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Abstract

We consider the semilinear heat equation

∂t u − �u = f (u), (x, t) ∈ R
N × [0, T ), (1)

with f (u) = |u|p−1u loga(2+ u2), where p > 1 is Sobolev subcritical and a ∈ R.
We first show an upper bound for any blow-up solution of (1). Then, using this
estimate and the logarithmic property, we prove that the exact blow-up rate of any
singular solution of (1) is given by the ODE solution associated with (1), namely
u′ = |u|p−1u loga(2 + u2). In other words, all blow-up solutions in the Sobolev
subcritical range are Type I solutions. To the best of our knowledge, this is the first
determination of the blow-up rate for a semilinear heat equation where the main
nonlinear term is not homogeneous.

1. Introduction

1.1. Motivation of the Problem

This paper is devoted to the study of blow-up solutions for the following semi-
linear heat equation:

⎧
⎨

⎩

∂t u = �u + f (u), (x, t) ∈ R
N × [0, T ),

u(x, 0) = u0(x) ∈ L∞(RN ).

(1.1)

Here u(t) : x ∈ R
N → u(x, t) ∈ R with focusing nonlinearity f defined by:

f (u) = |u|p−1u loga(2 + u2), p > 1, a ∈ R. (1.2)
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We assume in addition that p > 1 and if N � 3, and we further assume that

p < pS ≡ N + 2

N − 2
. (1.3)

Note that when a �= 0, the nonlinear term is not homogeneous, and this is the focus
of our paper.

By standard results the problem (1.1) has a unique solution for any u0 ∈
L∞(RN ). More precisely, there is a unique maximal solution on [0, T ), with
T � ∞. If T < ∞, we say that the solution of (1.1) blows up in finite time.
In that case, it holds that ‖u(t)‖L∞(RN ) → ∞ as t → T . Such a solution u is called
a blow-up solution of (1.1) with the blow-up time T .

In the case a = 0, equation (1.1) reduces to the semilinear heat equation with
power nonlinearity:

∂t u = �u + |u|p−1u, (x, t) ∈ R
N × [0, T ). (1.4)

In the literature, the determination of the blow-up rate has been linked to the ter-
minology of “Type I/Type II solutions”, first introduced (up to our knowledge) by
Matano and Merle in [19]. In that paper, if a solution u to (1.4) blows up at time T
and satisfies for all t ∈ [0, T ),

‖u(t)‖L∞(RN ) � C(T − t)−
1

p−1 , (1.5)

for some positive constant C , independent of time t , then u is called a Type I. If
not, then u is said to be of Type II. Note that the bound given in (1.5) is (up to a
multiplying factor) a solution of the associated ODE u′ = u p.

In the subcritical case under consideration (1.3), we know from Giga and Kohn
[6–8], and also Giga, Matsui and Sasayama [9] that all blow-up solutions of (1.4)
are of Type I. Moreover, from the construction provided by Nguyen and Zaag [22],
we know that Type I solutions are available for any superlinear exponent p, not
only in the subcritical case, despite what the authors noted at that time.

As for Type II solutions, we know that they are available in the critical range
(see Schweyer [25], Harada [18], Del Pino, Musso and Wei [3], Collot, Merle and
Raphaël [2], Filippas, Herrero and Velàzquez [5]), and also in the supercritical
range (see Herrero and Velàzquez [17], Mizoguchi [20], Seki [26,27].

Going back to the proof given in [9] for the fact that all blow-up solutions for
equation (1.4) in the subcritical range (1.3) are of Type I, we would like to mention
that the following estimate is central in the argument:

∫ s+1

s
‖w(τ)‖(p+1)q

L p+1(BR)
dτ � K (q, R), ∀q � 2, ∀R > 0, ∀s > − log T .

(1.6)

there w is the similarity variables version of the solution defined in (1.17) below
and BR ≡ B(0, R) is the open ball of radius R centered at the origin in R

N .

Exploiting the non-trivial perturbative method introduced by the authors in
[13,14] in the hyperbolic case and arguing as in the non perturbed case in [9],
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Nguyen proved in [21] a similar result to (1.5), valid in the subcritical case, for a
class of strongly perturbed semilinear heat equations

∂t u = �u + |u|p−1u + h(u), (x, t) ∈ R
N × [0, T ), (1.7)

under the assumptions |h(u)| � M(1+ |u|p) log−a(2 + u2), for some M > 0 and
a > 1. Obtaining the same blow-up rate is reasonable, since the dynamics is still
governed by the ODE u′ = |u|p−1u. Furthermore, the proof remains (non trivially)
perturbative with respect to the homogeneous PDE (1.4), which is scale invariant.

This leaves unanswered an interesting question: is the scale invariance property
crucial in deriving the blow-up rate?

In fact we had the impression that the answerwas ”yes”, since the scaling invari-
ance induces in similarity variables a PDE which is autonomous in the unperturbed
case (1.4), and asymptotically autonomous in the perturbed case (1.7).

In this paper we prove that the answer is ”no” from the example of the non
homogeneous PDE (1.4). In fact, our situation is different from (1.4) and (1.7).
Indeed, the term |u|p−1u loga(2+u2) is playing a fundamental role in the dynamics
of the blow-up solution of (1.1). More precisely, we obtain an analogous result to
(1.5) but with a logarithmic correction as shown in (1.28) below. In fact, the bow-up
rate is given by the solution of the associated ODE u′ = |u|p−1u loga(2 + u2).

In this paper, we study the blow-up rate of any singular solution of (1.1). Before
handling the PDE, we first consider the ODE associated to (1.1),

v′
T (t) = |vT (t)|p−1vT (t) loga

(
v2T (t) + 2

)
, v(T ) = ∞, (1.8)

and show that the nonlinear term including the logarithmic factor gives rise to
different dynamics. In fact, thanks to [4] (see Lemma A1), we can see that the
solution vT satisfies

vT (t) ∼ κaψT (t), as t → T, where κa =
(

2a

(p − 1)1−a

) 1
p−1

, (1.9)

and

ψT (t) = (T − t)−
1

p−1 (− log(T − t))−
a

p−1 . (1.10)

Therefore, it is natural to extend the terminology “Type I/Type II solutions” for
the blow-up of a solution u(x, t) of (1.1) by the following:

(T − t)
1

p−1 (− log(T − t))
a

p−1 ‖u(t)‖L∞(RN ) � C, Type I (1.11)

lim supt→T (T − t)
1

p−1 (− log(T − t))
a

p−1 ‖u(t)‖L∞(RN ) = ∞, Type II.
(1.12)

Let us mention that Duong, Nguyen and Zaag construct in [4] a solution of
equation (1.1) which blows up in finite time T , only at one blow-up point x0,
according to the following asymptotic dynamics:

u(x, t) ∼ vT (t)
(
1 + (p − 1)|x − x0|2

4p(T − t)| log(T − t)|
)− 1

p−1
, as t → T . (1.13)
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Here vT (t) is the solution of (1.8) with an equivalent given in (1.9). Note from
(1.13) that the constructed solution is of Type I.

Concerning theblow-up rate for the hyperbolic equationswith anon-homogeneous
main term, we would like to mention that in [15] and [16], we consider the semi-
linear wave equation

∂2t u − �u = |u|p−1u loga(2 + u2), (x, t) ∈ R × [0, T ), (1.14)

where a ∈ R and p > 1 is subconformal, in the sense that (N − 1)p < N + 3. We
prove that the exact blow-up rate of any singular solution of (1.14) is given by the
ODE solution associated with (1.14), namely

V ′′
T (t) = |VT (t)|p−1VT (t) loga

(
V 2
T (t) + 2

)
, V (T ) = ∞. (1.15)

Let us mention that the nonlinear term involving the logarithmic factor gives raise
to different dynamics. To be precise, the solution VT satisfies

VT (t) ∼ C(a, p)(T − t)−
2

p−1 (− log(T − t))−
a

p−1 , as t → T . (1.16)

Since the blow-up rate is given by VT (t), we see that the effect of the nonlinearity is
completely encapsulated in (1.16). Note that before [15,16], we could successfully
implement our perturbative method in [10–14] to derive the blow-up rate for some
classes of perturbed wave equations where the main nonlinear term is power-like
(hence, homogeneous).

1.2. Strategy of the Proof

Going back to the equation under study in this paper (see (1.1) and (1.2)), we
introduce the following similarity variables, defined for all x0 ∈ R

N :

y = x − x0√
T − t

, s = − log(T − t), u(x, t) = ψT (t)wx0,T (y, s). (1.17)

Here ψT (t) is the explicit rate given in (1.10). On may think that it would be more
natural to replaceψT (t) by vT (t) (defined in (1.8)) in this definition, since the latter
is an exact solution of the ODE (1.8). That might be good, however, as vT (t) has no
explicit expression, the calculations will immediately become too complicated. For
that reason, we preferred to replace the non-explicit vT (t) by its explicit equivalent
ψT (t) in (1.10). The fact the latter is not an exact solution of (1.8) will have no
incidence in our analysis.

From (1.1) and (1.17), the function wx0,T (we write w for simplicity) satisfies,
for all y ∈ R

N and s � max(− log T, 1),

∂sw = 1

ρ
div (ρ∇w) − 1

p − 1
(1 − a

s
)w + e− ps

p−1 s
a

p−1 f (φ(s)w), (1.18)

where

ρ(y) = e− |y|2
4 (1.19)
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and

φ(s) = e
s

p−1 s− a
p−1 . (1.20)

In the new set of variables (y, s), studying the behavior of u as t → T is
equivalent to studying the behavior of w as s → +∞.

While reading Giga and Kohn [6–8] dedicated to the blow-up rate of the
homogeneous case (1.4), one sees that the existence of a Lyapunov functional
for the similarity variables’ version (1.18) with a = 0 is central in the argu-
ment. Clearly, the invariance of equation (1.4) under the scaling transformation

u → uλ(x, t) = λ
1

p−1 u(λx, λ2t) was crucial in the construction of the Lyapunov
functional. The fact that equation (1.1) is not invariant under the last scaling trans-
formation implies that the existence of a Lyapunov functional in similarity variables
is far from being trivial (see [21,23] in the parabolic case and [10–15] in the hy-
perbolic case).

In this paper, we construct a Lyapunov functional in similarity variables for the
problem (1.18). Then, we prove that the blow-up rate of any singular solution of
(1.1) is given by the solution of (1.8).

Let us explain how we derive the Lyapunov functional. As we did for the
perturbed wave equation with a conformal exponent in [10,12,13], we proceed in
2 steps:

– Step 1: we first introduce some functional (not a Lyapunov functional) for
equation (1.18), which is bounded by sα for some α > 0, then show that w

enjoys also a polynomial (in s) bound.
– Step 2: then, viewing equation (1.18) as a perturbation of the case of a pure
power nonlinearity (case where a = 0 in (1.18)) by the following terms:

a

(p − 1)s
w and e− ps

p−1 s
a

p−1 f (φ(s)w), (1.21)

we use the rough estimates on w proved in the first step, in order to control the �
perturbative� terms in (1.18). This way, we find a Lyapunov functional for (1.18),
then use it to prove that the solution itself is bounded.

