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Abstract

We construct examples of solutions to the incompressible porous media (IPM)
equation that must exhibit infinite in time growth of derivatives provided they
remain smooth. As an application, this allows us to obtain nonlinear instability for
a class of stratified steady states of IPM.

1. Introduction

In this paper, we consider the 2D incompressible porous media (IPM) equation.
The equation describes evolution of density carried by the flow of incompressible
fluid that is determined via Darcy’s law in the field of gravity:

∂tρ + (u · ∇)ρ = 0, ∇ · u = 0, u + ∇ p = −(0, ρ). (1.1)

Here ρ is the transported density, u is the vector field describing the fluid motion,
and p is the pressure. Throughout this paper, we consider the spatial domain �

to be one of the following: the whole space R2, the torus T2 = [−π, π)2, or the
bounded strip S := T × [−π, π ] that is periodic in x1. In the last case, due to the
presence of boundaries, u also satisfies u · n = 0 for x2 = ±π . In all the three
cases, one can obtain a more explicit Biot-Savart law for u:

u = ∇⊥(−��)−1∂x1ρ.

Here ∇⊥ = (−∂x2 , ∂x1), and the inverse Laplacian (−��)−1 for � = T
2 and

� = T × [−π, π ] will be specified in Section 2.
There have been many recent papers analyzing the well-posedness questions

for the IPM equation and its variants [1,4,5,8,19], lack of uniqueness of weak
solutions [3,18], and questions of long time dynamics [1,7]. Viewed as an active
scalar, the IPM equation is less regular than the 2D Euler equation in vorticity form,
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and has the same level of regularity as the SQG equation. Local well-posedness
for sufficiently regular initial data has been proved in [5] for R2, and [1] for the
strip S. The argument can be adapted to the periodic setting T

2; we will sketch a
simple proof in Section 2.2. The question of global regularity vs finite-time blow
up is open for the IPM equation, similarly to the SQG equation case. Moreover,
to the best of our knowledge, there are not even examples of smooth solutions to
the IPM equation that have infinite growth of derivatives. There are plenty of such
examples for the 2D Euler equation, going back to work of Yudovich [12,20] (see
for example [6,13] for more recent examples and further references). However,
for the more singular SQG equation case, such examples have been established
only recently [10]. The reason for such delay is that an example of infinite in time
creation of small scales requires sufficiently strong control of the solution, which
is not easily achieved when the drift is more singular. The example of [10] is based
on the insight gained in the constructions for the 2D Euler case [13,21], and is
based on a hyperbolic point scenario controlled by odd-odd symmetry of the active
scalar. It is tempting to use a similar idea for the IPM equation, but its structure
is different - in particular, odd symmetry in x2 but even symmetry of ρ in x1 is
conserved instead of the odd-odd symmetry for the SQG equation. This, and the
more detailed structure of the Biot-Savart law, appear to be significant obstacles
in extending ideas of [10,13,21] to the IPM equation setting. In this paper, we
construct examples of infinite growth of derivatives in smooth solutions of the IPM
equation using a different idea, exploiting existence of monotone quantity which
corresponds to the potential energy of the fluid. All our estimates below assume
that the solutions remain smooth; more specifically, the arguments work if ρ and u
are at least Lipschitz. If this regularity fails in finite time, we already have an even
more dramatic effect than what we are trying to establish.

1.1. Small scale formation in IPM

In this paper, we consider the following three scenarios:
(S1) Let � = R

2. Assume ρ0 ∈ C∞
c (R2) is odd in x2, and ρ0 � 0 in R × R

+.
(S2) Let � = T

2 = [−π, π)2 be the 2D torus. Assume ρ0 ∈ C∞(T2) is odd in
x2.

(S3) Let � = S := T × [−π, π ] be a bounded strip that is periodic in x1.
Assume ρ0 ∈ C∞(S).

Our first result shows that in the scenario (S1), ρ(t) must have infinite-in-time
growth in Ḣ s norm for any s > 0, if it remains regular for all times. Note that s > 0
is the sharp threshold, since for s = 0 we know ‖ρ(t)‖L2 = ‖ρ0‖L2 does not grow
in time.

Theorem 1.1. For � = R
2, let ρ0 �≡ 0 satisfy the scenario (S1). Assuming that

there is a global-in-time smooth solution ρ(x, t) to (1.1) with initial data ρ0, we
have that

∫ ∞

0
‖ρ(t)‖− 4

s

Ḣ s (R2)
dt � C(s, ρ0) for all s > 0, (1.2)
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which implies that

lim sup
t→∞

t−
s
4 ‖ρ(t)‖Ḣ s (R2) = ∞ for all s > 0. (1.3)

The next result concerns the torus scenario (S2), where we prove infinite-in-
time growth under some additional symmetry and positivity assumptions on ρ0. As
we will see in the remark afterwards, the same result also holds for the bounded
strip scenario (S3).

Theorem 1.2. For� = T
2, letρ0 �≡ 0 satisfy the scenario (S2). In addition, assume

that ρ0 is even in x1, ρ0 = 0 for x1 = 0, and ρ0 � 0 in D := [0, π ]2. Assuming
that there is a global-in-time smooth solution ρ(x, t) to (1.1) with initial data ρ0,
we have that ∫ ∞

0
‖∂x1ρ(t)‖− 2

2s+1

Ḣ s (T2)
dt � C(s, ρ0) for all s > −1

2
, (1.4)

which implies that

lim sup
t→∞

t−(s+ 1
2 )‖ρ(t)‖Ḣ s+1(T2) � lim sup

t→∞
t−(s+ 1

2 )‖∂x1ρ(t)‖Ḣ s (T2) = ∞

for all s > −1

2
. (1.5)

Remark 1.3. Observe that the solution ρ(·, t) in T
2 from Theorem 1.2 is automat-

ically a solution in the bounded strip T × [−π, π ], with u satisfying the no-flow
condition on the top and bottom boundaries. (This is because ρ(·, t) is odd in x2
and has period 2π in x2 for all times. Thus ρ(·, t) is also odd about x2 = ±π ,
implying u(·, t) · e2 = 0 for all times on x2 = ±π .) Therefore, the growth results
of Theorem 1.2 directly hold in scenario (S3).We note that the local well-posedness
for the scenario (S3) has been established in [1], which in particular ensures the
uniqueness of solution while it remains regular.

1.2. Nonlinear instability in IPM

One can easily check that any horizontal stratified state ρs = g(x2) is a station-
ary solution of (1.1) in R2, T2 or S, since u = ∇⊥(−��)−1∂x1ρ ≡ 0. (As we will
see in Lemma 3.1, all smooth stationary solutions in S are of the form ρs = g(x2).
However, in R

2 and T
2 there are other smooth stationary solutions, for example

any vertical stratified state is also stationary; see also [2, Section 5] for smooth
stationary solutions in R

2 supported in an infinite slanted strip.)
Below we briefly summarize the previous stability results for the horizontal

stratified state ρs = g(x2). Denoting η(x, t) := ρ(x, t) − ρs(x) and plugging it
into (1.1), η satisfies

∂tη + u · ∇η = −g′(x2)u2, (1.6)

withu = ∇⊥(−��)−1∂x1η. Forη small, the linearized equation is ∂tη=−g′(x2)u2,
which can be written as

∂tη = −g′(x2)(−��)−1∂2x1η.
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Since (−��)−1∂2x1 is a negative operator, one would expect the equation to be
linearly stable if g′ is uniformly negative (that is lighter density on top, heavier on
the bottom).

