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Abstract

We consider the semilinear heat equation
du—Au= f@w), (x,1)eRYx[0,T), M

with f(u) = |u|?~'ulog? (2 + u?), where p > 1 is Sobolev subcritical and a € R.
We first show an upper bound for any blow-up solution of (1). Then, using this
estimate and the logarithmic property, we prove that the exact blow-up rate of any
singular solution of (1) is given by the ODE solution associated with (1), namely
u' = |ulP"ulog?(2 4+ u?). In other words, all blow-up solutions in the Sobolev
subcritical range are Type I solutions. To the best of our knowledge, this is the first
determination of the blow-up rate for a semilinear heat equation where the main
nonlinear term is not homogeneous.

1. Introduction

1.1. Motivation of the Problem

This paper is devoted to the study of blow-up solutions for the following semi-
linear heat equation:

du=Au+ fw), (x,1)eRN x[0,T),
(1.1)
u(x, 0) = ug(x) € L¥@RN).

Here u(t) : x € RN — u(x, t) € R with focusing nonlinearity f defined by:

f@) =ulP  ulog®@+u®, p>1, ack. (1.2)
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We assume in addition that p > 1 and if N = 3, and we further assume that

N +2

=5 (1.3)

P <ps=
Note that when a # 0, the nonlinear term is not homogeneous, and this is the focus
of our paper.

By standard results the problem (1.1) has a unique solution for any ug €
LOO(RN ). More precisely, there is a unique maximal solution on [0, T), with
T < oo. If T < o0, we say that the solution of (1.1) blows up in finite time.
In that case, it holds that [[u(?)|| o gny — 00 ast — T.Suchasolution u is called
a blow-up solution of (1.1) with the blow-up time 7.

In the case a = 0, equation (1.1) reduces to the semilinear heat equation with
power nonlinearity:

du = Au+ [ul”lu, (x,1) e RN x [0, T). (1.4)

In the literature, the determination of the blow-up rate has been linked to the ter-
minology of “Type I/Type II solutions”, first introduced (up to our knowledge) by
Matano and Merle in [19]. In that paper, if a solution u to (1.4) blows up at time T
and satisfies for all t € [0, T),

1

lu@l ooy = C(T — 1) 77T, (1.5)

for some positive constant C, independent of time ¢, then u is called a Type I. If
not, then u is said to be of Type II. Note that the bound given in (1.5) is (up to a
multiplying factor) a solution of the associated ODE u’ = u?.

In the subcritical case under consideration (1.3), we know from Giga and Kohn
[6-8], and also Giga, Matsui and Sasayama [9] that all blow-up solutions of (1.4)
are of Type I. Moreover, from the construction provided by Nguyen and Zaag [22],
we know that Type I solutions are available for any superlinear exponent p, not
only in the subcritical case, despite what the authors noted at that time.

As for Type II solutions, we know that they are available in the critical range
(see Schweyer [25], Harada [18], Del Pino, Musso and Wei [3], Collot, Merle and
Raphaél [2], Filippas, Herrero and Velazquez [5]), and also in the supercritical
range (see Herrero and Velazquez [17], Mizoguchi [20], Seki [26,27].

Going back to the proof given in [9] for the fact that all blow-up solutions for
equation (1.4) in the subcritical range (1.3) are of Type I, we would like to mention
that the following estimate is central in the argument:

s+1
/ ||w(r)||<L'j:}2§R)dr <K(@,R), Vg=2, VR>0, Vs> —logT.
s

(1.6)

there w is the similarity variables version of the solution defined in (1.17) below

and Br = B(0, R) is the open ball of radius R centered at the origin in RN,
Exploiting the non-trivial perturbative method introduced by the authors in

[13,14] in the hyperbolic case and arguing as in the non perturbed case in [9],
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Nguyen proved in [21] a similar result to (1.5), valid in the subcritical case, for a
class of strongly perturbed semilinear heat equations

du=Au+ul’” lu+hw), (x,t)eRY x[0,T), (1.7)

under the assumptions |2 (u)| £ M (1 + |u|?)log=*(2 + u?), for some M > 0 and
a > 1. Obtaining the same blow-up rate is reasonable, since the dynamics is still
governed by the ODE u’ = |u|?~'u. Furthermore, the proof remains (non trivially)
perturbative with respect to the homogeneous PDE (1.4), which is scale invariant.

This leaves unanswered an interesting question: is the scale invariance property
crucial in deriving the blow-up rate?

In fact we had the impression that the answer was “’yes”, since the scaling invari-
ance induces in similarity variables a PDE which is autonomous in the unperturbed
case (1.4), and asymptotically autonomous in the perturbed case (1.7).

In this paper we prove that the answer is "no” from the example of the non
homogeneous PDE (1.4). In fact, our situation is different from (1.4) and (1.7).
Indeed, the term |u|”~ i log? (2+u?) is playing a fundamental role in the dynamics
of the blow-up solution of (1.1). More precisely, we obtain an analogous result to
(1.5) but with a logarithmic correction as shown in (1.28) below. In fact, the bow-up
rate is given by the solution of the associated ODE u’ = |u|?~'ulog®(2 + u?).

In this paper, we study the blow-up rate of any singular solution of (1.1). Before
handling the PDE, we first consider the ODE associated to (1.1),

V(1) = lor ()P~ vy (1) log® (v%(t) + 2), v(T) = o0, (1.8)

and show that the nonlinear term including the logarithmic factor gives rise to
different dynamics. In fact, thanks to [4] (see Lemma Al), we can see that the
solution vy satisfies

20\
vr(t) ~ ka¥r(t), ast — T, where iy = ((T)” . (19)
p — a

and
Yr(t) = (T — 1) 71 (—log(T — 1)) 1. (1.10)

Therefore, it is natural to extend the terminology “Type I/Type II solutions” for
the blow-up of a solution u(x, ¢) of (1.1) by the following:

1 a
(T =)= (= log(T — ) 7T u(®) |l poogyy = C,  Typel (1.11)

1 a
limsup, _, 7 (T — )77 (= log(T — 1) 77 lu(t) | jowyy = 00,  Type IL.
(1.12)
Let us mention that Duong, Nguyen and Zaag construct in [4] a solution of

equation (1.1) which blows up in finite time 7, only at one blow-up point x,
according to the following asymptotic dynamics:

(p — Dlx — xo|?
4p(T — )| log(T — 1)

_ 1
u(x,t)~vT(t)(1+ ) T st — T, (1.13)



90 MoHAMED ALI HAMZA AND HATEM ZAAG

Here vy (¢) is the solution of (1.8) with an equivalent given in (1.9). Note from
(1.13) that the constructed solution is of Type I.

Concerning the blow-up rate for the hyperbolic equations with anon-homogeneous
main term, we would like to mention that in [15] and [16], we consider the semi-
linear wave equation

32u — Au = [ulPlulog? @ +u?), (x,1) eRx[0,T), (1.14)

where @ € R and p > 1 is subconformal, in the sense that (N — 1)p < N + 3. We
prove that the exact blow-up rate of any singular solution of (1.14) is given by the
ODE solution associated with (1.14), namely

Vi) = [Vr)1P" V() log? (VE(@) +2), V(T) = co. (1.15)

Let us mention that the nonlinear term involving the logarithmic factor gives raise
to different dynamics. To be precise, the solution Vr satisfies

Vi(t) ~ Cla, p)(T — 1) 71 (—log(T — 1)) 71, ast — T.  (1.16)

Since the blow-up rate is given by Vr (¢), we see that the effect of the nonlinearity is
completely encapsulated in (1.16). Note that before [15, 16], we could successfully
implement our perturbative method in [10-14] to derive the blow-up rate for some
classes of perturbed wave equations where the main nonlinear term is power-like
(hence, homogeneous).

1.2. Strategy of the Proof

Going back to the equation under study in this paper (see (1.1) and (1.2)), we
introduce the following similarity variables, defined for all xg € RV:
X — X0

V= s==logT =0, ulen) = Yr0wer(y.s). (117

Here 7 (¢) is the explicit rate given in (1.10). On may think that it would be more
natural to replace 7 (t) by vr (¢) (defined in (1.8)) in this definition, since the latter
is an exact solution of the ODE (1.8). That might be good, however, as vr (¢) has no
explicit expression, the calculations will immediately become too complicated. For
that reason, we preferred to replace the non-explicit vr (¢) by its explicit equivalent
Yr(t) in (1.10). The fact the latter is not an exact solution of (1.8) will have no
incidence in our analysis.

From (1.1) and (1.17), the function wy,, 7 (we write w for simplicity) satisfies,
forall y € RN and s = max(—log T, 1),

1 1 _ps _a_
dw = —div (pVw) — ——(1 — Dyw 4 e 71577 f(p(s)w),  (1.18)
p p—1 s
where

2

p(y)=e "+ (1.19)



The Blow-Up Rate for a Non-Scaling Invariant 91

and

s a

¢(s) =er-ls »p1, (1.20)

In the new set of variables (y, s), studying the behavior of u as t — T is
equivalent to studying the behavior of w as s — +o0.

While reading Giga and Kohn [6-8] dedicated to the blow-up rate of the
homogeneous case (1.4), one sees that the existence of a Lyapunov functional
for the similarity variables’ version (1.18) with a = 0 is central in the argu-
ment. Clearly, the invariance of equation (1.4) under the scaling transformation

ur— uy(x,t) = Aﬁ u(Ax, A2t) was crucial in the construction of the Lyapunov
functional. The fact that equation (1.1) is not invariant under the last scaling trans-
formation implies that the existence of a Lyapunov functional in similarity variables
is far from being trivial (see [21,23] in the parabolic case and [10-15] in the hy-
perbolic case).

