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Abstract

In the present paper we consider an elliptic divergence form operator in the
half-space and prove that its Green function is almost affine, or more precisely, that
the normalized difference between the Green function and a suitable affine function
atevery scale satisfies a Carleson measure estimate, provided that the oscillations of
the coefficients satisfy the traditional quadratic Carleson condition. The results are
sharp, and in particular, it is demonstrated that the class of the operators considered
in the paper cannot be improved.
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1. Introduction

Let L = —div(AV) be a divergence form elliptic operator on the upper half-
space Rf’l . In the present paper we show that if L is reasonably well-behaved then
the Green function for L is well approximated by multiples of the distance to RY.
There are many predecessors of these results which we will discuss below ([7,11,
12,14] to mention only the closer ones). At this point, however, let us underline
two important points. First, the class of the operators that we consider is of the
nature of the best possible, as shown by the counterexamples in Section 6. The
estimates themselves are sharp, and in fact, a weak version of them is equivalent to
the uniform rectifiability [6]. We hope to ultimately show that the much stronger
estimate proved here is also true for domains with a uniformly rectifiable boundary,
thus giving a strong and a weak characterization of uniform rectifiability in terms
of approximation of the Green function (or more generally solutions) by distance
function, but this will have to be the subject of another paper. Secondly, the method
of the proof itself is quite unusual for this kind of bounds. A typical approach
is through integrations by parts, which, however, does not allow one to access
the optimal class of the coefficients. Roughly speaking, we are working with the
square of the second derivatives of the Green function and given the roughness of
the coefficients, there are too many derivatives in to control to take advantage of the
equation while integrating by parts. Here, instead, we make intricate comparisons
with solutions of the constant-coefficient operators, carefully adjusting them from
scale to scale. We feel that the method itself is a novelty for this circle of questions
and that it illuminates the nature of the Carleson estimates in a completely different
way, hopefully opening a door to many other problems.

More generally, we are interested in the relations between an elliptic operator L
onadomain §2, the geometry of £2, and the boundary behavior of the Green function.
It is easy to see that the Green function with a pole at infinity for the Laplacian
on the upper half-space R4T! := {(x,1) : x € R?, 1 € Ry} is a multiple of , the
distance to the boundary, and more generally the Green function with a pole that is
relatively far away is close to the distance function. There have been many efforts
to generalize this to more general settings. For instance, in [2] the authors obtain
flatness of the boundary from local small oscillations of the gradient of the Green
function with a pole sufficiently far away. Philosophically, similar considerations
underpin the celebrated results of Kenig and Toro connecting the flatness of the
boundary to the property that the logarithm of the Poisson kernel lies in VMO
[15]. Much more close to our setting is the study of the so-called Dahlberg-Kenig-
Pipher operators (defined in (1.7)-(1.8)) pioneered by Kenig and Pipher [7,14]
in combination with the study of the harmonic measure on uniformly rectifiable
sets by Hofmann, Martell, Toro, Tolsa, and others (see [3,11] and many of their
predecessors). Undoubtedly, the behavior of the harmonic measure is connected to
the regularity of Green function G, yet the latter is different and surprisingly has
been much less studied. In part, this is due to the fact that the harmonic measure
is related to the gradient of G at the boundary while the estimates we target in this
paper reach out to the second derivatives of G. One could say that the two are related
by an integration by parts, but in the world of the rough coefficients this is not so.
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Indeed, relying on these ideas, [12] establishes second derivatives estimates for the
Green function somewhat similar to ours under a much stronger condition that the
gradient of the coefficients, rather than its square, satisfies a Carleson condition. It
was clear already then that the optimal condition must be a control of the square-
Carleson norm, but their methods, using the aforementioned integration by parts,
did not give a possibility to overcome this restriction. In this paper we achieve the
optimal results and, indeed, demonstrate using the counterexamples that they are
the best possible.

In the present paper, we focus on 2 = Rff_“ , and show that for the operators sat-
isfying a slightly weaker version of the Dahlberg-Kenig-Pipher condition described
below, the Green function is well approximated by multiples of ¢, in the sense that
the gradient of normalized differences satisfies a square Carleson measure estimate.
Notice that the class of coefficients authorized below is enough to treat the case
when §2 is a Lipschitz graph domain, by a change of variables. As we mentioned
above, we plan to pursue more general uniformly rectifiable sets in the upcoming
work, which would give a much stronger version of our previous results in [6] and
would show that our estimates are equivalent to the uniform rectifiability of the
boundary. At this point, restricting to the simple domain 2 = Rffr] will have the
advantage of making the geometry cleaner and focusing on one of the tools of this
paper, concerning the dependence of G (or the solutions) on the coefficients. Even
in the “simple" case of the half-space, the question of good approximation of G by
multiples of # seems, to our surprise, to be widely open, and the traditional methods
of analysis break down brutally when trying to achieve such results. Perhaps one
could also say that this setting is more classical. Let us pass to the details.

Consider an operator in divergence form L = — div(AV), where A = [a,- (X )]
isan (d + 1) x (d + 1) matrix of real-valued, bounded and measurable functions
on Ri“. We say that L is elliptic if there is some (1o > 1 such that

(A(X)E, ¢) < o €112 and (A(X)E, &) = g &7 for X € R{T and &, 7 € RYH
(1.1)

We use lower case letters for points in R?, for example x € R?, and capital
letters for points in R?*!, for example X = (x,1) € R+, We identify R? with
RY x {0} ¢ R?*! 50, when 7 = 0, we may write x instead of (x, 0) € RY*1,

Forx € R? andr > 0, we denote by A(x, r) the surface ball B, (x)N{r = 0} C
R?. Thus A(x, r) is a ball in R? while B(x, r) is the ball of radius r in RYT!. We
denote by

T(x.r):=B,(x) "R and W(x.r) = A(x.r) x (%r] c R (12)

the corresponding Carleson box and Whitney cube. Note that 7' (x, r) is a half ball
in Riﬂ over A(x, r). We may simply write T4 for a half ball over A C RY.

Definition 1.3. (Carleson measure) We say that a nonnegative Borel measure  is
a Carleson measure in Ri“, if its Carleson norm

lule == sup “2)
acrd |4
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is finite, where the supremum is over all the surface balls A and | A| is the Lebesgue
measure of A in RY. We use C to denote the set of Carleson measures on Ri“.

For any surface ball Ag C R?, weuse C (Ap) to denote the set of Borel measures
satisfying the Carleson condition restricted to Ay, that is, such that

w(Th)
[A]

Illecag) == sup < 400
Ac

A

Next we want to define a (weaker) version of the Dahlberg-Kenig-Pipher con-
ditions in the form which is convenient for the point of view taken in this paper. We
would like to say that the matrix A = A(X) is often close to a constant coefficient
matrix. The simplest way to measure this is to use the numbers

Qoo(X, 1) = inf sup |A(y, ) — Aol (14
Ao€Ao(10) (y,s)eW (x,r)

where the infimum is taken over the class 2(o(u1¢) of (constant!) matrices Ag that
satisfy the ellipticity condition (1.1). Notice that the matrix A is allowed to depend
on (x,r), SO dxo(x, r) is a measure of the oscillation of A in W(x, r), similarly
to [7]. We require Ag to satisfy (1.1) for convenience, but if we did not, we could
easily replace Ag by one of the A(y, s), (y,s) € W(x, r), which satisfies (1.1) by
definition, at the price of multiplying aso(x, r) by at most 2. The same remark is
valid for the slightly more general numbers

1/q
ag(x,r) = inf {][ |A(y,S)—A0|q} ; (1.5)
Aoeo(ro) | J(y,s)eW (x,r)

where, in fact, g will be chosen equal to 2.

