃∗|
|z − z̃||z − z̃∗|�(z̃)dz̃dz

≤ 2
∫
F5

�(z̃)
∫
A3

dz

|z − ξ ||z − ξ∗||z − z̃|dz̃

≤ 8
∫
F5

�(z̃)

(∫
Az̃

dz

|z̃ − ξ |2|z̃ − z| +
∫
A3\Az̃

dz

|z − ξ ||z − ξ∗||z̃ − ξ |

)
dz̃

≤ C11

∫
F5

�(z̃)

(
1

|z̃ − ξ | + | ln(1 − |ξ |)|
|z̃ − ξ |

)
dz̃

≤ C12
| ln(1 − |ξ |)|

ε
||ω||L∞

∫
F5

�θ j∈I |z̃ − eiθ j |−2α+
j d z̃

≤ C13
| ln(1 − |ξ |)|

ε
||ω||L∞

∫
F5

∣∣∣∣z̃ − ξ

|ξ |
∣∣∣∣
−2α∗

dz̃

≤ C14| ln(1 − |ξ |)| ||ω||L∞ ,

where in the last inequality we used that |F5| ≤ ε
1

1−α∗ , which is less than the area

of a disc with radius ε
1

2−2α∗ . Combining the above estimates and (3.6) yields∫
A3

|R(z)|
|z − ξ ||z − ξ∗|dz ≤ (C1 + C7 + C8 + C10 + C14)| ln(1 − |ξ |)|

(∫
D

1 − |z|
M(ξ, z)2

�(z)dz + ||ω||L∞
)

,

and the result follows.
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4. Proof of Lemma 2.1

We see from (2.7), a change of variables in the integral from (2.5), and (2.10)
that we need to show boundedness and continuity of R and

Q(t, ξ) :=
∫
D

(
z − ξ

|z − ξ |2 − z − ξ∗

|z − ξ∗|2
)

· R(t, z) ω(t,S(z))dz

on [0,∞)×K for any compact K ⊆ D, aswell as that ∂t�(t, x) = − 1
2π Q(t, T (x))

holds for each (t, x) ∈ [0,∞) × �.
Sofixany such K and letd := dist(K , ∂D) > 0, thenfixany (t, ξ) ∈ [0,∞)×K

and let B := B(ξ, d
2 ) and B ′ := B(ξ, d

4 ). With Cd := sup|z|≤1−d/2 det DS(z), and
using (2.11), |w − z∗| ≥ |w − z| for all z, w ∈ D, (3.7), and (3.2), we obtain for
any (t ′, ξ ′) ∈ [0,∞) × B ′,

|R(t, ξ) − R(t, ξ ′)| ≤||ω||L∞
(∫

B
+

∫
D\B

)
( |ξ − ξ ′|

|ξ − z||ξ ′ − z| + |ξ − ξ ′|
|ξ − z∗||ξ ′ − z∗|

)
det DS(z)dz

≤2||ω||L∞|ξ − ξ ′|
(
6πCd ln+

1

|ξ − ξ ′| + 50Cd + 8|�|
d2

)

and (using also |z − z∗| ≤ 2|ξ ′ − z∗| and Hölder’s inequality)

|R(t, ξ ′) − R(t ′, ξ ′)| ≤
∫
D

|z − z∗|
|ξ ′ − z||ξ ′ − z∗| det DS(z)|ω(t,S(z)) − ω(t ′,S(z))|dz

≤2

(∫
D

|ξ ′ − z|− 3
2 det DS(z)dz

) 2
3 ||ω(t, ·) − ω(t ′, ·)||L3(�).

(4.1)

(Note also that the first of these estimates and (4.2) below prove (2.1).) Since the last
integral is bounded in ξ ′ ∈ B ′ by Lemma 2.2 and (3.2), andω ∈ C([0,∞); L p(�))

for any p ∈ [1,∞) (see the end of Sect. 2), these two estimates show that R is
continuous at (t, ξ).