In this paper, we construct a Lyapunov functional in similarity variables for the
problem (1.18). Then, we prove that the blow-up rate of any singular solution of
(1.1) is given by the solution of (1.8).

Let us explain how we derive the Lyapunov functional. As we did for the
perturbed wave equation with a conformal exponent in [10,12,13], we proceed in
2 steps:

— Step 1: we first introduce some functional (not a Lyapunov functional) for
equation (1.18), which is bounded by s“ for some o > 0, then show that w
enjoys also a polynomial (in s) bound.

— Step 2: then, viewing equation (1.18) as a perturbation of the case of a pure
power nonlinearity (case where @ = 0 in (1.18)) by the following terms:

a

ooy TSI F(B(s)w), (121)

we use the rough estimates on w proved in the first step, in order to control the <
perturbative >> terms in (1.18). This way, we find a Lyapunov functional for (1.18),
then use it to prove that the solution itself is bounded.

Specifically, in Step 1, we would like to add the following regarding the effect
of the perturbation terms (1.21) and the way we handle them: The first term is a
lower order term which was already handled in the Sobolev subcritical perturbative

case treated in [21,23]. However, since the nonlinear term eiﬁsﬁ fd(s)w)
depends on time s, we expect the time derivatives to be delicate. Thanks to the fact
that uf () — (p + 1) [y f(w)dv ~ %MPH log® ' (2 + u?), as u — oo, we
construct a functional (in Section 2) satisfying the following kind of differential
inequality:

ih(S) = —1/ (Byw)p(y)dy + Eh(S) +Ce™; (1.22)
ds 2 JrN s

this implies a polynomial estimate.
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In order to state our main result, we start by introducing the functionals

E 1 v 2 1 2 (I;‘H)Y p2a1 F d
o] | (G190P + 30 e $u))o()dy,
(1.23)
Lo(w(s),s) = E(w(s),s) — —= wzp(y)dy, (1.24)
«/_
where
Fu) = / f)dv = / lv|P~ v log® (v? + 2)dv. (1.25)
0 0
Moreover, for all s = max(—log T, 1), we define the functional
L(w(s), s) = exp( }3)Lo(w(s) 5) + i (1.26)

where 6 is a sufficiently large constant that will be determined later. We derive that
the functional L(w(s), s) is a decreasing functional of time for equation (1.18),
provided that s is large enough. Clearly, by (1.23), (1.24) and (1.26), the functional
L(w(s), s) is a small perturbation of the natural energy E (w(s), s).

Our main theorem in this paper is as follows:

Theorem 1. (A Lyapunov functional in similarity variables) Consider u a solution
of (1.1), with blow-up time T > 0. Then, there exists t € [0, T') such that,
forall s > —1og(T — 1) and xo € RN, we have

s+1
Lw(s+1),s+1)— L(w(s),s) < ——/ / (Bsw) po(y)dydr, (1.27)

where w = Wy, 7 is defined in (1.17).

Remark 1.1. We choose to put forward this result proving the existence of a Lya-
punov functional and state it as the first result of our paper (namely Theorem 1),
mainly because we consider it as the crucial step in our argument, and also because
its proof is far from being trivial.

The existence of this Lyapunov functional L(w(s), s) together with a blow-up
criterion for equation (1.18) make a crucial step in the derivation of the blow-up
rate for equation (1.1). Indeed, with the functional L(w(s), s), we are able to adapt
the analysis performed in [6—8] for equation (1.4) and obtain the following result:

Theorem 2. (Blow-up rate for equation (1.1)) Consider u a solution of (1.1), with
blow-up time T > 0. Then, there exists t, € [t1, T) such that forallt € [ty, T), we
have

() oo ey < K(T — 1) 71 (= log(T — 1)) 77, (1.28)

where K = K(p,a, T, 2, |u(f2) || ), for some t» € [0, ).
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Remark 1.2. Note that the blow-up rate in this upper bound is sharp, since we have,
from a simple comparison argument, the lower bound

J __a_
@)l ooy = V7 (1) ~ ko (T — 1) 7T (= log(T — 1)) 77T,
where the last equivalence was given in (1.9).

Remark 1.3. Let us remark that we can obtain the same blow-up rate for the more
general equation

du = 0%u + |ulP'ulog? 2 + u?) + k(u), (x,1) e Rx[0,T), (1.29)

under the assumption that |k(u)| < M (1 + |u|? logb(2 + u?)), for some M > 0
and b < a — 1. More precisely, under this hypothesis, we can construct a suitable
Lyapunov functional for this equation. Then, we can prove a similar result to (1.28).
However, the case where a — 1 < b < a seems to be out of reach of our technics,
though we think we may obtain the same rate as in the unperturbed case.

This paper is organized as follows: in Section 2, we obtain a rough control
of the solution w. In Section 3, thanks to that result, we prove that the functional
L(w(s), s) is a Lyapunov functional for equation (1.18). Thus, we get Theorem 1.
Finally, by applying this last theorem, we give the proof of Theorem 2.

Throughout this paper, C denotes a generic positive constant depending only
on p, N and a, which may vary from line to line. As for M, it will be used for
constants depending on initial data, in addition to p, N and a. We may also use K1,
K>, K3... My, M2, M3... Q1, Q», Q3 for constants having the same dependence as
M. If necessary, we may write explicitly the dependence of the constants we use.

Moreover, we denote by By the open ball in RY with center 0 and radius R.

Finally, note that we use the notation f(s) ~ g(s) when lim & =1.
§—> 00 g(s)

2. A Polynomial Bound for Solutions of Equation (1.18)

This section is devoted to the derivation of a polynomial bound for a global
solution of equation (1.18). More precisely, we have

Proposition 2.1. Let R > 0. Consider w a global solution of (1.18). Then, there
exist S| = Si(a,p,N,R) 2 1 and u = p(a, p, N, R) > 0 such that, for all
s 2751 = max(—logT, Sy), we have

w1 pg = Ki1(R)s", (2.1)
where K| depends on p,a, N, R and ||w(S1) || 1.

Remark 2.1. By using the Sobolev’s embedding and the above proposition, we can
deduce that for all r € [2, 2*), where 2* = % if N 2 3and2* = o0, if N =2,

lw) I @g) < Ka(R)s*, forall s 25 =max(—logT.5), (2.2)

where K»(R) depends on p,a, N, R and ||w(s1)| g1-
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In order to prove this proposition, we need to construct a Lyapunov functional
for equation (1.18). Accordingly, we start by recalling from (1.23) the functional

E = [ (Civwp L2 5 d
w9 = [ (1Tl + 5o —gu? e T STTR@w ) p(dy.
(2.3)
where F is given by (1.25). Then, we introduce the functionals
1 2
Jw(s),s) === | wip(y)dy, 2.4
S JRN
Hm(U)(S),S) = E(U)(S),S)+m](U)(S),S), (25)

where m > 0 is a sufficiently large constant that will be fixed later.
In fact, the main target of this section is to prove, for some m large enough,
that the energy H,,,(w(s), s) satisfies the inequality

d 1 mo(p + 3) _
— Hpy(w(s), 5) = ——/ (Bsw)*p(y)dy + p—Hmo(w(S),S) +Ce™,
ds 2 JrN 2s
(2.6)
which implies that H,,,(w(s), s) satisfies the following polynomial estimate:
Hpo(w(s), s)) < Agsh?, 2.7)

for some Ag > 0 and po > 0.

2.1. Classical Energy Estimates

In this subsection, we state two lemmas which are crucial for the construction of
a Lyapunov functional. We begin with bounding the time derivative of E(w(s), s)
in the following lemma:

Lemma 2.2. For all s 2 max(—1log T, 1), we have

d 1
LB, €~ / @yw)>p(y)dy
S 2 RN

C
+ /R w7 og! 2 + ¢*w?)p(y)dy + Zi(s),  (2.8)

where X1 (s) satisfies

C )
D) = 5 fR B w?p(y)dy + Ce™. 2.9)
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Proof. Consider s = max(—log T, 1). Multiplying (1.18) by d;w p(y) and inte-
grating over RY | we obtain

d
L Ew(s).s) = — / @ow)?p(y)dy + ——— / wiwp(y)dy
ds RN (p — 1)S RN

DHO)
p+1 _wths 2

S _ $wfw)
Ay p I/RN(F(W) 1 )o(y)dy
=3 s)

S [ (P - 2O ey
p—1 RY =

=3(s)
(2.10)

Now, we control the terms E} (s), E%(s) and Ef(s). By using the following
basic inequality

1
ab < ea® + —b%, Ve > 0, 2.11)
I3
we write
1oy < 1 2 ¢ 2
T =5 | @wp(dy+ 5 | wip(y)dy. (2.12)
RN S RN
Let us introduce the functions F; and F> defined by

2a
Fi(x) = —————|x[P 1 10g* 1 2 + x?), 2.13
1(x) (p+1)2|| g ( ) (2.13)
and

_ xf(x)
F(x) = F(x) — 1

— Fi(x). (2.14)

By the expressions of F1, F, given by (2.13) and (2.14) and the estimates (B.5) and
(B.6), we obtain

p+1 s
which implies
$2(s) < Ce~ 5 s f puf@wp(dy +Ce™.  (2.16)
RN

From the expression of ¢ = ¢ (s) defined in (1.20), we have

_(pts  2a

el s pwf (pw) = ia|w|l’+llog“(2+¢2w2). (2.17)
N
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Thus, using (2.16) and (2.17), we obtain

C _
DHORSv /R P og @+ ¢Pw)p(ndy + e (2.18)

Similarly, by (B.4) and (2.17), we easily obtain

C i
DHORSv /R P log! @+ ¢*wp(dy + Ce™. (2.19)

The results (2.8) and (2.9) follows immediately from (2.10), (2.12), (2.18) and
(2.19), which ends the proof of Lemma 2.2.

