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Abstract

We show that the local density of states (LDOS) of a wide class of tight-binding
models has a weak body-order expansion. Specifically, we prove that the resulting
body-order expansion for analytic observables such as the electron density or the
energy has an exponential rate of convergence both at finite Fermi-temperature as
well as for insulators at zero Fermi-temperature.We discuss potential consequences
of this observation for modelling the potential energy landscape, as well as for
solving the electronic structure problem.

1. Introduction

An atomistic potential energy landscape (PEL) is a mapping assigning energies
E(r), or local energy contributions, to atomic structures r = {r�}�∈� ∈ (Rd)�,
where� is a general (possibly infinite) index set. High-fidelity models are provided
by theBorn–OppenheimerPELassociatedwithab initio electronic structuremodels
such as tight-binding, Kohn–Sham density functional theory (DFT), Hartree–Fock,
or even lower level quantum chemistry models [38,48,54,58,73,94]. Even now,
however, the high computational cost of electronic structure models severely lim-
its their applicability in material modelling to thousands of atoms for static and
hundreds of atoms for long-time dynamic simulations.

There is a long and successful history of using surrogate models for the simula-
tion of materials, devised to remain computationally tractable but capture as much
detail of the reference ab initio PEL as possible. Empirical interatomic potentials
are purely phenomenological and are able to capture a minimal subset of desired
properties of the PEL, severely limiting their transferability [23,86]. The rapid
growth in computational resources, increased both the desire and the possibility to
match as much of an ab inito PEL as possible. A continuous increase in the com-
plexity of parameterisations since the 1990s [6,7,36] has over time naturally led to

http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-022-01809-w&domain=pdf
http://orcid.org/0000-0001-8800-3406


2 Jack Thomas, Huajie Chen & Christoph Ortner

a new generation of “machine-learned interatomic potentials” employing universal
approximators instead of empirical mechanistic models. Early examples include
symmetric polynomials [11,80], artificial neural networks [8] and kernel methods
[5]. A striking case is the Gaussian approximation potential for Silicon [4], captur-
ing the vast majority of the PEL of Silicon of interest for material applications.

The purpose of the present work is, first, to rigorously evaluate some of the
implicit or explicit assumptions underlying this latest class of interatomic poten-
tial models, as well as more general models for atomic properties. Specifically,
we will identify natural modelling parameters as approximation parameters and
rigorously establish convergence. Secondly, our results indicate that nonlinearities
are an important feature, highlighting some superior theoretical properties. Finally,
unlike existing nonlinear models, we will identify explicit low-dimensional non-
linear parameterisations yet prove that they are systematic. In addition to justifying
and supporting the development of new models for general atomic properties, our
results establish generic properties of ab initio models that have broader conse-
quences, e.g. for the study of the mechanical properties of atomistic materials
[15,17,32,93]. The application of our results to the construction and analysis of
practical parameterisations (approximation schemes) that exploit our results will
be pursued elsewhere.

Our overarching principle is to search for representations of properties of ab
initio models in terms of simple components, where “simple” is of course highly
context-specific. To illustrate this point, let us focus on modelling the potential en-
ergy landscape (PEL), which motivated this work in the first place. Pragmatically,
we require that these simple components are easier to analyse and manipulate an-
alytically or to fit than the PEL. For many materials (at least as long as Coulomb
interaction does not play a role), the first step is to decompose the PEL into site
energy contributions,

E(r) =
∑

�∈�

E�(r), (1.1)

where one assumes that each E� is local, i.e., it depends only weakly on atoms
far away. In previous works we have made this rigorous for the case of tight-
bindingmodels of varying complexity [14,16,17,93]. In practise, onemay therefore
truncate the interactionby admittingonly those atoms rk with r�k := |rk−r�| < rcut
as arguments. Typical cutoff radii range from 5Å to 8Å, which means that on the
order 30 to 100 atoms still make important contributions. Thus the site energy E� is
still an extremely high-dimensional object and short of identifying low-dimensional
features it would be practically impossible to numerically approximate it, due to
the curse of dimensionality.

A classical example that illustrates our search for such low-dimensional features
is the embedded atom model (EAM) [23], which assigns to each atom � ∈ � a site
energy

Eeam
� (r) =

∑

k �=�

φ(r�k) + F
(∑

k �=� ρ(r�k)
)
.
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While the site energy Eeam
� remains high-dimensional, the representation is in

terms of three one-dimensional functions φ, ρ, F which are easily represented for
example in terms of splines with relatively few parameters. Such a low-dimensional
representation significantly simplifies parameter estimation, and vastly improves
generalisation of the model outside a training set. Unfortunately, the EAM model
and its immediately generalisations [6] have limited ability to capture a complex
ab initio PEL. Still, this example inspires our search for representations of the PEL
involving parameters that are

• low-dimensional,
• short-ranged.

Following our work on locality of interaction [14,16,17,93] we will focus on
a class of tight-binding models as the ab initio reference model. These can be seen
either as discrete approximations to density functional theory [38] or alternatively
as electronic structure toy models sharing many similarities with the more complex
Kohn–Sham DFT and Hartree–Fock models.

To control the dimensionality of representations, a natural idea is to to consider
a body-order expansion,

E�(r) ≈ V0 +
∑

k �=�

V1(r�k) +
∑

k1,k2 �=�

k1<k2

V2(r�k1 , r�k2) + · · ·

+
∑

k1,...,kN �=�

k1<···<kN

VN
(
r�k1 , . . . , r�kN ), (1.2)

where r�k := rk−r� andwe say that Vn(r�k1 , . . . , r�kn ) is an (n+1)-body potential
modelling the interaction of a centre atom � and n neighbouring atoms {k1, . . . , kn}.
This expansion was traditionally truncated at body-order three (N = 2) due to
the exponential increase in computational cost with N . However, it was recently
demonstrated by Shapeev’s moment tensor potentials (MTPs) [80] and Drautz’
atomic cluster expansion (ACE) [25] that a careful reformulation leads to models
with at most linear N -dependence. Indeed, algorithms proposed in [2,80] suggest
that the computational cost may even be N -independent, but this has not been
proven. Even more striking is the fact that the MTP and ACE models which are
both linear models based on a body-ordered approximation, currently appear to
outperform the most advanced nonlinear models in regression and generalisation
tests [66,106].

These recent successes are in stark contrast with the “folklore” that body-order
expansions generally converge slowly, if at all [10,25,27,46,86]. The fallacy in
those observations is typically that they implicitly assume a vacuum cluster expan-
sion (cf. § 2.2). Indeed, our first set of main results in § 2.4 will be to demonstrate
that a rapidly convergent body-order approximation can be constructed if one ac-
counts for the chemical environment of the material. We will precisely characterise
the convergence of such an approximation as N → ∞, in terms of the Fermi-
temperature and the band-gap of the material.

In the simplest scheme we consider, we achieve this by considering atomic
properties [O(H)]��, where H is a tight-binding Hamiltonian and O an analytic
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function. Approximating O by a polynomial on the spectrum σ(H) results in an ap-
proximation of the atomic property [p(H)]��, which is naturally “body-ordered”.
To obtain quasi-optimal approximation results, naive polynomial approximation
schemes (e.g. Chebyshev) are suitable only in the simplest scenarios. For the in-
sulating case we leverage potential theory techniques which in particular yield
quasi-optimal approximation rates on unions of disconnected domains. Our main
results are obtained by converting these into approximation results on atomic prop-
erties, analysing their qualitative features, and taking care to obtain sharp estimates
in the zero-Fermi-temperature limit.

These initial results provide strong evidence for the accuracy of a linear body-
order approximation in relatively simple scenarios, andwould for example be useful
in a study of the mechanical response of single crystals with a limited selection of
possible defects. However, they come with limitations that we discuss in the main
text. In response, we consider a much more general framework, generalizing the
theory of bond order potentials [55], that incorporates our linear body-ordered
model as well as a range of nonlinear models. We will highlight a specific nonlin-
ear construction with significantly improved theoretical properties over the linear
scheme.

For both the linear and nonlinear body-ordered approximation schemes we
prove that they inherit regularity, symmetries and locality of the original quantity
of interest.

Finally, we consider the case of self-consistent tight-binding models such as
DFTB [33,59,78]. In this case the highly nonlinear charge-equilibration leads in
principle to arbitrarily complex intermixing of the nuclei information, and thus
arbitrarily high body-order. However, our results on the body-ordered approxima-
tions for linear tight-binding models mean that each iteration of the self-consistent
field (SCF) iteration can be expressed in terms of a low body-ordered and local
interaction scheme. This leads us to propose a self-similar compositional represen-
tation of atomic properties that is highly reminiscent of recurrant neural network
architectures. Each “layer” of this representation remains “simple” in the sense that
we specified above.

2. Results

2.1. Preliminaries

2.1.1. Tight binding model We suppose � is a finite or countable index set. For
� ∈ �, we denote the state of atom � by u� = (r�, v�, Z�) where r� ∈ R

d denotes
the position, v� the effective potential, and Z� the atomic species of �. Moreover, we
define r�k := rk − r�, r�k := |r�k |, and u�k := (r�k, v�, vk, Z�, Zk). For functions
f of the relative atomic positions u�k , the gradient denotes the gradient with respect
to the spatial variable: ∇ f (u�k) := ∇(

ξ �→ f ((ξ, v�, vk, Z�, Zk))
)∣∣

ξ=r�k
. The

whole configuration is denoted by u = (r, v, Z) = ({r�}�∈�, {v�}�∈�, {Z�}�∈�).
For a given configuration u, the tight binding Hamiltonian takes the following

form:
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(TB) For �, k ∈ � and Nb atomic orbitals per atom, we suppose that

H(u)�k = h
(
u�k

) +
∑

m �∈{�,k}
t (u�m, ukm) + δ�kv�IdNb , (2.1)

where h and t have values in R
Nb×Nb , are independent of the effective potential

v, and are continuously differentiable with

|h(u�k)| + |∇h(u�k)| � h0e
−γ0 r�k , and (2.2)

|t (u�m, ukm)| + |∇t (u�m, ukm)| � h0e
−γ0(r�m+rkm ), (2.3)

for some h0, γ0 > 0.
Moreover, we suppose the Hamiltonian satisfies the following symmetries:

• h(u�k) = h(uk�)T and t (u�m, ukm) = t (ukm, u�m)T for all �, k,m ∈ �,
• For orthogonal transformations Q ∈ R

d×d , there exist orthogonal
D�(Q) ∈ R

Nb×Nb such that H(Qu) = D(Q)H(u)D(Q)T where
D(Q) = diag({D�(Q)}�∈�) and Qu := ({Qr�}�∈�, v, Z).

Remark 1. (i) The constants in (2.2)-(2.3) are independent of the atomic sites
�, k,m ∈ �.

(ii) Pointwise bounds on |h(u�k)| and |t (u�m, ukm)| are normally automatically
satisfied since most linear tight binding models impose finite cut-off radii. More-
over, the assumption on the derivatives |∇h(u�k)| and |∇t (u�m, ukm)| states that
there are no long range interactions in themodel. In particular, we are assuming that
Coulomb interactions have been screened, a typical assumption in many practical
tight binding codes [20,68,71].

(iii) The Hamiltonian is symmetric and thus the spectrum is real.
(iv)The operatorsH(u) andH(Qu) are similar, and thus have the same spectra.
(v) The symmetry assumptions [84] of (TB) are justified in [16, Appendix A].
(vi) The entries of H(u)�k ∈ R

Nb×Nb will be denoted H(u)ab�k for 1 � a, b �
Nb. When clear from the context, we drop the argument (u) in the notation.

The assumptions (TB) define ageneral three-centre tight bindingmodel,whereas,
if t ≡ 0, a simplificationmade in themajority of tight binding codes, we say (TB) is
a two-centre model [38].

The choice of potential in (TB) defines a hierarchy of tight binding models. If
v = const, (TB) defines a linear tight binding model, a simple yet common model
[14,16,17,70]. In this case,we implicitly assume that theCoulomb interactions have
been screened, a typical assumption made in practice for a wide variety of materials
[20,68,71,72]. Supposing that v is a function of a self-consistent electronic density,
we arrive at a non-linear model such as DFTB [33,59,78]. Abstract variants of these
nonlinear models have been analysed, for example, in [93,99]. Through much of
this article we will treat r, v as independent inputs into the Hamiltonian, but will
discuss their connection and self-consistency in § 2.7.
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For a finite system u (that is, with � a finite set), we consider analytic ob-
servables of the density of states [14,93]: for functions O : R → R that can be
analytically continued into an open neighbourhood of σ

(H(u)
)
, we consider that

Tr O
(H(u)

) =
∑

s

O(λs),

where (λs, ψs) are normalised eigenpairs ofH(u). Many properties of the system,
including the particle number functional and Helmholtz free energy, may be writ-
ten in this form [14,16,70,93]. By distributing these quantities amongst atomic
positions, we obtain a well-known spatial decomposition [14,16,35,38],

Tr O
(H(u)

) =
∑

�∈�

O�(u) where O�(u) := tr
[
O
(H(u)

)
��

] =
∑

s

O(λs)
∣∣[ψs]�

∣∣2.

(2.4)

For infinite systems,wemay defineO�(u) through the thermodynamic limit [14,16]
or via the holomorphic functional calculus; see § 4.1.2 for further details.

When discussing derivatives of the local observables, we will simplify notation
and write

∂O�(u)

∂um
:=

(
∂O�(u)

∂ rm
,
∂O�(u)

∂vm

)
. (2.5)

2.1.2. Local observables Although the results in this paper apply to general
analytic observables, our primary interest is in applying them to two special cases. A
local observable of particular importance is the electron density; for inverse Fermi-
temperature β ∈ (0,+∞] and fixed chemical potential μ, we use the notation of
(2.4) to define

ρ� = Fβ
� (u) where Fβ(z) :=

{(
1 + eβ(z−μ)

)−1 if β < ∞
χ(−∞,μ)(z) + 1

2χ{μ}(z) if β = ∞.
(2.6)

Throughout this paper Fβ(u) := (
Fβ

� (u)
)
�∈�

will denote a vector and so (2.6)
reads ρ = Fβ(u).

In § 2.7, we consider the case where the effective potential is a function of the
electron density (2.6) (that is, v = w(ρ) for some w : R� → R

�) which leads to
the self-consistent local observables

{
Osc

� (u) := O�

(
u(ρ�)

)

ρ� = Fβ
(
u(ρ�)

) , (2.7)

where u(ρ) := (
r, w(ρ), Z

)
.

Remark 2. All the results of this paper also hold for the off-diagonal entries of the
density matrix (ρ�k := tr Fβ

(H(u)
)
�k) without any additional work. This fact will

be clear from the proofs. It is likely though that additional properties related to the
off-diagonal decay (near-sightedness) and spatial regularity further improve the
“sparsity” of the density matrix. A complete analysis would go beyond the scope
of this work.
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The second observable we are particularly interested in is the site energy, which
allows us to decompose the total potential energy landscape into localised “atomic”
contributions. In the grand potential model for the electrons, which is appropriate
for large or infinite condensed phase systems [14], it is defined as

Gβ
� (u) := tr

[
Gβ

(H(u)
)
��

]
where Gβ(z) :=

{
2
β
log

(
1 − Fβ(z)

)
if β < ∞

2(z − μ)χ(−∞,μ)(z) if β = ∞.

(2.8)

The total grand potential is defined as
∑

� G
β
� (u) [14,70].

For β < ∞, the functions Fβ( · ) and Gβ( · ) are analytic in a strip of width
πβ−1 about the real axis [17, Lemma 5.1]. To define the zero Fermi-temperature
observables, we assume that μ lies in a spectral gap (μ �∈ σ

(H(u)
)
; see § 2.1.3).

In this case, Fβ( · ) and Gβ( · ) extend to analytic functions in a neighbourhood of
σ
(H(u)

)
for all β ∈ (0,∞].

In order to describe the relationship between the various constants in our esti-
mates and the inverse Fermi-temperature or spectral gap (in the case of insulators),
we will state all of our results for Oβ = Fβ or Gβ . Other analytic quantities of
interest can be treated similarly with constants depending, e.g., on the region of
analyticity of the corresponding function z �→ O(z).

2.1.3. Metals, insulators, and defects As we can see from (2.4), the structure of
the spectrum σ

(H(u)
)
will have a key role in the analysis. Firstly, by (TB),H(u) is

a bounded self-adjoint operator on �2(�×{1, . . . , Nb}) and thus the spectrum is real
and contained in some bounded interval. In order to keep the mathematical results
general, we will not impose any further restrictions on the spectrum. However, to
illustrate the main ideas, we briefly describe typical spectra seen in metals and
insulating systems.

In the case where u describes a multi-lattice in Rd formed by taking the union
of finitely many shifted Bravais lattices, the spectrum σ

(H(u)
)
is the union of

finitely many continuous energy bands [57]. That is, there exist continuous func-
tions, εα : BZ → R, on the Brillouin zone BZ, a compact connected subset of Rd ,
such that

σ
(H(u)

) =
⋃

α

εα(BZ).

In particular, in this case, σ
(H(u)

) = σess
(H(u)

)
is the union of finitely many

intervals on the real line. The band structure {εα} relative to the position of the
chemical potential, μ, determines the electronic properties of the system [89]. In
metals μ lies within a band, whereas for insulators, μ lies between two bands in a
spectral gap. Schematic plots of these two situations are given in Figure 1.

We now consider perturbations of a reference configuration uref = (r ref , vref ,
Z ref) defined on an index set �ref .
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µ

Fig. 1. Schematic plots of the spectrum σ
(H(u)

)
of a metal (top) and insulator (bottom)

Proposition 2.1. (Perturbation of the Spectrum) For δ, Rdef > 0, there exists δ0 >

0 such that if u = (r, v, Z) is a configuration defined on some index set� satisfying
� \ BRdef = �ref \ BRdef , � ∩ BRdef is finite, Zk = Z ref

k for all k ∈ � \ BRref , and
supk∈�\BRdef

[|rk − r refk | + |vk − vrefk |] � δ0, then

∣∣∣σ
(H(u)

) \ Bδ

(
σ
(H(uref)

))∣∣∣ < ∞.

