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Abstract

This paper studies the uniform andweak Lopatinskiı̆ conditions associated with
classical (Lax) shock fronts of arbitrary amplitude for compressible hyperelastic
materials of Hadamard type in several space dimensions. Thanks to the seminal
works of Majda (Mem Amer Math Soc 43(281):v+93, 1983, 41(275):iv+95, 1983)
and Métivier (Trans Am Math Soc 296:431–479, 1986, Commun Partial Differ
Eqs 15(7):983–1028, 1990, Stability of multidimensional shocks, in: Freistühler
H, Szepessy A (eds) Advances in the theory of shock waves, vol 47 of progress
in nonlinear differential equations and their applications. Birkhäuser, Boston, pp
25–103, 2001), the uniform Lopatinskiı̆ condition ensures the local-in-time, mul-
tidimensional, nonlinear stability of such fronts. The stability function (also called
Lopatinskiı̆ determinant) for shocks of arbitrary amplitude in this large class of
hyperelastic materials is computed explicitly. This information is used to establish
the conditions for uniform and weak shock stability in terms of the parameters of
the shock and of the elastic moduli of the material.
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1. Introduction

In this paper, we consider planar shock fronts occurring in an ideal, non-thermal,
compressible hyperelastic medium in several space dimensions. Shock waves are
important in many applications such as gas dynamics, acoustics, material sciences,
geophysics and even in medicine and health sciences. They appear as idealized,
abrupt disturbances (discontinuous, in the absence of dissipation effects) which
carry energy and propagate faster than the characteristic speed of the medium in
front of them. In the mathematical theory of hyperbolic systems, shock waves are
represented by weak solutions to nonlinear systems of conservation laws which sat-
isfy classical jump conditions of Rankine-Hugoniot type plus admissibility/entropy
conditions of physical origin (see, e.g., [10,27,87] and the references therein). A
fundamental property from both themathematical and physical perspectives is their
stability under small perturbations. The shock stability theory has its origins in the
physics literature and, more concretely, in the context of gas dynamics, where shock
waves for the (inviscid) Euler equations constitute the main paradigm. The inviscid
shock stability analysis for gas dynamics (at least from a formal viewpoint) dates
back to the mid-1940s (cf. [11,86]) and was thereafter pursued by many physi-
cists and engineers in the following decades (for an abridged list of references, see
[29,32,38]). The nonlinear theory of stability and existence of shock fronts for gen-
eral systems of conservation laws started with the seminal work of Majda [70,71]
(see also the nonlinear analysis of Blokhin [14] for the equations of gas dynamics)
and was later extended and revisited by Métivier [74–76]. As a result from their
pioneering work, it is now known that the nonlinear stability of shock fronts de-
pends upon the Lopatinskiı̆ conditions for linear hyperbolic initial boundary value
problems [62,68].

Given a small multidimensional smooth perturbation impinging on the shock
interface, onemay askwhether it leads to a local solutionwith the same shock struc-
ture (smooth regions separated by a modified, curved shock discontinuity), or if
this structure is destroyed. By a suitable change of coordinates (a shock localization
procedure permitted by the finite speed of propagation and originally conceived by
Erpenbeck [32]), the transmission problem can be reduced to an initial boundary
value problem in a half space. The resulting mixed problem is non-standard, in
the sense that the conditions at the boundary are of differential type in the shock
location, expressing the Rankine-Hugoniot jump conditions across the shock. Still,
the linearized problem can be treated by a normal modes analysis resulting into the
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uniform and weak Lopatinskiı̆ conditions for L2 well-posedness of the linearized
problem. Majda [71] named the latter the uniform and weak Lopatinskiı̆ condi-
tions for shock stability. Under the uniform (linearized) stability condition, Majda
[70] proved the local-in-time existence and uniqueness of uniformly stable shock
waves for general nonlinear systems (satisfying some block structure condition)
by means of a fixed-point argument and a suitable iteration scheme. The weak
Lopatinskiı̆ condition, in contrast, is equivalent to the absence of Hadamard-type
[45] ill-posedness for the problem and in this case the shock is called weakly sta-
ble. Hence, the nonlinear stability problem reduces to verifying the linear stability
conditions, which can be recast in terms of an analytic function in the frequency
space known as the Lopatinskiı̆ determinant (or stability function). The uniform
Lopatinskiı̆ condition plays an important role in the stability of viscous shock pro-
files as well (in which the Lopatinskiı̆ determinant arises as a limit of associated
Evans functions for the viscous linearized problem), as shown by Zumbrun and
Serre [104] (see also [102,103] and the references therein). The original works by
Majda [70,71] pertain to classical (or Lax) shocks. It is to be noted, however, that
the analysis and methods have been extended to other situations and the theory
now encompasses non-classical (undercompressive and over-compressive) shocks,
vortex sheets, phase boundaries and detonation fronts (cf. [7–9,21–23,34,35]).
For completeness, Appendix A contains a summary of the stability conditions for
multidimensional (Lax) shock fronts as well as the definition of the Lopatinskiı̆ de-
terminant. A detailed account of the methodology and their numerous implications
can be found in the monograph by Benzoni-Gavage and Serre [10].

In the case of the equations of hyperelasticity, the literature on (multidimen-
sional) shock stability is scarce. Corli [20] proved that the elastodynamics equations
for hyperelastic materials satisfy the block structure of Majda [71] and examined
the stability of small-amplitude shocks for St. Venant-Kirchhoff materials, verify-
ing for this particular model the general result of Métivier [75], which assures that
all sufficiently weak extreme shocks are stable. Other studies on small-amplitude,
weakly anisotropic elastic shocks can be found in [64]. In a later contribution,
Freistühler and the first author [35] studied the Lopatinskiı̆ condition and stability
of hyperelastic phase boundaries, which can be identified as non-classical shocks of
undercompressive type (cf. Freistühler [34]). The fundamental difference with Lax
shocks is that, apart from the Rankine-Hugoniot jump conditions, for phase bound-
aries one has to determine an extra jump condition in the form of a kinetic relation
(or kinetic rule; see also [7,8]). The stability conditions found in [35] have been
numerically verified for martensite twins in two [36] and three space dimensions
[82], under perturbations of the kinetic equal area rule. There is a recent result on
the stability of quasi-transverse elastic shocks subjected to dissipation (viscosity)
effects [16], which makes use of Evans functions techniques. Up to our knowledge,
there are no other results (either numerical or analytical) on stability of hyperelastic
shocks in the literature. In this work, we study for the first time the stability con-
ditions for classical shocks fronts of arbitrary amplitude within hyperelastic media
belonging to the large class of compressible Hadamard materials.
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Compressible hyperelastic materials of Hadamard type are characterized by
stored energy density functions of the form

W (U ) = μ

2
tr (U�U )+ h(detU ), (1.1)

where U ∈ R
d×d , with detU > 0, denotes the deformation gradient of the elastic

material in dimension d ≥ 2, tr (·) is the trace function and μ > 0 is a positive
constant known as the shear modulus. The volumetric density function h = h(J ),
for J = detU ∈ (0,∞), accounts for energy changes due to changes in volume.
In this paper, we assume the following about the function h:

h ∈ C3((0,∞); R), (H1)

h′′(J ) > 0, for all J > 0, (H2)

h′′′(J ) < 0, for all J > 0. (H3)

Hypothesis (H1) is a minimal regularity requirement. The convexity of the volu-
metric energy density function (H2) is a sufficient condition for the material to be
strongly elliptic. In the materials science literature, those energies that satisfy con-
ditions (H1) and (H2) are known as compressible Hadamard materials. Hypothesis
(H3) can be interpreted as a further material convexity property (see Remark B.5
below), which is needed for the shock stability analysis.

The term Hadamard material was coined by John [57] (based on an early de-
scription by Hadamard [46]) to account for a large class of elastic media where
purely longitudinal waves may propagate in every direction, in contrast with other
elastic, compressible, isotropic materials which, subjected to large homogeneous
static deformations, underlie purely longitudinal waves only in the directions of
the principal axes of strain (cf. Truesdell [98]). Knowles [60] proved, for instance,
that this class of materials admits non-trivial states of finite anti-plane shear. The
most natural interpretation of a compressible elastic material of Hadamard type is,
however, as a compressible extension of a neo-Hookean incompressible solid as
described by Pence and Gou [81]. For convenience of the reader, we have included
in Appendix B a comprehensive and self-contained introduction to compressible
Hadamard materials from the viewpoint of the theory of infinitesimal strain, in
which we extend to arbitrary space dimensions the nearly incompressible versions
of the neo-Hookean models which are compatible with the small-strain regime. It
is to be observed, though, that the class of Hadamard materials considered in this
paper also includes materials which may undergo large volume changes. Section 7
contains a list of energy densities which can be found in the materials science
literature and belong to the compressible Hadamard class.

The goal of this paper is, therefore, to determine the stability conditions for
shock fronts in compressible non-thermal Hadamardmaterials in terms of the shock
parameters and the elastic moduli of the medium, just as in the case for isentropic
gas dynamics [10,32,72]. In d ≥ 2 space dimensions, the n = d2 + d dynamical
equations of hyperelasticity outnumber the Euler equations for isentropic fluid flow
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(n = d + 1) and the calculations are thereby much more involved. Nevertheless,
in this work we explicitly compute the Lopatinskiı̆ determinant associated to such
configurations. We start (see Sect. 2) by describing the dynamical equations of
hyperelasticity and, notably, theLegendre-Hadamard condition on the stored energy
density, which guarantees the hyperbolicity of the system of conservation laws. We
verify this condition in any space dimension, d ≥ 2, and prove that the constant
multiplicity condition of Métivier [76] is also fulfilled. Section 3 is devoted to
describe classical shocks ocurring in this class of materials. We introduce a scalar
parameter α ∈ R, α �= 0, which completely determines the shock and its amplitude
once a base elastic state is selected. We call it the intensity of the shock. It is shown
that only extreme classical shocks are possible and that they satisfy the strict Lax
entropy conditions. In Sect. 4 we perform the normal modes analysis prior to the
establishment of the stability results. In particular, we compute all the necessary
ingredients to assemble the Lopatinskiı̆ determinant associated to the shock front.
A few remarks are in order. One of the main contributions of [35] is the observation
that the normal modes analysis for hyperelastic shocks can be performed on a lower
dimensional frequency manifold which encodes all the stability information and
rules out some spurious frequencies of oscillation. This property is particularly
important in the case of phase boundaries which are associated to subsonic speeds
and to non-extreme characteristic fields, reducing the otherwise cumbersome (but
still hard) calculations on the full system of dimension, d2 + d. In the present case
of Lax shocks, in which the characteristic fields are necessarily extreme, it is well-
known that the Lopatinskiı̆ determinant reduces to a scalar product of two complex
vector fields (cf. [10,35,88]). Therefore, there is no considerable profit from such
reduction and we opted to compute the full Lopatinskiı̆ function in the frequency
space. Still, the normal modes analysis is convoluted and Sect. 4 is devoted to it.1

We have tried to optimize the exposition and to keep the details to a minimum,
but without sacrificing the direct verification and validation of the results. The
reader will be a better judge if we succeeded or not. The remarkable feature is
that it is possible to explicitly perform all the calculations for this large class of
elastic materials, even for shocks of arbitrary amplitude (there are no restrictions on
|α|, except for those imposed by natural orientation preserving considerations; see
Proposition 3.8 below). These calculations result into the complete characterization
and analysis of the Lopatinskiı̆ determinant for classical Hadamard shocks, which
yields, in turn, our main stability conclusions. This is the content of the central
Sect. 5. For instance, it is proved that (just as in the case of isentropic gas dynamics
[10,72]) all Lax shocks are, at least, weakly stable. This implies that the shocks are
never violently unstable with respect to multidimensional perturbations. Moreover,
we introduce a material (scalar) stability parameter, ρ = ρ(α) (see Definition 5.1
below), which determines the transition from weak to uniform shock stability. In
gloss terms, our main result (see Theorem 5.13 below for its precise statement) can
be described as follows:

1 as Benzoni-Gavage and Serre point out, “...all methods require some care and are a little
lengthy"; [10], p. 431.
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Theorem. For a compressible hyperelastic Hadamard material satisfying assump-
tions (H1), (H2) and (H3), consider a classical (Lax) shock with intensity α �= 0.
If ρ(α) ≤ 0 then the shock is uniformly stable. In the case where ρ(α) > 0, the
shock is uniformly stable if and only if a material condition holds. Otherwise the
shock is weakly stable.

Of course, in the case of uniformly stable shocks the stability conclusions are
also nonlinear, inasmuch as the Majda-Métivier theory applies. In section 5.5 we
verify the stability conditions for the Ciarlet-Geymonat [18] and Blatz [13] models,
both belonging to the class of Hadamard materials, and exemplifying elastic media
for which there is either uniform stability for all shocks, or a transition to weak
stability. Finally, some conclusions and general remarks can be found in Sect. 6.

On notation

The unit imaginary number is denoted by i ∈ C, i2 = −1, and i, j ∈ Z indicate
integer indices. {ê j }d

j=1 denotes the canonical basis ofR
d and Id denotes the identity

d × d matrix, for each d ∈ N, d ≥ 2.Md+ denotes the set of all real d × d matrices
with positive determinant. In this paper, the elements of a real matrix A will be
denoted as Ai j and A j will denote the j-th column vector. We slightly modify the
customary notation and the principal invariants of a real d ×d matrix A, understood
as the coefficients appearing in its characteristic polynomial, will be denoted as
I (1)(A) = tr A, I (d−1)(A) = tr (Cof A) or I (d)(A) = det A.Wedenote the cofactor
matrix of any real square matrix A ∈ R

d×d to be (Cof A)i j = (−1)i+ j det(A′
(i, j)),

1 ≤ i, j ≤ d, where A′
(i, j) is the (d − 1)× (d − 1)matrix obtained by deleting the

i-th row and the j-th column of A. Hence,

(Cof A)� A = A(Cof A)� = (det A)Id . (1.2)

For any a, b ∈ R
d , a⊗b ∈ R

d×d denotes the standard tensor product matrix whose
(i, j)-entry is ai b j . For a complex number λ, we denote complex conjugation by
λ∗ and its real and imaginary parts by Re λ and Im λ, respectively. Real matrices
are denoted by capital roman font letters (e.g. A ∈ R

d×d ), except for the first
Piola-Kirchhoff stress tensor, denoted by σ . Complex matrix fields in the space of
frequencies will be denoted with calligraphic letters (e.g., A ∈ C

n×n). Complex
transposition of block matrices are indicated by the symbol ∗ (e.g., A∗), whereas
simple transposition is denoted by the symbolA�. For any (scalar or matrix valued)
function g of the state variables u, the jump across a shock discontinuity will be
denoted as �g(u)� := g(u+) − g(u−). Throughout this paper we use the non-
standard symbolU ∈ R

d×d to denote the deformation gradient of an elasticmaterial
(usually denoted with the symbol F in the literature). For convenience of the reader
we have kept the notation used in [35] for the shock stability analysis, because we
constantly refer to the formulae and the results in that paper. The same notation
was also used by John [58] in his classical paper on elasticity theory.
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2. Elastodynamics and Hyperbolicity

2.1. The equations of elastodynamics

The elastic body under consideration is identified at rest by its reference con-
figuration, which is an open, connected set � ⊆ R

d , d ≥ 1. Here d ∈ N denotes
the dimension of the physical space and, typically, d = 1, 2 or 3. Since we are in-
terested in the multidimensional stability of shock fronts we assume that d ≥ 2 for
the rest of the paper. The motion of the elastic body is described by the Lagrangian
mapping coordinate, (x, t) �→ y(x, t), y : �× [0,∞) → R

d , that is, y = y(x, t)
denotes the position at time t > 0 of the material particle that was located at x ∈ �
when t = 0. It determines the deformed position of the material point x ∈ �. It
is assumed that the Lagrangian mapping is smooth enough, say, at least of class
C2(�× (0,∞);Rd) and one-to-one with a locally Lipschitz inverse. The local ve-
locity at the material point is defined as v(x, t) := yt (x, t), v : �× [0,∞)→ R

d ,
or component-wise, as

vi (x, t) = ∂yi (x, t)

∂t
, i = 1, . . . , d.

The local deformation gradient, U (x, t) := ∇x y(x, t), U : �× [0,∞) → R
d×d ,

is a real d × d matrix whose (i, j)-component is given by

Ui j (x, t) = ∂yi

∂x j
(x, t), 1 ≤ i, j ≤ d.

Following the notation in [35], U j ∈ R
d will denote the j-th column of U , that is,

U j =
⎛
⎜⎝

U1 j
...

Ud j

⎞
⎟⎠ ∈ R

d , j = 1, . . . , d.

By physical considerations (namely, that the material does not change orientation
and that it is locally invertible [17]) one usually requires that

J = J (U ) := detU > 0. (2.1)

Thus, it is assumed that U (x, t) ∈ M
d+ for all (x, t) ∈ �× (0,∞).

Supposing that no thermal effects are taken into consideration and in the absence
of external forces, the principles of continuum mechanics (cf. [17,27,91,99]) yield
the basic equations of elastodynamics,

ytt − divxσ = 0, (2.2)

for (x, t) ∈ � × [0,∞) where σ is the (first) Piola-Kirchhoff stress tensor and
whose (i, j)-component is denoted as σi j , 1 ≤ i, j ≤ d. System (2.2) is a short-cut
for the system of d equations,
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∂2yi

∂t2
−

d∑
j=1

∂σi j

∂x j
= 0, i = 1, . . . , d, (2.3)

expressing conservation of momentum.
An elastic material is called hyperelastic if there exists a single stored en-

ergy density function W : M
d+ → R, defined per unit volume in the reference

configuration, from which all stress fields can be derived. In particular, the first
Piola-Kirchhoff stress tensor (cf. [17,99]), σ = σ(U ), derives from W as

σ(U ) = ∂W

∂U
, U ∈ M

d+,

or component-wise as

σi j (U ) = ∂W

∂Ui j
, 1 ≤ i, j ≤ d.

We adopt the notation in [35], under which σ j = σ(U ) j ∈ R
d denotes the j-th

column of σ(U ); more precisely,

σ(U ) j =
⎛
⎜⎝

WU1 j
...

WUd j

⎞
⎟⎠ , j = 1, . . . , d.

Basic restrictions on the function W include, for instance, the principle of frame
indifference (cf. [17,27,80]),

W (U ) = W (OU ), for all O ∈ SOd(R), U ∈ M
d+,

where SOd(R) denotes the set of all orthogonal real d × d matrices (rotations);
normalization, requiring W (U ) ≥ 0 for all U ∈ M

d+ (cf. [17,80]); and material
symmetry or isotropy (see [80,99]),

W (U ) = W (U O), for all O ∈ SOd(R), U ∈ M
d+.

It is assumed that W is objective, so that it depends on the deformation gra-
dient U only through the right Cauchy-Green tensor, C = U�U (see, for exam-
ple, Ogden [80]), which is symmetric positive definite by definition and measures
the length of an elementary vector after deformation in terms of its definition in
the reference configuration. Furthermore, it is well-known that the energy density
function, W = W (U ) = W̃ (C), of any frame-indifferent, isotropic material, is
a function of the principal invariants of the symmetric Cauchy-Green tensor C ,
W = W (I (1), . . . , I (d)). This is called the Rivlin-Ericksen representation theorem
[85] (see Ciarlet [17], section 3.6 for the statement and proof in dimension d = 3,
and Truesdell and Noll [99], section B-10, p. 28, in arbitrary dimensions.)
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2.2. Legendre-Hadamard condition and hyperbolicity

Thehyperbolicity of system (2.2) is a necessary condition for thewell-posedness
of the Cauchy problem and the corresponding numerical methods of Godunov type
[27,39]. The criterion for hyperbolicity of system (2.2) is related to another con-
dition on the stored energy density function, known as the Legendre-Hadamard
condition [27,91]. In order to state the latter we follow the notation of [35] and
express the second derivatives of the energy density in terms of the following d ×d
matrices defined by

B j
i (U ) := ∂σ j

∂Ui
=
⎛
⎜⎝

WU1 j U1i · · · WU1 j Udi
...

...

WUd j U1i · · · WUd j Udi

⎞
⎟⎠ ∈ R

d×d , (2.4)

for each pair 1 ≤ i, j ≤ d. That is, the (l, k)-component of the matrix B j
i is

WUl j Uki = ∂2W/∂Ul j∂Uki , for each fixed 1 ≤ i, j ≤ d. Notice that the matrices

Bi
i (U ) are symmetric, Bi

i (U )
� = Bi

i (U ) for all U and all i , and that B j
i (U ) =

Bi
j (U )

� for all U and all i, j by definition. Whence, the d × d acoustic tensor can
be defined as

Q(ξ,U ) :=
d∑

i, j=1

ξiξ j B j
i (U ) ∈ R

d×d (2.5)

for all ξ ∈ R
d , U ∈ M

d+. Note that the acoustic tensor is symmetric.

Definition 2.1. (Legendre-Hadamard condition) The energy density function W =
W (U ) satisfies the Legendre-Hadamard condition at U ∈ M

d+ if

η�Q(ξ,U )η > 0, for all ξ, η ∈ R
d\{0}. (2.6)

In other words, the acoustic tensor is positive definite for all frequencies ξ �= 0,
η �= 0.