Remark 2.2. By showing the estimate proved in Lemma 2.2, related to the so called
natural functional E(w(s), s), we have some nonnegative terms in the right-hand
side of (2.8) and this does not allow to construct a decreasing functional (unlike the
case of a pure power nonlinearity). The main problem is related to the nonlinear
term

1 P+ 1908 20692 1 =2 5T

| [w[”" log*(2 + ¢~ (Hw ) p(y)dy = — we P=Ts P71 f(@()w)p(y)dy.
satl Jgrn s Jrwy
To overcome this problem, we adapt the strategy used in [10-14,21]. Indeed, by
using the identity obtained by multiplying equation (1.1) by wp (y), then integrating
over R, we can introduce a new functional H,, (w(s), s) defined in (2.5), where
m > 0 is sufficiently large and will be fixed such that H,,(w(s), s) satisfies a
differential inequality similar to (1.22).

We will prove the following estimate on the functional J(w(s), s):

Lemma 2.3. For all s 2 max(—1log T, 1), we have

+3 —1 1
f—fixw@xsy—f———/ IVwFpUMy—Af/ w?p(y)dy
S 4s  Jrw 4s JrN

p—1
2(p + 1)sa+l

%J(W(S), 5) =

[, i g @2+ w2y + Za). - (2:20)
R

where X (s) satisfies

C C _
22(s) S5 / [w|P g 2 + ¢*w?)p(y)dy + — / w?p(y)dy + Ce ™.
N RN s< JrN

221

Proof. Consider s = max(—logT, 1). Note that J(w(s), s) is a differentiable
function and that we get

d 1 1
S Iw(s),s) = —- / wiwp(Ndy + = | w’o(y)dy.
ds s JrN 25 JrN
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From equation (1.18) and the identity (2.17), we conclude that

L)) =—/ IVl p(y)dy+—f w?p(y)dy
s s JRN (p—1)s Jrv

1
gt / | [wl” M log" 2 + ¢*w?)p(y)dy
R

1 2a 2
—(1 — dy.
2s2( p_l)/RNw p(y)dy

According to the expressions of E(w(s), s), ¢(s) defined in (2.3) and (1.20) and
the identity (2.17) with some straightforward computation, we obtain (2.20) where

+

Tas) = T(s) + D3(s), (2.22)

and

gy P T3 e _dusw)
Bl =202 S [ (Fegw) - L8 oy,

1 2a
E%(S) Z@(l - F) /RN wzp()’)d}’-

Thanks to (2.17) and (2.15), we deduce

Ti(s) < / lwP* ! 1og? (2 + ¢*w?)p(y)dy + Ce™*. (2.23)
]RN

gat+2

Hence, collecting (2.22) and (2.23), one easily obtains that 3, (s) satisfies (2.21),
which ends the proof of Lemma 2.3.

2.2. Existence of a Decreasing Functional for Equation (1.18)
In this subsection, by using Lemmas 2.2 and 2.3 , we will construct a decreasing
functional for equation (1.18). Let us define the functional

m(p+3)

Nyu(w(s),s) =s" 2 H,(w(s),s)+Am)e ", (2.24)

where H,, (w(s), s) is defined in (2.5), and m together with A = A(m) are constants
that will be determined later.
We now state the following proposition:

Proposition 2.4. There exist mg > 1, A(mg) > 0, S| = 1 and .| > 0, such that
forall s =s; 2 max(—logT, Sy), we have
)\.1 s+1 )
NG5+ D25+ 1) = N5 < =5 [ [ @onayae
K R

Al s+1 )
T T /RN [Vw|“p(y)dydr
s
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s+1
SWJH / f lw|P!log* 2 + ¢*w?)p(y)dydt

s+1
prasy / f w?p(y)dydr, (2.25)

where

b= w. (2.26)

Moreover; there exists Sy = S such that for all s 2 max(—log T, S), we have
Npp(w(s), s) = —1. (2.27)

Proof. From the definition of H,,(w(s), s) givenin (2.5), Lemmas 2.2 and 2.3, we
can write, for all s = max(—log T, 1),

4 s, ) <m(”2+ i

) H(()S)—*/ (@,w)*p(y)dy
N

mp=1 oo Comy 1 P+ 1oed 2,2
~(Gon )zt [, 1ol og -+ $Puhotdy

1 C C
i A )/ vulotdy - (= S5 = ) [ wtoa
+ (Com + Co)e™, (2.28)

where Cy stands for some universal constant depending only on N, p and a. We

first choose m such that ”:&;1:11)) —Cyp=0,s0

mo(p —1) _Colﬂo= (P—l _@)
2(p+ 1) Nap+D s

We now choose §; = Si(a, p, N) large enough (S| = 1), so that for all s = S,
we have

p—_l_@:()’ @__C0m0_9>0
8(p+1) s 8 s s

Then, we deduce that for all s = max(—log T, 1),

mo(p +3) 1
L (s s) < P ED g s)s) — & f @yw)2p(y)dy
ds 2s 2 JrN
A A
~ 2 vwPe(dy — 22 / w?p(y)dy
s JRN s JrN
A
- aiI/ [w|”*Hlog! 2+ ¢*w*)p(y)dy
S ]RN
+ (Como + Co)e ™, (2.29)

_soecmo mo(p—1)
where A¢ = inf (=g, prpEy ).
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By using the definition of Ny, (w(s), s) given in (2.24) together with the esti-
mate (2.29), we easily prove that for all s = max(—log T, S}),

d 1
SN w(s).8) £~ 5 /R @) p()dy
T /RN [Vw|“p(y)dy — ) /RN wp(y)dy

Ao
~ T fR wlP log? @ + ¢*w?)p(y)dy

, 1
e (A(mo) — Co(mo + 1)S—b). (2.30)

We now choose A(mqg) = Co(mo + 1)S ~b_ 5o we have

A(mg) — W >0, Vs> 2.31)
By integrating in time between s and s + 1 the inequality (2.30) and using (2.31),
we easily obtain (2.25). This concludes the proof of the first part of Proposition 2.4.
We prove (3.38) here. Arguing by contradiction, we assume that there exists
§1 2 max(—logT, $2) such that Ny, (w(s1), s1) < —1, where S, = S is large
enough.
Now, we consider

I(w(s),s) = s~ / wp(ydy, Vs 2 max(~logT, 1),
RN

where b is defined in (2.26). Thanks to (2.20) and (2.5), we have for all s >
max(—logT, 1)

d 1 C
SIWE5) 2 = (4 5 Hyyws).9) + 550 - D [ w?pdy
s 2s s " JrRN

p—1

£ (1=
+ (p+ l)s”"‘b(

G, / wlP ! Tog 2 + $*w?)p (y)dy.
A RN
(2.32)

Let us choose S» = S»>(a, p, N) is large enough, such that 1 — g—zl > % So, we
write for all s = max(—1logT, S»)

d —
STW6)9) Z =+ 9Ny )0 + 5oL [l o+ Put)p(ay.

1
2(p + Dsa*h Jg
(2.33)

Since the energy N, (w(s), s) decreases in time, we have N, (w(s), s) < —1, for
all s 2 s7. Then, for all s 2 §]

d —1
S Iw(s).s) Z p+3+

s - [J+1l (l2 2.2 d .
s 3(p 1 Dsath /RNIwI 0g" (2 + ¢ w ) p(y)dy

(2.34)
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Thanks to (B.4), (B.10) and (2.17), we get for all s = 5]
1 3
— | w”log* 2+ ¢*w?)p(y)dy = C / w|"F p(y)dy — C. (2.35)
54 RN RN

Therefore, by using (2.34) and (2.35), there exist S, > S, large enough such that

p+2-— ﬁ > 0, we have for all s = max(s7, S>)
2
d C +3
S 21+ G [ ey, 236)
ds S RN
Thanks to Jensen’s inequality, we infer
d b(p=1) 23
TIW(s).5) Z 1+ Cs (I(w(s), s)) . (2.37)
S

This quantity must then tend to oo in finite time, which is a contradiction. Thus
(3.38) holds. This concludes the proof of Proposition 2.4.

2.3. Proof of Proposition 2.5.

Based on Proposition 2.4, a bootstrap argument given in [24], we are able to
adapt the analysis performed in [9], to prove the following key proposition:

Proposition 2.5. Forall g 2 2, ¢ > 0 and R > 0 there exist &1 = €1(q, R) > 0,
ui(g, R, &) > 0and S3(q, R, €) = S such that, for all s = max(—1log T, S3), we
have

s+1

—e+1

(Ag.r.e) f @I dT < Ka(g, R, &)™ @R, Ve e (0,1,
S

where K3(q, R,¢e) depends on p,a,N,q,R,e,s1 = max(—logT,S;) and
lw(s Il g1.