Specifically, in Step 1, we would like to add the following regarding the effect
of the perturbation terms (1.21) and the way we handle them: The first term is a
lower order term which was already handled in the Sobolev subcritical perturbative

case treated in [21,23]. However, since the nonlinear term e− ps
p−1 s

a
p−1 f (φ(s)w)

depends on time s, we expect the time derivatives to be delicate. Thanks to the fact
that u f (u) − (p + 1)

∫ u
0 f (v)dv ∼ 2a

p+1 |u|p+1 loga−1(2 + u2), as u → ∞, we
construct a functional (in Section 2) satisfying the following kind of differential
inequality:

d

ds
h(s) � −1

2

∫

RN
(∂sw)2ρ(y)dy + C

s
h(s) + Ce−s; (1.22)

this implies a polynomial estimate.
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In order to state our main result, we start by introducing the functionals

E(w(s), s)=
∫

RN

(1

2
|∇w|2 + 1

2(p − 1)
w2 − e− (p+1)s

p−1 s
2a
p−1 F(φw)

)
ρ(y)dy,

(1.23)

L0(w(s), s) = E(w(s), s) − 1

s
√
s

∫

RN
w2ρ(y)dy, (1.24)

where

F(u) =
∫ u

0
f (v)dv =

∫ u

0
|v|p−1v loga(v2 + 2)dv. (1.25)

Moreover, for all s � max(− log T, 1), we define the functional

L(w(s), s) = exp
( p + 3√

s

)
L0(w(s), s) + θ

s
3
4

, (1.26)

where θ is a sufficiently large constant that will be determined later. We derive that
the functional L(w(s), s) is a decreasing functional of time for equation (1.18),
provided that s is large enough. Clearly, by (1.23), (1.24) and (1.26), the functional
L(w(s), s) is a small perturbation of the natural energy E(w(s), s).

Our main theorem in this paper is as follows:

Theorem 1. (A Lyapunov functional in similarity variables) Consider u a solution
of (1.1), with blow-up time T > 0. Then, there exists t1 ∈ [0, T ) such that,

for all s � − log(T − t1) and x0 ∈ R
N , we have

L(w(s + 1), s + 1) − L(w(s), s) � −1

2

∫ s+1

s

∫

RN
(∂sw)2ρ(y)dydτ, (1.27)

where w = wx0,T is defined in (1.17).

Remark 1.1. We choose to put forward this result proving the existence of a Lya-
punov functional and state it as the first result of our paper (namely Theorem 1),
mainly because we consider it as the crucial step in our argument, and also because
its proof is far from being trivial.

The existence of this Lyapunov functional L(w(s), s) together with a blow-up
criterion for equation (1.18) make a crucial step in the derivation of the blow-up
rate for equation (1.1). Indeed, with the functional L(w(s), s), we are able to adapt
the analysis performed in [6–8] for equation (1.4) and obtain the following result:

Theorem 2. (Blow-up rate for equation (1.1)) Consider u a solution of (1.1), with
blow-up time T > 0. Then, there exists t2 ∈ [t1, T ) such that for all t ∈ [t2, T ), we
have

‖u(t)‖L∞(RN ) � K (T − t)−
1

p−1 (− log(T − t))−
a

p−1 , (1.28)

where K = K (p, a, T, t2, ‖u(t̃2)‖L∞), for some t̃2 ∈ [0, t2).
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Remark 1.2. Note that the blow-up rate in this upper bound is sharp, since we have,
from a simple comparison argument, the lower bound

‖u(t)‖L∞(RN ) � vT (t) ∼ κa(T − t)−
1

p−1 (− log(T − t))−
a

p−1 ,

where the last equivalence was given in (1.9).

Remark 1.3. Let us remark that we can obtain the same blow-up rate for the more
general equation

∂t u = ∂2x u + |u|p−1u loga(2 + u2) + k(u), (x, t) ∈ R × [0, T ), (1.29)

under the assumption that |k(u)| � M(1 + |u|p logb(2 + u2)), for some M > 0
and b < a − 1. More precisely, under this hypothesis, we can construct a suitable
Lyapunov functional for this equation. Then, we can prove a similar result to (1.28).
However, the case where a − 1 � b < a seems to be out of reach of our technics,
though we think we may obtain the same rate as in the unperturbed case.

This paper is organized as follows: in Section 2, we obtain a rough control
of the solution w. In Section 3, thanks to that result, we prove that the functional
L(w(s), s) is a Lyapunov functional for equation (1.18). Thus, we get Theorem 1.
Finally, by applying this last theorem, we give the proof of Theorem 2.

Throughout this paper, C denotes a generic positive constant depending only
on p, N and a, which may vary from line to line. As for M , it will be used for
constants depending on initial data, in addition to p, N and a. We may also use K1,
K2, K3... M1, M2, M3... Q1, Q2, Q3 for constants having the same dependence as
M . If necessary, we may write explicitly the dependence of the constants we use.

Moreover, we denote by BR the open ball in R
N with center 0 and radius R.

Finally, note that we use the notation f (s) ∼ g(s) when lim
s→∞

f (s)

g(s)
= 1.

2. A Polynomial Bound for Solutions of Equation (1.18)

This section is devoted to the derivation of a polynomial bound for a global
solution of equation (1.18). More precisely, we have

Proposition 2.1. Let R > 0. Consider w a global solution of (1.18). Then, there
exist Ŝ1 = Ŝ1(a, p, N , R) � 1 and μ = μ(a, p, N , R) > 0 such that, for all
s � ŝ1 = max(− log T, Ŝ1), we have

‖w(s)‖H1(BR) � K1(R)sμ, (2.1)

where K1 depends on p, a, N , R and ‖w(̂s1)‖H1 .

Remark 2.1. By using the Sobolev’s embedding and the above proposition, we can
deduce that for all r ∈ [2, 2∗), where 2∗ = 2N

N−2 , if N � 3 and 2∗ = ∞, if N = 2,

‖w(s)‖Lr (BR) � K2(R)sμ, for all s � ŝ1 = max(− log T, Ŝ1), (2.2)

where K2(R) depends on p, a, N , R and ‖w(̂s1)‖H1 .
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In order to prove this proposition, we need to construct a Lyapunov functional
for equation (1.18). Accordingly, we start by recalling from (1.23) the functional

E(w(s), s) =
∫

RN

(1

2
|∇w|2 + 1

2(p − 1)
w2 − e− (p+1)s

p−1 s
2a
p−1 F(φw)

)
ρ(y)dy,

(2.3)

where F is given by (1.25). Then, we introduce the functionals

J (w(s), s) = − 1

2s

∫

RN
w2ρ(y)dy, (2.4)

Hm(w(s), s) = E(w(s), s) + mJ (w(s), s), (2.5)

where m > 0 is a sufficiently large constant that will be fixed later.
In fact, the main target of this section is to prove, for some m0 large enough,

that the energy Hm0(w(s), s) satisfies the inequality

d

ds
Hm0(w(s), s) � −1

2

∫

RN
(∂sw)2ρ(y)dy + m0(p + 3)

2s
Hm0(w(s), s) + Ce−s,

(2.6)

which implies that Hm0(w(s), s) satisfies the following polynomial estimate:

Hm0(w(s), s)) � A0s
μ0 , (2.7)

for some A0 > 0 and μ0 > 0.

2.1. Classical Energy Estimates

In this subsection, we state two lemmaswhich are crucial for the construction of
a Lyapunov functional. We begin with bounding the time derivative of E(w(s), s)
in the following lemma:

Lemma 2.2. For all s � max(− log T, 1), we have

d

ds
E(w(s), s) � −1

2

∫

RN
(∂sw)2ρ(y)dy

+ C

sa+1

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy + �1(s), (2.8)

where �1(s) satisfies

�1(s) � C

s2

∫

RN
w2ρ(y)dy + Ce−s . (2.9)
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Proof. Consider s � max(− log T, 1). Multiplying (1.18) by ∂sw ρ(y) and inte-
grating over RN , we obtain

d

ds
E(w(s), s) = −

∫

RN
(∂sw)2ρ(y)dy + a

(p − 1)s

∫

RN
w∂swρ(y)dy

︸ ︷︷ ︸

�1
1 (s)

+ p + 1

p − 1
e− (p+1)s

p−1 s
2a
p−1

∫

RN

(
F(φw) − φw f (φw)

p + 1

)
ρ(y)dy

︸ ︷︷ ︸

�2
1 (s)

− 2a

p − 1
e− (p+1)s

p−1 s
2a
p−1−1

∫

RN

(
F(φw) − φw f (φw)

2

)
ρ(y)dy

︸ ︷︷ ︸

�3
1 (s)

.

(2.10)

Now, we control the terms �1
1(s), �2

1(s) and �3
1(s). By using the following

basic inequality

ab � εa2 + 1

ε
b2, ∀ε > 0, (2.11)

we write

�1
1(s) � 1

2

∫

RN
(∂sw)2ρ(y)dy + C

s2

∫

RN
w2ρ(y)dy. (2.12)

Let us introduce the functions F1 and F2 defined by

F1(x) = − 2a

(p + 1)2
|x |p+1 loga−1(2 + x2), (2.13)

and

F2(x) = F(x) − x f (x)

p + 1
− F1(x). (2.14)

By the expressions of F1, F2 given by (2.13) and (2.14) and the estimates (B.5) and
(B.6), we obtain

F(φw) − φw f (φw)

p + 1
� C + C

φw

s
f (φw), (2.15)

which implies

�2
1(s) � Ce− (p+1)s

p−1 s
2a
p−1−1

∫

RN
φw f (φw)ρ(y)dy + Ce−s . (2.16)

From the expression of φ = φ(s) defined in (1.20), we have

e− (p+1)s
p−1 s

2a
p−1 φw f (φw) = 1

sa
|w|p+1 loga(2 + φ2w2). (2.17)
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Thus, using (2.16) and (2.17), we obtain

�2
1(s) � C

sa+1

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy + Ce−s . (2.18)

Similarly, by (B.4) and (2.17), we easily obtain

�3
1(s) � C

sa+1

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy + Ce−s . (2.19)

The results (2.8) and (2.9) follows immediately from (2.10), (2.12), (2.18) and
(2.19), which ends the proof of Lemma 2.2.

Remark 2.2. By showing the estimate proved in Lemma 2.2, related to the so called
natural functional E(w(s), s), we have some nonnegative terms in the right-hand
side of (2.8) and this does not allow to construct a decreasing functional (unlike the
case of a pure power nonlinearity). The main problem is related to the nonlinear
term

1

sa+1

∫

RN
|w|p+1 loga(2 + φ2(s)w2)ρ(y)dy = 1

s

∫

RN
we− ps

p−1 s
a

p−1 f (φ(s)w)ρ(y)dy.

To overcome this problem, we adapt the strategy used in [10–14,21]. Indeed, by
using the identity obtained bymultiplying equation (1.1) bywρ(y), then integrating
over RN , we can introduce a new functional Hm(w(s), s) defined in (2.5), where
m > 0 is sufficiently large and will be fixed such that Hm(w(s), s) satisfies a
differential inequality similar to (1.22).