For the stratified state ρs = −x2, the asymptotic stability of the nonlinear
equation (1.6) has been rigorously established by Elgindi [7] in R

2 and Castro–
Córdoba–Lear [1] in S, which also implies the global well-posedness of (1.1) for
initial data close to ρs = −x2 in certain Sobolev spaces. More precisely, for ρs =
−x2 in R

2, if ‖η‖W 4,1(R2) + ‖η‖Hs (R2) < ε � 1 for s � 20, [7, Theorem 1.3]
proved that η remains regular for all time and satisfies ‖η(t)‖H3 � εt−1/4 for
all t > 0. [7] also obtained asymptotic stability results for periodic perturbation
η ∈ Hs(T2), where ρs is still −x2 in the whole plane. In [1], the authors proved
that for the stratified state ρs = −x2 in S is asymptotically stable in Hs(S) for
s � 10, although it may converge to a slightly different stratified state from ρs as
t → ∞.

In this paper, we aim to prove two nonlinear instability results for the horizontal
stratified steady state ρs = g(x2) in T2 and S respectively. What sets our approach
apart is that we are not following the common path of converting linear instability
into a nonlinear one. Rather, we use the monotone quantity - potential energy - to
prove infinite-in-time growth of Sobolev norms and then leverage these results to
conclude the nonlinear instability. Our first instability result shows that in T

2, any
horizontal stratified steady state ρs that is odd in x2 is nonlinearly unstable, and the
instability can grow “infinitely in time”. Namely, for any arbitrarily large k > 0,
one can construct an initial data ρ0 that is arbitrarily close to ρs in Hk , such that
lim supt→∞ ‖ρ(t) − ρs‖Ḣ s (T2) = ∞ for all s > 1.

Theorem 1.4. Let ρs ∈ C∞(T2) be any horizontal stratified state (that is ρs(x) =
g(x2)) that is odd in x2. For any ε > 0 and any k > 0, there exists an initial data
ρ0 ∈ C∞(T2) satisfying

‖ρ0 − ρs‖Hk (T2) � ε,

such that the solution ρ(·, t) to (1.1) with initial data ρ0 (provided it remains smooth
for all times) satisfies

lim sup
t→∞

t−
s
2 ‖ρ(t) − ρs‖Ḣ s+1(T2) = ∞ for all s > 0. (1.7)

Finally, we prove an instability result in the bounded strip S = T×[−π, π ] for
any stratified steady state ρs ∈ C∞(S), including those monotone stratified states
that are linearly stable such as ρs = −x2. Namely, we can construct a smooth
perturbation small in H2−γ norm for any γ > 0, such that lim supt→∞ ‖ρ(t) −
ρs‖Ḣ s (S) = ∞ for any s > 1.

Theorem 1.5. Let ρs ∈ C∞(S) be any stationary solution. For any ε, γ > 0, there
exists an initial data ρ0 ∈ C∞(S) satisfying

‖ρ0 − ρs‖H2−γ (S) � ε, (1.8)
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such that the solution ρ(·, t) to (1.1) with initial data ρ0 (provided it remains smooth
for all times) satisfies

lim sup
t→∞

t−
s
2 ‖ρ(t) − ρs‖Ḣ s+1(S) = ∞ for all s > 0. (1.9)

Remark 1.6. It is a natural questionwhether the perturbation can bemade arbitrarily
small in higher Sobolev spaces. While it is unclear to us whether H2 is the sharp
threshold, we know that the exponent cannot exceed 10: for ρs = −x2, if the
initial perturbation is small in H10 or above, [1] showed ‖ρ(t)− ρs‖H3(S) remains
uniformly bounded in time.

1.3. Organization of the paper

In Section 2 we discuss some preliminaries and the local well-posedness results
in the scenarios (S1)–(S3). In Section 3 we show the monotonicity of the potential
energy in the three scenarios, and use it to prove the infinite-in-time growth results
in Theorems 1.1 and 1.2. We take a brief detour in Section 4 to derive some infinite-
in-time growth results for less restrictive initial data, which we call the “bubble”
solution and the “layered” solution. This will enable us to obtain nonlinear insta-
bility results in Section 5 for initial data close to stratified steady states, where we
prove Theorems 1.4–1.5.

2. Preliminaries on Problem Setting and Local Well-Posedness

In this section, we discuss some preliminaries such as the Sobolev spaces for
the spatial domains R2, T2 and S = T× [−π, π ] respectively, as well as the local-
wellposedness results for the IPM equation (1.1). For the whole space and strip
case, the local-wellposedness theory have already been established in [4] and [1]
respectively. For the torus case we are unable to locate a local-wellposedness result,
so we give a short proof in Section 2.2.

2.1. Sobolev norms and local well-posedness in R2

For any f ∈ L2(R2), its Fourier transform is defined as usual as

f̂ (ξ) := 1

2π

∫
R2

e−iξ ·x f (x)dx for ξ ∈ R
2,

and the Plancherel theoremyields that ‖ f̂ ‖2
L2(R2)

= ‖ f ‖2
L2(R2)

.As usual, we define

‖ f ‖2
Ḣ s (R2)

:=
∫
R2

|ξ |2s | f̂ (ξ)|2dξ for any s �= 0,

and

‖ f ‖2Hs (R2)
:=

∫
R2

(1 + |ξ |2)s | f̂ (ξ)|2dξ for any s ∈ R.
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For (1.1) inR2,Córdoba–Gancedo–Orive [5,Theorem3.2] proved local-wellposedness
for initial data ρ0 ∈ Hs(R2) with s > 2. They also established a regularity criteria,
showing that ρ(t) remains regular as long as

∫ t
0 ‖∇ρ(t)‖BMO ds < ∞. They also

obtained another regularity criteria with a geometric flavor, and we refer the reader
to [5, Theorem 3.4] for details.

2.2. Sobolev norms and local well-posedness in T2

For any f ∈ L1(T2), let us denote its Fourier series as

f (x) =
∑
k∈Z2

f̂ (k)eik·x , (2.1)

where the Fourier coefficient f̂ (k) for k = (k1, k2) ∈ Z
2 is given by

f̂ (k) = 1

(2π)2

∫
T2

e−ik·x f (x)dx . (2.2)

By Parseval’s theorem, for any f, g ∈ L2(T2) we have
∫
T2 f (x)g(x)dx

= (2π)2
∑

k∈Z2 f̂ (k)ĝ(k), which, in particular implies that

‖ f ‖2L2(T2)
= (2π)2

∑
k∈Z2

| f̂ (k)|2. (2.3)

For s �= 0, throughout this paper, ‖ f ‖Ḣ s (T2) is defined by

‖ f ‖2
Ḣ s (T2)

= (2π)2
∑

k∈Z2\{(0,0)}
|k|2s | f̂ (k)|2. (2.4)

Finally, formean-zero f (in particular this is the case for ∂x1ρ), its inverse Laplacian
is given by (−�)−1 f = ∑

k∈Z2\{(0,0)} |k|−2 f̂ (k)eik·x .
Below we sketch a-priori estimates that can be used to establish local regularity

as well as conditional criteria for global regularity. With these estimates, a fully
rigorous argument can be given in a standard way, using either smooth mollifier
approximations like in [14] or Galerkin approximations.

Suppose that ρ(x, t) is a smooth solution of ∂tρ + (u · ∇)ρ = 0, u =
∇⊥(−�)−1∂x1ρ, where ∇⊥ = (−∂x2 , ∂x1). Observe that all the L p norms of
ρ are conserved by evolution. Multiplying the equation by (−�)sρ and integrating
we obtain

1

2
∂t‖ρ‖2

Ḣ s +
∫
T2

(u · ∇)ρ(−�)sρ dx = 0.