Definition 1.6. (Weak DKP condition) We say that the coefficient matrix A satisfies

the weak DKP condition with constant M > 0, when a» (x, ;’)2‘11);i is a Carleson

measure on RT’I, with norm

dx dr

r

<M. (1.7)
C

Ma(A) = |laalx, r)?

We may also say that o (x, r)? satisfies a Carleson measure estimate. Recall
that this implies that a(x, r)? is small most of the time (to the point of being
integrable against the infinite invariant measure dxrd’ ), but does not vanish at any
specific speed given in advance.

The name comes from a condition introduced by Dahlberg, Kenig, and Pipher,
which instead demands that @ (x, r)? satisfy a Carleson estimate, where

a(x,ry=r sup |VA(@,s)|. (1.8)
(y,8)eW(x,r)

In 1984, Dahlberg first introduced this condition, and conjectured that such a Car-
leson condition guarantees the absolute continuity of the elliptic measure with re-
spect to the Lebesgue measure in the upper half-space. In 2001, Kenig and Pipher
[14] proved Dahlberg’s conjecture. Since it is obvious that oz (x, 7) < deo(x,7) <
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20(x, r), we see that our condition is weaker than the classical DKP condition,
but importantly they have the same homogeneity. A similar weakening of the DKP
condition, pertaining to the oscillations of the coefficients, has been considered,
for example in [7]. We could also have chosen an exponent ¢ € (2, oo] for oy in
Definition 1.6, but there is no point doing so as the Holder inequality implies that
the current condition is the weakest. Surprisingly, our theorem is easier to prove
under this weaker condition.

We now say what we mean by good approximation by affine functions. On
domains other than Rﬁ“ , we would use other models than the function (y, t) > f,
such as (functions of) the distance to the boundary, but here we are interested in
(approximation by) the affine function (y, t) — Af, with A > 0.

We said earlier that we wanted to study the approximation of the Green functions
(and we did not mention the poles too explicitly), but in fact our properties will
also be valid for positive solutions u of Lu = 0 that vanish at the boundary.

In addition, given such a solution u#, when we are considering a given Carleson
box T (x, r), we do not want to assume any a priori knowledge on the average size
of u in T (x, r), so we just want to measure the approximation of u, in 7'(x, r), by
the best affine function a, , that we can think of, and it is reasonable to pick

ay r(2,1) = Axrt, Where Ay, = Ay (1) = ][ ou(z,t)ydzdr  (1.9)
T(x,r)
is the average on T (x, r) of the vertical derivative; see the beginning of Section 3
for more details about this choice of Ay . We measure the proximity of the two
functions by the L? average of the difference of the gradients (we seem to forget u
but after all, it is easy to recuperate the functions from their gradients because they
both vanish on the boundary), which we divide by the local energy of u because
we do want the same result for u as for Au. That is, we set

Jux,r) = ][ Vs ((z. 1) — ay. (2o ) dzdr
T (x,r)

— ][ Vot (z, 1) = Ay ()egs1|> dz dr, (1.10)
T (x,r)
where e;1 = (0, ..., 1) is the vertical unit vector, and then divide by
Eu(x,r)zf |Vul|? (1.11)
T (x,r)
to get the number
Ju(x,r)
F) = — 1 1.12
Bu(x,r) E.(e.0) (1.12)

This number measures the normalized non-affine part of the energy of u in T (x, r).
We want to say that u is often close ay ,, that is that 8, (x, r) is often small, and
this will be quantified by a Carleson measure condition on §,. We won’t need to
square 3, because J, is already quadratic.

The simplest version of our main result is the following:
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Theorem 1. Let A be a (d + 1) x (d + 1) matrix of real-valued functions on R‘frl
satisfying the ellipticity condition (1.1). If A satisfies the weak DKP condition with
some constant M € (0, 00), and if we are given xq € Rd, R > 0, and a positive
solution u of Lu = —div (AVu) = 0 in T (xo, R), withu = 0 on A(xg, R), then
the function B, defined by (1.12) satisfies a Carleson condition in T (xo, R/2), and
more precisely

dxdr
r

Bulx,r) <C+CM, (1.13)

C(A(x0,R/2))

where C depends only on d and .

That is, u is locally well approximated by affine functions in 7 (xo, R/2), with
essentially uniform Carleson bounds. Here “solution” means “weak solution”, and
the values of # on R are well defined because solutions are locally Holder contin-
uous up to the boundary; this will be explained better in the next section.

Notice that the constant M > 0 can take any values, and we explicitly underlined
the norm dependence. The result applies when u is the Green function for L, with a
pole anywhere in R‘fl \ T (x0, R). Even in the case of the Laplacian, the smallness
of M does not guarantee the smallness of (1.13), that is,  is not necessarily so close
to an affine function at the scale R. This is natural (the impact of what happens
outside of T (xg, R) could be substantial), and this effect will be ameliorated in
the next statement, at the price of some additional quantifiers; the point is that the
Green function with a pole at co, or even a positive solution in a much larger box
than 7 (xg, R), behaves better and has a better approximation. The next theorem
says that we can have Carleson norms for 8, that are as small as we want, provided
that we take a small DKP constant and a large security box where u is a positive
solution that vanishes on the boundary.

Theorem 2. Let d, 1o be given, let u and A(xo, R) satisfy the assumptions of
Theorem 1, and let A satisfy the weak DKP condition in A(xg, R). Thenfort < 1/2
we have the more precise estimate

dxdr

r

dx dr

r

< Ct*+C |az(x, r)?

C(A(x0,TR))

Bu(x,r) , (1.14)

C(A(x0,R))

where C and a > 0 depends only on d and .

This way the right-hand side can be made as small as we want. Notice that we
only need A to satisfy the weak DKP condition in A(xg, R); the values of A outside
of T'(xg, R) should be irrelevant anyway, because we do not know anything about
u there.

We observed earlier that this result applies to the Green function with a pole
at oo (see Lemma 6.1 for the precise definition), and to operators that satisfy the
classical Dahlberg-Kenig-Pipher condition where the square of the function @ of
(1.8) satisfies a Carleson measure estimate. Notice that when u is the Green function
with pole at co for L, Theorem 2 implies that the Carleson norm of 8 is simply less
than C91 (A), with D12 (A) as in (1.7).