We will prove the following estimate on the functional J (w(s), s):

Lemma 2.3. For all s � max(− log T, 1), we have

d

ds
J (w(s), s) � p + 3

2s
E(w(s), s) − p − 1

4s

∫

RN
|∇w|2ρ(y)dy − 1

4s

∫

RN
w2ρ(y)dy

− p − 1

2(p + 1)sa+1

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy + �2(s), (2.20)

where �2(s) satisfies

�2(s) � C

sa+2

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy + C

s2

∫

RN
w2ρ(y)dy + Ce−s .

(2.21)

Proof. Consider s � max(− log T, 1). Note that J (w(s), s) is a differentiable
function and that we get

d

ds
J (w(s), s) = −1

s

∫

RN
w∂swρ(y)dy + 1

2s2

∫

RN
w2ρ(y)dy.
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From equation (1.18) and the identity (2.17), we conclude that

d

ds
J (w(s), s) =1

s

∫

RN
|∇w|2ρ(y)dy + 1

(p − 1)s

∫

RN
w2ρ(y)dy

− 1

sa+1

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy

+ 1

2s2
(
1 − 2a

p − 1

)
∫

RN
w2ρ(y)dy.

According to the expressions of E(w(s), s), φ(s) defined in (2.3) and (1.20) and
the identity (2.17) with some straightforward computation, we obtain (2.20) where

�2(s) = �1
2(s) + �2

2(s), (2.22)

and

�1
2(s) = p + 3

2
e− (p+1)s

p−1 s
2a
p−1−1

∫

RN

(
F(φw) − φw f (φw)

p + 1

)
ρ(y)dy,

�2
2(s) = 1

2s2
(
1 − 2a

p − 1

)
∫

RN
w2ρ(y)dy.

Thanks to (2.17) and (2.15), we deduce

�1
2(s) � C

sa+2

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy + Ce−s . (2.23)

Hence, collecting (2.22) and (2.23), one easily obtains that �2(s) satisfies (2.21),
which ends the proof of Lemma 2.3.

2.2. Existence of a Decreasing Functional for Equation (1.18)

In this subsection, by using Lemmas 2.2 and 2.3 , wewill construct a decreasing
functional for equation (1.18). Let us define the functional

Nm(w(s), s) = s−m(p+3)
2 Hm(w(s), s) + A(m)e−s, (2.24)

where Hm(w(s), s) is defined in (2.5), andm together with A = A(m) are constants
that will be determined later.

We now state the following proposition:

Proposition 2.4. There exist m0 > 1, A(m0) > 0, S1 � 1 and λ1 > 0, such that
for all s = s1 � max(− log T, S1), we have

Nm0(w(s + 1), s + 1) − Nm0(w(s), s) � −λ1

sb

∫ s+1

s

∫

RN
(∂sw)2ρ(y)dydτ

− λ1

sb+1

∫ s+1

s

∫

RN
|∇w|2ρ(y)dydτ
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− λ1

sa+b+1

∫ s+1

s

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dydτ

− λ1

sb+1

∫ s+1

s

∫

RN
w2ρ(y)dydτ, (2.25)

where

b = m0(p + 3)

2
. (2.26)

Moreover, there exists S2 � S1 such that for all s � max(− log T, S2), we have

Nm0(w(s), s) � −1. (2.27)

Proof. From the definition of Hm(w(s), s) given in (2.5), Lemmas 2.2 and 2.3, we
can write, for all s � max(− log T, 1),

d

ds
Hm(w(s), s) �m(p + 3)

2s
Hm(w(s), s) − 1

2

∫

RN
(∂sw)2ρ(y)dy

−
(m(p − 1)

2(p + 1)
− C0 − C0m

s

) 1

sa+1

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy

− m(p − 1)

4s

∫

RN
|∇w|2ρ(y)dy −

( m

4s
− C0m

s2
− C0

s2

) ∫

RN
w2ρ(y)dy

+ (C0m + C0)e
−s , (2.28)

where C0 stands for some universal constant depending only on N , p and a. We
first choose m0 such that

m0(p−1)
4(p+1) − C0 = 0, so

m0(p − 1)

2(p + 1)
− C0 − C0m0

s
= m0

( p − 1

4(p + 1)
− C0

s

)
.

We now choose S1 = S1(a, p, N ) large enough (S1 � 1), so that for all s � S1,
we have

p − 1

8(p + 1)
− C0

s
� 0,

m0

8
− C0m0

s
− C0

s
� 0.

Then, we deduce that for all s � max(− log T, S1),

d

ds
Hm0(w(s), s) � m0(p + 3)

2s
Hm0(w(s), s) − 1

2

∫

RN
(∂sw)2ρ(y)dy

− λ0

s

∫

RN
|∇w|2ρ(y)dy − λ0

s

∫

RN
w2ρ(y)dy

− λ0

sa+1

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy

+ (C0m0 + C0)e
−s, (2.29)

where λ0 = inf(m0
8 ,

m0(p−1)
4(p+1) ).
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By using the definition of Nm0(w(s), s) given in (2.24) together with the esti-
mate (2.29), we easily prove that for all s � max(− log T, S1),

d

ds
Nm0(w(s), s) � − 1

2sb

∫

RN
(∂sw)2ρ(y)dy

− λ0

sb+1

∫

RN
|∇w|2ρ(y)dy − λ0

sb+1

∫

RN
w2ρ(y)dy

− λ0

sa+b+1

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy

− e−s
(
A(m0) − C0(m0 + 1)

1

sb

)
. (2.30)

We now choose A(m0) = C0(m0 + 1)S1−b, so we have

A(m0) − C0(m0 + 1)

sb
� 0, ∀s � S1. (2.31)

By integrating in time between s and s + 1 the inequality (2.30) and using (2.31),
we easily obtain (2.25). This concludes the proof of the first part of Proposition 2.4.

We prove (3.38) here. Arguing by contradiction, we assume that there exists
s̃1 � max(− log T, S2) such that Nm0(w(s̃1), s̃1) < −1, where S2 � S1 is large
enough.

Now, we consider

I (w(s), s) = s−b
∫

RN
w2ρ(y)dy, ∀s � max(− log T, 1),

where b is defined in (2.26). Thanks to (2.20) and (2.5), we have for all s �
max(− log T, 1)

d

ds
I (w(s), s) � − (p + 3)s−bHm0(w(s), s) + 1

2sb
(1 − C1

s
)

∫

RN
w2ρ(y)dy

+ p − 1

(p + 1)sa+b
(1 − C1

s
)

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy.

(2.32)

Let us choose S2 = S2(a, p, N ) is large enough, such that 1 − C1
S2

� 1
2 . So, we

write for all s � max(− log T, S2)

d

ds
I (w(s), s) � −(p + 3)Nm0 (w(s), s) + p − 1

2(p + 1)sa+b

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy.

(2.33)

Since the energy Nm0(w(s), s) decreases in time, we have Nm0(w(s), s) < −1, for
all s � s̃1. Then, for all s � s̃1

d

ds
I (w(s), s) � p + 3 + p − 1

2(p + 1)sa+b

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy.

(2.34)
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Thanks to (B.4), (B.10) and (2.17), we get for all s � s̃1

1

sa

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy � C

∫

RN
|w| p+3

2 ρ(y)dy − C. (2.35)

Therefore, by using (2.34) and (2.35), there exist S̃2 � S2 large enough such that
p + 2 − C

(S̃2)b
> 0, we have for all s � max(s̃1, S̃2)

d

ds
I (w(s), s) � 1 + C

sb

∫

RN
|w| p+3

2 ρ(y)dy. (2.36)

Thanks to Jensen’s inequality, we infer

d

ds
I (w(s), s) � 1 + Cs

b(p−1)
4

(
I (w(s), s)

) p+3
4

. (2.37)

This quantity must then tend to ∞ in finite time, which is a contradiction. Thus
(3.38) holds. This concludes the proof of Proposition 2.4.

2.3. Proof of Proposition 2.5.

Based on Proposition 2.4, a bootstrap argument given in [24], we are able to
adapt the analysis performed in [9], to prove the following key proposition:

Proposition 2.5. For all q � 2, ε > 0 and R > 0 there exist ε1 = ε1(q, R) > 0,
μ1(q, R, ε) > 0 and S3(q, R, ε) � S2 such that, for all s � max(− log T, S3), we
have

(Aq,R,ε)

∫ s+1

s
‖w(τ)‖(p−ε+1)q

L p−ε+1(BR)
dτ � K3(q, R, ε)sμ1(q,R,ε), ∀ε ∈ (0, ε1],

where K3(q, R, ε) depends on p, a, N , q, R, ε, s1 = max(− log T, S1) and
‖w(s1)‖H1 .

To prove Proposition 2.5, we will proceed as in [9]. In fact, by using Proposi-
tion 2.4, we easily obtain the following Corollary

Corollary 3. For all s � max(− log T, S2), we have

−1 � Nm0 (w(s), s) � K4, (2.38)

−K5s
b � Hm0 (w(s), s) � K5s

b, (2.39)
∫ s+1

s

∫

RN

(
|∇w|2 + (∂sw)2 + w2

)
ρ(y)dydτ � K6s

b+1, (2.40)

1

sa

∫ s+1

s

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dydτ � K6s

b+1, (2.41)
∫

RN
w2ρ(y)dy � K7s

b+1, (2.42)

1

sa

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy � C

∫

RN
|∇w|2ρ(y)dy + K8s

b+1, (2.43)
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∫

RN
|∇w|2ρ(y)dy � C

sa

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy + K9s

b+1, (2.44)

∫

RN
|∇w|2ρ(y)dy � Cs

b+1
2

√∫

RN
(∂sw)2ρ(y)dy + K10s

b+1, (2.45)

∫ s+1

s

( ∫

RN
|∇w|2ρ(y)dy

)2
� K11s

2b+2, (2.46)

1

s2a

∫ s+1

s

( ∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy

)2
dτ � K12s

2b+2, (2.47)

where b is defined in (2.26) and where K4, K5, K6, ...K12 depend on p, a, N , s1 =
max(− log T, S1) and ‖w(s1)‖H1 .

Remark 2.3. Let us mention that, the estimates obtained in the above corollary are
similar to the ones obtained in the pure power case treated in [9] except for the
following features:

• The presence of the term Ksb+1 instead of K .

• In some estimates, we have the term F(u) instead of |u|p+1

p+1 in the pure power
case. We easily overcome this problem thanks to the fact that u f (u) − (p +
1)

∫ u
0 f (v)dv ∼ 2a

p+1 |u|p+1 loga−1(2 + u2), as u → ∞.

In order to prove Proposition 2.5, we introduce the following local functional:

Eψ(w(s), s) =
∫

RN

(1

2
|∇w|2 + 1

2(p − 1)
w2 − e− (p+1)s

p−1 s
2a
p−1 F(φw)

)
ψ2(y)ρ(y)dy,

(2.48)

where ψ ∈ C∞
0 (RN )

satisfies

0 � ψ(y) � 1, ψ(y) =
{
1 on BR

0 on R
N\B2R

, (2.49)

where R > 0. An argument similar to that in [9], implies the following estimate:

Proposition 2.6. There exist positive constants K13 = K13(R) > 0 and S4 � S2
such that, for all s � max(− log T, S4), we have

− K13(R)sb+1 � Eψ(w(s), s) � K13(R)sb+1, (2.50)

where K13 depends on p, a, N , R, s1 = max(− log T, S1) and ‖w(s1)‖H1 .