Here s � 1 is an integer. In the integral above, we can expand the power of the
Laplacian and integrate by parts, then use the periodicity to transfer exactly half of
the derivatives on u · ∇ρ. What we get is a sum of terms of the form

∫
T2

Ds((u · ∇)ρ)Dsρ dx,
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where Ds stands for some partial derivative of order s. Next we apply Leibniz rule
to open up the derivative Ds falling on (u · ∇)ρ. Note that when all derivatives fall
on ρ, we get that∫

T2
(u · ∇)DsρDsρ dx = 1

2

∫
T2

(u · ∇)(Dsρ)2 dx = 0

due to incompressibility of u. Therefore we obtain a sum of the terms of the form∫
T2

D juDs− j+1ρDsρ dx,

where 1 � j � s. Let us apply Hölder’s inequality to control such an integral by
∣∣∣∣
∫
T2

D juDs− j+1ρDsρ dx

∣∣∣∣ � ‖D ju‖L p j ‖Ds− j+1ρ‖Lq j ‖Dsρ‖L2 ,

where p j , q j satisfy p−1
j + q−1

j = 1
2 . Let us recall a particular case of Gagliardo-

Nirenberg inequality [9,15],

‖D j f ‖Lq � C‖ f ‖1−θ
L∞ ‖ f ‖θ

Ḣ s , (2.5)

for any f ∈ C∞
0 (R2), where in the 2D case θ = j− 2

q
s−1 . The inequality is valid

for s > j, 0 < θ < 1. While (2.5) is usually stated in R
2, an extension to T

2 is
straightforward. Taking now p j = 2(s+1)

j and q j = 2(s+1)
s+1− j and applying (2.5), we

get that

‖D ju‖L p j � C‖D jρ‖L p j � C‖ρ‖1−
js

s2−1
L∞ ‖ρ‖

js
s2−1

Ḣ s ,

where in the first step we used L p − L p bound on singular integral operators for
1 < p < ∞. Similarly,

‖Ds+1− jρ‖Lq j � C‖ρ‖1−
(s+1− j)s
s2−1

L∞ ‖ρ‖
(s+1− j)s
s2−1

Ḣ s .

Therefore, for all 1 � j � s we have that
∣∣∣∣
∫
T2

D juDs− j+1ρDsρ dx

∣∣∣∣ � C‖ρ‖
s−2
s−1
L∞ ‖ρ‖

2s−1
s−1

Ḣ s ,

and hence,

∂t‖ρ‖2
Ḣ s � C‖ρ‖

s−2
s−1
L∞ ‖ρ‖

2s−1
s−1

Ḣ s . (2.6)

Such inequality can be used to show local well-posedness in Hs provided that
s > 2.

To obtain a criteria for blow up, we can run a similar calculation but using
‖∇ρ‖L∞ and ‖∇u‖L∞ instead of ‖ρ‖L∞ and with p j = 2s/j, q j = 2s/(s − j).
This way instead of (2.6) we obtain the differential inequality

∂t‖ρ‖2
Ḣ s � C (‖∇ρ‖L∞ + ‖∇u‖L∞) ‖ρ‖2

Ḣ s .
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We can conclude control of ‖ρ‖Ḣ s up to any time T provided that∫ T
0 (‖∇ρ‖L∞ + ‖∇u‖L∞) dt remains finite. Let us state a proposition summa-
rizing the observations of this section.

Proposition 2.1. Consider the IPMequation (1.1)with the initial dataρ0 ∈ Hs(T2),

s > 2 an integer. Then there exists a time T = T (‖ρ0‖Hs ) such that for all
0 � t � T there exists a unique solution ρ(x, t), u(x, t) ∈ C([0, T ], Hs(T2)).

Moreover, the solution blows up at time T if and only if

∫ t

0

(‖∇ρ(·, r)‖L∞(T2) + ‖∇u(·, r)‖L∞(T2)

)
dr → ∞

when t → T .

Remark. 1. Uniqueness of the solution can be shown in a standard way; blow up
is understood in the sense of leaving the class C([0, T ], Hs(T2)).

2. The Proposition can certainly be improved in terms of the condition on s and the
regularity criterion, but we do not pursue it in this paper.

2.3. Sobolev norms and local well-posedness in a strip

When the domain is a bounded strip S := T× [−π, π ], due to the presence of
the top and bottom boundaries, the functional spaces and the local-wellposedness
results are more involved than the periodic case. Below we briefly describe the
results by Castro–Córdoba–Lear [1], and we refer the readers to the paper for more
details.

Biot-Savart law and functional space. In the strip case, the velocity field u is
given by u = ∇⊥ψ , where the stream function ψ solves the Poisson equation with
zero boundary condition (see [1, Section 2.2] for a derivation)

{
−�ψ(·, t) = ∂x1ρ(·, t) in S × [0, T ),

ψ(·, t) = 0 on ∂S × [0, T ),
(2.7)

so that u = ∇⊥(−�S)
−1∂x1ρ. One can check that the operator −�S (with zero

boundary condition) is a positive self-adjoint operator, and it has a family of eigen-
functions {ωp,q}p∈Z,q∈N that form an orthonormal basis for L2(S), given by

ωp,q(x) := ap(x1)bq(x2) for p ∈ Z, q ∈ N,

where

ap(x1) := eipx1 with x1 ∈ T and p ∈ Z,

and

bq(x2) :=
{
cos( qx22 ) q odd,

sin( qx22 ) q even,
with x2 ∈ [−π, π ] for q ∈ N.
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The eigenfunction expansion allows us to define (−�S)
s f for any s ∈ R and

f ∈ L2(S). We can then define the Ḣ s homogenous Sobolev norm as

‖ f ‖2
Ḣ s (S)

:=
∫
S
f (−�S)

s f dx for s ∈ R, (2.8)

and one can check that the spaces Ḣ s(S) and Ḣ−s(S) are dual with respect to the
L2 norm (see for example [17] for the general construction of a scale of Sobolev
spaces associated with a positive self-adjoint operator).

For s � 0, let us define ‖ f ‖2Hs (S) := ‖ f ‖2
Ḣ s (S)

+ ‖ f ‖2
L2(S)

as usual. For

s ∈ N, the above definition of ‖ f ‖2Hs (S) is comparable to
∑

0�m�s ‖Dm f ‖2
L2(S)

if
∂nx2 f |∂S = 0 for all even n with n < s, where Dm is any partial derivative of order
m � s.

Local/global well-posedness results in the strip. Since the goal of [1] was to
establish stability results near the steady state ρs(x) = −x2, (1.1) was written
into an equivalent equation (1.6) (with g(x2) = −x2) describing the evolution of
η = ρ − ρs . Here u can be expressed in terms of η similarly to (2.7), except that
the right hand side ∂x1ρ is replaced by ∂x1η (using that ρs has zero contribution to
u since it is a steady state).

When the initial data η(0) belongs to the functional space Xk(S), given by

Xk(S) := { f ∈ Hk(T2) : ∂nx2 f |∂S = 0 for all even n with n < k},
(which in fact coincides with Hk(S) defined above), the authors proved local-
wellposedness of (1.6) for η(0) ∈ Xk(S) for any k � 3 [1, Theorem 4.1], and gave a
regularity criteria showing thatη(t) remains in Xk(S) as long as

∫ t
0 (‖∇η(s)‖L∞(S)+

‖∇u(s)‖L∞(S))ds < ∞. As we discussed in the introduction, for k � 10, they
proved the asymptotic stability of η(t) (which implies global regularity) for η(0) ∈
Xk(S) with ‖η(0)‖Xk (S) � 1.

3. Infinite-in-Time Growth in the IPM

In this section we aim to prove Theorems 1.1 and 1.2. Throughout this paper,
the evolution of the potential energy

E(t) :=
∫

�

x2ρ(x, t) dx

plays a key role. Let us first prove a simple lemma showing that in each of the
scenarios (S1)–(S3), E(t) is monotone decreasing in time, and its time derivative
is integrable in t ∈ (0,∞).

