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Abstract

We establish that global-in-time existence and non-uniqueness of probabilis-
tically strong solutions to the three dimensional Navier–Stokes system driven by
space-time white noise. In this setting, solutions are expected to have space reg-
ularity of at most −1/2 − κ for any κ > 0. Consequently, the convective term is
ill-defined analytically and probabilistic renormalization is required. Up until now,
only local well-posedness has been known.With the help of paracontrolled calculus
we decompose the system in a way which makes it amenable to convex integra-
tion. By a careful analysis of the regularity of each term, we develop an iterative
procedure which yields global non-unique probabilistically strong paracontrolled
solutions. Our result applies to any divergence free initial condition in L2∪ B−1+κ∞,∞ ,
κ > 0, and also implies non-uniqueness in law.

1. Introduction

Thermal fluctuations are omnipresent on the molecular level of fluids. As such,
fluids are not deterministic but rather stochastic and continually changing. In order
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to incorporate these effects into the description of large scale dynamics, Landau
and Lifshitz [47] proposed a Navier–Stokes system perturbed by stochastic flux
terms. These are given by a divergence of delta correlated space-time Gaussian
random fields included in the momentum equation. Mathematically, it is extremely
challenging to make sense of such a system. Indeed, due to the irregularity of the
noise combined with the nonlinearity of the system, the equations become critical
in dimension 2 and supercritical in dimension higher in the sense of the theory of
regularity structures by Hairer [42]: introducing an ultraviolet cut-off, i.e. mollify-
ing the noise, and trying to remove the cut-off would require an infinite number of
renormalizations. Therefore, neither the classical stochastic analysis tools nor the
pathwise theories of regularity structures [42] and paracontrolled distributions by
Gubinelli, Imkeller and Perkowski [35] are applicable. Nevertheless, despite these
theoretical difficulties, the Landau–Lifshitz–Navier–Stokes system has been veri-
fied numerically for various equilibrium as well as non-equilibrium systems (see
e.g. [28] and references therein).

In this paper, we contribute to the rigorous mathematical understanding of mi-
croscopic perturbations influid dynamics. To avoid the issue of criticalitymentioned
above, we consider the delta correlated space-time Gaussian noise as a forcing, not
as a flux. This models forcing acting on the molecular level, which translated to
the macroscopic level necessarily becomes delta correlated. Indeed, any two points
in the large scale dynamics are extremely far apart on the molecular level, so their
associated noises must be uncorrelated. Moreover, such a noise also appears in a
scaling limit of point vortex approximation and the vorticity form of the 2D Euler
equations perturbed by a certain transport type noise (cf. [30,31,49]). In fact, the
scaling limit is given by the vorticity form of the 2D Navier–Stokes system driven
by the curl of space-timewhite noise, which in the velocity-pressure variables reads
as 2D Navier–Stokes equations driven by space-time white noise.

The corresponding gain of one derivative in comparison to the Landau–Lifshitz
setting makes the system mathematically accessible as it remains subcritical up to
space dimension 3. However, even this problem has resisted rigorous mathematical
analysis for a long time due to its irregularity. More precisely, the space-time white
noise in spatial dimension d can be shown to be a random distribution of space-time
regularity−(d+2)/2−κ under the parabolic scaling for any κ > 0. Accordingly, in
view of Schauder’s estimates a solution is expected to be two degrees of regularity
better, i.e. atmost−d/2+1−κ . Hence, already in d = 2 solutions are not functions.
Consequently, the product in the convective term is analytically ill-defined and
probabilistic arguments are required in order to make sense of the equations.

We consider the three dimensional Navier–Stokes system with periodic bound-
ary conditions driven by a space-time white noise

du + div(u ⊗ u) dt + ∇ p dt = �u dt + dB,

divu = 0,

u(0) = u0,

(1.1)

where B is a cylindricalWiener process on some stochastic basis (�,F , (Ft )t�0,P).
The time derivative of B is the space-time white noise. Our main results reads as
follows:
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Theorem 1.1. For any given divergence free initial condition u0 ∈ L2 ∪ B−1+κ∞,∞
P-a.s., κ > 0, there exist infinitely many global-in-time probabilistically strong
solutions solving (1.1) in a paracontrolled sense.

Remark 1.2. In what follows we prove the result for the initial condition u0 in
B−1+κ∞,∞ or u0 − z(0) ∈ L2 for simplicity, where z is the stationary solution to the
linear equation. If we choose z(0) = 0, a small modification of the proof implies
that the result also holds for the initial condition u0 ∈ L2.

The main ideas behind the definition of paracontrolled solution are explained in
Sect. 1.3 and the detailed presentation can be found in Sect. 4.1. Probabilistically
strong solutionsmeans that the solutions are adapted to the normal filtration (Ft )t�0
generated by the cylindrical Wiener process.

Corollary 1.3. Non-uniqueness in law holds for (1.1) for every given initial law
supported on divergence free vector fields in L2 ∪ B−1+κ∞,∞ , κ > 0.

1.1. Singular SPDEs

In two space dimensions, the problem was solved locally in time in the seminal
paper by Da Prato and Debussche [20]. Furthermore, using the properties of the
Gaussian invariant measure, it was possible to obtain global-in-time existence for
a.e. initial condition with respect to the invariant measure. By the strong Feller
property in [62] global-in-time existence for every initial condition could be derived.
Recently, for a related two dimensional critical problem, tightness of approximate
stationary solutions and non-triviality of the limit has been established in a weak
coupling regime by Cannizzaro and Kiedrowski [16].

The more irregular three dimensional setting remained open for much longer as
substantially new ideas were required. These came in a parallel development with
the theory of regularity structures by Hairer [42] and with the paracontrolled distri-
butions introduced by Gubinelli, Imkeller and Perkowski [35]. These theories per-
mit to treat a large number of singular subcritical SPDEs (cf. [2,5,15]) including the
Kardar–Parisi–Zhang (KPZ) equation, the generalized parabolic Anderson model
and the stochastic quantization equations for quantum fields (see [12,13,38,41] and
references therein). In particular they led to a local well-posedness theory for the
Navier–Stokes system (1.1) in three dimensions by Zhu and Zhu [61].

The question of global existence is evenmore challenging. Roughly speaking, in
the field of singular SPDEs the only available global existence results rely either on
a strong drift present in the systemor a particular transform for certain nonlinearities
or on properties of an invariant measure.

• Suitable a priori estimates have been established for the dynamical �4 stochas-
tic quantization model by Mourrat and Weber [52,53] and Gubinelli and Hof-
manová [33,34] (see also [57,58] for the vector valued case). All these results
make an essential use of the strong damping term −φ3.

• In [38,54,63], a priori estimates and paracontrolled solutions to the KPZ equa-
tion and singular Hamilton–Jacobi–Bellman equation were obtained by using
Cole–Hopf’s or Zvonkin’s transform and maximum principle.
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• Moreover, using the probabilistic notion of energy solutions [36,37,39] or
studying the associated infinitesimal generator and Kolmogorov equation [40],
it is possible to construct global solutions to KPZ equation, but this depends
on the invariant Gaussian measure (i.e. the law of Brownian motion or spatial
white noise).

• We mention that in [19,55] global martingale solutions were constructed for
geometric stochastic heat equations by using a Dirichlet form approach. This
relies on an integration by parts formula for the known invariant measure.

No such results are available for the 3D Navier–Stokes system with space-time
white noise.

• There is no strong drift helping to stabilize the evolution.
• Due to the appearance of the divergence free condition and the corresponding
pressure term, it is impossible to apply maximum principle or Cole–Hopf’s
transform.

• The existence of an invariant measure is an open problem.
• No global energy (or other) estimates are available due to irregularity of solu-
tions (see below for more explanation on this point).

Furthermore, even if the regularity of the noise is increased, global existence
is not known. More precisely, consider the following regularized problem which
interpolates between the case of a trace-class noise and the space-time white noise

du + div(u ⊗ u) dt + ∇ p dt = �u dt + (−�)−γ /2dB,

divu = 0.
(1.2)

Here B is the cylindrical Wiener process. The case of γ > 3/2 corresponds to a
trace-class noise whereas γ = 0 is the space-time white noise.

For γ > 3/2, global existence of probabilistically weak Leray solutions is clas-
sical (see Flandoli, Gatarek [29]). Their uniqueness remains an outstanding open
problem. The authors in [29] also constructed stationary solutions via Krylov–
Bogoliubov’s argument and energy estimates. Ergodicity and strong Feller prop-
erty was proved by Da Prato and Debussche [21] and also by Flandoli and Romito
[32]. A Markov transition semigroup was then constructed by Debussche, Odasso
[23] and by Flandoli and Romito [32]. However, further structure and properties
of the invariant measure are still unclear. Recently, in [43] we established non-
uniqueness in law in a class of analytically weak (not Leray) solutions using the
method of convex integration. In [45], we additionally presented non-uniqueness
of Markov solutions and global-in-time existence and non-uniqueness of proba-
bilistically strong and analytically weak solutions.

If γ � 3/2 the usual energy estimates pertinent to the notion of Leray solution
are not available. Indeed, as the noise is no longer trace-class, Itô’s formula cannot
be applied. However, for γ ∈ (1/2, 3/2] it is still possible to prove global existence
of probabilistically weak solutions. Namely, decomposing the velocity u into the
sum of its stochastic part z and its nonlinear part v (as shown also in Sect. 3.1
below), one can derive a global energy estimate for v. It can be then combined with
compactness and Skorokhod representation theorem to deduce global existence.
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Nevertheless, since it is necessary to change the probability space in the course of
the proof, these solutions are only probabilistically weak.

Up to now, even global existence of probabilistically weak solutions was open
in the case of γ � 1/2. Only local well-posedness in the spirit of Zhu, Zhu [61]
seemed to be possible. The difficulty can be seen as follows. If e.g. γ = 1/2, we
decompose u = v + z with z solving the linear stochastic equation

dz + ∇ pz dt = �z dt + (−�)−1/4dB, divz = 0,

and v solving the nonlinear equation

∂tv + div((v + z) ⊗ (v + z)) + ∇ pv = �v, divv = 0.

As z ∈ CT C−κ , the best regularity for v is given by CT C1−κ . Hence we cannot
expect the energy estimate for v since this would require the L2

T H1-norm of v. We
may include further decomposition like in the case of the �4 model [33,34,52,53],
but this would lead to new nonlinear terms which cannot be absorbed as in the �4

model. Due to this, we also cannot obtain energy inequality and uniform estimates
as in the case of a trace-class case. Consequently, we cannot derive global solutions
by a usual compactness argument. Note that it is also possible to consider global
solutions for small initial data (cf. [8]). However, this would destroy adaptedness
of the solutions since the initial data would depend on the whole path of the driving
noise.

1.2. Convex integration

In the present paper, we focus on the case of space-time white noise, i.e. γ = 0.
Simplified versions of our proofs as outlined in Sect. 3 also provide the results in the
more regular cases of γ > 0. Our idea is to apply the method of convex integration
in order to construct global-in-time solutions. This is an iterative procedure which
permits to construct solutions explicitly scale by scale. It makes an essential use
of the form of the nonlinearity which propagates oscillations and reduces an error
term, the so-called Reynolds stress, in order to approach a solution as one proceeds
through the iteration. As typical for the convex integration constructions, the same
method gives raise to infinitely many solutions.

Convex integration was introduced into fluid dynamics by De Lellis and Széke-
lyhidi Jr. [25–27]. This method has already led to a number of groundbreaking
results concerning the incompressible Euler equations, culminating in the proof of
Onsager’s conjecture by Isett [46] and by Buckmaster, De Lellis, Székelyhidi Jr.
and Vicol [4]. Also the question of well/ill-posedness of the three dimensional
Navier–Stokes equations has experienced an immense breakthrough: Buckmaster
and Vicol [10] established non-uniqueness of weak solutions with finite kinetic en-
ergy, Buckmaster, Colombo and Vicol [3] were able to connect two arbitrary strong
solutions via a weak solution. Burczak, Modena and Székelyhidi Jr. [6] then ob-
tained a number of new ill-posedness results for power-law fluids and in particular
also non-uniqueness of weak solutions to the Navier–Stokes equations for every
given divergence free initial condition in L2. Sharp non-uniqueness results for the



46 Page 6 of 70 Arch. Rational Mech. Anal. (2023) 247:46

Navier–Stokes equations in dimension d � 2 were obtained by Cheskidov and Luo
[17,18]. We refer to the reviews [9,11] for further details and references.

All these convex integration results very much rely on the L2-setting. Namely,
the constructed solutions belong (at least) to L2 and the iteration converges strongly
in L2, hence one can pass to the limit in the quadratic nonlinearity. As the energy
inequality is available in this setting, it is also understood as a natural selection
criterion for physical solutions. Convex integration yields such solutions for Euler
equations (see [26], and [44] for the stochastic setting), or when the diffusion is
weak, e.g. for power-law fluids with small parameter p (see [6]) and for hypodis-
sipative Navier–Stokes equations for small α (see [14]). However, constructing
Leray solutions by convex integration to the Navier–Stokes system seems to be out
of reach at the moment. By a different method, a first non-uniqueness result for
Leray solutions was established recently by Albritton, Brué and Colombo [1] for
the Navier–Stokes system with a force.

Compared to the classical uniform estimates and the compactness argument,
convex integration provides a new way of constructing solutions. This turns out
to be particularly useful in the stochastic setting as uniqueness of Leray solutions
is unknown and there has been no result of existence of global probabilistically
strong solutions before. In [45], we proved such a result for a trace-class noise by
convex integration. In less regular settings, as, for instance, for γ � 1/2 discussed
above, there are no Leray solutions to compete with in the first place. Furthermore,
there are no alternative globally defined solutions whatsoever (neither probabilisti-
cally strong nor probabilistically weak). In this paper, we use convex integration to
construct global probabilistically strong solutions in this setting when the energy
inequality is out of reach. The question of how to select physical solutions in this
case remains open.

1.3. Decomposition

We introduce a decomposition of the Navier–Stokes system (1.1), which makes
also this singular setting amenable to convex integration. Recall that solutions are
only expected to have regularity−1/2−κ , κ > 0, hence the quadratic term u ⊗u is
far from being well-defined analytically. The common idea in the field of singular
SPDEs is to prescribe a particular form of a solution u so that the nonlinearity can
be made sense of. In the first step, we write

u = z + z + h.

The first term z solves the stochastic heat equation

dz + ∇ pz dt = �z dt + dB, divz = 0,

and permits to isolate the most irregular part of u, the rest being more regular. Note
that by Schauder estimates, z belongs to B−1/2−κ∞,∞ and hence the product z ⊗ z is
not well defined in the classical sense. As z is Gaussian, we can understand z ⊗ z
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as a Wick product using renormalization. In particular, for a suitable mollification
zε of z, there are diverging constants Cε ∈ R

3×3, Ci j
ε → ∞, so that

z = lim
ε→0

zε ⊗ zε − Cε

iswell defined and belongs to B−1−κ∞,∞ .More details of the probabilistic constructions
are included in Sect. 4.1. In order to isolate the corresponding (still irregular) part
of the solution u, we then define

∂t z + div(z ) + ∇ p2 = �z , divz = 0,

which by Schauder estimates belongs to B−κ∞,∞.
It is then seen that the remainder h is already function valued but its regularity

is necessarily limited by 1/2− κ . Even further decomposition cannot improve this
regularity since products of z with the unknown always appear in the equation.
A way how to overcome this issue stems from the work by Gubinelli, Imkeller
and Perkowski [35] on the parabolic Anderson model and was applied to (1.1) by
Zhu, Zhu in [61]: one postulates a paracontrolled ansatz which describes a further
structure of the solution h; it reads as

h = −P[h ≺ I∇z] + ϑ − (z + z ).

Here, z , z are additional stochastic objects constructed by renormalization, I is
the heat operator, P the Helmholtz projection and finally ≺ denotes a paraproduct
as introduced by Bony [7]. This permits to cancel the two most irregular terms in
the equation for h so that the remainder ϑ becomes more regular, namely, 1 − κ .
Furthermore, by a commutator lemma it permits to make sense of the analytically
ill-defined product h⊗z.We refer to Sect. 2.2 for basic definitions of paracontrolled
calculus and toSect. 4.2 formoredetails on thenotionof our paracontrolled solution.
In viewof the regularity of solutions,we also see that energy inequality is impossible
in this case.

The above decomposition is sufficient to prove local well-posedness as done
in [61]. However, a much more refined analysis is indispensable to apply convex
integration. Therefore,we split further h = v1+v2 where v1 represents the irregular
part and v2 the regular one. In addition, the equation for v1 is linear whereas the one
for v2 contains the quadratic nonlinearity. Similarly to the above discussion of the
more regular cases (1.2) with γ � 1/2, even with this decomposition into v1+v2, it
is not possible to derive global estimates via the energymethod.Our idea is instead to
apply convex integration on the level of v2. However, the equation for v2 is coupled
with the equation for v1. Therefore, we put forward a joint iterative procedure
approximating both equations at once. The Reynolds stress R̊q is only included in
the equation for v2q , where q ∈ N0 is the iteration parameter. Consequently, the

construction of the new iteration v2q+1 relies only on the previous stress R̊q . Here,
we employ the intermittent jets by Buckmaster, Colombo and Vicol [3] (see also
[9] and our previous works [43,45]). As the next step, we solve the equation for
v1q+1 exactly by a fixed point argument. See Fig. 1 for a sketch of our procedure.
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In order to make this strategy possible, it is necessary to find the decomposition
of the equation for h into the system for v1 and v2 and to define the corresponding
equations for the iterations v1q and v2q . This, together with the construction of each
approximate velocity v2q+1 through the intermittent jets, has to be done in a way to

decrease the correspondingReynolds stress R̊q+1 as q → ∞. Especially the control
of R̊q+1 requires a careful analysis of each of the terms appearing in the equation for
h. We have to balance various competing factors such as regularity, integrability,
blow-up as t → 0 and blow-up as q → ∞ of various terms. The divergencies
need to be compensated by small quantities. We rely on a decomposition of each
product into the two paraproducts and the resonant term, because each of these parts
behaves differently and requires a different treatment. Roughly speaking, irregular
terms are included into v1 while regular ones into v2, but the precise splitting is
delicate. Further issues and required ideas are summarized as follows:

• In the first step, we aim at constructing convex integration solutions up to a
stopping time. The stopping time can be chosen arbitrarily large with arbitrar-
ily large probability and is used to have uniform in ω bounds for the stochastic
objects. The reason for this is adaptedness: without a stopping time, the parame-
ters would depend on the whole path and the constructed solutions could not be
adapted to the given filtration (Ft )t�0. Thus, theywould not be probabilistically
strong.

• In the second step, we overcome this limitation by extending the constructed
solutions by other convex integration solutions. To this end, it is necessary to
obtain convex integration solutions for any given divergence free initial con-
dition in L2. Hence, we aim at starting v1 as well as v1q from the given initial
condition, whereas v2 and v2q all start from zero. This simplifies the begin of
the iterative procedure. To keep the same initial value during the iteration, the
oscillations can only be added for positive times and we approach t = 0 as
q → ∞.

• A paracontrolled ansatz for v1 and accordingly also for each v1q needs to be
included in order to make sense of the resonant part of the product v1 ⊗ z and
v1q ⊗ z. At each iteration step q, the equation for v1q is coupled with the equation

for the corresponding remainder v

q (taking the role of ϑ above).

• Since the initial value of v1, v1q and v

q is only in L2, they have singularity at time

zero when considered in more regular function spaces. But higher regularity is
indispensable in order to control various terms, both in the equation for v1q and

v

q but also in the formula for R̊q+1. For this reason, we work with blow-up
norms in time, but this brings an extra blow-up in the convex integration part
and in particular in the estimate of R̊q+1.

• We introduce additional (uniform in q) localizers �>R + ��R in terms of
Littlewood–Paley blocks. The part�>R is always included into v1 and helps to
simplify the estimates of v1q and v


q as it provides an arbitrarily small constant

and avoids the need for a Gronwall lemma.
• Some terms are regular and could be, in principle, included into v2, but they

require regularity of v1q which does not hold true uniformly as t → 0.While the
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fixed point equation for v1q can be solved using suitable blow-up norms in time
to overcome the singularity at t = 0, having such blow-ups in the equation for
v2q cannot be controlled in the convex integration. Hence, we further decompose
these terms by using �>R + ��R and include their irregular parts into v1q .

• Moreover, in order to control the blow-up of certain terms, we include q-
dependent localizers �� f (q) for a suitable f (q) → ∞ into the equation for
v1q . Thanks to this, we are able to add irregularity scale by scale in a controlled
way. The opposite approach, namely including the irregular terms fully at the
beginning of the iteration, does not seem to be possible.

The detailed decomposition is presented in Sect. 4.3. As a preparation, we ex-
plain the main ideas on the simpler settings of (1.2) with γ > 0 in Sect. 3.

1.4. Final Introductory Remarks

Previously, convex integration has always been used to deduce non-uniqueness
of solutions in settings where energy inequality is available. It has also been used
to obtain first existence results for weak solutions in situations where compactness
does not guarantee the passage to the limit in the convective term, namely, for
Euler equations (see [25–27]), and for power-law fluids with small parameter p
(see [6]). As already mentioned above, these results even lead to infinitely many
weak solutions satisfying the energy inequality.

Our result shows that convex integration can also be used to construct global
solutions when the energy inequality is out of reach, in particular in the field of
singular SPDEs. We hope that our technique could also be applied to other singular
SPDEs, especially in caseswhere no strongdamping is at hand.Wealsomention that
the convex integration can be applied to other PDEs like transport and continuity
equation [50,51], 3D Hall–MHD system [22] and hyperviscous Navier–Stokes
equations [48]. Our approach may also be applied to the corresponding singular
versions of the latter two.

The nonlinearity in the Navier–Stokes system looks similarly to the one in the
Langevin dynamic for the Yang–Mills measure, i.e. stochastic quantization of the
Yang–Mills field. This was considered in [12,56] where local-in-time solutions
were constructed. However, existence of global solutions remains open. The idea is
to use the dynamics and PDE techniques to study properties of the field. Formally,
these equations have the law of the associated field as an invariant measure. In the
case of the stochastic quantization of the Euclidean �4 field theory, it was indeed
possible to use the dynamics to construct and study properties of the corresponding
measure (see [34] and [59]). As global existence for the Langevin dynamic for the
Yang–Mills measure is out of reach by the classical PDE techniques, we hope that
our technique can shed some light on this problem.