Remark 2.2. The Legendre-Hadamard condition is tantamount to the convexity of
W along any direction ξ⊗ηwith rank one. It is also said that W is a rank-one convex
function of the deformation gradient U . For an hyperelastic medium, this condi-
tion is equivalent to the strong ellipticity of the operator y �→ divx (σ (∇x y)) (cf.
Dafermos [26]) and, consequently, in the context of elastostatics the rank-one con-
vexity condition is also called strong ellipticity (see, e.g., [4,25,90]). Even though
it is well-known that rank-one convexity of the energy function is equivalent to the
hyperbolicity of the equations of elastodynamics for an hyperelastic material (see
[27,35,91] or Lemma 2.4 below), this property is difficult to verify in practice, even
in the case of isotropic materials (cf. [25,28,30,39,53]). Necessary and sufficient
conditions of strong ellipticity for two-dimensional isotropic materials have been
discussed in [3,25,28,61], and for three-dimensional media in [25,95,101]. It is
to be noted, however, that the elastic media considered in this paper constitute a
wide class of materials for which the rank-one convexity assumption is remarkably
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easy to verify even in higher space dimensions (see Section 2.3 below). Finally,
we observe that the Legendre-Hadamard condition plays a crucial role in delim-
iting “stability” boundaries for weak local minima in the calculus of variations
(cf. Giaquinta and Hildebrandt [40]; see also [5,6,33,42,80]) assuring its impor-
tance in elasticity theory, in general, and in the analysis of elastic shocks and phase
boundaries, in particular.

The equations of elastodynamics (2.2) can be recast a first-order system of
conservation laws of the form (A.1) in Appendix A below when they are written in
terms of the local velocity v and of the deformation gradientU (see [20,35,36,82]).
Indeed, upon substitution we arrive at

Ut − ∇xv = 0,
vt − divx σ(U ) = 0,

(2.7)

where t ∈ [0,∞), x ∈ � ⊆ R
d , which is subject to the additional physical

constraint

curlx U = 0. (2.8)

Equations (2.7) and (2.8) are concise forms of the d2 + d first order equations of
motion,

∂tUi j − ∂x j vi = 0, i, j = 1, . . . , d,

∂tvi −
d∑

j=1

∂x j

( ∂W

∂Ui j

)
= 0, i = 1, . . . , d,

(2.9)

and of the constraints

∂xk Ui j = ∂x j Uik, i, j, k = 1, . . . , d, (2.10)

respectively. Therefore, if we denote

u =

⎛
⎜⎜⎜⎝

U1
...

Ud

v

⎞
⎟⎟⎟⎠ ∈ R

d2+d , f j (u) = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

v
...

0
σ(U ) j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
d2+d , j = 1, . . . , d,

where the vector v appears in the j-th position in the expression for f j (u), system
(2.7) can be written as a system of n = d2+d conservations laws of the form (A.1),
with conserved quantities u ∈ R

n and fluxes f j (u) ∈ C2(U;Rn), 1 ≤ j ≤ d. Here
the open, connected set of admissible states is

U = {(U, v) ∈ R
d×d × R

d : detU > 0}.
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Under this notation, the Jacobians A j (u) := D f j (u) ∈ R
n×n are given by

A j (u) = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0 Id
...

0
B j
1 (U ) · · · B j

d (U ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
(d2+d)×(d2+d)

for all j = 1, . . . , d (see [35] for details). Notice that the Jacobians depend on
u = (U, v)� only through the deformation gradient. Thus, with a slight abuse of
notation we write, from this point on,

A j = A j (U ), U ∈ M
d+, j = 1, . . . , d.

The symbol (A.2) is then defined as

A(ξ,U ) =
d∑

j=1

ξ j A j (U ), ξ ∈ R
d , U ∈ M

d+.

As discussed in [35], due to technical reasons that pertain to the applicability of
the stability theory of shocks, we also require the following constant multiplicity
property.

Definition 2.3. (constant multiplicity assumption)Theenergydensity functionW =
W (U ) satisfies the constantmultiplicity property atU if, for all frequencies ξ ∈ R

d ,
ξ �= 0, the eigenvalues of the acoustic tensor Q = Q(ξ,U ) are all semi-simple
(their geometric and algebraic multiplicities coincide) and their multiplicity is in-
dependent of ξ and U .

Lemma 2.4. Suppose that W = W (U ) satisfies the Legendre-Hadamard condition
(2.6) and the constant multiplicity assumption. Assume that for each (ξ,U ) ∈
R

d\{0} × M
d+, the associated acoustic tensor Q = Q(ξ,U ) has k distinct semi-

simple positive eigenvalues, 0 < κ1(ξ,U ) < . . . < κk(ξ,U ), 1 ≤ k ≤ d, with
constant multiplicities m̃l , 1 ≤ l ≤ k, such that

∑k
l=1 m̃l = d. Then system (2.7) (or

equivalently, system (2.2)) is hyperbolic with characteristic velocities (eigenvalues
of the symbol A(ξ,U )) given by:

(i) ã0(ξ,U ) = 0 with constant multiplicity m̃0 = d2 − d;
(ii) ã1(ξ,U ) = −√

κk(ξ,U ) < . . . < ãk(ξ,U ) = −√
κ1(ξ,U ) < 0, each with

constant multiplicity m̃l , 1 ≤ l ≤ k; and,
(iii) 0 < ãk+1(ξ,U ) = √

κ1(ξ,U ) < . . . < ã2k(ξ,U ) = √
κk(ξ,U ), each with

constant multiplicity m̃k+l := m̃l , 1 ≤ l ≤ k.

Proof. See Lemma 2 and Corollary 2 in [35]. ��
We immediately have
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Corollary 2.5. If W = W (U ) satisfies the Legendre-Hadamard condition (2.6)
and the constant multiplicity assumption for each U ∈ M

d+, then system (2.7)
is hyperbolic in the connected open domain U of state variables. Moreover, the
characteristic velocities can be relabeled as

a1(ξ,U ) := ã1(ξ,U ) = −√κk(ξ,U ),

...

ak(ξ,U ) := ãk(ξ,U ) = −√κ1(ξ,U ),
ak+1(ξ,U ) := ã0(ξ,U ) ≡ 0,

ak+2(ξ,U ) := ãk+1(ξ,U ) = √
κ1(ξ,U ),

...

a2k+1(ξ,U ) := ã2k(ξ,U ) = √
κk(ξ,U ),

so that

a1(ξ,U ) < . . . < ak(ξ,U ) < ak+1(ξ,U )

= 0 < ak+2(ξ,U ) < . . . < a2k+1(ξ,U ),

for each (ξ,U ) ∈ R
d\{0} × M

d+, denoting the 2k + 1 distinct eigenvalues of
A(ξ,U ), with constant algebraic (and geometric) multiplicities m̃l for 1 ≤ l ≤ k,
m̃k+1 = d2 − d and m̃k+1+l := m̃l for 1 ≤ l ≤ k with

∑k
l=1 m̃l = d.

2.3. Strong ellipticity of compressible Hadamard materials

Compressible hyperelastic materials of Hadamard type (cf. [48,57]) are char-
acterized by energy density functions of the form (1.1) whereμ > 0 is the constant
shear modulus and h is the volumetric energy density satisfying hypotheses (H1)
and (H2). In the present context, condition (H1) is a minimal regularity require-
ment needed for the stability calculations. Assumption (H2) is a sufficient convexity
condition for the material to be strongly elliptic as we shall see below. From its defi-
nition, it is then evident that any energy density W for this class of elastic materials
satisfies the principles of frame indifference, material symmetry and objectivity.
For a discussion on the physical model and its main properties, see Appendix B.

Let us now compute the acoustic tensor for the class of compressible Hadamard
materials and verify the Legendre-Hadamard condition in any space dimension. It is
already known that, for Hadamard materials with energy density of the form (1.1),
condition (H2) is equivalent to Legendre-Hadamard condition for all deformations
(see, e.g., [2,15,56]). In this paper, we also provide a proof of this fact in view
that the calculation of the acoustic tensor and of its eigenvalues is mandatory for
the shock stability analysis (see Corollary 2.11 below). The contributions are, (i)
that our proof holds for any space dimension d ≥ 2, and, (ii) that we also verify
the constant multiplicity assumption (see Definition 2.3). We start by proving an
auxiliary result.
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Lemma 2.6. For any U ∈ M
d+ with J = detU > 0 it holds that

∂ J

∂Ui j
= (Cof U )i j , (2.11)

for all 1 ≤ i, j ≤ d, and

∂

∂Uqi
(Cof U )pj = 1

J

(
(Cof U )qi (Cof U )pj − (Cof U )pi (Cof U )q j

)
, (2.12)

for all 1 ≤ i, j, p, q ≤ d.

Proof. Formula (2.11) follows directly from expression (1.2) above. Let us prove
(2.12). Differentiating the relation

(
Cof U

)
U� = J Id with respect to Uqi and

multiplying from the right by Cof U we obtain

∂

∂Uqi

(
Cof U

)
U�Cof U + Cof U

( ∂

∂Uqi
U�)Cof U =

( ∂ J

∂Uqi

)
Cof U,

that is,

J
( ∂

∂Uqi
(Cof U )

)
+ Cof U

(
êi ⊗ êq

)
Cof U = (Cof U )qiCof U.

Solving for ∂
∂Uqi

(Cof U ) yields

∂

∂Uqi
(Cof U ) = 1

J

(
(Cof U )qiCof U − Cof U

(
êi ⊗ êq

)
Cof U

)
,

for any 1 ≤ q, i ≤ d. Therefore, for all 1 ≤ p, j ≤ d,

∂

∂Uqi
(Cof U )pj = ê�

p
∂

∂Uqi
(Cof U )ê j

= 1

J

(
(Cof U )qi ê�

p (Cof U )ê j − ê�
p (Cof U )

(
êi ⊗ êq

)
(Cof U )ê j

)

= 1

J

(
(Cof U )qi (Cof U )pj − ê�

p ((Cof U )êi )(ê
�
q (Cof U ))ê j

)

= 1

J

(
(Cof U )qi (Cof U )pj − (Cof U )pi (Cof U )q j

)
.

��
Lemma 2.7. For a compressible Hadamard material in dimension d ≥ 2 the ma-
trices (2.4) are given by

B j
i (U ) =μδ j

i Id + h′′(J )
(
(Cof U ) j ⊗ (Cof U )i

)+
+ h′(J )

J

(
(Cof U ) j ⊗ (Cof U )i − (Cof U )i ⊗ (Cof U ) j

)
,
(2.13)

where J = detU > 0, (Cof U )k denotes the k-th column of the cofactor matrix

Cof U and δ j
i is the Kronecker symbol, δ j

i =
{
1, i = j,

0, i �= j.



956 R.G. Plaza & F. Vallejo

Proof. By definition of the matrices (2.4), and by Corollary B.3 in Appendix B and
Lemma 2.6, for each 1 ≤ p, q ≤ d it holds that

B j
i (U )pq = ∂σpj

∂Uqi
= μ∂Upj

∂Uqi
+ ∂

∂Uqi

(
h′(J )(Cof U )pj

)

= μδ
j
i δ

q
p + h′′(J ) ∂ J

∂Uqi
(Cof U )pj + h′(J ) ∂

∂Uqi
(Cof U )pj

= μδ
j
i δ

q
p + h′′(J )(Cof U )qi (Cof U )pj

+ h′(J )
J

(
(Cof U )qi (Cof U )pj − (Cof U )pi (Cof U )q j

)
.

(2.14)

Now, since

(
Cof U

)
pi

(
Cof U

)
q j =

(
(Cof U )i ⊗ (Cof U ) j

)
pq
,

for all 1 ≤ i, j, p, q ≤ d, substituting into (2.14) we arrive at

B j
i (U )pq =μδ j

i δ
q
p + h′′(J )

(
(Cof U ) j ⊗ (Cof U )i

)
pq

+

+ h′(J )
J

((
(Cof U ) j ⊗ (Cof U )i

)
pq

−
(
(Cof U )i ⊗ (Cof U ) j

)
pq

)
,

yielding the result. ��
Corollary 2.8. (a) In dimension d = 2 and for each U ∈ M

+
2 we have

Bi
i (U ) = μI2 + h′′(J )

(
(Cof U )i ⊗ (Cof U )i

)
, i = 1, 2

B2
1 (U ) = h′′(J )

(
(Cof U )2 ⊗ (Cof U )1

)
+ h′(J )(ê2 ⊗ ê1 − ê1 ⊗ ê2)

B1
2 (U ) = B2

1 (U )
�.

(b) In dimension d = 3 and for each U ∈ M
+
3 we have

Bi
i (U ) = μI3 + h′′(J )

(
(Cof U )i ⊗ (Cof U )i

)
, i = 1, 2, 3

B2
1 (U ) = h′′(J )

(
(Cof U )2 ⊗ (Cof U )1

)
+ h′(J )[U3]×

B3
1 (U ) = h′′(J )

(
(Cof U )3 ⊗ (Cof U )1

)
− h′(J )[U2]×

B2
3 (U ) = h′′(J )

(
(Cof U )2 ⊗ (Cof U )3

)
+ h′(J )[U1]×

B1
2 (U ) = B2

1 (U )
�, B1

3 (U ) = B3
1 (U )

�, B3
2 (U ) = B2

3 (U )
�,

where, for any vector b = (b1, b2, b3)� ∈ R
3, [b]× is the skew-symmetric matrix

that represents the vector cross product, that is, [a]× =
(

0 −b3 b2
b3 0 −b1−b2 b1 0

)
.
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Lemma 2.9. (acoustic tensor for Hadamardmaterials)For any Hadamard material
in dimension d ≥ 2 its acoustic tensor is given by

Q(ξ,U ) = μ|ξ |2Id + h′′(J )
((
(Cof U )ξ

)⊗ (
(Cof U )ξ

))
, (2.15)

for ξ ∈ R
d , ξ �= 0, U ∈ M

d+.

Proof. First we notice that

Bi
i (U ) = μId + h′′(J )

(
(Cof U )(êi ⊗ êi )(Cof U )�

)

B j
i (U )+ Bi

j (U ) = h′′(J )
(
(Cof U )(êi ⊗ ê j + ê j ⊗ êi )(Cof U )�

)
, i �= j.

Upon substitution of these formulae into the definition of the acoustic tensor (2.5),

Q(ξ,U ) =
d∑

i, j=1

ξiξ j B j
i (U ) =

d∑
i=1

ξ2i Bi
i (U )+

∑
i �= j

ξiξ j

(
B j

i (U )+ Bi
j (U )

)

= μ
( d∑

i=1

ξ2i

)
Id + h′′(J )(Cof U )

( d∑
i=1

ξ2i (êi ⊗ êi )
)
(Cof U )�+

+ h′′(J )(Cof U )
(∑

i �= j

ξiξ j (êi ⊗ ê j + ê j ⊗ êi )
)
(Cof U )�

= μ|ξ |2Id + h′′(J )(Cof U )
( d∑

i, j=1

ξiξ j (êi ⊗ ê j )
)
(Cof U )�

= μ|ξ |2Id + h′′(J )(Cof U )(ξ ⊗ ξ)(Cof U )�

= μ|ξ |2Id + h′′(J )
(
(Cof U )ξ

)⊗ (
(Cof U )ξ

)
,

for all ξ ∈ R
d , ξ �= 0, U ∈ M

d+, as claimed. ��

Lemma 2.10. For each U ∈ M
d+, ξ ∈ R

d , ξ �= 0, the eigenvalues of the acoustic
tensor of a Hadamard material are κ1(ξ,U ) = μ|ξ |2, with algebraic multiplic-
ity equal to d − 1, and κ2(ξ,U ) = μ|ξ |2 + h′′(J )

∣∣(Cof U )ξ
∣∣2, with algebraic

multiplicity equal to one.

Proof. By inspection of expression (2.15) for the acoustic tensor, which is of the
formaId+b(w⊗w)witha, b ∈ R andw ∈ R

d , one applies Sylvester’s determinant
identity [1] to obtain

det
(
Q(ξ,U )− κId

) = det
(
(μ|ξ |2 − κ)Id + h′′(J )

(
(Cof U )ξ

)⊗ (
(Cof U )ξ

))

= (μ|ξ |2 − κ)d−1(μ|ξ |2 − κ + h′′(J )
∣∣(Cof U )ξ

∣∣2),
yielding the result. ��
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Corollary 2.11. If the energy density function of an hyperelastic Hadamard mate-
rial satisfies assumptions (H1) and (H2) then it satisfies the Legendre-Hadamard
condition (2.6) and the constant multiplicity assumption.

Proof. Since for all ξ �= 0 the eigenvalues of the acoustic tensor are strictly positive,
it clearly satisfies the Legendre-Hadamard condition (2.6). Regarding the constant
multiplicity assumption, notice that κ2(ξ,U ) has algebraic and geometric multi-
plicities equal to one for each U ∈ M

d+, ξ �= 0. Also notice that (Cof U )ξ �= 0 and
hence (Cof U )ξ ⊗ (Cof U )ξ has rank equal to one. This implies that the geometric
multiplicity of κ1(ξ,U ) is d − 1 for each U ∈ M

d+, ξ �= 0. This shows that κ1 is a
semi-simple eigenvalue with constant multiplicity. ��
Remark 2.12. The significance of Corollary 2.11 is precisely that, for this large
class of compressible hyperelastic materials and in any space dimension d ≥ 2, the
equations of elastodynamics are hyperbolic with constant multiplicity in the whole
open set of admissible states, U = {(U, v) ∈ R

d×d × R
d : detU > 0}, allowing

us to consider elastic shocks of arbitrary amplitude.

As a by-product of Lemma 2.10 and Corollary 2.11 we have the following:

Lemma 2.13. For each U ∈ M
d+, ξ ∈ R

d , ξ �= 0, the eigenvector of the acoustic
tensor of a Hadamard material associated to the simple eigenvalue κ2(ξ,U ) =
μ|ξ |2 + h′′(J )

∣∣(Cof U )ξ
∣∣2 is given by w(ξ,U ) := (Cof U )ξ ∈ R

d×1.

Proof. Follows by direct computation:

Q(ξ,U )w =
[
μ|ξ |2Id + h′′(J )

((
(Cof U )ξ

)⊗ (
(Cof U )ξ

))]
w

= μ|ξ |2w + h′′(J )(w ⊗ w)w
= (μ|ξ |2 + h′′(J )|w|2)w
= κ2(ξ,U )w.

��

3. Classical Shock Fronts for Compressible Hadamard Materials

In this section we describe classical (or Lax) non-characteristic shock fronts
for compressible Hadamard materials. Elastic shock front solutions of the general
form (A.4) (see Appendix A) can be recast in terms of the deformation gradient
and the local velocity as (cf. [20,35,82]),

(U, v)(x, t) =
{
(U−, v−), x · ν̂ < st,

(U+, v+), x · ν̂ > st,
(3.1)

where ν̂ ∈ R
d , |ν̂| = 1, is a fixed direction of propagation, s ∈ R is a finite

shock propagation speed and (U±, v±) ∈ M
d+ × R

d are constant values for the
deformation gradient and local velocity satisfying (U+, v+) �= (U−, v−). The
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dynamics of such fronts are determined by the classical Rankine-Hugoniot jump
conditions (A.5). Since

�u� =

⎛
⎜⎜⎜⎝

�U1�
...

�Ud�
�v�

⎞
⎟⎟⎟⎠ , � f j (u)� = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

�v�
...

0
�σ(U ) j �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, for all 1 ≤ j ≤ d, (3.2)

then it is easy to verify that the Rankine-Hugoniot conditions (A.5) take the form
(see [35,82])

−s�U� − �v� ⊗ ν̂ = 0,
−s�v� − �σ(U )�ν̂ = 0,

(3.3)

expressing conservation across the interface, together with the additional jump
conditions

�U� × ν̂ = 0, (3.4)

expressing the constraint (2.8). The jump conditions (3.3) determine the shock
speed s ∈ R uniquely.

In addition, thanks to Lemma 2.4 and Corollary 2.5, (strict) Lax entropy con-
ditions (A.6) hold if there exists an index p such that

ap−1(ν̂,U
−) < s < ap(ν̂,U

−),
ap(ν̂,U

+) < s < ap+1(ν̂,U
+),

where 1 ≤ p ≤ 2k + 1 and al(ν̂,U ), 1 ≤ l ≤ 2k + 1 denote the 2k + 1 distinct
eigenvalues of A(ν̂,U ) as relabeled in Corollary 2.5. In other words, to have strict
inequalities in (A.6)we require the shock speed to be non-sonic and to lie in between
distinct characteristic velocities.

The nonlinear stability behavior of the configuration solution (3.1) is controlled
by the Lopatinskiı̆ conditions discussed in Section A and it is based on the normal
modes analysis of solutions to the linearized problem around the shock front. Such
conditions determine whether small perturbations impinging on the shock interface
produce solutions to the nonlinear elastodynamics equations (2.7) which remain
close and are qualitatively similar to the shock front solution (well-posedness of the
associated Cauchy problem with piecewise smooth initial data). Thanks to finite
speed of propagation and since we are interested in the local-in-space, local-in-time
evolution near the shock interface, from this point on we assume that the reference
configuration is the whole Euclidean space, � = R

d , without loss of generality.
Following [35], we make some simplifying assumptions. For concreteness and

without loss of generality we assume that the shock front propagates in the normal
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Table 1. Distinct semi-simple eigenvalues a j (U ) defined in Lemma 2.4 and Corollary 2.5
with their corresponding constant multiplicities m j

Eigenvalue a j Algebraic multiplicity m j

a1(U ) = −
√
μ+ h′′(J )

∣∣(Cof U )1
∣∣2 m1 = 1

a2(U ) = −√
μ m2 = d − 1

a3(U ) = 0 m3 = d2 − d
a4(U ) = √

μ m4 = d − 1

a5(U ) =
√
μ+ h′′(J )

∣∣(Cof U )1
∣∣2 m5 = 1

direction of the half plane {x1 = 0} and, hence, ν̂ = ê1. Thus, the shock front
solution (3.1) has now the form

(U, v)(x, t) =
{
(U−, v−), x1 < st,

(U+, v+), x1 > st,
(3.5)

where (U+, v+) �= (U−, v−) and it satisfies Rankine-Hugoniot jump conditions
(3.3) together with the curl-free jump conditions (3.4). In this case with ν̂ = ê1,
these conditions now read

−s�U1� − �v� = 0,

−s�v� − �σ(U )1� = 0,

�U j � = 0, for all j �= 1.

