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Abstract

In the present paper we consider an elliptic divergence form operator in the
half-space and prove that its Green function is almost affine, or more precisely, that
the normalized difference between the Green function and a suitable affine function
at every scale satisfies a Carlesonmeasure estimate, provided that the oscillations of
the coefficients satisfy the traditional quadratic Carleson condition. The results are
sharp, and in particular, it is demonstrated that the class of the operators considered
in the paper cannot be improved.
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1. Introduction

Let L = − div(A∇) be a divergence form elliptic operator on the upper half-
spaceRd+1+ . In the present paper we show that if L is reasonably well-behaved then
the Green function for L is well approximated by multiples of the distance to R

d .
There are many predecessors of these results which we will discuss below ([7,11,
12,14] to mention only the closer ones). At this point, however, let us underline
two important points. First, the class of the operators that we consider is of the
nature of the best possible, as shown by the counterexamples in Section 6. The
estimates themselves are sharp, and in fact, a weak version of them is equivalent to
the uniform rectifiability [6]. We hope to ultimately show that the much stronger
estimate proved here is also true for domains with a uniformly rectifiable boundary,
thus giving a strong and a weak characterization of uniform rectifiability in terms
of approximation of the Green function (or more generally solutions) by distance
function, but this will have to be the subject of another paper. Secondly, the method
of the proof itself is quite unusual for this kind of bounds. A typical approach
is through integrations by parts, which, however, does not allow one to access
the optimal class of the coefficients. Roughly speaking, we are working with the
square of the second derivatives of the Green function and given the roughness of
the coefficients, there are too many derivatives in to control to take advantage of the
equation while integrating by parts. Here, instead, we make intricate comparisons
with solutions of the constant-coefficient operators, carefully adjusting them from
scale to scale. We feel that the method itself is a novelty for this circle of questions
and that it illuminates the nature of the Carleson estimates in a completely different
way, hopefully opening a door to many other problems.

More generally, we are interested in the relations between an elliptic operator L
onadomainΩ , the geometryofΩ , and theboundarybehavior of theGreen function.
It is easy to see that the Green function with a pole at infinity for the Laplacian
on the upper half-space Rd+1+ := {

(x, t) : x ∈ R
d , t ∈ R+

}
is a multiple of t , the

distance to the boundary, and more generally the Green function with a pole that is
relatively far away is close to the distance function. There have been many efforts
to generalize this to more general settings. For instance, in [2] the authors obtain
flatness of the boundary from local small oscillations of the gradient of the Green
function with a pole sufficiently far away. Philosophically, similar considerations
underpin the celebrated results of Kenig and Toro connecting the flatness of the
boundary to the property that the logarithm of the Poisson kernel lies in VMO
[15]. Much more close to our setting is the study of the so-called Dahlberg-Kenig-
Pipher operators (defined in (1.7)–(1.8)) pioneered by Kenig and Pipher [7,14]
in combination with the study of the harmonic measure on uniformly rectifiable
sets by Hofmann, Martell, Toro, Tolsa, and others (see [3,11] and many of their
predecessors). Undoubtedly, the behavior of the harmonic measure is connected to
the regularity of Green function G, yet the latter is different and surprisingly has
been much less studied. In part, this is due to the fact that the harmonic measure
is related to the gradient of G at the boundary while the estimates we target in this
paper reach out to the second derivatives ofG. One could say that the two are related
by an integration by parts, but in the world of the rough coefficients this is not so.
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Indeed, relying on these ideas, [12] establishes second derivatives estimates for the
Green function somewhat similar to ours under a much stronger condition that the
gradient of the coefficients, rather than its square, satisfies a Carleson condition. It
was clear already then that the optimal condition must be a control of the square-
Carleson norm, but their methods, using the aforementioned integration by parts,
did not give a possibility to overcome this restriction. In this paper we achieve the
optimal results and, indeed, demonstrate using the counterexamples that they are
the best possible.

In the present paper, we focus onΩ = R
d+1+ , and show that for the operators sat-

isfying a slightly weaker version of the Dahlberg-Kenig-Pipher condition described
below, the Green function is well approximated by multiples of t , in the sense that
the gradient of normalized differences satisfies a square Carlesonmeasure estimate.
Notice that the class of coefficients authorized below is enough to treat the case
when Ω is a Lipschitz graph domain, by a change of variables. As we mentioned
above, we plan to pursue more general uniformly rectifiable sets in the upcoming
work, which would give a much stronger version of our previous results in [6] and
would show that our estimates are equivalent to the uniform rectifiability of the
boundary. At this point, restricting to the simple domain Ω = R

d+1+ will have the
advantage of making the geometry cleaner and focusing on one of the tools of this
paper, concerning the dependence of G (or the solutions) on the coefficients. Even
in the “simple" case of the half-space, the question of good approximation of G by
multiples of t seems, to our surprise, to be widely open, and the traditional methods
of analysis break down brutally when trying to achieve such results. Perhaps one
could also say that this setting is more classical. Let us pass to the details.

Consider an operator in divergence form L = − div(A∇), where A = [
ai j (X)

]

is an (d + 1) × (d + 1) matrix of real-valued, bounded and measurable functions
on R

d+1+ . We say that L is elliptic if there is some μ0 > 1 such that

〈A(X)ξ, ζ 〉 ≤ μ0 |ξ | |ζ | and 〈A(X)ξ, ξ〉 ≥ μ−1
0 |ξ |2 for X ∈ R

d+1+ and ξ, η ∈ R
d+1.

(1.1)

We use lower case letters for points in R
d , for example x ∈ R

d , and capital
letters for points in R

d+1, for example X = (x, t) ∈ R
d+1. We identify R

d with
R
d × {0} ⊂ R

d+1 so, when t = 0, we may write x instead of (x, 0) ∈ R
d+1.

For x ∈ R
d and r > 0, we denote byΔ(x, r) the surface ball Br (x)∩{t = 0} ⊂

R
d . Thus Δ(x, r) is a ball in R

d while B(x, r) is the ball of radius r in R
d+1. We

denote by

T (x, r) := Br (x) ∩ R
d+1+ and W (x, r) := Δ(x, r) ×

( r
2
, r

]
⊂ R

d+1+ (1.2)

the corresponding Carleson box and Whitney cube. Note that T (x, r) is a half ball
in Rd+1+ over Δ(x, r). We may simply write TΔ for a half ball over Δ ⊂ R

d .

Definition 1.3. (Carleson measure) We say that a nonnegative Borel measure μ is
a Carleson measure in Rd+1+ , if its Carleson norm

‖μ‖C := sup
Δ⊂Rd

μ(TΔ)

|Δ|
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is finite, where the supremum is over all the surface ballsΔ and |Δ| is the Lebesgue
measure of Δ in Rd . We use C to denote the set of Carleson measures on R

d+1+ .
For any surface ballΔ0 ⊂ R

d , we use C(Δ0) to denote the set of Borel measures
satisfying the Carleson condition restricted to Δ0, that is, such that

‖μ‖C(Δ0)
:= sup

Δ⊂Δ0

μ(TΔ)

|Δ| < +∞.

Next we want to define a (weaker) version of the Dahlberg-Kenig-Pipher con-
ditions in the form which is convenient for the point of view taken in this paper. We
would like to say that the matrix A = A(X) is often close to a constant coefficient
matrix. The simplest way to measure this is to use the numbers

α∞(x, r) = inf
A0∈A0(μ0)

sup
(y,s)∈W (x,r)

|A(y, s) − A0|, (1.4)

where the infimum is taken over the class A0(μ0) of (constant!) matrices A0 that
satisfy the ellipticity condition (1.1). Notice that the matrix A0 is allowed to depend
on (x, r), so α∞(x, r) is a measure of the oscillation of A in W (x, r), similarly
to [7]. We require A0 to satisfy (1.1) for convenience, but if we did not, we could
easily replace A0 by one of the A(y, s), (y, s) ∈ W (x, r), which satisfies (1.1) by
definition, at the price of multiplying α∞(x, r) by at most 2. The same remark is
valid for the slightly more general numbers

αq(x, r) = inf
A0∈A0(μ0)

{ 
(y,s)∈W (x,r)

|A(y, s) − A0|q
}1/q

, (1.5)

where, in fact, q will be chosen equal to 2.

Definition 1.6. (WeakDKP condition) We say that the coefficientmatrix A satisfies
the weak DKP condition with constant M > 0, when α2(x, r)2

dx dr
r is a Carleson

measure on R
d+1+ , with norm

N2(A) :=
∥∥∥∥α2(x, r)

2 dx dr

r

∥∥∥∥C
≤ M. (1.7)

We may also say that α2(x, r)2 satisfies a Carleson measure estimate. Recall
that this implies that α2(x, r)2 is small most of the time (to the point of being
integrable against the infinite invariant measure dx dr

r ), but does not vanish at any
specific speed given in advance.

The name comes from a condition introduced by Dahlberg, Kenig, and Pipher,
which instead demands that α̃(x, r)2 satisfy a Carleson estimate, where

α̃(x, r) = r sup
(y,s)∈W (x,r)

|∇A(y, s)|. (1.8)

In 1984, Dahlberg first introduced this condition, and conjectured that such a Car-
leson condition guarantees the absolute continuity of the elliptic measure with re-
spect to the Lebesgue measure in the upper half-space. In 2001, Kenig and Pipher
[14] proved Dahlberg’s conjecture. Since it is obvious that α2(x, r) ≤ α∞(x, r) ≤
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2α̃(x, r), we see that our condition is weaker than the classical DKP condition,
but importantly they have the same homogeneity. A similar weakening of the DKP
condition, pertaining to the oscillations of the coefficients, has been considered,
for example in [7]. We could also have chosen an exponent q ∈ (2,∞] for αq in
Definition 1.6, but there is no point doing so as the Hölder inequality implies that
the current condition is the weakest. Surprisingly, our theorem is easier to prove
under this weaker condition.

We now say what we mean by good approximation by affine functions. On
domains other thanRd+1+ , we would use other models than the function (y, t) �→ t ,
such as (functions of) the distance to the boundary, but here we are interested in
(approximation by) the affine function (y, t) �→ λt , with λ > 0.

We said earlier thatwewanted to study the approximation of theGreen functions
(and we did not mention the poles too explicitly), but in fact our properties will
also be valid for positive solutions u of Lu = 0 that vanish at the boundary.

In addition, given such a solution u, when we are considering a given Carleson
box T (x, r), we do not want to assume any a priori knowledge on the average size
of u in T (x, r), so we just want to measure the approximation of u, in T (x, r), by
the best affine function ax,r that we can think of, and it is reasonable to pick

ax,r (z, t) = λx,r t, where λx,r = λx,r (u) =
 
T (x,r)

∂t u(z, t) dz dt (1.9)

is the average on T (x, r) of the vertical derivative; see the beginning of Section 3
for more details about this choice of λx,r . We measure the proximity of the two
functions by the L2 average of the difference of the gradients (we seem to forget u
but after all, it is easy to recuperate the functions from their gradients because they
both vanish on the boundary), which we divide by the local energy of u because
we do want the same result for u as for λu. That is, we set

Ju(x, r) =
 
T (x,r)

|∇z,t (u(z, t) − ax,r (z, t))|2 dz dt

=
 
T (x,r)

|∇z,t u(z, t) − λx,r (u)ed+1|2 dz dt, (1.10)

where ed+1 = (0, . . . , 1) is the vertical unit vector, and then divide by

Eu(x, r) =
 
T (x,r)

|∇u|2 (1.11)

to get the number

βu(x, r) = Ju(x, r)

Eu(x, r)
. (1.12)

This number measures the normalized non-affine part of the energy of u in T (x, r).
We want to say that u is often close ax,r , that is that βu(x, r) is often small, and
this will be quantified by a Carleson measure condition on βu . We won’t need to
square βu , because Ju is already quadratic.

The simplest version of our main result is the following:
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Theorem 1. Let A be a (d + 1) × (d + 1) matrix of real-valued functions on Rd+1+
satisfying the ellipticity condition (1.1). If A satisfies the weak DKP condition with
some constant M ∈ (0,∞), and if we are given x0 ∈ R

d , R > 0, and a positive
solution u of Lu = − div (A∇u) = 0 in T (x0, R), with u = 0 on Δ(x0, R), then
the function βu defined by (1.12) satisfies a Carleson condition in T (x0, R/2), and
more precisely

∥∥∥∥βu(x, r)
dx dr

r

∥∥∥∥C(Δ(x0,R/2))
≤ C + C M, (1.13)

where C depends only on d and μ0.