Lemma 3.1. Assume that� andρ0 satisfy one of the scenarios (S1)–(S3). Assuming
that there is a global-in-time smooth solution ρ(x, t) to (1.1) with initial data ρ0,
we have that

d

dt
E(t) = −‖∂x1ρ‖2

Ḣ−1(�)︸ ︷︷ ︸
=:δ(t)

.
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In addition, we have
∫ ∞
0 δ(t)dt � C(ρ0) < ∞.

Proof. A direct computation gives that

E ′(t) = d

dt

∫
�

x2ρ(x, t) dx = −
∫

�

x2(u · ∇)ρ dx =
∫

�

u2ρ dx . (3.1)

Here the last inequality is due to the divergence theorem, where the boundary
integral vanishes in all the three scenarios (S1)–(S3): In (S1), the boundary integral
(at infinity) vanishes since ρ(·, t) ∈ C∞

c (R2) for all time. In (S2), the boundary
integral

∫ π

−π
x2u1ρ dx2

∣∣x1=π

x1=−π
= 0 due to periodicity, and

∫ π

−π
x2u2ρ dx1

∣∣x2=π

x2=−π
=

0 since ρ ≡ 0 on x2 = ±π (which follows from the facts that ρ(·, t) is odd in x2,
and periodic in T

2). In (S3), again
∫ 1
−1 x2u1ρ dx2

∣∣x1=π

x1=−π
= 0 due to periodicity in

x1, whereas
∫ π

−π
x2u2ρ dx1

∣∣x2=1
x2=−1 = 0 due to u · n = 0 on x2 = ±π .

By (3.1) and the Biot-Savart law u = ∇⊥(−��)−1∂x1ρ, in (S1)–(S3), we get
that

E ′(t) =
∫

�

u2ρ dx =
∫

�

ρ∂x1(−��)−1∂x1ρ dx = −‖∂x1ρ‖2
Ḣ−1(�)

, (3.2)

thus E(t) is monotone decreasing. Note that in the strip case� = S, the last identity
follows from the definition of the Ḣ−1 norm in S as in (2.8).

Moreover, E(t) is uniformly bounded below for all times. In (S1), the assump-
tions that ρ0 is odd in x2 and ρ0 � 0 in R × R

+ yield that ρ(t) � 0 in R × R
+,

thus E(t) � 0 for all times. In (S2) and (S3), since a smooth solution ρ(x, t) of
(1.1) has its L∞ norm invariant in time, we have that

E(t) � −‖ρ0‖L∞(�)4π
∫ π

0
x2dx2 = −2π3‖ρ0‖L∞(�) for all t � 0.

Hence in all three cases (S1)–(S3), we have that
∫ ∞

0
δ(t) dt =

∫ ∞

0
‖∂x1ρ(·, t)‖2

Ḣ−1(�)
dt = E(0) − lim

t→∞ E(t) � C(ρ0)

for all t � 0, (3.3)

finishing the proof. �
Remark 3.2. When the equation is set inR2 with ρ decaying sufficiently fast, mono-
tonicity of E(t) has been derived in [7, Corollary 1.2]. For the Muskat equation
(which can be seen as a “patch” solution of IPM) with surface tension, [11] uses the
gradient flow structure to construct weak solutions, where the energy functional is
the potential energy plus the surface area of the free boundary.

Now we are ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Due to Lemma 3.1, δ(t) := ‖∂x1ρ(t)‖2
Ḣ−1(R2)

satisfies∫ ∞
0 δ(t)dt < C0(ρ0) < ∞. Denoting C2 := ‖ρ0‖2L2(R2)

, we have ‖ρ(t)‖2
L2(R2)

=
C2 for all t � 0, since the L p norm of ρ is invariant in time for all 1 � p � ∞. Let
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us define I := {
t ∈ (0,∞) : δ(t) < 1

4C2
}
.Note that

∫ ∞
0 δ(t)dt � C0(ρ0) directly

implies |R+ \ I | � 4C0(ρ0)/C2. We claim that for any s > 0,

‖ρ(t)‖Ḣ s (R2) � C(s, ‖ρ0‖L1(R2),C2)δ(t)
− s

4 for any t ∈ I. (3.4)

Once we prove (3.4), plugging it into
∫ ∞
0 δ(t)dt � C0(ρ0) and using the fact that

|R+ \ I | � 4C0(ρ0)/C2, we have that∫ ∞

0
‖ρ(t)‖− 4

s

Ḣ s (R2)
dt � C(s, ‖ρ0‖L1 ,C2)

− 4
s

∫
I
δ(t)dt

+4C0(ρ0)

C2

(
inf
t�0

‖ρ(t)‖Ḣ s (R2)

)− 4
s

� C(s, ρ0).

Here in the last inequality we used that for any s > 0, ‖ρ(t)‖Ḣ s (R2) is bounded
below by a positive constant c(s, ρ0), which follows from the elementary interpo-

lation inequality ‖ρ(t)‖L2(R2) � ‖ρ(t)‖
1

1+s

Ḣ s (R2)
‖ρ‖

s
1+s

L1(R2)
, as well as the fact that

‖ρ(t)‖L2(R2) and ‖ρ(t)‖L1(R2) are invariant in time. This finishes the proof of (1.2).
Combining (1.2) with the fact that

∫ ∞
1 t−1dt = ∞ gives (1.3) as a direct conse-

quence.
In the rest we aim to prove (3.4) for any fixed t ∈ I , and we will drop the t

dependence in ρ and δ below for notational simplicity. Defining

Dδ :=
{

(ξ1, ξ2) : |ξ1|
|ξ | �

√
2δ

C2

}
,

we observe that

δ = ‖∂x1ρ‖2
Ḣ−1(R2)

=
∫
R2

ξ21

|ξ |2 |ρ̂(ξ)|2dξ �
∫
Dδ

ξ21

|ξ |2 |ρ̂(ξ)|2dξ � 2δ

C2

∫
Dδ

|ρ̂|2dξ.

This gives
∫
Dδ

|ρ̂|2dξ � 1
2C2, and combining it with ‖ρ̂‖2

L2(R2)
= ‖ρ‖2

L2(R2)
= C2

yields
∫
Dc

δ
|ρ̂|2dξ � 1

2C2. Note that Dc
δ consists of two symmetric cones containing

the ξ2 axis, and it can be expressed in polar coordinates as Dc
δ = {(r cos θ, r sin θ) :

r � 0, | cos θ | <
√
2δ/C2}.