In particular, if uref describes a multilattice, then, since local perturbations
in the defect core are of finite rank, the essential spectrum is unchanged and we
obtain finitely many eigenvalues bounded away from the spectral bands. Moreover,
a small global perturbation can only result in a small change in the spectrum. Again,
a schematic plot of this situation is given in Figure 2.

For the remainder of this paper, we consider the following notation:

Definition 1. Suppose that uref is a general reference configuration defined on�ref

and u is a configuration arising due to Proposition 2.1. Then, we define I− and I+
to be compact intervals and {λ j } to be a finite set such that

σ
(H(uref)

) ⊂ I− ∪ I+, σ
(H(u)

) ⊂ I− ∪ {λ j } ∪ I+ (2.9)

and max I− � μ � min I+. Moreover, we define

g := min I+ − max I− � 0, and (2.10)

gdef := min I+ ∪ {λ j : λ j � μ} − max I− ∪ {λ j : λ j � μ}. (2.11)

The constants in Definition 1 are also displayed in Figure 2. The constant g in
Definition 1 is slightly arbitrary in the sense that as long as Bδ

(
σ
(H(uref)

)) ⊂
I− ∪ I+ (where δ is the constant from Proposition 2.1), then there exists a finite set
{λ j } as in (2.9). Choosing smaller g reduces the size of the set {λ j }.

2.2. Vacuum cluster expansion

For a system of M identical particles X1, . . . , XM , a maximal body-order N ,
and a permutation invariant energy E = E({X1, . . . , XM }), we may consider the
vacuum cluster expansion,

E({X1, . . . , XM }) ≈
N∑

n=0

∑

1�m1<···<mn�M

V (n)(Xm1 , . . . , Xmn ), (2.12)
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I− I+

µ

g

gdef

Fig. 2. Top: Schematic plot of the spectrum σ
(H(uref )

)
for an insulating system, together

with two compact intervals I− and I+ as in (2.9) and the constant g from (2.10). Bottom:
The spectrum σ

(H(u)
)
after considering perturbations satisfying Proposition 2.1. While the

edges of the spectrum may be accumulation points for a sequence of eigenvalues within the
band gap, the number of such eigenvalues bounded away from the edges is finite

where the n-body interaction potentials V (n) are defined by considering all isolated
clusters of j � n atoms:

V (n)(X1, . . . , Xn) =
n∑

j=0

(−1)n− j
∑

1�m1<···<m j�n

E({Xm1 , . . . , Xm j }).

The expansion (2.12) is exact for N = M . The vacuum cluster expansion is the tra-
ditional and, arguably, the most natural many-body expansion of a potential energy
landscape. However, in many systems, it converges extremely slowly with respect
to the body-order N and is thus computationally impractical. An intuitive expla-
nation for this slow convergence is that, when defining the body-order expansion
in this way, we are building an interaction law for a condensed or possibly even
crystalline phase material from clusters in vacuum where the bonding chemistry is
significantly different. Although this observation appears to be “common knowl-
edge” wewere unable to find references that provide clear evidence for it. However,
some limited discussions and further references can be found in [10,25,27,46,86].

Our own approach employs an entirely differentmechanism,which in particular
incorporates environment information and leads to an exponential convergence of
an N -body approximation. Technically, our approximation is not an expansion, that
is, the n-body terms V (n) of the classical cluster expansion are replaced by terms
that depend also on the highest body-order N . We will provide a more technical
discussion contrasting our results with the vacuum cluster expansion in § 2.6.

2.3. A general framework

Before we consider two specific body-ordered approximations, we present
a general framework which both incorporates many (linear-scaling) electronic
structure methods from the literature (e.g. the kernel polynomial method (KPM)
[82], bond-order potentials (BOP) [26,39,55,74], and quadrature-based methods
[69,87,88]), and illustrates the key features needed for a convergent scheme: To that
end, we introduce the local density of states (LDOS) [38] which is the (positive)
measure D� supported on σ(H) such that

∫
xndD�(x) = tr[Hn]��, for n ∈ N0. (2.13)
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Existence and uniqueness follows from the spectral theorem for normal operators
(e.g. see [1, Theorem 6.3.3] or [92]). In particular, (2.4) may be written as the
integral O�(u) = ∫

O dD�.
Then, on constructing a (possibly signed) unit measure DN

� with exact first N
moments (that is,

∫
xndDN

� (x) = tr[Hn]�� for n = 1, . . . , N ), we may define the
approximate local observable ON

� (u) := ∫
O dDN

� , and obtain the general error
estimates

∣∣O�(u) − ON
� (u)

∣∣ = inf
PN∈PN

∣∣∣
∫ (

O − PN
)
d
(
D� − DN

�

)∣∣∣

�
∥∥D� − DN

�

∥∥
op inf

PN∈PN

∥∥O − PN
∥∥∞, (2.14)

where PN denotes the set of polynomials of degree at most N , and ‖ · ‖op is the
operator norm on a function space (S, ‖ · ‖∞). For example, we may take S to
be the set of functions analytic on an open set containing C , a contour encircling
supp

(
D� − DN

�

)
, and consider

‖O‖∞ := len(C )

2π
‖O‖L∞(C ).

Alternatively, we may consider S = L∞(
supp(D� − DN

� )
)
leading to the total

variation operator norm.
Equation (2.14) highlights the key generic features that are crucial ingredients

in obtaining convergence results:

• Analyticity. The potential theory results of § 4.1.5 connect the asymptotic con-
vergence rates for polynomial approximation to the size and shape of the region
of analyticity of O .

• Spectral Pollution. While suppD� ⊂ σ(H), this need not be true for DN
� .

Indeed, if suppDN
� introduces additional points within the band gap, this may

significantly slow the convergence of the polynomial approximation; cf. § 2.6.
• Regularity of DN

� . Roughly speaking, the first term of (2.14) measures how
“well-behaved” DN

� is. In particular, if DN
� is positive, then this term is bounded

independently of N , whereas, if DN
� is a general signedmeasure, then this factor

contributes to the asymptotic convergence behaviour.

In the sections to follow, we introduce linear (§ 2.4) and nonlinear (§ 2.5)
approximation schemes that fit into this general framework. Moreover, in § 2.6,
we also write the vacuum cluster expansion as an integral against an approximate
LDOS. In order to complement the intuitive explanation for the slow convergence
of the vacuum cluster expansion, we investigate which of the requirements listed
above fail.

In the appendices, we review other approximation schemes that fit into this
general framework such as the quadrature method (Appendix D), numerical bond
order potentials (Appendix E), and the kernel polynomial method (Appendix F).
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2.4. Linear body-ordered approximation

Wewill construct two distinct but relatedmany-body approximationmodels. To
construct our firstmodelwe exploit the observation that polynomial approximations
of an analytic function correspond to body-order expansions of an observable.

An intuitive approach is to write the local observable in terms of its Chebyshev
expansion and truncate to some maximal polynomial degree. The corresponding
projection operator is a simple example of the kernel polynomial method (KPM)
[82] and the basis for analytic bond order potentials (BOP) [74]. We discuss in
Appendix F that these schemes put more emphasis on the approximation of the
local density of states (LDOS) and, in particular, exploit particular features of the
Chebyshev polynomials to obtain a positive approximate LDOS. Since our focus
is instead on the approximation of observables, we employ a different approach
that is tailored to specific properties of the band structure and leads to superior
convergence rates for these quantities.

For a set of N + 1 interpolation points XN = {x j }Nj=0, and a complex-valued
functionO defined on XN , we denote by IXN O the degree N polynomial interpolant
of x �→ O(x) on XN . This gives rise to the body-ordered approximation

IXN O�(u) := tr
[
IXN O

(H(u)
)
��

]
. (2.15)

We may connect (2.15) to the general framework in § 2.3 by defining

IXN O�(u) =
∫

O dDN ,lin
� where DN ,lin

� := tr
∑

j

� j (H)�� δ( · − x j ),

(2.16)

and � j are the node polynomials corresponding to XN = {x j }Nj=0 (that is, � j are
the polynomials of degree N with � j (xi ) = δi j ).

Proposition 2.2. IXN O�(u) has body-order at most 2N. More specifically, there
exists (n + 1)-body potentials VnN for n = 0, . . . , 2N − 1 such that

IXN O�(u) =
2N−1∑

n=0

∑

k1,...,kn �=�

k1<···<kn

VnN (u�; u�k1 , . . . , u�kn ). (2.17)

Proof. (Sketch of the Proof.) Since (2.15) is a linear combination of the monomials
[Hn]��, it is enough to show that, for each n ∈ N,

[Hn]�� =
∑

�1,...,�n−1

H��1H�1�2 · · ·H�n−1� (2.18)

has finite body order.
Each term in (2.18) depends on the central atom �, the n − 1 neighbouring

sites �1, . . . , �n−1, and the at most n additional sites arising from the three-centre
summation in the tight binding Hamiltonian (TB). In particular, (2.15) has body
order at most 2N . See § 4.2 for a complete proof including an explicit definition of
the VnN . ��
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If one uses Chebyshev points as the basis for the body-ordered approximation
(2.15), the rates of convergence depend on the size of the largest Bernstein ellipse
(that is, ellipses with foci points ±1) contained in the region of analyticity of
z �→ O(z) [95]. This leads to a exponentially convergent body-order expansion in
the metallic finite-temperature case (see § 4.1.4 for the details).

However, the resulting estimates deteriorate in the zero-temperature limit. In-
stead, we apply results of potential theory to construct interpolation sets XN that
are adapted to the spectral properties of the system (see § 4.1.5 for examples) and
(i) do not suffer from spectral pollution, and (ii) (asymptotically) minimise the
total variation of DN ,lin

� which, in this context, is the Lebesgue constant [95] for
the interpolation operator IXN . This leads to rapid convergence of the body-order
approximation based on (2.15). The interpolation sets XN depend only on the inter-
vals I−, I+ from Definition 1 (see also Figure 2) and can be chosen independently
of uref as long as Bδ

(
σ
(H(uref)

)) ⊂ I− ∪ I+.

Theorem 2.3. Suppose uref is given by Definition 1. Fix 0 < β � ∞ and suppose
that, either β < ∞ or g > 0. Then, for all N ∈ N, there exist constants γN > 0
and interpolation sets XN = {x j }Nj=0 ⊂ I− ∪ I+ satisfying (2.17) such that

∣∣Oβ
� (uref) − IXN O

β
� (uref)

∣∣ � C1e
−γN N , and

∣∣∣∣
∂Oβ

�

∂um
(uref) − ∂ IXN O

β
�

∂um
(uref)

∣∣∣∣ � C2e
− 1

2 γN N e−η r�m ,

where Oβ = Fβ or Gβ and C1,C2, η > 0 are independent of N . The asymp-
totic convergence rate γ := limN→∞ γN is positive and exhibits the asymptotic
behaviour

C1 ∼ (g + β−1)−1, C2 ∼ (g + β−1)−3,

and γ, η ∼ g + β−1 as g + β−1 → 0. (2.19)

In this asymptotic relation, we assume that the limit g → 0 is approached symmet-
rically about the chemical potential μ.

Remark 3. Higher derivatives may be treated similarly under the assumption that
higher derivatives of the tight binding Hamiltonian (TB) exist and are short ranged.

2.4.1. The role of the point spectrum We now turn towards the important sce-
nario when a localised defect is embedded within a homogeneous crystalline solid.
Recall from § 2.1.3 (see in particular Fig. 2) that this gives rise to a discrete spec-
trum, which “pollutes” the band gap [70]. Thus, the spectral gap is reduced and a
naive application of Theorem 2.3 leads to a reduction in the convergence rate of the
body-ordered approximation. We now improve these estimates by showing that,
away from the defect, we obtain improved pre-asymptotics, reminiscent of similar
results for locality of interaction [17].

In that follow,wefix u satisfyingDefinition 1.While improved estimatesmaybe
obtained by choosing {λ j } as interpolation points, leading to asymptotic exponents
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that are independent of the defect, in practice, this requires full knowledge of the
point spectrum. Since the point spectrum within the spectral gap depends on the
whole atomic configuration, the approximate quantities of interest corresponding
to these interpolation operators would no longer satisfy Proposition 2.2.

Remark 4. This phenomenon has been observed in the context of Krylov subspace
methods for solving linear equations Ax = b where outlying eigenvalues delay
the convergence by O(1) steps without affecting the asymptotic rate [30]. Indeed,
since the residual after n steps may be written as rn = pn(A)r0 where pn is a
polynomial of degree n, there is a close link between polynomial approximation
and convergence of Krylov methods.

On the other hand, we may use the exponential localisation of the eigenvectors
corresponding to isolated eigenvalues to obtain pre-factors that decay exponentially
as |r�| → ∞.

Theorem 2.4. Suppose u satisfies Definition 1 with g > 0. Fix 0 < β � ∞ and
suppose that, if β = ∞, then gdef > 0, and let C1,C2, γN , γ, η, and XN =
{x j }Nj=0 ⊂ I− ∪ I+ be given by Theorem 2.3. Then, there exist γCT, γ def

N > 0 such
that

∣∣Oβ
� (u) − IXN O

β
� (u)

∣∣ � C1e
−γN N + C3e

−γCT|r�|e− 1
2 γ def

N N (2.20)
∣∣∣∣
∂Oβ

�

∂um
(u) − ∂ IXN O

β
�

∂um
(u)

∣∣∣∣ �
(
C2e

− 1
2 γN N + C4e

−γCT|r�|e− 1
2 γ def

N N
)
e−η r�m

(2.21)

where Oβ = Fβ or Gβ and C3,C4 > 0 are independent of N . The asymptotic
convergence rate γ def := limN→∞ γ def

N is positive and we have

γ def ∼ gdef + β−1 as gdef + β−1 → 0,

and γCT, η ∼ g + β−1 as g + β−1 → 0. (2.22)

In these asymptotic relations, we assume that the limitsgdef ,g → 0 are approached
symmetrically about the chemical potential μ.

In practice, Theorem 2.4 means that, for atomic sites � away from the defect-
core, the observed pre-asymptotic error estimates may be significantly better than
the asymptotic convergence rates obtained in Theorem 2.3.

Remark 5. (Locality) (i) By Theorem 2.4, and the locality estimates for the exact
observables Oβ

� [17], we immediately obtain corresponding locality estimates for
the approximate quantities:

∣∣∣∣∣
∂ IXN O

β
� (u)

∂um

∣∣∣∣∣ � e−η r�m . (2.23)

(ii)We investigate another type of locality in Appendix B where we show that
various truncation operators result in approximation schemes that only depend on a
small atomic neighbourhood of the central site. An exponential rate of convergence
as the truncation radius tends to infinity is obtained.
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Remark 6. (Connection to the general framework) The fact that the exponents in
Theorem 2.4 depend on the discrete eigenvalues of H(u) can be seen from the
general estimate (2.14) applied to the approximate LDOS DN ,lin

� from (2.16):

• Spectral Pollution. We choose the interpolation points so that the support of
DN ,lin

� lies within σ
(H(u)

)
and so spectral pollution does not play a role,

• Regularity of DN .lin
� . The total variation of DN ,lin

� can be estimated by the
Lebesgue constant [95] for the interpolation operator IXN :

‖DN ,lin
� ‖TV := sup

‖ f ‖L∞(σ (H))=1
|IXN f (H)��| � sup

‖ f ‖L∞(σ (H))=1
sup

x∈σ(H)

|IXN f (x)|

= sup
x∈σ(H)

∑

j

|� j (x)|.

This quantity depends on the discrete eigenvalues within the band gap.

2.5. A non-linear representation

The method presented in § 2.4 approximates local quantities of interest by
approximating the integrand O : C → C with polynomials. As we have seen, this
leads to approximation schemes that are linear functions of the spatial correlations
{[Hn]��}n∈N. In this section, we construct a non-linear approximation related to
bond-order potentials (BOP) [26,39,55] and show that the added non-linearity
leads to improved asymptotic error estimates that are independent of the discrete
spectra lying within the band gap. In this way, the nonlinearity captures “spectral
information” fromH rather than only approximating O : C → Cwithout reference
to the Hamiltonian.

Applying the recursion method [49,50], a reformulation of the Lanczos process
[61], we obtain a tri-diagonal (Jacobi) operator T on �2(N0)whose spectralmeasure
is the LDOS D� [91] (see § 4.3.1 for the details). We then truncate T by taking the
principal 1

2 (N + 1) × 1
2 (N + 1) submatrix T1

2 (N−1) and define

�N
(H��, [H2]��, . . . , [HN ]��

) := Oβ(T1
2 (N−1))00 =

∫
OβdDN ,nonlin

� , (2.24)

where DN ,nonlin
� = ∑

s[ψs]20δ( · − λs) is a spectral measure for T1
2 (N−1) (that

is, (λs, ψs) are normalised eigenpairs of T1
2 (N−1)). By showing that the first N

moments of DN ,nonlin
� are exact, we are able to apply (2.14) to obtain the following

error estimates. The asymptotic behaviour of the exponent in these estimates follows
by proving that the spectral pollution of DN ,nonlin

� in the band gap is sufficiently
mild.

Theorem 2.5. Suppose u satisfies Definition 1. Fix 0 < β � ∞ and suppose that,
if β = ∞, then g > 0. Then, for N odd, there exists an open set U ⊂ C

N such that
(2.24) extends to an analytic function �N : U → C, such that

∣∣∣Oβ
� (u) − �N

(H��, [H2]��, . . . , [HN ]��
)∣∣∣ � e−γN N (2.25)



Body-Ordered Approximations of Atomic Properties 15

where Oβ = Fβ or Gβ . The asymptotic convergence rate γ := limN→∞ γN is
positive and γ ∼ g + β−1 as g + β−1 → 0.

Remark 7. It is important to note that �N : U → C can be constructed without
knowledge ofH because, as we have seen, if the discrete eigenvalues are known a
priori, then Theorem 2.5 is immediate from Theorem 2.4 by adding finitely many
additional interpolation points on the discrete spectrum.