That is, u is locally well approximated by affine functions in T (x0, R/2), with
essentially uniform Carleson bounds. Here “solution” means “weak solution”, and
the values of u on Rd are well defined because solutions are locally Hölder contin-
uous up to the boundary; this will be explained better in the next section.

Notice that the constantM > 0 can take anyvalues, andwe explicitly underlined
the norm dependence. The result applies when u is the Green function for L , with a
pole anywhere inRd+1+ \T (x0, R). Even in the case of the Laplacian, the smallness
ofM does not guarantee the smallness of (1.13), that is, u is not necessarily so close
to an affine function at the scale R. This is natural (the impact of what happens
outside of T (x0, R) could be substantial), and this effect will be ameliorated in
the next statement, at the price of some additional quantifiers; the point is that the
Green function with a pole at ∞, or even a positive solution in a much larger box
than T (x0, R), behaves better and has a better approximation. The next theorem
says that we can have Carleson norms for βu that are as small as we want, provided
that we take a small DKP constant and a large security box where u is a positive
solution that vanishes on the boundary.

Theorem 2. Let d, μ0 be given, let u and Δ(x0, R) satisfy the assumptions of
Theorem 1, and let A satisfy the weakDKP condition inΔ(x0, R). Then for τ ≤ 1/2
we have the more precise estimate

∥∥∥∥βu(x, r)
dx dr

r

∥∥∥∥C(Δ(x0,τ R))

≤ Cτ a + C

∥∥∥∥α2(x, r)
2 dx dr

r

∥∥∥∥C(Δ(x0,R))

, (1.14)

where C and a > 0 depends only on d and μ0.

This way the right-hand side can be made as small as we want. Notice that we
only need A to satisfy the weak DKP condition inΔ(x0, R); the values of A outside
of T (x0, R) should be irrelevant anyway, because we do not know anything about
u there.

We observed earlier that this result applies to the Green function with a pole
at ∞ (see Lemma 6.1 for the precise definition), and to operators that satisfy the
classical Dahlberg-Kenig-Pipher condition where the square of the function α̃ of
(1.8) satisfies a Carlesonmeasure estimate. Notice that when u is theGreen function
with pole at ∞ for L , Theorem 2 implies that the Carleson norm of β is simply less
than CN2(A), with N2(A) as in (1.7).

A rather direct consequence of our results is a Carleson measure estimate on
the second derivatives of the Green function for DKP operators.
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Corollary 1.15. Let A be a (d + 1) × (d + 1) matrix of real-valued functions on
R
d+1+ satisfying the ellipticity condition (1.1). Suppose A satisfies the classicalDKP

condition with constant C0 ∈ (0,∞), that is,
∥∥∥∥α̃(x, r)2

dx dr

r

∥∥∥∥C
≤ C0, (1.16)

where α̃(x, r) is defined in (1.8). If we are given x0 ∈ R
d , R > 0, and a positive

solution u of Lu = − div (A∇u) = 0 in T (x0, R), with u = 0 on Δ(x0, R), then
there exists some constant C depending only on d, μ0 and C0 such that

ˆ
TΔ

∣∣∇2u(y, t)
∣∣2

u(y, t)2
t3 dy dt ≤ C |Δ| (1.17)

for any Δ ⊂ Δ(x0, R/2).

We state this corollary on the upper half-space for simplicity, but it can be gener-
alized to Lipschitz domains by a change of variables that preserves the DKP class
operators. In fact, the change of variables will be a bi-Lipcshitz mapping whose
second derivatives satisfy a Carleson measure estimate. With such regularity of the
change of variables, as well as our estimates for βu in the main theorems, it reduces
to the case of the upper half-space.

In Section 6, we construct an operator that does not satisfy the DKP condition,
for which the precise approximation estimates of Theorems 1 and 2 fail.

In conclusion, let us point out that we extend the results above to domains with
lower dimensional boundaries in [5]. In that case, there are currently no known
free boundary results, in particular, it is not known whether the absolute continuity
of elliptic measure with respect to the Hausdorff measure, or square function es-
timates, or the well-posedness of the Dirichlet problem imply the rectifiability of
the boundary, and we hope that the correct condition is, in fact, an analogue of the
property that the Green function is almost affine. The first and the third authors of
the paper started such a study in [6], but if we want precise approximation results
for the Green functions, the first significant step in the positive direction should be
a version of main results of the present paper in the higher co-dimensional context,
and their extension to uniformly rectifiable sets.

The rest of this paper is organized as follows: in the next section we recall some
notation and the general properties of solutions that we need later. In Section 3 we
comment the definition of Ju and βu , prove some decay estimates for βu when u
is a weak solution of a constant coefficient operator, and extend this to the general
case with a variational argument. The rest of the proof of our main theorems, which
consists in Carleson measure estimates with no special relations with solutions, is
done in Section 4. We prove Corollary 1.15 in Section 5 using Theorem 1 and a
Caccioppoli type argument. In Section 6, we discuss the optimality of our results.

2. Preliminaries and Properties of the Weak Solutions

In this section we recall some classical results for solutions of elliptic operators
in divergence form.
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Recall the notation B(X, r) for open balls centered at X ∈ R
d+1, Δ(x, r) for

surface balls, T (x, r) for Carleson boxes, andW (x, r) for Whitney cubes (see near
(1.2)). Also denote by

ffl
B f (x) dx := 1

|B|
´
B f (x) dx the average of f on a set B.

Let us collect some well-known estimates for solutions of L = − div(A∇),
where A is a matrix of real-valued, measurable and bounded functions, satisfying
the ellipticity condition (1.1).

Definition 2.1. (Weak solutions) LetΩ be a domain inRn . A function u ∈ W 1,2(Ω)

is a weak solution to Lu = 0 in Ω if for any ϕ ∈ W 1,2
0 (Ω),

ˆ
Ω

A(X)∇u(X) · ∇ϕ(X) dX = 0.

We will only be interested in the simple domains Ω = R
d+1+ and Ω = R

d+1+ ∩
B(x, r), with x ∈ R

d and r > 0. The space W 1,2
0 (Ω) is the closure in W 1,2(Ω) of

the compactly supported smooth functions in Ω . Conventional or strong solutions
are obviously weak solutions as well. In this paper, our solutions are always taken
in the sense of Definition 2.1.

From now on, u is a (weak) solution in Ω . When we say that u = 0 on some
surface ballΔ = Δ(x, r) ⊂ Ω , we mean this in the sense ofW 1,2(TΔ). This means
that u is a limit in W 1,2(TΔ) of a sequence of functions in C1

0(TΔ\Δ). We could
also say that the trace of u, which is defined and lies in H1/2(Δ), is equal to 0
on Δ. Ultimately, the De Giorgi-Nash-Moser theory (cf. Lemma 2.3) shows that
under this assumption, the weak solution u is in fact continuous in T2r ∪ Δ2r , and,
in particular, u vanishes on Δ. Hence, in the rest of this paper the distinction is
immaterial, but for now we will try to be precise.

We refer the readers to [13] for proofs and references for the following lemmas:

Lemma 2.2. (Boundary Caccioppoli Inequality) Let u ∈ W 1,2(T (x, 2r)) be a so-
lution of L in T (x, 2r), with u = 0 on Δ(x, 2r). There exists some constant C
depending only on the dimension and the ellipticity constant of L, such that

 
T (x,r)

|∇u(X)|2 dX ≤ C

r2

 
T (x,2r)

|u(X)|2 dX.

Lemma 2.3. (BoundaryDeGiorgi-Nash-Moser inequalities)Let u beas inLemma2.2.
Then

sup
T (x,r)

|u| ≤ C

( 
T (x,2r)

u(X)2 dX

)1/2

,

where C = C(d, μ0). Moreover, for any 0 < ρ < r , we have, for some α =
α(d, μ0) ∈ (0, 1],

osc
T (x,ρ)

u ≤ C
(ρ

r

)α
( 

T (x,2r)
u(X)2 dX

)1/2

,

where osc
Ω

u := sup
Ω

u − inf
Ω

u.
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Lemma 2.4. (Boundary Harnack Inequality) Let u ∈ W 1,2(T (x, 2r)) be a nonneg-
ative solution of L in T (x, 2r) with u = 0 on Δ(x, 2r). Then

u(X) ≤ Cu(Xr ) ∀ X ∈ T (x, r),

where C > 0 depends only on the dimension and μ0.

Of course, each of these statements has an interior analogue where we would
replace T (x, r) by a ball B(X, r) such that B(X, 2R) ⊂ Ω and we would not
have to specify the boundary conditions. The interior Harnack inequality reads as
follows:

Lemma 2.5. (Harnack Inequality) There is some constant C, depending only on
the dimension and the ellipticity constant for A, such that if u ∈ W 1,2(Ω) is a
nonnegative solution of Lu = 0 in B(X, 2r) ⊂ Ω , then

sup
B(X,r)

u ≤ C inf
B(X,r)

u.

We will also use the Comparison Principle.

Lemma 2.6. (Comparison Principle) Let u, v ∈ W 1,2(T (x, 2r)) be two nonneg-
ative solutions of L in T (x, 2r), such that u = v = 0 on Δ(x, 2r) and v is not
identically null. Set Xx,r = (x, r) (a corckscrew point for T (x, 2r)). Then

C−1 u(Xx,r )

v(Xx,r )
≤ u(X)

v(X)
≤ C

u(Xx,r )

v(Xx,r )
for all X ∈ T (x, r),

where C = C(n, μ0) ≥ 1.

Lemma 2.7. (Reverse Hölder Inequality on the boundary)We can find an exponent
p > 2 and a constant C ≥ 1, that depend only on d and the ellipticity constant μ0
for A, such that if u and T (x, 2r) are as in Lemma 2.2, then

( 
T (x,r)

|∇u(X)|p dX

)1/p

≤ C

( 
T (x,2r)

|∇u(X)|2 dX

)1/2

.

See [9], Chapter V for the proof of this Lemma.
We prove the following simple consequence of the above for reader’s conve-

nience:

Lemma 2.8. Let u ∈ W 1,2(T (x, R)) be a nonnegative solution of L in T (x, R),
with u = 0 on Δ(x, R). Then for all 0 < r < R/2,

 
T (x,r)

|∇u(X)|2 dX ≈ u2(Xx,r )

r2
, (2.9)

where Xx,r = (x, r) as above and the implicit constant depends only on d and μ0.
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Proof. By translation invariance, we may assume that x0 is the origin.
To prove the � inequality in (2.9), we apply Lemmas 2.3, 2.4, and the Poincaré

inequality, and get

u(Xx,r )
2 ≤ C sup

Tx,r/2
u2 ≤ C

 
Tx,r

u2(X) dX ≤ Cr2
 
Tx,r

|∇u|2 .

For the� inequality in (2.9), simply combine the boundary Caccioppoli and bound-
ary Harnack inequalities. ��

We now record a basic regularity estimate for constant coefficient operators.
This will be used in the next section to get decay estimates for Ju , and then extended
partially to our more general operators L , with comparison arguments. We shall
systematically use A0 to denote a constant real (d+1)×(d+1)matrix, whichwe al-
ways assume to satisfy the ellipticity condition (1.1), andwrite L0 := − div (A0∇).
Solutions to such operators enjoy additional regularity and in particular, we will
use the following result. We state it in T1 = T (0, 1) to simplify the notation. More
generally, set Tr = T (0, r) for r > 0.

Lemma 2.10. Let u ∈ W 1,2(T1) be a solution to L0u = 0 in T1 with u = 0 on Δ1.
Then for any multiindex α, |α| ∈ Z+,

sup
T 1
2

∣∣Dαu
∣∣ ≤ C

( 
T1

|∇u(X)|2 dX

)1/2

, (2.11)

where C = C(d, μ0, |α|). In particular, for any T (x, r) ⊂ T1/2,

osc
T (x,r)

∂i u ≤ Cr

( 
T1

|∇u(X)|2 dX

)1/2

, i = 1, 2, . . . , d + 1, (2.12)

where the constant C depends only on the dimension and μ0.