Proof. Most of the steps of the proof are the same as in the pure power case treated
in [9] and some others are more delicate. For that reason, we leave the proof to
Appendix C.

With Proposition 2.6, we are in a position to claim the following:
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Lemma 2.7. There exists a positive constant K14(R, ε) > 0 such that, for all
s � max(− log T, S4)

‖w(s)‖(p−ε+1)
L p−ε+1(BR )

� K14(R, ε)‖∇w‖2L2(B2R )
+ K14(R, ε)sb+1, ∀ε ∈ (0, p − 1), (2.51)

where K14(R, ε)depends on p, a, N , R, ε, s1 = max(− log T, S1)and‖w(s1)‖H1 .

Proof. From (2.50) and the definition of Eψ in (2.48), we have for all s �
max(− log T, S4),

e− (p+1)s
p−1 s

2a
p−1

∫

RN
F(φw)ψ2ρ(y)dy � C

∫

RN
|∇w|2ψ2ρ(y)dy + K13(R)sb+1. (2.52)

By exploiting (B.10), we write for all s � max(− log T, S4),
∫

RN
|w|p−ε+1ψ2ρ(y)dy � C

∫

RN
|∇w|2ψ2ρ(y)dy + K13(R)sb+1

+C(ε)e−s, ∀ε ∈ (0, p − 1). (2.53)

Thus, (2.51) follows from (2.53) and the property of ψ . This conclude the proof of
Lemma 2.7

By (2.51), the proof of estimate (Aq,R,ε) is available when we have

∫ s+1

s
‖∇w(τ)‖2q

L2(BR )
dτ � K15(q, R, ε)sμ2(q,R,ε), ∀s � max(− log T, S3), (2.54)

for some μ2(q, R, ε) > (b+ 1)q. Note from (2.46) that (2.54) already holds in the
case q = 2.

In order to derive (2.54) for all q > 2, we need the following result:

Lemma 2.8. There exist positive constants K16(R) > 0 and S5 � S4 such that, we
have

‖∇w‖2L2(BR )
� C‖w∂swψ2‖L1(B2R ) + K16(R)sb+1, ∀s � max(− log T, S5). (2.55)

Proof. Multiplying equation (1.18) with wρ(y)ψ2, integrating over RN and using
the definition of Eψ(w(s), s) given in (2.48), we write
∫

RN
|∇w|2ψ2ρ(y)dy = 4

p − 1

∫

RN
w∂swψ2ρ(y)dy + 2(p + 3)

p − 1
Eψ(w(s), s)

︸ ︷︷ ︸

�1
2 (s)

− 2

(p + 1)sa

∫

RN
|w|p+1 loga(2 + φ2w2)ψ2ρ(y)dy

+ 8

p − 1

∫

RN
w∇w.∇ψψρ(y)dy

︸ ︷︷ ︸

�2
2 (s)

− 1

p − 1
(1 + 4a

(p − 1)s
)

∫

RN
w2ψ2ρ(y)dy

︸ ︷︷ ︸

�3
2 (s)
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+ 2(p + 3)

p − 1
e− (p+1)s

p−1 s
2a
p−1

∫

RN

(
F(φw) − φw f (φw)

p + 1

)
ψ2wdy

︸ ︷︷ ︸

�5
2 (s)

. (2.56)

From (2.50), (C.12) and (2.42) we infer for all s � max(− log T, S4),

�1
2(s) + �2

2(s) + �3
2(s) � K17(R)sb+1. (2.57)

According to the the estimates (2.15) and the identity (2.17), we get for all s �
max(− log T, S4),

�5
2(s) � C2

sa+1

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy + Ce−s . (2.58)

Hence, using (2.56), (2.57) and (2.58), yields for all s � max(− log T, S4),

∫

RN
|∇w|2ψ2ρ(y)dy � − 2

(p + 1)sa

(
1 − (p + 1)C2

2s

) ∫

RN
|w|p+1 loga(2 + φ2w2)ψ2ρ(y)dy

+ 4

p − 1

∫

RN
w∂swψ2ρ(y)dy + K17s

b+1 + Ce−s . (2.59)

Taking S5 � S4 large enough such that 1 − (p+1)C2
2S5

> 0, we have for all s �
max(− log T, S5),

∫

RN
|∇w|2ψ2ρ(y)dy � 4

p − 1

∫

RN
w∂sw ψ2wdy + K17(R)sb+1 + Ce−s .

Thus, (2.55) follows from the property of ψ . This ends the proof of Lemma 2.8.

Now, we are ready to give the proof of Proposition 2.5.

Proof of Proposition 2.5:. [Proof of (2.54) for all q � 2 by a bootstrap argu-
ment] The proof is obtained by following the same part in [9]. However, as ex-
plained before (see Remarks 2.3), in our case we have two additional problems.
Let R > 0 and suppose that we have

∫ s+1

s
‖∇w(τ)‖2q

L2(B4R )
dτ � K15(q, 4R, ε)sμ2(q,4R,ε), ∀s � max(− log T, S3),

(2.60)

for some μ2(q, 4R, ε) > 0 and for some q � 2.
Combining (2.60) and (2.51), we write for all s � max(− log T, S̃3),

∫ s+1

s
‖w(τ)‖q(p−ε+1)

L p−ε+1(B2R)
dτ � K18(q, R, ε)sμ3(q,R,ε), ∀ε ∈ (0, p − 1),(2.61)

for someμ3(q, R, ε) > μ2(q, R, ε). where S̃3 = max(S3, S5). Thus,we use (2.40),
(2.61) and apply Lemma A.1 with α = q(p − ε + 1), β = p − ε + 1, γ = δ = 2
to get that for all s � max(− log T, S̃3),
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‖w(s)‖Lλ(B2R ) � K19(q, R, ε)sμ4(q,R,ε), ∀λ < p − ε + 1 − p − ε − 1

q + 1
. ∀ε ∈ (0, p − 1),

(2.62)

for some μ4(q, R, ε) > μ3(q, R, ε). Thanks to the Holder’s inequality,

‖ψ2w∂sw‖L1(B2R) � ‖ψw‖Lλ(B2R) × ‖ψ∂sw‖Lλ′
(B2R)

,
1

λ
+ 1

λ′ = 1,

(2.63)

with Lemma 2.8, (2.63) and (2.62), we have for all s � max(− log T, S̃3),

‖∇w‖2L2(BR)
� K20(q, r, ε)sμ5(q,R,ε)‖ψ∂sw‖Lλ′

(B2R)
+ K20(q, r, ε)sb+1.

(2.64)

From now, we take λ > 2 and we choose ε ∈ (0, ε0] small enough. Observe that
λ′ >

p+1
p since λ < p + 1. Let us now bound ‖ψ∂sw‖Lλ′

(B2R)
. By using Holder’s

inequality, we have

‖ψ∂sw‖Lλ′
(B2R )

� ‖ψ∂sw‖1−θ

L2(B2R )
× ‖ψ∂sw‖θ

L p1−ε(B2R )
,

1

λ′ = 1 − θ

2
+ θ

p1 − ε
,

(2.65)

p1 = p+1
p and where

θ = (λ − 2)(p + 1 − εp)

λ(p − 1 + εp)
∈ (0, 1). (2.66)

Putting (2.64) and (2.65) together, we get for all s � max(− log T, S̃3),

‖∇w‖2L2(BR)
�K20(q, R, ε)sμ5(q,R,ε)‖ψ∂sw‖1−θ

L2(B2R)
× ‖ψ∂sw‖θ

L p1−ε(B2R)

+ K20(q, R, ε)sb+1. (2.67)

By integrating inequality (2.67) between s and s + 1, we obtain for all s �
max(− log T, S̃3),

∫ s+1

s
‖∇w(τ)‖2q̃

L2(BR)
dτ � K21(q, R, ε)sμ6(q,R,ε)q̃

∫ s+1

s
‖ψ∂sw‖q̃(1−θ)

L2(B2R)
× ‖ψ∂sw‖q̃θ

L p1−ε(B2R)
dτ

︸ ︷︷ ︸
�(s)

+ K21(q, R, ε)s(b+1)q̃ , (2.68)

for some q̃ > q. Let α = 2
(1−θ)q̃ and use Holder’s inequality in time, we obtain for

all s � max(− log T, S̃3),
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�(s) �
(∫ s+1

s
‖ψ∂sw‖2L2(B2R )

dτ

) 1
α

(∫ s+1

s
‖ψ∂sw‖q̃θα′

L p1−ε(B2R )
dτ

) 1
α′

,
1

α
+ 1

α′ = 1.

(2.69)

From the inequalities (2.40), (2.68) and (2.69), we infer that for all s �
max(− log T, S̃3),

∫ s+1

s
‖∇w(τ)‖2q̃

L2(BR )
dτ �K22(q, R, ε)sμ6(q,R,ε)q̃

(∫ s+1

s
‖ψ∂sw‖q̃θα′

L p1−ε(B2R )
dτ

) 1
α′

+ K22(q, R, ε)s(b+1)q̃ . (2.70)

Equippedwith the arguments presented in the proof ofLemmas6.5 and6.6 in [9] and
by exploiting Corollary 3, it is straightforward to get, for all s
� max(− log T, S̃3),

∫ s+1

s
‖ψws‖q̃θα′

L p1−ε(B2R )
dτ �K23(q, R, ε)

∫ s+1

s

∥
∥
∥
∥
1

τ a
|w|ploga(2 + ψ2w2)

∥
∥
∥
∥

q̃θα′

L p1−ε(B2R )

dτ

+ K23(q, R, ε)sb+1. (2.71)

By combining (2.71), (B.7) and the identity e− ps
p−1 s

a
p−1 | f (φw)| = 1

sa |w|p loga(2+
φ2w2), we deduce that for all s � max(− log T, S̃3),

∫ s+1

s
‖ψws‖q̃θα′

L p1−ε(B2R )
dτ � K24(q, R, ε)

∫ s+1

s

∥
∥
∥|w|p+ε̃

∥
∥
∥
q̃θα′

L p1−ε(B2R )
dτ + K24(q, R, ε)sb+1,

(2.72)

where ε̃ = p(p−1)ε
p+1−εp . Therefore,

∫ s+1

s
‖ψws‖q̃θα′

L p1−ε(B2R)
dτ � K24(q, R, ε)

∫ s+1

s

( ∫

B2R

|w|p+1−εdy
) pq̃θα′

p+1−εp
dτ

+K24(q, R, ε)sb+1. (2.73)

Using together (2.51) and (2.73), we obtain

∫ s+1

s
‖ψws‖q̃θα′

L p1−ε(B2R)
dτ � K25(q, R, ε)

∫ s+1

s
‖∇w‖

2pq̃θα′
p+1−εp

L2(B4R)
dτ

+ K25(q, R, ε)(s
(b+1)pq̃θα′
p+1−εp + sb+1).