Finally, we point out that in the field of regularization by noise, it is believed
that more noise, in the sense ofmore irregular noise, in the Navier–Stokes equations
may imply uniqueness. Certain regularizing effect could indeed be proved on the
level of the so-called strong Feller property established for (1.1) by Zhu, Zhu [62].
Nevertheless, our results show that even in this case we still have non-uniqueness.
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Furthermore, also a weaker notion of uniqueness, namely, uniqueness in law is
disproved.

Organization of the paper In Sect. 2 we introduce our notation and present pre-
liminary results on Besov spaces, paraproducts and paracontrolled calculus. Sec-
tion3 is devoted to the more regular settings of (1.2) with γ > 0 and we discuss
the main ideas of our decomposition. In particular, it is shown how decreasing
the parameter γ , i.e. making the problem more irregular, necessarily requires fur-
ther ideas and a more refined decomposition. In Sect. 4 we recall the construction
of stochastic objects and introduce the notion of paracontrolled solution. We also
present a formal decomposition of the system into the system for v1 and v2 as dis-
cussed above. The set-up of the iterative convex integration procedure and proofs
of our main results are shown in Sect. 5. We give estimates of v1q and v


q in Sect. 6.

Section7 is devoted to the core of the convex integration construction, namely,
the iteration Proposition 5.1. Finally, in Appendix A we recall the construction of
intermittent jets and in “Appendix B” we prove auxiliary Schauder estimates.

2. Preliminaries

Throughout the paper, we use the notation a � b if there exists a constant c > 0
such that a � cb, and we write a 	 b if a � b and b � a.

2.1. Function Spaces

Given a Banach space E with a norm ‖ · ‖E and T > 0, we write CT E =
C([0, T ]; E) for the space of continuous functions from [0, T ] to E , equipped
with the supremum norm ‖ f ‖CT E = supt∈[0,T ] ‖ f (t)‖E . For p ∈ [1,∞] we write
L p

T E = L p([0, T ]; E) for the space of L p-integrable functions from [0, T ] to E ,
equippedwith the usual L p-norm.We use (�i )i�−1 to denote the Littlewood–Paley
blocks corresponding to a dyadic partition of unity. Besov spaces on the torus with
general indices α ∈ R, p, q ∈ [1,∞] are defined as the completion of C∞(Td)

with respect to the norm

‖u‖Bα
p,q

:=
⎛
⎝∑

j�−1

2 jαq‖� j u‖q
L p

⎞
⎠

1/q

.

The Hölder–Besov space Cα is given by Cα = Bα∞,∞ and we also set Hα = Bα
2,2,

α ∈ R. To deal with the singularity at time zero we introduce the following blow-up
norms: for α ∈ (0, 1), p ∈ [1,∞]

‖ f ‖Cα
T,γ L p := sup

0�t�T
tγ ‖ f (t)‖L p + sup

0�s<t�T
sγ ‖ f (t) − f (s)‖L p

|t − s|α ,

‖ f ‖CT,γ Bα
p,∞ := sup

0�t�T
tγ ‖ f (t)‖Bα

p,∞ .
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For T > 0 and a domain D ⊂ R
+ we denote by C N

T,x and C N
D,x , respectively, the

space of C N -functions on [0, T ] × T
3 and on D × T

3, respectively, N ∈ N0 :=
N ∪ {0}. The spaces are equipped with the norms

‖ f ‖C N
T,x

=
∑

0�n+|α|�N
n∈N0,α∈N3

0

‖∂n
t Dα f ‖L∞

T L∞ ,

‖ f ‖C N
D,x

=
∑

0�n+|α|�N
n∈N0,α∈N3

0

sup
t∈D

‖∂n
t Dα f ‖L∞ .

Set � = (1 − �)1/2. For s � 0, p ∈ [1,+∞] we use W s,p to denote the
subspace of L p, consisting of all f which can be written in the form f = �−s g,
g ∈ L p and the W s,p norm of f is defined to be the L p norm of g, i.e. ‖ f ‖W s,p :=
‖�s f ‖L p . For s < 0, p ∈ (1,∞), W s,p is the dual space of W −s,q with 1

p + 1
q = 1.

The following embedding results will be frequently used (we refer to e.g. [35,
Lemma A.2] for the first one and to [60, Theorem 4.6.1] for the second one).

Lemma 2.1. (1) Let 1 � p1 � p2 � ∞ and 1 � q1 � q2 � ∞, and let α ∈ R.
Then Bα

p1,q1 ⊂ Bα−d(1/p1−1/p2)
p2,q2 .

(2) Let s ∈ R, 1 < p < ∞, ε > 0. Then W s,2 = Bs
2,2 = Hs, and Bs

p,1 ⊂ W s,p ⊂
Bs

p,∞ ⊂ Bs−ε
p,1 .

2.2. Paraproducts, Commutators and Localizers

Paraproducts were introduced by Bony in [7] and they permit to decompose a
product of two distributions into three parts which behave differently in terms of
regularity. More precisely, using the Littlewood-Paley blocks, the product f g of
two Schwartz distributions f, g ∈ S ′(Td) can be formally decomposed as

f g = f ≺ g + f ◦ g + f � g,

with

f ≺ g = g � f =
∑

j�−1

∑
i< j−1

�i f � j g, f ◦ g =
∑

|i− j |�1

�i f � j g.

Here, the paraproducts ≺ and� are always well-defined and critical is the resonant
product denoted by ◦. In general, it is only well-defined provided the sum of the
regularities of f and g in terms of Besov spaces is strictly positive. Moreover, we
have the following paraproduct estimates from [7] (see also [35, Lemma 2.1], [53,
Proposition A.7]):

Lemma 2.2. Let β ∈ R, p, p1, p2, q ∈ [1,∞] such that 1
p = 1

p1
+ 1

p2
. Then it

holds that

‖ f ≺ g‖
Bβ

p,q
� ‖ f ‖L p1 ‖g‖

Bβ
p2,q

,
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and if α < 0 then

‖ f ≺ g‖
Bα+β

p,q
� ‖ f ‖Bα

p1,q
‖g‖

Bβ
p2,q

.

If α + β > 0 then it holds that

‖ f ◦ g‖
Bα+β

p,q
� ‖ f ‖Bα

p1,q
‖g‖

Bβ
p2,q

.

We denote �= ◦+�, �= ◦+≺ . The key tool of the paracontrolled calculus
introduced in [35] is the following commutator lemma from [35, Lemma 2.4] (see
also [53, Proposition A.9]).

Lemma 2.3. Assume that α ∈ (0, 1) and β, γ ∈ R are such that α + β + γ > 0
and β + γ < 0 and p, p1, p2 ∈ [1,∞] satisfy 1

p = 1
p1

+ 1
p2

. Then there exist a
bounded trilinear operator

com( f, g, h) : Bα
p1,∞ × Cβ × Bγ

p2,∞ → Bα+β+γ
p,∞

satisfying

‖com( f, g, h)‖
Bα+β+γ

p,∞
� ‖ f ‖Bα

p1,∞‖g‖Cβ ‖h‖Bγ
p2,∞

such that for smooth functions f, g, h it holds that

com( f, g, h) = ( f ≺ g) ◦ h − f (g ◦ h).

We also recall the following two lemmas for the Helmholtz projection P from
[61, Lemma 3.5, Lemma 3.6].

Lemma 2.4. Assume that α ∈ (0, 1), β ∈ R and p ∈ [1,∞]. Then, for every
k, l = 1, 2, 3,

‖[Pkl , f ≺]g‖
Bα+β

p,∞
� ‖ f ‖Bα

p,∞‖g‖Cβ .

Lemma 2.5. Assume that α ∈ R and p ∈ [1,∞]. Then for every k, l = 1, 2, 3

‖Pkl f ‖Bα
p,∞ � ‖ f ‖Bα

p,∞ .

Analogously to the the real-valued case, wemay define paraproducts for vector-
valued distributions. More precisely, for two vector-valued distributions f, g ∈
S ′(Td;Rm), we use the following tensor paraproduct notation

f ⊗ g = ( fi g j )
m
i, j=1 = f �≺ g + f � g + f �� g

= ( fi ≺ g j )
m
i, j=1 + ( fi ◦ g j )

m
i, j=1 + ( fi � g j )

m
i, j=1

and note that Lemma 2.2 carries over mutatis mutandis. We also denote

��= � + ��, �� = � + �≺ .



Arch. Rational Mech. Anal. (2023) 247:46 Page 13 of 70 46

When there is no danger of confusion, we apply the simple paraproducts also within
matrix–vector multiplication, i.e. for f ∈ S ′(Td;Rm×m) and g ∈ S ′(Td;Rm) we
define using the Einstein summation convention

( f � g)m
i=1 = (g ≺ f )m

i=1 =
(

f i j � g j
)m

i=1
,

( f ◦ g)m
i=1 = (g ◦ f )m

i=1 =
(

f i j ◦ g j
)m

i=1
.

Similarly to Lemma 2.3, we may also define a matrix-valued commutator as con-
tinuous extensions of

( f, g, h) �→ (com( f, g, h))m
i, j=1 = ( f ≺ g) � h − f · (g � h)

= ( f k ≺ gik) ◦ h j − f k(gik ◦ h j ),

( f, g, h) �→ (com∗( f, g, h))m
i, j=1 = h � ( f ≺ g) − (h � g) · f

= hi ◦ ( f k ≺ g jk) − (hi ◦ g jk) f k,

which is well-defined for smooth functions f, h : Td → R
m , g : Td → R

m×m

and takes values in S ′(Td;Rm×m). A counterpart of the bound in Lemma 2.3 holds
true in this setting as well.

Finally, we introduce localizers in terms of Littlewood–Paley expansions. Let
J ∈ N0. For f ∈ S ′(Td) we define

�>J f =
∑
j>J

� j f, ��J f =
∑
j�J

� j f.

Then it holds, in particular for α � β � γ , that

‖�>J f ‖Cα � 2−J (β−α)‖ f ‖Cβ , ‖��J f ‖Cγ � 2J (γ−β)‖ f ‖Cβ . (2.1)

3. More Regular Stochastic Perturbations

In our previous works [43,45] we considered the case of a trace class noise. We
proved non-uniqueness in law as well as non-uniqueness of Markov solutions and
existence and non-uniqueness of global-in-time probabilistically strong solutions.
These results apply to the Navier–Stokes system

du + div(u ⊗ u)dt + ∇ pdt = �udt + (−�)−γ /2dB, div u = 0, (3.1)

where B = (B1, B2, B3) is a vector-valued L2-cylindricalWiener process on some
stochastic basis (�,F , (Ft )t�0,P) and γ > 3/2. Here the filtration (Ft )t�0 is the
normal filtration generated by theWiener process B. As a main result of the present
paper, we treat the case of space-time white noise, i.e. γ = 0. But already the more
regular case of γ ∈ (0, 3/2] presents interesting new challenges. In this section we
want to outline some of the main ideas on examples of these more regular noises.

If the noise is not trace class, Itô’s formula cannot be applied in order to obtain an
energy inequality. The case of γ = 3/2 is therefore the treshold where (and below
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which) stochastic counterparts of Leray solutions on the level of u no longer make
sense. Furthermore, the expected regularity of solutions depends on the regularity
of the noise. This can be seen by looking at the linear counterpart of (3.1)

dz + ∇ pzdt = �zdt + (−�)−γ /2dB, div z = 0, (3.2)

and realizing that z ∈ CT Cγ−1/2−κ∩C1/2−δ
T Cγ−3/2+2δ−κ P-a.s. for κ, δ > 0 small.

This can be obtained by Schauder estimates from the fact that the space-time white
noise dB/dt is a random distribution of space-time regularity −5/2− κ for κ > 0
with parabolic scaling. Thus, if γ � 1/2 the solution is not even function-valued
and the quadratic nonlinearity in (3.1) is notwell-defined analytically. Nevertheless,
one can use probability theory and renormalization to define this nonlinearity using
Wick products.

We distinguish the following cases with an increasing level of difficulty:

(1) γ ∈ (1/2, 3/2]: solutions are function-valued hence the convective term is
well-defined but the energy inequality for u cannot be obtained.

(2) γ ∈ (1/6, 1/2]: solutions becomedistribution-valued, renormalization is needed
to define the product.

(3) γ ∈ (0, 1/6]: further decomposition is required in order to make sense of all
the required products.

(4) γ = 0: the case of space-time white noise, a so-called paracontrolled ansatz is
required and we present a detailed proof in subsequent sections.

We stress that while global existence of martingale (i.e. probabilistically weak)
solutions in the case γ ∈ (1/2, 3/2] can be obtained by compactness and Sko-
rokhod representation theorem, existence of probabilistically strong solutions was
unknown. For γ � 1/2 even global existence of martingale solutions was an open
problem.

In the remainder of this section, we focus on the first three regimes and explain
how to make them amenable to convex integration and hence to global-in-time
existence and non-uniqueness results.

3.1. The Case of γ ∈ (1/2, 3/2]
Even though the energy inequality cannot be computed here, the approach of

[43,45] can be applied with minimal modifications. In particular, one uses the
decomposition u = z + v where z solves (3.2) and

Lv + div((v + z) ⊗ (v + z)) + ∇ pv = 0, div v = 0. (3.3)

Here and in the sequel, we use the notation L = ∂t − �. The convex integration
scheme is then given via the iteration system

Lvq + div((vq + zq) ⊗ (vq + zq)) + ∇ pq = div R̊q , div vq = 0,

where zq = �� f (q)z with �� f (q) being a cut-off of the Littlewood–Paley expan-
sion. With a suitable definition of the stopping times, this permits to add noise scale
by scale as one proceeds through the iteration. Setting the convex integration up
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with an initial iteration v0 as in [43], one can prove that the constructed solution v

is distinct from the Leray solution to (3.3) starting from the same initial value. This
implies existence of an initial value so that non-uniqueness holds for (3.1) as well.
Using the probabilistic extension of solutions from [43], non-uniqueness in law
on any time interval [0, T ], T > 0, follows. Following the ideas of [45] it is also
possible to construct solutions with a prescribed L2 initial condition and to obtain
existence and non-uniqueness of global-in-time probabilistically strong solutions.

3.2. The Case of γ ∈ (1/6, 1/2]
This case ismore delicate and further decomposition is required.More precisely,

in addition to u = z + v as above, we split v into its irregular and regular part, i.e.
v = v1 + v2. The equation for v1 contains all the irregular terms of the product
(v + z)⊗ (v + z), whereas the regular ones are put in v2. Additionally, the equation
for v1 shall be linear so that it can be solved by a fixed point argument. As a rule
of thumb, we color the irregular terms magenta and the regular ones blue. The
decomposition can be done as follows. The product z ⊗ z needs to be constructed
by renormalization as a Wick product denoted by z and it is of spatial regularity
C2(γ−1/2)−κ . For the moment, we ignore this fact and proceed formally. We come
back to the rigorous definition of the stochastic objects in Sect. 4.1.

So we have the first magenta term z ⊗ z. Then we write with the help of para-
products and Littlewood–Paley projectors

(v1 + v2) ⊗ z = (v1 + v2) �≺ �>Rz+(v1 + v2) �� �>Rz+(v1 + v2) ⊗ ��Rz,

and treat the symmetric term z⊗(v1+v2) the sameway. Here, ��= �+ �� andwe
included a suitable cut-off R to be chosen appropriately. This eventually simplifies
the fixed point argument used to establish, for a given convex integration iteration
v2q , the existence and uniqueness of v1q . Finally, we let (v

1 + v2) ⊗ (v1 + v2). This
leads to

Lv1 + div
(
z ⊗ z + (v1 + v2) �≺ �>R z + �>R z �� (v1 + v2)

)+ ∇ p1 = 0, div v1 = 0,

Lv2 + div
(
(v1 + v2) �� �>R z + �>R z �� (v1 + v2) + (v1 + v2) ⊗ ��R z

)

+ div(��R z ⊗ (v1 + v2) + (v1 + v2) ⊗ (v1 + v2)) + ∇ p2 = 0, div v2 = 0.

We set up a convex integration scheme as an approximation of the above system
of equations for v1 and v2. In particular, we include further Littlewood–Paley
projectors and let

Lv1q + div
(

z ⊗ z + (v1q + v2q ) �≺ �� f (q)�>R z + �� f (q)�>R z �� (v1q + v2q )
)

+ ∇ p1q = 0, div v1q = 0,

Lv2q + div
(
(v1q + v2q ) �� �>R z + �>R z �� (v1q + v2q ) + (v1q + v2q ) ⊗ ��R z

)

+ div(��R z ⊗ (v1q + v2q ) + (v1q + v2q ) ⊗ (v1q + v2q )) + ∇ p2q = div R̊q , div v2q = 0.

Note that the Reynolds stress R̊q is only included in the equation for v2q . Indeed,
v2q contains the quadratic nonlinearity which is used in the convex integration to
reduce the stress.
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At each iteration step q +1, we first use the previous stress R̊q in order to define

the principle part of the corrector w
(p)
q+1, the incompressibility corrector w

(c)
q+1 and

the time corrector w
(t)
q+1 in terms of the intermittent jets, see “Appendix A”. This

gives the next iteration v2q+1 and consequently we obtain v1q+1 by a fixed point

argument, cf. Figure1. The localizers �� f (q) in the equation of v1q are used to
control the blow up of a certain norm of v1q as q → ∞.

3.3. The Case of γ ∈ (0, 1/6]

In this regime, also the resonant product v1 � z becomes problematic. This can
be overcome by introducing an additional stochastic object which permits to cancel
the worst term, i.e. z ⊗ z, from the equation for v1. To be precise, let

Lz1 + div(z ⊗ z) + ∇ pz1 = 0, div z1 = 0, (3.4)

and define u = z + v = z + z1 + v1 + v2. Recall that in the rigorous analysis
z ⊗ z needs to be replaced by the Wick product z of regularity C2(γ−1/2)−κ .
Consequently, z1 then becomes our second stochastic object, later denoted as z
with regularity C2γ−κ . In addition, also the products z1 ⊗ z and z ⊗ z1 need to be
defined via renormalization as z and z , respectively. We again ignore this fact
for a moment and continue with the formal decomposition. The reader is referred
to Sect. 4.1 below for more details on the stochastic construction.

Proceeding as above, this leads to

Lv1 + div
(
z1 ⊗ z + z ⊗ z1 + z1 ⊗ z1 + (v1 + v2) �≺ �>R z + �>R z �� (v1 + v2)

)+ ∇ p1 = 0,

div v1 = 0,

Lv2 + div
(
(v1 + v2) �� �>R z + �>R z �� (v1 + v2) + (v1 + v2) ⊗ (��R z + z1)

)

+ div((z1 + ��R z) ⊗ (v1 + v2) + (v1 + v2) ⊗ (v1 + v2)) + ∇ p2 = 0, div v2 = 0,

together with the convex integration scheme

Lv1q + div
(

z1 ⊗ z + z ⊗ z1 + z1 ⊗ z1 + (v1q + v2q ) �≺ �� f (q)�>R z + �� f (q)�>R z �� (v1q + v2q )
)

+∇ p1q = 0, div v1q = 0,

Lv2q + div
(
(v1q + v2q ) �� �>R z + �>R z �� (v1q + v2q ) + (v1q + v2q ) ⊗ (��R z + z1)

)

+ div((��R z + z1) ⊗ (v1q + v2q ) + (v1q + v2q ) ⊗ (v1q + v2q )) + ∇ p2q = div R̊q , div v2q = 0.

With this definition, one can obtain existence of an initial condition for which
there are non-unique solutions before a stopping time. Since there are no global
Leray solutions, for global existence it is necessary to extend these solutions by
other convex integration solutions. To this end, an improved convex integration
construction is needed, which gives the result for any prescribed initial condition
in L2. In particular, the term

v1 �� �>Rz
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and its symmetric counterpart appearing in the equation for v2 require regularity of
v1. Accordingly, this introduces blow-up norms in time to overcome the singularity
at t = 0 into the convex integration, which is not convenient. We therefore refine
the decomposition above by writing

(v1 + v2) �� �>Rz = v1 �� �>Rz+v2 �� �>Rz.

We include these terms into the equations for v1, v2 accordingly respecting the
colors. Then in the equations for v1q and v2q we rewrite

(v1q + v2q) �� �>Rz = v1q �� �>Rz+v2q �� �>Rz.

The symmetric terms are treated the same way.

4. Paracontrolled Solutions

It turns out that even further expansion would not help in order to treat the
case of space-time white noise, i.e. γ = 0. Indeed, there would always be ill-
defined products. As understood in the field of singular SPDEs, a paracontrolled
ansatz needs to be included. It postulates a particular structure of solutions and
permits to make sense of the analytically ill-defined products using probabilistic
tools. In the sequel, we first introduce the stochastic objects needed for the rigorous
formulation of the Navier–Stokes system (1.1). Then we formulate the notion of
paracontrolled solution incorporating the paracontrolled ansatz. Finally, we give a
formal decomposition combined with paracontrolled ansatz in the spirit of Sect. 3.

4.1. Stochastic Objects

Let us recall that due to Theorem 1.1 [61], the equation (3.1) with γ = 0 is
locally well-posed for initial conditions in Cη for η ∈ (−1,−1/2). The solution u
belongs to C([0, σ ); Cη) where σ is a strictly positive stopping time so that

‖uε − u‖Cσ Cη → 0

in probability. Here, uε denotes the solution to the regularized Navier–Stokes sys-
tem

∂t uε + div(uε ⊗ uε) + ∇ pε = �uε + ζε, div uε = 0,

where ζε is a mollification of the space-time white noise ζ = dB/dt . In particular,
the stochastic objects needed in our proof here were constructed in [61].

To summarize the main ideas, let zε be the stationary solution to

∂t zε + ∇ pzε = �zε + ζε, div zε = 0.

Then zε → z in L p
(
�; CT C−1/2−κ

)
for every p ∈ [1,∞). Moreover, the renor-

malized product z can be defined as a Wick product in the sense that there exist
diverging constants Cε ∈ R

3×3, Ci j
ε → ∞, so that

zε := zε ⊗ zε − Cε
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has a well-defined limit in L p
(
�; CT C−1−κ

)
for every p ∈ [1,∞). In fact, Cε =

E[zε ⊗ zε]. We also introduce the following stochastic objects. Let

∂t zε − �zε = −Pdiv(zε ), div zε = 0, zε (0) = 0,

with P being the Leray projection operator, and define

zε := zε ⊗ zε, zε := zε ⊗ zε , zε := PI(∇zε) � zε =
(
PI(∇zε)

ik ◦ z j
ε

)3
i, j,k=1

,

zε := PIdiv(zε ), zε := PIdiv(zε ),

zε := zε ⊗ zε − C1,ε(t), zε := zε � zε + zε � zε − C2,ε(t),

where I f (t) = ∫ t
0 e(t−r)� f (r)dr and

C1,ε(t) = E[(zε ⊗ zε )(t, 0)] → ∞,

C2,ε(t) = E[(zε � zε)(t, 0)] + E[(zε � zε)(t, 0)] → ∞
as ε → 0.