To prove Proposition 2.5, we will proceed as in [9]. In fact, by using Proposi-
tion 2.4, we easily obtain the following Corollary

Corollary 3. For all s = max(—log T, S»), we have

—1 < N (w(s), s) = Ky, (2.38)

—Ks55? £ Hyy(wis), 5) < Kss?, (2.39)
s+1

/ / (1P + Gowy? + 0?) p(y)dyde < Kos*, (2.40)
K RN

1 s+1

= / lw|PT log” (2 + p*w?)p(y)dydr < Kes"™', (2.41)

5 RN

/ w?p(y)dy < K757, (2.42)

RN

L 10g @ + $wd)p(dy < € / IVw[*p(y)dy + Kss"™, (2.43)
N RN

54
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C
[ vutomay s S [ it o 2+ Putp ity + KostL - 244)
RN S ]RN

/R , IVw[*p(y)dy < Csb*?‘/ /R L @sw)?p(ndy + Kios"™, (2.45)

s+1 2
/ ( /R IVwle(dy)” £ Kis?H, (2.46)
1

s+1 2

g [ ([ e s @utpm) e < ke @47)
54 s RN

where b is defined in (2.26) and where K4, K5, K¢, ...K12 depend on p,a, N, s1 =
max(—logT, S1) and |lw(s1)| g1

Remark 2.3. Let us mention that, the estimates obtained in the above corollary are
similar to the ones obtained in the pure power case treated in [9] except for the
following features:

e The presence of the term K s”*! instead of K.
. . +1,
e In some estimates, we have the term F(u) instead of 4" in the pure power

+1
case. We easily overcome this problem thanks to the fgct that uf(u) — (p +
D [y f)dv ~ pz_‘;l lul?t 1 1og? 1 (2 4+ u?), as u — oo.

In order to prove Proposition 2.5, we introduce the following local functional:

Sy = [ (G0l + 5t = B R Gw )R 0p oy,
RV \2 2(p—-1
(2.48)
where ¥ € 65°(RY)
satisfies
1 on Bp
< < =
0 = Tﬂ()’) = 17 1//(}’) {O on RN\B2R s (24’9)

where R > (. An argument similar to that in [9], implies the following estimate:

Proposition 2.6. There exist positive constants K13 = K13(R) > 0 and S4 = S
such that, for all s 2 max(—log T, S4), we have

— Ki3(R)s"" < &y (w(s), 5) < Ki3(R)s"*, (2.50)
where K13 depends on p,a, N, R, s1 = max(—log T, S1) and ||w(s1)| g1-
Proof. Most of the steps of the proof are the same as in the pure power case treated
in [9] and some others are more delicate. For that reason, we leave the proof to

Appendix C.

With Proposition 2.6, we are in a position to claim the following:
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Lemma 2.7. There exists a positive constant K1a(R, &) > 0 such that, for all
s 2 max(—log T, S4)

@I, = Kia(R O IVwlTag  + Kia(R, 0)s”, Ve e 0, p— 1), (2.51)

Lr=¢+1(Bg) = (B2r)
where K14(R, €) dependson p,a, N, R, &, s1 = max(—log T, S1) and ||w(s1)| g1-

Proof. From (2.50) and the definition of &y in (2.48), we have for all s =
max(—log T, S4),

_(ptDs  2a

e st | F(pw)y?p(y)dy < C f . Vw2 p(ndy + Ki3(R)s"T. (2.52)
R R

By exploiting (B.10), we write for all s = max(—log T, Sy),

flM“”W%@@éCf IVw*y2o(n)dy + Ki3(R)s"™!
RN RN
+C(e)e™®, Vee(0,p—1). (2.53)

Thus, (2.51) follows from (2.53) and the property of ¥ . This conclude the proof of
Lemma 2.7

By (2.51), the proof of estimate (A4 g ) is available when we have

s+1
IVw@|24 . dr < Kis(q, R, &)s'> @R ¥s > max(—log T, S3), (2.54)
p L=(Bg)

for some uy(gq, R, €) > (b+ 1)q. Note from (2.46) that (2.54) already holds in the
case g = 2.
In order to derive (2.54) for all ¢ > 2, we need the following result:

Lemma 2.8. There exist positive constants K 16(R) > 0 and S5 = S4 such that, we
have

IVWi3a g,y S Clwdswy?llpi e,y + Kis(R)s"™!, Vs 2 max(—log T, $5).  (2.55)

Proof. Multiplying equation (1.18) with wp(y)¥?, integrating over RV and using
the definition of &y (w(s), s) given in (2.48), we write

4 2 3
‘/ Wwﬁw%omw=v———/ waswy?pdy + 22 e ). s)
RN p—1Jrn p—1

25(5)
2
C(p+ st

8 1 4a 2,2
+— wVw. Vi (y)dy — 1+ )/ w Y p(y)dy
p—1Jry p—1 (p—Ds" Jrny

/ 0[P Tog 2 + p*u?) ¥ 2o () dy
RN

22(s) 3(s)
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N 2(p+3) -t /N (Flgw) — pwf(pw)
R

- p=1 g p—T Sl ) wzwdy. (2.56)

B3s)
From (2.50), (C.12) and (2.42) we infer for all s = max(—log T, Sy),
TA(s) + 23(s) + 23 (s) £ K17(R)sP L. (2.57)

According to the the estimates (2.15) and the identity (2.17), we get for all s =
max(—log T, S4),

C

5
26 S o

/N lw[PT 1og? 2 + ¢?w?)p(y)dy + Ce™.  (2.58)
R

Hence, using (2.56), (2.57) and (2.58), yields for all s = max(—log T, S4),

2,2 < _ _(P+1)C2 / p+1 a 2.2y 2
/RN Vuly oy £ = S (1 s ) [ w17 log 2+ 62wy p(ndy
+ 4 wdswyZp(dy + K752+ + ce™5. (2.59)
p— L JRN

Taking Ss = Sy large enough such that 1 — > 0, we have for all s =

max(—log T, Ss),

(p+DHC
285

4
[ vurvtomy 2 [ s vudy + Kin(®s 4 ce
RN p—1Jry
Thus, (2.55) follows from the property of yr. This ends the proof of Lemma 2.8.

Now, we are ready to give the proof of Proposition 2.5.

Proof of Proposition 2.5:. [Proof of (2.54) for all ¢ = 2 by a bootstrap argu-
ment] The proof is obtained by following the same part in [9]. However, as ex-
plained before (see Remarks 2.3), in our case we have two additional problems.
Let R > 0 and suppose that we have

s+1
f V@175 . 47 S Kis(@. 4R, e)s"20489, vs > max(=log T, $3),
s 4R)

(2.60)

for some ua(q, 4R, &) > 0 and for some g = 2. ~
Combining (2.60) and (2.51), we write for all s =2 max(—log T, S3),

s+1
—e+1
/ @I AT S Kig(g, R, e)s" @89, Ve € (0, p = D(2.61)
N

forsome u3(q, R, ¢) > u2(q, R, €). where §3 = max(S3, S5). Thus, we use (2.40),
(2.61) and apply Lemma A.l witha =q(p—¢+1),f=p—e+1l,y=08=2
to get that for all s = max(—1log T, S3),
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—e—1
w2, < Kro(g, R, e)s" @RS vy < p—gp1 - F frl Ve, p—1),
(2.62)
for some pa(q, R, ) > u3(gq, R, ). Thanks to the Holder’s inequality,
1
|W2wasw||L1(132R) = ||1ﬂw||LA(BZR) X Hl/fa&w”LV(BZR)’ X + v =1,
(2.63)

with Lemma 2.8, (2.63) and (2.62), we have for all s = max(—log T, 53),

IVwlZa g, < Koo(g, r, )" OR8Ny dswl e g, ) + Kaola, r, e)s"*.
(2.64)

From now, we take A > 2 and we choose ¢ € (0, g9] small enough. Observe that
A > Pl gince A < p + 1. Let us now bound ||y 9 wlluz(B o By using Holder’s
mequalpty, we have

1 1-6 0

P L e A L
(2.65)
Pl = p';l and where
A—2 1-—
_ =2 tlmep) gy (2.66)

Mp—1+4¢€p)
Putting (2.64) and (2.65) together, we get for all s = max(—log T, $3),

IVwl}a g, SK20, R, s RN ydswl X Wl g,
+ Ka(q, R, &)s"*!. (2.67)

By integrating inequality (2.67) between s and s + 1, we obtain for all s >
max(—log T, S3),

s+1 ]
/ ||Vw(f)||Lz(B ydz < K»1(q, R, &)sHo@R-o4d
N

s+1 G(1-0)
[ ||Wasw||Lz(B X ||W3 w”LPl S(B R)d

I'(s)
+ K21(q, R, &)s+Da, (2.68)

forsome g > g. Leta = ﬁ and use Holder’s inequality in time, we obtain for
all s > max(—logT, S3),
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1

s+1 ) @/ pstl s6a AR
< _ _
r@ = ([ wangar) ([ ol g, 0r) " L=

(2.69)
From the inequalities (2.40), (2.68) and (2.69), we infer that for all s =
max(—logT, S3),
o+ 2q < ne(q,R,e)q st g0’ “L/
[ 190 g 7 <Ko, R @t ([ gl g, 0r
+ Kn(q, R, &)sTHa. (2.70)