(3.6)

In view of Lemma 2.10, let us define (with a slight abuse of notation)

κ1(U ) := κ1(ê1,U ) = μ,
κ2(U ) := κ2(ê1,U ) = μ+ h′′(J )

∣∣(Cof U )1
∣∣2, U ∈ M

d+, (3.7)

denoting the two distinct semi-simple eigenvalues of the acoustic tensor Q(ê1,U )
with constant multiplicities m̃1 = d − 1 and m̃2 = 1, respectively. Henceforth,
the (distinct) characteristic velocities defined in Lemma 2.4 and Corollary 2.5 are
described in Table 1.

An important consequence of the structure of the characteristic fields is the
following:

Lemma 3.1. For compressible Hadamard materials, all Lax shock fronts are nec-
essarily extreme.

Proof. From the expressions for the characteristic velocities computed above, it
is clear that Dua2 = Dua3 = Dua4 = 0 for all U ∈ M

d+. Therefore, the j-
characteristic fields with j = 2, 3, 4 are linearly degenerate. In such cases weak
solutions of form (3.1) correspond to contact discontinuities for which a j (U+) =
s = a j (U−). Hence, any classical, non-characteristic shock that satisfies strict Lax
entropy conditions (A.6) is necessarily associated to an extreme characteristic field
with j = 1 or j = 5. ��



Stability of Shock Fronts for Hadamard Hyperelastic Materials 961

For convenience, let us denote the characteristic fields evaluated at the constant
states at each side of the shock as

κ±
i := κi (U

±), i = 1, 2,

a±
j := a j (U

±), j = 1, . . . , 5,

so that

a±
1 = −

√
κ±
2 , a±

2 = −√
μ, a±

3 = 0, a±
4 = √

μ, a±
5 =

√
κ±
2 .

In view of Lemma 3.1 a strict classical shock is necessarily associated to an
extreme principal characteristic field with index either p = 1 or p = 5. For
concreteness and without loss of generality, we assume from this point on that the
shock front (3.5) is an extreme Lax shock associated to the first characteristic field,
p = 1, or, in short, a 1-shock (see also [37]). In such a case, Lax entropy conditions
(A.6) read

s < a−
1 ,

a+
1 < s < a+

2 ,
(3.8)

or equivalently,

s < −
√
μ+ h′′(J−)

∣∣(Cof U−)1
∣∣2,

−
√
μ+ h′′(J+)

∣∣(Cof U+)1
∣∣2 < s < −√

μ.

(3.9)

Notice, in particular, that these conditions imply that s < 0 and s2 �= μ.
Lemma 3.2. Consider an elastic 1-shock, (U±, v±, s), for a compressible Hadamard
material, with (U+, v+) �= (U−, v−), J± = detU± > 0, s2 �= μ, satisfying
Rankine-Hugoniot conditions (3.6) and Lax entropy conditions (3.9). Then there
exists a parameter value, α ∈ R, α �= 0, such that

�U� = α((Cof U+)1 ⊗ ê1
)
,

�J� = α∣∣(Cof U+)
1

∣∣2. (3.10)

Moreover, the shock speed satisfies

s2 = μ+ 1

α
�h′(J )�. (3.11)

Proof. From expression (B.5), the jump of the Piola-Kirchhoff stress tensor across
the shock is given by

�σ(U )� = μ�U� + h′(J+)Cof U+ − h′(J−)Cof U−.

Therefore, the jump of its first column across the shock is

�σ(U )1� = μ�U1� + h′(J+)(Cof U+)1 − h′(J−)(Cof U−)1.
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From jump conditions (3.6) we know that U+
j = U−

j for all j �= 1. This implies
that

(Cof U+)1 = (Cof U−)1. (3.12)

Making use of jump relations (3.6) we arrive at

(s2 − μ)�U1� − �h′(J )�(Cof U+)1 = 0. (3.13)

By hypothesis s2 �= μ (it is a Lax shock) and hence �h′(J )� �= 0 (otherwise one
would have �U1� = 0 and �v� = 0, a contradiction with (U+, v+) �= (U−, v−)).
This shows that the vectors �U1� and (Cof U+)1 are linearly dependent. Therefore
there exists α �= 0 such that

�U1� = α(Cof U+)1.

The jump condition �U j � = 0 for j �= 1 implies that

U+ = U− + α((Cof U+)1 ⊗ ê1
)
,

yielding the first relation in (3.10). Substitute �U1� = α(Cof U+)1 �= 0 in (3.13)
to obtain (3.11).

Finally, from (1.2)weclearly have the relation J = ê�
1 (J Id)ê1 = ê�

1 U�(Cof U )ê1 =
U�
1 (Cof U )1 and, therefore,

J− = (U−
1 )

�(Cof U−)1 = (U−
1 )

�(Cof U+)1
= (U+

1 − α(Cof U+)1)�(Cof U+)1
= (U+

1 )
�(Cof U+)1 − α∣∣(Cof U+)1

∣∣2

= J+ − α∣∣(Cof U+)1
∣∣2,

yielding the second formula in (3.10). This shows the lemma. ��
Remark 3.3. Suppose that one selects (U+, v+) ∈ M

d+ × R
d as a base state.

Lemma 3.2 then implies that the shock is completely determined by the param-
eter value of α �= 0, which measures the strength of the shock, that is, �U�, �v� =
O(|α|). Indeed, given (U+, v+) ∈ M

d+ × R
d and α �= 0, we apply Rankine-

Hugoniot and Lax entropy conditions to define

U− := U+ − α((Cof U+)1 ⊗ ê1
)
,

J± := detU±,

s := −
√
μ+ 1

α
�h′(J )�,

v− := v+ + sα(Cof U+)1.

Then, on one hand, it is clear that |�U�| = |�U1�| = |α|∣∣(Cof U+)1
∣∣ = O(|α|). On

the other hand, J− = J+ − α∣∣(Cof U+)1
∣∣2 yields

s2 = μ+ 1

α
�h′(J )� = μ+ h′′(J+)

∣∣(Cof U+)1
∣∣2 + O(|α|).
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Upon substitution we obtain �v�2 = s2α2
∣∣(Cof U+)1

∣∣2 = O(α2). This proves the
claim. It is to be noticed, as well, that once the base state (U+, v+) ∈ M

d+ ×R
d is

selected, then the value of α ranges within the set

α ∈ (−∞, 0) ∪ (0, α+
max),

where

α+
max := J+

∣∣(Cof U+)1
∣∣2 , (3.14)

due to the physical requirement that detU− = J− > 0. Observe in particular that,
necessarily, J+ �= J− as α �= 0.

Remark 3.4. Thanks to the convexity condition (H2) we have that

1

α
�h′(J )� = 1

α

(
h′(J+)− h′(J+ − α∣∣(Cof U+)1

∣∣2)) > 0

independently of the sign of α, because h′(J ) is strictly increasing. Therefore, if
Lax entropy conditions (3.9) hold then

0 < h′′(J−) < s2 − μ∣∣(Cof U+)1
∣∣2 < h′′(J+), (3.15)

where we have used the fact that (Cof U+)1 = (Cof U−)1. Let us denote the open
interval

I (J+, J−) :=
{
(J−, J+), if J+ > J−,
(J+, J−), if J+ < J−.

From the observations above, we conclude that the following statements hold:

(a) If h′′′(J ) > 0 for all J ∈ I (J+, J−) (h′′ increasing) then Lax entropy condi-
tions hold if 0 < α < α+

max.
(b) If h′′′(J ) < 0 for all J ∈ I (J+, J−) (h′′ decreasing) then Lax entropy condi-

tions hold if α < 0.

Next lemma verifies that the requirement for h′′′ to have a definite sign on
I (J+, J−) is also a necessary condition to have a genuinely nonlinear characteristic
field.

Lemma 3.5. For any U ∈ M
d+, let r ∈ R

n be the right eigenvector of A(ê1,U )
associated to the simple eigenvalue a1(U ) = a1(ê1,U ) < 0 in the case of a
compressible Hadamard material. Then,

(Dua1)
�r = 1

2a2
1

|(Cof U )1|4h′′′(J ).
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Proof. First, let us denote r = (z1, . . . , zd , w)
� ∈ R

n×1, n = d2+d, with z j , w ∈
R

d , 1 ≤ j ≤ d, the right eigenvector such that A(ê1,U )r = A1(U )r = a1(U )r ,
with a1(U ) = −√κ2(ê1,U ) < 0. Upon inspection of the expression for A1(U )
we observe that

A1(U )r = −

⎛
⎜⎜⎜⎜⎜⎝

w

0
...

0∑d
j=1 B1

j (U )z j

⎞
⎟⎟⎟⎟⎟⎠

= a1(U )

⎛
⎜⎜⎜⎝

z1
...

zd

w

⎞
⎟⎟⎟⎠ ,

or, equivalently, we obtain the system

w + a1z1 = 0,

a1z j = 0, j �= 1,

a1w +
d∑

j=1

B1
j z j = 0.

(3.16)

From this system of equations we obtain Q(ê1,U )w = a1(U )2w = κ2(ê1,U )w,
and z j ≡ 0 for all j �= 1. Therefore, from Lemma 2.13 we arrive at the following
expression for the right eigenvector,

r =

⎛
⎜⎜⎜⎜⎜⎝

−(a1)−1(Cof U )1
0
...

0
(Cof U )1

⎞
⎟⎟⎟⎟⎟⎠
.

Now, let us write a1(U ) = −√
ψ(U ), where ψ(U ) := μ+ h′′(J )

∣∣(Cof U )1
∣∣2.

Since, clearly, ∂ψ/∂v = 0, we then have

Dua1 = 1

2a1

⎛
⎜⎜⎜⎝

ψU1
...

ψUd

0

⎞
⎟⎟⎟⎠ ,
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where ψU j ∈ R
d is the vector whose i-component is ∂ψ/∂Ui j for each pair i, j .

Let us compute such derivatives. Use relations (2.11) and (2.12) to obtain

∂ψ

∂Ui j
= h′′′(J ) ∂ J

∂Ui j

∣∣(Cof U )1
∣∣2 + h′′(J ) ∂

∂Ui j

(∣∣(Cof U )1
∣∣2)

= h′′′(J )
∣∣(Cof U )1

∣∣2(Cof U )i j + 2h′′(J )
d∑

k=1

(Cof U )k1
∂

∂Ui j

(
(Cof U )k1

)

= h′′′(J )
∣∣(Cof U )1

∣∣2(Cof U )i j+

+ 2
h′′(J )

J

d∑
k=1

(Cof U )k1
(
(Cof U )k1(Cof U )i j − (Cof U )k j (Cof U )i1

)

=
(

h′′′(J )+ 2

J
h′′(J )

)∣∣(Cof U )1
∣∣2(Cof U )i j

− 2
h′′(J )

J
(Cof U )i1

d∑
k=1

(Cof U )k j (Cof U )k1,

for each 1 ≤ i, j ≤ d. Therefore, Dua1 = ς1 + ς2 with

ς1 := 1

2a1

(
h′′′(J )+ 2

J
h′′(J )

)∣∣(Cof U )1
∣∣2

⎛
⎜⎜⎜⎝

(Cof U )1
...

(Cof U )d
0

⎞
⎟⎟⎟⎠ ,

ς2 := − 1

a1

h′′(J )
J

⎛
⎜⎜⎜⎜⎜⎝

[∑d
k=1(Cof U )2k1

]
(Cof U )1[∑d

k=1(Cof U )k2(Cof U )k1
]
(Cof U )1

...[∑d
k=1(Cof U )kd(Cof U )k1

]
(Cof U )1

0

⎞
⎟⎟⎟⎟⎟⎠
.

Computing the products with r yields

ς�
1 r = − 1

2a2
1

∣∣(Cof U )1
∣∣4(h′′′(J )+ 2

J
h′′(J )

)
,

ς�
2 r = 1

a2
1

h′′(J )
J

d∑
k=1

(Cof U )2k1
∣∣(Cof U )1

∣∣2 = 1

a2
1

h′′(J )
J

∣∣(Cof U )1
∣∣4.

Hence, we arrive at

(Dua1)
�r = − 1

2a2
1

|(Cof U )1|4h′′′(J ),

as claimed. ��
Corollary 3.6. The 1-characteristic field is genuinely nonlinear in the ê1-direction
for all state variables (U, v) ∈ U if and only if h′′′(J ) �= 0 for all J ∈ (0,∞).
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Remark 3.7. As expected, being the choice of ê1 as direction of propagation com-
pletely arbitrary, it is possible to extrapolate this observation and to state that the
j = 1 and the j = 5 characteristic fields are genuinely nonlinear in any direction
of propagation ν̂ ∈ R

d , |ν̂| = 1, for all state variables (U, v) ∈ U if and only if
h′′′(J ) �= 0 for all J ∈ (0,∞). In fact, a similar calculation yields

(Dua j )
�r = − 1

2a2
j

|(Cof U )ν̂|4 h′′′(J ),

for j = 1, 5 as the dedicated reader may verify.

Consequently, we have the following characterization of the 1-shock fronts in
terms of the parameter α �= 0:

Proposition 3.8. For a Hadamard material satisfying (H1) and (H2) and for any
given (U+, v+) ∈ Md+×R

d as base state, let us define, for any givenα ∈ (−∞, 0)∪
(0, α+

max),

U− = U+ − α((Cof U+)1 ⊗ ê1),

v− = v+ + sα(Cof U+)1,

s = −
√
μ+ 1

α
(h′(J+)− h′(J−)),

(3.17)

for which, necessarily, J− = detU− = J+ − α|(Cof U+)1|2. Therefore we have:

(a) In the case where 0 < α < α+
max: if h′′′(J ) > 0 for all J ∈ [J−, J+] then

(U±, v±, s) is a Lax 1-shock.
(b) In the case where α < 0: if h′′′(J ) < 0 for all J ∈ [J+, J−] then (U±, v±, s)

is a Lax 1-shock.

Proof. Suppose 0 < α < α+
max. If h′′′(J ) > 0 for all J ∈ [J−, J+] then from (H2)

and �h′(J )�/α > 0 we deduce that s < −√
μ. Also, from strict convexity of h′

and J+ > J− we clearly have

h′′(J+) > �h′(J )�
α|(Cof U+)1|2 ,

from which we deduce −√μ+ h′′(J+)|(Cof U+)1|2 < s. A similar argument
shows that s < −√μ+ h′′(J−)|(Cof U−)1|2. Hence, the front is a Lax 1-shock.
This proves (a). The proof of (b) is analogous. ��
Remark 3.9. Observe that (3.17) determines the 1-shock curve (see (A.8) in Ap-
pendix A) for all admissible values of α and not only for weak shocks. Hence, we
are able to consider shocks of arbitrary amplitude, as there is no other restriction
on |α| apart from the physical constraint 0 < α < α+

max on the positive side. For
compressible Hadamardmaterials satisfying (H3) (h′′′ < 0 for all J ), it is posible to
construct arbitrarily large amplitude shocks for negative parameter values, α < 0,
with |α| � 1. It is to be observed that condition (H3) can be interpreted as the
convexity of the hydrostatic pressure (see Remark B.5 below) and, hence, the case
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in which h′′′ > 0 for all J turns out to be somewhat unphysical: most examples of
energy densities in the literature (see, for example, Sect. 7) satisfy (H3) or, at most,
they present changes in sign for h′′′(J ). For simplicity, the latter concave/convex
case is not considered in the stability analysis.

4. Normal Modes Analysis for Elastic Shocks

In this section we perform the normal modes analysis prior to the establish-
ment of the stability results. In particular, we compute all the necessary ingredients
to assemble the Lopatinskiı̆ determinant associated to a classical shock front (as
described in Appendix A) for hyperelastic Hadamard materials.

Let (U±, v±, s) ∈ M
d+×R

d ×R, with (U+, v) �= (U−, v−) be an extreme Lax
1-shock propagating in the direction of ν̂ = ê1 and satisfying Rankine-Hugoniot
conditions (3.6) and Lax entropy conditions (3.9). Therefore, the analysis of normal
mode solutions to the linearized problem around the shock of the form eλt eix ·ξ is
restricted to the open set of spatio-temporal frequencies,

�+ :=
{
(λ, ξ̃ ) ∈ C × R

d−1 : Re λ > 0, |λ|2 + |ξ̃ |2 = 1
}
, (4.1)

(see (A.9)), where we have adopted the (now customary in the literature [10,55])
notation for the Fourier frequencies,

ξ =
(
0
ξ̃

)
∈ R

d , ξ̃ =
⎛
⎜⎝
ξ2
...

ξd

⎞
⎟⎠ ∈ R

d−1,

with ξ · ê1 = ξ�ê1 = 0. By a continuity of eigenprojections argument (cf. [62,
71,75]) the definition of the Lopatinskiı̆ determinant on �+ can be extended to its
closure,

� :=
{
(λ, ξ̃ ) ∈ C × R

d−1 : Re λ ≥ 0, |λ|2 + |ξ̃ |2 = 1
}
. (4.2)

We are interested in normal modes of the matrix field

A(λ, ξ̃ ,U ) =
(
λIn + i

∑
j �=1

ξ j A j (U )
)(

A1(U )− sIn

)−1
,

(λ, ξ̃ ,U ) ∈ �+ × M
d+, (4.3)

under the assumption that s ∈ R is not characteristic with respect to (ê1,U ), that
is, s is not an eigenvalue of A1(U ). This is particularly true in the case of the shock
speed s of a classical 1-shock with U = U±.
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4.1. Calculation of the stable left bundle

Following [35,36,82] and for convenience in the calculations to come, let us
extend the definition of the acoustic tensor to allow complex frequencies. For each
(ω, ω̃) ∈ C × C

d−1, ω1 = ω, ω̃ = (ω2, . . . , ωd)
�, we denote

Q(ω, ω̃,U ) :=
d∑

i, j=1

ωiω j Bi
j (U ) = ω2B1

1 (U )+ ω
∑
j �=1

ω j
(
B j
1 (U )+ B1

j (U )
)

+
d∑

i, j �=1

ωiω j Bi
j (U ) ∈ C

d×d .

Notice that, in view that the real acoustic tensor Q is symmetric, then Q is en-
dowed with the propertyQ∗(ω, ω̃,U ) = Q(ω∗, ω̃∗,U ). Yet,Q is clearly invariant
under simple transposition

Q(ω, ω̃,U )� = Q(ω, ω̃,U ),

for all (ω, ω̃,U ) ∈ C × C
d−1 × M

d+, even though it is not Hermitian. Adopting
this notation and from expression (2.15) for a compressible Hadamard material, we
readily obtain the following useful formula,

Q(iβ, ξ̃ ,U ) = μ(− β2 + |̃ξ |2)Id + h′′(J )

⎡
⎢⎢⎢⎣
(
Cof U

)
⎛
⎜⎜⎜⎝

iβ
ξ2
...

ξd

⎞
⎟⎟⎟⎠⊗

(
Cof U

)
⎛
⎜⎜⎜⎝

iβ
ξ2
...

ξd

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ ,

(4.4)

for any β ∈ C, ξ̃ ∈ R
d−1, U ∈ M

d+.
Next result characterizes the eigenvalues of the matrix field (4.3).

Lemma 4.1. For any given U ∈ M
d+, (λ, ξ̃ ) ∈ �, the eigenvalues β = β(λ, ξ̃ ) ∈ C

of matrix (4.3) are either:

(a) β = −λ
s

, with algebraic multiplicity d2 − d; or

(b) β is a root of

det
(
(λ+ βs)2Id + Q(iβ, ξ̃ ,U )

) = 0. (4.5)

Proof. Given (λ, ξ̃ ,U ) ∈ M
d+ × �+, we look for a left (row) eigenvector l =

l(λ, ξ̃ ,U ) ∈ C
1×n , associated to an eigenvalue β satisfying

l
(
(λ+ βs)In − βA1(U )+ i

∑
j �=1

ξ j A j (U )
)

= 0. (4.6)

Since l �= 0, we arrive at the following characteristic equation:

φ(λ, ξ̃ , β,U ) := det
(
(λ+ βs)In − βA1(U )+ i

∑
j �=1

ξ j A j (U )
)

= 0.
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The matrix appearing in last equation can be written in block form as

(λ+ βs)In − βA1(U )+ i
∑
j �=1

ξ j A j (U )

=

⎛
⎜⎜⎜⎜⎜⎝

βId

(λ+ βs)Id2 −iξ2Id
...