Proof. First we claim that the standard local estimates on solutions for constant-
coefficient operators in R

d+1+ ensure that

‖Dαu‖L2(T1/2) � ‖∇u‖L2(T1) + ‖u‖L2(T1). (2.13)

This is due to the fact that any weak solution to Lu = f on a smooth bounded
domain Ω and with zero Dirichlet boundary data satisfies

‖u‖Wm+2,2(Ω) � ‖ f ‖Wm,2(Ω) + ‖u‖L2(Ω), m = 0, 1, 2, ...;
see, for example [8], § 6.3, Theorems 4, 5. Here, Wm,2(Ω) is the Sobolev space of
functions whose derivatives up to the order m lie in L2(Ω). With this at hand, we
observe that for any smooth cutoff function η equal to 1 on B1/2 and supported in
B3/4 we have

L0(uη) = −A0∇η · ∇u − A0∇u · ∇η + u L0η,
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and hence the estimate above applied consecutively with m = 0, 1, 2... in some
smooth domain T3/4 ⊂ Ω ⊂ T1 gives (2.13). Applying Poincaré’s inequality, we
conclude that

‖Dαu‖L2(T1/2) � ‖∇u‖L2(T1) (2.14)

for any multiindex α with |α| ∈ Z+. On the other hand, by the Sobolev embedding
theorem ([1] Theorem 4.12), for any multiindex α,

sup
T1/2

∣∣Dαu
∣∣ ≤ C ‖u‖W |α|+n,2(T1/2) ,

where C depends on n and |α|. We combine this with (2.14) and get (2.11).
The estimate (2.12) is an immediate consequence of (2.11), since

osc
T (x,r)

∂i u ≤ r sup
T (x,r)

|∇∂i u| ≤ r sup
T1/2

|∇∂i u| ≤ Cr

( 
T1

|∇u|2
)1/2

,

as desired. ��
Remark 2.15. Lemma 2.10 is more than enough to prove Theorems 1 and 2 in the
special case of constant-coefficient operators. Indeed it says that ∇u is Lipschitz
in T1/2, so in particular ∇u − ∇u(0) is small near the origin. Notice that ∇u(0) =
(0, ∂t u(0)) because u vanishes on the boundary; with this and similar statements
for other surface balls, it would be rather easy to control βu and prove the theorems
in the case of constant-coefficient operators. We don’t do this here because we need
more general estimates anyway.

3. Approximations and the Main Conditional Decay Estimate

We observed in Remark 2.15 that our theorems should be easy to prove when L
is a constant coefficient operator. In this section, we use the results of the previous
section, together with an approximation argument, to prove some decay estimate
for βu in regions where A is nearly constant. See Corollary 3.45.

At the center of the proof is an estimate for ||∇u − ∇u0||2, where u is a
solution for L in some Carleson box T (x, r), and u0 is a solution for a close enough
constant coefficient operator L0, with the same boundary values on ∂T (x, r). See
Lemma 3.11.

3.1. A little more about orthogonality, Ju, and βu

First return to the approximationof a solutionu by the affine functionax,r (z, t) =
λx,r t of (1.9). Let us check what we said earlier, that ax,r is the best affine approx-
imation of this type in T (x, r). Recall from (1.10) that

Ju(x, r) =
 
T (x,r)

|∇(u(z, t) − ax,r (z, t))|2 dz dt =
 
T (x,r)

|∇u − λx,r (u)ed+1|2 dz dt

=
 
T (x,r)

|∇zu(z, t)|2 dz dt +
 
T (x,r)

|∂t u(z, t) − λx,r (u)|2 dz dt
(3.1)
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where ed+1 = (0, . . . , 1) is the vertical unit vector, andwe split the full gradient∇u
into the horizontal gradient∇xu and the vertical part ∂t u. Nowλx,r (u) = ffl

T (x,r) ∂t u

by (1.9), so ∂t u − λx,r (u) is orthogonal to constants in L2(T (x, r)), hence for any
other λ,

 
T (x,r)

|∂t u − λ|2 = |λ − λx,r (u)|2 +
 
T (x,r)

|∂t u − λx,r (u)|2,

and, by the same computation as above,
 
T (x,r)

|∇(u − λt)|2 = |λ − λx,r (u)|2 +
 
T (x,r)

|∇u − λx,r (u)ed+1|2

= |λ − λx,r (u)|2 + Ju(x, r).

(3.2)

We may find it convenient to use the fact that, as a consequence,

βu(x, r) = inf
λ∈R

ffl
T (x,r) |∇(u − λt)|2ffl

T (x,r) |∇u|2 ≤ 1 (3.3)

(compare with (1.12), and for the second part try λ = 0).
For most of the rest of this section, we concentrate on balls centered at the

origin; to save notation, we set Br = B(0, r), Tr = T (0, r) = Br ∩ R
d+1+ , and

Wr = W (0, r) (see (1.2)). Similarly, it will be convenient to use the notation

Ju(r) = Ju(0, r) =
 
Tr

|∇ (u(x, t) − λr (u) t)|2 dx dt,

where

λr (u) = λ0,r (u) =
 
Tr

∂su(y, s) dy ds

(see (1.9) and (1.10)), and we set Eu(r) = Eu(0, r), βu(r) = βu(0, r) (see (1.11)
and (1.12)).

3.2. Decay estimates for constant-coefficient operators

We shall now prove a few estimates on solutions of constant-coefficient equa-
tion, which will be useful when we try to replace L by a constant-coefficient oper-
ator. We start with a consequence of Lemma 2.10.

Lemma 3.4. Let A0 be a constant matrix that satisfies the ellipticity condition (1.1),
set L0 = − div (A0∇), and and let u be a solution to L0u = 0 in T1 such that u = 0
on Δ1. There exists some constant C, depending only on the dimension and μ0,
such that for 0 < r < 1/2,

Ju(r) ≤ Cr2 Ju(1) ≤ Cr2Eu(1). (3.5)
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Proof. The second inequality follows at once from (3.2) (with λ = 0) for u. Next
let v(x, t) = u(x, t) − λr (u) t . Since t is a solution for the constant coefficient
operator L0, v is a solution for L0 as well in the domain in T1, with v(x, 0) = 0
for all x ∈ Δ1. We claim that

there exists some (x ′, t ′) ∈ Tr for which ∂tv(x ′, t ′) = 0. (3.6)

To see this, we observe first that ∂tv(x, t) = ∂t u(x, t) − ffl
Tr

∂t u(x, t) dx dt has
mean value 0. Since u is a solution of the constant-coefficient equation L0u = 0,
∂t u is also a solution of the same equation. Therefore, by the De Giorgi-Nash-
Moser theory, ∂t u is continuous in Tr , and thus so is ∂tv. Then (3.6) follows from
the connectedness of Tr and the mean value theorem. Thanks to (3.6), sup

Tr
|∂tv| ≤

osc
Tr

∂tv, and thus by (2.12) and because adding a constant does not change the

oscillation,

 
Tr

|∂tv|2 ≤
(
osc
Tr

∂tv
)2 =

(
osc
Tr

(∂tv + λr (u) − λ1(u))
)2

=
(
osc
Tr

∂t (u − λ1(u) t)
)2 ≤ Cr2

 
T1

|∇(u(x, t) − λ1(u) t)|2 dx dt.

For the rest of the gradient, notice that for 1 ≤ j ≤ d,

∂ jv(x, t) = ∂ j (v(x, t) + λr (u) t − λ1(u) t) ,

and ∂ jv(x, 0) = 0. Therefore,

 
Tr

∣∣∂ jv
∣∣2 ≤

(
osc
Tr

∂ j (v(x, t) + λr (u) t − λ1(u) t)
)2

≤ Cr2
 
T1

|∇(u(x, t) − λ1(u) t)|2 dx dt = Cr2 Ju(1).

Now (3.5) follows from the two estimates above. ��
Remark 3.7. The proof of Lemma 3.4 also works when we replace Ju(r) in (3.5)
with

ffl
Tr

∣∣∇x,t (u(x, t) − λs(u) t)
∣∣2, for any 0 < s ≤ r . That is, we also get that

 
Tr

∣∣∇x,t (u(x, t) − λs(u) t)
∣∣2 dx dt ≤ Cr2 Ju(1). (3.8)

This may be a better estimate, since (3.2) says that for any λ,

Ju(r) ≤
 
Tr

|∇ (u(x, t) − λ t)|2 dx dt.

Wewill need a lower bound for the ratio Eu(r)
Eu(1)

for positive solutions of L0u = 0.
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Lemma 3.9. Let thematrix A0 be constant and satisfy the ellipticity condition (1.1),
set L0 = − div (A0∇), and let u be a positive solution to L0u = 0 in T1 such that
u = 0 on Δ1. Then

Eu(r) ≥ C(1 − C ′r2)Eu(1) for 0 < r < 1/2, (3.10)

where C and C ′ are positive constants depending only on the dimension and μ0.

Notice that when r is small, the lower bound (3.10) does not depend much on
r . This is better than what we would get by simply applying Lemma 2.8 and the
Harnack inequality to the positive solution u. The proof exploits the fact that t is a
solution for the constant-coefficient operator L0 and the comparison principle.

Proof. Define λ0 = ∂t u(0, 0). Then by (2.12),

|λr (u) − λ0| ≤ osc
Tr

∂t u ≤ Cr

( 
T1

|∇u|2
)1/2

.

Since t is a solution for L0 that vanishes on Δ1, the comparison principle and
Lemma 2.8 give (with the corkscrew point Xx,t = (x, t))

u(x, t)

t
≥ C−1u(X0,1) ≥ C−1

( 
T1

|∇u|2
)1/2

for (x, t) ∈ T1/2,

which implies, by taking a limit and using the existence of ∇u at 0, that

λ0 = ∂t u(0, 0) ≥ C−1
( 

T1
|∇u|2

)1/2

.

Then

Eu(r) ≥ λr (u)2 ≥ λ20

2
− (λr (u) − λ0)

2 ≥ ((2C)−1 − C ′r2)
 
T1

|∇u|2

(use the fact that a2 ≥ b2
2 − (a − b)2). This completes the proof of Lemma 3.9. ��

3.3. Extension to general elliptic operators L

We now return to a solution of our original equation Lu = 0, and compare it
with solutions u0 of L0u0 = 0 of a constant coefficient operator L0 = − div (A0∇),
with the same boundary data. For the moment we do not say who is the constant
matrix A0 (except that we require it to satisfy the ellipticity condition (1.1)), but of
course our estimates will be better if we choose a good approximation of A in T1.

Even though it does not look like much, the next lemma is probably the central
estimate of this paper. We do not need A0 to have constant coefficients here.
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Lemma 3.11. Let L = − div (A∇) and L0 = − div (A0∇) be two elliptic oper-
ators, and assume that A and A0 satisfy the ellipticity condition (1.1). Let u be a
solution to Lu = 0 in T1, with u = 0 on Δ1, and let u0 be a solution of L0u0 = 0
in T1 with u0 = u on ∂T1. Then there is some constant C > 0 depending only on
d and the ellipticity constant μ0, such that

ˆ
T1

∣∣∣∇u − ∇u0
∣∣∣
2 ≤ μ2

0 min

{ˆ
T1

|A − A0|2 |∇u|2 dX,

ˆ
T1

|A − A0|2
∣∣∣∇u0

∣∣∣
2
dX

}
.

(3.12)

Proof. The solutions are in the space W 1,2(T1) by definition, and u0 = u on
the boundary should be interpreted as u0 − u = 0 in the sense of W 1,2(T1), or
equivalently, u0 − u ∈ W 1,2

0 (T1). So the existence of u0 ∈ W 1,2(T1) as above
is guaranteed by the Lax-Milgram Theorem. Alternatively, it is possible to find
u0 because the trace of u lies in H1/2(∂B). In addition, u0 is nonnegative by the
maximum principle.