For connecting the solutions in Sect. 5 we also introduce two stochastic objects

zε (r; s) and z (r; s). They are defined the same way as zε and z but replacing
the last integration operator I by Is,r = ∫ r

s e(r−l)�dl and the renormalized diverg-
ing constants Ci,ε(r; s) are defined as the expectation of the corresponding terms
for i = 1, 2.

We recall the following result from [61]:

Proposition 4.1. For every κ > 0 and some 0 < δ < 1/4, there exist random
distributions

Z := (z, z , z , z , z , z , z , z ) (4.1)

such that if τε is a component in

Zε := (zε, zε , zε , zε , zε , zε , zε , zε )

and τ is the corresponding component in Z then τε → τ in CT Cατ ∩ Cδ/2
T Cατ −δ

a.s. as ε → 0, where the regularities ατ are summarized in Table 1. Furthermore,
for every p ∈ [1,∞)

sup
ε�0

E‖τε‖p
CT Cατ + sup

ε�0
E‖τε‖p

Cδ/2
T Cατ −δ

� 1.

For τε(r; s) = zε (r; s) and τε(r; s) = zε (r; s) there exist random distributions

τ(r; s) = z (r; s) and τ(r; s) = z (r; s) such that

sup
ε�0

E sup
0�s�r�T

‖τε‖p
Cατ � 1,
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Table 1. Regularity of stochastic objects

τ z z z z z z z z
ατ - 1

2 − κ - κ - 1 - κ − 1
2 − κ − 1

2 − κ - κ - κ - κ

and

sup
ε�0

E sup
0�s�r�T

‖τε − τ‖p
Cατ → 0,

as ε → 0.

The renormalization of τ(r; s) can be done by a similar argument as [61].

Remark 4.2. We emphasize that the renormalization constants Cε, Ci,ε, i = 1, 2,
only depend on t . Hence, due to the divergence in the nonlinear term, they do not
appear in the approximate Navier–Stokes system driven by the mollified noise ζε.
If we modified the Cε, Ci,ε, i = 1, 2, by adding a finite constant, some of the limit
random distributions τ would change. For the rest of the paper, we fix the stochastic
objects τ and prove existence of infinitely many solutions h to (4.2) with these fixed
stochastic data.

Finally, we note that similarly to our decomposition, the local solution u ob-
tained in Theorem 1.1 in [61] decomposes as u = z + z1 + h with a suitable
paracontrolled ansatz for h. In particular, by Schauder estimates, the part h pos-
sesses a positive spatial regularity at positive times, i.e. it belongs in particular
to L2. For this reason, it is sufficient to restrict our attention to initial conditions
for the convex integration scheme in L2. Indeed, for an initial condition in Cη,
η ∈ (−1,−1/2), we can always start with the local solution from [61] and start
with convex integration only at a positive (random) time.

4.2. Notion of Solution

To begin with, we write, formally,

u = z + v = z + z1 + h,

where z and z1 solve (3.2) and (3.4), respectively. Then the equation for h reads as

Lh + div((h + z1) ⊗ (h + z1) + z ⊗ (h + z1) + (h + z1) ⊗ z) + ∇ ph = 0,

divh = 0,
(4.2)

which shall be further rewritten as a system for v1 and v2 in Sect. 4.3. Indeed, the
multiplication of h and z is not well-defined as the expected sum of their regular-
ities is not strictly positive for the resonant product h � z to be well-defined, cf.
Lemma 2.2. Collecting the terms which make h too irregular leads to the following
paracontrolled ansatz

h = −P[h ≺ I∇z] + ϑ − PI div(z ⊗ z1 + z1 ⊗ z),
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where I f (t) = ∫ t
0 Pt−s f (s)ds.

Then ϑ becomes more regular than h since

ϑ = h + PI div(z ⊗ z1 + z1 ⊗ z) + PI[h ≺ ∇z] − P[I, h ≺]∇z, (4.3)

where [I, h ≺]∇z denotes the commutator between I and h ≺ given by

[I, h ≺]∇z = I[h ≺ ∇z] − h ≺ I∇z.

We use the same notation for other commutators as well. The second and the third
terms on the right hand side of (4.3) cancel the irregular terms in h whereas the last
term has better regularity by Lemma B.4. Using the commutator Lemmas B.4, 2.3
and 2.4, we write formally h � z as

h � z = −P[h ≺ I∇z] � z + ϑ � z − (PI div(z ⊗ z1 + z1 ⊗ z)) � z

= −([P, h ≺]I∇z) � z − com(h,PI∇z, z) − h · (PI∇z � z)

+ ϑ � z − (PI div(z ⊗ z1 + z1 ⊗ z)) � z.

The above orange terms are still ill-defined and need to be replaced by the cor-
responding stochastic objects. Hence the rigorous paracontrolled ansatz and the
definition of h � z read as

h = −P[h ≺ I∇z] + ϑ − (z + z ), (4.4)

h � z := −([P, h ≺]I∇z) � z − com(h,PI∇z, z) − h · z + ϑ � z − z ,

(4.5)

Let us now formulate the definition of paracontrolled solution to (4.2). To this
end, we recall that the given cylindrical Wiener process B is defined on a stochastic
basis (�,F , (Ft )t�0,P) and this is also where all the stochastic objects in Sect. 4.1
are constructed.

Definition 4.3. We say that a pair of (Ft )t�0-adapted processes

(h, ϑ) ∈
(

L2(0, T, L2) ∩ C1/10
T,1/2−κ L5/3 ∩ L1(0, T, B1/5

5/3,∞) ∩ CT H−1
)

×
(

L1(0, T, B3/5−κ
1,∞ ) ∩ CT H−1

)

P-a.s. with κ > 0 is a paracontrolled solution to (4.2) provided (4.4) holds and the
equation (4.2) holds in the analytically weak sense with the resonant product h � z
given by (4.5).

Remark 4.4. (i) We note that paracontrolled solutions are probabilistically strong,
that is, they are adapted to the given filtration (Ft )t�0.

(ii) The space C1/10
T,1/2−κ with singularity at time zero is used in Definition 4.3 in

order to cover the case of irregular initial conditions, namely, divergence free
initial conditions in C−1+2κ for κ > 0.

(iii) The function spaces to which (h, ϑ) belong together with Proposition 4.1 guar-
antee that all the terms in (4.4)–(4.5) are well-defined. This in turn permits to
make sense of all the terms in (4.2).
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4.3. Formal Decomposition

We continue with the formal decomposition of the equation in order to find the
desired paracontrolled ansatz. Moreover, in order to be able to apply convex inte-
gration, we need to introduce a further decomposition into v1, v2. In this subsection,
we ignore the fact that various products of z are not well-defined. We proceed as if
these were well-defined and we replace their values in the end by the corresponding
stochastic objects constructed in Sect. 4.1.

Let h = v1 + v2, (4.2) rewrites as

L(v1 + v2) + div((v1 + v2 + z1) ⊗ (v1 + v2 + z1)

+ z ⊗ (v1 + v2 + z1) + (v1 + v2 + z1) ⊗ z)

+ ∇(p1 + p2) = 0, div(v1 + v2) = 0.

(4.6)

The regular terms (encoded in blue) shall be put in the equation for v2, whereas the
irregular ones (in magenta) into v1, so that in the end

Lv1 + div(z1 ⊗ z1 + V 1 + V 1,∗) + ∇ p1 = 0, div v1 = 0, (4.7)

Lv2 + div((v1 + v2) ⊗ (v1 + v2) + V 2 + V 2,∗) + ∇ p2 = 0, div v2 = 0.
(4.8)

Here V 1,∗ and V 2,∗, respectively, denotes the transpose of V 1 and V 2, respectively.
First, we assign

(v1 + v2) ⊗ (v1 + v2), z1 ⊗ z1 + z ⊗ z1 + z1 ⊗ z.

Then we decompose

(v1 + v2) ⊗ z1 = (v1 + v2) ⊗ �>Rz1 + (v1 + v2) ⊗ ��Rz1

= (v1 + v2) �≺ �>Rz1 + v1 �� �>Rz1+v2 �� �>Rz1
+(v1 + v2) ⊗ ��Rz1.

These terms are included into V 1 and V 2, whereas the symmetric counterparts

z1 ⊗ (v1 + v2) = �>Rz1 �� (v1 + v2) + �>Rz1 �� v1

+�>Rz1 �� v2+��Rz1 ⊗ (v1 + v2)

are inV 1,∗ andV 2,∗. Note thatwe colored v1 �� �>Rz1 magenta. Indeed, it requires
regularity of v1 which is not true uniformly as t → 0, since the initial condition
is only in L2. Hence if colored blue, this term cannot be controlled in the convex
integration scheme. This applies also to other terms below.

In the rest of the computation we only discuss the terms in V 1 and V 2, the
symmetric terms being included automatically. We split

(v1 + v2) ⊗ z = (v1 + v2) �≺ z + (v1 + v2) �� z + (v1 + v2) � z

= (v1 + v2) �≺ �>Rz + v1 �� �>Rz

+ v2 �� �>Rz + (v1 + v2) ( �≺ + ��)��Rz + v2 � z + v1 � z.
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For the resonant product v1 � z we shall use a paracontrolled ansatz which permits
to cancel the worst terms in V 1. In particular, the multiplication of v1 and z is not
well-defined as the expected sum of their regularities is not strictly positive making
the resonant product v1 � z ill-defined. First of all, there is the stochastic term
div(z ⊗ z1 + z1 ⊗ z) which makes v1 too irregular. Second of all, it is the following
paraproduct between v1 and z

div
(
�>Rz �� (v1 + v2)

)
= (v1 + v2) ≺ �>R∇z,

which creates problems. This leads to the paracontrolled ansatz

v1 = −P[(v1 + v2) ≺ �>RI∇z] + v

−PI div(z ⊗ z1 + z1 ⊗ z), div v = 0, (4.9)

where I f (t) = ∫ t
0 e(t−s)� f (s)ds. Thus,

v = v1 + PI div(z ⊗ z1 + z1 ⊗ z)

+ IP[(v1 + v2) ≺ �>R∇z] − P[I, (v1 + v2) ≺]�>R∇z. (4.10)

This permits to cancel the two terms

−PI div(z ⊗ z1 + z1 ⊗ z) − IP[(v1 + v2) ≺ �>R∇z]
from v1. Consequently, v has a better regularity than v1 and hence, in view of
the commutator lemma, Lemma 2.3, the resonant product v1 � z can be rigorously
defined. To this end, we compute

P[(v1 + v2) ≺ �>RI∇z] � z = P[(v1 + v2) ≺ I∇z] � z − P[(v1 + v2) ≺ ��RI∇z] � z

= ([P, (v1 + v2) ≺]I∇z) � z + [(v1 + v2) ≺ PI∇z] � z

−P[(v1 + v2) ≺ ��RI∇z] � z

= ([P, (v1 + v2) ≺]I∇z) � z + com(v1 + v2,PI∇z, z)

+(v1 + v2) · (PI(∇z) � z)

−P[(v1 + v2) ≺ ��RI∇z] � z.

The above commutator between the Helmholtz projection and the paraproduct is
understood componentwise as

([P, (v1 + v2) ≺]I∇z)i = P
i j [(v1 + v2)k ≺ I∂k z j ] − (v1 + v2)k ≺ P

i jI∂k z j ,

and accordingly,

((v1 + v2) ≺ PI∇z)i = (v1 + v2)k ≺ P
i jI∂k z j .

We deduce

v1 � z = −P[(v1 + v2) ≺ �>RI∇z] � z

+v
� z − (PI div(z ⊗ z1 + z1 ⊗ z)) � z

= −([P, (v1 + v2) ≺]I∇z) � z − com(v1 + v2,PI∇z, z)

−(v1 + v2) · (PI∇z � z)
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−P[(v1 + v2) ≺ ��RI∇z] � z

+v
� z−(PI div(z ⊗ z1 + z1 ⊗ z)) � z.

In order to avoid the singularity at time zero in the convex integration, we include an
additional splitting into �>R and ��R of the remaining (uncolored) terms above
as follows:

−([P, (v1 + v2) ≺]I∇z) � z = −([P, v1 ≺]I∇z) � �>R z

−([P, v1 ≺]I∇z) � ��R z−([P, v2 ≺]I∇z) � z,

− com(v1 + v2,PI∇z, z) = − com(v1,PI∇z, �>R z)

− com(v1,PI∇z, ��R z)− com(v2,PI∇z, z),

−(v1 + v2) · (PI∇z � z) = −(v1 + v2) ≺ �>R(PI∇z � z)−v1 � �>R(PI∇z � z)

−v2 � �>R(PI∇z � z)−(v1 + v2) · ��R(PI∇z � z),

v
� z = v

� �>R z+v
� ��R z.

Finally, collecting all the terms leads us to

V 1 = z1 ⊗ z+(v1 + v2) �≺ �>R z1 + v1 �� �>R z1 + (v1 + v2) �≺ �>R z + v1 �� �>R z

−(PI div(z ⊗ z1 + z1 ⊗ z)) � z−([P, v1 ≺]I∇z) � �>R z− com(v1,PI∇z,�>R z)

−(v1 + v2) ≺ �>R(PI∇z � z)−v1 � �>R(PI∇z � z) + v
� �>R z,

V 2 = v2 �� �>R z1+(v1 + v2) ⊗ ��R z1

+v2 �� �>R z + (v1 + v2) ( �≺ + ��) ��R z + v2 � z

−P[(v1 + v2) ≺ ��RI∇z] � z − ([P, v2 ≺]I∇z) � z−([P, v1 ≺]I∇z) � ��R z

− com(v1,PI∇z,��R z) − com(v2,PI∇z, z) − v2 � �>R(PI∇z � z)

−(v1 + v2) · ��R(PI∇z � z) + v
� ��R z.

It will be seen below, that letting

h = v1 + v2, ϑ = v + v2 + P[(v1 + v2) ≺ ��RI∇z]
satisfies the requirements of Definition 4.3. The idea then is to apply convex inte-
gration on the level of the equation (4.8) for v2. In particular, we need to make sure
that the convex integration gives v2 of the required regularity for ϑ .

5. Convex integration Set-up and Results

The goal of this section is to construct infinitely many probabilistically strong
paracontrolled solutions (h, ϑ) and deduce global existence and non-uniqueness
for the system (4.2). The equation (4.2) for h splits formally into the coupled system
(4.7), (4.8) for v1 and v2 and it remains to include the stochastic objects. This leads
to

Lv1 + div(z + V 1 + V 1,∗) + ∇ p1 = 0,

Lv2 + div((v1 + v2) ⊗ (v1 + v2) + V 2 + V 2,∗) + ∇ p2 = 0,

div v1 = div v2 = 0, v1(0) = v0, v2(0) = 0,

(5.1)
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with

V 1 = z + (v1 + v2) �≺ �>R z + v1 �� �>R z + (v1 + v2) �≺ �>R z + v1 �� �>R z

−z − ([P, v1 ≺]I∇z) � �>R z − com(v1,PI∇z,�>R z)

−(v1 + v2) ≺ �>R z − v1 � �>R z + v
� �>R z

and

V 2 = v2 �� �>R z + (v1 + v2) ⊗ ��R z

+v2 �� �>R z + (v1 + v2) ( �≺ + ��) ��R z + v2 � z

−P[(v1 + v2) ≺ ��RI∇z] � z − ([P, v2 ≺]I∇z) � z − ([P, v1 ≺]I∇z) � ��R z

− com(v1,PI∇z,��R z) − com(v2,PI∇z, z) − v2 � �>R z

−(v1 + v2) · ��R z + v
� ��R z.

The paracontrolled ansatz for v1 reads as

v1 = −P[(v1 + v2) ≺ �>RI∇z] + v − (z + z ). (5.2)

These equations need to be considered together within the convex integration
scheme and we put forward a joint iterative procedure.

The convex integration iteration is indexed by a parameter q ∈ N0. It will be
seen that the Reynolds stress R̊q is only required for the approximations v2q of
v2, whereas the approximations v1q of v1 are obtained by a fixed point argument.
We consider an increasing sequence {λq}q∈N0 ⊂ N which diverges to ∞, and a
sequence {δq}q∈N0 ⊂ (0, 1) which decreases to 0. We choose a ∈ N, b ∈ N,
β ∈ (0, 1) and let

λq = a(bq ), δq = λ
2β
1 λ−2β

q ,

where β will be chosen sufficiently small and a as well as b sufficiently large. At
each step q, a triple (v1q , v2q , R̊q) is constructed solving the system

Lv1q + div(z + V 1
q + V 1,∗

q ) + ∇ p1q = 0,

Lv2q + div((v1q + v2q) ⊗ (v1q + v2q) + V 2
q + V 2,∗

q ) + ∇ p2q = div R̊q ,

div v1q = div v2q = 0, v1q(0) = v0, v2q(0) = 0,

(5.3)

where

V 1
q = z + (v1q + v2q ) �≺ �� f (q)�>R(z + z ) + v1q �� �>R z + v1q �� �� f (q)�>R z

−([P, v1q ≺]I∇z) � �>R z − com(v1q ,PI∇z,�>R z) − z

−(v1q + v2q ) ≺ �� f (q)�>R z − v1q � �>R z + v
q � �>R z

and

V 2
q = v2q �� �>Rz + (v1q + v2q) ⊗ ��Rz
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Fig. 1. Iteration scheme

+v2q �� �>Rz + (v1q + v2q) ( �≺ + ��)��Rz + v2q � z

−P[(v1q + v2q) ≺ ��RI∇z] � z

−([P, v2q ≺]I∇z) � z − ([P, v1q ≺]I∇z) � ��Rz

− com(v1q ,PI∇z,��Rz) − com(v2q ,PI∇z, z) − v2q � �>Rz

−(v1q + v2q) · ��Rz + v
q � ��Rz.

Here, V 1
q and V 2

q are obtained from V 1 and V 2, respectively, by replacing v1, v2,

v by v1q , v
2
q , v


q and adding the projector �� f (q), where 2 f (q) = λθ

q , θ = 10/21,
into the second, the fourth and the eighth term in V 1

q . These projectors are used to
control the blow-up of certain norms of v1q and v2q and also to prove the convergence
of v1q as q → ∞. We shall therefore require the parameter a to be a power of 221

and b ∈ N. The parameter R is chosen in (6.7) below.
Analogously to the paracontrolled ansatz (5.2), v1q , v

2
q and v


q are linked via

v1q = −P[(v1q + v2q) ≺ I(∇�>R�� f (q)z)] + v
q − (z + z ). (5.4)

Our main goal is to prove convergence of v1q , v2q and v

q as q → ∞ and to show

that their limits satisfy (5.1), (5.2) in order to recover a paracontrolled solution to
(4.2) in the sense of Definition 4.3.

See Fig. 1 for our iteration scheme. More precisely, we use v2q to determine v1q

and v

q by Schauder estimates. Then R̊q is determined by v1q , v


q and v2q . The next

velocity v2q+1 is only determined by R̊q via a convex integration argument.
As the next step, we define a stopping time which controls suitable norms of

all the required stochastic objects. Namely, for L > 1 we let

TL := T 1
L ∧ T 2

L ∧ T 3
L ∧ T 4

L ∧ T 5
L ∧ L1/2,

T 1
L := inf

{
t � 0, ‖z(t)‖C−1/2−κ � L1/2} ∧ inf

{
t � 0, ‖z‖

C1/10
t C−7/10−κ � L1/2

}
,

T 2
L := inf

{
t � 0, ‖z (t)‖C−κ � L

}
∧ inf

{
t � 0, ‖z ‖

C1/10
t C−1/5−κ � L

}
,

T 3
L := inf

{
t � 0, ‖z (t)‖C−κ � L

}
∧ inf

{
t � 0, ‖z (t)‖C−1/2−κ + ‖z (t)‖C−1/2−κ � L

}
,

T 4
L := inf

{
t � 0, sup

0�s<r�t
‖z (r; s)‖C−κ � L

}
∧ inf

{
t � 0, ‖z ‖

C1/10
t C−1/5−κ � L

}
,

T 5
L := inf

{
t � 0, sup

0�s<r�t
‖z (r; s)‖C−κ � L

}
, (5.5)
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where we denoted by z (r; s) and z (r; s) the stochastic objects obtained the

same way as z (r) and z (r) but replacing the last integration operator I = I0,r
by Is,r = ∫ r

s e(r−l)�dl. It follows from Proposition 4.1 that the stopping time TL

is P-a.s. strictly positive and it holds that TL ↑ ∞ as L → ∞ P-a.s.
We intend to solve (5.1) for any given divergence free initial condition v0 ∈

L2 ∪ C−1+κ measurable with respect to F0. However, in the first step, we take the
following additional assumption: Let N � 1 be given and assume that P-a.s.

‖v0‖L2 � N . (5.6)

We keep this additional assumption on the initial condition throughout the convex
integration step in Proposition 5.1. In Theorem 5.4 it is relaxed to v0 ∈ L2 P-a.s
and, finally, Corollary 5.6 proves the result if v0 ∈ C−1+κ P-a.s. We also suppose
that there is a deterministic constant ML(N )1/2 � L6N + L29. In the following we
write ML instead of ML(N ) for simplicity.

Let α ∈ (0, 1) be a small parameter to be chosen below. By induction on q
we assume the following bounds for the iterations v2q : if t ∈ [0, TL ] then, for

p = 32
32−7α ,

‖v2q‖Ct W 2/3,p � a−α/2M1/2
L (1 +

∑
1�r�q

δ
1/2
r ) � 3M1/2

L a−α/2,

‖v2q‖
C1/10

t L5/3 + ‖v2q‖Ct W 1/5,5/3 � a−α/2M1/2
L (1 +

∑
1�r�q

δ
1/2
r ) � 3M1/2

L a−α/2.
(5.7)

Later on, we use the factor a−α/2 to absorb an implicit constant. Here we defined∑
1�r�0 := 0. In addition, we used

∑
r�1 δ

1/2
r �

∑
r�1 abβ−rbβ = 1

1−a−βb � 2
which boils down to the requirement that

aβb � 2, (5.8)

which we assume from now on. We also assume that L is large enough such that
the implicit constant in (5.20) and (7.54) below can be absorbed by L . Moreover,
for such L we can always choose a large enough such that L � aα/16. We denote

σq = 2−q , q ∈ N0 ∪ {−1}, γq = 2−q , q ∈ N0 \ {3}, γ3 = K ,

for K > 0 arbitrary. This constant will be used in order to distinguish different
solutions.