In particular, the fact that�N is amaterial-agnostic nonlinearity has potentially
far-reaching consequences for material modelling.

Remark 8. (Connection to the general framework) The fact that the exponents in
Theorem 2.5 are independent of the discrete eigenvalues ofH(u) can be seen from
the general estimate (2.14) applied to the approximate LDOS DN ,nonlin

� from (2.24):

• Spectral Pollution. We show that
∣∣supp DN ,nonlin

� \ supp D�

∣∣ remains bounded
independently of N and so spectral pollution only slows the convergence by at
most O(1) steps,

• Regularity of DN ,nonlin
� . Since DN ,nonlin

� is a positive unit measure, we have the

bound ‖D� − DN ,nonlin
� ‖TV � 2.

Remark 9. (Quadrature Method) Alternatively, we may use the sequence of or-
thogonal polynomials [40] corresponding to D� as the basis for a Gauss quadrature
rule to evaluate local observables. This procedure, called the Quadrature Method
[51,69], is a precursor of the bond order potentials. Outlined in Appendix D, we
show that it produces an alternative scheme also satisfying Theorem 2.5.

The linear-scaling spectral Gauss quadrature (LSSGQ) method [87] is based
upon this idea, albeit in the context of finite difference approximations to the DFT
Hamiltonian. However, since the resulting discrete Hamiltonian in [87] is banded,
the analysis of the present work may be readily applied. Therefore, Theorem 2.5
provides rigorous justification for the exponential rate of convergence for increasing
body-order (number of quadrature points), complementing the intuitive explana-
tions and numerical experiments of [87].

Since the convergence results are independent of system size, we obtain a linear-
scaling method, a result that complements the intuitive explanation [87, (56)], and
numerical evidence [87, Fig. 5].

Remark 10. (Convergence of Derivatives) In this more complicated nonlinear set-
ting, obtaining results such as (2.21) is more subtle. We require an additional as-
sumption on D�, which we believe maybe be typically satisfied, but we currently
cannot justify it and have therefore postponed this discussion to Appendix C. We
briefly mention, however, that if D� is absolutely continuous (e.g., in periodic sys-
tems), we obtain

∣∣∣∣
∂

∂um

(
Oβ

� (u) − �N
(H��, [H2]��, . . . , [HN ]��

))∣∣∣∣ � e− 1
2 γN N e−η r�m .
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2.6. The vacuum cluster expansion revisited

For � ∈ �, we denote by H∣∣
�;K the Hamiltonian matrix corresponding to the

finite subsystem {�} ∪ K ⊂ �: for k1, k2 ∈ {�} ∪ K ,
[H∣∣

�;K
]
k1k2

:= h(uk1k2) +
∑

m∈{�}∪K

t (uk1m, uk2m) + δk1k2vk1 IdNb . (2.26)

For an observable O , the vacuum cluster expansion as detailed in § 2.2 is
constructed as follows:

ON ,vac
� (u) :=

2N−1∑

n=0

∑

k1,...,kn �=�

k1<···<kn

V (n)(u�; u�k1, . . . , u�kn ) where

(2.27)

V (n)(u�; u�k1 , . . . , u�kn ) =
∑

K⊆{k1,...,kn}
(−1)n−|K |O

(H∣∣
�;K

)
��

. (2.28)

Therefore, on defining the spectral measure D�;K := ∑
s δ
( · −λs(K )

)|[ψs(K )]�|2
where

(
λs(K ), ψs(K )

)
the are normalised eigenpairs of H∣∣

�;K , we may write the
vacuum cluster expansion as in § 2.3:

ON ,vac
� (u) =

∫
O dDN ,vac

� where

DN ,vac
� :=

2N−1∑

n=0

∑

k1,...,kn �=�

k1<···<kn

∑

K⊆{k1,...,kn}
(−1)n−|K |D�;K . (2.29)

While DN ,vac
� is a generalised signed measure (with values in R ∪ {±∞}), all

moments are finite. More specifically, if we absorb the effective potential and two
centre terms into the three centre summation by writing Hk1k2 = ∑

m Hk1k2m , see
(4.16), we have
∫

x j dDN ,vac
� (x) =

∑

�1,...,� j−1,m1,...,m j
|{�,�1,...,� j−1,m1,...,m j }|�2N

H��1m1H�1�2m2 . . .H� j−1�m j . (2.30)

Equation (2.30) follows from the proof of Proposition 2.2, see (4.19). In particular,
the first N moments of DN ,vac

� are exact. Therefore, we may apply the general

error estimate (2.14) and describe the various features of DN ,vac
� which provide

mathematical intuition for the slow convergence of the vacuum cluster expansion:

• Spectral Pollution. When splitting the system up into arbitrary subsystems as
is the case in the vacuum cluster expansion, one expects significant spectral
pollution in the band gaps, leading to a reduction in the convergence rate,

• Regularity of DN ,vac
� . The approximate LDOS is a linear combination of count-

ably many Dirac deltas and does not have bounded variation. Moreover, DN ,vac
�

has values in R ∪ {±∞}.
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2.7. Self-consistency

Throughout this section, we suppose that the effective potential is a function
of a self-consistent electron density: that is, (2.6) becomes the following nonlinear
equation:

ρ� = Fβ
(
u(ρ�)

)
(2.31)

where u(ρ) := (
r, w(ρ), Z

)
. We shall assume that the effective potential satisfies

the following:

(EP) We suppose that w : R� → R
� is twice continuously differentiable with

∣∣∇w(ρ)�k
∣∣ � Ce−γv r�k

for some γv > 0.

Remark 11. (i) For a smooth function w̃ : R → R, the effective potential
w(ρ)� := w̃(ρ�) satisfies (EP). This leads to the simplest abstract nonlinear tight
binding models discussed in [93,99].

(ii) The (short-ranged) Yukawa potential defined by w(ρ)� := ∑
m �=�

ρm−Zm
r�m

e−τ r�m (for some τ > 0) also fits into this general framework. This setting
already covers many important modelling scenarios and also serves as a crucial
stepping stone towards charge equilibration under full Coulomb interaction, which
goes beyond the scope of the present work.

The main result of this section is the following: if there exists a self-consistent
solution ρ� to (2.31), then we can approximate ρ� with self-consistent solutions to
the following approximate self-consistency equation:

ρN = IXN F
β
(
u(ρN )

)
, (2.32)

for sufficiently large N . Theoperator IXN F
β is a linear body-ordered approximation

of the form we analyzed in detail in § 2.4.
To do this, we require a natural stability assumption on the electronic structure

problem, which was employed for example in [93,99,100]:

(STAB) The stability operator L (ρ) is the Jacobian of ρ �→ Fβ
(
u(ρ)

)
. We say

electron densities ρ� solving (2.31) are stable if I − L (ρ�) is invertible as a
bounded linear operator �2 → �2.

Remark 12. (Stability) (i) The stability condition of Theorem 2.6 is a minimal
starting assumption that naturally arises from the analysis [93,99,100].

For example, if ρ is a stable self-consistent electron density, then there exists
φ(m) ∈ �2(�) such that [93]:

∂ρ�

∂um
=
[(
I − L (ρ)

)−1
φ(m)

]

�
.

(ii) As noted in [99] (in a slightly simpler setting), the stability condition of Theo-
rem 2.6 is automatically satisfied for multi-lattices with ∇w positive semi-definite.
In fact, in this case the stability operator is negative semi-definite.
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Theorem 2.6. For u satisfying Definition 1, suppose that ρ� is a corresponding
stable self-consistent electron density.

Then, for N sufficiently large, there exist self-consistent solutions ρN of (2.32)
such that

∥∥ρN − ρ�
∥∥

�∞ � Ce−γN N , (2.33)

where γN are the constants from Theorem 2.3 applied to u(ρ�).

Corollary 2.7. Suppose that ρ� and ρN are as in Theorem 2.6 and denote by
Osc

� (u) := O�

(
u(ρ�)

)
a self-consistent local observable as in (2.7). Then,

∣∣Osc
� (u) − IXN O�

(
u(ρN )

)∣∣ � Ce−γN N ,

where γN are the constants from Theorem 2.3 applied to u(ρ�).

In order for this result to be of any practical use, we need to solve the non-linear
equation (2.32) for the electron density via a self-consistent field (SCF) procedure.
Supposingwehave the electrondensityρi and corresponding stateui := u(ρi ) after
i iterations, we diagonalise the Hamiltonian H(ui ) and hence evaluate the output
density ρout = IXN F

β(ui ). At this point, since the simple iteration ρi+1 = ρout

does not converge in general, a mixing strategy, possibly combined with Anderson
acceleration [19], is used in order to compute the next iterate. The analysis of such
mixing schemes is a major topic in electronic structure and numerical analysis in
general and so we only present a small step in this direction.

Proposition 2.8. (Stability) The approximate electron densities ρN arising from
Theorem 2.6 are stable in the following sense: I −LN (ρN ) : �2 → �2 is an invert-
ible bounded linear operator where LN is the Jacobian of ρ �→ IXN F

β
(
u(ρ)

)
.

Moreover,
(
I − LN (ρN )

)−1
is uniformly bounded in N in operator norm.

Theorem 2.9. For u satisfying Definition 1, suppose that ρN is a corresponding
approximate self-consistent electron density stable in the sense of Proposition 2.8.
For fixed ρ0, we define {ρi }∞i=0 via the Newton iteration

ρi+1 = ρi − (
I − LN (ρi )

)−1
(
ρi − IXN F

β
(
u(ρi )

))
.

Then, for ‖ρ0 − ρN‖�∞ sufficiently small, the Newton iteration converges
quadratically to ρN .

A more thorough treatment of these SCF results is beyond the scope of this
work. See [12,53,63] for recent results in the context of Hartree-Fock and Kohn-
Sham density functional theory. For a recent review of SCF in the context density
functional theory, see [101].

Remark 13. It is clear from the proofs of Theorems 2.6 and 2.9 that as long as the
approximate scheme Fβ,N satisfies

∣∣∣Fβ
� (u) − Fβ,N

� (u)

∣∣∣ � e−γN N and

∣∣∣∣∣
∂Fβ

� (u)

∂vm
− ∂Fβ,N

� (u)

∂vm

∣∣∣∣∣ � e− 1
2 γN N e−ηr�m ,
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then we may approximate (2.31) with approximate self-consistent solutions ρN =
Fβ,N

(
u(ρN )

)
. In particular, as long as we have the estimate from Remark 10 (see

Appendix C for the technical details), then wemay use the nonlinear approximation
scheme �N from Theorem 2.5 in Theorems 2.6 and 2.9 . In this case, we obtain
error estimates that are (asymptotically) independent of the discrete spectrum.

Remark 14. In the linear-scaling spectral Gauss quadrature (LSSGQ) method [87],
a self-consistent field iteration analogous to (2.32) is proposed. In particular, with
the caveats outlined in Remark 13 taken into consideration, Theorem 2.6 goes some
way to rigorously justify the exponential rate of convergence observed numerically
in [87, Fig. 4].

3. Conclusions and Discussion

The main result of this work is a sequence of rigorous results about body-
ordered approximations of a wide class of properties extracted from tight-binding
models for condensed phase systems, the primary example being the potential en-
ergy landscape. Our results demonstrate that exponentially fast convergence can
be obtained, provided that the chemical environment is taken into account. In the
spirit of our previous results on the locality of interaction [16,17,93], these provide
further theoretical justification—albeit qualitative—for widely assumed properties
of atomic interactions. More broadly, our analysis illustrates how to construct gen-
eral low-dimensional but systematic representations of high-dimensional complex
properties of atomistic systems. Our results, as well as potential generalisations,
serve as a starting point towards a rigorous end-to-end theory of multi-scale and
coarse-grained models, including but not limited to machine-learned potential en-
ergy landscapes.

In the following paragraphs we will make further remarks on the potential
applications of our results, and on some apparent limitations of our analysis.

3.1. Representation of atomic properties

Our initial motivation for studying the body-order expansion was to explain
the (unreasonable?) success of machine-learned interatomic potentials [5,8,80],
and our remarks will focus on this topic, however in principle they apply more
generally.

Briefly, given an ab initio potential energy landscape (PEL) EQM for some
material one formulates a parameterised interatomic potential

E({r�}�) =
∑

�

ε(θ , {r�k}k �=�)

and then “learn” the parameters θ by fitting them to observations of the reference
PEL EQM. A great variety of such parameterisations exist, including but not limited
to neural networks [8], kernel methods [5] and symmetric polynomials [2,25,80].
Symmetric polynomials are linear regression schemes where each basis function
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has a natural body-order attached to it. It is particularly striking that for very low
body-orders of four to six these schemes are able to match and often outperform
the more complex nonlinear regression schemes [66,80,106]. Our analysis in the
previous sections provides a partial explanation for these results, by justifying why
one may expect that a reference ab initio PEL intrinsically has a low body-order.
Moreover, classical approximation theory can now be applied to the body-ordered
components as they are finite-dimensional to obtain new approximation results
where the curse of dimensionality is alleviated.

Our results on nonlinear representations are less directly applicable to existing
MLIPs, but rather suggest new directions to explore. Still, some connections can
be made. The BOP-type construction of § 2.5,

�N
(H��, [H2]��, . . . , [HN ]��

)
(3.1)

points towards a blending of machine-learning and BOP techniques that have not
been explored to the best of our knowledge.A second interesting connection is to the
overlap-matrix based fingerprint descriptors (OMFPs) introduced in [105] where a
global spectrum for a small subcluster is used as a descriptor, while (3.1) can be
understood as taking the projected spectrum as the descriptor. Thus, Theorem 2.5
suggests (1) an interesting modification of OMFPs which comes with guaranteed
completeness to describe atomic properties; and (2) a possible pathway towards
proving completeness of the original OMFPs.

Finally, our self-consistent representation of § 2.7 motivates how to construct
compositional models, reminiscent of artificial neural networks, but with minimal
nonlinearity that is moreover physically interpretable. Although we did not pursue
it in the present work, this is a particularly promising starting point to incorporate
meaningful electrostatic interaction into the MLIPs framework.

3.2. Linear body-ordered approximation: the preasymptotic regime

Possibly the most significiant limitation of our analysis of the linear body-
ordered approximation scheme is that the estimates deteriorate when defects cause
a pollution of the point spectrum. Here, we briefly demonstrate that this appears
to be an asymptotic effect, while in the pre-asymptotic regime this deterioration is
not noticable.

To explore this we choose a union of intervals E ⊇ σ(H) and a polynomial PN
of degree N and note

∣∣∣
[
O(H) − PN (H)

]
��

∣∣∣ �
∥∥O(H) − PN (H)

∥∥
�2→�2

= ∥∥O − PN
∥∥
L∞(σ (H))

�
∥∥O − PN

∥∥
L∞(E)

. (3.2)

We then construct interpolation sets (Fejér sets) such that the corresponding poly-
nomial interpolant gives the optimal asymptotic approximation rates (for details
of this construction, see §4.1.5-§4.1.8). We then contrast this with a best L∞(E)-
approximation, and with the nonlinear approximation scheme from Theorem 2.5.
Wewill observe that the non-linearity leads to improved asymptotic but comparable
pre-asymptotic approximation errors.
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(A)E1 = [−1, a] ∪ [b, 1]. (B) E2 = [−1, a] ∪ [c, d] ∪ [b, 1].

Fig. 3. Approximation errors for Chebyshev projection (green), polynomial interpolation in
Fejér sets on E j (black), best L

∞(E j ) polynomial approximation (blue), and, for j = 2,
errors in the nonlinear approximation scheme (red).We also plot the corresponding predicted
asymptotic rates (from (4.5), (4.15), and Theorem 2.3). Here, we only plot data points for
N ∈ {1, 6, 11, 16, . . . } in the linear schemes (which captures the oscillatory behaviour), and
N ∈ {1, 7, 13, 19, . . . } for the nonlinear scheme (since N must be odd)

As a representative scenario we consider the Fermi-Dirac distribution Fβ(z) =
(1+eβz)−1 withβ = 100 and both the “defect-free” case E1 := [−1, a]∪[b, 1] and
E2 := [−1, a]∪[c, d]∪[b, 1]with the parameters a = −0.2, b = 0.2, c = −0.06,
and d = −0.03. Then, for fixed polynomial degree N and j ∈ {1, 2}, we construct
the (N + 1)-point Fejér set for E j and the corresponding polynomial interpolant
I j,N Fβ . Moreover, we consider a polynomial P�

j,N of degree N minimising the

right hand side of (3.2) for E = E j . Then, in Figure 3, we plot the errors ‖Fβ −
I j,N Fβ‖L∞(E j ) and ‖Fβ − P�

j,N‖L∞(E j ) for both j = 1 (Fig. 3a) and j = 2
(Fig. 3b) against the polynomial degree N together with the theoretical asymptotic
convergence rates for best L∞(E j ) polynomial approximation (4.15).

What we observe is that, as expected, introducing the interval [c, d] into the
approximation domain drastically affects the asymptotic convergence rate and the
errors in the approximation based on interpolation. While the best approxima-
tion errors follow the asymptotic rate for larger polynomial degree, it appears
that, pre-asymptotically, the errors are significantly reduced. We also see that
the approximation errors are significantly better than the general error estimate
‖Fβ − �N Fβ‖L∞ � e−πβ−1N where �N is the Chebyshev projection operator
(see § 4.1.4).

Moreover, in Figure 3b, we plot the errors when using a nonlinear approxima-
tion scheme satisfying Theorem 2.5. In this simple experiment, we consider the
Gauss quadrature rule �N := ∫

IX 1
2 (N−1)

FβdD� where X 1
2 (N−1) is the set of zeros

of the degree 1
2 (N + 1) orthogonal polynomial (see Appendix D) with respect to

dD�(x) := (
χE1(x) + ∑

j δ(x − λ j )
)
dx where {λ j } = {c, 1

2 (c + d), d} ⊂ [c, d].
While D� does not correspond to a physically relevant Hamiltonian, the same pro-
cedure may be carried out for any measure supported on E1 with supp D� ∩ [c, d]
finite. Then plotting the errors |Fβ

� −�N |, we observe improved asymptotic conver-
gence rates that agree with that of the “defect-free” case from Figure 3a. However,
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the improvement is only observed in the asymptotic regime which corresponds to
body-orders never reached in practice.