Since u − u0 lies in the set W 1,2
0 of test functions allowed in Definition 2.1,

1

μ0

ˆ
T1

∣∣∣∇(u − u0)
∣∣∣
2 ≤

ˆ
T1

A∇(u − u0) · ∇(u − u0) = −
ˆ
T1

A∇u0 · ∇(u − u0)

=
ˆ
T1

(A0 − A)∇u0 · ∇(u − u0)

≤ μ0

2

ˆ
T1

|A − A0|2
∣∣∣∇u0

∣∣∣
2 + 1

2μ0

ˆ
T1

∣∣∣∇(u − u0)
∣∣∣
2
,

where we use (1.1), the fact that u is a solution of div(A∇)u = 0 in T1 (and u − u0

vanishes on the boundary), then the fact that u0 is a solution of div(A0∇)u0 = 0
in T1, followed by the inequality 2ab ≤ μ0a2 + μ−1

0 b2. Then
ˆ
T1

∣∣∣∇(u − u0)
∣∣∣
2 ≤ μ2

0

ˆ
T1

|A − A0|2
∣∣∣∇u0

∣∣∣
2
.

This gives the bound by one of the expressions in the minimum in (3.12). Inter-
changing the roles of u and u0, and A and A0, we also obtain the other bound.
��

A similar proof also gives the following (which can be applied even if A − A0
is not small):

Lemma 3.13. Let A, A0, u, and u0 be as in Lemma 3.11. Then

μ−4
0

ˆ
T1

∣∣∣∇u0(X)

∣∣∣
2
dX ≤

ˆ
T1

|∇u(X)|2 dX ≤ μ4
0

ˆ
T1

∣∣∣∇u0(X)

∣∣∣
2
dX,

(3.14)

where μ0 still denotes the ellipticity constant.

We shall immediately see that u being a solution is not necessary for the first
inequality to hold, and similarly, u0 being a solution is not necessary for the second
inequality. But the condition u − u0 ∈ W 1,2

0 (T1) is essential.
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Proof. We estimate

μ−1
0

ˆ
T1

|∇u|2 ≤
ˆ
T1

A∇u · ∇u =
ˆ
T1

A∇u · ∇(u − u0) +
ˆ
T1

A∇u · ∇u0

=
ˆ
T1

A∇u · ∇u0 ≤ μ0

(ˆ
T1

|∇u|2
)1/2 (ˆ

T1

∣∣∣∇u0
∣∣∣
2
)1/2

.

Hence,
ˆ
T1

|∇u|2 ≤ μ4
0

ˆ
T1

∣∣∣∇u0
∣∣∣
2
.

The left-hand side of (3.14) follows from the same argument, interchanging the
roles of u and u0, A and A0, respectively. ��

Let us announce how we intend to estimate the right-hand side of (3.12). The
simplest would be to estimate |A − A0|2 in L∞ norm and use the L2 norm of ∇u,
but if we do this we will get quantities that do not seem to be controlled even by
the α∞ of (1.4). So instead we decide to use the quantity

γ (x, r) = inf
A0∈A0(μ0)

{  
(y,s)∈T (x,r)

|A(y, s) − A0|2 dy ds
}1/2

, (3.15)

where as before the infimum is taken over the class A0(μ0) of constant matrices
A0 that satisfy the ellipticity condition (1.1). Notice that the domain of integration
fits the domain of integration of (3.12), but it is larger than what we have in (1.5).
Nonetheless, the next lemma, to be proved in the next section, will allow us to use
the γ (x, r).

Lemma 3.16. If the matrix-valued function A satisfies the weak DKP condition of
Definition 1.6, with constant ε > 0, then γ (x, r)2 dx drr is Carleson measure on

R
d+1+ , with norm

∥∥∥∥γ (x, r)2
dx dr

r

∥∥∥∥C
≤ CN2(A) ≤ Cε, (3.17)

where N2(A) = ∥∥α2(x, r)2
dx dr
r

∥∥C as in (1.7), and

γ (x, r)2 ≤ CN2(A) ≤ Cε for (x, r) ∈ R
d+1+ . (3.18)

Here C depends only on d and μ0.

See the next section for the proof.
Since we do not have a small L∞ control on A, we need a better estimate on

∇u. This will be achieved by reverse Hölder estimates (for example Lemma 2.7),
which gives us an exponent p > 2 that depends only on d and μ0. We first state
the needed estimate for the unit box T1.
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Lemma 3.19. Let u be a positive solution to Lu = 0 in T5, with u = 0 on Δ5,
choose a constant matrix A0 ∈ A0(μ0) that attains the infimum in the definition
(3.15) of γ (0, 1), and let u0 be as in Lemma 3.11 (with this choice of A0). Then for
any δ > 0, ˆ

T1

∣∣∣∇u − ∇u0
∣∣∣
2
dX ≤

(
δ + Cδγ (0, 1)2

)
Eu(1), (3.20)

where Cδ depends on d, μ0, and δ.

Proof. We discussed the existence of u0 when we proved Lemma 3.11. We start
from (3.12), which readsˆ

T1

∣∣∣∇u − ∇u0
∣∣∣
2 ≤ C

ˆ
T1

|A − A0|2 |∇u|2 . (3.21)

Let us cut off and consider first the set

Z :=
{
X ∈ T1 : |∇u(X)|2 ≤ K Eu(1)

}
,

with K > 0 to be determined soon. We pull out the gradient and get a contributionˆ
Z

|A − A0|2 |∇u|2 ≤ K Eu(1)
ˆ
Z

|A − A0|2 ≤ Kγ (0, 1)2Eu(1). (3.22)

In the region T1 \ Z where |∇u|2 > K Eu(1), we see that

|∇u|2 = |∇u|p |∇u|2−p ≤ |∇u|p (K Eu(1))
2−p
2 ,

where p > 2 and will be chosen as in Lemma 2.7. Thenˆ
T1\Z

|A − A0|2 |∇u|2 ≤ 2μ2
0

ˆ
T1\Z

|∇u|2 ≤ 2μ2
0(K Eu(1))

2−p
2

ˆ
T1

|∇u|p dX.

(3.23)

We required u to be a nice solution in the larger set T5, so that we can use the
following estimates from Section 2. First,

{ 
T1

|∇u|p dX
} 2

p ≤ C
 
T2

|∇u|2 dX

by Lemma 2.7. Now we apply Lemma 2.8 to T2 (with X2 = (0, 2)) and later T1
(with X1 = (0, 1)), to find that 

T2
|∇u|2 ≤ Cu2(X2) ≤ Cu2(X1) ≤ C

 
T1

|∇u|2 ,

where the intermediate inequality follows from Harnack’s inequality. From these
estimates and (3.23), the contribution from T1 \ Z isˆ

T1\Z
|A − A0|2 |∇u|2 ≤ CK

2−p
2 Eu(1).

Now we choose K so that CK
2−p
2 = δ, and the desired estimate (3.20) follows at

once. ��
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We now have enough information to derive the same sort of decay estimates
for the non-affine part of our solution u that we proved, at the beginning of this
section, for solutions u0 of constant coefficient operators.We start with an analogue
of Lemma 3.4.

Lemma 3.24. Let u be a solution to Lu = 0 in T1 with u = 0 on Δ1. Then for
0 < r < 1/4,

Ju(r) ≤ C
(
r2 + K

2−p
2 r−d−1

)
Ju(1) + CK

rd+1 γ (0, 1)2Eu(1), (3.25)

where K > 0 is arbitrary, p = p(d, μ0) > 2, C depends only on d, μ0 and p, and
CK depends additionally on K .

Notice that we do not require the positivity of u yet, which is why we don’t use
Lemma 3.19 for the moment.

Proof. We write u as affine plus orthogonal on T1, that is

u(x, t) = v(x, t) + λ1(u)t.

Note that λ1(u)2 ≤ Eu(1), and Ev(1) = Ju(1).
Choose a constant matrix A0 ∈ A0(μ0) that attains the infimum in the definition

(3.15) of γ (0, 1), and let L0 = − div A0∇ as usual. Now consider the L0-harmonic
extension to T1/2 of the restriction of u to ∂T1/2, which can be written as

u0(x, t) = v0(x, t) + λ1(u)t, (3.26)

where we use the fact that t is a solution of the constant-coefficient equation, and
v0 is the L0-harmonic extension of v|∂T1/2 . These extensions are well-defined since
u is Hölder continuous on T1/2, and the Lax-Milgram Theorem guarantees the
existence and uniqueness of the W 1,2(T1/2) solution. In particular, L0u0 = 0 in
T1/2, with u0 = u on ∂T1/2.

We claim that for any fixed 0 < r < 1/4,

Ju(r) ≤ Cr2 Ju(1) + C

rd+1

 
T1/2

|A(x, t) − A0|2 |∇u0(x, t)|2 dx dt. (3.27)

To see this, we use the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2) to write

Ju(r) =
 
Tr

|∇ (u − λr (u) t)|2 ≤ 3
 
Tr

|∇(u0 − λr (u0) t)|2

+3
 
Tr

|∇(u − u0)|2 + 3
 
Tr

|∇(λr (u0) t − λr (u) t)|2 , (3.28)
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where λr (u0) = ffl
Tr

∂t u0 is defined as for u. Notice that

 
Tr

|∇(λr (u0) t − λr (u) t)|2 = (λr (u0) − λr (u))2 =
( 

Tr
(∂t u − ∂t u0) dx dt

)2

≤
 
Tr

|∇(u − u0)|2 ≤ C

rd+1

 
T1/2

|∇(u − u0)|2 ,

(3.29)

simply enlarging thedomainof integration. Soby (3.28), Lemma3.4 andLemma3.11,

Ju(r) ≤ 3
 
Tr

|∇(u0 − λr (u0) t)|2 + C

rd+1

 
T 1
2

∣∣∣∇(u − u0)
∣∣∣
2

= 3Ju0(r) + C

rd+1

 
T 1
2

|∇(u − u0)|2 ≤ Cr2 Ju0(1/2) + C

rd+1

 
T 1
2

|∇(u − u0)|2

≤ Cr2 Ju0(1/2) + C

rd+1

 
T 1
2

|A − A0|2 |∇u0|2 . (3.30)

However, the same sort of computation as above yields

Ju0(1/2) =
 
T 1
2

∣∣∇(u0 − λ1/2(u0)t)
∣∣2

≤ 3
 
T 1
2

|∇(u − u0)|2 + 3
 
T 1
2

∣∣∇(u − λ1/2(u)t)
∣∣2 + 3(λ1/2(u) − λ1/2(u0))

2

≤ C
 
T 1
2

|∇(u − u0)|2 + 3
 
T 1
2

∣∣∇(u − λ1/2(u)t)
∣∣2

= C
 
T 1
2

|∇(u − u0)|2 + 3Ju(1/2).

We plug this into (3.30), use the last part of (3.29), and get

Ju(r) ≤ Cr2 Ju(1/2) + C

rd+1

 
T1/2

|A(x, t) − A0|2 |∇u0(x, t)|2 dx dt.

Now the claim (3.27) follows because

Ju(1/2) ≤
 
T1/2

|∇(u(x, t) − λ1(u)t)|2 dx dt ≤ C Ju(1),

where in the first inequality we have used that λ1/2(u) t is the best affine approxi-
mation in T1/2 (see the discussion in Section 3.1).
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Recall that u0 is decomposed as in (3.26), and thus 
T1/2

|A − A0|2 |∇u0|2

≤ 2
 
T1/2

|A − A0|2 |∇v0|2 + 2λ1(u)2
 
T1/2

|A − A0|2 |∇t |2

≤ 2
 
T1/2

|A − A0|2 |∇v0|2 + 2Eu(1)γ (0, 1)2. (3.31)

We now estimate the first term on the right-hand side of (3.31). For K > 0, consider
the set

ZK :=
{
X ∈ T1/2 : |∇v0(X)|2 ≤ K Eu(1)

}
.

The contribution of ZK to the integral isˆ
ZK

|A − A0|2 |∇v0|2 ≤ K Eu(1)
ˆ
ZK

|A − A0|2 ≤ CKγ (0, 1)2Eu(1).

We are left with the complement of ZK . As in (3.23) in the proof of Lemma 3.19,
we get thatˆ

T1/2\ZK

|A − A0|2 |∇v0|2 ≤ C(K Eu(1))
2−p
2

ˆ
T1/2

|∇v0|p (3.32)

where p > 2 will be chosen close to 2. To control the term
´
T1/2

|∇v0|p, we use
the following two reverse Hölder type estimates: for some p = p(d, μ0) > 2
sufficiently close to 2,

(ˆ
T1/2

|∇v0|p
)1/p

�
(ˆ

T1/2
|∇v0|2

)1/2

+
(ˆ

T1/2
|∇v|p

)1/p

, (3.33)

(ˆ
T1/2

|∇v|p
)1/p

�
(ˆ

T1
|∇v|2

)1/2

+ |λ1(u)|
( 

T1
|A − A0|p

)1/p

, (3.34)

where the implicit constants depend on d,μ0 and p. We postpone the proof of these
two inequalities to the end of the proof of this lemma.