The key result is the following iterative proposition, which we prove below in
Sect. 7:

Proposition 5.1. Let N � 1 and let L > 1 sufficiently large. There exists a choice
of parameters a, α, b, β such that the following holds true: Let (v1q , v2q , R̊q) for
some q ∈ N0 be an (Ft )t�0-adapted solution to (5.3), (5.4) satisfying (5.7) and

‖v2q (t)‖L2 �
{

M0(M1/2
L

∑q
r=1 δ

1/2
r +∑q

r=1 γ
1/2
r ) + 3M0(ML (1 + 3q))1/2, t ∈ (

σq−1
2 ∧ TL , TL ],

0, t ∈ [0, σq−1
2 ∧ TL ],

(5.9)
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for a universal constant M0,

‖v2q‖C1
t,x

� λ4q M1/2
L , t ∈ [0, TL ], (5.10)

‖R̊q(t)‖L1 � δq+1ML , t ∈ (σq−1 ∧ TL , TL ], (5.11)

‖R̊q(t)‖L1 � ML(1 + 3q), t ∈ [0, TL ]. (5.12)

Then there exists an (Ft )t�0-adapted process (v1q+1, v
2
q+1, R̊q+1) which solves

(5.3), (5.4) on the level q + 1 and satisfies

‖v2q+1(t) − v2q(t)‖L2

�

⎧⎪⎨
⎪⎩

M0(M1/2
L δ

1/2
q+1 + γ

1/2
q+1), t ∈ (4σq ∧ TL , TL ],

M0((ML(1 + 3q))1/2 + γ
1/2
q+1), t ∈ (

σq
2 ∧ TL , 4σq ∧ TL ],

0, t ∈ [0, σq
2 ∧ TL ],

(5.13)

‖R̊q+1(t)‖L1

�

⎧⎪⎨
⎪⎩

MLδq+2, t ∈ (σq ∧ TL , TL ],
MLδq+2 + sups∈[(t−σq/2)∨0,t] ‖R̊q(s)‖L1 , t ∈ (

σq
2 ∧ TL , σq ∧ TL ],

sups∈[(t−σq/2)∨0,t] ‖R̊q(s)‖L1 + 3ML t ∈ [0, σq
2 ∧ TL ].

(5.14)

Consequently, (v2q+1, R̊q+1) obeys (5.7), (5.9), (5.10), (5.11) and (5.12) at the level

q + 1. Furthermore, for 1 < p = 32
32−7α , t ∈ [0, TL ] it holds that

‖v2q+1(t) − v2q(t)‖W 2/3,p � M1/2
L δ

1/2
q+1a−α/2, (5.15)

‖v2q+1 − v2q‖
C1/10

t L5/3 + ‖v2q+1 − v2q‖Ct W 1/5,5/3 � M1/2
L δ

1/2
q+1a−α/2, (5.16)

and for t ∈ (4σq ∧ TL , TL ] we have
∣∣‖v2q+1‖2L2 − ‖v2q‖2L2 − 3γq+1

∣∣ � 7MLδq+1. (5.17)

Note that no bounds on v1q , v1q+1 were included in the statement of Proposi-

tion 5.1. Indeed, the definition of the new velocity v2q+1 does not require v1q+1.

Then, having v2q+1 at hand, all the necessary bounds for v1q+1, v

q+1 follow from

Sect. 6 below. In particular, in Sect. 6 we prove

Proposition 5.2. Under the assumptions of Proposition 5.1, it holds for κ > 0 and
t ∈ [0, TL ]
‖v1q‖

Ct,1/6B1/3−2κ
5/3,∞

+ ‖v1q‖
C1/6−κ

t,1/6 L5/3 + ‖v1q‖Ct L2 � a−α/4M1/2
L + L3N + L4,

(5.18)

‖v
q‖

Ct,3/10B3/5−κ

5/3,∞
+ ‖v

q‖
C1/20

t,3/10B11/20−2κ
5/3,∞

+ ‖v
q‖Ct L2 � a−α/8M1/2

L + L5N + L6,

‖v1q+1 − v1q‖Ct L2 + ‖v1q+1 − v1q‖
Ct B1/3−κ

5/3,∞
+ ‖v1q+1 − v1q‖

C1/6−κ
t L5/3
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� a−α/2M1/2
L δ

1/2
q+1 + M1/2

L λ
−θ/20
q ,

‖v
q+1 − v

q‖
Ct,3/10B3/5−κ

5/3,∞
+ ‖v

q+1 − v
q‖Ct L2 � a−α/2M1/2

L δ
1/2
q+1 + M1/2

L λ
−θ/20
q .

(5.19)

Here θ = 10/21 and the implicit constants are always universal and independent
of q.

In what follows we always use κ > 0 to denote a small constant.

Remark 5.3. The best regularity we can expect for v1 is 1/2 − κ whereas for v

it is 1 − κ . It will be seen in Sect. 6 that their integrability is determined by v2

and hence it comes from the convex integration argument. Here, we observe a
competition between regularity and integrability, cf. (5.15) and (5.16) and their
proofs in Sects. 7.4.3 and 7.4.5. For convenience, we have chosen integrability 5/3
and space regularity 1/3−2κ for v1 and 3/5−κ for v. The timeweights are dictated
by the desired space regularity as the initial value for v1q and v


q only belongs to L2.

We also note that the bounds in Proposition 5.2 do not rely on the W 2/3,p estimate
of v2q or the difference v2q+1 − v2q . Indeed, this is only needed to make sense of the

resonant product v2 � z in the limit and to control the corresponding part of the
Reynolds stress.

We intend to start the iteration from v20 ≡ 0 on [0, TL ]. Then (5.7), (5.9) and
(5.10) hold. In that case, R̊0 is the trace-free part of the matrix

v10 ⊗ v10 + V 2
0 + V 2,∗

0 ,

where

V 2
0 = v10 ⊗ ��Rz + v10 ( �≺ + ��)��Rz

−P[v10 ≺ ��RI∇z] � z − ([P, v10 ≺]I∇z) � ��Rz

− com(v10,PI∇z,��Rz) − v10 · ��Rz + v

0 � ��Rz.

By (5.18) and (5.19), paraproduct estimates Lemma 2.2, commutator estimates
Lemmas 2.3, 2.4, we have

‖R0(t)‖L1 � ‖v10‖L2(‖��Rz ‖Cκ + ‖��Rz ‖Cκ + ‖��Rz‖Cκ )

+ ‖v10‖2L2 + ‖v
0‖L2‖��Rz‖Cκ

+ ‖v10‖L2‖z‖C−1/2−κ ‖��Rz‖C−1/2+2κ

� a−α/8ML + L6N 2 + L8 + L(a−α/8M1/2
L + L5N + L6)2(1/2+2κ)R

� ML . (5.20)

Here we used the value of R from (6.7) in Sect. 6 and the implicit constant can be
absorbed by taking a and L large enough. Thus (5.11) as well as (5.12) are satisfied
on the level q = 0, since δ1 = 1.

We deduce the following result:
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Theorem 5.4. There exists a P-a.s. strictly positive stopping time TL , arbitrarily
large by choosing L large, such that for any F0-measurable divergence free initial
condition v0 ∈ L2 P-a.s. the following holds true: There exists an (Ft )t�0-adapted
process (v1, v2, v) such that for κ > 0

v1 ∈ C([0, TL ]; L2) ∩ L1(0, TL ; B1/3−2κ
5/3,∞ ) ∩ C1/6−κ

TL ,1/6L5/3,

v2 ∈ L p(0, TL ; L2) ∩ C([0, TL ], W 2/3,1 ∩ W 1/5,5/3) ∩ C1/10
TL

L5/3,

v ∈ C([0, TL ]; L2) ∩ L1(0, TL ; B3/5−κ

5/3,∞ ),

P-a.s. for all p ∈ [1,∞), and it is an analytically weak solution to (5.1) with
v1(0) = v0, v2(0) = 0 and satisfying (5.2). Furthermore, there are infinitely
many such solutions and also infinitely many paracontrolled solutions (h, ϑ) =
(v1 + v2, v + v2 + P[(v1 + v2) ≺ ��RI∇z]) on [0, TL ] satisfying

h ∈ C([0, TL ]; L5/3) ∩ L1(0, TL ; B1/5
5/3,∞) ∩ C1/10

TL ,1/6L5/3 ∩ L p(0, TL ; L2),

ϑ ∈ C([0, TL ]; L5/3) ∩ L1(0, TL ; B3/5−κ
1,∞ ),

P-a.s. for all p ∈ [1,∞), where R depends on L and is chosen in (6.7) below.

Proof. Letting v20 ≡ 0, we repeatedly apply Proposition 5.1 and obtain (Ft )t�0-
adapted processes (v1q , v2q , R̊q), q ∈ N, such that

v2q → v2 in C([0, TL ], W 2/3,1 ∩ W 1/5,5/3) ∩ C1/10
TL

L5/3

as a consequence of (5.15), (5.16) and (5.7). In view of Proposition 5.2, it follows
that

v1q → v1 in C([0, TL ]; L2) ∩ L1(0, TL ; B1/3−2κ
5/3,∞ ) ∩ C1/6−κ

TL ,1/6L5/3,

v
q → v in C([0, TL ]; L2) ∩ L1(0, TL ; B3/5−κ

5/3,∞ ).

Then (v1, v2, v) are (Ft )t�0-adapted. Moreover, using (5.13) we have, for every
p ∈ [1,∞),
∫ TL

0
‖v2q+1 − v2q‖p

L2dt �
∫ 4σq ∧TL

σq /2∧TL

‖v2q+1 − v2q‖p
L2dt +

∫ TL

4σq ∧TL

‖v2q+1 − v2q‖p
L2dt

�
∫ 4σq ∧TL

σq /2∧TL

M p
0 ((ML (1 + 3q))1/2 + γ

1/2
q+1)

pdt

+
∫ TL

4σq ∧TL

M p
0 (M1/2

L δ
1/2
q+1 + γ

1/2
q+1)

pdt

� M p
0

(
2−q ((ML (1 + 3q))1/2 + γ

1/2
q+1)

p + TL (M1/2
L δ

1/2
q+1 + γ

1/2
q+1)

p
)

.

Thus, the sequence v2q , q ∈ N, is Cauchy hence converging in L p(0, TL ; L2) for all
p ∈ [1,∞). Accordingly, v2q → v2 also in L p(0, TL ; L2). Furthermore, by (5.11),
(5.12) we know, for all p ∈ [1,∞),
∫ TL

0
‖R̊q(t)‖p

L1dt � M p
L δ

p
q+1TL + (ML(1 + 3q))p2−q → 0, as q → ∞.
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Thus, the process (v1, v2, v) satisfies (5.1) and (5.2) before TL in the analytically
weak sense. Since v1q(0) = v0 and v2q(0) = 0 for all q ∈ N0 we deduce that
v1(0) = v0 and v2(0) = 0. Thus (h, ϑ) defined above solves (4.2) in the sense of
Definition 4.3.

Next, we prove non-uniqueness of the constructed solutions. In view of (5.17),
we have, on t ∈ (4σ0 ∧ TL , TL ],
∣∣‖v2‖2L2 − 3K

∣∣ �

∣∣∣∣∣∣
∞∑

q=0

(‖v2q+1‖2L2 − ‖v2q‖2L2 − 3γq+1)

∣∣∣∣∣∣
+ 3

∑
q �=2

γq+1

� 7ML

∞∑
q=0

δq+1 + 3
∑
q �=2

γq+1 � 7ML

∞∑
q=0

δq+1 + 3
∑
q �=2

γq+1 � c,

(5.21)

where the constant c > 0 is independent of K and the parameters a, α. This
implies non-uniqueness by choosing different K . More precisely, for a given L � 1
sufficiently large it holds P(4σ0 < TL) > 0. The parameters L , N determine
ML(N ) and consequently by choosing different K = K (L , N ) and K ′ = K ′(L , N )

so that 3|K − K ′| > 2c we deduce that the corresponding solutions v2K and v2K ′
have different L2-norms on the set {4σ0 < TL}. We claim that the sums v1K + v2K
and v1K ′ + v2K ′ are different as well. Indeed, it is easy to see from (5.18) and (5.21)
that

√
3K − c − M1/2

L � ‖v1 + v2‖L2 � M1/2
L + √

3K + c.

Choosing K ′ such that
√
3K ′ − c − M1/2

L > M1/2
L + √

3K + c gives different
solutions.

For a general divergence free initial condition v0 ∈ L2 P-a.s., we define

�N := {N − 1 � ‖v0‖L2 < N } ∈ F0.

Then the first part of this proof gives the existence of infinitely many paracontrolled
solutions (hN , ϑ N ) on each �N . Letting

h :=
∑
N∈N

hN1�N , ϑ :=
∑
N∈N

ϑ N1�N

concludes the proof. Note that this also uses the fact that the stochastic objects are
defined in advance and then the rest of the construction proceeds pathwise. ��

By an argument similar to [45, Theorem 1.1] we may extend the paracontrolled
solutions obtained in Theorem 5.4 by other paracontrolled solutions in order to
obtain global existence and non-uniqueness.

Theorem 5.5. Let v0 ∈ L2 P-a.s. be an F0-measurable divergence free initial
condition. There exist infinitely many paracontrolled solutions (h, ϑ) to (4.2) on
[0,∞). Moreover, it holds that

h ∈ L p
loc([0,∞); L2) ∩ C([0,∞), L5/3) P-a.s. for all p ∈ [1,∞).
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Proof. ByTheorem5.4we constructed a paracontrolled solution h = v1+v2 before
the stopping time TL starting from the given initial condition h(0) = v0 ∈ L2 P-
a.s. Since TL > 0 P-a.s., we know that for P-a.e. ω there exists q0(ω) such that
4σq0(ω) < TL(ω). By (5.13) we find that

‖v2(TL)‖L2 �
∑

0�q<q0

‖v2q+1(TL) − v2q(TL)‖L2 +
∑

q�q0

‖v2q+1(TL) − v2q(TL)‖L2

� M0q0(ML(1 + q0))
1/2 + M0(K 1/2 + 1) + M0M1/2

L < ∞.

This implies that ‖v2(TL)‖L2 < ∞ P-a.s. Since also v1(TL) ∈ L2 P-a.s., we can
use the value (v1 + v2)(TL) as a new initial condition for h in Theorem 5.4.

More precisely, we consider ĥ(0) = (v1+v2)(TL) and define ẑ(t) = z(t +TL),
and similarly we define the stochastic objects

ẑ1(t) := z (t + TL ), ẑ1 ⊗ ẑ(t) := z (t + TL ),

ẑ ⊗ ẑ1(t) := z (t + TL ),

ẑ (t) := z (t + TL ), I(∇ ẑ)(t) := ITL ,TL +t (∇z),

PI(∇ ẑ) � ẑ(t) = PITL ,TL +t (∇z) � z(t + TL ) = z (t + TL ; TL ),

PI(div(ẑ ⊗ ẑ1 + ẑ1 ⊗ ẑ)) � ẑ(t) = PITL ,TL +t (div(z + z )) � z(t + TL )

= z (t + TL ; TL ).

Then we define stopping time T̂L similar as in (5.5) with T 4
L and T 5

L replaced by

T̂ 4
L := inf

{
t � 0, ‖z (TL + t; TL )‖C−κ � L

}
∧ inf

{
t � 0, ‖z ‖

C1/10
t+TL

C−1/5−κ � L

}
,

T̂ 5
L := inf

{
t � 0, ‖z (TL + t; TL )‖C−κ � L

}
.

Then T̂L+1 � TL+1 − TL .
Consequently, we obtain solutions

(
ĥ = v̂1 + v̂2, ϑ̂ = v̂ + v̂2 + P[(v̂1 + v̂2) ≺ ��RI(∇ ẑ)]

)

before T̂L+1 adapted to Ft+TL . Here R is chosen as in (6.7) in Sect. 6 but in terms
of L + 1 instead of L . Moreover, by Proposition 5.2 and (5.7) it holds that ĥ(0) ∈
B1/5
5/3,∞. Hence, there is no singularity near zero of ĥ and similarly as in Sect. 6 we

obtain ĥ ∈ C1/10
T L5/3. Then we set h(t) = (v1+v2)1t�TL + ĥ(t −TL)1TL+1�t>TL .

Then, for p � 1,

h ∈ C([0, TL+1]; L5/3) ∩ L1(0, TL+1; B1/5
5/3,∞) ∩ C1/10

TL+1,1/6
L5/3 ∩ L p(0, TL+1; L2).

By the same argument as in the proof of [45, Theorem 1.1], h is adapted to (Ft )t�0
and satisfies the equation (4.2) before [0, TL+1]. Indeed, we have for t > TL that

h(t) = (v1 + v2)(TL) − P

∫ t

TL

e(t−s)�
[
div
(

h ⊗ h + z ⊗ h + h ⊗ z + z
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+ h ⊗ z + z ⊗ h + z + z
)]

ds,

with the paracontrolled ansatz

h(t) = −P[h(t) ≺ ITL ,t∇z] + ϑ̂(t − TL) − ITL ,t (z + z ),

and for s > TL

h � z(s) = −P[h ≺ ITL ,s∇z] � z(s) + ϑ̂(s − TL ) � z(s) − z (s; TL )

= −([P, h ≺]ITL ,s∇z) � z(s) − com(h(s),PITL ,s∇z, z(s)) − h(s) · z (s; TL )

+ ϑ̂(s − TL ) � z(s) − z (s; TL ).

Now, we define

ϑ = (
v + v2 + P[(v1 + v2) ≺ ��RI(∇z)]) 1t�TL

+
(

ϑ̂(t − TL ) + P[h(t) ≺ e(t−TL )�I∇z(TL )] + e(t−TL )�(z + z )(TL )

)
1t>TL .

It is easy to see that ϑ ∈ C([0, TL+1], L5/3) ∩ L1(0, TL+1, B3/5−κ
1,∞ ). Then, for

t, s > TL it holds that

h(t) = −P[h(t) ≺ (I∇z)(t)] + ϑ(t) − (z + z )(t),

h � z(s) = −([P, h(s) ≺](I∇z)(s)) � z(s)

− com(h(s),P(I∇z)(s), z(s)) − h(s) · z (s)

+ ϑ(s) � z(s) − z (s).

Here we used that from the renormalization it holds that

z (s) = z (s, TL) + e(s−TL )�(z + z )(TL) � z(s)

and similarly for other terms.
Thus, (h, ϑ) satisfies the equation (4.2), as well as (4.4) and (4.5) before

TL+1. Now, we can iterate the above steps, i.e. starting from h(TL+k) and con-
structing solutions (hk+1, ϑk+1) before the stopping time TL+k+1. Define h =
h11t�TL + ∑∞

k=1 hk1{TL+k−1<t�TL+k }, and obtain that h ∈ L p
loc([0,∞); L2) ∩

C([0,∞); L5/3), for all p ∈ [1,∞). Similarly, we define ϑ and we obtain that
(h, ϑ) is a paracontrolled solution. We emphasize that h does not blow up at any
finite time T since for any time T we could find k0 such T � TL+k0 and the infinite
sum becomes a finite sum. The desired norm of h only depends on L , k0 and the
initial data. Furthermore, as in the proof of Theorem 5.4 we obtain infinitely many
such solutions by choosing different K .

��
Corollary 5.6. Let v0 ∈ L2 ∪ C−1+κ with κ > 0 P-a.s. be a F0-measurable
divergence free initial condition. Then there exist infinitely many paracontrolled
solutions (h, ϑ) to (4.2) on [0,∞).
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Proof. If v0 ∈ C−1+κ with κ > 0, by [61] there exists a stopping time 0 < σ � TL

and a local paracontrolled solution (h, ϑ) to (4.2) in the sense of Definition 4.3.
Now, h(σ ) ∈ C1/2−κ , κ > 0, and we can start from h(σ ) and obtain infinitely
many global paracontrolled solutions by using Theorem 5.5. Moreover, there is no
singularity at h(σ ) and h ∈ C1/10

T,1/2−κ L5/3. Note that due to singularity at zero, we

only have h ∈ L2(0, T, L2) ∩ C1/10
T,1/2−κ L5/3 ∩ CT H−1 ∩ L1(0, T, B1/5

5/3,∞). ��

Accordingly, Theorem 1.1 is proved.
Finally, by exactly the same argument as in [45, Corollary 1.2], Corollary 1.3

follows.

6. Estimate of v1q and v

q

In this section, we work under the assumptions of Proposition 5.1. The main
aim is to prove the bounds (5.18), (5.19) as well as for κ > 0 and t ∈ [0, TL ]

‖v1q+1 − v1q‖Ct L2 + ‖v1q+1 − v1q‖
Ct B1/3−2κ

5/3,∞
+ ‖v1q+1 − v1q‖

C1/6−κ
t L5/3

� ‖v2q+1 − v2q‖
Ct B1/5

5/3,∞
+ ‖v2q+1 − v2q‖

C1/10
t L5/3 + M1/2

L λ
−θ/20
q , (6.1)

‖v
q+1 − v

q‖
Ct,3/10B3/5−κ

5/3,∞
+ ‖v

q+1 − v
q‖Ct L2

� ‖v2q+1 − v2q‖
Ct B1/5

5/3,∞
+ ‖v2q+1 − v2q‖

C1/10
t L5/3 + M1/2

L λ
−θ/20
q , (6.2)

and

‖v1q‖Ct,3/8L4 � M1/2
L λ

θ(7/10+2κ)
q . (6.3)

As a consequence of (5.16), this proves Proposition 5.2.Moreover, we recall that the
equation for v1q is linear. Hence, for a given v2q we obtain the existence and unique-
ness of solution v1q to (5.3) by a fixed point argument together with the uniform

estimate derived in the sequel. Also, if v2q is (Ft )t�0-adapted, so are (v1q , v

q). This

in particular gives the existence of v1q+1 in Proposition 5.1, once the new velocity

v2q+1 was constructed in Sect. 7.
In the following, we make use of the localizers �>R present in the equation

for v1q in (5.3). Namely, by an appropriate choice of R we can always apply (2.1)
to get a small constant in front of terms which contain v1q . We are therefore able to
absorb them into the left hand sides of the estimates without a Gronwall argument.
Due to singularity at t = 0, we use the weighted in time norms Ct,γ for several
different γ � 0, see Sect. 2 for their definition. In what follows, all the estimates
are pathwise and valid before the stopping time TL .
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6.1. Estimate of v1q in Ct,1/6B1/3−2κ
5/3,∞ and C1/6−κ

t,1/6 L5/3

We intend to apply Lemma B.2 and notice that by Remark B.3 each application
yields a factor L , independently of the chosen time weights in the range γ, δ ∈
{0, 1/6, 3/10}. However, we note that the difficult terms for Lemma B.2 are those
where we need to decrease the weight, i.e. γ < δ. For those we need to make sure
that the condition

γ − δ − α/2 + β/2 + 1 > 0 (6.4)

from Lemma B.2 is satisfied. It will be seen below that this is always achieved since
these terms do not require such a gain in space regularity, i.e. the difference α − β

compensates the negativity of the difference γ − δ.