4. Proofs

4.1. Preliminaries

Here, we introduce the concepts needed in the proofs of the main results.

4.1.1. Hermite integral formula For a finite interpolation set X ⊂ C, we let
�X (z) := ∏

x∈X (z − x) be the correpsonding node polynomial.
For fixed z ∈ C \ X , we suppose that O is analytic on an open neighbourhood

of X ∪ {z}. Then, for a simple closed positively oriented contour (or system of
contours) C contained in the region of analyticity of O , encircling X , and avoiding
{z}, we have

IX O(z) = 1

2π i

∮

C

�X (ξ) − �X (z)

�X (ξ)

O(ξ)

ξ − z
dξ. (4.1)

If, in addition, C encircles {z}, then

O(z) − IX O(z) = 1

2π i

∮

C

�X (z)

�X (ξ)

O(ξ)

ξ − z
dξ. (4.2)

The proof of these facts is a simple application of Cauchy’s integral formula, [3,95].

4.1.2. Resolvent calculus Given a configuration u, we consider the Hamiltonian
H = H(u) and functions O analytic in some neighbourhood of the spectrum σ(H).
We define O(H) via the holomorphic functional calculus [1]:

O(H) := − 1

2π i

∮

C
O(z)(H − z)−1dz (4.3)

where C is a simple closed positively oriented contour (or system of contours)
contained in the region of analyticity of O and encircling the spectrum σ(H).

The following Combes–Thomas resolvent estimate [21] will play a key role in
the analysis:

Lemma 1. (Combes-Thomas) Suppose that u satisfies Definition 1 and z ∈ C is
contained in a bounded set with dist

(
z, σ

(H(u)
))

>0 and d :=dist
(
z, σ

(H(uref)
))

> δ.
Then, there exists a constant C > 0 such that

∣∣∣
[
(H(u) − z)−1

]

�k

∣∣∣ � C�ke
−γCTr�k , where

C�k := 2d−1 + Ce−γCT(|r�|+|rk |−|r�k |)

and γCT := cmin{1, d} and c > 0 depends on h0, γ0, d and min� �=k r�k .



Body-Ordered Approximations of Atomic Properties 23

Proof. A proof with γCT depending instead on dist
(
z, σ

(H(u)
))

can be found in
[16]. A low-rank update formula leads to the improved “defect-independent” result
[17] where the exponent only depends on the distance between z and the reference
spectrum. See [93] for an explicit description of γCT in terms of the constants γ0, d
and the non-interpenetration constant min� �=k r�k . ��

Akeyobservation for arguments involving forces (ormore generally, derivatives
of the analytic quantities of interest) is that the Combes-Thomas estimate allows
us to bound derivatives of the resolvent operator:

Lemma 2. Suppose that z ∈ C with d := dist
(
z, σ

(H(u)
))

> 0. Then,
∣∣∣∣∣
∂
[
(H(u) − z)−1

]
�k

∂um

∣∣∣∣∣ � 4h0d
−2e− 1

2 min{γ0,γCT}(r�m+rmk )

where γCT is the Combes-Thomas constant from Lemma 1 and γ0 is the constant
from (TB).

Proof. This result can be found in the previous works [14,16,17], but we give a
brief sketch for completeness.

Derivatives of the resolvent have the following form:

∂(H(u) − z)−1

∂um
= −(H(u) − z)−1 ∂H(u)

∂um
(H(r, v) − z)−1. (4.4)

The result follows by applying the Combes-Thomas resolvent estimates to-
gether with the fact that the Hamiltonian is short-ranged (TB).

Assuming that theHamiltonian has higher derivatives that are also short-ranged,
higher order derivatives of the resolvent can be treated similarly [16]. ��
4.1.3. Local observables Firstly, we note that Fβ( · ) is analytic away from the
simple poles atπβ−1(2Z+1). Moreover,Gβ( · ) can be analytically continued onto
the open set C \ {μ + ir : r ∈ R, |r | � πβ−1

}
[17]. Therefore, we may consider

(4.3) with O = Fβ or Gβ and a contour Cβ encircling σ (H) and avoiding C \{
μ + ir : r ∈ R, |r | � πβ−1

}
. Therefore, we may choose Cβ so that the constant

d, from Lemma 1, is proportional to β−1. Moreover, if there is a spectral gap,
the constant d is uniformly bounded below by a positive constant multiple of g as
β → ∞.

In the case of insulators at zero Fermi-temperature, we take C∞ encircling
σ (H(u)) ∩ (−∞, μ) and avoiding the rest of the spectrum. Therefore, we may
choose C∞ so that the constant d, from Lemma 1, is proportional to g.

Following [16, Lemma 4], we can conclude that σ(H) ⊂ [σ, σ ] for some σ , σ

depending on h0, γ0, v, d and min� �=k r�k . This means that, the contours Cβ can
be chosen to have finite length and, when applying Lemma 1, we have γCT =
cmin{1,max{β−1,g}}.

Moreover, for all 0 < b < π and bounded sets Aβ ⊂ A ⊂ C such that

dist(z, {μ + ir : r ∈ R, |r | � πβ−1}) � bβ−1 for all z ∈ Aβ,

both Fβ( · ) and Gβ( · ) are uniformly bounded on Aβ independently of β [17,
Lemma 5.2].



24 Jack Thomas, Huajie Chen & Christoph Ortner

4.1.4. Chebyshev Projection and Interpolation in Chebyshev Points We de-
note by {Tn} the Chebyshev polynomials (of the first kind) satisfying Tn(cos θ) =
cos nθ on [−1, 1] and, equivalently, the recurrence T0 = 1, T1 = x , and Tn+1(x) =
2xTn(x) − Tn−1(x).

For O Lipshitz continuous on [−1, 1], there exists an absolutely convergent
Chebyshev series expansion: there exists cn such that O(z) = ∑∞

n=0 cnTn(z). For
maximal polynomial degree N , the corresponding projection operator is denoted
�N O(z) := ∑N

n=0 cnTn(z). This approach is a special case of the Kernel Polyno-
mial Method (KPM) which we briefly review in Appendix F.

On the other hand, supposing that the interpolation set is given by theChebyshev
points X = {cos jπ

N }0� j�N , we may expand the polynomial interpolant IN O :=
IX O in terms of the Chebyshev polynomials: there exists c′

n such that IN O(z) =∑N
n=0 c

′
nTn(z).

For functions O that can be analytically continued the Bernstein ellipse Eρ :=
{ 12 (z + z−1) : |z| = ρ} for ρ > 1, the corresponding coefficients {cn}, {c′

n} decay
exponentially with rate ρ. This leads to the following error estimates

‖O − �N O‖L∞([−1,1]) + ‖O − IN O‖L∞([−1,1]) � 6‖O‖L∞(Eρ)

ρ−N

ρ − 1
. (4.5)

For Oβ = Fβ or Gβ , these estimates give an exponential rate of convergence
with exponent depending on ∼ β−1. Indeed, after scaling H so that the spectrum
is contained in [−1, 1], we obtain

∣∣∣Oβ
� (u) − �N O

β
� (u)

∣∣∣ �
∥∥∥Oβ(H) − �N O

β(H)

∥∥∥
�2→�2

� ‖Oβ − �N O
β‖L∞([−1,1]), (4.6)

and we conclude by directly applying (4.5). The same estimate also holds for IN
(or any polynomial).

For full details of all the statements made in this subsection, see [95].

4.1.5. Classical logarithmic potential theory In this section, we give a very
brief introduction to classical potential theory in order to lay out the key notation.
For a more thorough treatment, see [75] or [37,62,76,95].

It can be seen from the Hermite integral formula (4.2) that the approximation
error for polynomial interpolation may be determined by taking the ratio of the
size of the node polynomial �X at the approximation points to the size of �X along
an appropriately chosen contour. Logarithmic potential theory provides an elegant
mechanism for choosing the interpolation points so that the asymptotic behaviour
of �X can be described.

We suppose that E ⊂ C is a compact set. We will see that choosing the inter-
polation nodes as to maximise the geometric mean of pairwise distances provides
a particularly good approximation scheme:

δn(E) := max
z1,...,zn∈E

( ∏

1�i< j�n

|zi − z j |
) 2

n(n−1)
. (4.7)
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Any set Fn ⊂ E attaining this maximum is known as a Fekete set. It can be shown
that the quantities δn(E) form a decreasing sequence and thus converges to what is
known as the transfinite diameter: τ(E) := lim

n→∞ δn(E).

We let �n(z) denote the node polynomial corresponding to a Fekete set and note
that

|�n(z)|δn(E)
n(n−1)

2 = max
z0,...,zn∈E : z0=z

∏

0�i< j�n

|zi − z j | � δn+1(E)
n(n+1)

2 . (4.8)

Therefore, rearranging (4.8),we obtain limn→∞ ‖�n‖1/nL∞(E) � τ(E). In fact, this in-
equality can be replaced with equality, showing that Fekete sets allow us to describe
the asymptotic behaviour of the node polynomials on the domain of approximation.

To extend these results, it is useful to recast the maximisation problem (4.7) into
the following minimisation problem, describing the minimal logarithmic energy
attained by n particles lying in E with the repelling force 1/|zi − z j | between
particles i and j lying at positions zi and z j , respectively:

En(E) := min
z1,...,zn∈E

∑

1�i< j�n

log
1

|zi − z j | = n(n − 1)

2
log

1

δn(E)
. (4.9)

Fekete sets can therefore be seen as minimal energy configurations and described
by the normalised counting measure νn := 1

n

∑n
j=1 δz j where Fn = {z j }nj=1.

The minimisation problem (4.9) may be extended for general unit Borel mea-
sures μ supported on E by defining the logarithmic potential and corresponding
total energy by

Uμ(z) :=
∫

log
1

|z − ξ |dμ(ξ) and I (μ) :=
∫∫

log
1

|z − ξ |dμ(ξ)dμ(z).

The infimum of the energy over the space of unit Borel measures supported on
E , known as the Robin constant for E , will be denoted −∞ < VE � +∞. The
capacity of E is defined as cap(E) := e−VE and is equal to the transfinite diameter
[34].Using a compactness argument, it can be shown that there exists an equilibrium
measure ωE with I (ωE ) = VE and, in the case VE < ∞, by the strict convexity of
the integral,ωE is unique [77].Moreover, if VE < ∞ (equivalently, if cap(E) > 0),
then UωE (z) � VE for all z ∈ C, with equality holding on E except on a set of
capacity zero (we say this property holds quasi-everywhere).

Moreover, if cap E > 0, then it can be shown that the normalised counting
measures, νn , corresponding to a sequence of Fekete sets weak-� converges to ωE .
Since U νn (z) = 1

n log
1

|�n(z)| , the weak-� convergence allows one to conclude that

lim
n→∞ ‖�n‖1/nL∞(E) = cap(E), and

lim
n→∞ |�n(z)|1/n = e−UωE (z) =: cap(E)egE (z) (4.10)

uniformly on compact subsets ofC\E . Here, we have defined theGreen’s function
gE (z) := VE − UωE (z), which describes the asymptotic behaviour of the node
polynomials corresponding to Fekete sets. We therefore wish to understand the
Green’s function gE .
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Fig. 4. The Schwarz–Christoffel mapping GE with E = [z1, z2] ∪ [z4, z5] which maps
the upper half plane (left) onto the infinite slit strip {ω ∈ C : Reω > 0, Imω ∈ (0, π)}
(right), is continuous on {z ∈ C : Rez � 0} and maps the intervals [z1, z2], [z4, z5] to[ω1, ω2], [ω4, ω5] ⊂ i[0, π ], respectively. We also plot the image of an 10×10 equi-spaced
grid. A parameter problem is solved in order to obtain z3 and thus ω3 and ω2 = ω4 whereas
the other constants are fixed. Here, we take z1 = −1, z2 = −ε, z4 = ε, z5 = 1, ω1 =
iπ,ω5 = 0 with ε = 0.3

4.1.6. Construction of the Green’s function Now we restrict our attention to
the particular case where E ⊂ R is a union of finitely many compact intervals of
non-zero length.

It can be shown that the Green’s function gE satisfies the following Dirichlet
problem on C \ E [75]:

�gE (z) = 0 on C \ E, (4.11a)

gE (z) ∼ log |z| as |z| → ∞, (4.11b)

gE (z) = 0 on E . (4.11c)

In fact, it can be shown that (4.11) admits a unique solution [75] and thus (4.11)
is an alternative definition of the Green’s function. Using this characterisation,
it is possible to explicitly construct the Green’s function gE as follows. In the
upper half plane, gE (z) = Re(GE (z)) where GE : {z ∈ C : Im(z) � 0} → {z ∈
C : Re(z) � 0, Im(z) ∈ [0, π ]} is a conformalmapping on {z : Im(z) > 0} such that
GE (E) = i[0, π ], GE (min E) = iπ , and GE (max E) = 0. Using the symmetry
of E with respect to the real axis, we may extend Re(GE (z)) to the whole complex
plane via the Schwarz reflection principle. Then, one can easily verify that this
analytic continuation satisfies (4.11). Since the image of GE is a (generalised)
polygon, z �→ GE (z) is an example of a Schwarz–Christoffel mapping [29]. See
Figure 4 for the case E = [−1,−ε] ∪ [ε, 1].

We shall briefly discuss the construction of the Schwarz–Christoffel mapping
GE for E = [−1, ε−]∪[ε+, 1].We define the pre-vertices z1 = −1, z2 = ε−, z4 =
ε+, z5 = 1 and wish to construct a conformal map GE with GE (zk) = ωk as in
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Figure 4. For simplicity, we also define z0 := −∞ and z6 := ∞ and observe
that because the image is a polygon, argG ′

E (z) must be constant on each interval
(zk−1, zk) and

argG ′
E (z+k ) − argG ′

E (z−k ) = (1 − αk)π, (4.12)

where z−k ∈ (zk−1, zk), z
+
k ∈ (zk, zk+1), and αkπ is the interior angle of the infinite

slit strip at vertex ωk (that is, α1 = α2 = α4 = α5 = 1
2 and α3 = 2). After defining

zα := |z|αeiα arg z where arg z ∈ (−π, π ], we can see that for z ∈ (zk−1, zk), we
have arg

∏5
j=k(z − z j )α j−1 = ∑5

j=k(α j − 1)π and so the jump in the argument

of z �→ ∏5
j=1(z − z j )α j−1 is (1 − αk)π at zk as in (4.12). Therefore, integrating

this expression, we obtain

GE (z) = A + B
∫ z

1

ζ − z3√
ζ + 1

√
ζ − ε−

√
ζ − ε+

√
ζ − 1

dζ. (4.13)

Since GE (1) = A, we take A = 0 (to ensure (4.11c) holds). Moreover, since the
real part of the integral is ∼ log |z| as |z| → ∞, we apply (4.11b) to conclude
B = 1. Finally, we can choose z3 such that ReGE (z) = 0 for all z ∈ E ; that is,

z3 ∈ (ε−, ε+) :
∫ ε+

ε−

ζ − z3√
ζ + 1

√
ζ − ε−

√
ε+ − ζ

√
1 − ζ

dζ = 0. (4.14)

For more details, see [37]. We use the Schwarz–Christoffel toolbox [29] in matlab
to evaluate (4.13) and plot Figure 5.

For the simple case E := [−1, 1], by the same analysis, we can disregard
z2, z3, z4 and ω2, ω3, ω4 and integrate the corresponding expression to obtain the
closed form G[−1,1](z) = log(z + √

z − 1
√
z + 1).

A similar analysis allows one to construct conformal maps from the upper
half plane to the interior of any polygon. For further details, rigorous proofs and
numerical considerations, see [31].

4.1.7. Interpolation nodes The only difficulty in obtaining (4.10) in practice
is the fact that Fekete sets are difficult to compute. An alternative, based on the
Schwarz–Christoffel mapping GE , are Fejér points. For equally spaced points
{ζ j }nj=1 on the interval i[0, π ], the nth Fejér set is defined by {G−1

E (ζ j )}nj=1. Fejér
sets are also asymptotically optimal in the sense that (4.10) is satisfied where �n is
now the node polynomial corresponding to n-point Fejér set.

Another approach is to use Leja points which are generated by the following
algorithm: for fixed z1, . . . , zn , the next interpolation node zn+1 is constructed by
maximising

∏n
j=1 |z j − z| over all z ∈ E . Sets of this form are also asymptotically

optimal [90] for any choice of z1 ∈ E . Since we have fixed the previous nodes
z1, . . . , zn , the maximisation problem for constructing zn+1 is much simpler than
that of (4.7).

Moregenerally, if the normalised countingmeasure corresponding to a sequence
of sets {z j }nj=1 ⊂ E weak-� converges to the equilibrium measure ωE , then the
corresponding node polynomials satisfy (4.10).
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(A) Metal: E = [−1, 1]. (B) Insulator: E = [−1,−ε] ∪ [ε, 1], ε = 0.30 (2 s.f.).

Fig. 5. Equi-potential curvesCrk := {z ∈ C : egE (z) = rk} for bothmetals (a) and insulators

(b)where 1
2 (rk −r−1

k ) = kπ
β for k ∈ {1, 2, 3, 4, 5} and β = 10. In the case of metals (a), the

equi-potential curves agree with Bernstein ellipses. We also plot the poles of Fβ( · ) which
determine the maximal admissible integration contours: for (a), we can take contours Cr for
all r < r1 and, for (b), the contour Cr2 can be used for all positive Fermi-temperatures (we
have chosen the gap carefully so that Cr2 self-intersects at μ). Shown in black crosses are
30 Fejér points in each case. To create these plots we consider an integral formula for the
Green’s function z �→ gE (z) [37] and use the Schwarz–Christoffel matlab toolbox [28,29]
to approximate these integrals

For the simple case where E = [−1, 1], many systems of zeros or maxima of
sequences of orthogonal polynomials are asymptotically optimal in the sense of
(4.10). In fact, since the equilibrium measure for [−1, 1] is the arcsine measure
[76]

dμ[−1,1](x) = 1

π

1√
1 − x2

dx,

any sequence of sets with this limiting distribution is asymptotically optimal. An
example of particular interest are theChebyshev points {cos jπ

n }0� j�n given by the
n+1 extreme points of the Chebyshev polynomials defined by Tn(cos θ) = cos nθ .