Equipped with the arguments presented in the proof of Lemmas 6.5 and 6.6 in [9] and
by exploiting Corollary 3, it is straightforward to get, for all s
> max(—log T, §3),

s+1 qod’

s+1 -
»
[ g, dr <kn.reo) [ o
s s L= Bag)

+ K(q, R, e)s"*. (2.71)

1
T—a|w|”log“<2+w2w2>

By combining (2.71), (B.7) and the identity eiﬁsﬁ | f(pw)| = Si,,|wlp log* 2+
$?w?), we deduce that for all s > max(—log T, S3),

s+l 0o’ - SELy e |30 bt
/S sl e g, 47 S Kasla. R,s)/s [ WA L SHO R
(2.72)
where & = 202=D¢ Therefore,
p+l—ep
s+1 0 s+1 . i‘iﬁﬂi
qva — p+l—scp
[ il g0 = Kt e [ ([ it tay) T e
K s Bor
+K24(q, R, &)s"t!. (2.73)

Using together (2.51) and (2.73), we obtain

2pgha’

sl oo’ s+1 :
< pt+l—ep
/S 1 wsll T g, 47 = K2s(q. R, 8)/s IVwll g, 4T

(b+1)pgba’ bl
+ Kas5(q, R, &)(s pH=er +5777),

2pgha’
p+l—eip
q € lq, q+ﬁ].Then,byusingtheinequality,forallr €[1,29). X" £ C+CX™,

By Proposition 6.4 in [9], we have

< 2q, (for ¢1 small enough) for all

for all X > 0, we write for all s = max(—log T, $3), forall & € (0, &1],

s+1 s+1
Goa’ < 2q 2q(b+1)
[ v e < Kasta Ry [ VWIS g, A+ Koty RO

(2.74)



106 MoHAMED ALI HAMZA AND HATEM ZAAG

From (2.70) and (2.74), we have for all s = max(—log T, §3),

s+1 s+1 e
2G < wi(q.R.€)q 2q
/; ||VW(T)||L2(BR)dT = K27(q’ R,8)S (/s ||Vw||L2(B4R) dT)

+K27(g, R, £)s"8Re00),

(2.75)
Therefore, estimates (2.60) and (2.75) lead to the following:
s+1 % -
/ IVw (@IS g, d7 < Kas(g, R, e)sho@Rea-D), (2.76)
N
Thus, inequality (2.54) is valid for all g € [¢, g + %]. Repeating this argument,

we would obtain that (2.54) holds for all ¢ = 2. This concludes the proof of
Proposition 2.5. O

2.4. A Polynomial Bound for the H'(Bg) Norm of Solution of Equation (1.18)

Based on Proposition 2.5, we are in position to derive a polynomial bound for the
H ' (Bg) norm. More precisely, the aim of this subsection is to prove Proposition 2.1,

Proof of Proposition. 2.1. First, we use (2.40), Proposition 2.5 and apply Lemma

Alwithae =qg(p—-5+1,B=p—-5+1y =8 = 2 to get that, for all
s = max(—logT, S3),

_g_1
p;’ Ve € (0, 1],

2.77)

&
lws)ll By < K20(q. R, &)s"10@RD vy < p 5H1-

where 53 = max(S3, Ss5). Clearly, there exists &2 = &2(p, N, g) > 0 such that, for
all ¢ € (0, &3], we have g = 21’8—_8 — 1 = 2. Therefore, for all € € (0, , &;], for all

s = max(—log T, §3) we have

X lw(y, )P =¢dy < Kso(e, R)s™11 B9, (2.78)
R

O

We are now ready to Control of Vw in LZ(Bg). In fact, we use the Gagliardo-
Nirenberg inequality in order to claim the following:

Lemma 2.9. There exifts &3 = e3(p, N) € (0, &2] such that, for all ¢ € (0, €3], for
all s 2 max(—log T, S3) we have

B
/ Py, )Py < Koy (R, )5 20 / YAV (y, 5)dy)
RN R¥
+K31(R, £)s 20, 2.79)

where B = B(p, N,¢e) € (0,1) and 112 = p12(R, ) > 0.
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Proof. Lete € (0, 7). By interpolation, we write

1—
[ ooy < ([ vwoiort=a)' ([ weesra) ™ @80
RN RN RN

where
_rd—e—(p+l4+e) _r—(p+l+e
T r=(ptlte) T T r—(p+l-g)
where
Vs, ifN 23,
r= (2.81)

p+2,  ifN=2,

and where ¢ < r — p — 1. Exploiting the fact that there exists &, = &(p, N) €
(0, r — p—1) small enough such that for ¢ € (0, & ], wehavev = v(p, ¢) € [1, 2).
Therefore, by using the properties of i given by (2.49) and the estimate (2.78) we
get

f Y w(y, )P fdy < / lw(y, )IPT1=¢dy < K3(e, 2R)s*1E20 - (2.82)
RN Bar

Thanks to (2.80), (2.82) and the Sobolev embedding, we conclude

[, vwosrtay £ ka0 ( [ v@uo.)Pe)’. @83)
RN RV

where

re

e

Note that, by exploiting the inequality |V(1pw)|2 < 292 | Vw|? + 2|V |2w?, the
properties of ¥ given by (2.49) and the fact that | V||« < C, we obtain

f IV(vw(y,s))*dy £ C / 2 Vw(y, s)*dy + C f w?(y, 5)dy2.84)
RN RN

Bor

From (2.83), (2.84)and (2.42), we conclude

B
/ PAw(y, Py £ Kaae, Rys 4B ( / YAV (y, 5)ldy)
RN RN

+K33(e, R)s14ER), (2.85)
Now, if &3 < &; is chosen small enough such that 8 = % € (0, 1), the

estimate (2.85) implies (2.79). This ends the proof of Lemma 2.9.
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Proof of Proposition 2.1:. From (2.50), the definition (2.48) of the local functional:
&y (w(s), s), we see that for all s = max(—1log 7, S4),

(ptDs  2a

/ Y2 Vwl?p(ydy <2 / e 7T sy F(w)p(y)dy + 2K 13(R)s" .
RN RN
(2.86)
Thanks to (B.9) and (2.86) and the fact that p(2R) < p(y) < 1, forall y € Bag,
we conclude for all s = max(—log T, Sy)
2 2 < 2 pte+l b+1
N Yo IVw|dy = K34(R, ¢) y Vo lw(y, s)l dy + K34(R, &)s” ™.
R R
(2.87)
According to (2.87) together with Lemma 2.9 in the particular case when ¢ = ¢3,
we have for all s = max(—log T, S3)
f PAVwitdy < Ks(R, e3)s 25 ( / YV dy) 4 Kss(R, ex)st e,
RN RN
(2.88)

where B = B(p, N, e3) € (0, 1). It suffices to combine (2.88) and the fact that
B < 1, to obtain that for all s = max(—log T, S3)

112 (R.e3)

/R VIVwldy S KR, e3)s 7 (2.89)

Clearly, by combining (2.89), (2.42) and (2.49), we conclude (2.1), where © =
%’;g”, which yields the conclusion of Proposition 2.1. O

3. Proof of Theorems 1 and 2

In this section, thanks to polynomial estimate obtained in Proposition 2.1, we
prove Theorems 1 and 2 here. This section is divided into two parts:

e Insubsection 3.1, we prove Theorem 1. More precisely, based upon Proposition
2.1, we construct a Lyapunov functional for equation (1.18) and a blow-up
criterion involving this functional.

e In subsection 3.2, we prove Theorem 2.

3.1. A Lyapunov Functional

In this subsection, our aim is to construct a Lyapunov functional for equation
(1.18). Note that this functional is far from being trivial and makes our main contri-
bution. More precisely, thanks to the rough estimate obtained in the Proposition 2.1,
we derive here that the functional L(w(s), s) defined in (1.26) is a decreasing func-
tional of time for equation (1.18), provided that is s large enough.

Letusremark thatin Section 2, we construct a Lyapunov functional N, (w(s), s)
defined in (2.24), but we obtain just a rough estimate because the multiplier is
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not bounded. Nevertheless, the multiplier related to the functional L(w(s), s) is
bounded. Then, as we said above, the natural energy E(w(s), s) defined in (2.40)
is a small perturbation of L(w(s), s).

In order to prove that the functional L(w(s), s) is a Lyapunov functional, we
start by using the additional information obtained in Section 2, to write several
useful lemmas which play key roles in our analysis. More precisely, we start by
stating the following:

Lemma 3.1. For all r € [2,2%), forall s 275] = max(—log T, §1), we have
/RN lw(y, s)I"p(y)dy = Mys°", (3.

where 0 = u(a, p, N, %), M, depends on p,a, N, r and |w(s1)| 1 and where
2% = 2 if N >3 and2* = oo, if N = 2.