A rather direct consequence of our results is a Carleson measure estimate on
the second derivatives of the Green function for DKP operators.
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Corollary 1.15. Let A be a (d 4+ 1) x (d + 1) matrix of real-valued functions on
R‘j_ﬂ satisfying the ellipticity condition (1.1). Suppose A satisfies the classical DKP
condition with constant Cq € (0, 00), that is,

dx dr

~

o(x, r)2

< Co, (1.16)

r C

where d(x, r) is defined in (1.8). If we are given xg € RY R > 0, and a positive
solution u of Lu = —div (AVu) = 0 in T (xo, R), withu = 0 on A(xg, R), then
there exists some constant C depending only on d, o and Cy such that

V2u(y. H|?
/l—ﬂ%ﬁﬁ@mgcm| (1.17)
T, u(y,n

forany A C A(xg, R/2).

We state this corollary on the upper half-space for simplicity, but it can be gener-
alized to Lipschitz domains by a change of variables that preserves the DKP class
operators. In fact, the change of variables will be a bi-Lipcshitz mapping whose
second derivatives satisfy a Carleson measure estimate. With such regularity of the
change of variables, as well as our estimates for §,, in the main theorems, it reduces
to the case of the upper half-space.

In Section 6, we construct an operator that does not satisfy the DKP condition,
for which the precise approximation estimates of Theorems 1 and 2 fail.

In conclusion, let us point out that we extend the results above to domains with
lower dimensional boundaries in [5]. In that case, there are currently no known
free boundary results, in particular, it is not known whether the absolute continuity
of elliptic measure with respect to the Hausdorff measure, or square function es-
timates, or the well-posedness of the Dirichlet problem imply the rectifiability of
the boundary, and we hope that the correct condition is, in fact, an analogue of the
property that the Green function is almost affine. The first and the third authors of
the paper started such a study in [6], but if we want precise approximation results
for the Green functions, the first significant step in the positive direction should be
a version of main results of the present paper in the higher co-dimensional context,
and their extension to uniformly rectifiable sets.

The rest of this paper is organized as follows: in the next section we recall some
notation and the general properties of solutions that we need later. In Section 3 we
comment the definition of J, and B,, prove some decay estimates for 8, when u
is a weak solution of a constant coefficient operator, and extend this to the general
case with a variational argument. The rest of the proof of our main theorems, which
consists in Carleson measure estimates with no special relations with solutions, is
done in Section 4. We prove Corollary 1.15 in Section 5 using Theorem 1 and a
Caccioppoli type argument. In Section 6, we discuss the optimality of our results.

2. Preliminaries and Properties of the Weak Solutions

In this section we recall some classical results for solutions of elliptic operators
in divergence form.
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Recall the notation B(X, r) for open balls centered at X € RA+L A(x, r) for
surface balls, T (x, ) for Carleson boxes, and W (x, r) for Whitney cubes (see near
(1.2)). Also denote by fB f(x)dx = “17‘ fB f(x) dx the average of f on a set B.

Let us collect some well-known estimates for solutions of L = — div(AV),
where A is a matrix of real-valued, measurable and bounded functions, satisfying
the ellipticity condition (1.1).

Definition 2.1. (Weak solutions) Let §2 be adomain in R”. A functionu € W1-2(£2)
is a weak solution to Lu = 0 in £2 if for any ¢ € WOI'Z(Q),

/ A(X)Vu(X) - Vep(X)dX = 0.
2

We will only be interested in the simple domains £2 = ]Rﬂlfl and 2 = RT’I N
B(x,r), withx € R? and r > 0. The space W&’Q(Q) is the closure in W12(£2) of
the compactly supported smooth functions in §2. Conventional or strong solutions
are obviously weak solutions as well. In this paper, our solutions are always taken
in the sense of Definition 2.1.

From now on, u is a (weak) solution in £2. When we say that u = 0 on some
surface ball A = A(x, r) C £2, we mean this in the sense of W !-2(T4). This means
that u is a limit in W12(T») of a sequence of functions in C(% (Ta\A). We could
also say that the trace of u, which is defined and lies in H l 2(A), is equal to O
on A. Ultimately, the De Giorgi-Nash-Moser theory (cf. Lemma 2.3) shows that
under this assumption, the weak solution u is in fact continuous in 7>, U A»,, and,
in particular, # vanishes on A. Hence, in the rest of this paper the distinction is
immaterial, but for now we will try to be precise.

We refer the readers to [13] for proofs and references for the following lemmas:

Lemma 2.2. (Boundary Caccioppoli Inequality) Let u € W12(T (x, 2r)) be a so-
lution of L in T (x,2r), with u = 0 on A(x, 2r). There exists some constant C
depending only on the dimension and the ellipticity constant of L, such that

C
foomuoPax =S4 oo ax
T(x,r) = JT(x,2r)

Lemma 2.3. (Boundary De Giorgi-Nash-Moser inequalities) Let u be as in Lemma 2.2.
Then

1/2
sup |ul <C <][ u(X)de) ,
T (x,r) T (x,2r)

where C = C(d, o). Moreover, for any 0 < p < r, we have, for some o =
a(d, no) € (0, 1],

o 172
osc u<C (£> <][ u(X)2 dX) ,
T(x,p) r T(x,2r)

where osc u := supu — inf u.
2 Q 2
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Lemma 2.4. (Boundary Harnack Inequality) Let u € WY2(T (x,2r)) bea nonneg-
ative solution of L in T (x, 2r) withu = 0 on A(x, 2r). Then

u(X) <Cu(X,) VXeT(x,r),
where C > 0 depends only on the dimension and 1.

Of course, each of these statements has an interior analogue where we would
replace T (x, r) by a ball B(X, r) such that B(X,2R) C £ and we would not
have to specify the boundary conditions. The interior Harnack inequality reads as
follows:

Lemma 2.5. (Harnack Inequality) There is some constant C, depending only on
the dimension and the ellipticity constant for A, such that if u € W“2(2) is a
nonnegative solution of Lu = 0 in B(X,2r) C 2, then

sup u < C inf u.
B(X,r) B(X.r)

We will also use the Comparison Principle.

Lemma 2.6. (Comparison Principle) Let u, v € W2(T (x, 2r)) be two nonneg-
ative solutions of L in T (x, 2r), such thatu = v = 0 on A(x,2r) and v is not
identically null. Set X, , = (x, r) (a corckscrew point for T (x, 2r)). Then

,1M(Xx,r) < u(X) < U(Xx,r)
V(X)) T vX) T Xy

forall X € T(x,r),

where C = C(n, no) > 1.

Lemma 2.7. (Reverse Holder Inequality on the boundary) We can find an exponent
p > 2 and a constant C > 1, that depend only on d and the ellipticity constant [
for A, such that ifu and T (x, 2r) are as in Lemma 2.2, then

1/p 1/2
<][ IVu(X)|? dX) <C (f IVu(X)? dX) )
T (x,r) T (x,2r)

See [9], Chapter V for the proof of this Lemma.
We prove the following simple consequence of the above for reader’s conve-
nience:

Lemma 2.8. Let u € WY2(T (x, R)) be a nonnegative solution of L in T (x, R),
withu = 0 on A(x, R). Then forall0 <r < R/2,

2
X
f Va0 dx ~ U HXxr). (2.9)
T(x,r) r2

where Xy , = (x, r) as above and the implicit constant depends only on d and 1.
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Proof. By translation invariance, we may assume that xg is the origin.
To prove the 2 inequality in (2.9), we apply Lemmas 2.3, 2.4, and the Poincaré
inequality, and get

u(Xe,)? <C sup u? < c][ u*(X)dX < Cr2][ |Vul?.
Tx,r/2 Tx.r Tx.r

For the < inequality in (2.9), simply combine the boundary Caccioppoli and bound-
ary Harnack inequalities. O

We now record a basic regularity estimate for constant coefficient operators.
This will be used in the next section to get decay estimates for J,, and then extended
partially to our more general operators L, with comparison arguments. We shall
systematically use Aq to denote a constant real (d+1) x (d+ 1) matrix, which we al-
ways assume to satisfy the ellipticity condition (1.1), and write Lo := — div (AgV).
Solutions to such operators enjoy additional regularity and in particular, we will
use the following result. We state it in 77 = 7'(0, 1) to simplify the notation. More
generally, set 7, = T (0, r) for r > 0.