Now by (3.33) and (3.34), we obtainˆ
T1/2

|∇v0|p � Ev0(1/2)
p/2 + Ev(1)

p/2 + |λ1(u)|p
 
T1

|A − A0|p .

Since v − v0 ∈ W 1,2
0 (T1/2) and v0 is L0-harmonic, we have

Ev0(1/2) ≤ Cμ0Ev(1/2) ≤ CEv(1) = C Ju(1),

where the first inequality comes from Lemma 3.13. Notice also that 
T1

|A − A0|p ≤ Cμ0,p

 
T1

|A − A0|2 = Cγ (0, 1)2.



Carleson Measure Estimates for the Green Function 1545

Thus our estimate on
´
T1/2

|∇v0|p can be simplified as

ˆ
T1/2

|∇v0|p � Ju(1)
p/2 + Eu(1)

p/2γ (0, 1)2.

Plugging this into (3.32), we get
ˆ
T1/2\ZK

|A − A0|2 |∇v0|2 ≤ CK
2−p
2 Eu(1)

2−p
2 Ju(1)

p/2 + CK
2−p
2 γ (0, 1)2Eu(1)

≤ CK
2−p
2 Ju(1) + CK

2−p
2 γ (0, 1)2Eu(1),

where in the last inequality we have used Eu(1) ≥ Ju(1), and thus Eu(1)
2−p
2 ≤

Ju(1)
2−p
2 . Combining this with the contribution on ZK , we getˆ

T1/2
|A − A0|2 |∇v0|2 ≤ CK

2−p
2 Ju(1) + C

(
K + K

2−p
2

)
γ (0, 1)2Eu(1).

From this and (3.27), the desired estimate (3.25) follows. ��
We now prove the two Hölder type estimates. Let us first prove (3.34).

Proof of (3.34). Set R0 = 10−2n−1/2 as before. For any X0 = (x0, t0) ∈ T1/2, any
0 < R ≤ R0, choose η ∈ C1

0(QR(X0)), with η ≡ 1 in Q2R/3(X0), |∇η| � 1/R.
Here, QR(X0) is a cube centered at X0 with side length R, and we shall write QR

for QR(X0) when this does not cause confusion. Using Lu = 0 in T1, v(x, t) =
u(x, t) − λ1(u)t , and L0t = 0, we have for any w ∈ W 1,2

0 (T1),

0 =
ˆ
T1

A∇u · ∇w dx dt =
ˆ
T1

A∇v · ∇w dx dt +
ˆ
T1

A∇(λt) · ∇w dx dt

=
ˆ
T1

A∇v · ∇w +
ˆ
T1

(A − A0)∇(λt) · ∇w, (3.35)

where λ = λ1(u).

Nowwechoosew(X) = v(X)η2(X)when t0 ≤ R
2 , andw =

(
v−ffl

QR
v(Y ) dY

)
η2

when t0 > R
2 . Notice that v(x, 0) = 0, and thusw ∈ W 1,2

0 (T1) (because QR ⊂ B1)
as required. We plug w into (3.35), compute the derivatives, estimate some terms
brutally, and finally use Cauchy–Schwarz, and get the following estimates.
Case 1: t0 ≤ R

2 . Here we obtain

1

μ0

ˆ
T1

|∇v|2 η2 dX

≤ 1

2μ0

ˆ
T1

|∇v|2 η2 dX + Cμ0

ˆ
T1

v2 |∇η|2 dX + Cμ0 |λ|2
ˆ
T1

|A − A0|2 η2 dX.

Extending v by zero below t = 0, this yields
ˆ
Q2R/3

|∇v|2 dX ≤ Cμ0

R2

ˆ
QR

v2 dX + Cμ0 |λ|2
ˆ
QR

|A − A0|2 dX.
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We apply the Poincaré-Sobolev inequality to control
´
QR

v2 dX and deduce from
the above that

 
Q2R/3

|∇v|2 dX ≤ C

( 
QR

|∇v| 2n
n+2 dX

) n+2
n + C |λ|2

 
QR

|A − A0|2 dX.

(3.36)

Case 2: t0 > R
2 . The same computation as in Case 1 gives

ˆ
Q2R/3

|∇v|2 dX ≤ C

R2

ˆ
QR

∣∣∣v(X) −
 
QR

v(Y ) dY
∣∣∣
2
dX + C |λ|2

ˆ
QR

|A − A0|2 dX.

Then by the Poincaŕe-Sobolev inequality, (3.36) holds again in this case.
Now we apply [9] V. Proposition 1.1 to obtain

 
QR0/2

|∇v|p dX ≤ C

( 
QR0

|∇v|2 dX

) p
2

+ C |λ|p
 
QR0

|A − A0|p dX

for some p = p(d, μ0) > 2.
The desired estimate (3.34) follows as T1/2 can be covered by finitely many

QR0/2. ��
Now we turn to (3.33).

Proof of (3.33). We will use L p boundary estimates for solutions. Recall that
L0v0 = 0 in T1/2, with v0 − v ∈ W 1,2

0 (T1/2). Set R0 = 10−2n−1/2. Then by
the boundary estimates in [9] p.154, we have for any X0 ∈ T1/2,

 
QR0/2(X0)∩T1/2

|∇v0|p �
( 

QR0 (X0)∩T1/2
|∇v0|2

)p/2

+
 
QR0 (X0)∩T1/2

|∇v|p

�
( 

T1/2
|∇v0|2

)p/2

+
 
T1/2

|∇v|p

for some p > 2. Since T1/2 can be covered by finitely many cubes QR0/2(X0), we
obtain (3.33). ��

We now prove an analogue of Lemma 3.9 for positive solutions to Lu = 0.

Lemma 3.37. Let u be a positive solution of Lu = − div(A∇)u = 0 in T5, with
u = 0 on Δ5. Then for any δ > 0, 0 < r < 1/2,

Eu(r) ≥
(
1 − C ′r2

C
− C ′′ (δ + Cδγ (0, 1)2

)

rd+1

)

Eu(1) (3.38)

where C, C ′, C ′′ are positive constants depending only on d and μ0.
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Proof. Asbefore,wewill only find this usefulwhen the parenthesis is under control.
Let A0 and u0 be as in Lemma 3.19. By (3.20),

 
Tr

|∇u|2 ≥ 1

2

 
Tr

∣∣∣∇u0
∣∣∣
2 −

 
Tr

∣∣∣∇(u − u0)
∣∣∣
2

≥ 1

2

 
Tr

∣∣∣∇u0
∣∣∣
2 − 1

rd+1

 
T1

∣∣∣∇(u − u0)
∣∣∣
2

≥ 1

2

 
Tr

∣∣∣∇u0
∣∣∣
2 − C

(
δ + Cδγ (0, 1)2

)

rd+1

 
T1

|∇u|2 . (3.39)

Divide both sides of (3.39) by
ffl
T1

|∇u(X)|2, and then observe that

 
T1

∣∣∣∇u0(X)

∣∣∣
2 ≈

 
T1

|∇u(X)|2

by Lemma 3.13; this yields

ffl
Tr

|∇u|2ffl
T1

|∇u|2 ≥ 1

2

ffl
Tr

∣∣∇u0
∣∣2

ffl
T1

|∇u|2 − C
(
δ + Cδγ (0, 1)2

)

rd+1

≥ C−1

ffl
Tr

∣∣∇u0
∣∣2

ffl
T1

∣∣∇u0
∣∣2

− C
(
δ + Cδγ (0, 1)2

)

rd+1 .

Since u0 > 0 in T1 (by the maximum principle), we can apply Lemma 3.9 to u0

and obtain the desired estimate. ��
We are finally ready to prove the announced decay estimate for the quantity

βu(x, r) = Ju(x, r)

Eu(x, r)
(3.40)

(the proportion of non-affine energy) defined in (1.12). We just need to organize
ourselves with the constants.

We intend to apply the estimates above, with a single value of r = τ0 which
will be chosen small enough, depending on d and μ0, and then we will require that

γ (0, 1) ≤ ε0, (3.41)

for some ε0 > 0 that we shall choose momentarily, depending on r = τ0, d, and
μ0.

Our first requirement for r = τ0 is thatC ′r2 < 1
2 in (3.38) (there will be another

one of this type soon), and we choose ε0 and δ so small (depending on τ0) that if
(3.41) holds, then

C ′′ (δ + Cδγ (0, 1)2
)

rd+1 <
1

4C
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in (3.38). This way, (3.38) implies that

Eu(r) ≥ 1

4C
Eu(1). (3.42)

Let u be as in Lemma 3.37. We divide both sides of (3.25) by Eu(r) and get
that

βu(0, r) ≤ C
(
r2 + K

2−p
2 r−d−1

) Ju(1)

Eu(r)
+ CK

rd+1 γ (0, 1)2
Eu(1)

Eu(r)
(3.43)

Then we choose K to satisfy K
2−p
2 = rd+3 = τ d+3

0 , assume that (3.41) holds,
apply (3.42), and deduce from (3.43) that (maybe with a larger constant C)

βu(0, τ0) ≤ Cτ 20 βu(1) + Cτ0γ (0, 1)2. (3.44)

Finally we choose τ0 so small that (in addition to our earlier constraint) Cτ 20 < 1
2

in (3.44), and finally choose ε0 as above.
We recapitulate what we obtained so far in the next corollary. Of course, by

translation and dilation invariance, what was done with the unit box T1 can also
be done with any other T (x, R), (x, R) ∈ R

d+1+ . We use the opportunity to state
the general case, which of course can easily be deduced from the case of T1 by
homogeneity (or we could copy the proof).

Corollary 3.45. We can find constants τ0 ∈ (0, 10−1) and C > 0 which depend
only on d and μ0, such that if u is a positive solution of Lu = − div(A∇)u = 0 in
T (x, 5R), with u = 0 on Δ(x, 5R), then

βu(x, τ0R) ≤ 1

2
βu(x, R) + Cγ (x, R)2. (3.46)

See (1.12) and (3.15) for the definitions of βu(x, τ0R) and γ (x, R).

Proof. The discussion above gives the result under the additional condition that
γ (x, R) ≤ ε0. But we now have chosen τ0 and ε0, and if γ (x, R) > ε0, (3.46)
holds trivially (maybe with a larger constant), because βu(x, τ0R) ≤ 1 by (3.3). ��
Remark 3.47. As we remarked before, the complication of the decay estimate for
Ju(r) comes mainly from the lack of a small control of ‖A − A0‖L∞ . If we knew
γ∞(x, R) ≤ ε1, where

γ∞(x, r) = inf
A0∈A0(μ0)

sup
T (x,r)

|A − A0| ,

then we could simplify the proof of Corollary 3.45 significantly.
To see this, we start with an estimate similar to (3.27)

Ju(r) ≤ Cr2 Ju(1) + C

rd+1

 
T1/2

|A(x, t) − A0|2 |∇u(x, t)|2 dx dt, (3.48)
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which can be obtained as (3.27).Our estimate for
ffl
T1

|A − A0|2 |∇u|2 nowbecomes
rather simple. We still choose A0 as to minimize in the definition of γ (0, 1), but
observe that by Chebyshev, we can find (x, t) ∈ T1 such that

|A(x, t) − A0| ≤ Cγ (0, 1) ≤ Cγ∞(0, 1).

Since |A(y, s) − A(x, t)| ≤ 2γ∞(0, 1) for (y, s) ∈ T1, we see that |A − A0| ≤
Cγ∞(0, 1) ≤ Cε1 on T1. Then 
T1

|A − A0|2 |∇u|2 ≤ 2
 
T1

|A − A0|2 |∇(u − λ1(u)t)|2 + 2λ1(u)2
 
T1

|A − A0|2

≤ 2
 
T1

|A − A0|2 |∇(u − λ1(u)t)|2 + 2Eu(1)
 
T1

|A − A0|2

≤ 2ε1 Ju(1) + 2γ (0, 1)2Eu(1)

and by (3.48),

Ju(r) ≤ C

(
r2 + Cε1

rd+1

)
Ju(1) + Cγ (0, 1)2

rd+1 Eu(1).