Throughout the proof we employ the following notations:
The ball in RY with radius R around the point z is denoted D(z, R) = {x €

RV, x—zlloo £ R}, where the infinity norm s givenby the formula ||x |0 = sup |x;|.
1<SiSN
Also, the ball in RY with radius R around the point z is denoted B(z, R) = {x €

N
Z xl.z. Finally, let us recall
i=1

that theses norms on R" are equivalent. In fact, we have

RV, |x —z| £ R}, where the norm is given by |x| =

Ixlloo < x| £ VNlxlloo,  Vx € RV, (3.2)

Proof. In order to obtain the estimate (3.1), we combine a covering technique and
the result obtained in Proposition 2.1.
First, we claim that RV = U,czvD(z, %) and the sequence (D(z, %)) are

zezZN
arbitrary pairwise sets are negligible. Letr € [2, 2*]. As animmediate consequence,

we write

X k] 4 d = X P} r d
/]RN Jwig (v )1 p(y)dy Xz:/D Jwig (v )1 p(y)dy

(z.h)

<> (s p) [D Ly Oy 3
<3

cezV  veDEd)
Note that using the definition (1.17) of wy,, we see that

forall y,z € RN, Wyo (¥ +2,8) = Wy tze—s2 (Vs s) (3.4
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From (3.2) and (3.4), forall z € RV, s > 5 = max(—log T, , §1)

[wy, (v, $)|"dy < / [wy, (v, $)|"dy =/ lwy, (v + 2, 8)|"dy
/D(z ) B(z,*N) B(0,*%)

= |w —s2(y, 8)|"dy. (3.5)
/B(O,‘/zﬁ) xXot+ze
Thanks to (2.2) and (3.5), we have for all z € R, s > 5] = max(—log T, El)

f sy (v ) dy < Mas™ (3.6)
D(z, %)

where 0 = u(a, p, N, %) and where M, depends on p,a, N and |[w(s))| g1. By
exploiting (3.6) and (3.3), we have for all xg, z € R, s > 5 = max(—log T, §1)

[ o)t pdy Shas™ 3 s piy) G7)
R zezN yeD@.3)

To complete the proof, it remains to control the right-hand side of (3.7). More

precisely, the term Z sup p(y). Using the fact that for all z € RY, for all
2ezN yeD@.3)

y € D(z, %), we have

1
Izlloo = Iyllos + 11y — zlloo = 1¥lloo + 5- (3.8)

Therefore, by using the basic inequality (a + b)2 < 2a% +2b%, foralla,b > 0,

we set

1.2 1
lzlIZ, < (Iyllee +5) §2||y||§o+5. (3.9)

In view of (3.9), (3.2), we have, for all z € RY, for all y € D(z, %), we have

11 1
> |z|2——. (3.10)

y? > -z

Due to (3.10) and to the definition of p given by (1.19), we conclude forall z € RV,

|22
sup p(y) £ Ce 88, (3.11)
yeD(z,%)

Thank to (3.11), we get

D s pMEC ) e

zezN yeD(z, 2) zeZN

2

N
]_[ Z — <C (3.12)

By combining (3.12) and (3.7), we easily obtain (3.1). This concludes the proof of
Lemma 3.1.

II/\
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Thanks to of Lemma 3.1, we are in position to state the following:

Lemma 3.2. For all s 257 = max(—log T, S1), we have

[ 17 gt 2+ g2 o+ uip )y Stast [ i ogt 2+ gPutp )y
R R

T Mys@tE, (3.13)
where, M3 depends on p,a, N and ||w(s1)| g1-

Remark 3.1. Let us mention that, in the first term on the right-hand side the choice
of the power 4—1L is not optimal. In fact, with the same proof, one can show the same

estimate with the power v, for any v > 0, instead of the power %. Let us denote

that, we can construct a Lyapunov functional, when we have the estimate above for

some power v such that v € (0, 1) instead of the power é—lt.

Proof Let e € (0, 1). By using the inequality log(2 + z2) < C + |z|*, for all
z € R, we conclude that
[ i gt @+ 92w o2+ whip()dy C [ 1wl log! 2+ 670 p )y
RN RN

+ / [w|PH+ 10g? (2 4 p2w?) p(y)dy. (3.14)
]RN

Furthermore, we apply the interpolation in Lebesgue spaces to get

2 1—¢
[ o+ 2utipmay = ([l o2+ ut)p0)ay)
RV RN

([, i@+ sudipooy) . (Bu15)

By combining(B.4), (B.9) and the inequality |z|?T1+¢ < 1 4 |z|PT1H2¢ for all
z € R, we obtain

1
= [ i ogt e gt pdy S €€ [l p(r)ay.

Sa
(3.16)

Since p < ps = %—f%, we then choose 4 small enough, such that for all ¢ € (0, e4]

we have p + 1 + 2¢ < 2* where 2* = %,ifNZSandZ* =00, if N = 2.

Therefore, estimate (3.1) implies that, for all s = 5] = max(—log T, §1), for all
¢ € [0, 4],

/N IwI”“”gp(y)dyé/N le”“p(y)der/N lw|P T2 5 (y)dy < Mas™,
R R R
(.17)

where o3 depends on p, a, N, &4 and M4 depends on p, a, N, &4 and [[w ()| g1
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By combining (3.15), (3.16) and (3.17), we deduce that, for all s > 5 =
max(—log T, S1), for all ¢ € (0, e4].

[ tog @+ 2wty < Mss ([l o' utioaay)
RN RN
(3.18)

Thanks to the basic inequality |ai|”|az|'™ < Clai| + Clas], for all aj,az € R,
for all v € (0, 1), we conclude that, for all s = §; = max(—1log T, S}), for all
e € (0, e4],

/ ]+ log? @ + ¢2wd) p(y)dy < Mes™ (s + f [l log? @ + @) p(y)dy).
RN RN
(3.19)

Now, we choose ¢5 € (0, £4], such that o3e5 < JT. Then, by (3.14) and (3.19), we

easily obtain (3.13). This concludes the proof of Lemma 3.2.

Thanks to estimate (3.13), we can improve the estimate (2.8) related to the control
of the time derivative of the functional E(w(s), s). More precisely, we prove the
following lemma:

Lemma 3.3. There exists S» > Sy such that foralls 25, = max(—logT, §2), we
have

d 1 M
—E(w(s),s) £ — = f @Byw)?p(dy + — [ lw|PT log? (2 + ¢?w?) p(y)dy
ds 2 JrN sati Jrw

C M
+ < / wp(ndy + o, (3.20)
N RN 57
where, M7 depends on p,a, N and ||w(s1)| g1.

Proof. By using the additional information obtained in (3.13), we are going to
refine the estimate related to Elz(s) and Ef(s) defined in (2.10). Let us mention
that the estimate (2.12) related to 211 (s) defined in (2.10) is acceptable and does
not need any improvement. More precisely, we write

2 309y Pty e / _ pwf(Pw)
2:1(5)“‘21(5)—19_16 sP-T RN(F(¢w) ol

2a  _(ths 20

p—1 p—1 _M
e TR INGUBEE S T

)p(y)dy

We attempt to group the main terms together. A straightforward computations
implies that

T(s) 4+ E7(s) = x1(5) + x2(9), (3.21)
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where
N d p+lq . ca—1 2.2 22_25
00 =y [ og @+ 02w (log 4 6P0d) = 2 ) o0y, (3.22)
_ (ptDs
Ko ls) = 32*1/ ((r+ DR@w) = ZFigw) = SFa@w) p()dy, (3.23)
p—1 RN N K

where F| and F; are defined by (2.13) and (2.14).

Note that, in (3.21) we grouped the main terms together. In fact, it is easy to
control the terms x2(s). However, the control of the term x (s) needs the use of the
additional information obtained in Lemma 3.2. More precisely, for all s = 5] =
max(—log T, S1), we divide RY into two parts

Al(s)={y € B| p®w’(y,5) £ 1} and Ay(s) = {y € B | p()w’(y.5) 2 1}. (3.24)
Accordingly, we write x1(s) = )(11 (s)+x lz(s), where

a

2s
17+11 a—1 2 2.2 log(2 2.2y
eEEl /A,@'w' o' 2+ ¢ (log@ + *0?) — - =)o),

xi(s) =

X = i+ g™ 2+ 62 (log2 + ) - =)o)

Gt
(p+ Dsa J a0

On the one hand, by using the definition of the set A;(s) given in (3.24), we
get, for all s =757,

s

lwP ! 1og? (2 + ¢?w?) < Co= 5 (s) logll 2 4+ ¢ (s)) < Ce™ 2. (3.25)

From (3.25) and the fact that 1 — 5 <1, we get

2s
(p—1) log2+p2w
xi(s) < Ce 2. (3.26)

On the other hand, by using the definition of the ¢ (s) given by (1.20), we write
the identity
2s 2alogs

log2 4+ ¢p*w?) — —— =log(2p ™% + w?) — . (3.27)
p—1 p—1

Now, by using the inequality ¢ (s) = 1 and (3.27), we write for all for all s = 57,
2
log(2 + ¢2w?) — —Sl < log(2 + w?) + Clogs. (3.28)
p—

Also, by using the definition of the set A, (s) defined in (3.24), we can write for all
s 2751, if y € Ay(s), we have

alogs

log(2 + ¢*w?) = log(¢(s)) = (3.29)

p—1 p—-1’

2s _ alogs ~ s

Clearly, the exists S > S| such that for all s = S, we have = o1 T
Therefore, by exploiting (3.28) and (3.29) we have for all 5 =75 = max(—logT,
$2),




114 MoHAMED ALI HAMZA AND HATEM ZAAG

C
X S / [w|P ! log* (2 + ¢*w?) log(2 + w?) p(y)dy

Clogs
afz / [w|P ! log" (2 + ¢*w?) p(y)dy. (3.30)

Note that, by using the fact x1(s) = x{ (s) + x{(s), (3.13), (3.26) and (3.30), we
get forall s 2755 = max(—logT, S»),

M. M.
0 £ 25 [l g @ gPutpidy + 27 (3D
sa+1 RN s%
Thanks to (B.5) and (B.6), we write
1 dw
;|F1(¢w)| +|F(pw)| = C + Cs—zf(¢>w). (3.32)

By (2.10), (3.32) and (2.17), we have, for all s = 57,

C _s
00 < fR wlP log" @+ $Put)p()dy + CeTE (333

The result (3.20) derives immediately from (2.10), (2.12), (3.31), (3.33), and the
identity (3.21), which ends the proof of Lemma 3.3

With Lemmas 2.3 and 3.3, we are in a position to prove Theorem 1.