Lemma 2.10. Let u € W2(T)) be a solution to Lou = 0 in Ty withu = 0 on Aj.
Then for any multiindex «, || € Z+.,
1/2
sup | D*u| < C (][ IVu(X)? dX) , (2.11)
T Ty
2

where C = C(d, no, |a|). In particular, for any T (x,r) C Ty,

1/2
0sC BiugCr< IVu(X)|? dX) , i=1,2,...,d+1, (2.12)
T (x,r) T

where the constant C depends only on the dimension and .

Proof. First we claim that the standard local estimates on solutions for constant-
coefficient operators in Riﬂ ensure that

IDullr2 (7,0 S WVullz2ry) + lullz2 .- (2.13)

This is due to the fact that any weak solution to Lu = f on a smooth bounded
domain £2 and with zero Dirichlet boundary data satisfies

lullwmiz2ioy S N fllwmaey + lull2@e)y, m=0,1,2,..

see, for example [8], § 6.3, Theorems 4, 5. Here, Wm’z(.Q) is the Sobolev space of
functions whose derivatives up to the order m lie in Lz(.Q). With this at hand, we
observe that for any smooth cutoff function 5 equal to 1 on By, and supported in
B34 we have

Lo(un) = —AoVn - Vu — AoVu - Vi +u Lon,
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and hence the estimate above applied consecutively with m = 0, 1, 2... in some
smooth domain 73,4 C §2 C Ty gives (2.13). Applying Poincaré’s inequality, we
conclude that

ID*ull2¢r, ) S WVullp2r) (2.14)

for any multiindex o with || € Z.. On the other hand, by the Sobolev embedding
theorem ([1] Theorem 4.12), for any multiindex o,

sup |Dau| < C ||M||W\ot\+n,2(T1/2) ,
T2
where C depends on n and |«|. We combine this with (2.14) and get (2.11).
The estimate (2.12) is an immediate consequence of (2.11), since

1/2
osc diu <r sup |Voju| <r sup|Vou| <Cr (][ |Vu|2> ,
T(x,r) T(x,r) T2 I

as desired. O

Remark 2.15. Lemma 2.10 is more than enough to prove Theorems 1 and 2 in the
special case of constant-coefficient operators. Indeed it says that Vu is Lipschitz
in Ty, so in particular Vu — Vu(0) is small near the origin. Notice that Vu(0) =
(0, 0;u(0)) because u vanishes on the boundary; with this and similar statements
for other surface balls, it would be rather easy to control §, and prove the theorems
in the case of constant-coefficient operators. We don’t do this here because we need
more general estimates anyway.

3. Approximations and the Main Conditional Decay Estimate

We observed in Remark 2.15 that our theorems should be easy to prove when L
is a constant coefficient operator. In this section, we use the results of the previous
section, together with an approximation argument, to prove some decay estimate
for B, in regions where A is nearly constant. See Corollary 3.45.

At the center of the proof is an estimate for [[Vu — Vugl|», where u is a
solution for L in some Carleson box T (x, r), and u is a solution for a close enough
constant coefficient operator Lg, with the same boundary values on a7 (x, ). See
Lemma 3.11.

3.1. A little more about orthogonality, J,, and By,

Firstreturn to the approximation of a solution u by the affine functiona, ,(z, t) =
Ax.rt of (1.9). Let us check what we said earlier, that ay , is the best affine approx-
imation of this type in T (x, r). Recall from (1.10) that

Julx,r) = ][ IV(u(z, 1) — ay,(z,0))*dzdr = f IV — Ay (u)egrr | dz de
T(x,r) T(x,r)
. (3.1
= ]l [V.u(z, )| dz dt +][ 1014 (2, 1) — Ay (u)|* dz dt
T(x,r) T(x,r)
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wherees1 = (0, ..., 1)isthe vertical unit vector, and we split the full gradient Vu
into the horizontal gradient V. u and the vertical part d;u. Now Ay (1) = fT ) oru

by (1.9), so 0;u — A, ,(u) is orthogonal to constants in L2(T (x, r)), hence for any
other A,

f 0t = A2 = A — e 02 + ][ et — e ()12,
T (x,r) T (x,r)

and, by the same computation as above,

][ IV(u — A) | = A — dpr )] + f Vit — hyr ()egi1]?
T(x,r) T(x,r) 3.2)

= A = Ao W[ + Ju(x, 7).

We may find it convenient to use the fact that, as a consequence,

|V (u — An)[?
Bu(x,r) = inf freen -
reR JCT(x,r) [Vu|

(compare with (1.12), and for the second part try A = 0).

For most of the rest of this section, we concentrate on balls centered at the
origin; to save notation, we set B, = B(0,r), T, = T(0,r) = B, N Ri“, and
W, = W (0, r) (see (1.2)). Similarly, it will be convenient to use the notation

(3.3)

Jur) = 10, 7) = ][ IV (ux, 1) — Ay D dxdr,
T,
where
Ar(u) = )\O,r(u) = ][ dsu(y,s) dy ds

T,

(see (1.9) and (1.10)), and we set E, (r) = E,(0,r), B, (r) = B, (0, r) (see (1.11)
and (1.12)).

3.2. Decay estimates for constant-coefficient operators

We shall now prove a few estimates on solutions of constant-coefficient equa-
tion, which will be useful when we try to replace L by a constant-coefficient oper-
ator. We start with a consequence of Lemma 2.10.