−iξdId

−G1 · · · −Gd (λ+ βs)Id

⎞
⎟⎟⎟⎟⎟⎠

=:
(
S1 S2
S3 S4

)
, (4.7)

with blocks S1 ∈ C
d2×d2

, S2 ∈ C
d2×d , S3 ∈ C

d×d2
, S4 ∈ C

d×d , and where the
matrix fields (β, ξ̃ ,U ) �→ Gk are defined as

Gk = Gk(β, ξ̃ ,U ) := −βB1
k (U )+ i

∑
j �=1

ξ j B j
k (U ) ∈ C

d×d . (4.8)

Suppose for the moment that λ+ βs �= 0. Then we may use the block formula

det

(
S1 S2
S3 S4

)
= det S1 det(S4 − S3(S1)

−1S2),

to reduce the determinant of (4.7). A direct computation shows that

S3(S1)
−1S2 = (λ+ βs)−1 (G1, · · · ,Gd)

⎛
⎜⎜⎜⎝

−βId

iξ2Id
...

iξdId

⎞
⎟⎟⎟⎠ = − (λ+ βs)−1Q(iβ, ξ̃ ,U ),

yielding

φ(λ, ξ̃ , β,U ) = (λ+ βs)d
2−d det

(
(λ+ βs)2Id + Q(iβ, ξ̃ ,U )

)
.

From this expression we conclude that β = −λ/s is an eigenvalue of (4.3) with
algebraic multiplicity d2 − d. Otherwise, if λ+βs �= 0 then β is a root of equation
(4.5). The lemma is proved. ��

The following lemma provides an expression for the left (row) eigenvector
associated to any eigenvalue β of the matrix field (4.3).

Lemma 4.2. For given U ∈ M
d+, (λ, ξ̃ ) ∈ �, let β ∈ C be an eigenvalue of the

matrix (4.3) such that λ + βs �= 0. Then the associated left eigenvector l has the
form

l =
(

q�G1, . . . , q�Gd , (λ+ βs)q�) ∈ C
1×(d2+d), (4.9)

where Gk = Gk(β, ξ̃ ,U ), 1 ≤ k ≤ d, are defined in (4.8) and q ∈ C
d×1 is a column

vector such that

Q(iβ, ξ̃ ,U )q = −(λ+ βs)2q, (4.10)

that is, q is an eigenvector of Q(iβ, ξ̃ ,U ) with eigenvalue −(λ+ βs)2.
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Proof. Take U ∈ M
d+, (λ, ξ̃ ) ∈ � and let β ∈ C be an eigenvalue of A with

associated left eigenvector l ∈ C
1×(d2+d). Consider the matrix fields

T = T (λ, ξ̃ ,U, β) := βA1(U )− i
∑
j �=1

ξ j A j (U ) ∈ C
n×n,

with n = d2 + d. Since Cn = ker(T �) ⊕ range (T �) then either l� ∈ ker(T �)
or l� ∈ range (T �). However, from lA = βl we clearly have that expression (4.6)
holds, yielding T �l� = −(λ+ βs)l�. In view that l �= 0 and λ+ βs �= 0 we then
conclude that l� /∈ ker(T �) and necessarily that l� ∈ range (T �). Let us now
write

l = (
l1, . . . , ld , ld+1

)
,

where lk ∈ C
1×d for each 1 ≤ k ≤ d + 1. Whence,

lT = (
l1, . . . , ld , ld+1

)

⎛
⎜⎜⎜⎜⎜⎝

−βId

0 iξ2Id
...

iξdId

G1 · · · Gd 0

⎞
⎟⎟⎟⎟⎟⎠

=
(

ld+1G1, . . . , ld+1Gd , −βl1 + i
∑
j �=1

ξ j l j

)

=:
(

ld+1G1, . . . , ld+1Gd , q�). (4.11)

Use expression in (4.7) and lT = −(λ+ βs)l to arrive at
(− q� + (λ+ βs)ld+1

)
Gk = 0, 1 ≤ k ≤ d,

ld+1

(
βG1 − i

∑
j �=1

ξ jG j

)
+ (λ+ βs)q� = 0. (4.12)

The first d equations in (4.12) yield

0 = (− q� + (λ+ βs)ld+1
)(
G1, . . . ,Gd

)
⎛
⎜⎜⎜⎝

βId

−iξ2Id
...

−iξdId

⎞
⎟⎟⎟⎠

= (− q� + (λ+ βs)ld+1
)
Q(iβ, ξ̃ ,U ).

The last equation in (4.12) implies that

ld+1

(
βG1 − i

∑
j �=1

ξ jG j

)
= ld+1Q(iβ, ξ̃ ,U ) = −(λ+ βs)q�.

Therefore we obtain

q�((λ+ βs)2Id + Q(iβ, ξ̃ ,U )
) = 0,



Stability of Shock Fronts for Hadamard Hyperelastic Materials 971

that is, q� is a left eigenvector of Q(iβ, ξ̃ ,U ) with eigenvalue −(λ+ βs)2. Since
Q is invariant under simple transposition,Q� = Q, this is equivalent to (4.10). To
find ld+1 we notice that λ + βs �= 0 and the first d equations in (4.12) imply that
ld+1Gk = (λ+βs)−1q�Gk , for all 1 ≤ k ≤ d. Substitute back into (4.11) to obtain

lT =
(
(λ+ βs)−1q�G1, . . . , (λ+ βs)−1q�Gd , q

�),

and the general form of the left eigenvector is

l = (
q�G1, . . . , q�Gd , (λ+ βs)q�),

where q is such that (4.10) holds. This proves the lemma. ��

Let us now focus on the 1-shock determined by (U±, v±, s) ∈ M
d+ × R

d × R

satisfying (3.6) and (3.9). If we select (U+, v+) as a base state then the shock
is completely characterized by the parameter value α �= 0 described in Proposi-
tion 3.8. Let us define

A±(λ, ξ̃ ) := A(λ, ξ̃ ,U±), (λ, ξ̃ ) ∈ �+.

From Hersh’ lemma (see Appendix A, Remark A.2), the stable eigenspace of
A+(λ, ξ̃ ) has dimension equal to one for each (λ, ξ̃ ) ∈ �+. Our goal is to compute
the left (row) stable eigenvector l+s (λ, ξ̃ ) ∈ C

1×n of A+ associated to the only
stable eigenvalue β with Re β < 0. Thanks to Lemma 4.2, this is equivalent to
computing the column eigenvector q+ of Q+(iβ, ξ̃ ) := Q(iβ, ξ̃ ,U+).

In order to simplify the notation, let us write the cofactor matrix of U+ as
V + := Cof U+ ∈ M

d+, so that its j-th column is

V +
j = (Cof U+) j ∈ R

d×1, (4.13)

for each 1 ≤ j ≤ d, and

(a+
1 )

2 = κ+
2 = μ+ h′′(J+)|V +

1 |2. (4.14)

Moreover, for any frequency vector ξ̃ = (ξ2, . . . , ξd)� ∈ R
d−1 we define the scalar

(real) quantities,

η+(̃ξ ) :=
∑
j �=1

(V +
1 )

�V +
j ξ j ,

ω+(̃ξ ) := μ|̃ξ |2 + h′′(J+)
∣∣∣∣V +

(
0
ξ̃

)∣∣∣∣
2

= μ|̃ξ |2 + h′′(J+)
∑

i, j �=1

(V +
i )

�V +
j ξiξ j ,

(4.15)

which depend only on the Fourier frequencies and on the elastic parameters of the
material evaluated at the base state.



972 R.G. Plaza & F. Vallejo

Lemma 4.3. Let β ∈ C be the only stable eigenvalue with Re β < 0 of the matrix
field A+(λ, ξ̃ ), on (λ, ξ̃ ) ∈ �+. Then the (column) eigenvector q+ ∈ C

d×1 of
Q+(iβ, ξ̃ ) with associated eigenvalue −(λ+βs)2, as described in Lemma 4.2, can
be uniquely selected (modulo scalings) as

q+ = q+(λ, ξ̃ ) := (Cof U+)

⎛
⎜⎜⎜⎝

iβ
ξ2
...

ξd

⎞
⎟⎟⎟⎠ . (4.16)

Moreover, β = β(λ, ξ̃ ) is a root of

(
κ+
2 − s2

)
β2 − 2

(
λs + ih′′(J+)η+(ξ̃ )

)
β − (

λ2 + ω+(ξ̃ )
) = 0. (4.17)

Proof. In view that s < 0 and Re λ > 0 then Re (−λ/s) > 0 and consequently
λ+ βs �= 0. Hence, from Lemma 4.1 we know that β is a root of

det
(
(λ+ βs)2Id + Q+(iβ, ξ̃ )

) = 0.

Use expression (4.4) and apply Sylvester’s determinant formula (cf. [1]) to obtain

0 = det
(
(λ+ βs)2Id + Q+(iβ, ξ̃ )

)

= det
([
(λ+ βs)2 + μ(−β2 + |̃ξ |2)]Id + h′′(J+)q+ ⊗ q+)

=
(
(λ+ βs)2 + μ(−β2 + |̃ξ |2)

)d−1

(
(λ+ βs)2 + μ(−β2 + |̃ξ |2)+ h′′(J+)(q+)�q+),

where q+ is defined in (4.16). Now suppose that (λ+ βs)2 +μ(−β2 + |̃ξ |2) = 0.
Since Re β < 0 for all frequencies in a connected set, (λ, ξ̃ ) ∈ �+, by continuity
it suffices to evaluate sgn (Re β) at ξ̃ = 0 and Re λ > 0 with |λ| = 1. Substituting
we obtain

(
√
μβ − λ− βs)(

√
μβ + λ+ βs) = 0,

yielding the roots

β = λ√
μ− s

, β = − λ√
μ+ s

.

But both roots have Re β > 0 because s < −√
μ < 0, a contradiction with

Re β < 0. Therefore, we conclude that β must be a root of

ϕ(λ, ξ̃ , s, β) := (λ+ βs)2 + μ(−β2 + |̃ξ |2)+ h′′(J+)(q+)�q+ = 0.
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To double-check the form of q+, from expression (4.4) we immediately observe
that

(
(λ+ βs)2Id + Q+(iβ, ξ̃ )

)
q+

= (λ+ βs)2q+ + μ(−β2 + |̃ξ |2)q+ + h′′(J+)(q+ ⊗ q+)q+

= [
(λ+ βs)2 + μ(−β2 + |̃ξ |2)+ h′′(J+)(q+)�q+]q+

= ϕ(λ, ξ̃ , s, β)q+

= 0.

Henceforth, we conclude that Q+(iβ, ξ̃ ) has an eigenvector of the form (4.16)
where β is a solution to ϕ(λ, ξ̃ , s, β) = 0. Since β is the only stable eigenvalue of
A+(λ, ξ̃ ) for any (λ, ξ̃ ) ∈ �+ then the eigenvector q+ can be uniquely determined
(modulo scalings) by expression (4.16). To simplify the characteristic polynomial,
notice that

|q+|2 = (q+)�q+ = (
iβ, ξ2, · · · , ξd

)
(Cof U+)�(Cof U+)

⎛
⎜⎜⎜⎝

iβ
ξ2
...

ξd

⎞
⎟⎟⎟⎠

= −β2|V +
1 |2 + 2iβ

∑
j �=1

(V +
1 )

�V +
j ξ j +

∑
i, j �=1

(V +
i )

�V +
j ξiξ j ,

(4.18)

yielding

− ϕ(λ, ξ̃ , s, β)
= (μ+ h′′(J+)|V +

1 |2 − s2)β2 − 2β
(
λs + ih′′(J+)

∑
j �=1

ξ j (V
+
1 )

�V +
j

)
+

−
(
λ2 + μ|̃ξ |2 + h′′(J+)

∑
i, j �=1

ξiξ j (V
+
i )

�V +
j

)

= (
κ+
2 − s2

)
β2 − 2

(
λs + ih′′(J+)η+(ξ̃ )

)
β − (

λ2 + ω+(ξ̃ )
) = 0,

as claimed. ��
Remark 4.4. Notice that, from natural considerations, λ + βs �= 0 for the stable
eigenvalue β with Re β < 0. Another way to interpret this fact is that the eigenvalue
β = −λ/s is incompatible with the curl-free conditions (2.8) (see the discussion
in [35]) and, therefore, it should be excluded from the normal modes analysis.

4.2. Calculation of the “jump” vector

In the present case of a shock propagating in the ν̂ = ê1 direction, the calculation
of the Lopatinskiı̆ determinant (see expression (A.10)) involves the computation of
the following “jump” vector,

K = K(λ, ξ̃ ) := λ�u� + i
∑
j �=1

ξ j � f j (u)�, (4.19)
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which is a complex vector field in the frequency space, (λ, ξ̃ ) �→ K(λ, ξ̃ ), K ∈
C∞(�+;Cn×1), associated to the Rankine-Hugoniot jump conditions (3.6) across
the shock. Use (3.6) and (3.2) to obtain,

K(λ, ξ̃ ) =

⎛
⎜⎜⎜⎜⎜⎝

λ�U1�
isξ2�U1�

...

isξd�U1�
−λs�U1� − i

∑
j �=1 ξ j �σ(U ) j �

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

λId 0
isξ2Id 0
...

...

isξdId 0
0 Id

⎞
⎟⎟⎟⎟⎟⎠

(
�U1�

−λs�U1� − i
∑

j �=1 ξ j �σ(U ) j �

)
.

From expression (4.9) for the general form of a left eigenvector, l ∈ C
1×n , of A,

we have

l

⎛
⎜⎜⎜⎜⎜⎝

λId 0
isξ2Id 0
...

...

isξdId 0
0 Id

⎞
⎟⎟⎟⎟⎟⎠

= q�(G1, . . . ,Gd , (λ+ βs)Id

)

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

−sβId 0
isξ2Id 0
...

...

isξdId 0
0 0

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

(λ+ βs)Id 0
0 0
...

...

0 0
0 Id

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦

=
(

q�(− sβG1 + is
∑
j �=1

ξ jG j
)
, 0
)

+
(
(λ+ βs)q�G1, (λ+ βs)q�)

=
(

− sq�Q(iβ, ξ̃ ,U )+ (λ+ βs)q�G1, (λ+ βs)q�)

= (λ+ βs)q�(s(λ+ βs)Id + G1, Id),

inasmuch as (4.10) holds and Q is invariant under simple trasposition. Therefore,

lK = (λ+ βs)q�(s(λ+ βs)�U1� + G1�U1� − λs�U1� − i
∑
j �=1

ξ j �σ(U ) j �
)

= (λ+ βs)q�((βs2Id + G1)�U1� − i
∑
j �=1

ξ j �σ(U ) j �
)
.

Hence, we have proved the following result, which will be useful later on:

Proposition 4.5. If β ∈ C is an eigenvalue of A(λ, ξ̃ ,U ) with associated eigen-
vector l, then

lK = (λ+ βs)q�((βs2Id + G1)�U1� − i
∑
j �=1

ξ j �σ(U ) j �
)
, (4.20)

where K is the “jump” vector in (4.19), G1 is defined in (4.8) and q ∈ C
d×1 is such

that (4.10) holds.
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Let us now compute the elements involved in the definition of the jump vector
field K. For simplicity, we introduce the notations

Bi
j
+ := Bi

j (U
+) ∈ R

d×d , G+
k := Gk(U

+) ∈ C
d×d , 1 ≤ i, j, k ≤ d.

For later use we also compute (using formulae (2.13), (4.14) and (4.13)),

(B1
1
+ − s2Id)V

+
1 =

[
μId + h′′(J+)V +

1 (V
+
1 )

� − s2Id

]
V +
1

= (μ− s2)V +
1 + h′′(J+)|V +

1 |2V +
1

= (κ+
2 − s2)V +

1 ,

(4.21)

as well as,

B j
1

+
V +
1 =

[
h′′(J+)(V +

j ⊗ V +
1 )+

h′(J+)
J+

(
V +

j ⊗ V +
1 − V +

1 ⊗ V +
j

)]
V +
1

=
(

h′′(J+)+ h′(J+)
J+

)
|V +

1 |2V +
j − h′(J+)

J+
(
(V +

j )
�V +

1

)
V +
1 ,

=
[
κ+
2 − μ+ h′(J+)

J+ |V +
1 |2

]
V +

j − h′(J+)
J+ (V +

j · V +
1 )V

+
1 ,

for all j �= 1.

(4.22)

Now, from Rankine-Hugoniot conditions (3.6), relation (3.12) and Proposi-
tion 3.8, it is clear that

�U1� = αV +
1 ,

�U j � = 0, j �= 1,

V +
1 = (Cof U+)1 = (Cof U−)1.

(4.23)

Let us first compute the jump of the Piola-Kirchhoff stress tensor across the
shock. From (B.5) we have

�σ(U ) j � = μ�U j � + �h′(J )(Cof U ) j � = α(s2 − μ)V +
j + h′(J−)�(Cof U ) j �,

for j �= 1,

after having substituted relation (3.11). Now, notice that, from (3.10), it holds that

U− = U+ − α(V +
1 ⊗ ê1) = U+ − α

(
V +
1 , 0, · · · , 0

)
,

that is, U+ and U− differ by a matrix with all columns equal to zero except for the
first one (that is why, for instance, (Cof U+)1 = (Cof U−)1 = V +

1 ). We shall use
this information to find a suitable expression for the jump in the cofactor matrix
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column �Vj � = �(Cof U ) j �, j �= 1. For any 1 ≤ i, j ≤ d, with j �= 1, and by
elementary properties of the determinant, the (i, j)-entry of Cof U− is given by

(Cof U−)i j = (−1)i+ j det
[(

U+ − α(V +
1 ⊗ ê1)

)′
(i, j)

]

= (−1)i+ j det
[(

U+
1 − αV +

1 , U+
2 , · · · ,U+

d

)′
(i, j)

]

= (−1)i+ j det
[(

U+
1 , U+

2 , · · · ,U+
d

)′
(i, j)

]

− α(−1)i+ j det
[(

V +
1 , U+

2 , · · · ,U+
d

)′
(i, j)

]

= (Cof U+)i j − αM+
i j ,

where M+ ∈ R
d×d is the real d × d matrix whose first column is zero, M+

1 := 0,
and whose (i, j)-entry for any 1 ≤ i, j ≤ d, with j �= 1, is defined as

M+
i j := (−1)i+ j det

[(
V +
1 , U+

2 , · · · ,U+
d

)′
(i, j)

]

=
(
Cof

(
V +
1 , U+

2 , · · · ,U+
d

))
i j
, j �= 1. (4.24)

Henceforth we obtain,

�(Cof U )1� = �V1� = 0, �(Cof U ) j � = �Vj � = αM+
j , j �= 1.

Upon substitution, we obtain the expressions for the jump of the stress tensor across
the shock,

�σ(U ) j � = α
(
(s2 − μ)V +

j + h′(J−)M+
j

)
, for j �= 1, (4.25)

and,

�σ(U )1� = αs2V +
1 .

Remark 4.6. The first column of M+ is zero because (Cof U+)1 = (Cof U−)1.
Notice that M+ is a smooth function of the entries of U+, M+ ∈ C∞(Md+;Rd×d).
For example, in two spatial dimensions (d = 2) and after a straightforward com-
putation one verifies that Cof U− = Cof U+ − αM+ where

M+ =
(
0 U+

12
0 U+

22

)
= U+

2 ⊗ ê2 ∈ R
2×2. (4.26)

Likewise, when d = 3 one finds that

M+ =
(
0, U+

3 × V +
1 , −U+

2 × V +
1

)
∈ R

3×3. (4.27)
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4.3. Further simplifications

In order to simplify the lengthy calculations to come, let us introduce the fol-
lowing notations. First, we write the scalar products of the columns of the cofactor
matrix V + as

θi j := (V +
i )

�V +
j ∈ R, (4.28)

for each 1 ≤ i, j ≤ d. In this fashion, it is clear that θ+
j j = |V +

j |2 > 0, θ+
i j = θ+

j i

for all i, j , and that θ+
i j is the (i, j)-entry of the real symmetric matrix (V +)�V +.

Moreover, we define

�+
i j := det

(
θ+
11 θ

+
1 j

θ+
i1 θ

+
i j

)
, 1 ≤ i, j ≤ d. (4.29)

From its definition and Cauchy-Schwarz inequality it is clear that the matrix�+ ∈
R

d×d satisfies

⎧⎪⎨
⎪⎩

�+
11 = �+

j1 = �+
1 j = 0, 1 ≤ j ≤ d,

�+
j j > 0, j �= 1,

�+
i j = �+

j i , 1 ≤ i, j ≤ d.

(4.30)

Next, we prove a result which significantly reduces the calculation of the large
determinants involved in the products (V +

i )
�M j appearing in the assembly of the

Lopatinskiı̆ determinant.

Lemma 4.7. For all 1 ≤ i, j ≤ d, d ≥ 2, there holds

(V +
i )

�M+
j = �+

i j

J+ . (4.31)

(In particular, we recover (V +
i )

�M+
1 ≡ 0, for all i .)

Proof. Let us first verify formula (4.31) in the case of two space dimensions, d = 2.
If j �= 1 then j = 2 and from (4.26) we have

M+
2 =

(
U+
12

U+
22

)
, V +

1 =
(

U+
22−U+
12

)
, V +

2 =
(−U+

21
U+
11

)
.

Thus, clearly, (V +
1 )

�M+
2 = 0 and (V +

2 )
�M+

2 = J+ > 0. But from (4.30) and
�+

22 = θ+
11θ

+
22 − (θ+

12)
2 = (J+)2, we conclude that (4.31) holds.

Let us now suppose that d ≥ 3. First, observe that since V + = Cof U+ then
(U+)�V + = J+

Id and, thus, (U+)�V +
1 = J+ê1. Now, take any j �= 1 and

any 1 ≤ i ≤ d. From the definition of M+ (see (4.24)) and the basic properties,
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(Cof A�) = (Cof A)� and (Cof A)�Cof B = Cof (A�B) for any A, B ∈ R
d×d ,

we compute

(V +
i )

�M+
j =

d∑
k=1

[
(Cof U+)�

]
ik

[
Cof

(
V +
1 , U+

2 , · · · , U+
d

)]
k j

=
[
(Cof U+)� Cof

(
V +
1 , U+

2 . · · · , U+
d

)]
i j

=
[
Cof

(
(U+)�V +

1 , (U
+)�U+

2 , · · · , (U+)�U+
d

)]
i j

= (−1)i+ j det

((
J+ê1, (U

+)�U+
2 , · · · , (U+)�U+

d

)′
(i, j)

)

=: (−1)i+ j det E ′
(i, j).