Hence, we shall bound each term appearing in V 1
q as well as z in appropriate

(possibly time-weighted) function spaces with spatial regularity at least B−2/3−κ

5/3,∞ .

The terms in V 1,∗
q are estimated the same way.

Recall that by the definition of the stopping time (5.5) we have

‖z‖2Ct C−1/2−κ + ‖z ‖Ct C−κ + ‖z ‖Ct C−1/2−κ + ‖z ‖Ct C−κ + ‖z ‖Ct C−κ � L .

By the paraproduct estimate Lemma 2.2 we have

‖(v1q + v2q) �≺ �� f (q)�>Rz‖
Ct,1/6B−2/3−κ

5/3,∞

� sup
s∈[0,t]

s1/6(‖v1q(s)‖L5/3 + ‖v2q(s)‖L5/3)‖�>Rz‖Ct C−2/3−κ

� (‖v1q‖Ct,1/6L5/3 + ‖v2q‖Ct,1/6L5/3)L2−R/6,

‖(v1q + v2q) �≺ �� f (q)�>Rz ‖
Ct,1/6B−1/6−κ

5/3,∞
+ ‖(v1q + v2q)

≺ �� f (q)�>Rz ‖
Ct,1/6B−1/6−κ

5/3,∞

� sup
s∈[0,t]

s1/6(‖v1q(s)‖L5/3 + ‖v2q(s)‖L5/3)(‖�>Rz ‖Ct C−1/6−κ

+ ‖�>Rz ‖Ct C−1/6−κ )

� (‖v1q‖Ct,1/6L5/3 + ‖v2q‖Ct,1/6L5/3)L2−R/6,

and

‖v1q �� �>Rz ‖Ct,1/6Bκ
5/3,∞ + ‖v1q � �>Rz ‖Ct,1/6Bκ

5/3,∞

+ ‖v1q �� �� f (q)�>Rz‖
Ct,1/6B−1/3−3κ

5/3,∞

� sup
s∈[0,t]

s1/6‖v1q‖
B1/3−2κ
5/3,∞

(‖�>Rz ‖Ct C−1/6−κ

+ ‖�>Rz ‖Ct C−1/6−κ + ‖�>Rz‖Ct C−2/3−κ )

� ‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
L2−R/6.
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For the two commutators we use the commutator estimates, Lemmas 2.4 and 2.3,
to obtain

‖([P, v1q ≺]I(∇z)) � �>Rz‖Ct,1/6Bκ
5/3,∞ + ‖com(v1q ,PI(∇z),�>Rz)‖Ct,1/6Bκ

5/3,∞

� ‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
‖�>Rz‖Ct C−2/3−κ ‖z‖Ct C−1/2−κ � ‖v1q‖

Ct,1/6B1/3−2κ
5/3,∞

L2−R/6.

For the last term containing v

q we use the paraproduct estimate and LemmaB.2.

In particular, since v

q requires a higher time weight t3/10, we shall verify the

condition (6.4). It turns out that this is satisfied as γ = 1/6, δ = 3/10,α = 1/3−2κ ,
β = −1 + 1/20 − 2κ hence (6.4) holds. Accordingly, we obtain

‖I div(v
q � �>Rz)‖

Ct,1/6B1/3−2κ
5/3,∞

+ ‖I div(v
q � �>Rz)‖

C1/6−κ
t,1/6 L5/3

� L‖ div(v
q � �>Rz)‖

Ct,3/10B−1+1/20−2κ
5/3,∞

� L‖v
q � �>Rz‖

Ct,3/10B1/20−2κ
5/3,∞

� L‖v
q‖

Ct,3/10B3/5−κ

5/3,∞
‖�>Rz‖Ct C−11/20−κ

� L2‖v
q‖

Ct,3/10B3/5−κ

5/3,∞
2−R/20.

For the initial value part we have, by Lemma B.1 and (5.6), for t ∈ (0, TL ], that
‖et�v0‖B1/3−2κ

5/3,∞
� L1/2t−1/6+κ N ,

‖(et� − es�)v0‖L5/3 � |t − s|1/6−κs−1/6+κ N , |t − s| � 1, 0 < s < t.

Summarizing all the above estimates and using Besov embedding Lemma 2.1,
we obtain

‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
+ ‖v1q‖

C1/6−κ
t,1/6 L5/3

� L
(

L + N + L2−R/20(‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
+ ‖v

q‖
Ct,3/10B3/5−κ

5/3,∞
)

+ L2−R/6‖v2q‖Ct,1/6L5/3

)
.

(6.5)

Here, we used (5.6) and, as mentioned above, the extra factor L comes from
Lemma B.2.

6.2. Estimate of v

q in Ct,3/10B3/5−κ

5/3,∞ and C1/20
t,3/10B11/20−2κ

5/3,∞

Let us proceed with the estimate of v

q . Here, there are no difficulties coming

from changing the time weight as all the terms require either a lower or the same
weight. In view of (5.3), the paracontrolled ansatz (5.4), and since

div
(
(v1q + v2q) �≺ �� f (q)�>Rz

)
= �� f (q)�>Rz � ∇(v1q + v2q),

div
(
�� f (q)�>Rz �� (v1q + v2q)

)
= (v1q + v2q) ≺ ∇�� f (q)�>Rz,
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we obtain

v
q = v1q + P[(v1q + v2q) ≺ I(∇�>R�� f (q)z)] +

(
z + z

)

= v1q(0) − IP div
(

z + V 
q + V ,∗

q

)

−P[I, (v1q + v2q) ≺](∇�>R�� f (q)z)

−IP[∇(v1q + v2q) ≺ �� f (q)�>Rz], (6.6)

where

V 
q = (v1q + v2q) �≺ �� f (q)�>Rz + v1q �� �>Rz + v1q �� �� f (q)�>Rz

−([P, v1q ≺]I∇z) � �>Rz − com(v1q ,PI∇z,�>Rz) − z

−(v1q + v2q) ≺ �� f (q)�>Rz − v1q � �>Rz + v
q � �>Rz.

In what follows we estimate each term on the right hand side of (6.6).

From the above estimate we already know that z as well as all the terms in
V 

q except for v

q � �>Rz are bounded in B−1/3−3κ

5/3,∞ . We also show by paraproduct
estimates from Lemma 2.2 that

‖v
q � �>Rz‖

Ct,3/10B1/20−2κ
5/3,∞

� ‖v
q‖

Ct,3/10B3/5−κ

5/3,∞
‖�>Rz‖Ct C−11/20−κ

� L1/2‖v
q‖

Ct,3/10B3/5−κ

5/3,∞
2−R/20.

Moreover, Lemma 2.2 also implies

‖P[∇(v1q + v2q) ≺ (�>R�� f (q)z)]‖Ct,1/6B−27/20−κ

5/3,∞

�
(

sup
s∈[0,t]

s1/6‖v1q(s)‖
B1/3−2κ
5/3,∞

+ L1/6‖v2q‖
Ct B1/5

5/3,∞

)
‖�>Rz‖Ct C−11/20−κ

� (‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
L1/2 + L‖v2q‖

Ct B1/5
5/3,∞

)2−R/20,

which can then be plugged in the Schauder estimate, Lemma B.2. Next, we note
that Lemma B.4 can be applied to the remaining term in (6.6) which also gives a
factor of L . Hence, we use interpolation to get

‖P[I, (v1q + v2q) ≺](∇�>R�� f (q)z)‖Ct,3/10B3/5
5/3,∞

+ ‖P[I, (v1q + v2q) ≺](∇�>R�� f (q)z)‖C1/20
t,3/10B11/20−2κ

5/3,∞

� L(‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
+ ‖v2q‖

Ct B1/5
5/3,∞

+ ‖v1q‖
C1/6−κ

t,1/6 L5/3

+ ‖v2q‖
C1/10

t L5/3)‖�>Rz‖Ct C−11/20−κ

� L22−R/20(‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
+ ‖v2q‖

Ct B1/5
5/3,∞

+ ‖v1q‖
C1/6−κ

t,1/6 L5/3 + ‖v2q‖
C1/10

t L5/3).
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Combining the above estimates and using Schauder estimate Lemma B.2 and in-
terpolation, we have

‖v
q‖

Ct,3/10B3/5−κ

5/3,∞
+ ‖v

q‖
C1/20

t,3/10B11/20−2κ
5/3,∞

� L2 + L N + L22−R/20
(
‖v1q‖

Ct,1/6B1/3−2κ
5/3,∞

+ ‖v2q‖
Ct B1/5

5/3,∞

+ ‖v1q‖
C1/6−κ

t,1/6 L5/3 + ‖v2q‖
C1/10

t L5/3 + ‖v
q‖

Ct,3/10B3/5−κ

5/3,∞

)

+ L22−R/6‖v2q‖Ct,1/6L5/3 ,

which combined with (6.5) implies that

‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
+ ‖v1q‖

C1/6−κ
t,1/6 L5/3 + ‖v

q‖
Ct,3/10B3/5−κ

5/3,∞
+ ‖v

q‖
C1/20

t,3/10B11/20−2κ
5/3,∞

� L2 + L N + L22−R/20
(
‖v1q‖

Ct,1/6B1/3−2κ
5/3,∞

+ ‖v2q‖
Ct B1/5

5/3,∞

+ ‖v1q‖
C1/6−κ

t,1/6 L5/3 + ‖v2q‖
C1/10

t L5/3 + ‖v
q‖

Ct,3/10B3/5−κ

5/3,∞

)

+ L22−R/6‖v2q‖Ct,1/6L5/3 .

Then we choose R such that

2R/20 = 4C L2, (6.7)

with C being the implicit constant and use (5.7) to obtain

‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
+ ‖v1q‖

C1/6−κ
t,1/6 L5/3 + ‖v

q(s)‖
Ct,3/10B3/5−κ

5/3,∞
+ ‖v

q‖
C1/20

t,3/10B11/20−2κ
5/3,∞

� L2 + L N + L2a−α/2M1/2
L , (6.8)

which implies the first part of (5.18) and (5.19).

6.3. Estimate of v1q in Ct L2

Here, most of the terms are similar as in (6.5) but we need to be careful about
the compatibility condition (6.4). As mentioned above, terms except for v

q ��>Rz
and (v1q + v2q) �≺ �� f (q)�>Rz have spatial regularity

B−1/3−3κ
5/3,∞ ⊂ B−1/3−3/10−3κ

2,∞

by Lemma 2.1. Thus, the correspondingCt L2 norm can be bounded by Lemma B.2
with γ = 0, δ = 1/6, α = κ , β = −1/3 − 3/10 − 3κ − 1 as follows:

‖I div(· · · )‖Ct L2 � ‖I div(· · · )‖Ct Bκ
2,∞

� L‖ div(· · · )‖
Ct,1/6B−1/3−3/10−3κ−1

2,∞

� L2 + L2‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
+ L2‖v2q‖Ct L5/3 .
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Here, in · · · we collected all the terms from V 1
q + V 1,∗

q except for the above men-

tioned two and z and their symmetric counterparts.
Next, using paraproduct estimates and Lemma 2.1, the term corresponding to

v

q � �>Rz can be bounded in view of the embedding B3/5−κ−1/2−κ

5/3,∞
⊂ B3/5−1/2−2κ−3/10

2,∞ = B−1/5−2κ
2,∞ by Lemma B.2 with γ = 0, δ = 3/10, α = κ ,

β = −1/5 − 2κ − 1 as

‖I div(v
q � �>Rz)‖Ct L2 � ‖I div(v

q � �>Rz)‖Ct Bκ
2,∞

� L‖ div(v
q � �>Rz)‖

Ct,3/10B−1/5−2κ−1
2,∞

� L‖v
q � �>Rz‖

Ct,3/10B3/5−1/2−2κ
5/3,∞

� L‖v
q‖

Ct,3/10B3/5−κ

5/3,∞
‖z‖Ct C−1/2−κ

� L2‖v
q‖

Ct,3/10B3/5−κ

5/3,∞
.

We also use Lemma 2.2 and embedding B−1+3/10+κ

5/3,∞ ⊂ H−1 to get

‖(v1q + v2q) �≺ �� f (q)�>Rz‖Ct H−1

� ‖v1q‖Ct L2‖�>Rz‖Ct C−2/3−κ + ‖v2q‖Ct L5/3‖z‖Ct C−1/2−κ

� L1/2(‖v1q‖Ct L22−R/6 + ‖v2q‖Ct L5/3).

Thus combining the above estimates and (5.7), (6.8) we obtain

‖v1q‖Ct L2

� L2 + L N + L2(‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
+ ‖v2q‖Ct L5/3 + ‖v

q‖
Ct,3/10B3/5−κ

5/3,∞
)

+ L2‖v1q‖Ct L22−R/6

� L4 + L3N + a−α/2L4M1/2
L + L2a−α/2M1/2

L + L2‖v1q‖Ct L22−R/6

� L4 + L3N + a−α/4M1/2
L + L2‖v1q‖Ct L22−R/6,

using the fact that L4 � aα/4. Hence the last part of (5.18) follows.

6.4. Estimate of v

q in Ct L2

We apply the paracontrolled ansatz (5.4), the Besov embedding Lemma 2.1,
and paraproduct estimates Lemma 2.2 as well as (5.7) and (5.5) together with the

Schauder estimate to control z and z . We deduce

‖v
q‖Ct L2 � L‖v1q‖Ct L2 + ‖v2q ≺ I(∇�>R�� f (q)z)‖Ct B3/10+κ

5/3,∞
+ L2

� L(‖v2q‖Ct L5/3 + ‖v1q‖Ct L2) + L2

� La−α/2M1/2
L + L(L4 + L3N + a−α/4M1/2

L ) + L2

� M1/2
L a−α/8 + L5N + L6.

The last part of (5.19) follows.
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6.5. Estimate of the Difference v1q+1 − v1q in Ct B1/3−2κ
5/3,∞ and C1/6−κ

t L5/3

Most of the terms can be estimated similarly as in (6.5). We do not have to
consider the initial data as it vanishes and therefore we can even control directly
the Ct -norms without any weight. The main change comes from the additional
difference �� f (q+1) − �� f (q). First, we use Lemma 2.2 to bound the terms with
paraproducts �≺,≺ containing �� f (q+1) − �� f (q) by Schauder estimates as

L‖v1q + v2q‖Ct L5/3‖(�� f (q+1) − �� f (q))�>R(z + z )‖Ct C−2/3−κ � M1/2
L λ

−θ/6
q ,

L‖v1q + v2q‖Ct L5/3‖(�� f (q+1) − �� f (q))�>Rz )‖Ct C−2/3−κ � M1/2
L λ

−θ/6
q .

The part of �� containing �� f (q+1) − �� f (q) can be bounded by Schauder esti-
matesLemmaB.2withγ = 0, δ = 1/6,α = 1/3−2κ ,β = 1/3−2κ−11/20−κ−1
as

L‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
‖(�� f (q+1) − �� f (q))z‖Ct C−11/20−κ � M1/2

L λ
−θ/20
q .

Thus, in view of (6.5) we obtain

‖v1q+1 − v1q‖
Ct B1/3−2κ

5/3,∞
+ ‖v1q+1 − v1q‖

C1/6−κ
t L5/3

� L22−R/20
(
‖v1q+1 − v1q‖

Ct B1/3−2κ
5/3,∞

+ ‖v2q+1 − v2q‖Ct L5/3 + ‖v
q+1 − v

q‖
Ct,3/10B3/5−κ

5/3,∞

)

+ M1/2
L λ

−θ/20
q , (6.9)

where for v
q partwe used γ = 0, δ = 3/10,α = 1/3−2κ ,β = 3/5−κ−11/20−1.

Therefore, in order to deduce the first part of (6.1), we shall estimate the difference
v


q+1 − v


q .

6.6. Estimate of the Difference v

q+1 − v


q in Ct,3/10B3/5−κ

5/3,∞

Terms in V 
q can be bounded similarly as above. We only concentrate on

P[I, (v1q + v2q) ≺](∇�>R�� f (q)z), IP[∇(v1q + v2q) ≺ �� f (q)�>Rz].

Similarly as before, most terms could be estimated as the estimates for v

q with vq

replaced by vq+1 − vq . We consider the terms containing �� f (q+1) − �� f (q) and
use

‖(�� f (q+1) − �� f (q))z‖Ct C−11/20−κ � λ
−θ/20
q L1/2.

Thus, using (5.18) the Ct,3/10B3/5−κ

5/3,∞ -norm of these terms can be bounded by

λ
−θ/20
q L2(‖v1q‖

Ct,1/6B1/3−2κ
5/3,∞

+ ‖v2q‖
Ct B1/5

5/3,∞
+ ‖v1q‖

C1/6−κ
t,1/6 L5/3 + ‖v2q‖

C1/10
t L5/3)
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� λ
−θ/20
q M1/2

L .

Here we used Lemma B.4. Hence, we obtain

‖v
q+1 − v

q‖
Ct,3/10B3/5−κ

5/3,∞

� λ
−θ/20
q M1/2

L + L2
(
‖v1q+1 − v1q‖

Ct B1/3−2κ
5/3,∞

+ ‖v2q+1 − v2q‖
Ct B1/5

5/3,∞

+ ‖v1q+1 − v1q‖
C1/6−κ

t L5/3 + ‖v2q+1 − v2q‖
C1/10

t L5/3

+ ‖v
q+1 − v

q‖
Ct,3/10B3/5−κ

5/3,∞

)
2−R/20. (6.10)

Combining this bound with (6.9) we deduce a first part of (6.1) and (6.2) and it
remains to estimate the differences v1q+1 − v1q and v


q+1 − v


q in Ct L2.

6.7. Estimate of the Difference v1q+1 − v1q and v

q+1 − v


q in Ct L2

By the Besov embedding Lemma 2.1 it holds that

‖v1q+1 − v1q‖Ct L2 � ‖v1q+1 − v1q‖
Ct B1/3−2κ

5/3,∞
,

which in view of the first part of (6.1) implies the second part of (6.1). Moreover,
by (5.4), the Besov embedding Lemma 2.1, and paraproduct estimates Lemma 2.2
we have

‖(v1q + v2q) ≺ I(∇�>R(�� f (q) − �� f (q+1))z)‖Ct B1/3−2κ
5/3,∞

� L(‖v1q‖Ct L5/3 + ‖v2q‖Ct L5/3)‖(�� f (q) − �� f (q+1))z‖Ct C−2/3−κ

� L3/2(‖v1q‖Ct L2 + ‖v2q‖Ct L5/3)λ
−θ/6
q ,

which, due to B1/3−2κ
5/3,∞ ⊂ L2 and (6.1), implies

‖v
q+1 − v

q‖Ct L2

� ‖v1q+1 − v1q‖Ct L2 + ‖v2q+1 − v2q‖Ct L5/3 + L3/2(‖v1q‖Ct L2 + ‖v2q‖Ct L5/3)λ
−θ/6
q

� ‖v2q+1 − v2q‖
Ct B1/5

5/3,∞
+ ‖v2q+1 − v2q‖

C1/10
t L5/3 + M1/2

L λ
−θ/20
q .

This gives the remaining estimate of (6.2).

6.8. Estimate of v1q in Ct,3/8L4

This norm may a priori blow up during the iteration. We also estimate each
term separately and apply the Schauder estimate Lemma B.2 which then gives an
additional factor L . We have

‖�>R�� f (q)(z + z )‖Ct C1/5+κ + ‖�>R�� f (q)z ‖Ct C1/5+κ � Lλ
(7/10+2κ)θ
q .
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Hence, by Lemma 2.2 and (5.18), we have

‖(v1q + v2q) �≺ �>R�� f (q)(z + z )‖Ct B−1+κ
4,∞

+ ‖(v1q + v2q) ≺ �>R�� f (q)z ‖Ct B−1+κ
4,∞

� ‖v1q + v2q‖
Ct B−6/5

4,∞

(
‖�>R�� f (q)(z + z )‖Ct C1/5+κ

+ ‖�>R�� f (q)z ‖Ct C1/5+κ

)

� Lλ
(7/10+2κ)θ
q ‖v1q + v2q‖Ct L5/3 ,

‖v1q �� �>R�� f (q)z‖Ct,1/6B−1+κ
4,∞

� ‖v1q‖Ct,1/6B−1+κ
4,∞

‖�>R�� f (q)z‖Ct L∞

� L1/2λ
(1/2+2κ)θ
q ‖v1q‖

Ct,1/6B1/3−2κ
5/3,∞

,

and

‖v1q �� �>Rz ‖Ct,1/6B−1+κ
4,∞

+ ‖v1q � �>Rz ‖Ct,1/6B−1+κ
4,∞

� ‖v1q �� �>Rz ‖
Ct,1/6B1/3−3κ

5/3,∞
+ ‖v1q � �>Rz ‖

Ct,1/6B1/3−3κ
5/3,∞

� ‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
(‖z ‖Ct C−κ + ‖z ‖Ct C−κ )

� ‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
L .

Using Lemma B.2 and (5.19) we have

‖Idiv(v
q � �>Rz)‖Ct,3/10L4 � ‖Idiv(v

q � �>Rz)‖Ct,3/10Bκ
4,∞

� L‖v
q � �>Rz‖Ct,3/10B−1+2κ

4,∞

� L‖v
q‖

Ct,3/10B3/5−κ

5/3,∞
‖�>Rz‖Ct C−1/2−κ .

By that commutator estimates of Lemma 2.3 we have

‖([P, v1q ≺]I(∇z)) � �>Rz‖
Ct,1/6B1/3−4κ

5/3,∞
+ ‖com(v1q ,PI(∇z),�>Rz)‖

Ct,1/6B1/3−4κ
5/3,∞

� ‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
‖z‖2Ct C−1/2−κ � ‖v1q‖

Ct,1/6B1/3−2κ
5/3,∞

L .

Finally, for the initial value part we apply Lemma 9 in [24] to obtain

‖et�v0‖L4 � t−3/8‖v0‖L2 .

Combining the above estimates and applying the Schauder estimate Lemma B.2,
the Besov embedding Lemma 2.1 as well as (5.18) and (5.19) and the definition of
ML we obtain (6.3).