This is our analogue of (3.25); the rest of the proof is the same.

4. Carleson Measure Estimates

In this section we complete the proof of our two theorems. We already have
our main decay estimate (3.46), which says that βu(x, r) tends to get smaller and
smaller, unless γ (x, r)2 is large. This is a way of saying that γ 2 dominates βu , and
it is not surprising that a Carleson measure estimate on the first function implies a
similar estimate on the second one. The fact that βu comes from a solution u will
not play any role in this argument (see the second part of this section).

4.1. Proof of Lemma 3.16

Before we deal with decay, let us prove Lemma 3.16, which is another fact
about Carleson measures where u plays no role.

Let A be as in the statement. We want to show that γ (x, r)2 dx drr is Carleson

measure onRd+1+ , and our first move is to estimate γ (x, r) in terms of the α2(y, s).
For each pair (x, r), we choose a constant matrix Ax,r such that

 
W (x,r)

|A − Ax,r |2 = α2(x, r)
2. (4.1)

The interested reader may check that we can choose the Ax,r so that they depend
on (x, r) in a measurable way, and in fact are constant on pieces of a measurable
partition ofRd+1+ , maybe at the price of replacing α2(x, r)2 in (4.1) with 2α2(x, r)2,
and making the W (x, r) a little larger first to allow extra room to move x and r .
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Let Δ0 = Δ(x0, r0) be given; we want to estimate γ (x0, r0), and we try the
constant matrix A0 = Ax0,r0 . Thus

γ (x0, r0)
2 ≤

 
T0

|A − A0|2 ≤ C
 
Q0

|A − A0|2, (4.2)

where we set T0 = T (x0, r0) and Q0 = Δ(x0, r0)×(0, r0].Wewill cut this integral
into horizontal slices, using the radii rm = ρmr0, m ≥ 0. Let us choose ρ = 4

5 ,
rather close to 1, to simplify the communication between slices.

We first estimate how fast the Ax,r change. We claim that

|Ax,r − Ay,s | ≤ Cα2(x, r) + Cα2(y, s) when |x − y| ≤ 3

2
r and

2

3
r ≤ s ≤ r.(4.3)

Indeed, with these constraints there is a box R in W (x, r) ∩ W (y, s) such that
|R| ≥ C−1rd+1, and then

|Ax,r − Ay,s | =
 
R

|Ax,r − Ay,s | ≤
 
R

|Ax,r − A| +
 
R

|A − Ay,s |

≤ C
 
W (x,r)

|Ax,r − A| + C
 
W (y,s)

|A − Ay,s | ≤ Cα2(x, r) + Cα2(y, s)

by the triangle inequality, the fact that |R| � |W (x, r)| � |W (y, s)|, and Hölder’s
inequality. We can iterate this and get that for y ∈ R

d and m ≥ 0,

|Ay,rm − Ay,r0 | ≤ C
m∑

j=0

α2(y, r j ). (4.4)

Now consider y ∈ Δ′
0 = Δ(x0, 3r0/2) and notice that by (4.3), |Ay,r0 − A0| ≤

Cα2(y, r0) + Cα2(x0, r0), so (4.4) also yields

|Ay,rm − A0| ≤ Cα2(x0, r0) + C
m∑

j=0

α2(y, r j ). (4.5)

Set Hm = Δ0 × (rm+1, rm] for m ≥ 0; thus Q0 is the disjoint union of the Hm . We
claim that

ˆ
Hm

|A − A0|2 ≤ Crmα2(x0, r0)
2|Δ0| + Crm

ˆ
Δ′

0

{ m∑

j=0

α2(y, r j )
}2

dy. (4.6)

We tried to discretize our estimates as late as possible, but this has to happen at
some point. Cover Δ0 with disjoint cubes Ri of sidelength (10

√
d)−1rm that meet

Δ0, and for each one choose a point xi ∈ Ri such that α2(xi , rm) is minimal. Then
set Ai = Axi ,rm and Wi = Ri × (rm+1, rm]; notice that the Wi cover Hm .
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The contribution of Ri to the integral in (4.6) is

ˆ
Wi

|A(y, t) − A0|2 dy dt

≤ C
ˆ
Wi

|A(y, t) − Ai |2 + |Ai − Ay,rm |2 + |Ay,rm − A0|2 dy dt. (4.7)

For the first term,
ˆ
Wi

|A(y, t) − Ai |2 dy dt ≤ C |W (xi , rm)|α2(xi , rm)2 (4.8)

because Wi ⊂ W (xi , rm) and by definition of α2. Next

ˆ
Wi

|Ai − Ay,rm |2 dy dt ≤ C
ˆ
Wi

(α2(xi , rm) + α2(y, rm))2 dy dt ≤ Crm

ˆ
Ri

α2(y, rm)2 dy

by (4.3) and because α2(xi , rm), by the choice of xi , is smaller. This integral is at
least as large as the previous one, again because α2(xi , rm) is smaller. When we
sum all these terms over i , we get a contribution bounded by Crm

´
Δ′

0
α2(y, rm)2,

which is dominated by the right hand side of (4.6) (just keep the last term in the
sum). We are left with the third integral in (4.7). But |Ay,rm − A0| is majorized in
(4.5), and the corresponding contribution, when we sum over i , is also dominated
by the right-hand side of (4.6). Our claim (4.6) follows.

Because of (4.6) and the fact that the Hm cover Q0, we see that (4.2) yields

γ (x0, r0) ≤ C
 
Q0

|A − A0|2 ≤ C |Q0|−1
∑

m

ˆ
Hm

|A − A0|2 ≤ S1 + S2,

(4.9)

where

S1 = |Q0|−1
∑

m

rmα2(x0, r0)
2|Δ0| ≤ Cα2(x0, r0)

2, (4.10)

and

S2 = |Q0|−1
∑

m

rm

ˆ
Δ′

0

{ m∑

j=0

α2(y, r j )
}2

dy ≤ C
 

Δ′
0

∑

m

ρm
{ m∑

j=0

α2(y, r j )
}2

dy

(4.11)

because rm = ρmr0 and |Q0| � r0|Δ′
0|. We are about to apply Hardy’s inequality,

which says that for 1 < q < +∞,

∞∑

m=0

{ 1

m + 1

m∑

j=0

a j

}q ≤ Cq

∑

m

aqm (4.12)
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for any infinite sequence {am} of nonnegative numbers. Here we take q = 2 and

a j = a j (y) = ρ
j
4 α2(y, r j ). Then

∑

m

ρm
{ m∑

j=0

α2(y, r j )
}2 ≤

∑

m

ρm/2
{ m∑

j=0

ρm/4α2(y, r j )
}2

≤
∑

m

ρm/2
{ m∑

j=0

ρ j/4α2(y, r j )
}2

=
∑

m

(m + 1)2ρm/2
{ 1

m + 1

m∑

j=0

a j

}2 ≤ C
∑

m

a2m

(4.13)

so that

S2 ≤ C
 

Δ′
0

∑

m

a2m(y) dy = C
∑

m

ρ
m
2

 
Δ′

0

α2(y, rm)2 dy. (4.14)

We return to (4.9), use (4.10), and see that

γ (x0, r0)
2 ≤ Cα2(x0, r0)

2 + C
∑

m

ρ
m
2

 
Δ′

0

α2(y, ρ
mr0)

2 dy (4.15)

We kept the squares because our Carleson measure condition is in terms of squares.
Recall that by assumption, α2

2 satisfies a Carleson measure condition, with norm
N2(A). At this stage, deducing that the same thing holds for γ 2 will only be a
matter of applying the triangle inequality. We write this because of the varying
average in the second term of (4.15), but not much will happen. Pick a surface ball
Δ = Δ(x1, r1). It is enough to bound

I =
ˆ

Δ

ˆ r1

0
γ (x, r)2

dx dr

r
≤ C

ˆ
Δ

ˆ r1

0
α2(x, r)

2 dx dr

r
+ C

∑

m

ρ
m
2 Im,(4.16)

where

Im =
ˆ
x∈Δ

ˆ r1

r=0

 
y∈Δ(x,3r/2)

α2(y, ρ
mr)2 dy

dx dr

r
. (4.17)

Since ˆ
Δ

ˆ r1

0
α2(x, r)

2 dx dr

r
≤ CN2(A)rd1 (4.18)

by definition,wemay concentrate on Im . Of coursewe apply Fubini. First notice that
y ∈ Δ′ = Δ(x1, 5r1/2) when y ∈ Δ(x, 3r/2) and x ∈ Δ; since x ∈ Δ(y, 3r/2),
the integral in the dummy variable x cancels with the normalization in the average,
and we get that

Im =
ˆ
y∈Δ′

ˆ r1

r=0
α2(y, ρ

mr)2
dy dr

r
=
ˆ
y∈Δ′

ˆ ρmr1

t=0
α2(y, t)

2 dy dt

t
, (4.19)
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where the second identity is a change of variable (and we used the invariance of dt
t

under dilations). The definition also yields Im ≤ CNq(A)rd1 , so we can sum the
series, and we get that I ≤ CNq(A)rd1 . This completes our proof of (3.17).

We still need to check the second statement (3.18) (the pointwise estimate), and
this will follow from the fact that γ is not expected to vary too much. Indeed, we
claim that

γ (x, r) ≤ Cγ (y, s) whenever |x − y| ≤ r and 2r ≤ s ≤ 3r. (4.20)

This is simply because T (x, r) ⊂ T (y, s), so if A is well approximated by a
constant coefficient matrix A0 in T (y, s), this is also true in T (x, r). Now we
square, average, and get that

γ 2(x, r) ≤ C
 
y∈Δ(x,r)

 
s∈(2r,3r)

γ 2(y, s) dy ds

≤ Cr−d
ˆ
y∈Δ(x,r)

ˆ
s∈(2r,3r)

γ 2(y, s)
dy ds

s
≤ C ||γ 2(y, s)

dy ds

s
||C ≤ CN2(A).

(4.21)

This completes our proof of Lemma 3.16. ��
Remark 4.22. There is also a local version of Lemma 3.16, with the same proof. It
says that if α2(x, r)2

dx dr
r is Carleson measure relative to some surface ball 3Δ0

(see Definition 1.3) , then γ (x, r)2 dx drr is Carleson measure on TΔ0 , with norm

∥∥∥∥γ (x, r)2
dx dr

r

∥∥∥∥C(Δ0)

≤ C

∥∥∥∥α2(x, r)
2 dx dr

r

∥∥∥∥C(3Δ0)

. (4.23)

As usual, C depends only on d. For this the simplest is to observe that since
we use nothing more than the estimate (4.15), and for (3.17) we only care about
(x0, r0) ∈ TΔ0 , we may replace α2(y, t) with 0 when (y, t) /∈ T3Δ0 . Then the
replaced function α2 satisfies a global square Carleson measure estimate and we
can conclude as above.

The fact that

γ (x, r)2 ≤ C

∥∥∥∥α2(x, r)
2 dx dr

r

∥∥∥∥C(3Δ0)

(4.24)

for (x, r) ∈ TΔ0 can be proved as (3.18) above, using the fact that (4.23) also holds
for a slightly larger ball 11

10Δ0.

4.2. Proof of Theorems 1 and 2

We will just need to prove Theorem 2, which is more general. Let the matrix A
be as in the statement of both theorems.

We recently completed our proof of Corollary 3.45, which says that

βu(x, τ0r) ≤ 1

2
βu(x, r) + Cγ (x, r)2 (4.25)
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whenever u is a positive solution of Lu = − div(A∇)u = 0 in T (x, 5r), with
u = 0 on Δ(x, 5r).

In the statement of our theorems, u is assumed to be a positive solution of
Lu = 0 in T (x0, R), with u = 0 onΔ(x0, R), so (4.25) holds as soon asΔ(x, 5r) ⊂
Δ(x0, R). We pick such a pair (x, r) and iterate (4.25); this yields

βu(x, τ
k
0 r) ≤ 2−kβu(x, r) + C

k−1∑

j=0

2− jγ (x, τ k− j−1
0 r)2. (4.26)

Hence (writing r in place of τ−k
0 r )

βu(x, r) ≤ 2−kβu(x, τ
−k
0 r) + C

k−1∑

j=0

2− jγ (x, τ− j−1
0 r)2 (4.27)

as soon as Δ(x, 5τ−k
0 r) ⊂ Δ(x0, R).