To compute, for j �= 1, this last determinant we expand along the first column to
obtain

det E ′
(i, j) = det

((
J+ê1, (U

+)�U+
2 , · · · , (U+)�U+

d

)′
(i, j)

)

= J+ det
[(
(U+)�U+)′

(1i,1 j)

]
,

where for any matrix A ∈ R
d×d , with d ≥ 3, A′

(1i,1 j) denotes the (d −2)× (d −2)
submatrix formedby eliminating rows1 and i , and columns 1 and j from the original
matrix A. Likewise, for any matrix A, A(1i,1 j) ∈ R

2×2 denotes the submatrix

A(1i,1 j) =
(

A11 A1 j

Ai1 Ai j

)
,

for all 1 ≤ i, j ≤ d. The computation of the (d − 2) × (d − 2) determinant of
A′
(1i,i j) is considerably reduced by the use of Jacobi’s formula (see Theorem 2.5.2

in Prasolov [83], or Gradshteyn and Ryzhik [44], p. 1076):

(−1)i+ j det A det A′
(1i,1 j) = det

[
(Cof A)(1i,1 j)

]
.

A direct application of last equation to the Cauchy-Green tensor A = (U+)�U+
yields,

(V +
i )

�M+
j = (−1)i+ j det E ′

(i, j)

= (−1)i+ j J+ det
[(
(U+)�U+)′

(1i,1 j)

]

= (−1)i+ j J+(−1)−i− j (det(U+)�U+)−1 det
[(
Cof ((U+)�U+)

)
(1i,1 j)

]

= 1

J+ det

(
θ+
11 θ

+
1 j

θ+
1i θ

+
i j

)

= �+
i j

J+ ,

for the case j �= 1 and d ≥ 3. Moreover, notice that formula (4.31) is also valid
for j = 1 because of (4.30) and M+

1 = 0. The lemma is proved. ��
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4.4. Summary

To sum up, and for the convenience of the reader, we apply our simplified
notation and gather in one place all the ingredients we have computed so far and
which will be used to assemble the Lopatinskiı̆ determinant in the next section.
Indeed, use the short-cuts (4.15), (4.13), (4.14), (4.24), (4.28) and (4.29) to recast
formulae (4.16), (4.8) with k = 1, the first equation in (4.23), (4.25), (4.22), (4.21),
the first equation in (4.15), the second in (4.15) and (3.11) as,

q+(λ, ξ̃ )� = (
iβ, ξ2, · · · , ξd

)
(V +)�

= iβ(V +
1 )

� +
∑
i �=1

ξi (V
+
i )

� ∈ C
1×d , (4.32)

G+
1 = G1(β, ξ̃ ,U+) = −βB1

1
+ + i

∑
j �=1

ξ j B j
1

+ ∈ C
d×d , (4.33)

�U1� = αV +
1 ∈ R

d×1, (4.34)

�σ(U ) j � = α
(
(s2 − μ)V +

j + h′(J−)M+
j

)
∈ R

d×1, j �= 1, (4.35)

B j
1

+
V +
1 = (κ+

2 − μ)V +
j + h′(J+)

J+
(
θ+
11V +

j − θ+
1 j V +

1

)
,∈ R

d×1,

j �= 1, (4.36)

(B1
1
+ − s2Id)V

+
1 = (κ+

2 − s2)V +
1 ∈ R

d×1, (4.37)

η+(̃ξ ) =
∑
j �=1

ξ jθ
+
1 j , (4.38)

ω+(̃ξ ) = μ|̃ξ |2 + h′′(J+)
∑

i, j �=1

ξiξ jθ
+
i j , (4.39)

and,

1

α
�h′(J )� = s2 − μ > 0, (4.40)

respectively. Finally, use formulae (4.21), (4.35), (4.31) and (4.36) to further obtain:

(V +
i )

�(B1
1

+ − s2Id
)
V +
1 = (κ+

2 − s2)θ+
i1, 1 ≤ i ≤ d, (4.41)

(V +
i )

�(B j
1

+
V +
1 − 1

α
�σ(U ) j �

) = (V +
i )

�[((κ+
2 − μ)+ h′(J+)

J+ θ+
11

)
V +

j

−h′(J+

J+ θ+
j1V +

1 − (
(s2 − μ)V +

j + h′(J−)M+
j

)]

= (κ+
2 − s2)θ+

i j + h′(J+)
J+

(
θ+
11θ

+
i j − θ+

j1θi1
)− h′(J−)

J+ �+
i j

= (κ+
2 − s2)θ+

i j + α(s2 − μ)�
+
i j

J+ , (4.42)

for all 1 ≤ i, j ≤ d, j �= 1. In particular, since�+
1 j = 0 we have, from last formula

with i = 1,

(V +
1 )

�(B j
1

+
V +
1 − 1

α
�σ(U ) j �

) = (κ+
2 − s2)θ+

1 j , j �= 1. (4.43)
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5. Stability Results

5.1. The Lopatinskiı̆ determinant

In this section, we calculate the Lopatinskiı̆ determinant (or stability function)
associated to a Lax 1-shock for compressible Hadamard materials. The main idea
is to assemble different (yet equivalent) expressions, so that we can draw stability
conclusions from them. In the present case of an extreme 1-shock, the stable sub-
space ofA+(λ, ξ̃ ) has dimension equal to one for all (λ, ξ̃ ) ∈ �+ (see Remark A.2
in Appendix A). Therefore, the Lopatinskiı̆ determinant reduces to the expression
(A.11),

�(λ, ξ̃ ) = ls+(λ, ξ̃ )K(λ, ξ̃ ),

where ls+(λ, ξ̃ ) is the left stable (row) eigenvector of A+(λ, ξ̃ ) associated to the
only stable eigenvalue β with Re β < 0 and K(λ, ξ̃ ) is the jump vector (4.19).
From Proposition 4.5 we obtain

�(λ, ξ̃ ) = (λ+ βs)�̂(λ, ξ̃ ),

where

�̂(λ, ξ̃ ) := q+(λ, ξ̃ )�
(
(βs2Id + G1)�U1� − i

∑
j �=1

ξ j �σ(U ) j �
)
, (λ, ξ̃ ) ∈ �+,

(5.1)

and q+ is given by (4.32). In view that λ+ βs �= 0 for all (λ, ξ̃ ) ∈ �+, the scalar
complex field (5.1) encodes all the information regarding the stability of the shock
front and, thus, we shall focus on determining the zeroes of �̂ on � (including,
by continuity, the boundary ∂� ⊂ {Re λ = 0}). We remind the reader that the
frequency λ = −βs is incompatible with the physical curl-free conditions (2.8)
and, therefore, we rule out the limit lim β = − lim λ/s = −Im λ/s as Re λ→ 0+
when considering zeroes of � along the imaginary axis; see Remark 4.4.

Substitute (4.32), (4.37), (4.38), (4.33), (4.42), (4.43) and (4.34) into (5.1) to
obtain

i

α
�̂(λ, ξ̃ ) =

[
iβ(V +

1 )
� +

∑
i �=1

ξi (V
+
i )

�][− iβ
(
B1
1
+ − s2Id

)
V +
1

−
∑
j �=1

ξ j
(
B j
1

+
V +
1 − 1

α
�σ(U ) j �

)]

= β2(κ+
2 − s2)θ+

11 − 2iβ(κ+
2 − s2)

∑
j �=1

ξ jθ
+
1 j

−
∑

i, j �=1

ξiξ j

(
(κ+

2 − s2)θ+
i j + α(s2 − μ)�

+
i j

J+
)
. (5.2)

This is the main expression for the Lopatinskiı̆ determinant we shall be working
with. At this point we introduce the following material parameter which, in fact,
determines the stability of the shock (see Theorems 5.4 and 5.13 below).
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Definition 5.1. (material stability parameter) For any 1-shock in the ê1-direction
for a compressible Hadamard material, we define

ρ(α) := (s2 − μ)
(

1

θ+
11

− α

J+

)
− h′′(J+) ∈ R. (5.3)

It is to be noticed that ρ(α) depends only on the shock parameters (the base
state and of the shock strength) and on the elastic moduli of the material. It is,
of course, independent of the Fourier frequencies ξ̃ ∈ R

d−1. We also define for
notational convenience,

N+(̃ξ )2 :=
∣∣∣∣V +

(
0
ξ̃

)∣∣∣∣
2

=
∑

i, j �=1

ξiξ jθ
+
i j , (5.4)

for all ξ̃ ∈ R
d−1

Lemma 5.2. (Lopatinskiı̆ determinant, version1)The Lopatinskiı̆ determinant (5.2)
can be recast as

i

α
�̂(λ, ξ̃ ) = (κ+

2 − s2)θ+
11

(
β − i

η+(̃ξ )
θ+
11

)2 + ρ(α)(θ+
11N+(̃ξ )2 − η+(̃ξ )2

)
.

(5.5)

Proof. Follows by direct computation and by noticing that the last term inside the
sum in (5.2) is

(κ+
2 − s2)θ+

i j + α(s2 − μ)�
+
i j

J+

= −ρ(α)θ+
11θ

+
i j +

(
ρ(α)+ h′′(J+)− s2 − μ

θ+
11

)
θ+
1 jθ

+
i1,

after having substituted (5.3) and (4.14). Using (5.4) and (4.38), the Lopatinskiı̆
determinant (5.2) can be written as

i

α
�̂(λ, ξ̃ ) = β2(κ+

2 − s2)θ+
11 − 2iβ(κ+

2 − s2)
∑
j �=1

ξ jθ
+
1 j + ρ(α)θ+

11N+(̃ξ )2+

−
(
ρ(α)+ h′′(J+)− s2 − μ

θ+
11

)
η+(̃ξ )2

= (κ+
2 − s2)θ+

11

(
β − i

η+(̃ξ )
θ+
11

)2 + ρ(α)(θ+
11N+(̃ξ )2 − η+(̃ξ )2

)
,

as claimed. Notice that this formula is simply the completion of the square in the
variable β. ��
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5.2. Sufficient condition for weak stability

Based on the first version of the Lopatinskiı̆ determinant, formula (5.5) above,
we are ready to establish our first stability theorem. First, we need to prove the
following elementary lemma:

Lemma 5.3. For all ξ̃ ∈ R
d−1, it holds that

P+(̃ξ ) := θ+
11N+(̃ξ )2 − η+(̃ξ )2 ≥ 0. (5.6)

Moreover, equality holds only when ξ̃ = 0.

Proof. Since N+(0)2 = η+(0)2 = 0 for ξ̃ = 0, it suffices to prove that θ+
11N+(̃ξ )2−

η+(̃ξ )2 > 0 for all ξ̃ ∈ R
d−1, ξ̃ �= 0. First, we write the above expression as a

quadratic form

P+(̃ξ ) = |V +
1 |2

∣∣∣∣V +
(
0
ξ̃

)∣∣∣∣
2

−
(

V +
(
0
ξ̃

))� (
V +
1 ⊗ V +

1

)
V +
(
0
ξ̃

)

=
(

V +
(
0
ξ̃

))� (
|V +

1 |2Id − V +
1 ⊗ V +

1

)
V +
(
0
ξ̃

)
.

Notice that the eigenvalues of the matrix |V +
1 |2Id − V +

1 ⊗ V +
1 are ν̃ = 0 and

ν̃ = |V +
1 |2 = θ+

11 > 0. Indeed, for ν̃ �= θ+
11, use Sylvester’s determinant formula

to obtain

det
(
(θ+

11 − ν̃)Id − V +
1 (V

+
1 )

�) = −ν̃(θ+
11 − ν̃)d−1

.

This implies that ν̃ = 0 is a simple eigenvalue associated to the eigenvector V +
1 ,

inasmuch as (|V +
1 |2Id − V +

1 ⊗ V +
1 )V

+
1 = 0. Hence, we conclude that |V +

1 |2Id −
V +
1 ⊗ V +

1 is positive semi-definite and P+(̃ξ ) ≥ 0 for all ξ̃ ∈ R
d−1. Now suppose

that P+(̃ξ ) = 0 for some ξ̃ �= 0. Since ν̃ = 0 is a simple eigenvalue, this implies
that V +( 0

ξ̃

) = kV +
1 for some scalar k or, in other words, that the columns of V +

are linearly dependent, a contradiction. This proves the lemma. ��

Theorem 5.4. (sufficient condition for weak stability) For a compressible hypere-
lastic Hadamard material satisfying assumptions (H1) – (H3), consider a classical
Lax 1-shock with intensity α �= 0. Suppose that

ρ(α) ≥ 0. (5.7)

Then the shock is, at least, weakly stable (more precisely, there are no roots of the
Lopatinskiı̆ determinant in �+).

Proof. According to Proposition 3.8, given the base state (U+, v+) ∈ M
d+ × R

d ,
the shock is completely characterized by the parameter α ∈ (−∞, 0) ∪ (0, α+

max).
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Suppose that for a fixed value of α �= 0 (independently of its sign) condition (5.7)
holds.2 Let us normalize the Lopatinskiı̆ determinant as,

�̌(λ, ξ̃ ) := i

α

�̂(λ, ξ̃ )

(κ+
2 − s2)θ+

11

, (λ, ξ̃ ) ∈ �+.

From Lemma 5.3 and Lax conditions, we have P+(̃ξ ) ≥ 0, θ+
11 > 0 and κ+

2 − s2 >
0. Thus, using (5.7) we may define

δ :=
√
ρ(α)P+(̃ξ )
(κ+

2 − s2)θ+
11

≥ 0,

for all (λ, ξ̃ ) ∈ �+, and write

�̌(λ, ξ̃ ) =
(
β − i

η+(̃ξ )
θ+
11

)2 + δ2 =
(
β − i

η+(̃ξ )
θ+
11

− iδ
)(
β − i

η+(̃ξ )
θ+
11

+ iδ
)
.

In view that the real part of each factor in last formula is negative (Re β < 0 in
�+), we conclude that �̌ never vanishes in �+. ��

5.3. Locating zeroes along the imaginary axis

In order to locate zeroes of the Lopatinskiı̆ determinant along the imaginary
axis, we need to find a new expression for it. For that purpose, we examine in more
detail the unique stable eigenvalue β = β(λ, ξ̃ )with Re β < 0 ofA+, (λ, ξ̃ ) ∈ �+,
and define an appropriate mapping in the spatio-temporal frequency space.

Recall that β ∈ C is a root of the second order characteristic polynomial (4.17)
(see Lemma 4.3), whose discriminant is,

4�(λ, ξ̃ ) := 4(λs + ih′′(J+)η+(̃ξ ))2 + 4(κ+
2 − s2)(λ2 + ω+(̃ξ )), (λ, ξ̃ ) ∈ �+.

This is a second order polynomial in λ. Completing the square in λ yields

�(λ, ξ̃ ) =
⎡
⎢⎣
⎛
⎝
√
κ+
2 λ+ i

sh′′(J+)η+(̃ξ )√
κ+
2

⎞
⎠

2

+ (κ+
2 − s2)ζ+(̃ξ )

⎤
⎥⎦ ,

where

ζ+(̃ξ ) := ω+(̃ξ )− h′′(J+)2

κ+
2

η+(̃ξ )2 ∈ R. (5.8)

Therefore, the two β-roots of (4.17) are given by

β = (κ+
2 − s2)−1

(
λs + ih′′(J+)η+(̃ξ )±�(λ, ξ̃ )1/2

)
.

2 notice that under (H3) necessarily α < 0, in view of Proposition 3.8; the result holds,
however, independently of the sign of α.
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To select the branch of the square root, we recall that the stable eigenvalue β =
β(λ, ξ̃ ) is continuous and Re β < 0 in �+. If ξ̃ = 0 then ω+(0) = η+(0) =
ζ+(0) = 0 and �(λ, 0)1/2 = (κ+

2 λ
2)1/2 is continuous in Re λ > 0. Hence, we

may select �(λ, 0)1/2 =
√
κ+
2 λ as the principal branch. Since κ+

2 > s2 (Lax
conditions) and Re λ > 0, the stable root at (λ, 0) is

β(λ, 0) = − λ√
κ+
2 + s

.

Consequently, the branch we select for the stable root is

β(λ, ξ̃ ) = (κ+
2 − s2)−1

(
λs + ih′′(J+)η+(̃ξ )−�(λ, ξ̃ )1/2

)
. (5.9)

We introduce here the following mapping in the frequency space,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�(λ, ξ̃ ) := (γ (λ, ξ̃ ), ξ̃ ),
� : �+ �→ C × R

d−1,

γ (λ, ξ̃ ) := 1√
κ+
2 − s2

⎛
⎝λ
√
κ+
2 + i

sh′′(J+)η+(̃ξ )√
κ+
2

⎞
⎠ .

(5.10)

The goal is to express the Lopatinskiı̆ determinant (5.5) as well as the stable eigen-
value (5.9) in terms of the new frequency variables (γ, ξ̃ ).

Lemma 5.5. The frequency mapping � : (λ, ξ̃ ) �→ (γ, ξ̃ ) is injective and maps
�+ onto the set

�̃+ :=
{
(γ, ξ̃ ) ∈ C × R

d−1 : Re γ > 0,
∣∣∣∣
√
(κ+

2 )
−1(κ+

2 − s2) γ − i(κ+
2 )

−1sh′′(J+)η+(̃ξ )
∣∣∣∣
2

+ |̃ξ |2 = 1

}
. (5.11)

Proof. Seen as a mapping from (Re λ, Im λ, ξ̃ �) ∈ R
d+1 to R

d+1, � is of class
C∞ and its Jacobian has the following structure

D(λ,̃ξ)� =
⎛
⎜⎝

√
κ+
2√

κ+
2 −s2

I2 ∗
0 Id−1

⎞
⎟⎠ ,

which is clearly invertible. Notice that

Re γ =
√
κ+
2 (κ

+
2 − s2)−1 Re λ,

and, therefore, Re λ > 0 if and only if Re γ > 0.Hence, we conclude that�(�+) =
�̃+. ��
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Let us substitute (5.10) into (5.9). After straightforward algebra, the result is
the stable eigenvalue β as a function of the new frequency variables:

β(γ, ξ̃ ) = s√
κ+
2 (κ

+
2 − s2)

⎡
⎣γ + i

√
κ+
2 − s2

s
√
κ+
2

h′′(J+)η+(̃ξ )−
√
κ+
2

s

(
γ 2 + ζ+(̃ξ )

)1/2
⎤
⎦ .

Use κ+
2 = μ+ h′′(J+)θ+

11 to obtain

β − i
η+(̃ξ )
θ+
11

= s√
κ+
2 (κ

+
2 − s2)

⎡
⎣γ −

√
κ+
2

s

(
γ 2 + ζ+(̃ξ )

)1/2 − i
μη+(̃ξ )
θ+
11

√
κ+
2 − s2

s
√
κ+
2

⎤
⎦.(5.12)

Substitution of last expression into the first version of the Lopatinskiı̆ determinant,
equation (5.5), yields

i

α
̂̂�(γ, ξ̃ ) := i

α
�̂(λ(γ, ξ̃ ), ξ̃ )

= s2θ+
11

κ+
2

⎡
⎣γ −

√
κ+
2

s

(
γ 2 + ζ+(̃ξ )

)1/2 − i
μη+(̃ξ )
θ+
11

√
κ+
2 − s2

s
√
κ+
2

⎤
⎦
2

+

+ ρ(α)(θ+
11N+(̃ξ )2 − η+(̃ξ )2

)

= s2θ+
11

κ+
2

⎡
⎢⎣
⎛
⎝γ −

√
κ+
2

s

(
γ 2 + ζ+(̃ξ )

)1/2 + iτ+η+(̃ξ )

⎞
⎠

2

+ κ+
2

s2θ+
11

ρ(α)P+(̃ξ )

⎤
⎥⎦ ,

where

τ+ := −
μ

√
κ+
2 − s2

s
√
κ+
2 θ

+
11

> 0. (5.13)

Notice that τ+ is a positive constant (recall that s < 0) depending only on the
parameters of the shock. P+(̃ξ ) is defined in (5.6). Therefore, we have proved the
following lemma:
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Lemma 5.6. (Lopatinskiı̆ determinant, version2)The Lopatinskiı̆ determinant (5.5)
can be rewritten and normalized as

�̃(γ, ξ̃ ) := κ+
2

s2θ+
11

i

α
̂̂�(γ, ξ̃ ) =

⎛
⎝γ −

√
κ+
2

s

(
γ 2 + ζ+(̃ξ )

)1/2 + iτ+η+(̃ξ )

⎞
⎠

2

+ρ(α)κ
+
2

s2θ+
11

P+(̃ξ ), (5.14)

for (γ, ξ̃ ) ∈ �̃+. It encodes the same stability information in the sense that �̃ = 0 in
�̃+ if and only if �̂ = 0 in�+. Moreover, by continuity and thanks to the properties
of the mapping (λ, ξ̃ ) �→ (γ, ξ̃ ) (see Lemma 5.5), �̃ has a zero with γ ∈ iR if and
only if �̂ has a zero with λ ∈ iR.