4.1.8. Asymptotically optimal polynomial approximations Suppose that E is
the union of finitely many compact intervals of non-zero length and O : E →
C extents to an analytic function in an open neighbourhood of E . On defining
Cγ := {z ∈ C : gE (z) = γ }, we denote by γ � the maximal constant for which
O is analytic on the interior of Cγ � . We let P�

N be the best L∞(E)-approximation
to O in the space of polynomials of degree at most N and suppose that IN is
a polynomial interpolation operator in N + 1 points satisfying (4.11). Then, the
Green’s function gE determines the asymptotic rate of approximation for not only
polynomial interpolation, but also for best approximation:

lim
N→∞ ‖O − P�

N‖1/NL∞(E) = lim
N→∞ ‖O − IN O‖1/NL∞(E) = e−γ �

. (4.15)

For a proof that the asymptotic rate of best approximation is given by theGreen’s
function see [76]. The result for polynomial interpolation uses the Hermite integral
formula and (4.10), see (4.20) and (4.22), below.
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4.2. Linear body-order approximation

In this section, we use the classical logarithmic potential theory from § 4.1.5
to prove the approximation error bounds for interpolation. However, we first show
that polynomial approximations lead to body-order approximations:

Proof of Proposition 2.2. We first simplify the notation by absorbing the effective
potential and two-centre terms into the three-centre summation:

H(u)k1k2 =
∑

m

Hk1k2m, where

Hk1k2m :=
{

1
2h(uk1k2) + δk1k2vk1 IdNb, if m ∈ {k1, k2},
t (uk1m, uk2m), if m �∈ {k1, k2}. (4.16)

Now, supposing that IX O(z) = ∑|X |−1
j=0 c j z j , we obtain

IX O�(u) = tr
|X |−1∑

j=0

c j
∑

�1,...,� j−1

H��1H�1�2 . . .H� j−1�

= tr
|X |−1∑

j=0

c j
∑

�1,...,� j−1
m1,...,m j

H��1m1H�1�2m2 . . .H� j−1�m j . (4.17)

there the first two terms in the outer summation are c0 and c1H��. Now, for
a fixed body-order (n + 1), and k1 < · · · < kn with kl �= �, we construct
VnN (u�; u�k1 , . . . , u�kn ) by collecting all terms in (4.17) with 0 � j � |X | − 1
and {�, �1, . . . , � j−1,m1, . . . ,m j } = {�, k1, . . . , kn}. In particular, the maximal
body-order in this expression is 2(|X | − 1) for three-centre models and |X | − 1 in
the two-centre case.

More explicitly, using the notation (2.26), we have that

VnN (u�; u�k1 , . . . , u�kn )

= tr
|X |−1∑

j=0

c j
∑

�1,...,� j−1,m1,...,m j
{�,�1,...,� j−1,m1,...,m j }={�,k1,...,kn }

H��1m1H�1�2m2 . . .H� j−1�m j (4.18)

= tr
∑

K⊆{k1,...,kn}
(−1)n−|K | IX O

(H∣∣
�;K

)
��

. (4.19)

Here,wehave applied an inclusion-exclusion principle to ensure thatwe are not only
summing over sites in {k1, . . . , kn} but we select at least one of each site in this set.
Indeed, if we choose �1, . . . , � j−1,m1, . . . ,m j such that {�, �1, . . . , � j−1,m1, . . . ,

m j } = {�} ∪ K0, then the expressionH��1m1H�1�2m2 · · ·H� j−1�m j appears in each
term of (4.19) with K ⊇ K0 exactly once (with a ± sign). Therefore, the number
of times H��1m1H�1�2m2 . . .H� j−1�m j appears is exactly

n−|K0|∑

l=0

(−1)n−|K0|−l
(
n − |K0|

l

)
=
{
1 if |K0| = n,

0 otherwise.
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That is, (4.19) only contains the terms in the summation (4.18). ��
Proof of Theorem 2.3. We let �N (x) := ∏

j (x − xNj ) be the node polynomial for

XN := {xNj }Nj=0. Again, we fix the configuration u and consider H := H(u).
Supposing that C is a simple closed positively oriented contour encircling

σ(H), we apply the Hermite integral formula (4.2) to obtain that
∣∣Oβ

�
(u) − IXN O

β
�
(u)

∣∣ � ‖Oβ(H) − IXN O
β(H)‖�2→�2 = sup

z∈σ(H)

∣∣Oβ(z) − IXN O
β(z)

∣∣

� sup
z∈σ(H)

∣∣∣∣∣
1

2π i

∮

C

�N (z)

�N (ξ)

Oβ(ξ)

ξ − z
dξ

∣∣∣∣∣ � C sup
z∈σ(H), ξ∈C

∣∣∣∣
�N (z)

�N (ξ)

∣∣∣∣ ,

(4.20)

where

C := len(C )

2π

maxξ∈C |Oβ(ξ)|
dist

(
C , σ (H)

) . (4.21)

At this point we apply standard results of classical logarithmic potential theory
(see, § 4.1.5 or [62]) and conclude by noting that if the interpolation points are
asymptotically distributed according to the equilibrium distribution corresponding
to E := I− ∪ I+, then after applying (4.10), we have that

lim
N→∞

∣∣∣∣
�N (z)

�N (ξ)

∣∣∣∣

1
N = egE (z)−gE (ξ). (4.22)

Here, the equilibrium distribution and the Green’s function gE (z) are concepts
introduced in § 4.1.5 and § 4.1.6.

Therefore, by choosing the contour C := {ξ ∈ C : gE (ξ) = γ } for 0 < γ <

gE (μ + iπβ−1), the asymptotic exponents in the approximation error is γ .
The maximal asymptotic convergence rate is given by gE (μ+ iπβ−1) since C

must be contained in the region of analyticity of Oβ and the first singularity of Oβ

is at μ + iπβ−1 (for Oβ = Fβ or Gβ ).
Examples of the equi-potential level sets C are given in Figure 5.
Using the Green’s function results of § 4.1.6, gE (μ + iπβ−1) = ReGE (μ +

iπβ−1)where GE is the integral (4.13). The asymptotic behaviour of this maximal
asymptotic convergence rate for the separate β → ∞ and g → 0 limits can be
found in [37,81]. Here, we consider the β−1 + g → 0 limit where the gap remains
symmetric about the chemical potential μ.

To simplify the notation we consider I− ∪ I+ = [−1, ε−] ∪ [ε+, 1] where
ε± = μ ± 1

2g. By choosing to integrate (4.13) along the contour composed of the
intervals [1, μ] and [μ,μ + iπβ−1], we obtain

GE (μ + iπβ−1) = GE (μ) +
∫ μ+iπβ−1

μ

ζ − z3√
ζ + 1

√
ζ − ε−

√
ζ − ε+

√
ζ − 1

dζ.

(4.23)

Since gE (μ) ∼ g as g → 0 [37], we only consider the remaining term in (4.23).
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For ζ ∈ μ + i[0, πβ−1], we have c−1 � |√ζ ± 1| � c, and so the integral in
(4.23) has the same asymptotic behaviour as

∫ μ+iπβ−1

μ

ζ − z3√
ζ − ε−

√
ζ − ε+

dζ = g
∫ 1

2+ iπβ−1

g

1
2

√
ζ√

ζ − 1
dζ

+(ε− − z3)
∫ 1

2+ iπβ−1

g

1
2

1√
ζ
√

ζ − 1
dζ, (4.24)

where we have used the change of variables ζ̃ = ζ−ε−
ε+−ε− .

Since the integrands are uniformly bounded along the domain of integration,
(4.24) is ∼ β−1 as β → ∞.

The constant pre-factor in (4.21) is inversely proportional to the distance
dist

(
C , σ (H)

)
between the contour C = {gE = γ } and the spectrum σ(H).

In particular, since gE is uniformly Lipschitz with constant L > 0 on the compact
region bounded by C , we have: there exists λ ∈ σ(H) and ξ ∈ C such that

dist
(
C , σ (H)

) = |ξ − λ| � 1

L
|gE (ξ) − gE (λ)| = 1

L
γ.

Therefore, choosing γ to be a constant multiple of gE (μ+iπβ−1), we conclude
that the constant pre-factor C satisfies C ∼ (g + β−1)−1 as g + β−1 → 0.

To extend the body-order expansion results to derivatives (in particular, to
forces), we write the quantities of interest using resolvent calculus, apply Lemma 2
to bound the derivatives of the resolvent, and use the Hermite integral formula
(4.20) to conclude: forC1,C2 simple closed positively oriented contours encircling
the spectrum σ

(H(u)
)
and C1, respectively, we have

∣∣∣∣
∂O�(u)

∂um
− ∂ IXN O�(u)

∂um

∣∣∣∣ = 1

2π

∣∣∣∣
∮

C1

(
O(z) − IXN O(z)

)∂
(H(u) − z

)−1
��

∂um
dz

∣∣∣∣

= 1

4π2

∣∣∣∣
∮

C1

∮

C2

�N (z)

�N (ξ)

O(ξ)

ξ − z

∂
(H(u) − z

)−1
��

∂um
dξdz

∣∣∣∣

� Ce−ηr�m sup
z∈C1,ξ∈C2

∣∣∣∣
�N (z)

�N (ξ)

∣∣∣∣. (4.25)

We conclude by choosing appropriate contours Cl = {gE = γl} for l = 1, 2 and
applying (4.22). ��

4.2.1. The role of the point spectrum To begin this section, we sketch the proof
of Proposition 2.1.

Proof of Proposition 2.1. (i) Sup-norm perturbations.We suppose that supk
[|rk −

r refk | + |vk − vrefk |] � δ for δ > 0 sufficiently small such that

∣∣h(u�k) − h(uref�k )
∣∣ = ∣∣∇h(ξ�k) · (r�k − r ref�k )

∣∣ � Cδe− 1
2 γ0r�k , and

∣∣t (u�m, ukm) − t (uref�m, urefkm)
∣∣ = ∣∣∇1t (ξ

(1)
�m , ζ

(1)
km ) · (r�m − r ref�m)
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+ ∇2t (ξ
(2)
�m , ζ

(2)
km ) · (rkm − r refkm)

∣∣

� Cδe− 1
2 γ0(r�m+rkm ),

where, ξ�k ∈ [r�k, r ref�k ], ξ
(l)
�m ∈ [r�m, r ref�m], and ζ

(l)
km ∈ [rkm, r refkm]. Therefore, if

ψ ∈ �2, we have
∥∥∥
(H(u) − H(uref)

)
ψ

∥∥∥
2

�2
� Cδ2

∑

�k

e− 1
2 γ0r�k |ψk |2 � Cδ2‖ψ‖2

�2
. (4.26)

Therefore, applying standard results from perturbation theory [56, p. 291], we
obtain

dist
(
σ
(H(u)

)
, σ

(H(uref)
))

�
∥∥∥H(u) − H(uref)

∥∥∥
�2→�2

� Cδ.

(ii) Finite rank perturbations. The finite rank perturbation result has been pre-
sented in [70] in a slightly different setting. We sketch the main idea here for
completeness.

Since the essential spectrum is stable under compact (in particular, finite rank)
perturbations [56], the set

σ
(H(u)

) \ Bδ

(
σ
(H(uref)

)) ⊆ σdisc
(H(u)

) \ Bδ

(
σess

(H(uref)
))

is both compact and discrete and therefore finite. ��
Proof of Theorem 2.4. Suppose that C is a simple closed contour encircling the
spectrum σ

(H(u)
)
and (λs, ψs) are normalised eigenpairs corresponding to the

finitely many eigenvalues outside I− ∪ I+. Therefore, we have that

Oβ
� (u) − IXN O

β
� (u) = 1

2π i

∮

C

(
Oβ(z) − IXN O

β(z)
)
tr
[(
z − H(u)

)−1]
��
dz

+
∑

s

(
Oβ(λs) − IXN O

β(λs)
)∣∣[ψs]�

∣∣2. (4.27)

The first term of (4.27) may be treated in the same way as in the proof of
Theorem 2.3. Moreover, derivatives of this term may be treated in the same way as
in (4.25). It is therefore sufficient to bound the remaining term and its derivative.

Firstly, we note that the eigenvectors corresponding to isolated eigenvalues in
the spectral gap have the following decay [17]: for C ′ a simple closed positively
oriented contour (or system of contours) encircling the {λs}, we have that

∑

s

∣∣[ψs]�
∣∣2 = 1

2π

∣∣∣∣
∮

C ′

[(H(u) − z
)−1]

��
dz

∣∣∣∣

= 1

2π

∣∣∣∣
∮

C ′

[(H(u) − z
)−1 − (H(uref) − z

)−1]
��
dz

∣∣∣∣

� Ce−γCT[|r�|−Rdef ], (4.28)

where γCT is the Combes-Thomas constant from Lemma 1 with d = dist
(
C ′,

σ (H(u))
)
. The constant pre-factor in (4.28) depends on the distance between the
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contour and the defect spectrumσ
(H(u)

)
. Similar estimates hold for the derivatives.

For full details on the derivation of (4.28), see [17, (5.18)–(5.21)].
Therefore, combining (4.28) and the Hermite integral formula, we conclude as

in the proof of Theorem 2.3. ��

4.3. Non-linear body-order approximation

In this section, we prove Theorem 2.5 by applying the recursion method to
reformulate the problem into a semi-infinite linear chain and replacing the far-field
with vacuum.

4.3.1. Recursion method In that follows, we briefly introduce the recursion
method [49,50], a reformulation of the Lanczos process [61], which generates
a tri-diagonal (Jacobi) operator T [91] whose spectral measure is D� and the corre-
sponding sequence of orthogonal polynomials [40]. This process provides the basis
for constructing approximations to the LDOS giving rise to nonlinear approxima-
tion schemes satisfying Theorem 2.5.

Recall that D� is theLDOSsatisfying (2.13).We start by defining p0 := 1,a0 :=∫
xdD�(x) and b1 p1(x) := x − a0 where b1 is the normalising constant to ensure∫
p1(x)2dD�(x) = 1. Then, supposing we have defined a0, a1, b1, . . . , an, bn and

the polynomials p0(x), . . . , pn(x), we set

bn+1 pn+1(x) := (x − an)pn(x) − bn pn−1(x), with (4.29)∫
pn+1(x)

2dD�(x) = 1, an+1 :=
∫

xpn+1(x)
2dD�(x). (4.30)

Then, {pn} is a sequence of orthogonal polynomials with respect to D� (i.e.
∫
pn pm

dD� = δnm) and we have that

TN :=
( ∫

xpn pmdD�

)

0�n,m�N
=

⎛

⎜⎜⎜⎜⎝

a0 b1

b1 a1
. . .

. . .
. . . bN
bN aN

⎞

⎟⎟⎟⎟⎠
(4.31)

(see Lemma D.1 for a proof). Moreover, we denote by T the infinite symmetric
tridiagonal matrix on N0 with diagonal (an)n∈N0 and off-diagonal (bn)n∈N.

Remark 15. It will also prove convenient for us to renormalise the orthogonal poly-
nomials by defining Pn(x) := bn pn(x) and b0 := 1; that is,

P0(x) = 1, P1(x) = x − a0, and (4.32)

Pn+1(x) = x − an
bn

Pn(x) − bn
bn−1

Pn−1(x), for n � 1 (4.33)

b2n+1 =
∫

Pn+1(x)
2dD�(x), and an+1 =

∫
x Pn+1(x)2dD�(x),

b2n+1

.

(4.34)

One advantage of this formulation is that it explicitly defines the coefficients {bn}.
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Therefore, if we have the first 2N + 1 moments H��, . . . , (H2N+1)��, it is
possible to evaluate Q2N+1(H)�� (that is,

∫
Q2N+1dD�) for all polynomials Q2N+1

of degree at most 2N +1, and thus compute TN . In particular, for a fixed observable
of interest O , we may write

�2N+1
(H��, . . . , [H2N+1]��

) := O(TN )00. (4.35)

Remark 16. In Appendix Ewe introducemore complex bond order potential (BOP)
schemes based on the recursionmethod and show that they also satisfy Theorem2.5.

4.3.2. Error estimates Equation (4.35) states that the nonlinear approximation
scheme given by�2N+1 simply approximates the LDOS with the spectral measure
of TN corresponding to e0 := (1, 0, . . . , 0)T. We now show that [(TN )n]00 =
[T n]00 = [Hn]�� for all n � 2N + 1 and thus we may apply (2.14) to conclude.

By the orthogonality, we have [T 0]i j = ∫
pi (x)x0 p j (x)dD�(x) = δi j . There-

fore, assuming [T n]i j = ∫
pi (x)xn p j (x)dD�(x), we can conclude that

[T n+1]i j =
∑

k

[T n]ikTk j

=
∫

pi (x)x
n[b j p j−1(x) + a j p j (x) + b j+1 p j+1(x)

]
dD�(x) (4.36)

=
∫

pi (x)x
n+1 p j (x)dD�(x). (4.37)

Here, we have applied (4.29) directly. In particular, if i = j = 0, we obtain
[T n]00 = [Hn]��.

4.3.3. Analyticity To conclude the proof of Theorem 2.5, we show that�2N+1 as
in (4.35) extents to an analytic function on some open setU ⊂ C

2N+1. Throughout
this section, we use the rescaled orthogonal polynomials {Pn} from Remark 15.