We want to prove the Carleson bound (1.14) on βu in Δ(x0, τ R), so we give
ourselves a surface ball Δ = Δ(y, r) ⊂ Δ(x0, τ R). We want to show thatˆ

TΔ

βu(x, s)
dx ds

s
≤ Cτ ard + CNrd , (4.28)

where we set N = ∥∥α2(x, r)2
dx dr
r

∥∥C(Δ(x0,R))
.

Let us first check that

βu(x, s) ≤ Cτ a + CN when x ∈ Δ and 0 < s ≤ r. (4.29)

When τ ≥ 10−1, this is true just because (x, s) ∈ T (x0, τ R) and (3.3) says that
βu(x, s) ≤ 1.Otherwise, let k be the largest integer such that τ−k

0 r < 10−1R (notice
that k ≥ 0); then Δ(x, 5τ−k

0 r) ⊂ Δ(x0, R), so (4.27) holds. In addition, all the

intermediate radii τ
− j−1
0 r are also smaller than 10−1R, so γ (x, τ− j−1

0 r)2 ≤ CN
by (3.18) or (4.24) in Remark 4.22. Then (4.27) says that βu(x, s) ≤ 2−k + CN,
and (4.29) follows, with a constant a that depends only on τ0 (which itself depends
only on d and μ0). This is because our choice of k gives τ k+1

0 ≤ 10r/R ≤ 10τ .
Call I the integral in (4.28), and write I = ∑∞

k=−1 Ik , with

Ik =
ˆ
TΔ

1
τ k+2
0 r<s≤τ k+1

0 r (s)βu(x, s)
dx ds

s
. (4.30)

We single out I−1 because we do not have enough room for the argument below
when τ is large, but anyway we just need to observe that

I−1 ≤ C(τ a + N)|Δ|
ˆ r

τ0r

ds

s
≤ C(τ a + N)rd (4.31)

by (4.29), which is enough for (4.28). We are left with k ≥ 0 and

Ik ≤
ˆ
x∈Δ

ˆ τ k+1
0 r

s=τ k+2
0 r

βu(x, s)
dx ds

s
. (4.32)
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Because of our small precaution, we now have that for (x, s) in the domain of
integration, τ−k

0 s ≤ τ0r ≤ 10−1r ≤ 10−1τ R (because we took τ0 ≤ 10−1), so
Δ(x, 5τ−k

0 s) ⊂ Δ(x0, R) and we can apply (4.27). In addition, all the surface balls

5Δ(x, τ− j−1
0 s) that arise from (4.27) are contained in Δ(x0, R), so we will be able

to use Remark 4.22 to estimate them as in Lemma 3.16. Thus

Ik ≤
ˆ
x∈Δ

ˆ τ k+1
0 r

s=τ k+2
0 r

[
2−kβu(x, τ

−k
0 s) + C

k−1∑

j=0

2− jγ (x, τ− j−1
0 s)2

]dx ds
s

≤ C2−k(τ a + N)rd + C
k−1∑

j=0

2− j
ˆ

Δ

ˆ τ k+1
0 r

τ k+2
0 r

γ (x, τ− j−1
0 s)2

dx ds

s

= C2−k(τ a + N)rd + C
k−1∑

j=0

2− j
ˆ

Δ

ˆ τ
k− j
0 r

τ
k− j+1
0 r

γ (x, t)2
dx dt

t
,

(4.33)

where we set t = τ
− j−1
0 s and use the invariance of ds

s .
Set � = k − j , which runs between 1 and +∞. And for each value of � ≥ 0,

we have that
∑

k, j;k− j=� 2
− j ≤ 2. Hence when we sum over k, we get that

∑

k≥0

Ik ≤ C
∑

k≥0

2−k(τ a + N)rd + C
∑

�≥1

ˆ
Δ

ˆ τ�
0 r

τ�+1
0 r

γ (x, t)2
dx dt

t

= C(τ a + N)rd + C
ˆ

Δ

ˆ τ0r

0
γ (x, t)2

dx dt

t
≤ C(τ a + N)rd ,

by Lemma 3.16 or Remark 4.22. This completes our proof of (4.28), and the
theorems follow.

5. Proof of Corollary 1.15

Let us first prove a Caccioppoli type result for solutions onWhitney balls. Since
it is an interior estimate, it holds on any domain Ω ⊂ R

d+1. For X ∈ Ω , denote
by δ(X) the distance of X to ∂Ω .

Lemma 5.1. Let A be a (d + 1)× (d + 1) matrix of real-valued functions on Rd+1

satisfying the ellipticity condition (1.1), and for some C0 ∈ (0,∞),

|∇A(X)| δ(X) ≤ C0 for any X ∈ Ω. (5.2)

Let X0 ∈ Ω ⊂ R
d+1 be given, and r = δ(X0). Let u ∈ W 1,2(Br (X0)) be a solution

of Lu = − div(A∇u) = 0 in Br (X0). Then for any λ ∈ R,ˆ
Br/4(X0)

∣∣∣∇2u(X)

∣∣∣
2
dX ≤ C

r2

ˆ
Br/2(X0)

|∇u(X) − λ ed+1|2 dX

+Cλ2
ˆ
Br/2(X0)

|∇A(X)|2 dX, (5.3)

where C depends only on d, μ0 and C0.
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Proof. By (5.2), |∇A(X)| ≤ 8C0/r for any X ∈ B7r/8(X0),whichmeans A is Lips-
chitz in B7r/8(X0). So from [10] Theorem 8.8, it follows that u ∈ W 2,2(B 3

4 r
(X0)).

Let ϕ ∈ C∞
0 (Br/2(X0)), with ϕ = 1 on Br/4(X0), ‖∇ϕ‖L∞ ≤ C

r . Write “∂"
to denote a fixed generic derivative. Since u ∈ W 2,2(B 3

4
(X0)), ∂(u − λt)ϕ2 ∈

W 1,2
0 (Br/2(X0)) for any λ ∈ R. Therefore, there exists {vk} ⊂ C∞

0 (Br/2(X0)) such
thatvk converges to ∂(u−λt)ϕ2 inW 1,2(Br/2(X0)). Set I = ´ |∇∂u(X)|2 ϕ(X)2 dX .
Observe that for any λ ∈ R,

I =
ˆ
Rd+1

|∇∂(u(x, t) − λ t)|2 ϕ(x, t)2 dx dt.

By ellipticity, we have

I ≤ μ0

ˆ
Rd+1

A(x, t)∇∂(u(x, t) − λ t) · ∇∂(u(x, t) − λ t)ϕ(x, t)2 dx dt

= μ0

ˆ
Rd+1

A∇∂(u − λ t) · ∇
(
∂(u − λ t)ϕ2

)
dx dt

−2μ0

ˆ
Rd+1

A∇∂(u − λ t) · ∇ϕ ∂(u − λ t)ϕ dx dt

=: μ0 I1 − 2μ0 I2.

For I2, we use Cauchy–Schwarz to get

|I2| ≤ μ0 I
1/2

(ˆ
Rd+1

|∂(u − λ t)|2 |∇ϕ|2 dx dt

)1/2

≤ 1

8
I + Cμ0

r2

ˆ
Br/2(X0)

|∇(u − λ t)|2 dx dt.

For I1, we use the sequence {vk} and write

I k1 :=
ˆ
Rd+1

A∇∂(u − λ t) · ∇vk dx dt

=
ˆ
Rd+1

∂ (A∇(u − λ t) · ∇vk) dx dt −
ˆ
Rd+1

A∇(u − λ t) · ∇∂vk dx dt

−
ˆ
Rd+1

∂A(x, t)∇(u − λ t)) · ∇vk dx dt.

Note that the first term on the right-hand side vanishes because it is a derivative
of a W 1,2(Rd+1) compactly supported function. Moreover, since Lu = 0 and
∂vk ∈ C∞

0 (Br/2(X0)) is a valid test function, we have

I k1 = λ

ˆ
Rd+1

A∇t · ∇∂vk dx dt −
ˆ
Rd+1

∂A(x, t)∇(u − λ t)) · ∇vk dx dt.

Let ad+1 be the last column vector of A, then we have
ˆ
Rd+1

A∇t · ∇∂vk dx dt =
ˆ
Rd+1

ad+1 · ∇∂vk dx dt = −
ˆ
Rd+1

div ad+1 ∂vk dx dt.
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Hence,

|I1| =
∣∣∣∣ limk→∞ I k1

∣∣∣∣ ≤
∣∣∣∣λ
ˆ
Rd+1

div ad+1 ∂(∂uϕ2) dx dt

∣∣∣∣

+
∣∣∣∣

ˆ
Rd+1

∂A(x, t)∇(u − λ t)) · ∇(∂(u − λt)ϕ2) dx dt

∣∣∣∣ =: I11 + I12.

For I11, we use Cauchy–Schwarz, |div ad+1| ≤ (d+1) |∇A|, and Young’s inequal-
ity to get

I11 ≤ |λ|
ˆ
Rd+1

|div ad+1| ∂2uϕ2 dx dt + 2 |λ|
ˆ
Rd+1

|div ad+1| ∂(u − λt)ϕ∂ϕ dx dt

≤ |λ|
(ˆ ∣∣∣∂2u

∣∣∣
2
ϕ2 dx dt

)1/2 (ˆ
|div ad+1|2 ϕ2 dx dt

)1/2

+2 |λ|
(ˆ

|∂(u − λt)|2 |∇ϕ|2 dx dt

)1/2 (ˆ
|div ad+1|2 ϕ2 dx dt

)1/2

≤ 1

8
I + C

r2

ˆ
Br/2(X0)

|∂(u − λt)|2 dx dt + Cλ2
ˆ
Br/2(X0)

|∇A|2 dx dt.

For I12, we have

I12 ≤
ˆ
Rd+1

|∂A(x, t)| |∇(u − λt)| |∇(∂u)ϕ2| dx dt

+2
ˆ
Rd+1

|∂A(x, t)∇(u − λt) · ∇ϕ∂(u − λt)ϕ| dx dt

≤ I 1/2
(ˆ

Br/2(X0)

|∂A|2 |∇(u − λt)|2 dx dt

)1/2

+C

r

ˆ
Br/2(X0)

|∂A| |∇(u − λt)|2 dx dt.

By (5.2), and because for any X ∈ Br/2(X0), δ(X) ≥ r/2, one sees

I12 ≤ 1

8
I + C(d,C0)

r2

ˆ
Br/2(X0)

|∇(u − λt)|2 dx dt.

Collecting all the estimates, we can hide I to the left-hand side and obtain the
desired estimate. ��

Let us point out that the assumption (5.2) on A in Lemma 5.1 is harmless, as it
is a consequence of the classical DKP condition (1.16). We are now ready to prove
Corollary 1.15.

Proof of Corollary 1.15. Observe that (1.16) implies |∇A(x, t)| t ≤ CC0 for any
(x, t) ∈ R

d+1+ for some C depending only on the dimension.
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Fix Δ ⊂ Δ(x0, R/2). Consider any (x, 3r) ∈ TΔ, and write X = (x, 3r/2).
Let λx,3r = λx,3r (u) be defined as in (1.9). By Lemma 5.1,

 
Br/4(X)

∣∣∣∇2u(y, t)
∣∣∣
2
dy dt ≤ C

r2

 
Br/2(X)

∣∣∇(u(y, t) − λx,3r t)
∣∣2 dy dt

+Cλ2x,3r

 
Br/2(X)

|∇A(y, t)|2 dy dt.

Notice that Br/2(X) ⊂ W (x, 2r) = Δ(x, 2r) × (r, 2r ] and Br/2(X) ⊂ T (x, 3r).
Hence we can enlarge the region of the integrals on the right-hand side and then
multiply both sides by u(x, 3r)−2r3 to get

ffl
Br/4(X)

∣∣∇2u(y, t)
∣∣2 dy dt

u(x, 3r)2
r3 ≤ Cr

ffl
T (x,3r)

∣∣∇(u(y, t) − λx,3r t)
∣∣2 dy dt

u(x, 3r)2

+Cr3λ2x,3r
u(x, 3r)2

 
W (x,2r)

|∇A(y, t)|2 dy dt.