As a first consequence of the expression for the Lopatinskiı̆ determinant (5.14) we
have the following

Corollary 5.7. (one-dimensional stability) For every Hadamard energy function
of the form (1.1) satisfying (H1) – (H3), all classical shock fronts are uniformly
stable with respect to one-dimensional perturbations. In particular, the Lopatinskiı̆
determinant (5.1) behaves for ξ̃ = 0 as

i

α
�̂(λ, 0) = θ+

11

√
κ+
2 − s

√
κ+
2 + s

λ2 �= 0

for any (λ, 0) ∈ �+.

Proof. Set ξ̃ = 0 and (γ, 0) ∈ �̃+. Then Re γ > 0 and |γ |2 = κ+
2 /(κ

+
2 − s2). This

implies that

γ =
√
κ+
2√

κ+
2 − s2

eiυ, υ ∈ [0, 2π).

Since ζ+(0) = η+(0) = P+(0) = 0 we have, upon substitution into (5.14),

�̃(γ, 0) = κ+
2

s2

√
κ+
2 − s

√
κ+
2 + s

ei2υ.

In view of the frequency transformation (5.10) and the relation (i/α)�̂(λ, 0) =
s2θ+

11�̃(γ (λ, 0), 0)/κ
+
2 we obtain the result for all (λ, 0) = (eiυ, 0) ∈ �+. ��

Remark 5.8. Note that the behavior of theLopatinskiı̆ determinant in (5.14) strongly
depends on the sign of ζ+(̃ξ ) because it determines the branches of the square root.
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Hence, it is worth observing that ζ+(̃ξ ) > 0 for all ξ̃ �= 0 and ζ+(0) = 0 if and
only if ξ̃ = 0. Indeed, use (4.15), (5.4) and (5.8) to recast ζ+(̃ξ ) as

ζ+(̃ξ ) = ω+(̃ξ )− h′′(J+)2

κ+
2

η+(̃ξ )2

= μ|̃ξ |2 + h′′(J+)N+(̃ξ )2 − h′′(J+)2

κ+
2

η+(̃ξ )2

= μ|̃ξ |2 + h′′(J+)
θ+
11

P+(̃ξ )+
(
1 − θ+

11h′′(J+)
κ+
2

)h′′(J+)
θ+
11

η+(̃ξ )2

= μ|̃ξ |2 + h′′(J+)
θ+
11

P+(̃ξ )+ μh′′(J+)
κ+
2 θ

+
11

η+(̃ξ )2.

Since P+(̃ξ ) ≥ 0, Lemma 5.3, μ > 0 and h′′ > 0 (condition (H2)) we arrive at the
conclusion.

Notably, ζ+(̃ξ ) remains positive if we substract a suitable frequency expression
depending on τ+. This is a useful property to locate the zeroes of the Lopatinskiı̆
determinant along the imaginary axis.

Lemma 5.9. For every ξ̃ ∈ R
d−1 it holds that

ζ+(̃ξ )− (
τ+η+(̃ξ )

)2 = μ|̃ξ |2 + h′′(J+)
θ+
11

P+(̃ξ )+ μ(s2 − μ)
s2(θ+

11)
2
η+(̃ξ )2 ≥ 0.

Moreover, equality holds if and only if ξ̃ = 0.

Proof. Follows fromRemark 5.8, the definition of τ+ and straightforward algebra:

ζ+(̃ξ )− (
τ+η+(̃ξ )

)2 = μ|̃ξ |2 + h′′(J+)
θ+
11

P+(̃ξ )

+
(μh′′(J+)
κ+
2 θ

+
11

− μ2(κ+
2 − s2)

s2κ+
2 (θ

+
11)

2

)
η+(̃ξ )2

= μ|̃ξ |2 + h′′(J+)
θ+
11

P+(̃ξ )+ μ(s2 − μ)
s2(θ+

11)
2
η+(̃ξ )2.

The conclusion now follows. ��
We proceed with the investigation of the possible zeroes of the Lopatinskiı̆

determinant along the imaginary axis, which are associated to the existence of
surface waves. Let us consider a zero of �̃ of the form (it, ξ̃ ), with t ∈ R. Let
us define Y (t, ξ̃ ) := �̃(it, ξ̃ ) for t ∈ R, and now we find conditions under which
Y has real zeros for a fixed frequency ξ̃ ∈ R

d−1 \ {0}. By Lemma 5.9, ζ+(̃ξ ) is
positive for all ξ̃ ∈ R

d−1 \ {0}, so let us first consider

t ∈
(

−
√
ζ+(̃ξ ),

√
ζ+(̃ξ )

)
.
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In this case we can write

Y (t, ξ̃ ) =
(

−
√
κ+
2

s

√
ζ+(̃ξ )− t2 + i

(
t + τ+η+))2 + ρ(α)κ+

2

s2θ+
11

P+(̃ξ ).

Supposing that Y (t, ξ̃ ) = 0, its imaginary part vanishes, yielding

−2

√
κ+
2

s

(
t + τ+η+(̃ξ )

)√
ζ+(̃ξ )− t2 = 0.

By hypothesis,
√
ζ+(̃ξ )− t2 �= 0. Hence the imaginary part vanishes only if t =

−τ+η+(̃ξ ). Notice that t = −τ+η+(̃ξ ) ∈ (−√ζ+,
√
ζ+) in view of Lemma 5.9.

However,

Y (−τ+η+(̃ξ ), ξ̃ )

=
⎛
⎝−

√
κ+
2

s

√
ζ+(̃ξ )− (τ+η+(̃ξ ))2

⎞
⎠

2

+ ρ(α)κ+
2

s2θ+
11

P+(̃ξ )

= κ+
2

s2

(
ζ+(̃ξ )− (τ+η+(̃ξ ))2 + ρ(α)

θ+
11

P+(̃ξ )
)

= κ+
2

s2

(
μ|̃ξ |2 + (

h′′(J+)+ ρ(α)) P+(̃ξ )
θ+
11

+ μ(s2 − μ)
s2(θ+

11)
2
η+(̃ξ )2

)

= κ+
2

s2

(
μ|̃ξ |2 + (s2 − μ)

( 1

θ+
11

− α

J+
) P+(̃ξ )
θ+
11

+ μ(s2 − μ)
s2(θ+

11)
2
η+(̃ξ )2

)
,

which is strictly positive for all ξ̃ ∈ R
d−1 \{0} becauseμ > 0, s2 > μ, P+(̃ξ ) > 0

and

1

θ+
11

− α

J+ = J−

θ+
11 J+ > 0.

Therefore, we conclude that Y does not vanish on the interval (−√ζ+,
√
ζ+). Let

us now consider

|t | ≥
√
ζ+(̃ξ ).

In this case we have
√

−t2 + ζ+(̃ξ ) = i sgn (t)
√

t2 − ζ+(̃ξ ),

and hence

Y (t, ξ̃ ) = −
(

t −
√
κ+
2

s
sgn (t)

√
t2 − ζ+(̃ξ )+ τ+η+(̃ξ )

)2 + ρ(α)κ+
2

θ+
11s2

P+(̃ξ ).
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Observe that η+(−ξ̃ ) = −η+(̃ξ ), P(−ξ̃ ) = P (̃ξ ) and ζ+(−ξ̃ ) = ζ+(̃ξ ). Thus,
the following property holds, Y (−t, ξ̃ ) = Y (t,−ξ̃ ), and we can assume without
loss of generality that t ≥ √

ζ+ > 0 for ξ̃ �= 0. In this case, Y takes the form

Y (t, ξ̃ ) = −
(

t −
√
κ+
2

s

√
t2 − ζ+(̃ξ )+ τ+η+(̃ξ )

)2 + ρ(α)κ+
2

θ+
11s2

P+(̃ξ ),

ξ̃ ∈ R
d−1 \ {0}.

A straightforward computation then yields

∂Y (t, ξ̃ )

∂t
= −2

(
t −

√
κ+
2

s

√
t2 − ζ+(̃ξ )+ τ+η+(̃ξ )

)(
1 −

√
κ+
2

s

t√
t2 − ζ+

)
.

We readily observe that since s < 0 then the last factor is positive. In view of
Lemma 5.9 it follows that |τ+η+| < √

ζ+ ≤ t and, hence, the first factor is also
positive. This shows that Y is strictly decreasing as a function of t >

√
ζ+ for all

ξ̃ ∈ R
d−1 \ {0}. Moreover, Y behaves as

Y ≈ −t2

⎛
⎝1 −

√
κ+
2

s

⎞
⎠

2

< 0,

as t → +∞ and for fixed ξ̃ �= 0.
Consequently, Y has a unique zero of the form (t, ξ̃ ) with t ≥ √

ζ+ if and only
if there exists at least one frequency ξ̃0 �= 0 such that

Y
(√
ζ+(̃ξ0), ξ̃0

)
≥ 0,

yielding the condition

(√
ζ+(̃ξ0)+ τ+η+(̃ξ0)

)2 − ρ(α)κ+
2

s2θ+
11

P+(̃ξ0) ≤ 0.

Otherwise there are no purely imaginary zeroes. Note that if ρ(α) ≤ 0 then the left
hand side of last expression is strictly positive for all ξ̃0 �= 0 in view of Lemma 5.3.
On account of the homogenity of �̃ in ξ̃ we may assume |̃ξ | = 1. We summarize
the observations of this section into the following

Lemma 5.10. (existence of purely imaginary zeroes) If ρ(α) ≤ 0 then �̃ has no
zeroes of the form (it, ξ̃ ) with t ∈ R. Conversely, if ρ(α) > 0 then �̃ has at least
one zero of the form (it, ξ̃ ) if and only if there exist at least one frequency ξ̃0 �= 0
such that

(√
ζ+(ξ̃0)+ τ+η+(̃ξ0)

)2 − ρ(α)κ+
2

s2θ+
11

P+(̃ξ0) ≤ 0. (5.15)
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Remark 5.11. From Theorem 5.4 we know that if ρ(α) ≥ 0 then the shock is
either weakly or strongly stable. Lemma 5.10 allows us to distinguish between
the two cases. For instance, if the shock (U±, v±, s) is such that ρ(α) = 0 then
relation (5.15) is never satisfied for any frequency ξ̃ ∈ R

d−1 \ {0} and the shock
is strongly stable (recall that ζ+ > 0 for ξ̃ �= 0 and, in view of Lemma 5.9,√
ζ+ ≥ |τ+η+| > 0).When ρ(α) > 0 the stability is determined by the expression

(5.15), which can be considered as the condition for the transition from strong to
weak stability.

5.4. The case ρ(α) < 0

From Lemma 5.10 and Remark 5.11, we already know that �̃ has not purely
imaginary roots when ρ(α) < 0. At the same time, Theorem 5.4 guarantees that if
ρ(α) ≥ 0 then the shock is at least weakly stable and the transition from weak to
strong stability is determined by condition (5.15). Therefore, the only remaining
task is to determine whether there exist zeroes of the form (γ, ξ̃ ) with Re γ > 0
when ρ(α) < 0. Following the proof of Theorem 5.4, we exploit the fact that
Re β < 0 in order to reduce the analysis to only one factor (a third version of the
Lopatinskiı̆ determinant) instead of the whole function �̃. Let us recall that

�̃(γ, ξ̃ ) = κ+
2

s2θ+
11

i

α
̂̂�(γ, ξ̃ ) = κ+

2

s2θ+
11

i

α
�̂(λ(γ, ξ̃ ), ξ̃ ),

so we come back to the expression of i
α
�̂ defined in Lemma 5.2, which can be

written as

i

α
�̂(λ(γ, ξ̃ ), ξ̃ ) = (κ+

2 − s2)θ+
11

((
β(λ(γ, ξ̃ ), ξ̃ )− iη+(̃ξ )

θ+
11

)2 + ρ(α)P+(̃ξ )
(κ+

2 − s2)θ+
11

)

= (κ+
2 − s2)θ+

11

((
β − iη+(̃ξ )

θ+
11

)2 − δ2
)

= (κ+
2 − s2)θ+

11

(
β − δ − iη+(̃ξ )

θ+
11

)(
β + δ − iη+(̃ξ )

θ+
11

)
,

where now, with a slight abuse of notation,

δ =
√

−ρ(α)P+(̃ξ )
θ+
11(κ

+
2 − s2)

> 0,

in view that ρ(α) < 0. Except for the constant (κ+
2 − s2)θ+

11, note that the real part
of first factor in the expression of i

α
�̂ is negative (Re β < 0 in �+ and, because

of Lemma 5.5, Re β < 0 in �̃+ as well). Hence, this factor never vanishes in �̃+.
Necessarily, all possible zeroes γ in �̃+ come from the last factor. Profiting from
(5.12), we recast the latter as follows:
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Definition 5.12. (Lopatinskiı̆ determinant, version 3) In the case when ρ(α) < 0,
we define

�1(γ, ξ̃ ) : =
√
κ+
2 (κ

+
2 − s2)

s

(
β + δ − iη+(̃ξ )

θ+
11

)

= γ −
√
κ+
2

s

√
γ 2 + ζ+(̃ξ )+ iτ+η+(̃ξ )+

√
κ+
2

s

√
−ρ(α)P+(̃ξ )

θ+
11

(5.16)

for each (γ, ξ̃ ) ∈ �̃+.

From the preceding discussion, it suffices to study the zeroes of �1 on �̃+
to draw stability conclusions about the shock in the case ρ(α) < 0. To that end,
we apply the argument principle to count the number of roots of �1 in the right
complex γ -half-plane. We proceed as in [55], introducing polar coordinates (R, φ)
and defining, for any fixed ξ̃ �= 0, the function

H(R, φ) = H(w) := �1(w, ξ̃ ), w = Reiφ.

Consider H(w) as w varies counterclock-wise along the closed contour C con-
sisting of a semicircle togetherwith a vertical segment joining the ends; see Figure 1.
From Lemma 5.10 it is known that if ρ(α) < 0 then there are no roots of �̃ of
the form (it, ξ̃ ) (and, consequently, of�1 as well). Therefore, the function H does
not have purely imaginary roots for any fixed ξ̃ �= 0 and we only have to avoid
the branch cuts of the square root when we map this portion of the imaginary axis.
We are interested in the behavior of the image of C under H as R → ∞. From
expression (5.16), notice that the image of the circular portion for large R behaves
like

H(R, φ) ≈
⎛
⎝1 − s√

κ+
2

⎞
⎠ Reiφ,

as R → ∞. Hence, the image is almost a circular portion too. Now we examine
the mapping of the portion of C on the imaginary axis, that is, when φ = ±π/2.
Substitution into (5.16) yields

H(R,±π
2 ) = ±iR + iτ+η+(̃ξ )+

√
κ+
2

s

√
−ρ(α)P+(̃ξ )

θ+
11

−
√
κ+
2

s
·
{

±i
√

R2 − ζ+(̃ξ ), R2 > ζ+(̃ξ ),√
ζ+(̃ξ )− R2, R2 ≤ ζ+(̃ξ ).
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(a) (b)

Fig. 1. Illustration of the contour C in the w-complex plane (in blue; panel (a)) and of its
image under the mapping H (panel (b); color online)

Hence, H maps the segment (−i
√
ζ+, i

√
ζ+) into the half right part of the

following ellipse in the XY -plane,

⎛
⎝− s√

κ+
2

X +
√

−ρ(α)P+(̃ξ )
θ+
11

⎞
⎠

2

+
(

Y − τ+η+(̃ξ )
)2 = ζ+(̃ξ ), (5.17)

where X = Re H(w), Y = Im H(w). At the same time, H maps the segment
(−iR,−i

√
ζ+) ∪ (i√ζ+, iR) into the lines joining the upper an lower vertices of

the ellipse with points H(R, π2 ) and H(R,−π
2 ) respectively; see Figure 1(b).

Note that the total change in the argument of H on the contour C depends on
whether or not the point (X,Y ) = (0, 0) is inside the ellipse. Since H has no purely
imaginary zeros for all ξ̃ �= 0, (X,Y ) = (0, 0) does not lie on the ellipse in the
XY -plane. It remains to check whether (X,Y ) = (0, 0) is inside or outside the
ellipse. For that purpose, we apply Lemma 5.9 in order to write

(
τ+η+(̃ξ )

)2 = ζ+(̃ξ )−
(
μ|̃ξ |2 + h′′(J+)

θ+
11

P+(̃ξ )+ μ(s2 − μ)
s2(θ+

11)
2
(η+)2

)
.

Now if we substitute X = 0, Y = 0 into the right hand side of (5.17) then we find
that
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−ρ(α)P+(̃ξ )
θ+
11

+ (
τ+η+(̃ξ )

)2 = ζ+(̃ξ )−
(
μ|̃ξ |2 + (s2 − μ)

( 1

θ+
11

− α

J+
) P+(̃ξ )
θ+
11

+ μ(s2 − μ)
s2(θ+

11)
2
(η+)2

)

< ζ+(̃ξ ),

for each ξ̃ �= 0. Hence, we conclude that the point (X,Y ) = (0, 0) is inside the
ellipse (or equivalently, it lies outside of the image of the contour under H , as
illustrated in Figure 1(b)). This implies that there is no change in the argument of
H(w) as w varies counterclockwise along the closed contour C and that there are
no roots with positive real part of H for all ξ̃ �= 0. The argument can be applied to
any arbitrarily large radius R > 0. Therefore, as long as ρ(α) < 0, �̃(γ, ξ̃ ) does
not vanish for Re γ > 0. In view of Remark 5.11, we conclude that ρ(α) ≤ 0 is a
sufficient condition for uniform (or strong) stability.

We summarize the last discussion and the precedent theorems into the following
main result:

Theorem 5.13. (stability criteria) For a compressible hyperelastic Hadamard ma-
terial satisfying assumptions (H1) – (H3), consider a classical (Lax) 1-shock with
intensity α �= 0.

(a) If ρ(α) ≤ 0 then the shock is uniformly stable.
(b) In the case where ρ(α) > 0, the shock is uniformly stable if and only if

(√
ζ+(̃ξ )+ τ+η+(̃ξ )

)2 − ρ(α)κ+
2

s2θ+
11

P+(̃ξ ) > 0, for all ξ̃ �= 0. (5.18)

Otherwise the shock is weakly stable.

Remark 5.14. Being that the left hand side of (5.18) is of order O(|̃ξ |2), in most
cases it constitutes a quadratic form in ξ̃ and there exists a real matrix L+ ∈ R

d×d

depending only on the shock and material parameters (that is, independent of the
frequencies ξ̃ ∈ R

d−1) such that, in those cases, the transition from weak to strong
stability condition can be recast as follows: when ρ(α) > 0 the shock is uniformly
stable if and only if the matrix L+ restricted to the d − 1 dimensional space,

{(0, ξ̃ ) : ξ̃ ∈ R
d−1} ⊂ R

d , is positive definite, that is, if (0, ξ̃ )�L+
(
0
ξ̃

)
> 0 for

all ξ̃ �= 0. In other words, one can state the transition condition (5.18) in terms of the
shock and material parameters alone, as in the case of gas dynamics (cf. [10,71]).
However, the general form of thematrix L+ is convoluted and, in practice, it is more
convenient to verify (5.18) directly (see, for instance, the example in Sect. 5.5.1
below).

5.5. Applications

In order to illustrate the theoretical results, in this section we examine a couple
of specific energy density functions describing compressible Hadamard materials
and determine the conditions for shock stability.
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5.5.1. Two-dimensional Ciarlet-Geymonat model We begin by considering, in
two space dimensions d = 2, the following volumetric energy density proposed by
Ciarlet and Geymonat [18] (see Appendix B, Sect. 7, equation (B.12) below),

h(J ) = −μ− μ log J +
(κ − μ

2

)
(J − 1)2, (5.19)

whereμ and κ are the (constant) shear and bulkmoduli, respectively, satisfying κ >
μ > 0. Energies of the form (B.12) model nearly incompressible materials (that is,
they are proposed for small deformations) and they satisfy the free stress condition
(B.8) and the hydrostatic pressure condition (B.10) of Pence and Gou [81]. In other
words, these models are compressible extensions of neo-Hookean materials. This
two-dimensional version of theCiarlet-Geymonat energy, (5.19), has been proposed
by Trabelsi [97] to describe nonlinear thin plate materials modeling flexural shells.

Given abase state (U+, v+) ∈ R
2×2×R

2, aLax shock is completely determined
by the parameter α ∈ R (see Lemma 3.2). It can be shown (see Sect. 7 below) that

h′′(J ) = μ

J 2 + κ − μ > 0, h′′′(J ) = −2μ

J 3 < 0,

for all J ∈ (0,∞). Thus, this energy density satisfies (H1) – (H3). In view of
Proposition 3.8, in order to have a classical shock front we need α < 0. Notice that
|α| can be arbitrarily large, meaning that the shock can be of arbitrary amplitude.
According to our notation

V +
1 = (Cof U+)1 =

(
U+
22−U+
12

)
∈ R

2.

A straightforward calculation (which we leave to the dedicated reader) yields

ρ(α) = −(κ − μ) |V
+
1 |2
J+ α > 0.

Therefore, fromTheorem 5.4we know that all classical shockswith intensityα < 0
are, at least, weakly stable. In order to examine condition (5.15) and the emergence
of surface waves, we set, for simplicity, U+ = I2 (undeformed base state). Thus,

V +
1 = (Cof U+)1 = ê1 ∈ R

2, θ+
11 = |V +

1 |2 = 1,

U− = U+ − α(V +
1 ⊗ ê1) = I2 − α(ê1 ⊗ ê1) =

(
1 − α 0
0 1

)
,

J+ = 1, J− = 1 − α > 1.