For a polynomial P(x) = ∑m
j=0 c j x

j , we use the notation LP(z1, . . . , zm) :=
c0 + ∑m

j=1 c j z j for the linear function satisfying P(x) = LP(x, x2, . . . , xm). To
extend the recurrence coefficients from (4.32), we start by defining

b0 = 1, a0(z1) := z1, P1(x; z1) := x − a0(z1) = x − z1,

b21(z1, z2) := L(x �→ P1(x; z1)2
)
(z1, z2) = z2 − z21,

a1(z1, z2, z3) := L(x �→ x P1(x; z1)2
)
(z1, z2, z3)

b21(z1, z2)
= z3 − 2z1z2 + z31

z2 − z21
.

(4.38)

To simplify the notation, we write z1:m for the m-tuple (z1, . . . , zm). Given
a0(z1), . . . , an(z1:2n+1) and b1(z1:2), . . . , bn(z1:2n), we define Pn+1(x; z1:2n+1) to
be the polynomial in x satisfying the same recursion as (4.32) but as a function of
z1:2n+1:

Pn+1(x; z1:2n+1) = x − an(z1:2n+1)

bn(z1:2n)
Pn(x; z1:2n−1)
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− bn(z1:2n)
bn−1(z1:2n−2)

Pn−1(x; z1:2n−3).

With this notation, we define

b2n+1(z1:2n+2) := L(x �→ Pn+1(x; z1:2n+1)
2)(z1:2n+2), (4.39)

an+1(z1:2n+3) := L(x �→ x Pn+1(x; z1:2n+1)
2
)
(z1:2n+3)

b2n+1(z1:2n+2)
. (4.40)

Since Pn+1(x) = Pn+1(x;H��, . . . , [H2n+1]��), we have extended the definition
of the recursion coefficients (4.34) to functions of multiple complex variables.

We now show that an(z1:2n+1) and b2n(z1:2n) are rational functions. As a prelimi-
nary step, we show that both P2

n+1 and
Pn+1Pn

bn
are polynomials in x with coefficients

given by rational functions of an, b2n and all previous recursion coefficients. This
statement is clearly true for n = 0: P2

1 = (x − a0)2 and
P1P0
b0

= x − a0. Therefore,
by induction and noting that

P2
n+1 =

(
x − an
bn

Pn

)2

− 2(x − an)
Pn Pn−1

bn−1
+ b2n

b2n−1

P2
n−1 (4.41)

Pn+1Pn
bn

= x − an
b2n

P2
n − Pn Pn−1

bn−1
, (4.42)

we can conclude. Therefore, by (4.38) and (4.39) and (4.40), we can apply another
induction argument to conclude that an+1(z1:2n+3) and b2n+1(z1:2(n+1)) are rational
functions.

We fix N and define the following complex valued tri-diagonal matrix

TN (z) :=

⎛

⎜⎜⎜⎜⎜⎜⎝

a0(z1) b21(z1:2)
1 a1(z1:3) b22(z1:4)

1
. . .

. . .

. . .
. . . b2N (z1:2N )

1 aN (z1:2N+1)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (4.43)

If z j = [H j ]�� for each j = 1, . . . , N , (4.43) is similar to TN from (4.31).
Now, on defining U := {z ∈ C

2N+1 : b2n(z1:2n) �= 0 ∀n = 1, . . . , N }, the
mapping U → C

(N+1)×(N+1) given by z �→ TN (z) is analytic. Therefore, for
appropriately chosen contours Cz encircling σ

(
TN (z)

)
, we have that

�2N+1(z) := O
(
TN (z)

)
00 = − 1

2π i

∮

Cz

O(ω)
[(
TN (z) − ω

)−1
]

00
dω. (4.44)

In particular, �2N+1 is an analytic function on
{
z ∈ U : O analytic in an open neighbourhood of σ

(
TN (z)

)}
.

Remark 17. Since C2N+1 \U is the zero set for some (non-zero) polynomial P in
2N + 1 variables, it has (2N + 1)-dimensional Lebesgue measure zero [45].
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Remark 18. In Appendix D we show that the eigenvalues of TN (z) are distinct for
z in some open neighbourhood, U0 ⊂ U , of R2N+1, which leads to the following
alternative proof. On U0, the eigenvalues and corresponding left and right eigen-
vectors can be chosen to be analytic: there exist analytic functions ε j , ψ j , φ

�
j for

j = 0, . . . , N such that

TN (z)ψ j (z) = ε j (z)ψ j (z), φ�
j (z)TN (z) = ε j (z)φ�

j (z), and φ�
i (z)ψ j (z) = δi j .

(More precisely, we apply [44, Theorem 2] to obtain analytic functions ψ j , φ
�
j of

each variable z0, . . . , z2N+1 separately and then apply Hartog’s theorem [60] to
conclude that ψ j , φ

�
j are analytic as functions on U ⊂ C

2N+1.) Therefore, the
nonlinear method discussed in this section can also be written in the form

�2N+1 =
N∑

j=0

[ψ j ]0[φ�
j ]0 · (O ◦ ε j

)
, (4.45)

which is an analytic function on {z ∈ U0 : O analytic at ε j (z) for each j} (as it is a
finite combination of analytic functions only involving products, compositions and
sums).

4.4. Self-consistent tight binding models

We start with the following preliminary lemma:

Lemma 3. Suppose that T : �2(�) → �2(�) is an invertible bounded linear oper-
ator with matrix entries T�k satisfying

∣∣T�k
∣∣ � cT e−γT r�k for some cT , γT > 0.

Then, there exists an invertible bounded linear operator T : �∞(�) → �∞(�)

extending T : �2(�) → �2(�) (that is, T
∣∣
�2(�)

= T ).

Proof. First, we denote the inverse of T and its matrix entries by T−1 : �2(�) →
�2(�) and T−1

�k , respectively. Then, applying the Combes-Thomas estimate to T
yields the off-diagonal decay estimate |T−1

�k | � Ce−γCTr�k for some C, γCT > 0
[93].

Due to the off-diagonal decay properties of the matrix entries, the operators

T , T
−1 : �∞(�) → �∞(�) given by

[Tφ]� :=
∑

k∈�

T�kφk and [T−1
φ]� :=

∑

k∈�

T−1
�k φk

are well defined bounded linear operators with norms sup�∑
k∈� |T�k | and sup�

∑
k∈� |T−1

�k |, respectively. To conclude, we note that

[T T−1
φ]� =

∑

k

∑

m

T�kT
−1
km φm =

∑

m

[T T−1]�mφm = φ� (4.46)

and so T
−1

is the inverse of T . Here, we have exchanged the summations over
k and m by applying the dominated convergence theorem:

∣∣∑
k T�kT

−1
km φm

∣∣ �
Ce− 1

2 min{γT ,γCT}r�m‖φ‖�∞ is summable over m ∈ �. ��
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Throughout the following proofs, we denote by Br (ρ) the open ball of radius
r about ρ with respect to the �∞-norm. Moreover, we briefly note that the stability
operator can be written as the product L (ρ) := F (ρ)∇w(ρ), where [93]

F (ρ)�k := 1

2π i

∮

C
Fβ(z)

[(H(u(ρ)) − z
)−1
�k

]2
dz, (4.47)

where C is a simple closed contour encircling the spectrum σ
(H(u(ρ))

)
.

Proof of Theorem 2.6. Since ρ �→ Fβ(u(ρ)) is C2, and
(
I − L (ρ�)

)−1 is a

bounded linear operator, we necessarily have that
(
I − L (ρ)

)−1 is a bounded
linear operator for all ρ ∈ Br (ρ�) for some r > 0.

By applying Theorem 2.3, together with the assumption (EP), we obtain

∣∣[L (ρ) − LN (ρ)
]
�k

∣∣ �
∑

m

∣∣∣∣

[
∂Fβ

� (u)

∂vm
− ∂ IXN F

β
� (u)

∂vm

]
∂w(ρ)m

∂ρk

∣∣∣∣ (4.48)

� C
[∑

m

e−η r�m e−γv rmk
]
e− 1

2 γN N (4.49)

� Ce− 1
2 min{η,γv}r�k e− 1

2 γN N (4.50)

for all ρ ∈ Br (ρ�). As a direct consequence, we have ‖L (ρ) − LN (ρ)‖�2→�2 �
Ce− 1

2 γN N andwemay choose N sufficiently large such that ‖L (ρ)−LN (ρ)‖�2→�2

< ‖(I −L (ρ))−1‖−1
�2→�2

. In particular, for such N , the operator I −LN (ρ) : �2 →
�2 is invertible with inverse bounded above in operator norm independently of N .

We now show that I − LN (ρ) satisfies the assumptions of Lemma 3. Using
(4.47) and (EP), together with the Combes-Thomas estimate (Lemma 1), we con-
clude that
∣∣LN (ρ)�k

∣∣ � C sup
z∈C

|IXN F
β(z)|

∑

m∈�

e−2γCTr�m e−γvrmk � Ce− 1
2 min{2γCT,γv}r�k

for all ρ ∈ Br (ρ�). In particular, I −LN (ρ) extends to a invertible bounded linear
operator �∞ → �∞ and thus its inverse

(
I − LN (ρ)

)−1 : �∞ → �∞ is bounded.
Now, the mapping ρ �→ ρ − IXN F

β
(
u(ρ)

)
between �∞ → �∞ is contin-

uously differentiable on Br (ρ�) and the derivative at ρ� is invertible (i.e.
(
I −

LN (ρ�)
)−1 : �∞ → �∞ is a well defined bounded linear operator). Since the map

ρ �→ IXN F
β
(
u(ρ)

)
is C2, its derivative LN is locally Lipschitz about ρ� and so

there exists L > 0 such that
∥∥(I − LN (ρ�)

)−1(
LN (ρ1) − LN (ρ2)

)∥∥
�∞→�∞

� L‖ρ1 − ρ2‖�∞ for ρ1, ρ2 ∈ Br (ρ
�).

Moreover, by Theorem 2.3, we have that
∥∥(I − LN (ρ�)

)−1(
ρ� − IXN F

β(u(ρ�))
)∥∥

�∞

� C
∥∥Fβ(u(ρ�)) − IXN F

β(u(ρ�))
∥∥

�∞ =: bN
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where bN � e−γN N . In particular, we may choose N sufficiently large such that
2bN L < 1 and t�N := 1

L (1 − √
1 − 2bN L) < r .

Thus, the Newton iteration with initial point ρ0 := ρ�, defined by

ρi+1 = ρi − (
I − LN (ρi )

)−1(
ρi − IXN F

β(u(ρi ))
)
,

converges to a unique fixed point ρN = IXN F
β(u(ρN )) in Bt�N

(ρ�) [102,104]. That

is, ‖ρN − ρ�‖�∞ � t�N � 2bN . Here, we have used the fact that 1 − √
1 − x � x

for all 0 � x � 1.
Since ρN ∈ Br (ρ�), we have I − LN (ρN ) : �2 → �2 is invertible and thus

Lemma 2.8 also holds. ��
Proof of Proposition 2.9. We proceed in the same way as in the proof of Theo-
rem 2.6. In particular, since ρN is stable, if ‖ρ0 − ρN‖�∞ is sufficiently small,
(I − LN (ρ0))−1 is a bounded linear operator on �2. Moreover, by the exact same
argument as in the proof of Theorem 2.6, I − LN (ρ0) : �∞ → �∞ defines an in-
vertible bounded linear operator. Also, I −LN (ρ) is Lipschitz in a neighbourhood
about ρ0 and
∥∥(I − LN (ρ0)

)−1(
ρ0 − IXN F

β(u(ρ0))
)∥∥

�∞ � C
∥∥ρ0 − ρN − (

IXN F
β(u(ρ0))

− IXN F
β(u(ρN ))

)∥∥
�∞

� C‖ρ0 − ρN‖�∞ .

Here, we have used that

∣∣IXN F
β
� (u(ρ0)) − IXN F

β
� (u(ρN ))

∣∣

= 1

2π

∣∣∣
∮

C
IXN F

β(z)
[
Rz(ρ

0) − Rz(ρN )
]
��

∣∣∣

� C
∑

k∈�

e−2γCTr�k |v(ρ0)k − v(ρN )k |

� C
∑

k∈�

e−2γCTr�k
∣∣∣
∫ 1

0

∑

m∈�

∂v(tρ0 + (1 − t)ρN )k

∂ρm

[
ρ0 − ρN

]
mdt

∣∣∣

� C
∑

m∈�

e− 1
2 min{2γCT,γv}r�m ∣∣[ρ0 − ρN

]
m

∣∣

� C‖ρ0 − ρN‖�∞ . (4.51)

Therefore, as long as ‖ρ0 − ρN‖�∞ is sufficiently small, we may apply the
Newton iteration starting from ρ0 to conclude. ��
Proof of Corollary 2.7. As a direct consequence of (4.51), we have that

∣∣Osc
� (u) − IXN O�

(
u(ρN )

)∣∣ �
∣∣O�

(
u(ρ�)

) − IXN O�

(
u(ρ�)

)∣∣

+ ∣∣IXN O�

(
u(ρ�)

) − IXN O�

(
u(ρN )

)∣∣

� C
[
e−γN N + ‖ρN − ρ�‖�∞

]
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� Ce−γN N .

Here, we have applied the standard convergence result (Theorem 2.3) with fixed
effective potential. ��
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Appendix A. Notation

Here we summarise the key notation:

• � : finite or countable index set,
• u� = (r�, v�, Z�) : state of atom � where r� ∈ R

d denotes the atomic position,
v� the effective potential, and Z� the atomic species,

• u = {u�}�∈� : configuration,
• r�k := rk − r� and r�k := |r�k | : relative atomic positions,
• δi j : Kronecker delta (δi j = 0 for i �= j and δi i = 1),
• Idn : n × n identity matrix,
• | · | : absolute value on R

d or C,
• | · | : Frobenius matrix norm on R

n×n ,
• ∇h = (∇hab)1�a,b�n : gradient of h : Rd → R

n×n ,
• MT : transpose of the matrix M ,
• Tr : trace of an operator,
• f ∼ g as x → x0 ∈ R∪{±∞} orC∪{∞} if there exists an open neighbourhood

N of x0 and positive constants c1, c2 > 0 such that c1g(x) � f (x) � c2g(x)
for all x ∈ N ,

• C : generic positive constant that may change from one line to the next,
• f � g : f � Cg for some generic positive constant,
• N0 = {0, 1, 2, . . . } : Natural numbers including zero,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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• δ( · ) : Dirac delta, distribution satisfying ∫ f (x)dδ(x) = f (0),
• ‖ f ‖L∞(X) := supx∈X | f (x)| : sup-norm of f on X ,
• dist(z, A) := infa∈A |z − a| : distance between z ∈ C and the set A ⊂ C,
• a + bS := {a + bs : s ∈ S},
• [ψ]� : the �th entry of the vector ψ ,
• ‖ψ‖�2 := (∑

k |[ψ]k |2
)1/2

: �2-norm of ψ ,
• tr M := ∑

� M�� : trace of matrix M ,
• ‖M‖max := max�,k |M�k | : max-norm of the matrix M ,
• σ(T ) : the spectrum of the operator T ,
• σdisc(T ) ⊂ σ(T ) : isolated eigenvalues of finite multiplicity,
• σess(T ) := σ(T ) \ σdisc(T ) : essential spectrum,
• ‖T ‖X→Y := supx∈X,‖x‖X=1 ‖T x‖Y : operator norm of T : X → Y ,
• ∇v : Jacobian of v : R� → R

�,
• [a, b] := {(1 − t)a + tb : t ∈ [0, 1]} : closed interval between a, b ∈ R

d or
a, b ∈ C,

• ∫ b
a := ∫

[a,b] : integral over the interval [a, b] for a, b ∈ C,
• len(C ) : length of the simple closed contour C ,
• supp ν : support of the measure ν, set of all x for which every open neighbour-
hood of x has non-zero measure,

• conv A := {ta + (1 − t)b : a, b ∈ A, t ∈ [0, 1]} : convex hull of A.

Appendix B. Locality: Truncation of the Atomic Environment

We have seen that analytic quantities of interest may be approximated by body-
order approximations. However, each polynomial depends on the whole atomic
configuration u. In this section, we consider the truncation of the approximation
schemes to a neighbourhood of the central site � and prove the exponential conver-
gence of the corresponding sparse representation.

B.1. Banded Approximation

One intuitive approach is to restrict the interaction range globally and consider
the following banded approximation:

H̃rc(u)km :=

⎧
⎪⎨

⎪⎩

h(ukm) + ∑
m′ �∈{k,m} :

rkm′ ,rmm′ �rc

t (ukm′ , umm′) + δkmvkIdNb if rkm � rc

0 otherwise.
(B.1)

Therefore, approximating O�(u)with a function depending on the first N moments
[H̃rc]�� (e.g. applying Theorem 2.4 or 2.5 to H̃rc ) results in an approximation
scheme depending only on finitely many atomic sites in a neighbourhood of �. This
can be seen from the fact that

[(H̃rc)n]�� =
∑

�1,...,�n−1
r��1 ,r�1�2 ,...,r�n−1��rc

H��1H�1�2 . . .H�n−1�. (B.2)
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Moreover, we obtain appropriate error estimates by combining Theorem 2.4 or 2.5
with the following estimate:

Proposition B.1. Suppose u satisfies Definition 1. Fix 0 < β � ∞ and suppose
that, if β = ∞, then g,gdef > 0. Then, we have

∣∣∣O�(u) − tr O
(H̃rc(u)

)
��

∣∣∣ � e− 1
2 γ0rc .

Suppose γN (rc) and γ def
N (rc) are the rates of approximation from Theorems 2.4 and

2.5 when applied to H̃rc . Then γN (rc) → γN and γ def
N (rc) → γ def

N as rc → ∞,
with an exponential rate.