Note that we only control the L4-norm instead of e.g. L∞ because the para-
product

v1q �� �� f (q)�>Rz

only belongs to B1/3−2κ
5/3,∞ .
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7. The Main Iteration: Proof of Proposition 5.1

7.1. Choice of Parameters

In the sequel, additional parameters will be indispensable and their value has to
be carefully chosen in order to respect all the compatibility conditions appearing in
the estimations below. First, for a sufficiently small α ∈ (0, 1) to be chosen below,
we let � ∈ (0, 1) be a small parameter satisfying

�4/5λ4q � λ−α
q+1, �−1 � λ2αq+1, (7.1)

In particular, we define

� := λ
− 3α

2
q+1λ−2

q . (7.2)

In the sequel, we use the bounds

α > 244βb, 1 > 168βb2,
1

35
− 33α > 2βb, αb > 128 (7.3)

which can be obtained by choosing α small such that 1
35 − 33α > α, and choosing

b ∈ N large enough such that αb > 128 and finally choosing β small such that
α > 244βb, 1 > 168βb2. Various estimates of this form are needed for the final
control the new stress R̊q+1. Hence, we shall choose α small first and b large, then
β small enough. The last free parameter is a which is power of 221 and satisfies the
lower bounds given through

a > 4ML + K , L � aα/16.

Then by our condition we have

ML(1 + 3q) + K � λ
1/42
q < �−2/183 < λ

α−2β
q+1 , σ−1

q < �−1/61. (7.4)

In the sequel, we increase a in order to absorb various implicit and universal con-
stants.

We may freely increase the value of a provided we make β smaller at the same
time.

7.2. Mollification

We intend to replace v2q by a mollified velocity field v�. To this end, we extend

z(t) = z(0), z (t) = z (0) = 0, z (t) = 0,

I(∇z)(t) = 0, vi
q(t) = vi

q(0), R̊q(t) = R̊q(0) for t < 0.

As v2q equals to zero near zero, ∂tv
2
q(0) = 0, which implies by our extension that

the equation holds also for t < 0. Let {φε}ε>0 be a family of standard mollifiers
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on R
3, and let {ϕε}ε>0 be a family of standard mollifiers with support on R

+. We
define a mollification of vq , R̊q in space and time by convolution as

v� = (v2q ∗x φ�) ∗t ϕ�, R̊� = (R̊q ∗x φ�) ∗t ϕ�,

where φ� = 1
�3

φ( ·
�
) and ϕ� = 1

�
ϕ( ·

�
). Since the mollifier ϕ� is supported on R

+,
it is easy to see that z� is (Ft )t�0-adapted and so are v� and R̊�. Then using the
equation for v2q we obtain that (v�, R̊�) satisfies

∂tv� − �v� + divN + ∇ p� = div(R̊� + Rcom)

divv� = 0,
(7.5)

where N is the trace-free part of the matrix

N = (v1q + v2q) ⊗ (v1q + v2q) + V 2
q + V 2,∗

q

and

Rcom = N − N ∗x φ� ∗t ϕ�.

By using (5.7) (5.10) and (7.2) we know for t ∈ [0, TL ]
‖v2q − v�‖C1/10

t L5/3 + ‖v2q − v�‖Ct W 1/5,5/3

� �4/5‖v2q‖C1
t,x

� �4/5λ4q M1/2
L

� M1/2
L λ−α

q+1 � 1

4
M1/2

L δ
1/2
q+1a−α/2, (7.6)

‖v2q − v�‖Ct L2 � �‖v2q‖C1
t,x

� �λ4q M1/2
L

� M1/2
L λ−α

q+1 � 1

4
M1/2

L δ
1/2
q+1, (7.7)

and for p ∈ [1,∞]
‖v2q − v�‖Ct W 2/3,p � �1/3‖v2q‖C1

t,x
� �1/3λ4q M1/2

L

� M1/2
L λ

−15α/32
q+1 � 1

4
M1/2

L δ
1/2
q+1a−α/2, (7.8)

where we used the fact that αb > 128 and α > 3β and we chose a large enough in
order to absorb the implicit constant. In addition,

‖v�‖C N
t,x

� �−N+1‖vq‖C1
t,x

� �−N+1λ4q M1/2
L � M1/2

L �−N λ−α
q+1 (7.9)

holds for t ∈ [0, TL ] and it holds for t ∈ (
σq
2 ∧ TL , TL ]

‖v�(t)‖L2 � ‖v2q‖Ct L2 � M0(M1/2
L + K 1/2) + 3M0M1/2

L (1 + 3q)1/2 (7.10)

with some universal implicit constant.
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7.3. Construction of v2q+1.

Let us proceed with the construction of the perturbation wq+1, which then
defines the next iteration by v2q+1 := v� + wq+1. To this end, we make use of the
intermittent jets [9, Section 7.4], which we recall in Appendix A. In particular, the
building blocks W(ξ) = Wξ,r⊥,r‖,λ,μ for ξ ∈ � are defined in (A.3) and the set � is
introduced in Lemma A.1. The necessary estimates are collected in (A.7). For the
intermittent jets we choose the following parameters:

λ = λq+1, r‖ = λ
−4/7
q+1 , r⊥ = r−1/4

‖ λ−1
q+1 = λ

−6/7
q+1 ,

μ = λq+1r‖r−1
⊥ = λ

9/7
q+1.

(7.11)

Since a is power of 221, λq+1r⊥ = a(bq+1)/7 ∈ N.
Now we follow [45, Section 5.2] and introduce ρ as

ρ := 2
√

�2 + |R̊�|2 + γq+1

(2π)3
,

which implies for p � 1

‖ρ(t)‖L p � 2�(2π)3/p + 2‖R̊�(t)‖L p + γq+1. (7.12)

In view of (5.11), which holds on (2σq ∧ TL , TL ], and since suppϕ� ⊂ [0, �], we
obtain, for t ∈ (4σq ∧ TL , TL ], that

‖ρ‖C0[4σq ∧TL ,t],x
� �−4δq+1ML + γq+1, (7.13)

where we also used the embedding W 4,1 ⊂ L∞. Then, we deduce similarly as [45,
(3.25)] for N � 1 and t ∈ (4σq ∧ TL , TL ]

‖ρ‖C N[4σq ∧TL ,t],x
� �−4−N MLδq+1 + �−N+1(�−5MLδq+1)

N

+ γq+1 � �2−7N δq+1ML + γq+1.
(7.14)

For a general t ∈ [0, TL ], we have by (5.12),

‖ρ‖C0
t,x

� �−4ML(1 + 3q) + γq+1, (7.15)

and for N � 1,

‖ρ‖C N
t,x

� �2−7N ML(1 + 3q) + γq+1, (7.16)

where we used ML(1 + 3q) � �−1.
Next, we define the amplitude functions

a(ξ)(ω, t, x) := aξ,q+1(ω, t, x)

:= ρ(ω, t, x)1/2γξ

(
Id − R̊�(ω, t, x)

ρ(ω, t, x)

)
(2π)−3/4, (7.17)
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where γξ is introduced in Lemma A.1. Since ρ and R̊� are (Ft )t�0-adapted, we
know that also a(ξ) is (Ft )t�0-adapted. By (A.5) we have

(2π)−
3
2
∑
ξ∈�

a2
(ξ)

∫
T3

W(ξ) ⊗ W(ξ)dx = ρId − R̊�. (7.18)

By using (7.12), for t ∈ (4σq ∧ TL , TL ],

‖a(ξ)(t)‖L2 � ‖ρ(t)‖1/2
L1 ‖γξ‖C0(B1/2(Id))

� M

8|�|(1 + 8π3)1/2

(
2(2π)3� + 2δq+1ML + γq+1

)1/2

� M

4|�| (M1/2
L δ

1/2
q+1 + γ

1/2
q+1),

(7.19)

and for t ∈ [0, TL ],

‖a(ξ)(t)‖Ct L2 � M

4|�| (M1/2
L (1 + 3q)1/2 + γ

1/2
q+1),

where M denotes the universal constant from Lemma A.1. From (7.13), (7.14), and
similarly to [45, (3.30)], we deduce for t ∈ (4σq ∧ TL , TL ] that

‖ρ1/2‖C0[4σq ∧TL ,t],x
� �−2δ

1/2
q+1M1/2

L + γ
1/2
q+1,

and for m = 1, . . . , N , using K � �−1,

‖ρ1/2‖Cm[4σq ∧TL ,t],x � �1−7mδ
1/2
q+1M1/2

L + �1/2−m(γq+1 + �−5δq+1ML)m

� �1−7m(δ
1/2
q+1M1/2

L + γ
1/2
q+1).

This implies, for N ∈ N0, as in [45, (3.34)],

‖a(ξ)‖C N[4σq ∧TL ,t],x
� �−8−7N (δ

1/2
q+1M1/2

L + γ
1/2
q+1). (7.20)

For a general t ∈ [0, TL ] we have, for N ∈ N0,

‖a(ξ)‖C N
t,x

� �−8−7N (M1/2
L (1 + 3q)1/2 + γ

1/2
q+1), (7.21)

where we used ML(1 + 3q) + K � �−1.
Let us introduce a smooth cut-off function

χ(t) =

⎧⎪⎨
⎪⎩

0, t � σq
2 ,

∈ (0, 1), t ∈ (
σq
2 , σq),

1, t � σq .

Note that ‖χ ′‖C0
t

� 2q+1 which has to be taken into account in the estimates of the

C1/10
t L5/3 and C1

t,x -norms in (7.39)- (7.45) below.
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With these preparations in hand, we define the principal part w
(p)
q+1 of the per-

turbation wq+1 as

w
(p)
q+1 :=

∑
ξ∈�

a(ξ)W(ξ). (7.22)

Since the coefficients a(ξ) are (Ft )t�0-adapted and W(ξ) is a deterministic function

we deduce that w
(p)
q+1 is also (Ft )t�0-adapted. Moreover, according to (7.18) and

(A.4) it follows that

w
(p)
q+1 ⊗ w

(p)
q+1 + R̊� =

∑
ξ∈�

a2
(ξ)P�=0(W(ξ) ⊗ W(ξ)) + ρId, (7.23)

where we use the notation P�=0 f := f − F f (0) = f − (2π)−3/2
∫
T3 f dx .

We also define the incompressibility corrector by

w
(c)
q+1 :=

∑
ξ∈�

curl(∇a(ξ) × V(ξ)) + ∇a(ξ) × curlV(ξ) + a(ξ)W
(c)
(ξ) , (7.24)

withW (c)
(ξ) andV(ξ) beinggiven in (A.6). Sincea(ξ) is (Ft )t�0-adapted andW(ξ), W (c)

(ξ)

and V(ξ) are deterministic functions we know that w
(c)
q+1 is also (Ft )t�0-adapted.

By a direct computation we deduce that

w
(p)
q+1 + w

(c)
q+1 =

∑
ξ∈�

curl curl(a(ξ)V(ξ)),

hence

div(w(p)
q+1 + w

(c)
q+1) = 0.

We also introduce a temporal corrector

w
(t)
q+1 := − 1

μ

∑
ξ∈�

PP�=0

(
a2
(ξ)φ

2
(ξ)ψ

2
(ξ)ξ

)
, (7.25)

where P is the Helmholtz projection. Similarly to above w
(t)
q+1 is (Ft )t�0-adapted

and by similar computation as [9, (7.38)] we obtain

∂tw
(t)
q+1 +

∑
ξ∈�

P�=0

(
a2
(ξ)div(W(ξ) ⊗ W(ξ))

)

= − 1

μ

∑
ξ∈�

PP�=0∂t

(
a2
(ξ)φ

2
(ξ)ψ

2
(ξ)ξ

)
+ 1

μ

∑
ξ∈�

P�=0

(
a2
(ξ)∂t (φ

2
(ξ)ψ

2
(ξ)ξ )

)

= (Id − P)
1

μ

∑
ξ∈�

P�=0∂t

(
a2
(ξ)φ

2
(ξ)ψ

2
(ξ)ξ

)
− 1

μ

∑
ξ∈�

P�=0

(
∂t a

2
(ξ)(φ

2
(ξ)ψ

2
(ξ)ξ )

)
.

(7.26)

Note that the first term on the right hand side can be viewed as a pressure term.
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We define the truncated perturbations w̃
(p)
q+1, w̃

(c)
q+1, w̃

(t)
q+1 as follows:

w̃
(p)
q+1 := w

(p)
q+1χ, w̃

(c)
q+1 := w

(c)
q+1χ, w̃

(t)
q+1 := w

(t)
q+1χ

2.

Define wq+1 := w̃
(p)
q+1 + w̃

(p)
q+1 + w̃

(t)
q+1 and

v2q+1 = v� + wq+1 = v� + w̃
(p)
q+1 + w̃

(c)
q+1 + w̃

(t)
q+1.

We note that by construction v2q+1 is (Ft )t�0 adapted.

7.4. Verification of the Inductive Estimates for v2q+1

By (7.19) and (7.20) and similar argument as [45] we obtain for t ∈ (4σq ∧
TL , TL ] and some universal constant M0 � 1

‖w̃(p)
q+1(t)‖L2 �

∑
ξ∈�

1

4|�| M(M1/2
L δ

1/2
q+1 + γ

1/2
q+1)‖W(ξ)‖Ct L2

� M0

2
(M1/2

L δ
1/2
q+1 + γ

1/2
q+1), (7.27)

where we used 150α < 1
7 and for t ∈ (

σq
2 ∧ TL , 4σq ∧ TL ]

‖w̃(p)
q+1(t)‖L2 � M0

2
((ML(1 + 3q))1/2 + γ

1/2
q+1). (7.28)

Similarly as in [45, (3.43)-(3.46)], we apply (A.7) and (7.20) for general L p-
norms to deduce for t ∈ (4σq ∧ TL , TL ], p ∈ (1,∞)

‖w̃(p)
q+1(t)‖L p � �−8(M1/2

L δ
1/2
q+1 + γ

1/2
q+1)r

2/p−1
⊥ r1/p−1/2

‖ , (7.29)

‖w̃(c)
q+1(t)‖L p � �−22(M1/2

L δ
1/2
q+1 + γ

1/2
q+1)r

2/p
⊥ r1/p−3/2

‖ , (7.30)

and

‖w̃(t)
q+1(t)‖L p � �−16(MLδq+1 + γq+1)r

2/p−1
⊥ r1/p−2

‖ λ−1
q+1, (7.31)

‖w̃(c)
q+1(t)‖L p + ‖w̃(t)

q+1(t)‖L p � �−8(M1/2
L δ

1/2
q+1 + γ

1/2
q+1)r

2/p−1
⊥ r1/p−1/2

‖ .(7.32)

For a general t ∈ (
σq
2 ∧ TL , 4σq ∧ TL ] we have

‖w̃(p)
q+1(t)‖L p � �−8((ML(1 + 3q))1/2 + γ

1/2
q+1)r

2/p−1
⊥ r1/p−1/2

‖ , (7.33)

‖w̃(c)
q+1(t)‖L p � �−22((ML(1 + 3q))1/2 + γ

1/2
q+1)r

2/p
⊥ r1/p−3/2

‖ , (7.34)

and

‖w̃(t)
q+1(t)‖L p � �−16((ML(1 + 3q)) + γq+1)r

2/p−1
⊥ r1/p−2

‖ λ−1
q+1, (7.35)
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‖w̃(c)
q+1(t)‖L p + ‖w̃(t)

q+1(t)‖L p � �−8((ML(1 + 3q))1/2 + γ
1/2
q+1)r

2/p−1
⊥ r1/p−1/2

‖ .

(7.36)

Combining (7.27), (7.30) and (7.31) we obtain, for t ∈ (4σq ∧ TL , TL ],

‖wq+1(t)‖L2 � (M1/2
L δ

1/2
q+1 + γ

1/2
q+1)(

M0

2
+ Cλ

44α−2/7
q+1 + C(M1/2

L δ
1/2
q+1 + γ

1/2
q+1)λ

32α−1/7
q+1

)

� 3

4
M0(M1/2

L δ
1/2
q+1 + γ

1/2
q+1),

(7.37)

and for t ∈ (
σq
2 ∧ TL , 4σq ∧ TL ]

‖wq+1(t)‖L2 � 3

4
M0((ML(1 + 3q))1/2 + γ

1/2
q+1), (7.38)

where we used ML(1 + 3q) + K < �−1 and the condition on α.
With these bounds, we have all in hand to complete the proof of Proposition 5.1.

We split the details into several subsections.

7.4.1. Proof of (5.13) First, (7.37), together with (7.7), yields, for t ∈ (4σq ∧
TL , TL ],

‖v2q+1(t) − v2q(t)‖L2 � ‖wq+1(t)‖L2 + ‖v�(t) − v2q(t)‖L2

� M0(M1/2
L δ

1/2
q+1 + γ

1/2
q+1).

For t ∈ ( 12σq ∧ TL , 4σq ∧ TL ] we use (7.38), (7.7) to obtain

‖v2q+1(t) − v2q(t)‖L2 � ‖wq+1(t)‖L2 + ‖v�(t) − v2q(t)‖L2

� M0((ML(1 + 3q))1/2 + γ
1/2
q+1).

For t ∈ [0, 1
2σq ∧TL ] it holds thatχ(t) = 0, as well as v2q(t) = 0, by (5.9), implying

that

‖v2q+1 − v2q‖Ct L2 = ‖v� − v2q‖Ct L2 = 0.

Hence (5.13) follows.
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7.4.2. Proof that (5.13) Implies (5.9) on the Level q + 1 From (5.13) we find
for t ∈ [0, 1

2σq ∧ TL ]

‖v2q+1‖Ct L2 �
q∑

r=0

‖v2r+1 − v2r ‖Ct L2 = 0,

proving the second bound in (5.9) on the level q + 1. For the first bound in (5.9)
on the level q + 1, we obtain, in view of (5.13), for t ∈ ( 12σq ∧ TL , TL ],

‖v2q+1(t)‖L2 �
∑

0�r�q

‖v2r+1(t) − v2r (t)‖L2

� M0

⎛
⎝M1/2

L

∑
0�r�q

δ
1/2
r+1

+
∑

0�r�q

(ML(1 + 3r))1/21t∈( σr
2 ∧TL ,4σr ∧TL ] +

∑
0�r�q

γ
1/2
r+1

⎞
⎠

� M0

⎛
⎝M1/2

L

∑
0�r�q

δ
1/2
r+1 + 3(ML(1 + 3q))1/2 +

∑
0�r�q

γ
1/2
r+1

⎞
⎠ ,

where we used the fact that by the definition of σr = 2−r each t ∈ [0, TL ] only
belongs to three intervals ( σr

2 ∧ TL , 4σr ∧ TL ]. Hence (5.9) follows.

7.4.3. Proof of (5.16) and the Second Inequality in (5.7) on the Level q + 1 In
this section, we see in particular how the definition of intermittent jets determines
the integrability 5/3 which we use throughout the paper. It holds by (7.21), (A.7)
and the choice of parameters in (7.3)

‖w̃(p)
q+1‖C1/10

t L5/3 + ‖w̃(p)
q+1‖Ct W 1/5,5/3

�
∑
ξ∈�

‖a(ξ)‖C1
t,x

(‖W(ξ)‖C1/10
t L5/3 + ‖W(ξ)‖Ct W 1/5,5/3)2q+1

� (M1/2
L (1 + 3q)1/2 + γ

1/2
q+1)�

−15r1/5⊥ r1/10‖ ((r⊥λq+1μ/r‖)1/10 + λ
1/5
q+1)2

q+1

� M1/2
L λ

32α−1/35
q+1 , (7.39)

‖w̃(c)
q+1‖C1/10

t L5/3 + ‖w̃(c)
q+1‖Ct W 1/5,5/3

�
∑
ξ∈�

2q+1
(
‖a(ξ)‖C1

t,x
(‖W (c)

(ξ)‖C1/10
t L5/3 + ‖W (c)

(ξ)‖Ct W 1/5,5/3)

+‖a(ξ)‖C3
t,x

(‖V(ξ)‖C1/10
t W 1,5/3 + ‖V(ξ)‖Ct W 6/5,5/3)

)

� (M1/2
L (1 + 3q)1/2 + γ

1/2
q+1)�

−29r1/5⊥ r1/10‖(
r⊥r−1

‖ + λ−1
q+1

) (
(r⊥λq+1μ/r‖)1/10 + λ

1/5
q+1

)
2q+1
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� M1/2
L �−30r6/5⊥ r−9/10

‖
(
(r⊥λq+1μ/r‖)1/10 + λ

1/5
q+1

)

� M1/2
L λ

60α−11/35
q+1 , (7.40)

‖w̃(t)
q+1‖C1/10

t L5/3 + ‖w̃(t)
q+1‖Ct W 1/5,5/3

� 1

μ
2q+1

∑
ξ∈�

(
‖a(ξ)‖C0

t,x
‖a(ξ)‖C1

t,x
‖φ(ξ)‖2L10/3‖ψ(ξ)‖2Ct L10/3

+‖a(ξ)‖2C0
t,x

‖φ(ξ)‖L10/3‖φ(ξ)‖W 1/5,10/3‖ψ(ξ)‖2Ct L10/3

+‖a(ξ)‖2C0
t,x

‖φ(ξ)‖2L10/3‖ψ(ξ)‖Ct W 1/5,10/3‖ψ(ξ)‖Ct L10/3

+‖a(ξ)‖2C0
t,x

‖φ(ξ)‖2L10/3‖ψ(ξ)‖C1/10
t L10/3‖ψ(ξ)‖Ct L10/3

)

� (ML(1 + 3q) + γq+1)�
−23r1/5⊥ r−7/5

‖ (μ−1r−1
⊥ r‖)

×
(
(r⊥λq+1μ/r‖)1/10 + λ

1/5
q+1 + (λq+1r⊥r−1

‖ )1/5
)
2q+1

� MLλ
48α−6/35
q+1 , (7.41)

and

‖wq+1‖C1/10
t L5/3 + ‖wq+1‖Ct W 1/5,5/3 � M1/2

L λ
32α−1/35
q+1 � 3

4
M1/2

L δq+1a−α/2.(7.42)

In the last inequality above we used (7.3). Hence, (5.16) follows from (7.6). The
second inequality in (5.7) on the level q + 1 follows as well.