By Proposition 6.4 in [9], we have 2pq̃θα′
p+1−ε1 p

< 2q, (for ε1 small enough) for all

q̃ ∈ [q, q+ 2
p+1 ]. Then, by using the inequality, for all r ∈ [1, 2q], Xr � C+CX2q ,

for all X > 0, we write for all s � max(− log T, S̃3), for all ε ∈ (0, ε1],
∫ s+1

s
‖ψws‖q̃θα′

L p1−ε(B2R )
dτ � K26(q, R, ε)

∫ s+1

s
‖∇w‖2q

L2(B4R )
dτ + K26(q, R, ε)s2q(b+1).

(2.74)
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From (2.70) and (2.74), we have for all s � max(− log T, S̃3),

∫ s+1

s
‖∇w(τ)‖2q̃

L2(BR)
dτ � K27(q, R, ε)sμ7(q,R,ε)q̃

(∫ s+1

s
‖∇w‖2q

L2(B4R)
dτ

) 1
α′

+K27(q, R, ε)sμ8(R,ε,q,q̃).

(2.75)

Therefore, estimates (2.60) and (2.75) lead to the following:
∫ s+1

s
‖∇w(τ)‖2q̃

L2(BR)
dτ � K28(q, R, ε)sμ9(q,R,ε,q,q̃). (2.76)

Thus, inequality (2.54) is valid for all q̃ ∈ [q, q + 2
p+1 ]. Repeating this argument,

we would obtain that (2.54) holds for all q � 2. This concludes the proof of
Proposition 2.5. ��

2.4. A Polynomial Bound for the H1(BR) Norm of Solution of Equation (1.18)

Based onProposition 2.5,we are in position to derive a polynomial bound for the
H1(BR) norm.More precisely, the aimof this subsection is to proveProposition 2.1,

Proof of Proposition. 2.1. First, we use (2.40), Proposition 2.5 and apply Lemma
A.1 with α = q(p − ε

2 + 1), β = p − ε
2 + 1, γ = δ = 2 to get that, for all

s � max(− log T, S̃3),

‖w(s)‖Lλ(BR ) � K29(q, R, ε)sμ10(q,R,ε), ∀λ < p − ε

2
+ 1 − p − ε

2 − 1

q + 1
, ∀ε ∈ (0, ε1],

(2.77)

where S̃3 = max(S3, S5). Clearly, there exists ε2 = ε2(p, N , q) > 0 such that, for
all ε ∈ (0, ε2], we have q = 2p−ε

ε
− 1 � 2. Therefore, for all ε ∈ (0, , ε2], for all

s � max(− log T, S̃3) we have
∫

BR

|w(y, s)|p+1−εdy � K30(ε, R)sμ11(R,ε). (2.78)

��
We are now ready to Control of ∇w in L2(BR). In fact, we use the Gagliardo-

Nirenberg inequality in order to claim the following:

Lemma 2.9. There exists ε3 = ε3(p, N ) ∈ (0, ε2] such that, for all ε ∈ (0, ε3], for
all s � max(− log T, S̃3) we have

∫

RN
ψ2|w(y, s)|p+1+εdy � K31(R, ε)sμ12(R,ε)

( ∫

RN
ψ2|∇w(y, s)|2dy

)β

+K31(R, ε)sμ12(R,ε), (2.79)

where β = β(p, N , ε) ∈ (0, 1) and μ12 = μ12(R, ε) > 0.
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Proof. Let ε ∈ (0, ε2). By interpolation, we write

∫

RN
ψ2|w(y, s)|p+1+εdy �

( ∫

RN
ψν |w(y, s)|p+1−εdy

)η(
∫

RN
|ψw(y, s)|rdy

)1−η

, (2.80)

where

ν = 2
r(1 − ε) − (p + 1 + ε)

r − (p + 1 + ε)
, η = r − (p + 1 + ε)

r − (p + 1 − ε)
,

where

r =
⎧
⎨

⎩

2N
N−2 , i f N � 3,

p + 2, i f N = 2,
(2.81)

and where ε < r − p − 1. Exploiting the fact that there exists ε̃2 = ε̃2(p, N ) ∈
(0, r− p−1) small enough such that for ε ∈ (0, ε̃2],we have ν = ν(p, ε) ∈ [1, 2).
Therefore, by using the properties of ψ given by (2.49) and the estimate (2.78) we
get

∫

RN
ψμ|w(y, s)|p+1−εdy �

∫

B2R

|w(y, s)|p+1−εdy � K30(ε, 2R)sμ11(ε,2R). (2.82)

Thanks to (2.80), (2.82) and the Sobolev embedding, we conclude

∫

RN
ψ2|w(y, s)|p+1+εdy � K32(R, ε)sμ13(ε,R)

( ∫

RN
|∇(

ψw(y, s)
)|2dy

)β

, (2.83)

where

β = rε

r − (p + 1 − ε)
.

Note that, by exploiting the inequality |∇(
ψw

)|2 � 2ψ2|∇w|2 + 2|∇ψ |2w2, the
properties of ψ given by (2.49) and the fact that ‖∇ψ‖L∞ � C , we obtain

∫

RN
|∇(

ψw(y, s)
)|2dy � C

∫

RN
ψ2|∇w(y, s)|2dy + C

∫

B2R

w2(y, s)dy.(2.84)

From (2.83), (2.84)and (2.42), we conclude

∫

RN
ψ2|w(y, s)|p+1+εdy � K33(ε, R)sμ14(ε,R)

( ∫

RN
ψ2|∇w(y, s)|2dy

)β

+K33(ε, R)sμ14(ε,R). (2.85)

Now, if ε3 � ε̃2 is chosen small enough such that β = rε3
r−(p+1−ε3)

∈ (0, 1), the
estimate (2.85) implies (2.79). This ends the proof of Lemma 2.9.
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Proof of Proposition 2.1:. From (2.50), the definition (2.48) of the local functional:
Eψ(w(s), s), we see that for all s � max(− log T, S4),
∫

RN
ψ2|∇w|2ρ(y)dy � 2

∫

RN
e− (p+1)s

p−1 s
2a
p−1 ψ2F(φw)ρ(y)dy + 2K13(R)sb+1.

(2.86)

Thanks to (B.9) and (2.86) and the fact that ρ(2R) � ρ(y) � 1, for all y ∈ B2R ,
we conclude for all s � max(− log T, S4)

∫

RN
ψ2|∇w|2dy � K34(R, ε)

∫

RN
ψ2|w(y, s)|p+ε+1dy + K34(R, ε)sb+1.

(2.87)

According to (2.87) together with Lemma 2.9 in the particular case when ε = ε3,
we have for all s � max(− log T, S̃3)

∫

RN
ψ2|∇w|2dy � K35(R, ε3)s

μ12(R,ε3)
( ∫

RN
ψ2|∇w|2dy

)β + K35(R, ε3)s
μ12(R,ε3),

(2.88)

where β = β(p, N , ε3) ∈ (0, 1). It suffices to combine (2.88) and the fact that
β < 1, to obtain that for all s � max(− log T, S̃3)

∫

RN
ψ2|∇w|2dy � K36(R, ε3)s

μ12(R,ε3)

1−β . (2.89)

Clearly, by combining (2.89), (2.42) and (2.49), we conclude (2.1), where μ =
μ12(R,ε3)
2−2β , which yields the conclusion of Proposition 2.1. ��

3. Proof of Theorems 1 and 2

In this section, thanks to polynomial estimate obtained in Proposition 2.1, we
prove Theorems 1 and 2 here. This section is divided into two parts:

• In subsection 3.1, we prove Theorem 1.More precisely, based upon Proposition
2.1, we construct a Lyapunov functional for equation (1.18) and a blow-up
criterion involving this functional.

• In subsection 3.2, we prove Theorem 2.

3.1. A Lyapunov Functional

In this subsection, our aim is to construct a Lyapunov functional for equation
(1.18). Note that this functional is far from being trivial and makes our main contri-
bution.More precisely, thanks to the rough estimate obtained in the Proposition 2.1,
we derive here that the functional L(w(s), s) defined in (1.26) is a decreasing func-
tional of time for equation (1.18), provided that is s large enough.

Let us remark that inSection2,weconstruct aLyapunov functional Nm0 (w(s), s)
defined in (2.24), but we obtain just a rough estimate because the multiplier is
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not bounded. Nevertheless, the multiplier related to the functional L(w(s), s) is
bounded. Then, as we said above, the natural energy E(w(s), s) defined in (2.40)
is a small perturbation of L(w(s), s).

In order to prove that the functional L(w(s), s) is a Lyapunov functional, we
start by using the additional information obtained in Section 2, to write several
useful lemmas which play key roles in our analysis. More precisely, we start by
stating the following:

Lemma 3.1. For all r ∈ [2, 2∗), for all s � ŝ1 = max(− log T, Ŝ1), we have
∫

RN
|w(y, s)|rρ(y)dy � M1s

σr , (3.1)

where σ = μ(a, p, N , 1
2 ), M1 depends on p, a, N , r and ‖w(̂s1)‖H1 and where

2∗ = 2N
N−2 , if N � 3 and 2∗ = ∞, if N = 2.

Throughout the proof we employ the following notations:
The ball in R

N with radius R around the point z is denoted D(z, R) = {x ∈
R

N , ‖x−z‖∞ � R},where the infinity norm is givenby the formula‖x‖∞ = sup
1�i�N

|xi |.

Also, the ball in R
N with radius R around the point z is denoted B(z, R) = {x ∈

R
N , |x − z| � R}, where the norm is given by |x | =

√
√
√
√

N∑

i=1

x2i . Finally, let us recall

that theses norms on RN are equivalent. In fact, we have

‖x‖∞ � |x | �
√
N‖x‖∞, ∀x ∈ R

N . (3.2)

Proof. In order to obtain the estimate (3.1), we combine a covering technique and
the result obtained in Proposition 2.1.