Lemma 3.4. Let Ag be a constant matrix that satisfies the ellipticity condition (1.1),
set Lo = —div (AgV), and and let u be a solution to Lou = 0 in T} such thatu = 0
on Ay. There exists some constant C, depending only on the dimension and (L,
such that for0 <r < 1/2,

Ju(r) < Cr*J1,(1) < CrE,(1). (3.5)
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Proof. The second inequality follows at once from (3.2) (with A = 0) for u. Next
let v(x,t) = u(x,t) — A-(u)t. Since ¢t is a solution for the constant coefficient
operator Lo, v is a solution for Ly as well in the domain in 77, with v(x,0) = 0
for all x € A;. We claim that

there exists some (x’, ') € T, for which d,v(x’, ') = 0. (3.6)

To see this, we observe first that d,v(x,t) = du(x,t) — fTr diu(x, t)dx dr has
mean value 0. Since u is a solution of the constant-coefficient equation Lou = 0,
d;u is also a solution of the same equation. Therefore, by the De Giorgi-Nash-
Moser theory, d;u is continuous in 7}, and thus so is d;v. Then (3.6) follows from
the connectedness of 7, and the mean value theorem. Thanks to (3.6), sup |9;v| <

T
O;C d;v, and thus by (2.12) and because adding a constant does not change the

r
oscillation,

2 2
19,0]% < (osc 8,v) - (osc (00 + Ay (u) — kl(u)))
T, T, T,

2
= (osc 3 (u — Al(u)t)) < Cr2][ IV (u(x, 1) — g (u) £)[? dx dr.
T T

For the rest of the gradient, notice that for 1 < j <d,
B, 1) = 8 (W, 1) + A ()t — A1) 1),

and d;v(x, 0) = 0. Therefore,

][T lo0]* < (0%: 97 (0(x. 1) + Ar() £ — A1 (1) z))2

<Cr2+4 |Vux,t) — @) 0)* dxdr = Cr?J,(1).
T

Now (3.5) follows from the two estimates above. |

Remark 3.7. The proof of Lemma 3.4 also works when we replace J, (r) in (3.5)

with fTr |Vx,, (u(x,t) — rs(u)t) 2, for any 0 < s < r. That is, we also get that

][ Ve u(x, 1) = 2y O] dxdr < Cr2J,(1). (3.8)
T,
This may be a better estimate, since (3.2) says that for any A,
Ju(r) = f IV (u(x, 1) — Ar)|* dx dr.
T,

Ey,(r)

We will need a lower bound for the ratio 0]

for positive solutions of Lou = 0.
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Lemma 3.9. Let the matrix Ao be constant and satisfy the ellipticity condition (1.1),
set Lo = —div (AgV), and let u be a positive solution to Lou = 0 in Ty such that
u=0on Ay Then

E.(r) > C(1 = C'r?)E,(1) forO <r <1/2, (3.10)

where C and C' are positive constants depending only on the dimension and .
Notice that when r is small, the lower bound (3.10) does not depend much on
r. This is better than what we would get by simply applying Lemma 2.8 and the
Harnack inequality to the positive solution u. The proof exploits the fact that 7 is a

solution for the constant-coefficient operator Lo and the comparison principle.

Proof. Define Ag = 9,u(0, 0). Then by (2.12),

172
|Vu|2) ! .

Since ¢ is a solution for L¢ that vanishes on Aj, the comparison principle and
Lemma 2.8 give (with the corkscrew point X, ; = (x, 1))

[Ar(u) — Ag| < o0scou < Cr (][
T, T

1

12
, _ _
MDD S e uXen) = €7 (][ |W|2) for (x.1) € T1 .
T

which implies, by taking a limit and using the existence of Vu at 0, that

1/2
Ao = d,u(0,0) > C~! (7[ |Vu|2> )
T

Then

2
Eu(r) = h(u)? > % — (A () — 20)* = (QO) ' = C'rH o |Vul
T

(use the fact that a2 > % — (a — b)?). This completes the proof of Lemma 3.9. O

3.3. Extension to general elliptic operators L

We now return to a solution of our original equation Lu = 0, and compare it
with solutions u® of Lyu® = 0 of a constant coefficient operator Ly = —div (ApV),
with the same boundary data. For the moment we do not say who is the constant
matrix Ag (except that we require it to satisfy the ellipticity condition (1.1)), but of
course our estimates will be better if we choose a good approximation of A in 77.

Even though it does not look like much, the next lemma is probably the central
estimate of this paper. We do not need A to have constant coefficients here.
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Lemma 3.11. Let L = —div (AV) and Ly = —div (AgV) be two elliptic oper-
ators, and assume that A and Ay satisfy the ellipticity condition (1.1). Let u be a
solution to Lu = 0 in T, with u = 0 on Ay, and let u® be a solution ofLouo =0
in Ty with u® = u on 9Ty. Then there is some constant C > 0 depending only on
d and the ellipticity constant v, such that

2 2
/‘wfwo‘ gugmin{/ IA — Aol [Vul? dX,/ \A7A0|2‘w0‘ dX}.
T T T
(3.12)

Proof. The solutions are in the space W!2(T}) by definition, and u° = u on
the boundary should be interpreted as u® — u = 0 in the sense of W12(T}), or
equivalently, u —u e WOl ’2(T1). So the existence of u® € W12(T}) as above
is guaranteed by the Lax-Milgram Theorem. Alternatively, it is possible to find
u9 because the trace of u lies in H/2(3B). In addition, u? is nonnegative by the
maximum principle.

Since u — u? lies in the set W(} 2 of test functions allowed in Definition 2.1,

1

Ho J1

V(u — uo)‘2 < /T AV — 1) -V — u®) = —/T AV -V (u — u®)
1 1

= [ (49— AV - Vu —u
T

<Ko

2 1 L
+ — V(u—u")
2/”“0 T,

’

|A—A0|2‘w0

T

where we use (1.1), the fact that  is a solution of div(AV)u = 0in 7} (and u — u°

vanishes on the boundary), then the fact that u¥ is a solution of div(AgV)u® = 0
in Ty, followed by the inequality 2ab < poa® + Ko b2, Then
NG 2 2 o?
/ ‘V(u—u)’ <u2 [ 1A Al ’w‘
Ty T

This gives the bound by one of the expressions in the minimum in (3.12). Inter-
changing the roles of u and u®, and A and Ag, we also obtain the other bound.
]

A similar proof also gives the following (which can be applied even if A — A
is not small):

Lemma 3.13. Let A, Ay, u, and u® be as in Lemma 3.11. Then
Ko 4 /
Ty

where [ still denotes the ellipticity constant.

WO(X)(2 dx,

VuO(X)‘Z ax </ IVu(X)? dX < 4/
=, = MKy
1

T,

(3.14)

We shall immediately see that u being a solution is not necessary for the first
inequality to hold, and similarly, «° being a solution is not necessary for the second
inequality. But the condition u — u® € WO1 ’2(T1) is essential.
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Proof. We estimate

M(;l/ |W|2§/ Aw.wz/ AVu~V(u—u0)+/ AVu - Vi
T T Ty T

1/2 N 1/2
=/AVu-VuO§/LO</ |Vu|2> </ ) .
T T U

‘ 2

vu'

Hence,

vu®

2 4
[Vul” < Mo/
T T

The left-hand side of (3.14) follows from the same argument, interchanging the
roles of u and u°, A and Ay, respectively. O

Let us announce how we intend to estimate the right-hand side of (3.12). The
simplest would be to estimate |A — Ap|? in L norm and use the L2 norm of Vu,
but if we do this we will get quantities that do not seem to be controlled even by
the oo Of (1.4). So instead we decide to use the quantity

1/2
y(x.,r)= inf {][ |A(y,s)—Ao|2dyds} . (319
Apeo(10) (v,8)eT (x,r)

where as before the infimum is taken over the class 2y(ug) of constant matrices
Ay that satisfy the ellipticity condition (1.1). Notice that the domain of integration
fits the domain of integration of (3.12), but it is larger than what we have in (1.5).
Nonetheless, the next lemma, to be proved in the next section, will allow us to use
the y (x, r).