Boundedness of R on [0,∞) × K follows from the estimate

|R(t, ξ)| ≤ C�||ω||L∞(1 − |ξ |)1−2α∗ (4.2)

for all (t, ξ) ∈ [0,∞) × D, with α∗ from (2.14) and some �-dependent constant
C�. To obtain it, first note that |z − z∗| ≤ 2|ξ − z∗| and (3.2) yield (with δ from
(2.14))

∫
�\B(ξ,δ)

|z − z∗|
|ξ − z||ξ − z∗| det DS(z)dz ≤ 2

δ

∫
�\B(ξ,δ)

det DS(z)dz ≤ 2|�|
δ

.
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Then use Lemma 2.2, and (3.1) with H := B(ξ, δ), I := (arg(ξ)−2δ, arg(ξ)+2δ),
f (z) := 1

|ξ−z| , and β := ∑
θ j∈I α+

j δθ j to get (with ε := 1−|ξ |
2 and ξ̃ = ξ

|ξ | )

∫
B(ξ,δ)

|z − z∗|
|ξ − z||ξ − z∗| det DS(z)dz ≤ C ′

∫
B(ξ,δ)

|ξ̃ − z|−2α∗

|ξ − z| dz

≤ C ′
(∫

B(ξ,ε)

ε−2α∗

|ξ − z|dz +
∫
B(ξ̃ ,ε)

|ξ̃ − z|−2α∗

ε
dz

+9
∫
B(ξ,δ)\(B(ξ,ε)∪B(ξ̃ ,ε))

|ξ − z|−1−2α∗dz

)

≤ C ′′(1 − |ξ |)1−2α∗

with some �-dependent constant C ′,C ′′ because
∑

θ j∈I α+
j ≤ α∗ < 1 by (2.14).

The last two estimates now imply (4.2).
Let us now turn to Q. Fix any K as above, then fix any (t, ξ) ∈ [0,∞) × K

and let d, B, B ′ be as above (without loss assume that d ≤ 1
4 ). Then for any

(t ′, ξ ′) ∈ [0,∞) × B ′ we have from (2.11),

|Q(t, ξ) − Q(t, ξ ′)| ≤ ||ω||L∞
∫
D

( |ξ − ξ ′|
|ξ − z||ξ ′ − z| + |ξ∗ − ξ ′∗|

|ξ∗ − z||ξ ′∗ − z|
)

|R(t, z)|dz,

where the second fraction is just 1
|ξ∗−z| when ξ ′ = 0 and 1

|ξ ′∗−z| when ξ = 0. Using
(2.11), splitting the integration to z ∈ B and z ∈ D\B, and applying (4.2) and (3.7)
yields

|Q(t, ξ) − Q(t, ξ ′)| ≤ C ′||ω||L∞|ξ ′ − ξ |
(
d1−2α∗

(
1 + ln+

1

|ξ − ξ ′|
)

+ d−2
)

for some �-dependent constant C ′. Next, we have

|Q(t, ξ ′) − Q(t ′, ξ ′)| ≤||ω||L∞
∫
D

|ξ ′ − ξ ′∗|
|ξ ′ − z| |ξ ′∗ − z| |R(t, z) − R(t ′, z)|dz

+
∫
D

|ξ ′ − ξ ′∗|
|ξ ′ − z| |ξ ′∗ − z| |R(t ′, z)| |ω(t,S(z)) − ω(t ′,S(z))|dz.

Splitting the first integration into z ∈ B ′ and z ∈ D\B ′, and then using |ξ ′ − ξ ′∗| ≤
2|ξ ′∗ − z|, (4.1), and (4.2) shows that the first integral is bounded above by

Cd ||ω(t, ·) − ω(t ′, ·)||L3(�) + 4

d

∫
D

|R(t, z) − R(t ′, z)| dz

for some (�, d)-dependent constant Cd . This converges to 0 as t ′ → t by ω ∈
C([0,∞); L3(�)), together with (4.1) and integrability of the right-hand side of
(4.2).
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Using |ξ ′ − ξ ′∗| ≤ 2|ξ ′∗ − z|, (4.2), and Lemma 2.2, the second integral is
bounded by

C ′
⎡
⎣∫

D

⎛
⎝ (1 − |z|)1−2α∗

|ξ ′ − z| det DS(z)
1
p

⎞
⎠
q

dz

⎤
⎦

1
q (∫

D

det DS(z)|ω(t,S(z)) − ω(t ′,S(z))|pdz
) 1

p

≤ Cd ||ω(t, ·) − ω(t ′, ·)||L p(�)

for some �-dependent C ′ and (d,�)-dependent Cd , provided that p ∈ (2,∞) is
large enough so that, with q := p

p−1 , we have that (1 − 2α∗ − 1
p

∑
j α

+
j )q > −1.