First, we claim that RN = ∪z∈ZND(z, 1
2 ) and the sequence

(
D(z, 1

2 )
)

z∈ZN
are

arbitrary pairwise sets are negligible. Let r ∈ [2, 2∗].As an immediate consequence,
we write

∫

RN
|wx0(y, s)|rρ(y)dy =

∑

z∈ZN

∫

D(z, 12 )

|wx0(y, s)|rρ(y)dy

�
∑

z∈ZN

(
sup

y∈D(z, 12 )

ρ(y)
) ∫

D(z. 12 )

|wx0(y, s)|rdy. (3.3)

Note that using the definition (1.17) of wx0 , we see that

for all y, z ∈ R
N , wx0(y + z, s) = wx0+ze−s/2(y, s) (3.4)
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From (3.2) and (3.4), for all z ∈ R
N , s � ŝ1 = max(− log T, , Ŝ1)

∫

D(z, 12 )

|wx0(y, s)|rdy �
∫

B(z,
√
N
2 )

|wx0(y, s)|rdy =
∫

B(0,
√
N
2 )

|wx0(y + z, s)|rdy

=
∫

B(0,
√
N
2 )

|wx0+ze−s/2(y, s)|rdy. (3.5)

Thanks to (2.2) and (3.5), we have for all z ∈ R
N , s � ŝ1 = max(− log T, Ŝ1)

∫

D(z, 12 )

|wx0(y, s)|rdy � M2s
rσ , (3.6)

where σ = μ(a, p, N , 1
2 ) and where M2 depends on p, a, N and ‖w(̂s1)‖H1 . By

exploiting (3.6) and (3.3), we have for all x0, z ∈ R
N , s � ŝ1 = max(− log T, Ŝ1)

∫

RN
|wx0(y, s)|rρ(y)dy �M2s

rμ
∑

z∈ZN

sup
y∈D(z, 12 )

ρ(y). (3.7)

To complete the proof, it remains to control the right-hand side of (3.7). More
precisely, the term

∑

z∈ZN

sup
y∈D(z, 12 )

ρ(y). Using the fact that for all z ∈ R
N , for all

y ∈ D(z, 1
2 ), we have

‖z‖∞ � ‖y‖∞ + ‖y − z‖∞ � ‖y‖∞ + 1

2
. (3.8)

Therefore, by using the basic inequality (a + b)2 � 2a2 + 2b2, for all a, b > 0,
we set

‖z‖2∞ �
(‖y‖∞ + 1

2

)2 � 2‖y‖2∞ + 1

2
. (3.9)

In view of (3.9), (3.2), we have, for all z ∈ R
N , for all y ∈ D(z, 1

2 ), we have

|y|2 � ‖y‖2∞ � 1

2
‖z‖2∞ − 1

4
� 1

2N
|z|2 − 1

4
. (3.10)

Due to (3.10) and to the definition of ρ given by (1.19), we conclude for all z ∈ R
N ,

sup
y∈D(z, 12 )

ρ(y) � Ce− |z|2
8N . (3.11)

Thank to (3.11), we get

∑

z∈ZN

sup
y∈D(z, 12 )

ρ(y) � C
∑

z∈ZN

e− |z|2
8N � C

N∏

i=1

∑

zi∈Z
e− z2i

8N � C. (3.12)

By combining (3.12) and (3.7), we easily obtain (3.1). This concludes the proof of
Lemma 3.1.
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Thanks to of Lemma 3.1, we are in position to state the following:

Lemma 3.2. For all s � ŝ1 = max(− log T, Ŝ1), we have

∫

RN
|w|p+1 loga(2 + φ2w2) log(2 + w2)ρ(y)dy �M3s

1
4

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy

+ M3s
a+ 1

4 , (3.13)

where, M3 depends on p, a, N and ‖w(̂s1)‖H1 .

Remark 3.1. Let us mention that, in the first term on the right-hand side the choice
of the power 1

4 is not optimal. In fact, with the same proof, one can show the same
estimate with the power ν, for any ν > 0, instead of the power 1

4 . Let us denote
that, we can construct a Lyapunov functional, when we have the estimate above for
some power ν such that ν ∈ (0, 1) instead of the power 1

4 .

Proof. Let ε ∈ (0, 1). By using the inequality log(2 + z2) � C + |z|ε2 , for all
z ∈ R, we conclude that

∫

RN
|w|p+1 loga(2 + φ2w2) log(2 + w2)ρ(y)dy �C

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy

+
∫

RN
|w|p+1+ε2 loga(2 + φ2w2)ρ(y)dy. (3.14)

Furthermore, we apply the interpolation in Lebesgue spaces to get

∫

RN
|w|p+1+ε2 loga(2 + φ2w2)ρ(y)dy �

( ∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy

)1−ε

( ∫

RN
|w|p+1+ε loga(2 + φ2w2)ρ(y)dy

)ε

. (3.15)

By combining(B.4), (B.9) and the inequality |z|p+1+ε � 1 + |z|p+1+2ε, for all
z ∈ R, we obtain

1

sa

∫

RN
|w|p+1+ε loga(2 + φ2w2)ρ(y)dy � C + C

∫

RN
|w|p+1+2ερ(y)dy.

(3.16)

Since p < pS = N+2
N−2 , we then choose ε4 small enough, such that for all ε ∈ (0, ε4]

we have p + 1 + 2ε < 2∗ where 2∗ = 2N
N−2 , if N � 3 and 2∗ = ∞, if N = 2.

Therefore, estimate (3.1) implies that, for all s � ŝ1 = max(− log T, Ŝ1), for all
ε ∈ [0, ε4],
∫

RN
|w|p+1+2ερ(y)dy�

∫

RN
|w|p+1ρ(y)dy+

∫

RN
|w|p+1+2ε4ρ(y)dy � M4s

σ3 ,

(3.17)

where σ3 depends on p, a, N , ε4 and M4 depends on p, a, N , ε4 and ‖w(̂s1)‖H1 .
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By combining (3.15), (3.16) and (3.17), we deduce that, for all s � ŝ1 =
max(− log T, Ŝ1), for all ε ∈ (0, ε4].

∫

RN
|w|p+1+ε2 loga(2 + φ2w2)ρ(y)dy � M5s

(σ3+a)ε
( ∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy

)1−ε

.

(3.18)

Thanks to the basic inequality |a1|ν |a2|1−ν � C |a1| + C |a2|, for all a1, a2 ∈ R,
for all ν ∈ (0, 1), we conclude that, for all s � ŝ1 = max(− log T, Ŝ1), for all
ε ∈ (0, ε4],

∫

RN
|w|p+1+ε2 loga(2 + φ2w2)ρ(y)dy � M6s

σ3ε
(
sa +

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy

)
.

(3.19)

Now, we choose ε5 ∈ (0, ε4], such that σ3ε5 < 1
4 . Then, by (3.14) and (3.19), we

easily obtain (3.13). This concludes the proof of Lemma 3.2.

Thanks to estimate (3.13), we can improve the estimate (2.8) related to the control
of the time derivative of the functional E(w(s), s). More precisely, we prove the
following lemma:

Lemma 3.3. There exists Ŝ2 > Ŝ1 such that for all s � ŝ2 = max(− log T, Ŝ2), we
have

d

ds
E(w(s), s) � − 1

2

∫

RN
(∂sw)2ρ(y)dy + M7

sa+ 7
4

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy

+ C

s2

∫

RN
w2ρ(y)dy + M7

s
7
4

, (3.20)

where, M7 depends on p, a, N and ‖w(̂s1)‖H1 .

Proof. By using the additional information obtained in (3.13), we are going to
refine the estimate related to �2

1(s) and �3
1(s) defined in (2.10). Let us mention

that the estimate (2.12) related to �1
1(s) defined in (2.10) is acceptable and does

not need any improvement. More precisely, we write

�2
1(s) + �3

1(s) = p + 1

p − 1
e− (p+1)s

p−1 s
2a
p−1

∫

RN

(
F(φw) − φ(s)w f (φw)

p + 1

)
ρ(y)dy

− 2a

p − 1
e− (p+1)s

p−1 s
2a
p−1−1

∫

RN

(
F(φw) − φw f (φw)

2

)
ρ(y)dy.

We attempt to group the main terms together. A straightforward computations
implies that

�2
1(s) + �3

1(s) = χ1(s) + χ2(s), (3.21)
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where

χ1(s) = a

(p + 1)sa+1

∫

RN
|w|p+1 loga−1(2 + φ2w2)

(
log(2 + φ2w2) − 2s

p − 1

)
ρ(y)dy, (3.22)

χ2(s) = e− (p+1)s
p−1

p − 1
s

2a
p−1

∫

RN

(
(p + 1)F2(φw) − a

s
F1(φw) − a

s
F2(φw)

)
ρ(y)dy, (3.23)

where F1 and F2 are defined by (2.13) and (2.14).
Note that, in (3.21) we grouped the main terms together. In fact, it is easy to

control the terms χ2(s). However, the control of the term χ1(s) needs the use of the
additional information obtained in Lemma 3.2. More precisely, for all s � ŝ1 =
max(− log T, Ŝ1), we divide RN into two parts

A1(s) = {y ∈ B | φ(s)w2(y, s) � 1} and A2(s) = {y ∈ B | φ(s)w2(y, s) � 1}. (3.24)

Accordingly, we write χ1(s) = χ1
1 (s) + χ2

1 (s), where

χ1
1 (s) = a

(p + 1)sa+1

∫

A1(s)
|w|p+1 loga−1(2 + φ2w2)

(
log(2 + φ2w2) − 2s

p − 1

)
ρ(y),

χ2
1 (s) = a

(p + 1)sa+1

∫

A2(s)
|w|p+1 loga−1(2 + φ2w2)

(
log(2 + φ2w2) − 2s

p − 1

)
ρ(y)dy.

On the one hand, by using the definition of the set A1(s) given in (3.24), we
get, for all s � ŝ1,

|w|p+1 loga(2 + φ2w2) � Cφ− p+1
2 (s) log|a|(2 + φ(s)) � Ce− s

2 . (3.25)

From (3.25) and the fact that 1 − 2s
(p−1) log(2+φ2w2)

� 1, we get

χ1
1 (s) � Ce− s

2 . (3.26)

On the other hand, by using the definition of the φ(s) given by (1.20), we write
the identity

log(2 + φ2w2) − 2s

p − 1
= log(2φ−2 + w2) − 2a log s

p − 1
. (3.27)

Now, by using the inequality φ(s) � 1 and (3.27), we write for all for all s � ŝ1,

log(2 + φ2w2) − 2s

p − 1
� log(2 + w2) + C log s. (3.28)

Also, by using the definition of the set A2(s) defined in (3.24), we can write for all
s � ŝ1, if y ∈ A2(s), we have

log(2 + φ2w2) � log(φ(s)) � 2s

p − 1
− a log s

p − 1
. (3.29)

Clearly, the exists S2 > S1 such that for all s � S2, we have 2s
p−1 − a log s

p−1 � s
p−1 .

Therefore, by exploiting (3.28) and (3.29) we have for all s � ŝ2 = max(− log T,

Ŝ2),
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χ2
1 (s) � C

sa+2

∫

B
|w|p+1 loga(2 + φ2w2) log(2 + w2)ρ(y)dy

+ C log s

sa+2

∫

B
|w|p+1 loga(2 + φ2w2)ρ(y)dy. (3.30)

Note that, by using the fact χ1(s) = χ1
1 (s) + χ2

1 (s), (3.13), (3.26) and (3.30), we
get for all s � ŝ2 = max(− log T, Ŝ2),

χ1(s) � M8

sa+ 7
4

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy + M8

s
7
4

. (3.31)

Thanks to (B.5) and (B.6), we write

1

s
|F1(φw)| + |F2(φw)| � C + C

φw

s2
f (φw). (3.32)

By (2.10), (3.32) and (2.17), we have, for all s � ŝ1,

χ2(s) � C

sa+2

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy + Ce− s

2 . (3.33)

The result (3.20) derives immediately from (2.10), (2.12), (3.31), (3.33), and the
identity (3.21), which ends the proof of Lemma 3.3

With Lemmas 2.3 and 3.3, we are in a position to prove Theorem 1.