Proof of Theorem 1:. By exploiting the de@ption of Lo(w(s), s) in (2.4), we can
write easily, for all s =275, = max(—log T, S7),

d d
%Lo(w(S),S) —Ew(s),s) + — J(w(?) §) = s—=J(w(s),s),

1
ds fd 25/
(3.34)

where J(w(s), s) = %I]RN w?p(y)dy. Lemmas 2.3 and 3.3 allows to prove that
forall s =75, = max(—logT, S>), we have

4 o) )<—1f @sw)2p(dy + L3 Loqw(s), s)

dsowx,s: 2 Jan sw)~p(y)dy 2\[01”YY
L Pt M C P (o 0d 2,2
Sa+%(2(p+1) R S)/lel log? (2 + ¢~ w”)p(y)dy

1, p+1  C N
7ﬁ(72(p—1)7ﬁ)/ﬂ-g wp(y)dy+ 7 T e,

54

Again, choosing §3 > §2 large enough, this implies that for all for all s =
max(—log T, S3), we have

d 1 p+3 M9
il < _Z 2 -
dsLO(w(S)’S) =3 /RN(asw) p(y)dy + 2s«/-Lo(w(S) s) + 1 (3.35)
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Recalling that
p+3
Lw(s), 5) = exp (5= ) Low(s). 5) +
NG %
we get from straightforward computations
d +3 +3 +3\d 46
7, Lw(s).5) = 712].“/5 exp (p )Lo(w(S), 5) + exp (pﬁ )d—Lo(w(s) 5) — 3s—4
(3.36)
Therefore, estimates (3.35) and (3.36) lead to the following crucial estimate
d 1 P43\ 46y 1
aL(w(s), 5) < -3 exp( / (Osw) p(y)d} + (Mg exp( N ) — ?)‘—%
(3.37)
) we then choose 0 large enough, so

)<exp(\/s_3

/5
) 49 <0, which yields, for all s > s3 = max(—log T, S3)

Since we have 1 < exp (

p+3

that Mo exp( %)
1
—L(w(s),s) < —E/R{N(asw)zp()’)d)’
O

S
A simple integration between s and s + 1 ensures the result. This concludes the

proof of Theorem 1.
We now claim the following lemma:
S3 such that, we have for all s =
(3.38)

Lemma 3.4. There exist M1y > 0 and Sy

max(.§4, —logT)
mo(W(s),s) = —Mip.

Proof. The argument is the same as the similar part in Proposition 2.4

3.2. Proof of Theorem 2
As in [9], by combining Theorem 1 and Lemma 3.4 we get the following

(3.39)

bounds:
Corollary 4. For all s =2 max(—log T, S4), we have
(3.40)

s+1
/ / [V + @w)? + w?) p(n)dydr < Mz,
(3.41)

IRN
s+1
/ lw|P T 1og? (2 + p*w?) p(y)dydr < Mi3
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f wo()dy < Mis, (3.42)
RN
1
G [ it gt Pt pdy < € [ IVuPotdy + s,
N RN RN
(3.43)
/ IVw|?p(y)dy < C\// (Osw)?p(y)dy + Mis, (3.44)
RN RN

C
[ vuieoiay < 5[ ol ogh @+ gPutio(dy + i, (349

s+1 2
| ([ 19ukrmy) < s (3.46)
s
1 s+1 | 5 5 2
g [ (L ey e tutpmay) dr S . G4
N

where M1y, M2, M3, ...M19 depend on p,a, N,s3 = max(—logT, §3) and
lw(s3) |l 1.

Let us denote that, the estimates obtained in the above corollary are similar
to the Corollary (3) except for the presence of the term K, s+ instead of M;.
Consequently, following the proof of Proposition 2.5 line by line we are in position
to prove the following:

Proposition 3.5. FoI allg 2 2, ¢ > 0 and R > O there exist e = €6(q, &) > 0,
there exists a time Ss(q, R, €) = Sa, such that for all s = max(—logT, Ss), we
have

s+1
et
B [ NI dr < M. R,
N

where M»y(q, R,€) depends on p,a,N,q,R,e,s3 = max(—logT,:S'\g)
and |w(s3)l 1.

Finally, we are in position to prove Theorem 2 by exploiting Lemma A.l and
Lemma A.2.

Proof of Theorem 2. First, we use (3.40), Proposition 3.5 and apply Lemma A.l
withae =qg(p—5+1),B=p—5+1,y =8 = 2to get that, forall s =
max(—logT, §5),

p—5-1

S Ve e (0, p—1), Vg 2(3.48)

&
< . _
Iw gy S M21(g. Roe). VA <p—>+1

Hence, for all ¢ € (0, p — 1), we have ¢ = w > 2. Therefore, the estimate
(3.48) implies

sup  [[w(D)|lppi1-e@y = M22(R,e).,  Vee (0,p—1). (3.49)
T€els,s+1]
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Let us recall the equation in w:
1 1 a __ps _a_
osw = Aw — Ey.Vw — —1(1 ——)w+e rlsrt f(p(s)w), (3.50)
p— s

where ¢ (s) and f are given in (1.20) and (1.2).
We now apply Lemma A.2 to w, with b = b(y) = %y and

Hy s, w) = ———(1 = Lyw + e P157T f(p(s)w).
p—1 s

From (B.7), we see that, for all ¢ € (0, p — 1), we have

[H(y, s, w)| £ CE)(Iw|”~"** + D(lw| + 1), Vs = max(—log T, 5).

Letdi =p+1—¢,a1 = # and B = % Thus, the first identity in (A.2)
holds with g(y, s, w) = C(e)(Jw(y, s)|P~1T¢ + 1). Since p < % then we can

choose g7 < g¢ small enough, such that the conditions % + % <landa; =1
hold. Moreover, for all s > max(—log T, §5) we have

s+1 P s+1 3 ﬁ
[ e ggdr sc e (/B (s, o) ldy) d
K B R

p—l+ey

scrc( sw w@lpgy) © - GSD
Tels,s+1]
By exploiting (3.51) and (3.49), we deduce that
s+1 P
/ g (@15, 5,7 < Mas(R. €7). (3.52)
N

Then the second condition in (A.2) holds. Therefore,

lw) Lo ) < Moy (R), Vs = max(tg —logT, o + §5)), (3.53)
1

for some 79 € (0, 1). By (3.53), we write
lweo (0, 5)| < Mas, Vs = max(tg — log T, 79 + ), (3.54)

for some 79 € (0, 1). From the fact that the above estimate is independent of xq
and the definition of wy, given by (1.17), we infer

lw(y, )| < Mas, VyeRY Vs >max(l1—logT,1+38s). (3.55)

This concludes the proof of Theorem 2. O

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.



118 MoHAMED ALI HAMZA AND HATEM ZAAG
A. Appendix

We recall the interpolation result from Cazenave and Lions [1] and the interior
regularity theorem in [6].

Lemma A.1. (Interpolation technique, Cazenave and Lions [1]) Letty > 0. Assume
that

ve L (lto, to + 11; LP(Bg)), dv e LY ([to, to + 11; L°(Bg))
forsome 1 < «, B,y,8 < o0o. Then
ve? (I, 1o+ 11; L*(Br))

forall . < Ag = % with y' = % and satisfies

to+1
sup vl prgg = C/

telro,to+1] fo

o 14
(V@I g5, + 1300 ) d7
for & < Xo. The positive constant C depends only on «, B8, v, 5, N and R.

The second one is an interior regularity result for a nonlinear parabolic equation:

Lemma A.2. (Interior regularity) Let v(x,t) € L‘X’((O, +00), L*(B R)) N
Lz((O, +00), H! (BR)) which satisfies

v —Av+bVu=H, (x,t)e Qg =Bg x (0, +00), (A.1)

where R > 0, |b(x,1)| < wyin Qg and |H (x,t,v)| < g(x, 1)(Jv| + 1) with

141 )
| e g dr S s Ve @400, (A2)
t

and%+%<l,andoﬂzl.1f

t+1
/ 10122, dT < 13, Vi € (0, +00). (A3)
t

and |11, 1o and 3 are uniformly bounded in t, then there exists a positive constant
C depending only on 11, 12, u3, &', B/, N, R and T € (0, 1) such that

[v(x, )| = C, V(x,1) € Bgjs x (7, +00).