Thus, above estimates the, together, show that Q is continuous at (t, ξ).
We can also use (2.11), |ξ − ξ∗| ≤ 2|ξ∗ − z|, and (4.2) to get

|Q(t, ξ)| ≤ 2C�||ω||2L∞

∫
D

(1 − |z|)1−2α∗

|ξ − z| dz (4.3)

for all (t, ξ) ∈ [0,∞)×D, showing the boundedness of Q on [0,∞)× K for each
compact K ⊆ D.

Hence it remains to show that ∂t�(t, x) = − 1
2π Q(t, T (x)) pointwise, which

will follow from

− 1

2π

∫ t1

t0
Q(t, T (x0))dt = �(t1, x0) − �(t0, x0) (4.4)

for all 0 ≤ t0 < t1 and x0 ∈ �, because Q is continuous. Therefore we fix any
such (t0, t1, x0).

Let

φ(x) := − 1

2π
ln

|T (x0) − T (x)|
|T (x0) − T (x)∗||T (x)| = − 1

2π
ln

|T (x) − T (x0)|
|T (x) − T (x0)∗||T (x0)|

(so �(t j , x0) = ∫
�

φ(x)ω(t j , x)dx for j = 0, 1) and

ψ(x) := ∇φ(x) = − 1

2π
DT (x)T

( T (x) − T (x0)

|T (x) − T (x0)|2 − T (x) − T (x0)∗

|T (x) − T (x0)∗|2
)

for each x ∈ � (recall (2.9)). Also, for each r ∈ (0, t1−t0
2 ), let gr ∈ C∞

c ([0,∞))

be such that

χ[t0+r,t1−r ] ≤ gr ≤ χ(t0,t1),

and gr is non-increasing on [0, t1] and non-decreasing on [t1,∞), and, for each
h ∈ (0, 1], let fh ∈ C∞([0,∞)) be such that

(1) fh(x) = 0 for x ∈ [0, h
3 ],

(2) fh(x) = x for x ∈ [h, 1
h ],

(3) fh(x) = 1
h + h for x ∈ [ 1h + h,∞),

(4) 0 ≤ f ′
h(x) ≤ 2 for x ∈ [0,∞).
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Now, for any h, r ∈ (0,min{1, t1−t0
2 }) and (t, x) ∈ [0,∞) × �, let

ϕr,h(t, x) := gr (t) fh(φ(x)).

Then, we clearly have that ϕr,h ∈ C∞
c ([0,∞)×�) and ϕr,h(0, ·) ≡ 0, so plugging

it into (2.3) yields∫ ∞

0

∫
�

ω(t, x)gr (t) f
′
h(φ(x)) u(t, x) · ψ(x)dxdt

+
∫ ∞

0

∫
�

ω(t, x)g′
r (t) fh(φ(x))dxdt = 0.

Sinceω(t, x)gr (t) f ′
h(φ(x))ψ(x) is a bounded function andu ∈ L∞((0,∞); L2(�)),

we can use the dominated convergence theorem to pass to the limit r → 0 and ob-
tain ∫ t1

t0

∫
�

ω(t, x) f ′
h(φ(x)) u(t, x) · ψ(x)dxdt +

∫
�

ω(t0, x) fh(φ(x))dx

−
∫

�

ω(t1, x) fh(φ(x))dx = 0,

where in the second integral above we used that ω ∈ C([0,∞); L1(�)). If we can
show that u · ψ ∈ L∞((0,∞); L1(�)), then taking h → 0 will yield∫ t1

t0

∫
�

ψ(x)T u(t, x) ω(t, x)dxdt =
∫

�

φ(x)ω(t1, x)dx −
∫

�

φ(x)ω(t0, x)dx,

via the dominated convergence theorem. This, however, is precisely (4.4), due to
(2.7) and (2.10).

If B := B(x0,
1
2dist(x0, ∂�)), then u · ψ ∈ L∞((0,∞); L1(B)) because u is

bounded on [0,∞) × B by (4.2). From (2.9) we see that there is Cx0 such that

|ψ(x)| ≤ Cx0‖DT (x)‖ ≤ 2Cx0 | det DT (x)| 12
for all x ∈ � \ B, so ψ ∈ L2(�) by

∫
�
det DT (x)dx = |D|. Thus u · ψ ∈

L∞((0,∞); L1(�\B)), which indeed yields u · ψ ∈ L∞((0,∞); L1(�)), and
therefore finishes the proof.
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