Proof of Theorem 1:. By exploiting the defintion of L0(w(s), s) in (2.4), we can
write easily, for all s � ŝ2 = max(− log T, Ŝ2),

d

ds
L0(w(s), s) = d

ds
E(w(s), s) + 1√

s

d

ds
J (w(s), s) − 1

2s
√
s
J (w(s), s),

(3.34)

where J (w(s), s) = 1
s

∫

RN w2ρ(y)dy. Lemmas 2.3 and 3.3 allows to prove that
for all s � ŝ2 = max(− log T, Ŝ2), we have

d

ds
L0(w(s), s) � − 1

2

∫

RN
(∂sw)2ρ(y)dy + p + 3

2s
√
s
L0(w(s), s)

− 1

sa+ 3
2

( p − 1

2(p + 1)
− M7

s
1
4

− C

s

) ∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy

− 1

s
√
s

( p + 1

2(p − 1)
− C√

s

) ∫

RN
w2ρ(y)dy + M7

s
7
4

+ Ce−s .

Again, choosing Ŝ3 > Ŝ2 large enough, this implies that for all for all s �
max(− log T, Ŝ3), we have

d

ds
L0(w(s), s) � −1

2

∫

RN
(∂sw)2ρ(y)dy + p + 3

2s
√
s
L0(w(s), s) + M9

s
7
4

. (3.35)
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Recalling that,

L(w(s), s) = exp
( p + 3√

s

)
L0(w(s), s) + θ

s
3
4

.

we get from straightforward computations

d

ds
L(w(s), s) = − p + 3

2s
√
s
exp

( p + 3√
s

)
L0(w(s), s) + exp

( p + 3√
s

) d

ds
L0(w(s), s) − 4θ

3s
7
4

.

(3.36)

Therefore, estimates (3.35) and (3.36) lead to the following crucial estimate:

d

ds
L(w(s), s) � − 1

2
exp

( p + 3√
s

) ∫

RN
(∂sw)2ρ(y)dy +

(
M9 exp

( p + 3√
s

)
− 4θ

3

) 1

s
7
4

.

(3.37)

Since we have 1 � exp
(
p+3√

s

)
� exp

(
p+3√
Ŝ3

)
, we then choose θ large enough, so

that M9 exp
(
p+3√

s

)
− 4θ

3 � 0, which yields, for all s � s3 = max(− log T, Ŝ3),

d

ds
L(w(s), s) � −1

2

∫

RN
(∂sw)2ρ(y)dy.

A simple integration between s and s + 1 ensures the result. This concludes the
proof of Theorem 1. ��

We now claim the following lemma:

Lemma 3.4. There exist M10 > 0 and Ŝ4 � Ŝ3 such that, we have for all s �
max(Ŝ4,− log T )

Nm0(w(s), s) � −M10. (3.38)

Proof. The argument is the same as the similar part in Proposition 2.4.

3.2. Proof of Theorem 2

As in [9], by combining Theorem 1 and Lemma 3.4 we get the following
bounds:

Corollary 4. For all s � max(− log T, Ŝ4), we have

−M11 � L(w(s), s) � M11, (3.39)
∫ s+1

s

∫

RN

(
|∇w|2 + (∂sw)2 + w2

)
ρ(y)dydτ � M12, (3.40)

1

sa

∫ s+1

s

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dydτ � M13. (3.41)
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∫

RN
w2ρ(y)dy � M14, (3.42)

1

sa

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy � C

∫

RN
|∇w|2ρ(y)dy + M15,

(3.43)
∫

RN
|∇w|2ρ(y)dy � C

√∫

RN
(∂sw)2ρ(y)dy + M16, (3.44)

∫

RN
|∇w|2ρ(y)dy � C

sa

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy + M17, (3.45)

∫ s+1

s

( ∫

RN
|∇w|2ρ(y)dy

)2
� M18, (3.46)

1

s2a

∫ s+1

s

( ∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy

)2
dτ � M19, (3.47)

where M11, M12, M13, ...M19 depend on p, a, N , s3 = max(− log T, Ŝ3) and
‖w(s3)‖H1 .

Let us denote that, the estimates obtained in the above corollary are similar
to the Corollary (3) except for the presence of the term Kisb+1 instead of Mi .
Consequently, following the proof of Proposition 2.5 line by line we are in position
to prove the following:

Proposition 3.5. For all q � 2, ε > 0 and R > 0 there exist ε6 = ε6(q, R) > 0,
there exists a time Ŝ5(q, R, ε) � Ŝ4, such that for all s � max(− log T, Ŝ5), we
have

(Eq,R,ε)

∫ s+1

s
‖w(τ)‖(p−ε+1)q

L p−ε+1(BR)
dτ � M20(q, R, ε),

where M20(q, R, ε) depends on p, a, N , q, R, ε, s3 = max(− log T, Ŝ3)
and ‖w(s3)‖H1 .

Finally, we are in position to prove Theorem 2 by exploiting Lemma A.1 and
Lemma A.2.

Proof of Theorem 2. First, we use (3.40), Proposition 3.5 and apply Lemma A.1
with α = q(p − ε

2 + 1), β = p − ε
2 + 1, γ = δ = 2 to get that, for all s �

max(− log T, Ŝ5),

‖w(s)‖Lλ(BR ) � M21(q, R, ε), ∀λ < p − ε

2
+ 1 − p − ε

2 − 1

q + 1
, ∀ε ∈ (0, p − 1), ∀q � 2.(3.48)

Hence, for all ε ∈ (0, p − 1), we have q = 4p−4−ε
ε

� 2. Therefore, the estimate
(3.48) implies

sup
τ∈[s,s+1]

‖w(τ)‖L p+1−ε(BR) � M22(R, ε)., ∀ε ∈ (0, p − 1). (3.49)
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Let us recall the equation in w:

∂sw = �w − 1

2
y.∇w − 1

p − 1
(1 − a

s
)w + e− ps

p−1 s
a

p−1 f (φ(s)w), (3.50)

where φ(s) and f are given in (1.20) and (1.2).
We now apply Lemma A.2 to w, with b = b(y) = 1

2 y and

H(y, s, w) = − 1

p − 1
(1 − a

s
)w + e− ps

p−1 s
a

p−1 f (φ(s)w).

From (B.7), we see that, for all ε ∈ (0, p − 1), we have

|H(y, s, w)| � C(ε)(|w|p−1+ε + 1)(|w| + 1), ∀s � max(− log T, Ŝ5).

Let λ1 = p + 1 − ε, α1 = λ1
p−1+ε

and β1 = 1
ε
. Thus, the first identity in (A.2)

holds with g(y, s, w) = C(ε)(|w(y, s)|p−1+ε + 1). Since p < N+2
N−2 , then we can

choose ε7 � ε6 small enough, such that the conditions 1
β1

+ N
2α1

< 1 and α1 � 1

hold. Moreover, for all s � max(− log T, Ŝ5) we have

∫ s+1

s
‖g(τ )‖β1

Lα1 (BR)
dτ � C + C

∫ s+1

s

(∫

BR

|w(y, τ )|λ1dy
) 1

ε7α1
dτ

� C + C
(

sup
τ∈[s,s+1]

‖w(τ)‖Lλ1 (BR)

) p−1+ε7
ε7 . (3.51)

By exploiting (3.51) and (3.49), we deduce that
∫ s+1

s
‖g(τ )‖β1

Lα1 (BR)
dτ � M23(R, ε7). (3.52)

Then the second condition in (A.2) holds. Therefore,

‖w(s)‖L∞(B R
4

) � M24(R), ∀s � max(τ0 − log T, τ0 + Ŝ5)), (3.53)

for some τ0 ∈ (0, 1). By (3.53), we write

|wx0(0, s)| � M25, ∀s � max(τ0 − log T, τ0 + Ŝ5), (3.54)

for some τ0 ∈ (0, 1). From the fact that the above estimate is independent of x0
and the definition of wx0 given by (1.17), we infer

|w(y, s)| � M25, ∀y ∈ R
N ∀s � max(1 − log T, 1 + Ŝ5). (3.55)

This concludes the proof of Theorem 2. ��

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
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A. Appendix

We recall the interpolation result from Cazenave and Lions [1] and the interior
regularity theorem in [6].

Lemma A.1. (Interpolation technique,Cazenave andLions [1]) Let t0 > 0. Assume
that

v ∈ Lα
([t0, t0 + 1]; Lβ(BR)

)
, ∂tv ∈ Lγ

([t0, t0 + 1]; Lδ(BR)
)

for some 1 < α, β, γ, δ < ∞. Then

v ∈ C
([t0, t0 + 1]; Lλ(BR)

)

for all λ < λ0 = (α+γ ′)βδ
γ ′β+αδ

with γ ′ = γ
γ−1 , and satisfies

sup
t∈[t0,t0+1]

‖v(t)‖Lλ(BR) � C
∫ t0+1

t0

(
‖v(τ)‖α

Lβ(BR)
+ ‖∂τ v(τ )‖γ

Lδ(BR)

)
dτ

for λ < λ0. The positive constant C depends only on α, β, γ, δ, N and R.

The second one is an interior regularity result for a nonlinear parabolic equation:

Lemma A.2. (Interior regularity) Let v(x, t) ∈ L∞(
(0,+∞), L2(BR)

) ∩
L2

(
(0,+∞), H1(BR)

)
which satisfies

vt − �v + b.∇v = H, (x, t) ∈ QR = BR × (0,+∞), (A.1)

where R > 0, |b(x, t)| � μ1 in QR and |H(x, t, v)| � g(x, t)(|v| + 1) with

∫ t+1

t
‖g(τ )‖β ′

Lα′
(BR)

dτ � μ2, ∀t ∈ (0,+∞), (A.2)

and 1
β ′ + N

2α′ < 1, and α′ � 1. If

∫ t+1

t
‖v(τ)‖2L2(BR)

dτ � μ3, ∀t ∈ (0,+∞), (A.3)

and μ1, μ2 and μ3 are uniformly bounded in t, then there exists a positive constant
C depending only on μ1, μ2, μ3, α′, β ′, N , R and τ ∈ (0, 1) such that

|v(x, t)| � C, ∀(x, t) ∈ BR/4 × (τ,+∞).



The Blow-Up Rate for a Non-Scaling Invariant 119

B. Some Elementary Lemmas

Let f , F , F2 be the functions defined in (1.2), (1.25) and (2.14). Clearly, we have

Lemma B.1. Let q > 1,

∫ u

0
|v|q−1v loga(2 + v2)dv ∼|u|q+1

q + 1
loga(2 + u2), as |u| → ∞, (B.1)

F(u) ∼u f (u)

p + 1
as |u| → ∞, (B.2)

F2(u) ∼ Cu f (u)

log2(2 + u2)
as |u| → ∞. (B.3)

Proof. See Lemma A.1 in [15]. ��
Thanks to (B.1), (B.2) and (B.3), we will give the first and the second order terms in
the expansion of the nonlinearity F(x) defined in (1.25), when |x | is large enough.
More precisely, we now state the following estimates:

Lemma B.2. For all s � 1, for all z ∈ R,

C−1φ(s)z f (φ(s)z)) � C + F
(
φ(s)z) � C(1 + φ(s)z f (φ(s)z)

)
, (B.4)

F1(φ(s)z) � C + C
φ(s)z

s
f (φ(s)z), (B.5)

F2(φ(s)z) � C + C
φ(s)z

s2
f (φ(s)z), (B.6)

e− ps
p−1 s

a
p−1 | f (φ(s)z)| � C(ε) + C |z|p+ε, ∀ε ∈ (0, p − 1), (B.7)

|z|p−ε � Ce− ps
p−1 s

a
p−1 | f (φ(s)z)| + C(ε), ∀ε ∈ (0, p − 1), (B.8)

e− (p+1)s
p−1 s

2a
p−1 F(φ(s)z) � C(ε) + C |z|p+ε+1, ∀ε ∈ (0, p − 1), (B.9)

|z|p−ε+1 � e− (p+1)s
p−1 s

2a
p−1 F(φ(s)z) + C(ε), ∀ε ∈ (0, p − 1), (B.10)

where φ, F, F1 and F2 are given in (1.20), (1.25), (2.13) and (2.14).