This yields ρ(α) = −(κ−μ)α. Since the physical dimension is d = 2, the Fourier
frequency is ξ̃ = ξ2 ∈ R and (λ, ξ2) ∈ �+ = {Re λ > 0, |λ|2 + ξ22 = 1}. After
straightforward computations the reader may verify that

κ+
2 = μ+ κ,
s2 = κ + μ

1 − α , with s < 0,

η+(ξ2) = 0, P+(ξ2) = ξ22 ,
ζ+(ξ2) = ω+(ξ2) = (μ+ κ)ξ22 .
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Upon substitution into the left hand side of (5.15), we obtain

(μ+ κ)ξ22
(
1 + α(1 − α)(κ − μ)

μ+ (1 − α)κ
)
.

Thus, the sign is determined by the function

L(α) = 1 + α(1 − α)(κ − μ)
μ+ (1 − α)κ , α < 0.

Clearly, L(α) > 0 for α ≈ 0−. Therefore, when ξ2 �= 0 condition (5.18) holds
for α < 0 and |α| small and the shock is uniformly stable. It is easily verified that
L(α∗) = 0 with α∗ < 0 only when

α∗ = −
(
μ+√

μ2 + 4(κ2 − μ2)

2(κ − μ)

)
< 0. (5.20)

Thanks to Theorem 5.13, we obtain

Proposition 5.15. For the two-dimensional Ciarlet-Geymonat model (5.19), clas-
sical shocks with base sate U+ = I2 and intensity α < 0 are uniformly stable if
α ∈ (α∗, 0) and weakly stable if α ∈ (−∞, α∗], where the critical value α∗ is given
by (5.20).

To illustrate this behavior we compute the Lopatinskiı̆ determinant, version
2 (see Lemma 5.6) as a function of the transformed frequencies (γ, ξ2) ∈ �̃+.
Substituting the above parameters into (5.14) we obtain

�̃(γ, ξ2) =
[
γ − (μ+ κ)1/2

(
κ + μ

1 − α
)−1/2(

γ 2 + (μ+ κ)ξ22
)1/2]2

−α(κ
2 − μ2)ξ22

κ + μ
1−α

. (5.21)

Set the shear and bulk moduli as κ = 2 > μ = 1. Hence the threshold α-value
for weak/uniform stability is α∗ = −2.3028. Since the condition for uniform to
weak stability does not depend on ξ2 we may assume that |ξ2| = 1. Figure 2 shows
the 3D and contour plots of the Lopatinskiı̆ determinant (5.21) for the Ciarlet-
Geymonat model (5.19) in dimension d = 2 as function of γ ∈ C with ξ22 = 1, for
the shock parameter value α = −0.3 ∈ (α∗, 0) in Figure 2(a), and for α∗ = −8 ∈
(−∞, α∗) in Figure 2(b). Notice that the Lopatinskiı̆ function does not vanish in
Re γ ≥ 0 in case (a), whereas in case (b) two zeroes along the imaginary axis
emerge (this is particularly noticeable in the 3D plot on the left). These figures
illustrate the transition from uniform to weak stability stated in Proposition 5.15.
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(a)

(b)

Fig. 2. Complex plot (in 3D, left, and contour, right) of the Lopatinskiı̆ determinant (5.21)
for the Ciarlet-Geymonat model (5.19) in dimension d = 2 as function of γ ∈ C, with
ξ22 = 1, for elastic parameter values κ = 2, μ = 1 and for the shock parameter value
α = −0.3 ∈ (α∗, 0) (panel (a)) and α = −8 ∈ (−∞, α∗) (panel (b)). The color mapping
legend shows the modulus |�| ∈ (0,∞) from dark to light tones of color and the phase from
light blue (arg(γ ) = −π ) to green (arg(γ ) = π ). (Color online.)

5.5.2. Blatz model in dimension d = 3 Let us now consider the model proposed
by Blatz [13] (see Sect. 7) in dimension d = 3,

h(J ) = −3

2
μ+ (

κ − 2

3
μ
)
(J − 1)− (

κ + μ

3

)
log J, (5.22)

where κ > 2
3μ > 0 are constant. This energy function, which models compressible

elastomers, was studied in [78] from a numerical perspective. From (5.22) we
clearly have

h′′(J ) = (κ + 1
3μ)

1

J 2 > 0, h′′′(J ) = −2(κ + 1
3μ)

1

J 3 < 0,
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for all J ∈ (0,∞) and conditions (H1) – (H3) are satisfied. Thus, Proposition 3.8
implies that for Lax shockswe requireα < 0.Use (3.10) and J− = J+−α|V +

1 |2 =
J+ − αθ+

11 to write

s2 − μ = (κ + 1
3μ)

θ+
11

J+ J− ,

yielding, in turn,

ρ(α) = h′′(J+)− (s2 − μ)
θ+
11

J−

J+ ≡ 0.

In view of Theorem 5.13 we obtain

Proposition 5.16. For the three-dimensional Blatz model (5.22) all classical elastic
shocks are uniformly stable.

As before, for the sake of simplicity we consider an undeformed base state,
U+ = I3, and α < 0 to define the shock. In this fashion, J+ = 1, V +

1 = ê1 ∈ R
3

and

U− = I3 − α(ê1 ⊗ ê1) =
⎛
⎝
1 − α 0 0
0 1 0
0 0 1

⎞
⎠ , J− = 1 − α > 1.

Here, the transversal frequencies vector is ξ̃ = (ξ2, ξ3)� ∈ R
2 and V +

j = ê j ∈ R
3,

for j = 2, 3. This yields, η+(̃ξ ) = ∑
j �=1(V

+
1 )

�V +
j ξ j = ∑

j �=1 ê�
1 ê jξ j = 0.

Direct calculations lead to

κ+
2 = κ + 4

3μ > 0, s2 = μ+ κ + 1
3μ

1 − α , ζ+(̃ξ ) = (κ + 4
3μ)|̃ξ |2,

with s < 0. Let us define

C1(κ, μ, α) := −
√
κ+
2

s
=
√
(1 − α)(3κ + 4μ)

(4 − 3α)μ+ κ > 0.

Since ρ(α) = 0 and η+(̃ξ ) = 0, the second version of the Lopatinskiı̆ determinant
(5.14) then reduces to

�̃(γ, ξ̃ ) =
(
γ + C1(κ, μ, α)

(
γ 2 + ζ+(̃ξ )

)1/2)2

,

for (γ, ξ̃ ) ∈ �̃+. Since η+(̃ξ ) = 0 the set of remapped frequencies (γ, ξ̃ ) ∈ �̃+ is
given by

Re γ > 0,
−α(κ + 1

3μ)

(1 − α)(κ + 4
3μ)

|γ |2 + |̃ξ |2 = 1.
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Fig. 3. Complex plot (in 3D, left, and contour, right) of the Lopatinskiı̆ determinant (5.23)
for the Blatz model (5.22) in dimension d = 3 as function of γ ∈ C for elastic parameter
values κ = 1, μ = 1 and for the shock parameter value α = −5. The color mapping legend
shows the modulus |�| ∈ (0,∞) from dark to light tones of color and the phase from light
blue (arg(γ ) = −π ) to green (arg(γ ) = π ). (Color online.)

Solving for |̃ξ |2 and substituting into the Lopatinskiı̆ determinant we obtain the
following expression as a function of γ ∈ C alone,

˜̃�(γ ) := �̃(γ, ξ̃ )|(γ ,̃ξ )∈�̃+

=
⎡
⎣γ + C1(κ, μ, α)

(
γ 2 + (κ + 4

3μ)+
α(κ + 1

3μ)

1 − α |γ |2
)1/2

⎤
⎦
2

.(5.23)

Figure 3 shows both the 3D and contour plots of the Lopatinskiı̆ determinant
(5.23) as a function of γ ∈ C, for elastic parameter values κ = 1, μ = 1 and for
the shock parameter value α = −5. Notice that the function never vanishes for
Re γ ≥ 0, confirming the uniform stability of the shock stated in Proposition 5.16.

6. Discussion

In this paper, we have explicitly computed and studied the Lopatinskiı̆ determi-
nant (or stability function) associated to classical planar shock fronts for compress-
ible, non thermal, hyperelastic materials of Hadamard type in any space dimension.
The stored energy density functions characterizing such materials have the form
(1.1) and satisfy hypotheses (H1) and (H2). Once a base state is selected, all elastic
classical shocks can be described in terms of a shock parameter α ∈ R\{0} which
determines the shock speed, the end state and the shock amplitude. For simplicity,
we assume that the material further satisfies the material convexity condition (H3).
It is shown that for materials satisfying (H1) – (H3) all classical shocks are, at least,
weakly stable. This is tantamount to the fact that Hadamard-type ill-posed exam-
ples cannot be constructed for the linearized problem. In several space dimensions,
it is known that the transition from a weakly stable to a strongly unstable shock is
signaled by the instability with respect to one dimensional perturbations (see Serre
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[89]). Hence, Corollary 5.7 (which establishes the one-dimensional stability of all
shocks) is consistent with the absence of violent multidimensional instabilities.

Moreover, the explicit calculation of the Lopatinskiı̆ determinant as a function
of the space-time frequencies allows to perform a complete (spectral) study of the
constant coefficients problemanalytically.We introduce a scalar stability parameter,
ρ(α), depending solely on the shock parameters and on the elastic moduli of the
material, which determines the transition from uniform to weak stability according
to the condition (5.18). In the cases where the shock is weakly stable, we introduced
a mapping in the frequency space which allows to locate two zeroes along the
imaginary axis. In the case where the uniform stability condition holds, one may
directly conclude the nonlinear stability of the shock as well as the persistence
of the front structure (local-in-time existence and uniqueness of the shock wave
for the nonlinear system of equations), in view that the analyses of Majda [70,71]
and Métivier [76] apply. For that purpose, it is to be observed that the system
of elasytodynamics satisfies the block structure assumption of Majda (see [20])
and the constant multiplicity of Métivier (see Corollary 2.11 above), allowing the
construction of Kreiss symmetrizers and the establishment of energy estimates for
the linearized coefficients problem (see [10,70,71]). The nonlinear conclusion is,
thus, at hand. The local-in-time existence of weakly stable shocks for hyperelastic
materials remains an open problem.

The explicit computation of the Lopatinskiı̆ determinant presented here could
be useful in the study of elastic phase boundaries for Hadamard materials, which
are structures associated to the case where the volumetric energy density h has
the shape of a double-well potential (for a recent contribution in this direction,
see [43]). Such investigation must follow the theoretical setup developed in [35]
and (perhaps) the numerical approach of [82], in order to deal with kinetic relations
which are dissipative perturbations of theMaxwell equal area rule. This is a problem
that warrants future investigations.
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Appendix A. Multidimensional Stability of Planar Shock Fronts

For convenience of the reader, in this section we gather basic information about the
stability conditions for multidimensional shock fronts. The reader is referred to the
books by Benzoni-Gavage and Serre [10], Majda [71,72] and Serre [88] for more
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information. Consider a hyperbolic system of n conservation laws in d ≥ 2 space
dimensions of the form

ut +
d∑

j=1

f j (u)x j = 0, (A.1)

where x ∈ R
d and t ≥ 0 are space and time variables, respectively, and u ∈ U ⊂ R

n

denotes the vector of n conserved quantities (here U denotes an open connected
set). The flux functions f j ∈ C2(U;Rn), j = 1, . . . , d, are supposed to be twice
continuously differentiable and to determine the flux of the conserved quantities
along the boundary of arbitrary volume elements. System (A.1) is hyperbolic in U
if for any u ∈ U and all ξ ∈ R

d , ξ �= 0, the matrix

A(ξ, u) :=
d∑

j=1

ξ j A j (u), (A.2)

where A j (u) := D f j (u) ∈ R
n×n for each j , is diagonalizable over R with eigen-

values

a1(ξ, u) ≤ . . . ≤ an(ξ, u), (A.3)

of class at least C1(U × R
d;R), called the characteristic speeds. Each eigenvalue

a j (ξ, u) is semi-simple (algebraic and geometric multiplicities coincide), with con-
stant multiplicity for all (u, ξ) ∈ U × R

d\{0}. The matrix A(ξ, u) has a complete
set of right (column) eigenvectors r1(ξ, u), . . . , rn(ξ, u) ∈ C1(Rd × U;Rn×1),
satisfying A(ξ, u)r j (ξ, u) = a j (ξ, u)r j (ξ, u) for each j , as well as a complete set
of left (row) eigenvectors l1(ξ, u), . . . , ln(ξ, u) ∈ C1(Rd × U;R1×n), satisfying
l j (ξ, u)A(ξ, u) = a j (ξ, u)l j (ξ, u).
An important class of weak solutions to (A.1) are known as shock fronts, which are
configurations of the form

u(x, t) =
{

u+, x · ν̂ > st,

u−, x · ν̂ < st,
(A.4)

where u± ∈ U are constant states, u+ �= u−, and ν̂ = (ν1, . . . , νd) ∈ R
d , |ν̂| = 1

is a fixed direction of propagation. The shock speed s ∈ R is not arbitrary but
determined by the classical Rankine-Hugoniot jump conditions [27,65],

− s�u� +
d∑

j=1

� f j (u)�ν j = 0, (A.5)

where the bracket �·� denotes the jump across the interface or, more precisely,

�g(u)� := g(u+)− g(u−),

for any (vector or matrix valued) function g = g(u). Jump conditions (A.5) are
necessary conditions for the configuration (A.4) to be a weak solution to (A.1) and
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express conservation of the state variables u across the interface,� = {x · ν̂− st =
0}.
To circumvent the problem of non-uniqueness of weak solutions of the form (A.4)
one further imposes an entropy condition. The shock front (A.4) is called an ad-
missible (or classical) p-shock if it satisfies Lax entropy condition (cf. [27,65]):
there exists an index 1 ≤ p ≤ n such that

ap−1(ν̂, u
−) < s < ap(ν̂, u

−),
ap(ν̂, u

+) < s < ap+1(ν̂, u
+),

(A.6)

where, by convention, if p = 1 then ap−1(ν̂, u−) := −∞, and if p = n then
ap+1(ν̂, u+) := +∞. In the casewhere p = 1 or p = n the shock is called extreme.
The eigenvalue ap(ν̂, u) is called the principal characteristic speed and rp(ν̂, u) is
the principal characteristic field. It is said that the former is genuinely nonlinear
in the direction ν̂ (cf. Majda [72]) if Duap(ν̂, u)�rp(ν̂, u) �= 0 (or equivalently,
l p(ν̂, u)Duap(ν̂, u) �= 0) for all u ∈ U .
Given a base state u+ ∈ U , the Hugoniot locus is defined as the set of all states in
U that can be connected to u+ with a speed satisfying the jump conditions (A.5).
The intersection of the Hugoniot locus with those states for which one can find a
shock speed satisfying Lax entropy condition (A.6) for some 1 ≤ p ≤ n is referred
to as the p-shock curve. If, in addition, u+ ∈ U is a point of genuine nonlinearity
of the p-th characteristic family in direction of ν̂, for which ap(ν̂, u+) is a simple
eigenvalue and

Duap(ν̂, u
+)�rp(ν̂, u

+) > 0, (respectively, < 0), (A.7)

then the p-shock curve locally behaves like

u− = u+ + ε rp(ν̂, u
+)+ O(ε2),

s = ap(ν̂, u
+)+ 1

2ε Duap(ν̂, u
+)�rp(ν̂, u

+)+ O(ε2),
(A.8)

and satisfies Lax entropy condition (A.6) if and only if ε < 0 (respectively, ε > 0).
The parameter ε measures the strength of the shock, |u+ − u−| = O(|ε|).
It is well known that the nonlinear stability behavior of shock fronts of the form
(A.4) is determined by the so called uniform and weak Lopatinskiı̆ conditions
(see Benzoni-Gavage and Serre [10], Majda [70,71], Métivier [74–76] and the
references therein). The analysis to obtain the former departs fromaFourier-Laplace
decomposition of the constant-coefficient linearized problem associated with (A.1)
at the configuration (A.4). By considering single normal modes of the form u ∼
eλt eiξ ·x with spatio-temporal frequencies lying on the set

�+
ν̂

=
{
(λ, ξ) ∈ C × R

d : Re λ > 0, ξ · ν̂ = 0, |λ|2 + |ξ |2 = 1
}
, (A.9)

as solutions to the linearized problem around the shock (A.4), one arrives at the
Lopatinskiı̆ determinant or stability function

�(λ, ξ) = det
(
R−

1 , . . . ,R
−
p−1, λ�u� + i

d∑
j=1

ξ j � f j (u)�,R+
p+1, . . . ,R

+
n

)
,

(λ, ξ) ∈ �+
ν̂
, (A.10)
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whereR−
1 (λ, ξ), . . . ,R

−
p−1(λ, ξ) ∈ C

n×1 denotes a basis of the stable subspace of

A−(λ, ξ), and R+
p+1(λ, ξ), . . . ,R+

n (λ, ξ) ∈ C
n×1 denotes a basis of the unstable

subspace of A+(λ, ξ), whereupon we define the matrix fields

A±(λ, ξ) := (λIn + iA(ξ, u±))(A(ν̂, u±)− sIn)
−1 ∈ C

n×n, (λ, ξ) ∈ �+
ν̂
.

Notice that, in view of Lax entropy conditions, the shock is not characteristic with
s �= a±

p and hence the matrices A(ν̂, u±) − sIn are not singular. The fact that the
stable subspace of A−(λ, ξ) and the unstable subspace of A+(λ, ξ) have exactly
dimensions p − 1 and n − p, respectively, follows from the hyperbolicity of the
matrix fieldsA±(λ, ξ) on the set�+

ν̂
. This result is known in the literature asHersh’

lemma [49] (see also [10,55,88]).
The function � is jointly analytic in (λ, ξ) ∈ �+

ν̂
and homogeneous of degree

one. Also, by continuity of the eigenprojections, the Lopatinskiı̆ determinant can
be defined for all frequencies within the set

�ν̂ :=
{
(λ, ξ) ∈ C × R

d : Re λ ≥ 0, ξ · ν̂ = 0, |λ|2 + |ξ |2 = 1
}
,

(see [62,70,71,74] for further information). The stability function � determines
the solvability of the linearized equations by wave solutions that violate an L2

well-posedness estimate. Whenever a zero of � occurs then there exist spatially
decaying solutions with time growth rate exp(t Re λ). Thus, a necessary condition
for well-posedness of the linearized problem is that � does not vanish in the open
set �+

ν̂
. A stronger condition requires � not to vanish in the whole frequency set

�ν̂ (allowing time frequencies with Re λ = 0) and it is sufficient for the well-
posedness of the nonlinear system, as the analyses of Majda [70,71] and Métivier
[74,75] show. To sum up, we have the following

Definition A.1. Consider a planar shockwave of the form (A.4) and its correspond-
ing Lopatinskiı̆ determinant defined in (A.10). If � has no zeroes (λ, ξ) in �ν̂ the
shock is called uniformly stable (uniform Lopatinskiı̆ condition). If � has a zero
(λ, ξ) in �+

ν̂
(with Re λ > 0) the shock is referred to as strongly unstable. In the

intermediate case where � has some zero (λ, ξ) with Re λ = 0 but no zero in �+
ν̂

the shock is said to be weakly stable (weak Lopatinskiı̆ condition).

Remark A.2. When a shock is extreme with p = 1 then there is no stable subspace
ofA−(λ, ξ̃ ) for (λ, ξ̃ ) ∈ �+

ν̂
and the unstable subspace ofA+(λ, ξ̃ ) has dimension

n−1. Therefore, the left stable subspace ofA+(λ, ξ̃ ) is generated by a single (row)
vector ls+(λ, ξ̃ ) associated to a unique stable eigenvalue β(λ, ξ̃ ) with Re β < 0. In
such a case the expression for the Lopatinskiı̆ determinant simplifies to

�(λ, ξ̃ ) = ls+(λ, ξ̃ )
(
λ�u� + i

d∑
j=1

ξ j � f j (u)�
)
, (λ, ξ̃ ) ∈ �+

ν̂
, (A.11)

in the sense that � = 0 in �+
ν̂
if and only if � = 0 in �+

ν̂
(see [10,55,88]).
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When a shock is strongly unstable, the instability is of Hadamard type [45,88] and it
is so violent that we practically never observe the shock evolve in time. In contrast,
any small initial perturbation around a strongly stable shock (that is, a small wave
impinging on the interface), compatible with the conservation laws and the jump
conditions, produces a (local-in-time) solution to the nonlinear system with the
same wave structure, that is, made of smooth regions separated by a (modified or
curved) shock front. As shown byMajda [71], the strong stability condition ensures
the well-posedness of a non-standard constant coefficient initial boundary value
problem. The intermediate case of a weakly stable shock for which there exist
zeroes of the Lopatinskiı̆ determinant on the imaginary axis (�(iτ, ξ̃ ) = 0, for
frequencies (iτ, ξ) ∈ ∂�+

ν̂
, τ ∈ R) refers to the existence of surface wave solutions

localized near the shock, having the form  (|x · ν̂|)ei(τ t+x ·ξ) and with amplitude
 decaying exponentially as we move away from the interface, |x · ν̂| → ∞.

Appendix B. Compressible Hyperelastic Materials of Hadamard Type

An hyperelastic material of Hadamard type (cf. [48,57]) is defined as an elastic
material whose energy density function has the general form (1.1), where μ > 0 is
a constant and h : (0,∞)→ R is a function of class C3. According to custom, let
us denote that

I (1) = tr (U�U ), I (d) = det(U�U ), J =
√

I (d) = detU.