Lemma 3.16. If the matrix-valued function A satisfies the weak DKP condition of
Definition 1.6, with constant ¢ > 0, then y (x, r)zw is Carleson measure on

Rff'l, with norm

Ldx dr
y(x,r) < CM(A) = Ceg, (3.17)
rle
where My (A) = ||a2(x, r)2d"r£ “C as in (1.7), and
y(x.r)? < CMy(A) < Ce  for (x,r) e RT™. (3.18)

Here C depends only on d and .

See the next section for the proof.

Since we do not have a small L* control on A, we need a better estimate on
Vu. This will be achieved by reverse Holder estimates (for example Lemma 2.7),
which gives us an exponent p > 2 that depends only on d and pto. We first state
the needed estimate for the unit box 77.
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Lemma 3.19. Let u be a positive solution to Lu = 0 in Ts, with u = 0 on As,
choose a constant matrix Ay € Ao(o) that attains the infimum in the definition
(3.15) of y (0, 1), and let u® be as in Lemma 3.11 (with this choice of Ag). Then for

any é§ > 0,
/,

where Cs depends on d, o, and §.

2
Vi —vul|” dx < (5 4 Csy(0, 1)2) Eu(D), (3.20)

Proof. We discussed the existence of #” when we proved Lemma 3.11. We start
from (3.12), which reads

ol 2 2
/ ‘w —Vu ‘ <C | 1A= Aol IVul. (3.21)
T T
Let us cut off and consider first the set
7= {X €Ty VuX)? < KEu(l)},

with K > 0 to be determined soon. We pull out the gradient and get a contribution
/ A — Aol? |Vul? < KEuu)/ A= Aol < Ky(0, D*Eu(D). (3.22)
z z

In the region 77 \ Z where |Vu|2 > KE,(1), we see that
2 2— 2-=p
|Vul® = [Vul? |Vul=? < [Vu|P (KE,(1)) 2",

where p > 2 and will be chosen as in Lemma 2.7. Then

2 2 2 2 2 2p
/ [A — Apl|” |Vul S2Mo/ [Vul™ < 2up(K Ey (1)) 2 / [VulP dX.
n\z n\z Ti
(3.23)

We required u to be a nice solution in the larger set 75, so that we can use the
following estimates from Section 2. First,

2
[+ IVul? dX}? < C+ |Vul* dX
T Ip)

by Lemma 2.7. Now we apply Lemma 2.8 to 7> (with X, = (0, 2)) and later T;
(with X = (0, 1)), to find that

|Vul? < Cu®(X,) < Cu®(X1) < C £ |Vul?,
T T

where the intermediate inequality follows from Harnack’s inequality. From these
estimates and (3.23), the contribution from 77 \ Z is

/ A — A2 |Vul® < CK T E,(1).
n\zZ

2—
Now we choose K so that CK 2~ = 8, and the desired estimate (3.20) follows at
once. O
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We now have enough information to derive the same sort of decay estimates
for the non-affine part of our solution u that we proved, at the beginning of this
section, for solutions u of constant coefficient operators. We start with an analogue
of Lemma 3.4.

Lemma 3.24. Let u be a solution to Lu = 0 in Ty with u = 0 on Ay. Then for
0<r<1/4

Ck

77O, DE ), (325)

J.(r) < C (r2 n K%r*d*) T, +

where K > 0 is arbitrary, p = p(d, o) > 2, C depends only on d, j1o and p, and
Ck depends additionally on K.

Notice that we do not require the positivity of u yet, which is why we don’t use
Lemma 3.19 for the moment.

Proof. We write u as affine plus orthogonal on 77, that is
ulx,t) =v(x,t)+ A (u)t.

Note that A1 (x)? < E, (1), and E,(1) = J,(1).

Choose a constant matrix Ag € 20o(uo) that attains the infimum in the definition
(3.15)of (0, 1), and let Ly = — div AV as usual. Now consider the Ly-harmonic
extension to 777 of the restriction of u to 3772, which can be written as

uo(x, ) = vo(x, 1) + Ay (u)t, (3.26)

where we use the fact that ¢ is a solution of the constant-coefficient equation, and
vo is the Lo-harmonic extension of vjy7, ,. These extensions are well-defined since
u is Holder continuous on T/z, and the Lax-Milgram Theorem guarantees the
existence and uniqueness of the W1’2(T1 ,2) solution. In particular, Loug = 0 in
T1/2, with ug = u on 8T1/2.

We claim that for any fixed 0 < r < 1/4,

C
Ju(r) < Cr2l, () + — |A(x, 1) — Aol* [Vuo(x, 1)|* dx dr. (3.27)
r T2

To see this, we use the inequality (a + b + ©)? < 3(a® + b% + ¢2) to write
Ju(r) = ][ IV (u = A () D] < 3][ IV (o — Ar (o) 1)
T, T;

+3 |V<u—uo)|2+3][|V<Ar<uo)r—xr(u)r>|2, (3.28)
T, T,
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where A, (1g) = fTr 0ruq 1s defined as for u. Notice that

2
f IV (o) £ — A () D)7 = (hr (ug) — Ar (u))* = (][ (3yu — dyup) dx dr)
T, T

IV —uo)l® < 5 f - [V —uo)l,

T T2
(3.29)

simply enlarging the domain of integration. Soby (3.28), Lemma 3.4 and Lemma 3.11,
2 c 0 2
1) =3 f 190 =30 + o f, Vi)
T
2

C C
=3Juy (") + — pd+1 ][ IV —uo)|> < CriJ,,(1/2) + —— Fd+1 ][T IV (u — uo)|?
1

7 2

c
< CriJ, (1/2) + —— e ][T |A — Aol? |Vuol|?. (3.30)
1
2

However, the same sort of computation as above yields

Jup(1/2) = ][T Vo — hajpuo)n)|?
)

< 3][T |V (u — uo)* + 3][T |V — M/z(u)l)|2 +3(Ay2(u) — A1y2(u0)?
1 1
2

2

2
< c][ IV — up)P? +3f IV — 21 jp0)0)|
Ty Ty
2 2
= c][ IV (u — ug)|? + 3J,(1/2).
Ty
We plug this into (3.30), use the last part of (3.29), and get
Cc
Ju(r) < CriJ,(1/2) + —— s ][ |A(x, 1) — Ao|? [Vug(x, 1)|? dx dr.
T2
Now the claim (3.27) follows because
Ju(1/2) < ][ IV(@u(x, £) = i @n)]* dxdr < CJ(1),
T2

where in the first inequality we have used that A1/ (u) ¢ is the best affine approxi-
mation in 77> (see the discussion in Section 3.1).
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Recall that u( is decomposed as in (3.26), and thus

][ A — Aol Vo2
T

52][ |A—Ao|2|wo|2+2mu)2][ A — Ao V1P
T T

< 2][ |A — Aol* |Vuol? + 2E,(1)y (0, 1)2. (3.31)
T2
We now estimate the first term on the right-hand side of (3.31). For K > 0, consider
the set

Zk = {X €Tip: [Vug(X)P < KEM(I)}.