Proof. Note that (B.4) obviously follows from (B.2). In order to derive estimates
(B.5) and (B.6), considering the first case z2φ(s) � 4, then the case z2φ(s) � 4, we
would obtain (B.5) and (B.6) by using (B.1), (B.2) and(B.3). Similarly, by taking
into account the inequality loga(2 + u2) � C(ε) + C(ε)|u|ε , we conclude easily
(B.7), (B.8), (B.9) and (B.10). This ends the proof of Lemma B.2. ��

C. Proof of Proposition 2.6

Let us first derive the upper bound for Eψ .
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Proof. (Proof of the upper bound for Eψ ) Multiplying (1.18) by ∂swψ2ρ(y) and
integrating over RN , we obtain

d

ds
Eψ(w(s), s) = −

∫

RN
(∂sw)2ψ2ρ(y)dy − 2

∫

RN
∂sw∇w.∇ψψρ(y)dy

+ a

(p − 1)s

∫

RN
w∂swψ2ρ(y)dy

︸ ︷︷ ︸

�1
2 (s)

+ p + 1

p − 1
e− (p+1)s

p−1 s
2a
p−1

∫

RN

(
F(φw) − φw f (φw)

p + 1

)
ψ2ρ(y)dy

︸ ︷︷ ︸

�2
2 (s)

− 2a

p − 1
e− (p+1)s

p−1 s
2a
p−1−1

∫

RN

(
F(φw) − φw f (φw)

2

)
ψ2ρ(y)dy

︸ ︷︷ ︸

�3
2 (s)

.

(C.1)

Proceeding similarly as for the terms �1
1(s), �2

1(s) and �3
1(s) defined in (2.10),

we get

d

ds
Eψ(w(s), s) � − 1

2

∫

RN
ψ2(∂sw)2ρ(y)dy − 2

∫

RN
∂swψ∇ψ.∇wρ(y)dy

+ C

sa+1

∫

RN
ψ2|w|p+1 loga(2 + φ2w2)ρ(y)dy

+ C

s2

∫

RN
ψ2w2ρ(y)dy + Ce−s . (C.2)

Using the fact that 2ab � a2
4 + 4b2, we obtain

−2∂swψ∇ψ.∇w � 1

4
ψ2(∂sw)2 + 4|∇ψ |2|∇w|2,

which implies, for all s � max(− log T, 1),

d

ds
Eψ(w(s), s) � C

∫

RN
|∇w|2ρ(y)dy + C

sa+1

∫

RN
|w|p+1 loga(2 + φ2w2)ρ(y)dy

+ C

s2

∫

RN
w2ρ(y)dy + Ce−s , (C.3)

where C = C(a, p, N , ‖ψ‖L∞ , ‖∇ψ‖L∞).
By combining (C.3), (2.40) and (2.41), we infer for all s � max(− log T, S2)

∫ s+1

s

d

ds
Eψ(w(τ), τ )dτ � Q1s

b+1. (C.4)

From the definition of Eψ given in (2.48), using the fact that, F(φw) � 0, we have

Eψ(w(s), s) � ‖ψ‖2L∞

∫

RN

(
1

2
|∇w|2 + 1

2(p − 1)
|w|2

)

ρ(y)dy.
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By the definition of Hm(w(s), s) given in (2.5), exploiting (2.39), we write for all
s � max(− log T, S2)

Eψ(w(s), s) � C

{

Hm0 (w(s), s) + m0

2s

∫

RN
w2ρ(y)dy + e− (p+1)s

p−1 s
2a
p−1

∫

RN
F(φw)ρ(y)dy

}

� Q2s
b+1 + Ce− (p+1)s

p−1 s
2a
p−1

∫

RN
F(φw)ρ(y)dy. (C.5)

Integrating the inequality (C.5) from s to s + 1 and using (2.17), (B.4) and (2.41)
we get, for all s � max(− log T, S2)

∫ s+1

s
Eψ(w(τ), τ )dτ � Q3s

b+1.

By using the mean value theorem, we derive the existence of σ(s) ∈ [s, s+1] such
that

Eψ(w(σ(s)), σ (s)) =
∫ s+1

s
Eψ(w(τ), τ )dτ. (C.6)

Let us write the identity, for all s � max(− log T, S2)

Eψ(w(s), s) =Eψ(w(σ(s)), σ (s)) +
∫ s

σ(s)

d

dτ
Eψ(w(τ), τ )dτ. (C.7)

By combining (C.6), (C.7) and (C.4), we infer, for all s � max(− log T, S2)

Eψ(w(s), s) = � Q4s
b+1. (C.8)

This concludes the proof of the upper bound for Eψ . ��
It remains to prove the lower bound.
[Proof of the lower bound for Eψ ]
Consider now, for all s � max(− log T, 1),

Iψ(w(s), s) = 1

sb+1

∫

RN
w2ψ2ρ(y)dy.

Multiplying equation (1.18) with ψ2w, integrating on R
N and using the same

argument as in the proof of Lemma 2.3 yields

d

ds
Iψ(w(s), s) � − p + 3

sb+1 Eψ(w(s), s) + 1

2sb+1 (1 − C4

s
)

∫

RN
w2ψ2ρ(y)dy

+ p − 1

(p + 1)sa+b+1 (1 − C4

s
)

∫

RN
|w|p+1 loga(2 + φ2w2)ψ2ρ(y)dy

− 4

sb+1

∫

RN
w∇w.∇ψψρ(y)dy. (C.9)

Therefore, there exists S̃2 > S2 large enough, such that for all s � max(− log T, S̃2),
we have
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d

ds
Iψ(w(s), s) � p − 1

2(p + 1)sa+b+1

∫

RN
|w|p+1 loga(2 + φ2w2)ψ2ρ(y)dy

− p + 3

sb+1 Eψ(w(s), s) − 4

sb+1

∫

RN
w∇w.∇ψψρ(y)dy.

(C.10)

Furthermore, after some integration by parts, we write

− 4
∫

RN
w∇w.∇ψψρ(y)dy = 2

∫

RN
w2 div (ψρ(y)∇ψ)dy

= 2
∫

RN
w2|∇ψ |2ρ(y)dy + 2

∫

RN
w2ψ�ψρ(y)dy −

∫

RN
w2ψy.∇ψρ(y)dy.

(C.11)

Thanks to the estimates ‖ψ‖2L∞ +‖�ψ‖2L∞ +‖∇ψ‖2L∞ +‖y.∇ψ‖2L∞ � C , (C.11)
and (2.42), we have for all s � max(− log T, S̃2),

∣
∣
∣ − 4

∫

RN
w∇w.∇ψψρ(y)dy

∣
∣
∣ � C

∫

RN
w2ρ(y)dy � Q5s

b+1. (C.12)

Using (C.10) and (C.12), we obtain for all s � max(− log T, S̃2),

d

ds
Iψ(w(s), s) � p − 1

2(p + 1)sa+b+1

∫

RN
|w|p+1 loga(2 + φ2w2)ψ2ρ(y)dy

− p + 3

sb+1 Eψ(w(s), s) − Q5. (C.13)

Let us define the following functional:

Gψ(w(s), s) = p + 3

sb+1 Eψ(w(s), s) + Q5, (C.14)

where Gψ(w(s), s) is defined in (2.48).
We claim that the function of Gψ(w(s), s) is bounded from below by some constant
M , where M is a sufficiently large constant that will be determined later. Arguing
by contradiction, we suppose that there exists a time s∗ � max(− log T, S̃2) such
that Gψ(w(s∗), s∗) � −Q, for some Q > 0. Then, we write

Gψ(w(s), s) � −Q +
∫ s

s∗
d

dτ
Gψ(w(τ), τ )dτ, ∀s � s∗. (C.15)

If we now compute the time derivative of Gψ(w(s), s) we get for all s � s∗,

d

ds
Gψ(w(s), s) = p + 3

sb+1

d

ds
Eψ(w(s), s) − (b + 1)(p + 3)

sb+2 Eψ(w(s), s). (C.16)

From the definition of Eψ given in (2.48), using (B.4) and (2.17) we have for all
s � s∗,

− (b + 1)(p + 3)

sb+2 Eψ(w(s), s) � C

sa+b+2

∫

RN
|w|p+1 loga(2 + φ2w2)ψ2ρ(y)dy + Ce−s . (C.17)
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Thanks to (C.4) we conclude for all s � s∗,
∫ s

s∗
1

τ b+1

d

ds
Eψ(w(τ), τ )dτ � Q6(s − s∗). (C.18)

Moreover, from (2.41), we obtain for all s � s∗,
∫ s

s∗
1

τ a+b+2

∫

RN
|w|p+1 loga(2 + φ2w2)ψ2ρ(y)dydτ � Q7(s − s∗). (C.19)

Integrating the identity (C.16) over [s∗, s] and combining (C.17), (C.18) and (C.19)
we deduce that

∫ s

s∗
d

dτ
Gψ(w(τ), τ )dτ � Q8(s − s∗), ∀s � s∗. (C.20)

Combining (C.13), (C.15) and (C.20) we infer for all s � s∗,

d

ds
Iψ(w(s), s) � Q − Q8(s − s∗) + C

sa+b+1

∫

RN
|w|p+1 loga(2 + φ2w2)ψ2ρ(y)dy. (C.21)

Thanks to (B.4) and (B.10), we have for all s � s∗, that

1

sa

∫

RN
|w|p+1 loga(2 + φ2w2)ψ2ρ(y)dy � C

∫

RN
|w| p+3

2 ψ2ρ(y)dy − C5.

(C.22)

Due to Jensen inequality, (C.21) and (C.22) we find for all s � s∗,

d

ds
Iψ(w(s), s) � Q̃ − Q9(s − s∗) + C6

(
Iψ(w(s), s)

) p+3
4

, (C.23)

where Q̃ = Q − C5.
It is interesting to denote that we easily prove that the solution of the differential
inequality

⎧
⎨

⎩

h′(s) � 1 + C6h
p+3
4 (s), s > s∗,

h(s∗) � 0

blows up in finite time before

s = s∗ +
∫ +∞

0

dξ

1 + C6ξ
p+3
4

= s∗ + T ∗.

Now, we choose Q = Q9T ∗ + C5 + 1 to get Q̃ − Q9(s − s∗) � 1 for all
s ∈ [s∗, s∗ + T ∗].
Therefore, Iψ(w(s), s) blows up in some finite time before s∗ + T ∗. But this
contradicts with the global existence of w. This implies (2.50), and we complete
the proof of Proposition 2.6. ��
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