Proof. We first note that

[H(u) − H̃rc(u)
]
km =

⎧
⎨

⎩
H(u)km if rkm > rc∑

m′ :
rkm′ >rc or rmm′ >rc

t (ukm′ , umm′) if rkm � rc.
(B.3)

Therefore, applying (TB), we obtain

∣∣[H(u) − H̃rc(u)]km
∣∣ � e− 1

2 γ0rc
∑

m′
e− 1

2 γ0(rkm′+rmm′ ) � e− 1
2 γ0rce− 1

4 γ0 rkm . (B.4)

To conclude we choose a suitable contour C and apply the Combes-Thomas
estimate (Lemma 1) together with (B.4):

∣∣∣O�(u) − tr O
(H̃rc(u)

)
��

∣∣∣ �
∣∣∣∣
tr

2π

∮

C
O(z)

[
(H(u) − z)−1(H(u) (B.5)

− H̃rc(u)
)
(H̃rc(u) − z)−1

]

��
dz

∣∣∣∣ (B.6)

� max
z∈C |O(z)|e− 1

2 γ0rc
∑

km

e−γCT(r�k+rm�)e− 1
4 γ0rkm � e− 1

2 γ0rc

(B.7)

As a direct consequence of (B.4), we have also have ‖H(u)− H̃rc(u)‖�2→�2 �
e− 1

2 γ0rc and so dist
(
σ(H), σ (H̃rc)

)
� e− 1

2 γ0rc [56]. This means that for sufficiently
large rc, we obtain the same rates of approximation when applying Theorems 2.4
and 2.5 to H̃rc . ��

B.2. Truncation

One downside of the banded approximation is that the truncation radius depends
on the maximal polynomial degree (e.g. see (B.2)). In this section, we consider
truncation schemes that only depend on finitely many atomic sites independent of
the polynomial degree:

H̃rc := H∣∣
�;�∩Brc (�)

(B.8)
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where the restriction of the Hamiltonian has been introduced in (2.26).
On defining the quantities

IXN Õ�(u) := tr
[
IXN O

(H̃rc
)]

��
, (B.9)

where the operators IXN are given by Theorem 2.3, we obtain a sparse represen-
tation of the N -body approximation depending only on finitely many atomic sites,
independently of the maximal body-order N .

Proposition B.2. Suppose u satisfies Definition 1. Fix 0 < β � ∞ and suppose
that, if β = ∞, then g,gdef > 0. Then,

∣∣IXN O
β
� (u) − IXN Õ

β
� (u)

∣∣ � e− 1
4 min{γCT,γ0}rc

where Oβ = Fβ or Gβ and γCT is the constant from Lemma 1 applied toH(u).

Proof. Applying the Hermite integral formula (4.1) directly, we conclude that
IXN O

β(z) is bounded uniformly in N along a suitably chosen contourC := {gE =
γ } (examples of such contours are given in Figure 5). It is important to note that
the contour C must be chosen to encircle both σ(H) and σ(H̃rc).

In the following, we let γCT be the Combes-Thomas exponent from Lemma 1
corresponding toH.

Similarly to (B.7), we obtain
∣∣∣IXN O

β
� (u) − IXN Õ

β
� (u)

∣∣∣ � max
z∈C

|IXN O(z)|
∑

km

e−γCTr�k
∣∣[H(u) − H̃rc(u)

]
km

∣∣

�
∑

k,m :
r�k�rc or r�m�rc

e−γCTr�k e− 1
2 γ0rkm

+
∑

k,m :
r�k ,r�m<rc

e−γCTr�k
∑

m′ :
r
�m′ �rc

e−γ0(rkm′+rmm′ )

� e− 1
2 min{γCT, 12 γ0}rc . (B.10)

This concludes the proof. ��
The fact that the exponents of Proposition B.2 are independent of the defect

states within the band gap is in the same spirit to the improved locality estimates
of [17].

Remark 19. (Divide-and-conquer Methods) This truncation scheme is closely re-
lated to the divide-and-conquer method for solving the electronic structure prob-
lem [103]. In this context the system is split into many subsystems that are only
related through a global choice of Fermi level. In our notation, this method consists
of constructing NDAC smaller Hamiltonians H̃rc,� j centred on the atoms � j (for
j = 1, . . . , NDAC) and approximating the quantities O�(u) for � in a small neigh-
bourhood of � j by calculating tr O

(H̃rc,� j
)
��
. That is, the eigenvalue problem for

the whole system is approximated by solving NDAC smaller eigenvalue problems
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in parallel. In particular, this method leads to linear scaling algorithms [42]. Theo-
rem B.2 then ensures that the error in this approximation decays exponentially with
the distance between � and the exterior of the subsystem centred on � j .

A similar error analysis in the context of divide-and-conquer methods in Kohn-
Sham density functional theory can be found in [18].

Remark 20. (General truncation operators) It should be clear from the proof of
Proposition B.2 that more general truncation operators may be used. Indeed, Propo-
sition B.2 is satisfied for all truncation operators H̃rc = H̃rc(u) satisfying the
following conditions:

(T1) For every polynomial p, the quantity p
(H̃rc

)
��

depends on at most finitely
many atomic sites depending on rc but not p,

(T2) For all k,m ∈ �, we have [H̃rc]km → Hkm as rc → ∞,
(T3) There exists c0 > 0 such that for all γ, rc > 0,

∑

km

e−γ r�k
∣∣[H − H̃rc

]
km

∣∣ � Ce−c0 min{γ0,γ } rc

for some C > 0 depending on γ but not on rc.

Due to the exponential weighting of the summation, (T3) states that H̃rc captures
the behaviour of the Hamiltonian in a small neighbourhood of the site �. Moreover,
when making the approximation IXN O

(H)
��

≈ IXN O
(H̃rc

)
��
, the number of

atomic sites involved is finite by (T1).

Remark 21. (Non-linear schemes) One may be tempted to approximate the Hamil-
tonian with the truncation, H̃rc , and then apply the nonlinear scheme of Theo-
rem 2.5. In doing so, we obtain the following error estimates:

∣∣∣O�(u) − �N
([H̃rc]��, . . . , [(H̃rc)N ]��

)∣∣∣ (B.11)

�
∣∣∣O(H)�� − O

(H̃rc
)
��

∣∣∣ +
∣∣∣O

(H̃rc
)
��

− �N
([H̃rc]��, . . . , [(H̃rc)N ]��

)∣∣∣
(B.12)

� e− 1
4 min{γ0,γCT}rc + e−γ̃N (rc)N . (B.13)

A problem with this analysis is that the constant γ̃N (rc) in (B.13) arises by
applying Theorem 2.5 to H̃rc rather than the original system H. In particular, this
means that γ̃N (rc) depends on the spectral properties of H̃rc rather than H. Since
spectral pollution is known to occur when applying naive truncation schemes [64],
the choice of H̃rc is important for the analysis. In particular, it is not clear that
γ̃N (rc) → γN in general. This is in contrast the the result of Proposition B.1.

Appendix C. Convergence of Derivatives in the Nonlinear Approximation
Scheme

Asmentioned inRemark10, the results of this sectiondependon the “regularity”
properties of D�:
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Definition 2. (Regular nth-root Asymptotic Behaviour) For a unit measure ν with
compact support E := supp ν ⊂ R, we say ν is regular and write ν ∈ Reg if the
corresponding sequence of orthonormal polynomials {pn( · ; ν)} satisfy

lim
n→∞ |pn(z; ν)| 1n = egE (z)

locally uniformly on C \ conv(E).

Remark 22. The regularity condition says that the nth-root asymptotic behaviour of
|pn(z; ν)| is minimal: in general, we have [85, Theorem 1.1.4]

egE (z) � lim inf
n→∞ |pn(z; ν)| 1n � lim sup

n→∞
|pn(z; ν)| 1n � egν (z)

where gν � gE is the minimal carrier Green’s function of ν [85].

Under the regularity condition of Definition 2, we obtain results analogous to
(2.21):

Theorem C.1. Suppose that u satisfies Definition 1 and � ∈ � is such that D� ∈
Reg. Then, with the notation of Theorem 2.5, we in addition have

∣∣∣∣
∂

∂um

(
Oβ

� (u) − �N
(H��, [H2]��, . . . , [HN ]��

))∣∣∣∣ � e− 1
2 γN N e−η r�m .

More generally, if the regularity assumption is not satisfied, it may still be the
case that Theorem C.1 holds but with reduced locality exponent η. To formulate
this result, we require the notion of minimal carrier capacity:

Definition 3. (Minimal carrier capacity) For arbitrary Borel sets C , the capacity of
C is defined as

cap(C) := sup{cap(K ) : K ⊂ C, compact},
where cap(K ) is defined as in § 4.1.5.

For a unit measure ν with compact support E := supp ν ⊂ R, the set of carriers
of ν and the minimal carrier capacity are defined as

�(ν) := {C ⊂ C : C Borel and ν(C \ C) = 0}, and (C.1)

cν := inf{cap(C) : C ∈ �(ν),C bounded} � cap(E), (C.2)

respectively.

Under these definitions, we have the following [85, p. 8–10]:

Remark 23. For a unit measure ν with compact support E := supp ν ⊂ R, we have
(i) The set of minimal carriers �0(ν) := {C ∈ �(ν) : cap(C) = cν,C ⊂ E} is

nonempty,
(ii) If cν > 0, then there exists a minimial carrier equilibrium distribution ων ,

a (uniquely defined) unit measure with suppων ⊂ E satisfying

gν(z) = −
∫

log
1

|z − t |dων(t) − log cν,



Body-Ordered Approximations of Atomic Properties 45

(iii) gν ≡ gE if and only if cν = cap(E),
(iv) In particular, if cν = cap(E), then ν ∈ Reg (although the converse is false

[85, Example 1.5.4]),
(v) Suppose cν > 0. Then, on defining νn to be the discrete unit measure giving

equal weight to each of the zeros of pn( · ; ν), the condition that

νn ⇀� ωE ,

where ωE is the equilibrium distribution for E , is equivalent to ν ∈ Reg [85,
Thm. 3.1.4]. In particular, this justifies (4.10).

We therefore arrive at the corresponding result for � ∈ � for which the corre-
sponding LDOS has positive minimal carrier capacity:

Proposition C.2. Suppose that u satisfiesDefinition1and � ∈ � such that cD�
> 0.

Then, with the notation of Theorem 2.5, we in addition have
∣∣∣∣

∂

∂um

(
Oβ

� (u) − �N
(H��, [H2]��, . . . , [HN ]��

))∣∣∣∣ � e− 1
2 γN N e−η� r�m

where η� > 0,

η� → η as cD�
→ cap(supp D�),

and η > 0 is the constant from Theorem C.1.

The proofs of Theorem C.1 and Proposition C.2 follow from the following es-
timates on the derivatives of the recursion coefficients {an, bn}, and the locality of
the tridiagonal operators TN , together with the asymptotic upper bounds (i.e. Def-
inition 2 or Remark 22).

Lemma C.3. Suppose u satisfies Definition 1. Then, for a simple closed positively
oriented contour C ′ encircling the spectrum σ

(H(u)
)
, there exists η = η(C ′) > 0

such that
∣∣∣∣
∂bn
∂um

∣∣∣∣ � C‖pn‖2L∞(C ′)e
−η r�m and

∣∣∣∣
∂an
∂um

∣∣∣∣ � C
n∑

l=0

‖pl‖2L∞(C ′)e
−η r�m

(C.3)

where η ∼ d as d → 0 where d := dist
(
C ′, σ

(H(uref)
))
.

In the following, we denote by T∞ the infinite symmetric matrix on N0 with
diagonal (an)n∈N0 and off-diagonal (bn)n∈N.

Lemma C.4. Fix N ∈ N∪ {∞}. Suppose that z ∈ C with dN := dist
(
z, σ (TN )

)
>

0. Then, for each i, j ∈ N0, we have
∣∣∣(TN − z)−1

i j

∣∣∣ � Ce−γ|i− j |,N |i− j |.

(i) For each r ∈ N, we have γr,N ∼ dN as dN → 0.
(ii) We have limr→∞ γr,∞ = limN→∞ γN ,N = gσ(T∞)(z) where gσ(T∞) is the

Green’s function for the set σ(T∞) as defined in (4.10).
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Remark 24. The fact that gσ(T∞) does not depend on the discrete eigenvalues of T∞
means that asymptotically the locality estimates do not depend on defect states in
the band gap arising due to perturbations satisfying Proposition 2.1, for example.
Indeed, this has been shown more generally for operators with off-diagonal decay
[17]. We show an alternative proof using logarithmic potential theory.

We will assume Lemmas C.4 and C.3 for now and return to their proofs below.
We first add on a constant multiple of the identity, cI , to the operators {TN } so

that the spectra are contained in an interval bounded away from {0}. Moreover, we
translate the integrand by the same constant: Õ(z) := O(z − c). Then, we extend
TN to an operator on �2(N0) by defining [TNψ]i = ∑N

j=0[TN ]i jψ j for 0 � i � N
and [TNψ]i = 0 otherwise.We therefore choose a simple closed contour (or system
of contours) C encircling

⋃
N σ(TN ) so that

∂
[
O�(u) − O(TN )00

]

∂um

= 1

2π i

∮

C
Õ(z)

∂

∂um

[
(T∞ − z)−1

0,N+1bN+1(TN − z)−1
N0

]
dz

= 1

2π i

∮

C
Õ(z)

[[
(T∞ − z)−1 ∂T∞

∂um
(T∞ − z)−1]

0,N+1bN+1(TN − z)−1
N0

+ (T∞ − z)−1
0,N+1

∂bN+1

∂um
(TN − z)−1

N0

+ (T∞ − z)−1
0,N+1bN+1

[
(TN − z)−1 ∂TN

∂um
(TN − z)−1]

N0

]
dz. (C.4)

Therefore, applying Lemma C.3, a simple calculation reveals that

∣∣∣∣
∂
[
O�(u) − O(TN )00

]

∂um

∣∣∣∣

� C
∞∑

n=0

[∣∣∣
∂an
∂um

∣∣∣ +
∣∣∣
∂bn
∂um

∣∣∣
]
e−min{γn,N ,γn,∞}ne−min{γN ,N ,γN+1,∞}N

� C

[ ∞∑

n=0

n∑

l=0

‖pl‖2L∞(C ′)e
−min{γn,N ,γn,∞}n

]
e−min{γN ,N ,γN+1,∞}Ne−η r�m ,

(C.5)

where γr,N = γr,N (C ) is the constant fromLemmaC.4.We thereforemay conclude
by choosing C ′ := {gE = γ } if D� ∈ Reg and C ′ := {gD�

= γ } otherwise for
some constant γ > 0 sufficiently small such that the summation in the square
brackets converges.

Proof of Lemma C.3. The proof follows from the following identities:

∂(b2n)

∂um
=
∮

C
b2n pn(z)

2
[
(H − z)−1 ∂H(u)

∂um
(H − z)−1

]

��

dz

2π i
and (C.6)
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∂an
∂um

=
∮

C

(
(z − an)pn(z)

2 +
n−1∑

k=0

(−1)n−k(2z − 3ak)pk(z)
2
)

[
(H − z)−1 ∂H(u)

∂um
(H − z)−1

]

��

dz

2π i
. (C.7)

To do this, it will be convenient to renormalise the orthogonal polynomials
as in Remark 15 (that is, we consider Pn(x) := bn pn(x)). Moreover, we define
b−1 := 1. Using the shorthand ∂ := ∂

∂um
, we therefore obtain: ∂b−1 = ∂b0 = 0,

∂P−1(x) = ∂P0(x) = 0, and

∂Pn+1(x) = x − an
bn

∂Pn(x) − bn
bn−1

∂Pn−1(x) − ∂
(an
bn

)
Pn(x) − ∂

( bn
bn−1

)
Pn−1(x)

(C.8)

for all n � 0.
By noting ∂P1(x) = −∂a0 and applying (C.8), we can see that ∂Pn is a poly-

nomial of degree n − 1 for all n � 0. Therefore, since Pn is orthogonal to all
polynomials of degree n − 1, we have

∂(b2n) = 2
∫

Pn(x)∂Pn(x)dD� +
∮

C
Pn(z)

2
[
(H − z)−1 ∂H

∂um
(H − z)−1

]

��

dz

2π i
(C.9)

=
∮

C
Pn(z)

2
[
(H − z)−1 ∂H

∂um
(H − z)−1

]

��

dz

2π i
(C.10)

which concludes the proof of (C.7).
To prove a similar formula for the derivatives of an , we first state a useful

identity which will be proved after the conclusion of the proof of (C.7):

x∂Pn(x) =
n∑

k=0

cnk Pk(x), where cnn =
n−1∑

k=0

(
ak

∂bk
bk

− ∂ak
)
. (C.11)

Therefore, we have that

∂an = 1

b2n

( ∮

C
zPn(z)

2
[
(H − z)−1 ∂H

∂um
(H − z)−1

]

��

dz

2π i

+ 2
∫

x Pn(x)∂Pn(x)dD�(x)
)

− an
∂(b2n)

b2n

= 1

b2n

∮

C
(z − an)Pn(z)

2
[
(H − z)−1 ∂H

∂um
(H − z)−1

]

��

dz

2π i

+
n−1∑

k=0

(
ak

∂(b2k )

b2k
− 2∂ak

)
. (C.12)

Applying (C.11) for k � n − 1, we can see that ∂an can be written as

∂an =
∮

C

(
(z − an)pn(z)

2
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+
n−1∑

k=0

(d1,k z + d0,k)pk(z)
2
)[

(H − z)−1 ∂H
∂um

(H − z)−1
]

��

dz

2π i
.

for some coefficients d1,k, d0,k . Using (C.11) and assuming the result for k � n−1,
we have

d1,k z + d0,k = ak − 2(z − ak) − 2
n−1∑

l=k+1

(−1)l−k(2z − 3ak) (C.13)

= −2z + 3ak − (−1)k
(
(−1)k+1 + (−1)n−1)(2z − 3ak) (C.14)

= (−1)n−k(2z − 3ak). (C.15)

for all k � n − 1. ��
Proof of (C.11). We have that

x∂Pn(x) = x

bn−1
x∂Pn−1(x) − ∂

(an−1

bn−1

)
x Pn−1(x) + l.o.t. (C.16)

= 1

bn−1
cn−1,n−1x Pn−1(x) − ∂

(an−1

bn−1

)
bn−1Pn(x) + l.o.t. (C.17)

= cn−1,n−1Pn(x) − ∂
(an−1

bn−1

)
bn−1Pn(x) + l.o.t, (C.18)

where l.o.t. (“lower order term”) denotes a polynomial of degree strictly less than
n that changes from one line to the next. That is, since c11 = −∂a0 = ∂

( a0
b0

)
b0, we

apply an inductive argument to conclude that

cnn = cn−1,n−1 − ∂
(an−1

bn−1

)
bn−1 = −

n−1∑

k=0

∂
(ak
bk

)
bk =

n−1∑

k=0

(
ak

∂bk
bk

− ∂ak
)

=
n−1∑

k=0

(ak
2

∂(b2k )

b2k
− ∂ak

)
.