The contribution of Zg to the integral is

/ |A — Aol* [Vuol? < KE,(1) | |A— Aol* < CKy(0, 1)2E,(1).
Zk Zk

We are left with the complement of Zg. As in (3.23) in the proof of Lemma 3.19,
we get that

2,
/ |A — Aol* [Vuol* < C<KEL,<1))T”/ |Vvol? (3.32)
Ti2\Zk T2

where p > 2 will be chosen close to 2. To control the term le/z [Vug|?, we use

the following two reverse Holder type estimates: for some p = p(d, pno) > 2
sufficiently close to 2,

1/p 1/2 1/p
/ [V l|? < / Vol + / Vu|? ) (3.33)
Tiy2 T Tip2
1/p 1/2 1/p
/ Vol? s(/ |Vv|2) +|x1(u>|<][ |A—A0|P> . (334
T T T

where the implicit constants depend on d, (1o and p. We postpone the proof of these
two inequalities to the end of the proof of this lemma.
Now by (3.33) and (3.34), we obtain

[ 1vul” S B /272 4 B 4 ol f 14— Al
T2 Ui
Since v — vy € W&’Z(Tuz) and v is Lg-harmonic, we have

Ey(1/2) = CuyEy(1/2) = CEy(1) = CJu (1),

where the first inequality comes from Lemma 3.13. Notice also that

][ |A — Aol? < c,w,,,f |A — Aol*> = Cy(0, )%
T T
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Thus our estimate on le/z |[Vvg|? can be simplified as

/ Vuol? < Ju()P2 + Eo(1)Py (0, 1.

T2

Plugging this into (3.32), we get

/ 1A — AP Va2 < CK 22 E (1) T J,()P + CK 2"y (0, 1)2E, (1)
Tip\Zk

< CK 2 J,(1) + CK 23 (0, D2Ea(1),

2—
where in the last inequality we have used E, (1) > J, (1), and thus Eu(l)T]
2—
Ju (1) =" Combining this with the contribution on Zg, we get

/ 1A — Ao? [Vwol? < CK 22, (l)+C<K+K )y(O, D2E,(1).
T

From this and (3.27), the desired estimate (3.25) follows. |
We now prove the two Holder type estimates. Let us first prove (3.34).

Proof of (3.34). Set Ry = 10~21~1/2 a5 before. For any Xo = (xo, t0) € 11,2, any
0 < R < Ry, choose n € Cé(QR(Xo)), with n = 1in Qag/3(Xo), IVl S 1/R.
Here, Qr(Xy) is a cube centered at X with side length R, and we shall write O
for Qr(Xp) when this does not cause confusion. Usmg Lu =0in Ty, v(x,t) =
u(x,t) — A1(u)t, and Lot = 0, we have for any w € W0 (T1)

0:/ AVu-dexdt:/ AVv~dexdt+/ AV (At) - Vwdx dt
T T n

:/ AVY-Vu + | (A= Ag)V(r) - Vu, (3.35)
Ty Ty

where A = A1 (u).

Now we choose w(X) = v(X)nz(X) whenrzy < %,andw = (v—fQR v(Y) dY)n2
when 79 > %. Notice that v(x, 0) = 0, and thus w € W01’2(T1) (because Qr C By)
as required. We plug w into (3.35), compute the derivatives, estimate some terms

brutally, and finally use Cauchy—Schwarz, and get the following estimates.
Casel: 1y < g. Here we obtain

1
— |Vv|2 r/2 dXx
Mo JT1y

1
< IVvlznde—i—C,m/ v V2 dX + C |x|2/ |A — Agl? n* dX.
2:“0 T T T

Extending v by zero below ¢ = 0, this yields

C
|Vv|? dx < -2 v2dX 4+ Cpy |1 |A — Ag|? dX.
1o
Qar/3 R? Or Or
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We apply the Poincaré-Sobolev inequality to control |, Or v2 dX and deduce from
the above that

n+2
2n n
][ IVv|? dX < C (7[ |Vu| w2 dX) +C |x|2][ |A — Ap|? dX.
O2ry3 ORr Or

(3.36)

Case 2: 1y > g. The same computation as in Case 1 gives

2
U(X)*7[ U(Y)dY‘ dX+C|k|2/ |A — Ag|* dX.
JOR [

R

C
/ IVol? dX < -
O2r/3 R Or

Then by the Poincafe-Sobolev inequality, (3.36) holds again in this case.
Now we apply [9] V. Proposition 1.1 to obtain

L
2
][ Vvl dX < C ][ Vo> dx | +cC |X|p][ |[A — Agl? dX
Ory/2 Ory Ory

for some p = p(d, o) > 2.
The desired estimate (3.34) follows as 77,2 can be covered by finitely many
ORy/2- o

Now we turn to (3.33).
Proof of (3.33). We will use L? boundary estimates for solutions. Recall that

Lovg = 0 in Ty, with vg — v € Wy >(Ti/2). Set Ry = 107217 1/2. Then by
the boundary estimates in [9] p.154, we have for any X € T2,

. p/2
f Vool? S ][ Vool +][ Vol?
ORry/2(X0)NT1/2 Qry (Xo)NT12 Ory (Xo)NT1/2

/2
< ][ Vol +f Mk
Ti2 T2

for some p > 2. Since 17,2 can be covered by finitely many cubes QO g,/2(Xo), we
obtain (3.33). O

We now prove an analogue of Lemma 3.9 for positive solutions to Lu = 0.

Lemma 3.37. Let u be a positive solution of Lu = —div(AV)u = 0 in Ts, with
u=0on As. Then forany§ > 0,0 <r < 1/2,
1—C'r2  C"(8§+Csy(0,1)?
E,(r) > ( - ( e APRG (3.38)

where C, C', C" are positive constants depending only on d and 1.
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Proof. Asbefore, we will only find this useful when the parenthesis is under control.
Let Ag and u° be as in Lemma 3.19. By (3.20),

1 2 2
][ |Vu|22—][ vi° —][ ‘V(u—uo)‘
T 2T, T,
1

7[ vuoz—L][ ‘V(u—uo)’z
2-T,- rd+1 T

_ 1][ 2 C(8+Csy(0,1)?)

vul| — [Vul?>.  (3.39)
Fd+1 7

Divide both sides of (3.39) by le |Vu(X )|2, and then observe that

f \wooojzwf Vi (X))
Ty T\

by Lemma 3.13; this yields

fr Vel 1, [VeOFc 6+ Cor©,1?)

J[‘Tl |VM|2 ) le |VM|2 rd+1
2
e VT c o)
B le |VM0|2 rd+l

Since u” > 0 in 7} (by the maximum principle), we can apply Lemma 3.9 to u°
and obtain the desired estimate. |

We are finally ready to prove the announced decay estimate for the quantity

_ Ju ()C, r)
Bulx,r) = Ean (3.40)

(the proportion of non-affine energy) defined in (1.12). We just need to organize
ourselves with the constants.