I (1) and I (d) are well-known principal invariants of the right Cauchy-Green tensor,
C = U�U , for any given deformation gradient U ∈ M

d+. Hence, energy densities
for compressible Hadamard materials have the (Rivlin-Ericksen) form

W (U ) = W (I (1), J ) = μ

2
I (1) + h(J ). (B.1)

The constant μ > 0 is the classical shear modulus in the reference configuration,
describing an object’s tendency to deform its shape at constant volume when acted
upon opposing forces. The energy density (B.1) consists of two contributions: the
first term is the isochoric part of the energy, quantifying energy changes at constant
volumeanddependingonly on I (1),whereas the secondone, the volumetric function
h = h(J ), quantifies energy changes due to changes in volume, and depends only
on J = detU ∈ (0,∞). In this paper, it is assumed that the function h satisfies the
regularity assumption (H1) (h ∈ C3), the convexity condition for the energy (H2)
(h′′ > 0) and the material convexity condition (H3) (h′′′ < 0).

Remark B.1. Hayes [48] calls restricted Hadamard materials to those which, in
addition to (H1) and (H2), satisfy

h′(J ) ≤ 0, for all J > 0, (B.2)

a condition which guarantees that the elastic medium fulfills the ordered forces
inequality of Coleman and Noll [19]. Even though some of the examples of elastic
materials presented in this paper satisfy inequality (B.2), the latter plays no role in
the shock stability analysis.
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B.1. Stress fields

We now derive the first Piola-Kirchhoff and Cauchy stress tensors from any energy
density function of the form (1.1).

Lemma B.2. For a general compressible elastic model with energy density of the
form W = W (I (1), J ) in any dimension d ≥ 2, the first Piola-Kirchhoff stress
tensor is given by

σ(U ) = 2
∂W

∂ I (1)
U + ∂W

∂ J

(
Cof U

)
, U ∈ M

d+. (B.3)

Moreover, the Cauchy stress tensor is

T (U ) = 2

J

∂W

∂ I (1)
UU� + ∂W

∂ J
Id , U ∈ M

d+. (B.4)

Proof. Follows from elementary computations: since I (1) = ∑d
h,k=1 U 2

hk then
clearly ∂Ui j I (1) = 2Ui j , 1 ≤ i, j ≤ d; on the other hand, expression (2.11) above
yields

∂W

∂Ui j
= 2

∂W

∂ I (1)
Ui j + ∂W

∂ J
(Cof U )i j , 1 ≤ i, j ≤ d.

This shows (B.3). Now, since the Cauchy stress tensor T is related to σ by σ =
J T U−� (cf. [4,17]), apply (1.2) to obtain (B.4), as claimed. ��
We immediately have

Corollary B.3. For compressible hyperelastic materials of Hadamard type, the first
Piola-Kirchhoff stress tensor is given by

σ(U ) = μU + h′(J )Cof U, U ∈ M
d+. (B.5)

Furthermore, the Cauchy stress tensor is

T (U ) = μ

J
UU� + h′(J )Id , , U ∈ M

d+. (B.6)

Proof. Follows directly from (B.1) and Lemma B.2. ��
Given any deformation gradient U ∈ M

d+, the principal stretches ϑ j > 0, j =
1, . . . , d, are the square roots of the eigenvalues of the symmetric right Cauchy-
Green tensor. Therefore,

I (1) = tr (U�U ) =
d∑

j=1

ϑ2
j , J = detU =

d∏
j=1

ϑ j .

The following observation is a generalization of the result established by Currie
[24] in dimension d = 3.
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Proposition B.4. For any d ≥ 2 the possible range for I (1) is given by

D = {(I (1), J ) ∈ R × (0,∞) : I (1) ≥ d J 2/d}.
Proof. It is a straightforward application of the inequality of arithmetic and geo-
metric means on the principal stretches,

I (1) = tr (U�U ) = ϑ2
1 + . . .+ ϑ2

d ≥ d
(
ϑ2
1 · · ·ϑ2

d

)1/d = d (detU )2/d = d J 2/d .

��
The boundary of the domain ∂D = {(I (1), J ) : I (1) = d J 2/d} is associated to
pure pressure deformations, and the value (I (1), J ) = (d, 1) ∈ ∂D corresponds to
no deformations, U = Id , with a reference configuration in which ϑ j = 1 for all
1 ≤ j ≤ d.

B.2. Compressible neo-Hookean materials

The simplest interpretation of an elastic Hadamard material is as a compressible
extension of a neo-Hookean incompressible solid. Incompressible hyperelasticity
is restricted to isochoric (volume preserving) deformations with J = detU = 1,
which is a kinematic constraint. The best known incompressible hyperelastic model
is the neo-Hookean material [63,84,99], whose energy function (in arbitrary space
dimensions) is given by

WnH(U ) = W nH(I
(1)) = μ

2
(I (1) − d). (B.7)

This strain-energy function provides a reliable and mathematically simple con-
stitutive model for the nonlinear deformation behavior of isotropic hyperelastic
materials, such as vulcanized rubber, similar to Hooke’s law. It predicts typical
effects known from nonlinear elasticity within the small strain domain (in contrast
to linear elastic materials the stress-strain curve for a neo-Hookean material is not
linear). It was first proposed by Rivlin in 1948 [84]. Notably, the energy function
(B.7) may also be derived from statistical theory, in which rubber is regarded as
a three-dimensional network of long-chain molecules that are connected at a few
points (cf. [12,52]).
The incompressibility hypothesisworkswell for vulcanized rubber (under very high
hydrostatic pressure the material undergoes very small volume changes). There are
other materials, however, which are either slightly compressible, or which may
undergo considerable volume changes (like foamed rubber). Therefore, compress-
ible models are needed in order to describe these elastic responses. Furthermore,
it is known that incompressibility can cause numerical difficulties in the analysis
of finite elements, and in such cases nearly incompressible models are often used
[54,66]. As a result, either motivated by numerical or by physical considerations,
compressibility is often accounted by the addition of a strain energy describing the
purely volumetric elastic response. In the case of the neo-Hookean model, com-
pressible extensions have the form

W (U ) = W (I (1), J ) = WnH(I
(1))+ Wvol(J ).
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This decoupled representation of the energy as the sum of isochoric and volumet-
ric energies is very common for isothermal deformations. A compressible exten-
sion should satisfy W (I (1), 1) = WnH(I (1)), that is, Wvol(1) = 0. In the case
of energies of the form (1.1) we clearly have an isochoric contribution given
by the neo-Hookean energy density (B.7) and a volumetric response given by
Wvol(J ) = h(J ) + 1

2μd. Pence and Gou [81] discuss nearly incompressible ver-
sions of the neo-Hookeanmodel, as well as the requirements on thematerial moduli
for the models to be compatible with the small-strain regime. In the next section
we review such requirements and extrapolate them to arbitrary space dimensions.

B.3. Compressible theory of infinitesimal strain

Since undeformed configurations are stress free, one requires that σ = 0 whenever
U = Id . In the case of a Hadamard material, this requirement leads, upon substi-
tution into formula (B.5), to the following relation between the shear modulus and
the function h,

h′(1) = −μ. (B.8)

This relation can be interpreted as a free stress condition for no deformations in the
incompressible boundary, precisely at (I (1), J ) = (d, 1) ∈ ∂D.
The mean pressure field is defined as (see, e.g., [100], p. 545),

p := − 1

d
tr (T (U )) = − 1

d
tr
( 2

J

∂W

∂ I (1)
UU� + ∂W

∂ J
Id

)
= −h′(J )− μ

d

I (1)

J
.

For symmetric deformation states, U = J 1/d
Id (or equivalently, (I (1), J ) ∈ ∂D),

Pence and Gou [81] define

− p̂(J ) := −p(d J 2/d , J ) = h′(J )+ μJ
2
d −1 = −phyd(J )+ μJ

2
d −1,

where

phyd(J ) = −∂Wvol

∂ J
= −h′(J ), (B.9)

is the hydrostatic pressure (cf. [52,99]), or the pressure the material experiences
when the shear strain is zero. The appropriate definition of the bulk modulus of
infinitesimal strain theory is therefore

κ := − d p̂

d J

∣∣∣∣
J=1

= p̂′(1),

describing volumetric elasticity or how resistant to compression the elastic medium
is. Consequently, for a Hadamard material with strain energy of the form (1.1) we
have ∂W/∂ I (1) = μ

2 and ∂W/∂ J = h′(J ), yielding

− p̂′(J ) =μ
( 2

d
− 1

)
J

2
d −2 + h′′(J ),
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and the following relation between the bulk and shear moduli:

κ = μ
( 2

d
− 1

)
+ h′′(1). (B.10)

Since the strain energy must be positive for small strains (linear physical theory
for small deformations), on restriction to infinitesimal deformations the shear and
bulk moduli must be positive to ensure compatibility with the linear response (cf.
[15]). The Poisson ratio can then be defined in arbitrary dimensions as

ν := dκ − 2μ

2μ+ d(d − 1)κ
,

measuring the ratio of strain in the direction of load over the strain in orthogonal
directions. This definition extends the well known formulae for the Poisson ratio
in dimension d = 2, ν = κ−μ

κ+μ , and in dimension d = 3, ν = 3κ−2μ
2(3κ+2μ) (see

[73,96]). Although the admissible thermodynamic range for the Poisson ratio is
−1 ≤ ν ≤ 1/2 in dimension d = 3 [81], and −1 ≤ ν ≤ 1 in dimension d = 2
[73], the standard range for consideration is ν > 0 (ν is usually positive for most
materials3 because interatomic bonds realign with deformation). To sum up, in this
paper it is assumed that

μ > 0, κ >
2

d
μ > 0. (B.11)

The classical Lamé moduli of an elastic material are the shear modulus μ > 0
(second Lamé parameter) and" (first Lamé parameter)4; the former can be related
to the bulk and shear moduli by

" = κ − 2μ

d
;

see [17,99]. Notice that, under assumption (B.11), " > 0.

Remark B.5. In view of (B.9), condition (H3) implies that p′′
hyd(J ) = −h′′′(J ) > 0

for all J ∈ (0,∞).Hence, hypothesis (H3) canbe interpreted as amaterial convexity
condition for zero shear strain.

B.4. Examples

The following models belong to the class of compressible hyperelastic materials
of Hadamard type, whose energy density functions have the form (1.1) and satisfy
assumptions (H1) and (H2). They have been proposed in the materials science
literature to describe different elastic responses. It is worth mentioning that there

3 With the exception, of course, of auxetic materials for which the Poisson ratio can be
negative.
4 The first Lamé constant is usually denoted in the literature with the Greek letter λ;

however, in order to avoid confusion with the frequency λ ∈ C in the shock stability analysis,
we use a different symbol for it.
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exist compressible models with energies of the form (1.1) but which do not satisfy
the convexity assumption (H2) for all deformations J ∈ (0,∞), such as the original
Simo-Pister model [93] (see also [47]), or the Ogden β-log model [79] (see eq.
(6.137), p. 244 in [52]).

(a)Ciarlet-Geymonat model As a first example consider the following volumet-
ric strain energy function

hCG(J ) = −d

2
μ− μ log J +

(κ
2

− μ

d

)
(J − 1)2, (B.12)

whereμ and κ are the shear and bulkmoduli, respectively, satisfying (B.11). Notice
that hCG(1) = −dμ/2 and therefore the energy density WCG = μ

2 I (1)+hCG(J ) is
normalized as WCG(d, 1) = 0. It also satisfies (B.8) and (B.10) as the reader may
easily verify. Finally, in view of (B.11) there holds the convexity condition (H2) as

h′′
CG(J ) = μ

J 2 +
(
κ − 2μ

d

)
> 0, J ∈ (0,∞).

In addition, it holds that

h′′′
CG(J ) = −2μ

J 3 < 0,

for all J ∈ (0,∞). This model is an extension to arbitrary spatial dimensions of
the strain energy

W = μ

2
(I (1) − 3)+

(κ
2

− μ

3

)
(J − 1)2 − μ log J,

proposed by Ciarlet and Geymonat [18] (see also [80]) in dimension d = 3. It is
a special form of the family of compressible Mooney-Rivlin materials (see Ciarlet
[17], section 4.10, p. 189, formula (iii) in the limit b → 0). hCG is defined for all
deformations J ∈ (0,∞) and satisfies hCG → ∞ as J → ∞ and as J → 0+.

(b) Blatz model The energy function

hB(J ) = −d

2
μ+

(
κ − 2

d
μ
)(

J − 1
)−

(
κ +

(d − 2

d

)
μ
)
log J, (B.13)

where, once again, μ and κ are the shear and bulk moduli, respectively, generalizes
to arbitrary dimensions d ≥ 2 the modified compressible neo-Hookean form of the
energy proposed by Blatz [13] (see eq. (48), p. 36), in dimension d = 3:

W = μ

2
(I (1) − 3)+

(
κ − 2

3
μ
)(

J − 1
)−

(
κ + μ

3

)
log J.

This function fulfills normalization, hB(1) = −dμ/2, as well as conditions (B.8)
and (B.10), as it is easily verified. Moreover,

h′′
B(J ) = 1

J 2

(
κ + (d − 2)μ

d

)
> 0, h′′′

B (J ) = − 2

J 3

(
κ + (d − 2)μ

d

)
< 0,

for all J ∈ (0,∞). Notice that hB → ∞ as J → ∞ or as J → 0+. This energy
was selected by Blatz as a candidate strain energy density to describe thermostatic
properties of homogeneous isotropic continuous elastomers (elastic polymers).
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(c) Neo-Hookean Ogden compressible foam material The energy function

hO(J ) = −d

2
μ+ μ

2c1

(
J−2c1 − 1

)
, (B.14)

where

c1 = ν

1 − (d − 1)ν
= dκ − 2μ

2dμ
> 0,

was proposed by Ogden [79] to model highly compressible rubber-like materials
for which significantly volume changes can occur with relatively little stress (such
as foams). It belongs to what is known in the literature as the family of Ogden
compressible rubber foam materials (see [69], p. 161):

W =
N∑

p=1

μp

αp

( d∑
j=1

ϑ
αp
j − d

)
+

N∑
p=1

μp

αpcp
(J−αpcp − 1),

specialized here to N = 1 (neo-Hookean),μ1 = μ > 0,α1 = 2 and c1 given above.
This neo-Hookean element of the family has been used as a basis for residually
stressed extensions for energies that account for elastic responses of blood arteries
in medical applications (cf. [41]). Notice that hO(1) = −dμ/2 (normalization) and
relations (B.8) and (B.10) hold. Moreover, the convexity condition holds as

h′′
O(J ) = μ(2c1 + 1)

J 2(c1+1)
> 0, h′′′

O (J ) = −2μ(c1 + 1)(2c1 + 1)

J 2c1+3 < 0,

for all J ∈ (0,∞). Notably hO → ∞ as J → 0+ but limJ→∞ hO(J ) exists.

(d) Levinson-Burgess model Consider the following volumetric function

hLB(J ) = −d

2
μ+ μ

2

(
c(J 2 − 1)+ 2(c + 1)(1 − J )

)
, (B.15)

where

c = κ

μ
− 2

d
+ 1 > 0.

This is a generalization to any space dimension d ≥ 2 of the three dimensional
material considered by Kirkinis et al. [59],

W = μ

2

(
I (1) − 3 +

(
κ

μ
+ 1

3

)
(J 2 − 1)− 2

(
κ

μ
+ 1

3
+ 1

)
(J − 1)

)
,

which is, in turn, a special case of a compressible polynomial material introduced
by Levinson and Burgess [67] to account for weakly compressible elastic media
with Poisson ratio close to 1

2 (in dimension d = 3). Notice that hLB(1) = −dμ/2
(normalization), it satisfies (B.8) and (B.10), and

h′′
LB(J ) = μc > 0, h′′′

LB(J ) ≡ 0,

for all J ∈ (0,∞).
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(e) Simo-Taylor material The Simo-Taylor model [94] (see also [47]),

hST(J ) = −d

2
μ− μ log J + "

2

( J 2

2
− log J − 1

2

)
, (B.16)

where μ is the shear modulus and" = κ − 2μ/d > 0 is the first Lamé parameter,
clearly satisfies hST(1) = −dμ/2 (normalization) and conditions (B.8) and (B.10).
Furthermore, the convexity condition (H2) holds, as

h′′
ST(J ) = "

2
+ (
μ+ "

2

) 1

J 2 > 0,

for all J ∈ (0,∞). Observe also that

h′′′
ST(J ) = −(2μ+") 1

J 3 < 0, J ∈ (0,+∞).

When J → 0+ or J → ∞, hST grows unboundedly. This energy form can be de-
rived from (Gaussian) statistical mechanics of long-chain molecules with entropic
sources of compressibility modeled thorough the logarithmic terms (cf. Bischoff et
al. [12]).

(f) Special compressible Ogden-Hill material The volumetric response func-
tion

hOH(J ) = −d

2
μ+ 1

b

(
J − 1)2, (B.17)

where μ > 0 is the shear modulus and b > 0 is an empirical coefficient, yields
an energy density WOH = μ

2 I (1) + hOH(J ) that also belongs to the class of com-
pressible Hadamard materials. Notice that WOH(d, 1) = 0 (normalization) but
h′
OH(1) = 0 and, thus, it does not satisfy the free stress condition (B.8). It does

satisfy the convexity condition as

h′′
OH(J ) = 2

b
> 0, h′′′

OH(J ) ≡ 0,

for all J ∈ (0,∞). Also, hOH → ∞ as J → ∞, whereas hOH(0+) is well-
defined. This model is a particular case of the well-known family of compressible
Ogden-Hill materials [50,51,79]

W =
N∑

p=1

μp

αp

( d∑
j=1

ϑ
αp
j − d

)
+

N∑
p=1

1

b2p
(J − 1)2N ,

specialized to N = 1, μ1 = μ > 0, α1 = 2 and b1 = b > 0. The family
was proposed to model highly compressible materials such as low density polymer
foams (cf. [31,77]). The parameter b > 0 is adjusted from experimental data. It is
a modulus that measures compressibility: if b is small then the material is highly
compressible, whereas if b is large then the material can be considered as nearly
incompressible. It is used in the analysis of elastomers, as well as in the design of
O-rings, seals and other industrial products [69].
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(g) Simo-Miehe model The following energy function proposed by Simo and
Miehe [92] (see also [52]):

hSM(J ) = −d

2
μ+ κ

4

(
J 2 − 1 − 2 log J

)
, (B.18)

was introduced in the context of finite-strain viscoplasticity. Note that this volu-
metric energy attains a minimum at J = 1, with h′

SM(1) = 0, and therefore it does
not satisfy the free stress condition (B.8). It does, however, satisfy the convexity
condition as

h′′
SM(J ) = κ

2

(
1 + 1

J 2

)
> 0,

for all deformations. Moreover,

h′′′
SM(J ) = − κ

J 3 < 0, J ∈ (0,∞).

Also, hSM increases unboundedly as J → 0+ and as J → ∞.

(h)Bischoff, Arruda andGroshmodel Bischoff et al. [12] proposed the follow-
ing volumetric response function:

hBAG(J ) = −d

2
μ+ c

b2
(
cosh(b(J − 1))− 1

)
, (B.19)

where the constants c, b are positive empirical constants which should be calibrated
from experimental data. Notice that h′

BAG(1) = 0 and J = 1 is a minimum; thus,
it does not satisfy (B.8). The convexity condition holds as

h′′
BAG(J ) = c cosh(b(J − 1)) > 0,

for all J ∈ (0,∞). However,

h′′′
BAG(J ) = cb sinh(b(J − 1)),

yielding h′′′
BAG(1) = 0, as well as h′′′

BAG(J ) > 0 if J > 1 and h′′′
BAG(J ) < 0 if

J < 1. Note also that hBAG → ∞ as J → ∞ but hBAG(0+) is well defined.
This model was proposed to account for the contributions of entropy and initial
energy to volume change. Its derivation follows non-Gaussian statistics of long
chain molecules, which is necessary for large deformations. It can be interpreted
as a non-Gaussian, higher order representation of the Ogden-Hill model (B.17) in
the small volume changes regime, inasmuch as the series expansion around J = 1
yields

hBAG(J ) = −d

2
μ+ c

2
(J − 1)2 + O((J − 1)4).
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Remark B.6. The energy densities presented above are divided into two categories.
Models (a) thru (e) can be interpreted as compressible versions of the neo-Hookean
material in the sense described by Pence and Gou [81]: they satisfy the free stress
condition (B.8) and the hydrostatic pressure condition (B.10), both at the incom-
pressible limit with no deformation, and represent materials which are nearly in-
compressible. In contrast, models (f) thru (h) are designed to fit experimental data
involving phenomenological observations such as, for example, when foam poly-
mers undergo large changes in volume [54]. In these models, h′(1) = 0, so that
the volumetric function h provides a direct penalization of volume departing from
J = 1. All models (a) thru (h) provide neo-Hookean behavior in the incompressible
limit, namely, W (I (1), 1) = WnH(I (1)), and reduce to the standard linearly elastic
material responsewhen deformations are small (that is, when | 12 (U�U −Id)| � 1).

Remark B.7. All the model examples presented here are physically motivated en-
ergy functions that satisfy assumptions (H1) and (H2) for all possible deforma-
tions and, therefore, they belong to the general class of compressible hyperelastic
Hadamard materials. (It is to be observed that the family does not include other
hyperelastic models found in the literature, such as the compressible versions of
the Blatz-Ko, Murnaghan or Varga models, just to mention a few; see [52,80] and
the references therein.) Notably, the convexity of the energy (property (H2)), im-
plies that all energy functions are rank-one convex in the whole domain of U with
detU > 0, making the elastodynamics equations hyperbolic in the whole domain
of their state variables. The stability results of this paper apply to materials which,
in addition, satisfy the material convexity condition (H3).
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