Clearly, ‖ρ̂‖L∞(R2) � (2π)−1‖ρ0‖L1(R2) =: C1. Let hδ > 0 be such that
|Dc

δ ∩ {|ξ2| < hδ}| = (4C2
1 )

−1C2, which will be estimated momentarily. Such
definition gives that∫

Dc
δ∩{|ξ2|�hδ}

|ρ̂|2dξ =
∫
Dc

δ

|ρ̂|2dξ −
∫
Dc

δ∩{|ξ2|<hδ}
|ρ̂|2dξ

� 1

2
C2 − (4C2

1 )
−1C2C

2
1 = 1

4
C2,

immediately leading to

‖ρ‖2
Ḣ s (R2)

�
∫
R2

|ξ2|2s |ρ̂|2dξ � h2sδ

∫
Dc

δ∩{|ξ2|�hδ}
|ρ̂|2dξ � C2

4
h2sδ . (3.5)
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It remains to estimate hδ . Denoting θ0 := cos−1(

√
2δ
C2

), we know Dc
δ ∩ {|ξ2| < hδ}

consists of two identical triangles with height hδ and base 2hδ cot θ0. Thus

(4C2
1 )

−1C2 = |Dc
δ ∩ {|ξ2| < hδ}| = 2h2δ cot θ0 � 4

√
δC−1/2

2 h2δ ,

where in the last inequality we used cos θ0 =
√

2δ
C2

and sin θ0 =
√
1 − 2δ

C2
� 1/

√
2,

due to t ∈ I . Therefore hδ � (4C1)
−1C3/4

2 δ−1/4. Plugging it into (3.5) yields (3.4),
finishing the proof. �
Proof of Theorem 1.2. Since ρ0 is even in x1 and odd in x2, due to the Biot-Savart
law u = ∇⊥(−�)−1∂x1ρ, the even-odd symmetry of ρ remains true for all times.
In particular, it implies that on the boundary of the smaller square D := [0, π ]2, we
have u(·, t) ·n|∂D = 0, and combining it with ρ0 � 0 on D gives ρ(t) � 0 on D for
all times. In addition, note that ρ0 = 0 on x1 = 0 and the fact that u(·, t) ·n|∂D = 0
imply ρ(0, x2, t) ≡ 0 for all x2 and t .

For any t � 0, ρ(·, t) : T2 → R has Fourier series (2.1)–(2.2) (with f replaced
by ρ(·, t)), and the Fourier coefficient ρ̂(k, t) for k = (k1, k2) ∈ Z

2 can be written
as

ρ̂(k, t) = 1

(2π)2

∫
T

e−ik1x1

∫
T

e−ik2x2ρ(x1, x2, t)dx2dx1

= 1

(2π)2

∫
T

e−ik1x1(−2i)
∫ π

0
sin(k2x2)ρ(x1, x2, t)dx2

︸ ︷︷ ︸
=:g(x1,k2,t)

dx1,
(3.6)

where the last identity follows from the oddness of ρ(·, t) in x2.
Let us take a closer look at the function g(x1, 1, t) in the last line of (3.6) (where

we set k2 = 1). This satisfies the following properties for all t � 0:

(a) g(x1, 1, t) � 0 for all x1 ∈ T and t � 0, and is even in x1.
(b) g(0, 1, t) = 0 for all t � 0.
(c)

∫
T
g(x1, 1, t)dx1 � c(ρ0) for all t � 0, where c(ρ0) > 0 only depends on ρ0.

Here properties (a, b) follow from the facts that ρ(t) is even in x1, nonnega-
tive on D = [0, π ]2, and ρ(0, x2, t) ≡ 0 for all times. For property (c), note
that

∫
T
g(x1, 1, t)dx1 = 2

∫ π

0 g(x1, 1, t)dx1 = 2
∫
D sin(x2)ρ(x, t)dx . Hölder’s

inequality and the fact that sin(x2)ρ(x, t) � 0 in D yield that

∫
D
sin(x2)ρ(x, t)dx �

(∫
D
sin(x2)

−1/2dx

)−2

(∫
D

ρ(x, t)1/3dx

)3

� c

(∫
D

ρ(x, t)1/3dx

)3

,

where c > 0 is a universal constant. Since ρ is advected by a divergence-free flow
u with u · n|∂D = 0, one can easily check that

∫
D ρ(x, t)1/3dx = ∫

D ρ
1/3
0 dx > c1

for some c1(ρ0) > 0, finishing the proof of property (c).
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Let us define ĝ(k1, t) as the Fourier coefficient of g(·, 1, t), given by

ĝ(k1, t) := 1

2π

∫
T

e−ik1x1g(x1, 1, t)dx for any k1 ∈ Z. (3.7)

Comparing (3.7) with (3.6) directly yields that

ρ̂(k1, 1, t) = −2i

2π
ĝ(k1, t) for any k1 ∈ Z. (3.8)

Using the functions g and ĝ, we can estimate δ(t) = ‖∂x1ρ(t)‖2
Ḣ−1(T2)

from below
as

δ(t) = (2π)2
∑

k∈Z2\{(0,0)}

k21
|k|2 |ρ̂(k1, k2, t)|2 � (2π)2

∑
k1∈Z\{0}

k21
k21 + 1

|ρ̂(k1, 1, t)|2

� 2
∑

k1∈Z\{0}
|ĝ(k1, t)|2 = 1

π

∫
T

|g(x1, 1, t) − ḡ(t)|2dx1,
(3.9)

where ḡ(t) := 1
2π

∫
T
g(x1, 1, t)dx1 is the average of g(·, 1, t) in T. By property

(c), we have ḡ(t) � c(ρ0)
2π > 0 for all t � 0. Intuitively, if δ(t) is small, g(·, 1, t)

must be very close to ḡ(t) in L2. With g(0, 1, t) pinned down at zero (by property
(b)), and ḡ being uniformly positive, g(·, 1, t) must have order 1 oscillations in a
small neighborhood near 0, suggesting it should have a large Ḣα norm for α > 1

2 .
This estimate will be made rigorous in Lemma 3.3 right after the proof. Applying
Lemma 3.3 to g(x1, 1, t), we have that

‖g(·, 1, t)‖Ḣα(T) � c(α, ρ0)δ(t)
−α+ 1

2 for all α >
1

2
. (3.10)

Note that

‖g(·, 1, t)‖2
Ḣα(T)

= 2π
∑
k1 �=0

|k1|2α|ĝ(k1, t)|2

= 2π3
∑
k1 �=0

|k1|2α|ρ̂(k1, 1, t)|2 � π√
2
‖∂x1ρ‖2

Ḣα−1(T2)
,

where the last inequality follows by just looking at the k2 = 1 part of the sum for
the last norm taken on Fourier side and using α > 1/2. Setting s := α − 1 and
applying (3.10), we have that

‖∂x1ρ‖Ḣ s �
(√

2

π

)1/2‖g(·, 1, t)‖Ḣ s+1(T) � c(s, ρ0)δ
−s− 1

2 for s > −1

2
.

Plugging this inequality into
∫ ∞
0 δ(t)dt � C0(ρ0) < ∞ implies (1.4), and com-

bining (1.4) with the fact that
∫ ∞
1 t−1dt = ∞ gives (1.5) as a direct consequence.

�
Now we state and prove the lemma used in the proof of Theorem 1.2.
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Lemma 3.3. If f : T → R satisfies f (0) = 0,
∫
T
f (x)dx � c0 > 0 and

∫
T

| f −
f̄ |2dx < δ (where f̄ := 1

2π

∫
T
f (x)dx), then

‖ f ‖Ḣα(T) � c(α, c0)δ
−α+ 1

2 for all α >
1

2
. (3.11)

Proof. Note that h(x) := f (x)− f̄ hasmean zero inT, and h(0) = − f̄ � −c0. By
the assumption

∫
T
h2dx < δ, there exists some x0 ∈ (0, 4δ

c20
) such that h(x0) > − c0

2 .

This implies that

‖h‖Cγ (T) � |h(x0) − h(0)|
|x0 − 0|γ � (c0/2)

1+2γ δ−γ for all 0 < γ � 1.