The Blow-Up Rate for a Non-Scaling Invariant 119

B. Some Elementary Lemmas

Let f, F, F> be the functions defined in (1.2), (1.25) and (2.14). Clearly, we have

Lemma B.1. Let g > 1,

g+1
f 19w log? (2 + v2)dy ~ — log Q+u?), as |jul— oo, (B.I)
q+
Fay ~"LY 4wl = oo, (B.2)
p+1
c
Fy(u) ~% as |u| — oo. (B.3)
log? 2 + u?)
Proof. See Lemma A.1 in [15]. O

Thanks to (B.1), (B.2) and (B.3), we will give the first and the second order terms in
the expansion of the nonlinearity F (x) defined in (1.25), when |x| is large enough.
More precisely, we now state the following estimates:

Lemma B.2. Forall s 2 1, forall 7 € R,

C'o()zf (@(5)2)) < C+ F (¢(5)2) < C(1 + ¢ (s)2f (9(5)2)) . (B.4)

A6 <+ g0, (B.5)

Fr(¢(s)z) = C+C¢( )Zf(d)( )2), (B.6)

e‘f%lsﬁlf(qb(s)z)l SC(e)+ClzIP™,  VYee(0,p—1), (B.7)

[z|P7F < Ce‘%sp%llf(qb(s)z)l +C(e), Vee(,p—-1), (B.8)
_(ptDs  2a_

e T gpT F(¢>(s)z) < C(e) + ClzlPT*T!,  Vee (0, p—1), (B.9)

+D)s
2P~ < e T S ETR(g(9)2) + Ce), Yee 0, p—1),  (B.10)
where ¢, F, F| and F, are given in (1.20), (1.25), (2.13) and (2.14).
Proof. Note that (B.4) obviously follows from (B.2). In order to derive estimates
(B.5) and (B.6), considering the first case z2¢ (s) = 4, then the case z2¢ (s) < 4, we
would obtain (B.5) and (B.6) by using (B.1), (B.2) and(B.3). Similarly, by taking

into account the inequality log? (2 + u?) < Ce) + C(e)|u|® , we conclude easily
(B.7), (B.8), (B.9) and (B.10). This ends the proof of Lemma B.2. |

C. Proof of Proposition 2.6

Let us first derive the upper bound for & .
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Proof. (Proof of the upper bound for &) Multiplying (1.18) by 9; wyr?p(y) and
integrating over RY, we obtain

d
TGy (W(s), ) = - / @sw)* Y2 p(y)dy — 2 / dswVw. Vo (y)dy
K} RN RN

a

T f wiwyp(y)dy
(p— s Jrv

25(5)

MR = W /RN (Figw) — L2290y 2,04y

p—1 p+1
23 (s)
20 _tbs 20 _ dpwf(pw)
N / (Fpw) — 222000251y .
p—1 RN 2
23 (5)

(C.1)

Proceeding similarly as for the terms X } (s), E%(s) and Ef(s) defined in (2.10),
we get

d 1
— &y (w(s),s) = — —/ Y (@w)p(y)dy — 2/ dswy Vir.Vwp(y)dy
ds 2 RN RN
C
+— f Y2 w P log! 2+ ¢*w?) p(y)dy
S RN
C
+ = / vrw?p(y)dy + Ce™. (C.2)
S RN
Using the fact that 2ab < “Tz + 4b?%, we obtain
1
—200wy VY. Vw < 292 @)’ + 4VY P VP,
which implies, for all s = max(—log T, 1),

d C
S W(s),s) C/ IVwlPp(ydy + — f lw|”*' log" 2 + ¢p*w?) p(y)dy
s RN A RN
C
+ 5 [ ey ce, (C3)
N RN

where C = C(a, p, N, |¥|lL=, VY| Lo).
By combining (C.3), (2.40) and (2.41), we infer for all s = max(—1log T, S»)

s+1 d
/ — &y (w(r), T)dr < Q1s°H1. (C.4)
s ds
From the definition of & given in (2.48), using the fact that, F(¢pw) 2> 0, we have

2 1 2 1 2
S o9 Wi [ (51908 4 3] porar,
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By the definition of H,, (w(s), s) given in (2.5), exploiting (2.39), we write for all
s 2 max(—log T, S)

Ep(w(s).5) = C{ Hyy (w(s). ) + 5 f W p(y)dy +e P s f F(¢w)p(y>dy}
RN ]RN

(s 2a

< QasPhp cem T 5T [ F(pw)p(y)dy. (C.5)
]RN

Integrating the inequality (C.5) from s to s + 1 and using (2.17), (B.4) and (2.41)
we get, for all s = max(—log T, S3)

s+1
/ Ey(w(r), T)dr < Q35"

By using the mean value theorem, we derive the existence of o (s) € [s, s + 1] such
that

s+1
Ey(w(o(s)),0(s)) = / &y (w(r), T)dT. (C.6)

Let us write the identity, for all s = max(—1log T, S»)
S d
Sy (w(s), s) =&y (w(o(s)),o(s)) + / : d—éip(w(f) 7)dr. (C.7)
o(s
By combining (C.6), (C.7) and (C.4), we infer, for all s = max(—log T, S3)
Ep(w(s),s) = < Qs (C8)
This concludes the proof of the upper bound for &,. O

It remains to prove the lower bound.
[Proof of the lower bound for & |
Consider now, for all s = max(—1logT, 1),

1
Ay =5 [ P vRemay.

Multiplying equation (1.18) with 2w, integrating on RY and using the same
argument as in the proof of Lemma 2.3 yields

d 1
Efw(w(s),s) > — p gw(w(s) s) + P 571 ¢ —)/ w2y p(y)dy
-1
* W( >/ lwl”* log" @ + ¢*w?)y? p(y)dy
4
T /RN wVw.Vyp(y)dy. (C9)

Therefore, there exists 5'2 > §; large enough, such that forall s = max(—log T, 5’2),
we have
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-1
—fw(ww $) _Z(—flm /R |w|P* log 2 + ¢*w?)y?p(y)dy
+ 4
_ ph+1 Ey (w(s),s) — ) /]RN wVw. Vi (y)dy.

(C.10)

Furthermore, after some integration by parts, we write
- 4/N wVw.Vigp(y)dy = 2/N w? div (¥ (y) Vi)dy
R R

_2 / W Vy 2p(yndy +2 / WY AYp()dy — / WYy VPp()dy.
]RN RN RN
(C.11)

Thanks to the estimates [| |2 + [ AY 2 o + VY 200 + 7. V¥ 20 < C,(C.11)
and (2.42), we have for all s = max(—log T, S‘z),

| -4 / WV Vpp()dy| £ € / Wo(dy < 05" (C.12)
RN RN

Using (C.10) and (C.12), we obtain for all s = max(—log T, 52),

d p— .
aﬂx[x(w(s),s) 2 W/R lw|PT 1 1og? (2 + ¢?w?) Y2 p(y)dy
+
- pr &y (w(s),s) — QOs. (C.13)

Let us define the following functional:

Gy (w(s),s) =

,8) + 0Os, (C.14)

where ¢, (w(s), s) is defined in (2.48).

We claim that the function of %, (w(s), s) is bounded from below by some constant
M, where M is a sufficiently large constant that will be determined later. Arguing
by contradiction, we suppose that there exists a time s* > max(—log 7, S») such
that 4, (w(s*), s*) = —Q, for some Q > 0. Then, we write

Gy (w(s).s) < —Q + f %%(w(r), Ddr, Vs > 5" (C.15)

If we now compute the time derivative of %, (w(s), s) we get for all s = s*,

p+3 b+ 1)(p+3
—%/,(w(s) s) = T Séﬁ/,(w(s),s) — %éﬁp(w(s),s). (C.16)

From the definition of & given in (2.48), using (B.4) and (2.17) we have for all
s = 5%,

b+ D(p+3)
-

Eywis).s) < / wlP* 1og? 2 + g2ud) Y p(y)dy + Ce=. (C.17)

a+b+2
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Thanks to (C.4) we conclude for all s > s*,

S 1 d
/* ma&p(w(r), 7)dT < Qg(s — s¥). (C.18)

Moreover, from (2.41), we obtain for all s = s*,

Fol
f e fR w7 og? @+ ¢?w)y? p(y)dydr < Q7(s —5%). (C.19)

§*

Integrating the identity (C.16) over [s*, s] and combining (C.17), (C.18) and (C.19)
we deduce that

)
d
/ d—%,(w(r), 7)dr < Qg(s —s%), Vs = s*. (C.20)
s* dT
Combining (C.13), (C.15) and (C.20) we infer for all s = s*,

d C
S (),8) 2 0= 086 =5+ — gy /R [wl”* ! log* 2+ ¢*w)y?p(ndy. (C.21)

Thanks to (B.4) and (B.10), we have for all s > s*, that

1 3
— [ wP M og? @+ ¢*wHyPp(ndy = C / w|“T Y2 p(y)dy — Cs.
S RN RN
(C.22)
Due to Jensen inequality, (C.21) and (C.22) we find for all s = s*,

p+3

d ~
I W)s) 20— 0o(s =5+ Co(Hw)9) T (€23)

where Q = Q — Cs.
It is interesting to denote that we easily prove that the solution of the differential
inequality

W(s) 2 1+ Ceh™ (s), s> s

h(s*) 20

blows up in finite time before

400 d
S=S*+/ —EZS*-FT*.
0

p+3

1+ Ceé#

Now, we choose Q = QoT* + Cs5 + 1 to get 0 — Qo(s — s*) = 1 for all
s € [s* s*+T7*].

Therefore, %y (w(s), s) blows up in some finite time before s* 4+ 7*. But this
contradicts with the global existence of w. This implies (2.50), and we complete
the proof of Proposition 2.6. O
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