7.4.4. Proof of (5.10) on the Level q +1 Using (7.21) and similar as [45, Section
3.1.4] we find, for t ∈ [0, TL ],

‖w̃(p)
q+1‖C1

t,x
� �−15((ML(1 + 3q))1/2 + γ

1/2
q+1)r

−1
⊥ r−1/2

‖ λ2q+1, (7.43)

‖w̃(c)
q+1‖C1

t,x
� �−29((ML(1 + 3q))1/2 + γ

1/2
q+1)r

−3/2
‖ λ2q+1, (7.44)

and

‖w̃(t)
q+1‖C1

t,x
� �−24(ML(1 + 3q) + γq+1)r

−1
⊥ r−2

‖ λ1+α
q+1. (7.45)

In particular, we see that the fact that the time derivative of χ behaves like 2σ−1
q �

�−1 does not pose any problems as the C0
t,x -norms of w̃(p)

q+1, w̃
(c)
q+1 and w̃

(t)
q+1 always

contain smaller powers of �−1.
Combining (7.9) and (7.43), (7.44), (7.45) with (7.1) we obtain, for t ∈ [0, TL ],

‖v2q+1‖C1
t,x

� ‖v�‖C1
t,x

+ ‖wq+1‖C1
t,x

� (ML(1 + 3q) + γq+1)
1/2

(
λα

q+1 + Cλ
30α+22/7
q+1 + Cλ

58α+20/7
q+1 + Cλ50α+3

q+1

)

� M1/2
L λ4q+1,

where we used ML(1 + 3q) + γq+1 � �−1. This implies (5.10).
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7.4.5. Proof of (5.15) and the First Inequality in (5.7) on the Level q + 1
Similarly, we derive the following estimates: for t ∈ [0, TL ] it follows from (7.1),
(7.21) and (A.7) that

‖w̃(p)
q+1 + w̃

(c)
q+1‖Ct W 1,p �

∑
ξ∈�

‖curl curl(a(ξ)V(ξ))‖Ct W 1,p

�
∑
ξ∈�

‖a(ξ)‖C3
t,x

‖V(ξ)‖Ct W 3,p

� �−29((ML(1 + 3q))1/2 + γ
1/2
q+1)r

2/p−1
⊥ r1/p−1/2

‖ λq+1,

(7.46)

and

‖w̃(t)
q+1‖Ct W 1,p � 1

μ

∑
ξ∈�

(
‖a(ξ)‖C0

t,x
‖a(ξ)‖C1

t,x
‖φ(ξ)‖2L2p‖ψ(ξ)‖2Ct L2p

+ ‖a(ξ)‖2C0
t,x

‖φ(ξ)‖L2p‖∇φ(ξ)‖L2p‖ψ(ξ)‖2Ct L2p

+ ‖a(ξ)‖2C0
t,x

‖φ(ξ)‖2L2p‖∇ψ(ξ)‖Ct L2p‖ψ(ξ)‖Ct L2p

)

� �−23(ML(1 + 3q) + γq+1)r
2/p−2
⊥ r1/p−1

‖ λ
−2/7
q+1 .

(7.47)

We also have, for p = 32
32−7α , r2/p−2

⊥ r1/p−1
‖ � λα

q+1 and

‖wq+1‖Ct W 1,p � (ML(1 + 3q) + γq+1)�
−29λ

α−1/7
q+1 � M1/2

L λ
60α−1/7
q+1 �

3

4
M1/2

L δ
1/2
q+1a−α/2, (7.48)

where we used the condition for α, β and (7.3) in the second step, which combined
with (7.8) implies (5.15) and hence the first inequality of (5.7).

7.5. Proof of (5.17)

We control the energy similarly as in [45, Section 3.1.5]. By definition, we find
that

∣∣‖v2q+1‖2L2 − ‖v2q‖2L2 − 3γq+1
∣∣

�
∣∣‖w̃(p)

q+1‖2L2 − 3γq+1
∣∣+ ‖w̃(c)

q+1 + w̃
(t)
q+1‖2L2

+ 2‖v�(w̃
(c)
q+1 + w̃

(t)
q+1)‖L1 + 2‖v�w̃

(p)
q+1‖L1

+ 2‖w̃(p)
q+1(w

(c)
q+1 + w̃

(t)
q+1)‖L1 + |‖v�‖2L2 − ‖v2q‖2L2 |.

(7.49)

Let us begin with the bound of the first term on the right hand side of (7.49). We
use (7.23) and the fact that R̊� is traceless to deduce for t ∈ (4σq ∧ TL , TL ]

|w̃(p)
q+1|2 − 3γq+1

(2π)3
= 6

√
�2 + |R̊�|2 +

∑
ξ∈�

a2
(ξ) P�=0|W(ξ)|2,
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hence

|‖w̃(p)
q+1‖2L2 − 3γq+1| � 6 · (2π)3� + 6‖R̊�‖L1 +

∑
ξ∈�

∣∣∣
∫

a2
(ξ) P�=0|W(ξ)|2

∣∣∣.

(7.50)

Here we estimate each term separately. Using (7.2) we find that

6 · (2π)3� � 6 · (2π)3λ
−3α/2
q+1 � 1

48
λ

−2β
q+1 ML � 1

48
δq+1ML ,

which requires 2β < 3α/2 and choosing a large to absorb the constant. Using
(5.11) on R̊q and suppϕ� ⊂ [0, �] we know, for t ∈ (4σq ∧ TL , TL ], that

6‖R̊�(t)‖L1 � 6δq+1ML .

For the last term in (7.50) we use a similar argument as to [45, Section 3.1.5] to get
since ML � 1, that

∑
ξ∈�

∣∣∣
∫

a2
(ξ)P�=0|W(ξ)|2

∣∣∣ � λ
158α−1/7
q+1 (ML(1 + 3q) + K ) � λ

160α−1/7
q+1

� 1

24
λ
2β
1 λ

−2β
q+1 ML = 1

24
δq+1ML ,

where we used ML(1+ 3q)+ K � �−1 � λ2αq+1 as well as 160α + 2β < 1/7. This
completes the bound of (7.50).

Going back to (7.49), we control the remaining terms as follow: using the
estimates (7.30), (7.31) and (7.1) we have, for t ∈ (4σq ∧ TL , TL ],

‖w̃(c)
q+1 + w̃

(t)
q+1‖2L2 � (ML + γq+1)λ

88α−4/7
q+1 + (M2

L + γ 2
q+1)λ

64α−2/7
q+1

� 1

48
λ

−2β
q+1 ML � δq+1

48
ML ,

where we use ML + γq+1 � �−1 to control ML + γq+1. Similarly we use (7.10)
together with (7.27) to get, for t ∈ (4σq ∧ TL , TL ], that

2‖v�(w̃
(c)
q+1 + w̃

(t)
q+1)‖L1 + 2‖w̃(p)

q+1(w̃
(c)
q+1 + w̃

(t)
q+1)‖L1

� M0((ML(1 + 3q))1/2 + K 1/2)‖w̃(c)
q+1 + w̃

(t)
q+1‖L2

� M0((ML(1 + 3q))1/2 + K 1/2)(
(M1/2

L + γ
1/2
q+1)λ

44α−2/7
q+1 + (ML + γq+1)λ

32α−1/7
q+1

)

� 1

48
λ

−2β
q+1 ML � δq+1

48
ML ,

where we used ML(1+3q)+ K � �−1 and we possibly increased a to absorb M0.
We use (7.1) and (7.29) and ‖v�‖C1

t,x
� ‖v2q‖C1

t,x
to get, for every κ > 0,

2‖v�w̃
(p)
q+1‖L1 � ‖v�‖L∞‖w̃(p)

q+1‖L1 � M1/2
L λ4q�−8(M1/2

L δ
1/2
q+1 + γ

1/2
q+1)r

1−κ
⊥ r

1
2 (1−κ)

‖
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� (ML + K )λ
17α− 8

7 (1−κ)

q+1 � 1

96
λ

−2β
q+1 ML � δq+1

96
ML .

For the last terms by (7.10) we get

|‖v�‖2L2 − ‖v2q‖2L2 | � ‖v� − v2q‖L2(‖v�‖L2 + ‖v2q‖L2)

� �λ4q M1/2
L M0(ML(1 + 3q) + K )1/2

� 1

96
λ

−2β
q+1 ML � δq+1

96
ML ,

which requires ML(1+ 3q)+ K < λ
α−2β
q+1 as in (7.4) and a large enough to absorb

the extra constant.

Combining the above estimate (5.17) follows.

7.6. Definition of the Reynolds Stress R̊q+1

Considering the equation for the difference v2q+1 − v�, we obtain the formula
for the new Reynolds stress

divR̊q+1 − ∇ p2q+1

= −�wq+1 + ∂t (w̃
(p)
q+1 + w̃

(c)
q+1) + div((v� + v1q+1) ⊗ wq+1 + wq+1 ⊗ (v� + v1q+1))︸ ︷︷ ︸

div(Rlin)+∇ plin

+ div
(
(w̃

(c)
q+1 + w̃

(t)
q+1) ⊗ wq+1 + w̃

(p)
q+1 ⊗ (w̃

(c)
q+1 + w̃

(t)
q+1)

)
︸ ︷︷ ︸

div(Rcor)+∇ pcor

+ div(w̃(p)
q+1 ⊗ w̃

(p)
q+1 + R̊�) + ∂t w̃

(t)
q+1︸ ︷︷ ︸

div(Rosc)+∇ posc

+ div((V 2
q+1 − V 2

q ) + (V 2,∗
q+1 − V 2,∗

q ))
︸ ︷︷ ︸

divRcom1+∇ pcom1

+ div
(
(v� + v1q+1) ⊗ (v� + v1q+1) − (v1q + v2q ) ⊗ (v1q + v2q )

)
︸ ︷︷ ︸

div(Rcom2)+∇ pcom2

+ div(Rcom) − ∇ p�,

(7.51)
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where, using the notation vq = v1q + v2q ,

V 2
q+1 − V 2

q

= (v2q+1 − v2q) �� �>Rz + (vq+1 − vq) ⊗ ��Rz

+ (v2q+1 − v2q) �� �>Rz + (vq+1 − vq) ( �≺ + ��)��Rz + (v2q+1 − v2q) � z

− P[(vq+1 − vq) ≺ ��RI∇z] � z − ([P, (v2q+1 − v2q) ≺]I∇z) � z

− ([P, (v1q+1 − v1q) ≺]I∇z) � ��Rz

− com(v1q+1 − v1q ,PI∇z,��Rz)

− com(v2q+1 − v2q ,PI∇z, z) − (v2q+1 − v2q) � �>Rz

− (vq+1 − vq) · ��Rz + (v

q+1 − v

q) � ��Rz.

Applying the inverse divergence operator R we define

Rlin := −R�wq+1 + R∂t (w̃
(p)
q+1 + w̃

(c)
q+1) + (v� + v1q+1)

⊗̊ wq+1 + wq+1 ⊗̊ (v� + v1q+1),

Rcor := (w̃
(c)
q+1 + w̃

(t)
q+1) ⊗̊ wq+1 + w̃

(p)
q+1 ⊗̊ (w̃

(c)
q+1 + w̃

(t)
q+1),

Rcom1 is the trace-free part of the matrix

(V 2
q+1 − V 2

q ) + (V 2,∗
q+1 − V 2,∗

q ),

and

Rcom2 := (v� + v1q+1) ⊗̊ (v� + v1q+1) − (v2q + v1q) ⊗̊ (v2q + v1q).

Similarly as in [45], using (7.23), (7.26), the oscillation error is given by

Rosc := χ2
∑
ξ∈�

R
(
∇a2

(ξ)P�=0(W(ξ) ⊗ W(ξ))
)

− χ2

μ

∑
ξ∈�

R
(
∂t a

2
(ξ)(φ

2
(ξ)ψ

2
(ξ)ξ )

)

+ Rw
(t)
q+1∂tχ

2 + (1 − χ2)R̊�

=: R(x)
osc + R(t)

osc + R(1)
cut .

Finally we define the Reynolds stress on the level q + 1 by

R̊q+1 := Rlin + Rcor + Rosc + Rcom + Rcom1 + Rcom2.

We observe that by construction, R̊q+1 is (Ft )t�0-adapted.
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7.7. Verification of the Inductive Estimates for R̊q+1

We shall establish the three bounds in (5.14).As the oscillationswq+1 were fully
added for t ∈ (σq ∧ TL , TL ], this is the good interval where the desired smallness
of R̊q+1 is achieved. In the middle interval t ∈ (

σq
2 ∧ TL , σq ∧ TL ], there is a part

of R̊q+1 involving the cut-off 1 − χ2, which can only be bounded by the previous
stress R̊q . In the time interval t ∈ [0, σq

2 ∧TL ], there are no oscillations which could
decrease the Reynolds stress and hence we can only prove a polynomial blow-up.
Nevertheless, this eventually leads to convergence in L p in time as this bad time
interval is shrinking exponentially, cf. the proof of Theorem 5.4. Here, it is essential
that we do not use regularity of v1q and v


q to avoid the blow-up in time.

Case I. Let t ∈ (σq ∧TL , TL ]. If TL � σq then there is nothing to estimate here,
hence we assume that σq < TL and t ∈ (σq , TL ]. In this regime, it holds χ = 1 and
so the truncation does not play any role in the estimates. We estimate each term in
the definition of R̊q+1 separately. We choose p = 32

32−7α > 1 so that in particular

that r2/p−2
⊥ r1/p−1

‖ � λα
q+1. For the linear error we apply (5.10) to obtain

‖Rlin(t)‖L1 � ‖R�wq+1‖L p + ‖R∂t (w
(p)
q+1 + w

(c)
q+1)‖L p

+ ‖(v� + v1q+1)⊗̊wq+1 + wq+1⊗̊(v� + v1q+1)‖L1

� ‖wq+1‖W 1,p +
∑
ξ∈�

‖∂tcurl(a(ξ)V(ξ))‖L p

+ (M1/2
L λ4q + ‖v1q+1(t)‖L4)‖wq+1‖L4/3 ,

where, by (A.7) and (7.21),

∑
ξ∈�

‖∂tcurl(a(ξ)V(ξ))‖Ct L p

�
∑
ξ∈�

(
‖a(ξ)‖Ct C1

x
‖∂t V(ξ)‖Ct W 1,p + ‖∂t a(ξ)‖Ct C1

x
‖V(ξ)‖Ct W 1,p

)

� (ML(1 + 3q) + γq+1)
1/2�−15r2/p

⊥ r1/p−3/2
‖ μ

+ (ML(1 + 3q) + γq+1)
1/2�−22r2/p−1

⊥ r1/p−1/2
‖ λ−1

q+1.

Remark 7.1. For the product v1q+1⊗wq+1 we used the L4-norm of v1q instead of L2

in order to lower the required integrability of wq+1. Indeed, wq+1 is not small in
L2 for t ∈ (σq , TL ], cf. (7.37), (7.38). On the other hand, as a consequence of (6.3),
increasing the integrability of v1q+1 leads to a blow-up in two respects: there is a

blow up as t → 0 but also the time-weighted norm in Ct,3/8L4 has only a diverging
bound as q → ∞. We show below that both these divergencies are compensated
by the smallness of wq+1 in L4/3 and by using the fact that t > σq .
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In view of (7.48), (7.33), (7.36) as well as (6.3) applied on the level q + 1, we
deduce, for t ∈ (σq , TL ],

‖Rlin(t)‖L p � M1/2
L λ

60α−1/7
q+1 + (ML(1 + 3q) + γq+1)

1/2
(
�−22λ

α−1/7
q+1

+ M1/2
L �−8r1/2⊥ r1/4‖ (λ4q + σ

−3/8
q λ

1/3+κ
q+1 )

)

� M1/2
L λ

60α−1/7
q+1 + (ML(1 + 3q) + γq+1)

1/2M1/2
L λ

16α−5/21+κ
q+1 σ

−3/8
q

� MLδq+2

5
.

Here, we have taken a sufficiently large and β sufficiently small.
The estimates of Rcor and Rosc are the same as the corresponding bounds in

[45]. The strongest requirement comes from the bound of Rcor, namely, we have

‖Rcor(t)‖L p � ((ML(1 + 3q))1/2 + γ
1/2
q+1)

3λ
49α−1/7
q+1 � �−3/2λ

49α−1/7
q+1

� ML

5
λ

−2βb
q+1 � ML

5
δq+2,

which is satisfied provided λ
52α−1/7
q+1 � ML

5 λ
−2βb
q+1 .

Weuse standardmollification estimates in order to bound Rcom.More precisely,
Rcom has to vanish sufficiently fast in order to fulfill the first bound in (5.14).
Hence, we need to use regularity of each term in N which then by mollification
estimates leads to the desired decay. To this end, there is a number of terms which
require spatial regularity of v1q as well as v


q . But these norms blow up as t → 0, cf.

Proposition 5.2. Thus,wemakeuse of the fact that t > σq and that the corresponding

blow-up of order σ
−1/6
q and σ

−3/10
q , respectively, can be absorbed by the smallness

of � due to our choice of the parameters in (7.4).
Let us now consider each term in Rcom separately. For I1 := (v1q + v2q) ⊗

��Rz − (v1q + v2q) · ��Rz we use Proposition 5.2 and (5.7) to get that

‖I1 − I1 ∗x φ� ∗t ϕ�‖L1

� �1/10(‖v2q‖
C1/10

t L5/3

+ ‖v1q‖
C1/6−κ

[σq /2,t]L5/3)(‖��Rz ‖
C1/10

t L∞ + ‖��Rz ‖
C1/10

t L∞)

+ �1/10(‖v2q‖Ct W 1/5,5/3

+ ‖v1q‖
C[σq /2,t] B1/6−κ

5/3,∞
)(‖��Rz ‖Ct C1/10

+ ‖��Rz ‖Ct C1/10)

� �1/10σ
−1/6
q (M1/2

L a−α/4 + L3N + L4)L10,

where we used

‖��Rz ‖Ct C1/10 + ‖��Rz ‖
C1/10

t L∞

� 2(1/5+2κ)R(‖z ‖
C1/10

t C−1/5−κ + ‖z ‖Ct C−κ ) � L10,
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and similarly for z . The same estimate also holds for the symmetric counterpart.
For I2 := (v1q + v2q) ⊗ (v1q + v2q) we use (5.9) and (5.18) to get that

‖I2 − I2 ∗x φ� ∗t ϕ�‖L1

�
(
�‖v2q‖C1

t,x
+ �1/61‖v1q‖

C1/61
[σq /2,t]L2 + �1/31‖v1q‖C[σq /2,t] H1/30−3κ

)

(‖v1q‖Ct L2 + ‖v2q‖Ct L2)

� σ
−1/6
q �1/61(MLa−α/8 + L6N 2 + L8)

+ (�λ4q + σ
−1/6
q �1/61)M1/2

L (M1/2
L (1 + 3q)1/2 + K 1/2)

� M1/2
L (ML(1 + 3q) + K )1/2(�λ4q + �1/61σ

−1/6
q ),

where we used interpolation and Proposition 5.2 and the embedding Lemma 2.1 to
get that

‖v1q‖
C1/61

t,1/6L2 � ‖v1q‖
9

10(1−9κ)

Ct,1/6H1/30−3κ ‖v1q‖
1−90κ

10(1−9κ)

C1/6−κ
t,1/6 H−3/10

�

‖v1q‖
9

10(1−9κ)

Ct,1/6B1/3−2κ
5/3,∞

‖v1q‖
1−90κ

10(1−9κ)

C1/6−κ
t,1/6 L5/3

� M1/2
L a−α/4 + L3N + L4 � M1/2

L ,

provided that κ is chosen sufficiently small. For I3 := v2q �� �>Rz − v2q �
�>Rz we use paraproduct estimates Lemma 2.2 and (5.10) to get that

‖I3 − I3 ∗x φ� ∗t ϕ�‖L1

� �1/10‖v2q‖C1
t,x

(‖z ‖Ct C−κ + ‖z ‖Ct C−κ + ‖z ‖
C1/10

t C−1/5−κ + ‖z ‖
C1/10

t C−1/5−κ )

� �1/10λ4q L M1/2
L .

For I4 := (v1q + v2q)( �≺ + ��)��Rz we use paraproduct estimates Lemma 2.2 and
(5.10) to get that

‖I4 − I4 ∗x φ� ∗t ϕ�‖L1

� �1/10(‖v2q‖C1
t,x

+ ‖v1q‖
C1/10

[σq /2,t] B1/10
5/3,∞

)(‖��Rz‖
C1/10

t L∞ + ‖��Rz‖Ct C1/10)

� �1/10L29
(

M1/2
L λ4q + σ

−1/6
q (a−α/4M1/2

L + L3N + L4)
)
,

where we used

‖��Rz‖Ct C1/10 + ‖��Rz‖
C1/10

t L∞ � 2R(7/10+2κ)L1/2 � L29,

and by interpolation and Proposition 5.2,

‖v1q‖
C1/10

t,1/6B1/10
5/3,∞

� ‖v1q‖
Ct,1/6B1/3−2κ

5/3,∞
+ ‖v1q‖

C1/6−κ
t,1/6 L5/3 � M1/2

L a−α/4 + L3N + L4.

(7.52)



46 Page 58 of 70 Arch. Rational Mech. Anal. (2023) 247:46

For I5 := v2q �� �>Rz + v2q � z + v

q � ��Rz we use paraproduct estimates

Lemma 2.2, Proposition 5.2 and (5.10) to get that

‖I5 − I5 ∗x φ� ∗t ϕ�‖L1

� �1/24(‖v2q‖C1
t,x

+ ‖v
q‖

C[σq /2,t] B3/5−κ

5/3,∞

+ ‖v
q‖

C1/20
[σq /2,t] B11/20−κ

5/3,∞
)(‖z‖

C1/24
t C−7/12−κ + ‖z‖Ct C−1/2−κ )

� �1/24L M1/2
L

(
λ4q + σ

−3/10
q (a−α/8M1/2

L + L5N + L6)
)

� �1/24ML(λ4q + σ
−3/10
q ).

Here we used L � aα/16 by the choice of the parameters and interpolation to bound
‖z‖

C1/24
t C−7/12−κ by

‖z‖Ct C−1/2−κ + ‖z‖
C1/10

t C−7/10−κ � L1/2.

For I6 := P[vq ≺ ��RI(∇z)] � z we use (5.7), (5.18) and Lemma 2.2 to get that

‖I6 − I6 ∗x φ� ∗t ϕ�‖L1

� �1/10(‖v2q‖
C1/10

t L5/3 + ‖v1q‖
C1/10

[σq /2,t]L5/3)

×
(
‖z‖Ct C−1/2−κ (‖��RI∇z‖Ct C3/5+2κ + ‖��RI∇z‖

C1/10
t C1/2+2κ )

+ ‖z‖
C1/10

t C−7/10−κ ‖��RI∇z‖Ct C7/10+2κ

)

� �1/10L10σ
−1/6
q (M1/2

L a−α/4 + L3N + L4) � �1/10MLσ
−1/6
q .

Here we used

‖��RI∇z‖Ct C7/10+2κ + ‖��RI∇z‖
C1/10

t C1/2+2κ � 2R(1/5+3κ)‖z‖Ct C−1/2−κ � L9.