Applying the Sobolev embedding theorem, we have that

‖h‖
Ḣγ+ 1

2 (T)
� c(γ )‖h‖Cγ (T) � c(γ, c0)δ

−γ for all 0 < γ � 1,

and setting α = γ + 1
2 gives (3.11) for α ∈ ( 12 ,

3
2 ], where we also use that

‖h‖Ḣα(T) = ‖ f ‖Ḣα(T). For α > 3
2 , we can apply the interpolation inequality

‖h‖Ḣ1(T) � ‖h‖
1
α

Ḣα(T)
‖h‖

α−1
α

L2(T)
to obtain that

‖h‖Ḣα(T) � ‖h‖α

Ḣ1(T)
‖h‖−(α−1)

L2(T)
� c(α, c0)δ

−α+ 1
2 ,

and thus we can conclude. �

4. Bubble and Layer Solutions

Previously, we have proved infinite time growth results in Theorem 1.2 and
Remark 1.3 for scenarios (S2) and (S3), under some additional assumption on ρ0.
In this section we aim to work with less restrictive initial data – in particular, the
assumption that ρ0 = 0 for x1 = 0 can now be dropped. This will enable us to
obtain instability results in Section 5 for initial data close to stratified steady states.
However, as the proof is done by a different approach, the set of Sobolev exponents
with norm growth (as well as the growth rate in time) is not as good as Theorem 1.2
and Remark 1.3.

We first consider the initial data ρ0 ∈ C∞(T2) of “bubble” type, that is, its
level sets have a connected component �0 enclosing a simply-connected region,
and |∇ρ0| does not vanish on �0 (see Figure 1 for an illustration). Intuitively,
since the topological structure of all level sets is preserved under the evolution, the
presence of the “bubble" prevents the solution ρ(x, t) from aligning into a perfectly
stratified formwhere ∂x1ρ may increasingly vanish. In the next result we rigorously
justify this by showing that ‖∂x1ρ(t)‖L1(T2) > c > 0 for all times, and as we will
see, this leads to infinite-in-time growth in certain Sobolev norms.
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Fig. 1. An illustration of the curves �0, �1 and the domains D0, D1 in the “bubble solution”

Proposition 4.1. Let � = T
2, and assume ρ0 satisfies the scenario (S2). Suppose

that there exists a simple closed curve �0 ⊂ T
2 enclosing a simply-connected

domain D0 ⊂ T
2, and ρ0 satisfies ρ0|�0 = const and inf�0 |∇ρ0| > 0.1 Assuming

that there is a global-in-time smooth solution ρ(x, t) to (1.1) with initial data ρ0,
we have that ∫ ∞

0
‖∂x1ρ(·, t)‖− 2

s

Ḣ s (T2)
dt � C(s, ρ0) for all s > 0. (4.1)

which implies that

lim sup
t→∞

t−
s
2 ‖∂x1ρ(t)‖Ḣ s (T2) = ∞ for all s > 0. (4.2)

Proof. Since ρ0 ∈ C∞(T2) with inf�0 |∇ρ0| > 0, |∇ρ0| is uniformly positive in
some open neighborhood of �0. Combining this with ρ0|�0 = const =: c0, for any
c ∈ R sufficiently close to c0, the level set {ρ0 = c} has a connected component
that is a simple closed curve near �0. Since �0 encloses a simply-connected region
D0, there exists a simple closed curve �1 ⊂ D0 such that ρ0|�1 = c1 �= c0. Denote
by D1 the region enclosed by �1, which is also simply-connected. See Figure 1 for
an illustration of the curves �0, �1 and the domains D0, D1.

Let us as usual define the trajectories of the flow by

d�t (x)

dt
= u(�t (x), t), �0(x) = x . (4.3)

While the solution remains smooth, the flow map �t : T2 → T
2 is a measure-

preserving smooth mapping. Thus �t (D0) and �t (D1) remain simply-connected

1 Observe that by Sard’s theorem [16], since ρ0 ∈ C2(T2), the set of h such that {ρ0(x) =
h} contains a critical point has Lebesgue measure zero.
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in T
2, and they satisfy �t (D1) ⊂ �t (D0) for all t � 0. Denoting by m(·) the

Lebesgue measure of a set (which is preserved by �t ), we have that m(�t (D1)) =
m(D1) for all t � 0. In addition, since ρ is advected by u (1.1), we have as
usual that ρ(�t (x), t) = ρ0(x) for all x and t , thus ρ(x, t)|x∈�t (�0) = c0 and
ρ(x, t)|x∈�t (�1) = c1 for all t � 0.

Let us denote �2 : T2 → T the projection map onto the x2 variable, that is
for any S ⊂ T

2, �2(S) := {x2 ∈ T : (x1, x2) ∈ S for some x1 ∈ T}. Using
�t (D1) ⊂ �t (D0), we have that

�2(�t (D1)) ⊂ �2(�t (D0)) for all t � 0.

Since �t (D0) and �t (D1) are simply-connected domains enclosed by boundaries
�t (�0) and �t (�1) respectively, the above becomes

�2(�t (�1)) = �2(�t (D1)) ⊂ �2(�t (D0)) = �2(�t (�0)) for all t � 0.(4.4)

Using m(�t (D1)) = m(D1), we have �2(�t (D1)) � m(D1)
2π for all t � 0. Finally,

defining I (t) := �2(�t (�1)), which is a subset in T, we have shown that |I (t)| �
m(D1)
2π and I (t) ⊂ �2(�t (�0)) for all t � 0.
By definition of I (t) and (4.4), for any t � 0 and x2 ∈ I (t), T × x2 has a

non-empty intersection with both �t (�1) and �t (�0). Since ρ(·, t)|�t (�0) = c0
and ρ(·, t)|�t (�1) = c1, this implies that

∫
T

|∂x1ρ(x1, x2, t)|dx1 � |c1 − c0| for any x2 ∈ I (t), t � 0. (4.5)

Integrating this in x2 and using |I (t)| � m(D1)
2π , we have

∫
T2 |∂x1ρ(x, t)| dx �

m(D1)|c1−c0|
2π for all t � 0, thus Cauchy-Schwartz yields

∫
T2

|∂x1ρ|2 dx � 1

4π2

(∫
T2

|∂x1ρ| dx
)2

= m(D1)
2|c1 − c0|2
16π4 > 0

for all t � 0. (4.6)

Applying the interpolation inequality‖ f ‖L2(T2) � ‖ f ‖
s

s+1

Ḣ−1(T2)
‖ f ‖

1
s+1

Ḣ s (T2)
for s > 0

with f = ∂x1ρ, we have that

δ(t) = ‖∂x1ρ‖2
Ḣ−1(T2)

� ‖∂x1ρ‖2+
2
s

L2(T2)
‖∂x1ρ‖− 2

s

Ḣ s (T2)
for all s > 0, t � 0.(4.7)

Plugging (4.7), (4.6) into (3.3) we obtain (4.1). Finally, combining (4.1) with the
fact that

∫ ∞
1 t−1dt = ∞ gives (4.2) as a direct consequence. �

The growth for “bubble” solutions can be easily adapted to the bounded strip
case as follows:
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Corollary 4.2. Let � = S =: T× [−π, π ], and assume ρ0 satisfies scenario (S3).
Suppose there exists a simple closed curve �0 ⊂ S◦ enclosing a simply-connected
domain D0 ⊂ S, and ρ0 satisfies ρ0|�0 = const and inf�0 |∇ρ0| > 0. Assuming
that there is a global-in-time smooth solution ρ(x, t) to (1.1) with initial data ρ0,
we have that ∫ ∞

0
‖∂x1ρ(·, t)‖− 2

s

Ḣ s (S)
dt � C(s, ρ0) for all s > 0. (4.8)

which implies that

lim sup
t→∞

t−
s
2 ‖∂x1ρ(t)‖Ḣ s (S) = ∞ for all s > 0. (4.9)

Proof. The proof is almost identical to the proof of Proposition 4.1. Again, there
exists �1 enclosing a simply-connected domain D1 ⊂ D0, such that ρ0|�1 = c1,
and c1 �= c0 := ρ0|�0 . Defining I (t) := �2(�t (�1)) (which is now a subset in
[−π, π ]), the same argument gives that |I (t)| � m(D1)

2π and (4.5). Thus (4.6) still
holds (except that the integral now takes place in S instead of T2), and the rest of
the proof remains unchanged. Note that the interpolation inequality ‖ f ‖L2(S) �

‖ f ‖
s

s+1

Ḣ−1(S)
‖ f ‖

1
s+1

Ḣ s (S)
holds in S as well by a straightforward argument using the

eigenfunction expansion similar to the standard Fourier argument in T
2. �

Our next result concerns “layered” initial data, which we define below.