ByLemma 2.8, and then the definitions (1.8)–(1.10) of α̃(x, r), λx,3r and βu(x, 3r),

ffl
Br/4(X)

∣∣∇2u(y, t)
∣∣2 dy dt

u(x, 3r)2
r3

≤ C
ffl
T (x,3r)

∣∣∇(u(y, t) − λx,3r t)
∣∣2 dy dt

r
ffl
T (x,3r) |∇u(y, t)|2 dy dt

+
C

(ffl
T (x,3r) ∂t u(y, t) dy dt

)2
α̃(x, 2r)2

r
ffl
T (x,3r) |∇u(y, t)|2 dy dt

≤ Cβu(x, 3r)

r
+ C α̃(x, 2r)2

r
.

Now we apply Theorem 1 and the DKP assumption (1.16) and get

ˆ
TΔ

ffl
Br/4(X)

∣∣∇2u(y, t)
∣∣2 dy dt

u(x, 3r)2
r3 dx dr

≤ C
ˆ
TΔ

βu(x, 3r)
dx dr

r
+ C

ˆ
TΔ

α̃(x, 2r)2
dx dr

r
≤ Cd,μ0(1 + C0) |Δ| .

(5.4)

We now use Fubini and Harnack’s inequality to obtain a lower bound for the left-
hand side of (5.4). By Fubini,

ˆ
TΔ

ffl
Br/4(X)

∣∣∇2u(y, t)
∣∣2 dy dt

u(x, 3r)2
r3 dx dr

= Cd

ˆ
(y,t)∈Rd+1+

∣∣∣∇2u(y, t)
∣∣∣
2
ˆ

(x,r)∈TΔ

1Br/4(X)(y, t)
r2−d

u(x, 3r)2
dx dr dy dt.
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Observe that if |(y, t) − (x, 3r/2)| ≤ t
7 , then t ≈ r , t ≤ 7r

4 , and the latter implies
that 1Br/4(X)(y, t) = 1. So the right-hand side is bounded from below by

Cd

ˆ
(y,t)∈TΔ

∣∣∣∇2u(y, t)
∣∣∣
2
ˆ

(x,r);(x,3r/2)∈Bt/7(y,t)
r2−d

u(x, 3r)2
dx dr dy dt.

By Harnack, u(x, 3r) ≤ Cu(y, t) when (x, 3r/2) ∈ Bt/7(y, t). Hence

ˆ
TΔ

ffl
Br/4(X)

∣∣∇2u(y, t)
∣∣2 dy dt

u(x, 3r)2
r3 dx dr ≥ Cd

ˆ
(y,t)∈TΔ

∣∣∣∇2u(y, t)
∣∣∣
2 t3

u(y, t)2
dy dt.

From this and (5.4), the desired result follows. ��
Remark 5.5. If we apply the more precise estimate (1.14) in (5.4), we can get the
following stronger result. For τ ∈ (0, 1/2), we have

∥∥∥∥∥

∣∣∇2u(x, t)
∣∣2 t3

u(x, t)2
dx dt

∥∥∥∥∥C(Δ(x0,τ R)

≤ Cτ a + C

∥∥∥∥α̃(x, r)2
dx dr

r

∥∥∥∥C(Δ(x0,R))

,

for some C and a > 0 depending only on d and μ0. As a consequence, if u is the
Green function with pole at infinity (see Lemma 6.1 for the definition), then we
have that

∥∥∥∥∥

∣∣∇2G∞(x, t)
∣∣2 t3

G∞(x, t)2
dx dt

∥∥∥∥∥C
≤ C

∥∥∥∥α̃(x, r)2
dx dr

r

∥∥∥∥C
.

6. Optimality

In this section, we construct an operator that does not satisfy the DKP con-
dition and such that βG∞(x, r) dx drr fails to be a Carleson measure. Moreover,
we find a sequence of operators {Ln} that satisfy the DKP condition with con-
stants increasing to infinity as n goes to infinity, and for any fixed 1 < R0 < ∞,∥∥βn(x, r)

dx dr
r

∥∥C(ΔR0 )
≥ C(n − 1), where βn(x, r) = βG∞

n
(x, r), and G∞

n is the

Green function with pole at infinity for Ln . A similar construction is used in [6]
Remark 3.2 and [4]. As we shall see, it is very simple to get a bad oscillating be-
haviour for G∞ in the vertical direction; it is typically harder to get oscillation in
the horizontal variables, as would be needed for bad harmonic measure estimates.

Let us give the precise definition of the Green function with pole at infinity.
One can prove the following lemma as in [15], Lemma 3.7.

Lemma 6.1. Let L = − div A∇ be an elliptic operator on Rd+1+ . Then there exists

a unique function U ∈ C(Rd+1+ ) such that
⎧
⎪⎨

⎪⎩

L�U = 0 in Rd+1+
U > 0 in Rd+1+
U (x, 0) = 0 for all x ∈ R

d ,

and U (0, 1) = 1. We call the unique function U the Green function with pole at
infinity for L.
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Let A(x, t) = a(t)I for (x, t) ∈ R
d+1+ , where I is the d + 1 identity matrix,

and a(t) is a positive scalar function on R+. Let L = − div A(x, t)∇. We claim
that the Green function with pole at infinity for L in R

d+1+ is (modulo a harmless
multiplicative constant)

G(x, t) = g(t) with g(0) = 0, g′(t) = 1

a(t)
. (6.2)

In fact, it is easy to check that L�G = 0 inRd+1+ , G(x, 0) ≡ 0, and the uniqueness
of G∞ does the rest. The derivatives of G are simple. They are

∇xG(x, t) = 0, ∂tG(x, t) = 1

a(t)
. (6.3)

Now we set

a(t) =

⎧
⎪⎨

⎪⎩

3
2 when t ≥ 2100,

1 when 22k + c022k−1 ≤ t ≤ 22k+1 − c022k,

2 when 22k+1 + c022k ≤ t ≤ 22k+2 − c022k+1,

for all k ∈ Z with k ≤ 49, and a(t) is smooth in the remaining strips Sk =
(2k − c02k−1, 2k + c02k−1), with

∣∣a′(t)
∣∣ ≤ 100

c02k
for t ∈ Sk = (2k − c02

k−1, 2k + c02
k−1).

Here, c0 > 0 is a constant that will be taken sufficiently small and fixed. Addition-
ally, we can make sure that a(t) = 3

2 in a small neighborhood of t = 2k to simplify
our computations.

We construct the approximation of a(t) as follows. Set

an(t) =
{
a(t) when t ≥ 2−2n,
3
2 when 0 < t < 2−2n .

Then an converges to a pointwise in Rd+1+ .
Let Ln = − div An(x, t)∇ = − div (an(t)∇), and let Gn be the Green function

with pole at infinity for Ln , whose formula are given in (6.2).
We now compute the DKP constant for An . Notice that |∇An| �= 0 only in the

strips near 2k with width c02k for −2n ≤ k ≤ 100, so it is easy to get the following
estimate.

∥∥∥∥∥
sup

(y,t)∈W (x,r)
|∇An(y, t)|2 r dx dr

∥∥∥∥∥C
≈

∥∥∥
∣∣a′

n(t)
∣∣2 t dx dt

∥∥∥C

≈
100∑

k=−2n

2k

(c02k)2
c02

k ≈ 2n + 100

c0
.
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Similarly, we can compute the DKP constant for A.
∥∥∥∥∥

sup
(y,t)∈W (x,r)

|∇A(y, t)|2 r dx dr
∥∥∥∥∥C

≈
∥∥∥
∣∣a′(t)

∣∣2 t dx dt
∥∥∥C ≈ c−1

0

100∑

k=−∞
1 = ∞.

Nowwe turn toβn . Recall the definition ofβ(x, r) (1.12) and the simple expressions
for the derivatives ofGn (6.3). Set bn(t) = 1

an(t)
and compute βn(x, r)with T (x, r)

replaced by Δ(x, r) × (0, r) in the definition of β(x, r); then

βn(x, r) =
´
y∈Δ(x,r)

´ r
t=0

∣∣∣∂tGn(y, t) − ˜\

Δ(x,r)×(0,r) ∂tGn(y′, t ′) dy′ dt ′
∣∣∣
2
dt dy´

y∈Δ(x,r)

´ r
t=0 |∇Gn(y, t)|2 dt dy

=
´ r
0

∣∣bn(t) − ffl r
0 bn(s) ds

∣∣2 dt´ r
0 |bn(t)|2 dt

. (6.4)

The estimateswith our initial definition of T (x, r)would be very similar, or could be
deduced from the estimates withΔ(x, r)× (0, r) because T (x, r/10) ⊂ Δ(x, r)×
(0, r) ⊂ T (x, 10).

Notice that βn(x, r) = 0 when r < 2−2n . We estimate
∥∥βn(x, r)

dx dr
r

∥∥C(ΔR0 )

for some fixed R0 ≥ 1. For simplicity, we only do the calculation when R0 < 2100.
The main observation is that for any 2−2n+2 ≤ r ≤ R0,

∣∣∣∣bn(t) −
 r

0
bn(s) ds

∣∣∣∣

2

≥ 1

1000
for t ∈ [2−2n, r ]\(∪k Sk). (6.5)

Once we have (6.5), we can obtain the lower bound for
∥∥βn(x, r)

dx dr
r

∥∥C(ΔR0 )
as

follows. First, observe that the total measure of those Sk that intersects [2−2n, r ] is
controlled. Namely,

∣∣∣∪k Sk ∩ [2−2n, r ]
∣∣∣ ≤

−2n+ j+1∑

k=−2n

c02
k ≤ c02

−2n+ j+2 ≤ 4c0r,

where j is the integer that 2−2n+ j ≤ r < 2−2n+ j+1. Therefore,

ˆ r

0

∣∣∣∣bn(t) −
 r

0
bn(s) ds

∣∣∣∣

2

dt ≥
ˆ

[2−2n ,r ]\(∪k Sk )

1

1000
dt ≥

3
4 − 4c0
1000

r =: C0r.

On the other hand, we have
´ r
0 |bn(t)|2 dt ≤ r since |bn| ≤ 1. Then by the formula

(6.4) for βn , we obtain

βn(x, r) ≥ C0 for r ∈ [2−2n+2, R0].
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Thus,

sup
0<R≤R0

1

Rd

ˆ
ΔR

ˆ R

0
βn(x, r)

dx dr

r
≥

∣∣ΔR0

∣∣

Rd
0

ˆ R0

2−2n+2
C0

dr

r

= Cd,c0 ((2n − 2) ln 2 + ln R0) ≥ Cd,c0(2n − 2).

Now we justify (6.5). This is true simply because the average
ffl r
0 bn(s) ds takes

value strictly between 1 and 1
2 , so when t is away from the strips Sk , bn(t) should

be different than
ffl r
0 bn(s) ds. We just need to make sure that the lower bound does

not depend on n in a way that would cancel the blow up.
We first simplify our computation of

ffl r
0 bn(s) ds by observing that we can take

c0 = 0. This is because if c0 �= 0, we can always require the average of bn in (0, r)
to be the same as the case when bn is not smoothed out (that is c0 = 0), as long
as r does not lie in any strip Sk , by choosing our an carefully. But if r ∈ Sk , this
should not affect

ffl r
0 bn(s) ds much if we take c0 to be sufficiently small.

Fix 2−2n+2 ≤ r ≤ R0. If 22k0 ≤ r < 22k0+1 for some k0 ∈ Z, then a direct
computation shows

 r

0
bn(s) ds = 1 + 2−2n

2r
− 22k0

3r
.

If 22k0 ≤ r < 22k0+1 for some k0 ∈ Z, then
 r

0
bn(s) ds = 1

2
+ 2−2n

2r
+ 22k0+1

3r
.

Since bn is either 1 or 1/2 in (0, r)\Sk , a case-by-case computation shows that for
any 2−2n+2 ≤ r ≤ R0,

∣∣bn(t) − ffl r
0 bn(s) ds

∣∣ ≥ 1
12 for t ∈ [2−2n, r ]\Sk . Then with

c0 > 0 sufficiently small, we have (6.5).
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