In view of the two commutator estimates, Lemma 2.3 and Lemma 2.4, the
remaining terms containing v2q could be controlled by

�1/10‖v2q‖C1
t,x

(‖z‖2Ct C−1/2−κ + ‖z‖Ct C−1/2−κ ‖z‖
C1/10

t C−7/10−κ ) � �1/10λ4q M1/2
L L ,

and the remaining terms containing v1q could be controlled by

�1/10‖v1q‖
C1/10

[σq /2,t] B1/10
5/3,∞(

‖z‖Ct C−1/2−κ ‖��Rz‖Ct C−1/2+1/5+2κ + ‖z‖Ct C−1/2−κ ‖��Rz‖
C1/10

t C−1/2+2κ

)

� �1/10L10σ
−1/6
q (M1/2

L a−α/4 + L3N + L4) � �1/10MLσ
−1/6
q .

Here we used (5.18) and (7.52) and

‖��Rz‖Ct C−1/2+1/5+2κ + ‖��Rz‖
C1/10

t C−1/2+2κ

� 2R(1/5+3κ)(‖z‖Ct C−1/2−κ + ‖z‖
C1/10

t C−7/10−κ ) � L9.
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Therefore, we have, for t ∈ (σq , TL ], that

‖Rcom(t)‖L1 � M1/2
L (�1/61σ

−1/6
q + �λ4q)(ML(1 + 3q) + K )1/2

+ �1/24MLλ4q + �1/24MLσ
−3/10
q

� MLδq+2

5
,

where we used the choice of � in (7.2) and the conditions

α > 244βb, αb > 128, (ML(1 + 3q) + K )1/2 � �−1/183, σ
−1/3
q < �−1/183,

which can indeed be achieved by our conditions on the parameters.
Next, by the choice of α, β and b using paraproduct estimates from Lemma 2.2

we can bound Rcom1 uniformly over the interval [0, t] for p = 32
32−7α to get that

‖Rcom1‖Ct L1 � (‖v2q+1 − v2q‖Ct W 2/3,p + ‖v1q+1 − v1q‖
Ct B1/3−2κ

5/3,∞

+ ‖v
q+1 − v

q‖Ct L5/3)L21

� L21M1/2
L (λ

−1/42
q + λ

−15α/32
q+1 + λ

60α−1/7
q+1 + λ

32α−1/35
q+1 )

� MLδq+2

10
,

where we used (7.8) and (7.48) to control ‖v2q+1 − v2q‖Ct W 2/3,p , (6.1), (7.6) and

(7.42) to control ‖v1q+1 − v1q‖
Ct B1/3−2κ

5/3,∞
and also (6.2), (7.6) and (7.42) to control

‖v
q+1 − v


q‖Ct L5/3 . Moreover, we applied 1 > 168βb2 and −32α + 1

35 > 2βb, the
condition on α, β, b and

‖��Rz‖Ct Cκ � 2R(1/2+2κ)‖z‖Ct C−1/2−κ � L21. (7.53)

Furthermore, we use Proposition 5.2, (6.1), (5.9) and (7.42) to estimate also
Rcom2 uniformly over [0, t] to obtain

‖Rcom2‖Ct L1 � (ML(1 + 3q) + K )1/2(‖v1q+1 − v1q‖Ct L2 + ‖v� − v2q‖Ct L2)

� (ML(1 + 3q) + K )1/2M1/2
L (λ

−1/42
q + λ−α

q+1 + λ
32α−1/35
q+1 )

� MLδq+2

10
,

Here we used α > 244βb, 1 > 168βb2 and (ML(1 + 3q) + K )1/2 � λ
1/84
q <

�−1/183.

Remark 7.2. We note that it was essential in the estimate of Rcom1 and Rcom2 that
no time weights were required for the difference v1q+1 − v1q and v


q+1 − v


q . Indeed,

there would be no way to absorb the weight as time approaches zero. We also note
that the bounds of Rcom1 and Rcom2 hold directly for all t ∈ [0, TL ].
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Summarizing all the above estimates we obtain

‖R̊q+1(t)‖L1 � MLδq+2,

which is the desired bound.
Case II.Let t ∈ (

σq
2 ∧TL , σq ∧TL ]. If TL � σq

2 then there is nothing to estimate,
hence we may assume σq

2 < TL and t ∈ (
σq
2 , σq ∧ TL ]. Then we decompose

R̊� = χ2 R̊� + (1 − χ2)R̊�. The first part χ2 R̊� is canceled (up to the oscillation
error χ2Rosc) by w̃

(p)
q+1 ⊗ w̃

(p)
q+1 = χ2w

(p)
q+1 ⊗ w

(p)
q+1 and χ2∂tw

(t)
q+1 = ∂t w̃

(t)
q+1 −

(χ2)′w(t)
q+1. Thus, in this case, in the definition of R̊q+1 most terms are similar

to Case I. and can be estimated similarly as above. Therefore, we only have to
consider (1 − χ2)R̊�, and

divRcut := χ ′(t)(w(p)
q+1(t) + w

(c)
q+1(t)) + (χ2)′(t)w(t)

q+1(t).

We know that

‖(1 − χ2)R̊�(t)‖L1 � sup
s∈[t−�,t]

‖R̊q(s)‖L1 .

For Rcut we realize that the bounds (7.33) and (7.36) also hold for w
(p)
q+1, w

(c)
q+1 and

w
(t)
q+1. Then we have, for κ > 0,

‖Rcut(t)‖L1 � ‖χ ′(t)(w(p)
q+1(t) + w

(c)
q+1(t))‖L1 + ‖(χ2)′(t)w(t)

q+1(t)‖L1

� 1

σq
‖w(p)

q+1(t)‖L1 + 1

σq
‖w(c)

q+1(t)‖L1 + 1

σq
‖w(t)

q+1(t)‖L1

� 1

σq
�−8((ML + 3q ML)1/2 + γ

1/2
q+1)r

1−2κ
⊥ r1/2−κ

‖ � ML

10
δq+2,

where we use σ−1
q � �−1 and M1/2

L (1 + 3q)1/2 + γ
1/2
q+1 � �−1. For Rcom, where

the required space regularity of v1q and v

q leads to a blow-up in time, we again use

the fact that t � σq/2 and 4� � σq to have a bound similar to the first case.
Case III. For t ∈ [0, σq

2 ∧ TL ] we know v�(t) = v2q+1(t) = 0 and so the
Reynolds stress reduces to

R̊q+1 = R̊� + Rcom1 + Rcom + Rcom2.

The bounds for Rcom1 and Rcom2 hold as in Case I.. Unlike Case I. and Case II.,
here we cannot use regularity of v1q due to the blow-up at t = 0 as t is no longer
bounded away from zero. On the other hand, we do not have to show smallness of
Rcom but only a polynomial blow-up, see (5.14). Therefore, we do not try to use the
mollification estimates. Instead, we bound ‖Rcom(t)‖L1 directly using Lemma 2.2
and (7.53), (5.18), (5.19) as

‖Rcom(t)‖L1 � ‖v1q‖Ct L2(‖��Rz ‖Ct L∞ + ‖��Rz ‖Ct L∞ + ‖��Rz‖Ct Cκ )

+ ‖v1q‖2Ct L2 + ‖v
q‖Ct L5/3‖��Rz‖Ct Cκ
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+ ‖v1q‖Ct L2‖z‖Ct C−1/2−κ ‖��Rz‖Ct C−1/2+2κ

� 2ML , (7.54)

where we used (7.53) and the implicit constant can be absorbed by taking a and L
large enough.

Remark 7.3. We point out that for the two commutators in Rcom we did not apply
the commutator estimates Lemmas 2.3 and 2.4, as these would require regularity
of v1q . Instead, we estimated each term by the paraproduct estimates directly.

As a result, it follows that

‖R̊q+1(t)‖L1 � sup
s∈[t−�,t]

‖R̊q(s)‖L1 + 3ML ,

which completes the proof of (5.14) and also (5.11) and (5.12).
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Appendix A: Intermittent Jets

In this part we recall the construction of intermittent jets from [9, Section 7.4]. We
point out that the construction is entirely deterministic, that is, none of the functions
below depends on ω. Let us begin with the following geometric lemma which can
be found in [9, Lemma 6.6]:

Lemma A.1. Denote by B1/2(Id) the closed ball of radius 1/2 around the identity
matrix Id, in the space of 3×3 symmetric matrices. There exists � ⊂ S

2 ∩Q
3 such

that for each ξ ∈ � there exists a C∞-function γξ : B1/2(Id) → R such that

R =
∑
ξ∈�

γ 2
ξ (R)(ξ ⊗ ξ)
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for every symmetric matrix satisfying |R − Id| � 1/2. For C� = 8|�|(1+8π3)1/2,
where |�| is the cardinality of the set �, we define the constant

M = C� sup
ξ∈�

(‖γξ‖C0 +
∑

| j |�N

‖D jγξ‖C0).

For each ξ ∈ � let us define Aξ ∈ S
2 ∩ Q

3 to be an orthogonal vector to ξ . Then
for each ξ ∈ � we have that {ξ, Aξ , ξ × Aξ } ⊂ S

2 ∩ Q
3 form an orthonormal

basis for R3. We label by n∗ the smallest natural such that

{n∗ξ, n∗ Aξ , n∗ξ × Aξ } ⊂ Z
3

for every ξ ∈ �.

Let � : R
2 → R be a smooth function with support in a ball of radius 1. We

normalize � such that φ = −�� obeys

1

4π2

∫
R2

φ2(x1, x2)dx1dx2 = 1. (A.1)

By definition we know
∫
R2 φdx = 0. Define ψ : R → R to be a smooth, mean

zero function with support in the ball of radius 1 satisfying

1

2π

∫
R

ψ2(x3)dx3 = 1. (A.2)

For parameters r⊥, r‖ > 0 such that

r⊥ � r‖ � 1,

we define the rescaled cut-off functions

φr⊥(x1, x2) = 1

r⊥
φ

(
x1
r⊥

,
x2
r⊥

)
, �r⊥(x1, x2) = 1

r⊥
�

(
x1
r⊥

,
x2
r⊥

)
,

ψr‖(x3) = 1

r1/2‖
ψ

(
x3
r‖

)
.

We periodize φr⊥ ,�r⊥ and ψr‖ so that they are viewed as periodic functions on
T
2,T2 and T respectively.

Consider a large real number λ such that λr⊥ ∈ N, and a large time oscillation
parameter μ > 0. For every ξ ∈ � we introduce

ψ(ξ)(t, x) := ψξ,r⊥,r‖,λ,μ(t, x) := ψr‖(n∗r⊥λ(x · ξ + μt))

�(ξ)(x) := �ξ,r⊥,λ(x) := �r⊥(n∗r⊥λ(x − αξ ) · Aξ , n∗r⊥λ(x − αξ ) · (ξ × Aξ ))

φ(ξ)(x) := φξ,r⊥,λ(x) := φr⊥(n∗r⊥λ(x − αξ ) · Aξ , n∗r⊥λ(x − αξ ) · (ξ × Aξ )),

where αξ ∈ R
3 are shifts to ensure that {�(ξ)}ξ∈� have mutually disjoint support.

The intermittent jets W(ξ) : T3 × R → R
3 are defined as in [9, Section 7.4].

W(ξ)(t, x) := Wξ,r⊥,r‖,λ,μ(t, x) := ξψ(ξ)(t, x)φ(ξ)(x). (A.3)
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By the choice of αξ we have that

W(ξ) ⊗ W(ξ ′) ≡ 0, for ξ �= ξ ′ ∈ �, (A.4)

and by the normalizations (A.2) we obtain

1

(2π)3

∫
T3

W(ξ)(t, x) ⊗ W(ξ)(t, x)dx = ξ ⊗ ξ.

These facts combined with Lemma A.1 imply that

∑
ξ∈�

γ 2
ξ (R)

1

(2π)3

∫
T3

W(ξ)(t, x) ⊗ W(ξ)(t, x)dx = R, (A.5)

for every symmetric matrix R satisfying |R − Id| � 1/2. Since W(ξ) are not
divergence free, we introduce the corrector term

W (c)
(ξ) := 1

n2∗λ2
∇ψ(ξ) × curl(�(ξ)ξ) = curl curl V(ξ) − W(ξ). (A.6)

with

V(ξ)(t, x) := 1

n2∗λ2
ξψ(ξ)(t, x)�(ξ)(x).

Thus we have

div
(

W(ξ) + W (c)
(ξ)

)
≡ 0.

Next, we recall the key bounds from [9, Section 7.4]. For N , M � 0 and p ∈ [1,∞]
it holds, provided that r−1

‖ � r−1
⊥ � λ, that

‖∇N ∂ M
t ψ(ξ)‖Ct L p

� r1/p−1/2
‖

(
r⊥λ

r‖

)N (r⊥λμ

r‖

)M

,

‖∇N φ(ξ)‖L p + ‖∇N �(ξ)‖L p � r2/p−1
⊥ λN ,

‖∇N ∂ M
t W(ξ)‖Ct L p + r‖

r⊥
‖∇N ∂ M

t W (c)
(ξ)‖Ct L p + λ2‖∇N ∂ M

t V(ξ)‖Ct L p

� r2/p−1
⊥ r1/p−1/2

‖ λN
(

r⊥λμ

r‖

)M

,

(A.7)

where the implicit constants may depend on p, N and M , but are independent of
λ, r⊥, r‖, μ.
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Appendix B: Estimates for the Heat Operator

To deal with the singularity at zero we introduce the following two norms: for
α ∈ (0, 1), p ∈ [1,∞], γ � 0

‖ f ‖Cα
T,γ L p := sup

0�t�T
tγ ‖ f (t)‖L p + sup

0�s<t�T
sγ ‖ f (t) − f (s)‖L p

|t − s|α ,

‖ f ‖CT,γ Bα
p,∞ := sup

0�t�T
tγ ‖ f (t)‖Bα

p,∞ .

First, we recall the basic estimates for the heat semigroup Pt := et� from [63,
Lemma 2.8]. Let T � 1.

Lemma B.1. For any θ > 0 and α ∈ R, there is a constant C = C(α, θ) > 0 such
that, for p, q ∈ [1,∞] and all t ∈ (0, T ],

‖Pt f ‖Bθ+α
p,q

�C T θ/2t−θ/2‖ f ‖Bα
p,q

. (B.1)

For any 0 < θ < 2, there is a constant C = C(θ) > 0 such that, for all t ∈ [0, 1],
‖Pt f − f ‖L p �C tθ/2‖ f ‖Bθ

p,∞ . (B.2)

Then we prove the following for I f = ∫ ·
0 Pt−s f ds:

Lemma B.2. Let α ∈ (0, 2), β ∈ (α − 2, 0), γ, δ ∈ [0, 1), p ∈ [1,∞] so that

γ − δ − α/2 + β/2 + 1 > 0.

Then

‖I f ‖
Cα/2

T,γ L p + ‖I f ‖CT,γ Bα
p,∞ � T γ−δ+1‖ f ‖

CT,δ Bβ
p,∞

.

Proof. By Lemma B.1, we have for 0 � t � T

tγ ‖I f (t)‖Bα
p,∞ � T (α−β)/2tγ

∫ t

0
(t − s)−(α−β)/2s−δds‖ f ‖

CT,δ Bβ
p,∞

,

where

T (α−β)/2tγ
∫ t

0
(t − s)−(α−β)/2s−δds

= T (α−β)/2tγ
∫ t/2

0
(t − s)−(α−β)/2s−δds + T (α−β)/2tγ

∫ t

t/2
(t − s)−(α−β)/2s−δds

� T (α−β)/2tγ−(α−β)/2
∫ t/2

0
s−δds + T (α−β)/2tγ−δ

∫ t

t/2
(t − s)−(α−β)/2ds

� T (α−β)/2tγ−δ−(α−β)/2+1 � T γ−δ+1,
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provided that γ − δ − (α − β)/2 + 1 � 0.
To bound the other norm, we use Lemma B.1 again to get for 0 � s � t � T ,
|t − s| � 1, κ > 0 small enough

sγ ‖I f (t) − I f (s)‖L p � sγ

∫ t

s
‖Pt−r f (r)‖Bκ

p,∞dr + sγ ‖(Pt−s − I )I f (s)‖L p

� sγ

∫ t

s
(t − r)−(κ−β)/2r−δdr‖ f ‖

CT,δ Bβ
p,∞

+sγ (t − s)α/2‖I f (s)‖Bα
p,∞ .

For the first term, we write r = s + x(t − s) and obtain, if γ � δ, that

sγ

∫ t

s
(t − r)−(κ−β)/2r−δdr � sγ−δ

∫ t

s
(t − r)−(κ−β)/2dr

= sγ−δ(t − s)1−κ/2+β/2
∫ 1

0
(1 − x)−(κ−β)/2dx � T γ−δ(t − s)α/2

since β/2 + 1 > α/2; whereas if γ < δ we get

sγ

∫ t

s
(t − r)−(κ−β)/2r−δdr

= sγ (t − s)1−κ/2+β/2

∫ 1

0
(1 − x)−(κ−β)/2(s + x(t − s))−δ+γ (s + x(t − s))−γ dx

� (t − s)1−κ/2+β/2
∫ 1

0
(1 − x)−(κ−β)/2(s + x(t − s))−δ+γ dx

� (t − s)1−κ/2+β/2−δ+γ

∫ 1

0
(1 − x)−(κ−β)/2x−δ+γ dx

� (t − s)α/2,

provided that −α/2 + 1 − δ + γ + β/2 > 0,
For the second term we use the previous estimate. Therefore, for |t − s| � 1,

sγ ‖I f (t) − I f (s)‖L p � (t − s)α/2T 1−δ+γ ‖ f ‖CT,δ Bα
p,∞ .

Since Bα
p,∞ ⊂ L p, we estimate the remaining term in the Hölder norm in time

using the first estimate above

tγ ‖I f (t)‖L p � tγ ‖I f (t)‖Bα
p,∞ � T γ−δ+1‖ f ‖

CT,δ Bβ
p,∞

and the proof is complete. ��
Remark B.3. We observe that in Sect. 6, we need to use Lemma B.2 for various
combinations of γ, δ ∈ {0, 1/6, 3/10}. As a consequence, the power of T in the
statement of Lemma B.2 is always bounded by 2. Since due to the definition of the
stopping time (5.5) we have T � L1/2 we obtain a factor L for any application of
the Schauder estimate.
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Lemma B.4. Let α ∈ (0, 1), p ∈ [1,∞], γ ∈ (0, 1), β ∈ R. Then for any κ > 0,
T � 1

‖[I, f ≺]g‖
Cα/4

T,γ Bα/2+β+2−κ
p,∞

+ ‖[I, f ≺]g‖
CT,γ Bα+β+2−κ

p,∞

� T 1+α/2(‖ f ‖
Cα/2

T,γ L p + ‖ f ‖CT,γ Bα
p,∞)‖g‖CT Cβ .

Proof. We have

[I, f ≺]g(t) =
∫ t

0
e(t−s)�[( f (s) − f (t)) ≺ g(s)]ds

+
∫ t

0
[e(t−s)�, f (t) ≺]g(s)ds = I1(t) + I2(t).

Then, by (B.1), we have

tγ ‖I1(t)‖Bα+β+2−κ
p,∞

� tγ T 1−κ/2+α/2
∫ t

0
(t − s)−1+κ/2s−γ ds‖ f ‖

Cα/2
T,γ L p‖g‖CT Cβ

� T 1+α/2‖ f ‖
Cα/2

T,γ L p‖g‖CT Cβ ,

and by [13, Lemma A.1] (see also [53]),

tγ ‖I2(t)‖Bα+β+2−κ
p,∞

� tγ
∫ t

0
(t − s)−1+κ/2ds‖ f (t)‖Bα

p,∞‖g‖CT Cβ

� T κ‖ f ‖CT,γ Bα
p,∞‖g‖CT Cβ .

Moreover, for 0 � t1 < t2 � T satisfying |t2 − t1| � 1,

I1(t2) − I1(t1) =
∫ t1

0

(
e(t2−s)�[( f (s) − f (t2)) ≺ g(s)]

− e(t1−s)�[( f (s) − f (t1)) ≺ g(s)]
)
ds

+
∫ t2

t1
e(t2−s)�[( f (s) − f (t2)) ≺ g(s)]ds,

which, by Lemma B.1, implies that

tγ1 ‖I1(t2) − I1(t1)‖Bα/2+β+2−κ
p,∞

� T 1−κ/2+α/2‖ f ‖
Cα/2

T,γ L p‖g‖CT Cβ

× tγ1

(
|t1 − t2|α/4

∫ t1

0
(t1 − s)−1+κ/2s−γ ds +

∫ t2

t1
(t2 − s)−1+α/4+κ/2s−γ ds

)

� T 1+α/2‖ f ‖
Cα/2

T,γ L p‖g‖CT Cβ |t1 − t2|α/4.

Also, it holds that

I2(t2) − I2(t1)
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=
∫ t1

0
[e(t2−s)� − e(t1−s)�, f (t1) ≺]g(s)ds

+
∫ t1

0
[e(t2−s)�, ( f (t2) − f (t1)) ≺]g(s)ds

+
∫ t2

t1
[e(t2−s)�, f (t2) ≺]g(s)ds = J1 + J2 + J3.

Then we obtain, by [13, Lemma A.1] (see also [53]),

tγ1 ‖J2 + J3‖Bα/2+β+2−κ
p,∞

� (‖ f ‖
Cα/4

T,γ Bα/2
p,∞

+ ‖ f ‖CT,γ Bα
p,∞)‖g‖CT Cβ

×
(
|t1 − t2|α/4

∫ t1

0
(t1 − s)−1+κ/2ds +

∫ t2

t1
(t2 − s)−1+α/4+κds

)

� (‖ f ‖
Cα/2

T,γ L p + ‖ f ‖CT,γ Bα
p,∞)‖g‖CT Cβ |t1 − t2|α/4T κ .

Since Dm((1−e−22 j (t2−t1)|ξ |2)e−22 j (t1−s)|ξ |2) � (|t2 − t1|22 j )δe−c22 j (t1−s) for m ∈
N0, δ ∈ (0, 1) and ξ in an annulus, by similar argument as [13, Lemma A.1] (see
also [53]) we obtain

‖[e(t2−s)� − e(t1−s)�, f (t1) ≺]g(s)‖
Bα/2+β+2−κ

p,∞

� |t2 − t1|α/4‖ f (t1)‖Bα
p,∞(t1 − s)−1+κ/2‖g(s)‖Cβ .

This implies

tγ1 ‖J1‖Bα/2+β+2−κ
p,∞

� ‖ f ‖CT,γ Bα
p,∞‖g‖CT Cβ |t1 − t2|α/4

∫ t1

0
(t1 − r)−1+κ/2dr

� ‖ f ‖CT,γ Bα
p,∞‖g‖CT Cβ |t1 − t2|α/4T κ ,

and the proof is complete. ��
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