Definition 4.3. For ρ0 ∈ C∞(T2), we say it has a layered structure if there exists
a measure-preserving smooth diffeomorphism φ : T2 → T

2 that satisfies φ(T ×
{π}) = T × {π}, such that ρs = ρ0(φ

−1(x)) is a stratified solution, that is ρs(x)
only depends on x2. In this case, we call ρs the stratified state corresponding to ρ0.

Note that any layered initial data ρ0 has a unique corresponding stratified state ρs .
(Even though the mapping φ is not unique, for example one can shift φ by any
(a, 0)). To see this, take any curve � such that ρ0|� = c with inf� |∇ρ0| > 0,
and denote by D the region bounded between � and T× {π}. Since φ is measure-
preserving and φ(T × {π}) = T × {π}, we know φ(D) = T × [x2, π ] must have
the same area as D, leading to ρs(π − |D|

2π ) = c. Since ρ0 ∈ C∞(T2) (thus ρs is
also smooth), Sard’s theorem allows us to run this argument for almost everywhere
c, which defines ρs uniquely for all x . See Figure 2 for an illustration of a layered
initial data ρ0 and its corresponding stratified state ρs .

Clearly, Theorem 1.2 cannot be applied to any layered ρ0 since ρ0(0, x2) �≡ 0,
and Proposition 4.1 fails too since there is no level set � enclosing a simply-
connected region. Despite these difficulties, wewill show that small scale formation
can still happen to ρ0, as long as its potential energy is strictly lower than that of
ρs .

Proposition 4.4. Let � = T
2. Assume ρ0 satisfies scenario (S2), and it has a

layered structure in the sense of Definition 4.3, with corresponding stratified state
denoted by ρs . In addition, suppose that

E(0) =
∫
T2

ρ0(x)x2dx <

∫
T2

ρs(x)x2dx =: Es . (4.10)
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Then the estimates (4.1) and (4.2) hold, given there is a global-in-time smooth
solution ρ(x, t) to (1.1) with initial data ρ0.

Remark 4.5. As a side note, it is not hard to construct layered initial data ρ0 satis-
fying (4.10) – see Figure 3 for an illustration.

Proof. To begin with, we will show that for any t � 0, ρ(·, t) also has a layered
structure with corresponding stratified state being ρs . The assumption on ρ0 gives
ρs ◦ φ = ρ0 for some measure-preserving diffeomorphism φ. Combining this with
ρ(�t (x), t) = ρ0(x) (where �t (x) is the flow trajectory given by (4.3)), we have
ρs = ρ((�t ◦ φ−1)(x), t) for all times. Here �t ◦ φ−1 : T2 → T

2 is a measure-
preserving diffeomorphism, and it keeps the set T×{π} invariant, since both φ and
�t have this property: φ has this property due to Definition 4.3, whereas �t has
this property since u2 = 0 on x2 = π for all times.

Let us denote b := Es − E(0) > 0, where the strict positivity is due to (4.10).
By Lemma 3.1, E(t) is non-increasing in time, thus

Es − E(t) � Es − E(0) = b > 0 for all t � 0. (4.11)

Since ρs is the only stratified state that is topologically reachable from ρ(·, t)
(among all measure-preserving diffeomorphisms that keeps T×{π} invariant), the
fact that ρ(·, t) has a potential energy strictly less than ρs (with the gap being at least
b) intuitively suggests that ρ(·, t) cannot have all level sets very close to horizontal.
Below we will show that this is indeed true, in the sense that

∫
T2 |∂x1ρ(x, t)|dx is

bounded below by a positive constant for all times.
By (4.11) and the definition of potential energy E(t), we have that

b � Es − E(t) =
∫
T2

x2(ρs(x) − ρ(x, t))dx � π

∫
T2

|ρs(x) − ρ(x, t)|dx(4.12)

Now let us take a closer look at the integrand. In the first paragraph of the proof
we showed ρs(x) = ρ(�t (x), t), where �t := �t ◦ φ−1 is a measure-preserving
diffeomorphism that keepsT×{π} invariant. As a result, for any t � 0 and x2 ∈ T,
�t (T×{x2}) must have a non-empty intersection with T×{x2}, that is there exists
x̃1 and x̄1 depending on x2 and t , such that �t (x̃1, x2) = (x̄1, x2). Combining this
with the fact that ρs is a function of x2 only, we have that

|ρs(x) − ρ(x, t)| = |ρs(x̃1, x2) − ρ(x, t)|
= |ρ(x̄1, x2, t) − ρ(x1, x2, t)| �

∫
T

|∂x1ρ(s1, x2, t)|ds1

for any x = (x1, x2) ∈ T
2, t � 0. Plugging this into (4.12) gives that

b � 2π2
∫
T2

|∂x1ρ(x, t)|dx,

leading to
∫
T2 |∂x1ρ(x, t)|dx � b

2π2 > 0 for all t � 0. Now that we have a positive
lower bound on ‖∂x1ρ(t)‖L1(T2), the rest of the argument can proceed the same
way as in (4.6) and (4.7) in the proof of Proposition 4.1, allowing us to obtain the
same estimates (4.1)–(4.2). �
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5. Instability of Horizontally Stratified Steady States

In this sectionwe aim to prove the two nonlinear instability results Theorems 1.4
and 1.5 in T

2 and S respectively. We start with Theorem 1.4, which shows that
any stratified steady state ρs in T

2 that is odd in x2 is nonlinearly unstable in an
arbitrarily high Sobolev space. The idea is to locate a point x0 ∈ T

2 where locally
ρs has heavier density on top of lighter one, then use a circular flow to slightly
perturb ρs near x0 to construct a “layered” initial data that satisfies the assumption
of Proposition 4.4.

Proof of Theorem 1.4. We claim that for any ε > 0 and k > 0, we can construct a
ρ0 ∈ C∞(T2) satisfying all the following:

(a) ρ0 is odd in x2, and has a layered structure in the sense of Definition 4.3 with
corresponding stratified state ρs .

(b) ‖ρ0 − ρs‖Hk (T2) < ε.

(c) E(0) <
∫
T2 x2ρsdx =: Es .

Once these are shown to be true, a direct application of Proposition 4.4 imme-
diately yields the infinite-in-time growth results (4.1) and (4.2). Since ∂x1ρ(·, t) =
∂x1(ρ(·, t) − ρs), (4.2) directly implies (1.7), finishing the proof.

In the rest of the proof we aim to construct ρ0 and prove the claim. We will
focus on the construction of ρ0 in the upper half of torus T2+ := T× [0, π ], and at
the end we will extend it to the lower part T2− by an odd extension.