��
Proof of Lemma C.4. The first statement is the Combes-Thomas resolvent estimate
(Lemma 1) for tridiagonal operators (which, in particular, satisfy the off-diagonal
decay assumptions of Lemma 1).

To obtain the asymptotic estimates of (ii), we apply a different approach based
on the banded structure of the operators. Since TN is tri-diagonal, [(TN )n]i j = 0
if |i − j | > n. Therefore, for any polynomial P of degree at most |i − j | − 1, we
have [9]

|(TN − z)−1
i j | =

∣∣∣
[
(TN − z)−1 − P(TN )

]
i j

∣∣∣ �
∥∥∥

1

· − z
− P

∥∥∥
L∞(σ (TN ))

. (C.19)

We may apply the results of logarithmic potential theory (see (4.15)), to conclude.
Here, it is important that |σ(T∞) \ σ(TN )| remains bounded independently of N
so that, asymptotically, (C.19) has exponential decay with exponent gσ(T∞).

The proof that |σ(T∞) \ σ(TN )| is uniformly bounded can easily be shown
when considering the sequence of orthogonal polynomials generated by T∞. A full
proof is given in parts (ii) and (iv) of Lemma D.1. ��
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Appendix D. Quadrature Method

The quadrature method as outlined in this section was introduced in [69] to
approximate the LDOS. For a comparison of various nonlinear approximation
schemes, see [51] and [41]. The former is a practical comparison of quadrature
and BOP methods, while the later also discusses the maximum entropy method
[67].

We now give an alternative proof of Theorem 2.5 by introducing the quadrature
method [69].

Recall that D� is the local density of states (LDOS) satisfying (2.13) and {pn} is
the corresponding sequence of orthogonal polynomials generated via the recursion
method:

[pn(H)pm(H)]�� =
∫

pn(x)pm(x)dD�(x) = δnm

(see the proof of Lemma D.1, below).
We use the set of zeros of pN+1, denoted by XN = {ε0, . . . , εN }, as the basis

for the following quadrature rule:

O(H)�� =
∫

O(x)dD�(x) ≈
∫

IXN O(x)dD�(x) =
N∑

j=0

w j O(ε j ), where

w j =
∫

� j (x)dD�(x) = � j (H)��, and � j (x) =
∏

i �= j

x − εi

ε j − εi
. (D.1)

Here, � j is the polynomial of degree N with � j (εi ) = δi j .
The following lemmahighlights the fundamental properties ofGauss quadrature

and allows us to show that the approximation scheme given by

�
q
2N+1

(
H��, [H2]��, . . . , [H2N+1]��

)
:=

N∑

j=0

w j O(ε j ). (D.2)

satisfies Theorem 2.5.

Lemma D.1. Suppose that {pn} is the sequence of polynomials generated by the
recursion method (4.29), XN is the set of zeros of pN+1, and {w j } are the weights
satisfying

∫
IXN O(x)dD�(x) = ∑N

j=0 w j O(ε j ). Then,

(i) {pn} is orthonormal with respect to D�:
∫
pn(x)pm(x)dD�(x) = [pn(H)pm

(H)]�� = δnm,
(ii) XN = σ(TN ) where TN is given by (4.31),
(iii) XN ⊂ R is a set of N + 1 distinct points,
(iv) If [a, b] ∩ supp D� = ∅, then the number of points in XN ∩ [a, b] is at most

one,
(v) If P2N+1 is a polynomial of degree at most 2N + 1, then P2N+1(H)�� =∑N

j=0 w j P2N+1(ε j ),

(vi) The weights {w j } are positive and sum to one.
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Proof. The idea behind the proofs are standard in the theory of Gauss quadrature
(e.g. see [40]) but, for the convenience of the reader, they are collected together in
D.3. ��
Remark 25. The quadrature rule discussed in this section can be seen as the exact
integral with respect to the following approximate LDOS

D2N+1,q
� :=

N∑

j=0

w jδ( · − ε j ).

This measure has unit mass by Lemma D.1 (vi), and, by Lemma D.1 (v), the first
2N + 1 moments of D2N+1,q

� are given by [Hn]�� for n = 1, . . . , 2N + 1.

In the following two sections we prove error estimates and show that the func-
tional form is analytic on an open set containing

(H��, . . . , [H2N+1]��
)
.

D.1. Error Estimates.

Applying Remark 25, together with (2.14), we have: for every polynomial
P2N+1 of degree at most 2N + 1,

∣∣∣O�(r) −
N∑

j=0

w j O(ε j )

∣∣∣ � 2‖O − P2N+1‖L∞(σ (H)∪XN ). (D.3)

Now, since σ
(H) ⊂ I− ∪{λ j }∪ I+ where {λ j } is a finite set, we may apply part (iv)

of Lemma D.1 to conclude that the number of points in XN \ (I− ∪ I+
)
is bounded

independently of N . Accordingly, wemay apply (4.15) with E = I−∪ I+, to obtain
the following asymptotic bound

lim
N→∞

∣∣∣O�(r) −
N∑

j=0

w j O(ε j )

∣∣∣
1/(2N+1)

� e−γ �

where O is analytic on {z : gE (z) < γ �}.
In particular, we obtain the stated asymptotic behaviour.

Remark 26. (Spectral pollution) While σ(H) ⊂ lim infN→∞ σ(TN ), we do not
claim that the sequence σ(TN ) is free from spurious eigenvalues. That is, there
may exist sequences λN ∈ σ(TN ) such that λN → λ along a subsequence and
λ �∈ σ(H). Indeed, there exist measures supported on a union of disjoint intervals
[a, b] ∪ [c, d] for which the corresponding sequences of orthogonal polynomials
suffer from spurious eigenvalues at every point of the gap (b, c) [24,85]. In this
paper, we only require the much milder property that the number of eigenvalues in
the gap remains uniformly bounded in the limit N → ∞.

For a more general discussion of spectral pollution, see [13,64].
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D.2. Analyticity.

To conclude the proof of Theorem 2.5, we show that �q
2N+1 as defined in (D.2)

is analytic in a neighbourhood of (H��, [H2]��, . . . , [H2N+1]��). Recall that in
(4.43) we have extended the definition of TN to an analytic function on U := {z ∈
C
2N+1 : b2n(z1:2n) �= 0 ∀n = 1, . . . , N }.
Wedefine XN (z) to be the set of eigenvalues ofTN (z). Since XN = XN

(H��, . . . ,

[H2N+1]��
)
is a set of N +1 distinct points (LemmaD.1 (iii)), there exists a contin-

uous choice of eigenvalues XN (z) = {ε0(z), . . . , εN (z)} such that XN (z) is a set
of N +1 distinct points in a neighbourhood,U0, of (H��, . . . , [H2N+1]��) ∈ U and
each ε j is analytic on U0 [56,96]. With this in hand, we define �

q
2N+1 : U0 → C

by

�
q
2N+1(z) := L(x �→ IX (z)O(x)

)
(z1:N ) =

N∑

j=0

L
(
x �→

∏

i �= j

x − εi

ε j − εi

)
· O ◦ ε j ,

(D.4)

which is analytic on {z ∈ U0 : O analytic at ε j (z) ∀ j = 0, . . . , N }.

D.3. Proof of Lemma D.1

Proof of (i). First note that
∫
p0 p1dD� = 0. We assume that p0, . . . , pn are

mutually orthogonal with respect to D�, and note that,

b1 = b1

∫
p21dD� =

∫
(x − a0)p1(x)dD�(x) =

∫
xp0(x)p1(x)dD�(x), and

bn = bn

∫
p2ndD� =

∫ (
(x − an−1)pn−1(x)pn(x) − bn−1 pn−2(x)pn(x)

)
dD�(x)

=
∫

xpn−1(x)pn(x)dD�(x) for n � 2. (D.5)

Therefore, we conclude by noting

bn+1

∫
pn+1 p jdD� =

∫ (
(x − an)pn(x)p j (x) − bn pn−1(x)p j (x)

)
dD�(x)

(D.6)

=

⎧
⎪⎨

⎪⎩

∫
xpn(x)2dD� − an if j = n,∫
xpn(x)pn−1(x)dD� − bn if j = n − 1

0 if j � n − 2,

(D.7)

and applying (D.5). Equation (D.5) also justifies the tri-diagonal structure (4.31).
Proof of (ii).Wemay rewrite the recurrence relation (4.29) as x p(x) = TN p(x)+

bN+1 pN+1(x)eN where p(x) := (
1, p1(x), . . . , pN (x)

)T , [eN ] j = δ j N , and TN
is the tri-diagonal matrix (4.31). In particular, each ε j ∈ XN is an eigenvalue of
TN (with eigenvector p(ε j )).
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Proof of (iii). Since TN is symmetric, the spectrum is real. Now, for each ε j ∈
XN = σ(TN ), the matrix (TN − ε j )¬N¬0 formed by removing the N th row and
0th column is lower-triangular with diagonal (b1, . . . , bN ). Since each bi > 0,
(TN − ε j )¬N¬0 has full rank and thus ε j is a simple eigenvalue of TN .

Proof of (iv). Suppose that (after possibly relabelling) ε0, ε1 ∈ XN ∩ [a, b].
After defining R(x) := ∏N

j=2(x − ε j ), a polynomial of degree N − 1, and noting
(x − ε0)(x − ε1) > 0 on supp D�, we obtain

∫
pN+1(x)R(x)dD�(x) =

∫
R(x)2(x − ε0)(x − ε1)dD�(x) > 0,

contradicting part (i).
Proof of (v). We may write P2N+1 = pN+1qN + rN where qN , rN are poly-

nomials of degree at most N and note that [pN+1(H)qN (H)]�� = 0 by (i) and
P2N+1(ε j ) = rN (ε j ) since X is the set of zeros of pN+1. Therefore,

∫
P2N+1(x)dD�(x) =

∫ [
pN+1(x)qN (x) + rN (x)

]
dD�(x) (D.8)

=
∫

rN (x)dD�(x) =
∫

IXrN (x)dD�(x) (D.9)

=
N∑

j=0

w j rN (ε j ) =
N∑

j=0

w j P2N+1(ε j ). (D.10)

In (D.9) we have used the fact that polynomial interpolation in N +1 distinct points
is exact for polynomials of degree at most N .

Proof of (vi). � j (x)2 is a polynomial of degree 2N and so, by (v), we have

0 �
∫

� j (x)
2dD�(x) =

N∑

i=0

wi� j (εi )
2 = w j .

Moreover,
∑N

j=0 � j (x) is a polynomial of degree N equal to one on XN (a set of N+
1 distinct points) and so

∑N
j=0 � j (x) ≡ 1. Finally,

∑N
j=0 w j = ∫ (∑N

j=0 � j (x)
)
d

D�(x) = 1.

Appendix E. Numerical Bond-Order Potentials (BOP)

In mathematical terms, the idea behind BOP methods is to replace the local
density of states (LDOS) with an approximation using only the information from
the truncated tri-diagonal matrix TN (and possibly additional hyper-parameters).
Since the first N coefficients contain the same information as the first 2N + 1
moments H��, . . . , [H2N+1]��, this approach is closely related to the method of
moments [22].
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Equivalently, the resolvent [(z − H)−1]��, which can be written conveniently
as the continued fraction expansion

[(z − H)−1]�� = 1

z − a0 − b21

z − a1 − b22

z − a2 − . . .

, (E.1)

is replaced with an approximation GN
� only involving the coefficients from TN . For

example, for fixed terminator t∞, we may define

GN
� (z) := 1

z − a0 − b21

z − a1 − b22
. . . − b2N

z − aN − t∞(z)

. (E.2)

Truncating (E.1) to level N , which is equivalent to replacing the far-field of the
linear chain with vacuum and choosing t∞ = 0, results in a rational approximation
to the resolvent and thus a discrete approximation to the LDOS. We have seen that
truncation of the continued fraction in this way leads to an approximation scheme
satisfying Theorem 2.5.

Alternatively, the far-field may be replaced with a constant linear chain with
aN+ j = a∞ and bN+ j = b∞ for all j � 1 leading to the square root terminator

t∞(z) = b2∞
z−a∞−t∞(z) [38,49,97].

More generally, one may choose any “approximate” local density of states D̃�

and construct a corresponding terminator that encodes the information from D̃�

[52,65]. For example, D̃�(x) := 1
b∞π

√
1 − ( x−a∞

2b∞
)2 results in the square root

terminator. While we are unaware of any rigorous results, there is numerical evi-
dence [52] to suggest that the error in the approximation scheme is related to the
smoothness of the difference D� − D̃�.

Equivalently, we may choose any bounded symmetric tri-diagonal (Jacobi) op-
erator T̃N with diagonal a0, a1, . . . , aN , ãN+1, . . . and off-diagonal b1, . . . , bN ,

b̃N+1, . . . . That is, we may evaluate the recursion method exactly to level N and
append the far-field boundary condition {̃an, b̃n}n�N+1 to the semi-infinite lin-
ear chain. This approach also includes the case t∞ = 0 as in § 4.3 by choosing
ãn = b̃n = 0 for all n.

With this in hand, we define

O2N+1,BOP
� (u) := O(T̃N )00 =

∫
O dD̃2N+1,BOP

� (E.3)

where D̃2N+1,BOP
� is the appropriate spectral measure corresponding to T̃N .
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E.1. Error estimates

Since [(T̃N )n]00 = [(TN )n]00 = [(T∞)n]00 is independent of the far-field coef-
ficients {̃a j , b̃ j } for all n � 2N + 1, we can immediately see that the first 2N + 1
moments of D̃2N+1,BOP

� agree with those of D�. In particular, we may immediately

apply (2.14) to obtain error estimates that depend on supp
(
D� − D̃2N+1,BOP

�

)
.

Therefore, as long as the far-field boundary condition is chosen so that there
are only finitely many discrete eigenvalues in the band gap independent of N , the
more complicated BOP schemes converge at least as quickly as the t∞ = 0 case.
Intuitively, if the far-field boundary condition is chosen to capture the behaviour of
theLDOS (e.g. the type and location of band-edge singularities), then the integration
against the signed measure D� − D̃2N+1,BOP

� as in (2.14) may lead to improved
error estimates. A rigorous error analysis to this affect is left for future work.

E.2. Analyticity

Since T̃N is bounded and symmetric, the spectrum σ(T̃N ) is contained in a
bounded interval of the real line. In particular, we can apply the same arguments
as in (4.44) to conclude that (E.3) defines a nonlinear approximation scheme given
by an analytic function on an open subset of C2N+1.

Appendix F. Kernel Polynomial Method & Analytic Bond Order Potentials

Wefirst introduce the Kernel Polynomial Method (KPM) for approximating the
LDOS [82,83,98]. In this section, we scale the spectrum and assume that σ(H) ⊂
[−1, 1].

For a sequence of kernels KN (x, y), we define the approximate quantities of
interest

ON
� :=

∫
KN � O dD� =:

∫∫
KN (x, y)O(y) dy dD�(x). (F.1)

Under the choice KN (x, y) := 2
π

√
1 − y2

∑N
n=0Un(x)Un(y) (where Un denotes

the nth Chebyshev polynomial of the second kind), we arrive at a projection method
similar to that discussed in § 4.1.4: if O(x) = ∑∞

m=0 cmUm(x), then

KN � O(x) =
∑

m,n

cmUn(x)
2

π

∫ 1

−1
Un(y)Um(y)

√
1 − y2 dy =

N∑

n=0

cnUn(x).

(F.2)

Equivalently, we may consider the corresponding approximate LDOS

ON
� =

∫
O(x)dDN

� (x) where DN
� (x) = 2

π

√
1 − x2

N∑

n=0

Un(H)��Un(x).



Body-Ordered Approximations of Atomic Properties 55

However, truncation of the Chebyshev series in this way leads to artificial os-
cillations in the approximate LDOS known as Gibbs oscillations [43]. Moreover,
without damping these oscillations, the approximate LDOS need not be positive.
However, on defining

K Fejer
N (x, y) := 1

N

N∑

n=1

Kn(x, y) = 2

π

√
1 − y2

N∑

n=0

(
1 − n

N

)
Un(x)Un(y), (F.3)

we obtain a positive approximate LDOS [98] where the damping coefficients dn :=
(1− n

N ) reduce the effect of Gibbs ringing. In practice, one may instead choose the
Jackson kernel [47].

The problem with the above analysis in practice is that the damping factors
that we have introduced mean that more moments [Hn]�� are required in order to
obtain good approximations to the LDOS. Instead, analytic BOP methods [74,79]
compute the first N rows of the tridiagonal operator T∞, thus obtaining the first
2N + 1 moments exactly. Then, a far-field boundary condition (such as a constant
infinite linear chain) is appended to form a corresponding Jacobi operator T̃N as in
Appendix E. Now, since higher order moments of T̃N can be efficiently computed,
we may evaluate the following approximate LDOS

DN ,M
� (x) := 2

π

√
1 − x2

M∑

n=0

dnUn(T̃N )00Un(x) (F.4)

where dn are damping coefficients and M > 2N + 1. The damping is chosen so
that the lower order moments which are computed exactly and are more important
for the reconstruction of the LDOS are only slightly damped. With this choice of
kernel, the approximate quantities of interest take the form

ON ,M
� =

2N+1∑

n=0

dncnUn(H)�� +
M∑

n=2N+2

dncnUn(T̃N )00.

Efficient implementation of analytic BOP methods can be carried out using the
BOPfox program [47].
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