Recall that ρs(x) = g(x2) is a smooth stratified state that is odd in x2. Thus g is
odd and smooth in T. Such g cannot be monotone, so there exists some h0 ∈ (0, π)

such that g′(h0) > 0. For 0 < ε0 � 1 to be fixed later, let ϕε0 ∈ C∞
c (R) be

non-negative and supported on [ε0, 2ε0]. Let v : T2+ → R
2 be the velocity field of

an incompressible circular flow around x0 := (0, h0), given by

v(x) = (x − x0)
⊥ϕε0(|x − x0|) for x ∈ T

2+. (5.1)

For any τ � 0, let ρ̃(·, τ ) be the solution to

∂τ ρ̃ + v · ∇ρ̃ = 0 in T2+ × (0,∞) (5.2)

with initial data ρ̃(·, 0) = ρs . Since v is supported in a small annulus B(x0, 2ε0) \
B(x0, ε0), clearly ρ̃(·, τ ) = ρs outside the annulus. Intuitively, since ρs has heavier
density on top of lighter density locally near x0, we formally expect that ρ̃(τ )

should have lower potential energy than ρs for a short time. (Here the “time” τ is
the perturbation parameter, and has nothing to do with the actual time in (1.1)).
Below we will rigorously show that

F(τ ) :=
∫
T
2+
(ρ̃(x, τ ) − ρs)x2dx < 0 for all 0 < ε0 � 1 and 0 < τ � 1.(5.3)
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Since the integral can be reduced to the set B(x0, 2ε0)\B(x0, ε0), it is convenient to
write it in polar coordinates centered at the point x0. Using the change of variables
x1 = r cos θ, x2 = h0 + r sin θ , we have that

F(τ ) =
∫ 2ε0

ε0

∫ 2π

0
ρ̃(r cos θ, h0 + r sin θ, τ )(h0 + r sin θ)rdθdr −

∫
B(x0,2ε)\B(x0,ε)

ρs x2dx

︸ ︷︷ ︸
=:Cs

=
∫ 2ε0

ε0

∫ 2π

0
ρs (r cos(θ − ϕε0 (r)τ ), h0 + r sin(θ − ϕε0 (r)τ ))(h0 + r sin θ)rdθdr − Cs

=
∫ 2ε0

ε0

∫ 2π

0
g(h0 + r sin(θ − ϕε0 (r)τ ))(h0 + r sin θ)rdθdr − Cs

=:
∫ 2ε0

ε0

f (r, τ )dr − Cs , (5.4)

where the second identity follows from the facts that ρ̃(·, τ ) is transported by v with
initial data ρs , and v is a circular flowwith angular velocity ϕε0(r) along ∂B(x0, r).
We can rewrite f (r, τ ) as

f (r, τ ) = r2
∫ 2π

0
g(h0 + r sin(θ − ϕε0(r)τ )) sin θdθ

+h0r
∫ 2π

0
g(h0 + r sin(θ − ϕε0(r)τ ))dθ,

where the second integral is constant in τ using the substitution ϑ = θ − ϕε0(r)τ .
Thus, taking the τ derivative gives that

d

dτ
f (r, τ )=−r3ϕε0(r)

∫ 2π

0
g′(h0+r sin(θ−ϕε0(r)τ )) cos(θ−ϕε0(r)τ ) sin θ dθ,

leading to

d

dτ
f (r, τ )

∣∣∣
τ=0

= −r3ϕε0(r)
∫ 2π

0
g′(h0 + r sin θ) cos θ sin θ dθ = 0, (5.5)

since the integrand is odd about θ = π
2 . Taking one more derivative and setting

τ = 0, we have

d2

dτ 2
f (r, τ )

∣∣∣
τ=0

= r4ϕ2
ε0

(r)
∫ 2π

0
g′′(h0 + r sin θ)(cos θ)2 sin θ dθ

− r3ϕ2
ε0

(r)
∫ 2π

0
g′(h0 + r sin θ)(sin θ)2dθ

= ϕ2
ε0

(r)
(
−πr3g′(h0) + O(r4)

)
.

Since h0 is chosen such that g′(h0) > 0, for all sufficiently small 0 < ε0 � 1 we
have that

d2

dτ 2
f (r, τ )

∣∣∣
τ=0

� −1

2
πr3ϕ2

ε0
(r)g′(h0) < 0 for all r ∈ (ε0, 2ε0).
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Plugging (5.5) and the above into (5.4) gives that d
dτ

F(τ )
∣∣
τ=0 = 0 and d2

dτ 2
F(τ )

∣∣
τ=0 �

−c(ε0)g′(h0) < 0. Combining these with F(0) = 0 gives (5.3).
Finally, we use odd reflection to extend ρ̃(·, τ ) to T

2−, which is equivalent
with simutaneously applying a circular flow to ρs near (0,−h0) in the opposite
direction as v|

T
2+ . We then set ρ0 := ρ̃(τ ) with 0 < τ � 1 sufficiently small,

and let us check that it satisfies the claim (a,b,c): (a) is a direct consequence from
the definition, since ρ0 can be reached from ρs by an explicit measure-preserving
smooth flow that is only non-zero near (0,±h0). Also, since ρ̃(·, τ ) is transported
from ρs with a smooth velocity field v, for any k > 0, we have ‖ρ̃(τ )−ρs‖Hk → 0
as τ → 0+, thus property (b) is satisfied. As for the potential energy, note that (5.3)
gives that E(0)−Es = 2F(τ ) < 0 when 0 < τ � 1 is sufficiently small, finishing
the proof of (c). �

Finally, we are ready to prove Theorem 1.5, which deals with the instability on
the strip. The idea is to perturb the steady state to make a small “bubble” localized
near one point, then apply Corollary 4.2.

Proof of Theorem 1.5. First note that any stationary solution ρs ∈ C∞(S) must be
stratified of the form ρs = g(x2), since only in this case it satisfies ‖∂x1ρs‖Ḣ−1(�) =
0 by Lemma 3.1.

Letϕ ∈ C∞
c (R2) be a nonnegative function supported in B(0, 1)withϕ(0) = 1.

For 0 < λ < 1, let

ρ0λ(x) := ρs(x) + 2Aλϕ(λ−1x) for x ∈ S,

where A := ‖∇ρs‖L∞(S). Clearly, ρ0λ ∈ C∞(S), and ρ0λ = ρs in S \ B(0, λ).
Let us first check that (1.8) is satisfied for ρ0 := ρ0λ with 0 < λ � 1. A simple

scaling argument yields that ‖D2(ρ0λ−ρs)‖L2(S) = 2A‖D2ϕ‖L2(R2) is invariant in
λ (where D2 is any partial derivative of order 2), thus ‖ρ0λ −ρs‖H2(S) is uniformly
bounded for all 0 < λ < 1. Combining this with ‖ρ0λ − ρs‖L2(S) � CAλ2, we
have ‖ρ0λ − ρs‖H2−γ (S) � CAλγ for all γ > 0 (where C only depends on ϕ),
where the right hand side can be made arbitrarily small for 0 < λ � 1.

We claim that for any 0 < λ < 1, ρ0λ satisfies the assumption of a “bubble
solution” in Corollary 4.2. To see this, note that the definitions of A and ρ0λ yields
that

ρ0λ(x) = ρs(x) � ρs(0) + Aλ for any x ∈ ∂B(0, λ),

whereas

ρ0λ(0) = ρs(0) + 2Aλ.

Applying Sard’s theorem [16] to ρ0λ, for almost every h ∈ (ρs(0) + Aλ, ρs(0) +
2Aλ), we know {ρ0λ = h} has a connected component in B(0, λ) on which |∇ρ0λ|
never vanishes. Naming any such connected component �0, we then have that ρ0λ
satisfies the assumption in Corollary 4.2. As a result we have the estimate (4.9).
Using that ∂x1ρ(·, t) = ∂x1(ρ(·, t) − ρs), (4.9) directly implies (1.9), thus finishes
the proof. �
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Remark 5.1. For a stratified solution ρs = g(x2) that does not satisfy g′ � 0, the
perturbation can be made small in higher Sobolev spaces. Namely, if there exists
x0 ∈ S such that ∂x2ρs(x0) > 0, one can proceed as in the proof of Proposition 4.4
to construct a “layered” initial data close to ρs in Hk norm for arbitrarily large
k > 0.
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