We intend to apply the estimates above, with a single value of » = 19 which
will be chosen small enough, depending on d and ¢, and then we will require that

y(0.1) < ¢o, (3.41)

for some gp > 0 that we shall choose momentarily, depending on r = 719, d, and
Ho-

Our first requirement for r = 7 is that C’ r? < % in (3.38) (there will be another
one of this type soon), and we choose &y and 6 so small (depending on 1) that if
(3.41) holds, then

C" (8 + Csy(0, 1)) 1
pd+l = 4C
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in (3.38). This way, (3.38) implies that
1
Ey(r) = EEM(I). (3.42)

Let u be as in Lemma 3.37. We divide both sides of (3.25) by E,(r) and get
that

S . Ck o )2 E,(D)

2 el |
pu0.r) = € (724 K B+ iy O D R

(3.43)

Then we choose K to satisfy K 2%1; = pd+3 — rg+3 , assume that (3.41) holds,
apply (3.42), and deduce from (3.43) that (maybe with a larger constant C)

Bu(0, 1) < CTgBu(1) + Cyy (0, 12 (3.44)

Finally we choose 1 so small that (in addition to our earlier constraint) C‘L'g < %

in (3.44), and finally choose ¢( as above.

We recapitulate what we obtained so far in the next corollary. Of course, by
translation and dilation invariance, what was done with the unit box 7} can also
be done with any other 7 (x, R), (x, R) € Ri‘“. We use the opportunity to state
the general case, which of course can easily be deduced from the case of 77 by
homogeneity (or we could copy the proof).

Corollary 3.45. We can find constants 1y € (0,1071) and C > 0 which depend
only on d and g, such that if u is a positive solution of Lu = — div(AV)u = 0 in
T (x,5R), withu = 0 on A(x,5R), then

1
Bux, 0R) < 2fu(x, B) + Cy (x, R)%. (3.46)
See (1.12) and (3.15) for the definitions of 8, (x, tpR) and y (x, R).

Proof. The discussion above gives the result under the additional condition that
y(x, R) < g&p. But we now have chosen 7y and &g, and if y(x, R) > &g, (3.46)
holds trivially (maybe with a larger constant), because 8, (x, toR) < 1 by (3.3). O

Remark 3.47. As we remarked before, the complication of the decay estimate for
J,,(r) comes mainly from the lack of a small control of ||A — Agl| ;. If we knew
Yoo(x, R) < &1, where

Yoolx,r) = —inf ~ sup [A— Ao,
Aoeo(10) T (x,r)

then we could simplify the proof of Corollary 3.45 significantly.

To see this, we start with an estimate similar to (3.27)

c
Ju(r) < Crr 1, (1) + d—+1][ |A(x, 1) — Aol? |Vu(x, 1)|? dx dz, (3.48)
r T
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which can be obtained as (3.27). Our estimate for le |A — Aol2 [Vu |2 now becomes
rather simple. We still choose A¢ as to minimize in the definition of y (0, 1), but
observe that by Chebyshev, we can find (x, #) € 77 such that

[A(x, 1) = Ao| = Cy(0, 1) = Cyo(0, 1.

Since [A(y,s) — A(x,1)] < 2y(0, 1) for (y,s) € T, we see that |A — Ag| <
Cys0(0,1) < Ceq on Ty. Then

|A — Aol [Vul> <24 A — Al IV(u — M @)D)> + 20 w)* £ |A — Agl?
Ty T T

< 2][ A = Aol [V = 21 00| + 2Eu(1)][ A — AoP
T T
< 2e1J,(1) 4+ 2y(0, D*E, (1)
and by (3.48),

Cy(0, 1)?

— i Eu(D).

Ce
Ju(r) = C (ﬂ + rd—+‘1) Ju(1) +

This is our analogue of (3.25); the rest of the proof is the same.

4. Carleson Measure Estimates

In this section we complete the proof of our two theorems. We already have
our main decay estimate (3.46), which says that S, (x, r) tends to get smaller and
smaller, unless y (x, r)? is large. This is a way of saying that > dominates S, and
it is not surprising that a Carleson measure estimate on the first function implies a
similar estimate on the second one. The fact that 8, comes from a solution u will
not play any role in this argument (see the second part of this section).

4.1. Proof of Lemma 3.16

Before we deal with decay, let us prove Lemma 3.16, which is another fact
about Carleson measures where u plays no role.

Let A be as in the statement. We want to show that y (x, r)2dx dr s Carleson

-
measure on Rff’l , and our first move is to estimate y (x, r) in terms of the a2 (y, s).
For each pair (x, r), we choose a constant matrix A, , such that

][ A = Ay, P = an(x, 1), 1)
W(x,r)

The interested reader may check that we can choose the A, , so that they depend
on (x, r) in a measurable way, and in fact are constant on pieces of a measurable
partition of R‘fl, maybe at the price of replacing > (x, r)? in (4.1) with 2a5 (x, r)?,
and making the W (x, r) a little larger first to allow extra room to move x and r.
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Let Ag = A(xo, ro) be given; we want to estimate y (xg, r9), and we try the
constant matrix Ag = Ay, . Thus

y(x0.70)> < 4 14 — Ao < c][ A — Aol?. 4.2)
To (o)

where we set Ty = T (xo, ro) and Q¢ = A(xg, o) X (0, ro]. We will cut this integral
into horizontal slices, using the radii r,, = p"rg, m > 0. Let us choose p = %,
rather close to 1, to simplify the communication between slices.

We first estimate how fast the A, , change. We claim that

3 2
[Ay,r — Ay sl < Caz(x,r)+ Cazx(y,s) when|x —y| < Er and gr <s <4.3)

Indeed, with these constraints there is a box R in W(x,r) N W(y, s) such that
|R| > C~'r?*1 and then

|Ax,r - Ay,sl = f |Ax,r - Ay,sl =< f |Ax,r - Al +f |A - Ay,sl
R R R

sCf m”—m+Cf A= Ay| < Car(x,r) + Caa(y. s)
W(x,r) W(y.s)

by the triangle inequality, the fact that |R| >~ |W (x, r)| =~ |W(y, s)|, and Holder’s
inequality. We can iterate this and get that for y € R? and m > 0,

m
|Ayry = Ayl <C Y aa(y.r)). (4.4)
j=0

Now consider y € A6 = A(xo, 3r9/2) and notice that by (4.3), |Ay ,, — Aol <
Cas(y, rg) + Caa(xo, ro), so (4.4) also yields

m
[Ay.r, — Aol < Caa(xo,r0) +C Zaz(y, rp). 4.5)
j=0
Set Hy, = Ao X (Fmt1, rm] for m > 0; thus Qo is the disjoint union of the H,,. We
claim that

m
2
/ A= Aof? SCrmOéz(xo,Vo)zlﬂol-i-Crm// [> 0. dv. @6

n A =0

We tried to discretize our estimates as late as possible, but this has to happen at
some point. Cover Ag with disjoint cubes R; of sidelength (10«/3 )~ 1y, that meet
Ap, and for each one choose a point x; € R; such that o> (x;, r;,) is minimal. Then
set Al = Ay r,, and Wi = R; X (rp+1, rp]; notice that the W; cover H,.
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The contribution of R; to the integral in (4.6) is

/ |A(y, 1) — Aol dy dr
Wi

< c/ [A(y, 1) — AP+ A" — Ay 12+ 1Ay, — Aol? dydr. 4.7)
Wi
For the first term,

/ |A(y, 1) — AT dydt < CI\W(xi, rm)le2(xi, rm)? (4.8)

Wi

because W; C W(x;, ;) and by definition of «. Next

/ |AT— Ay, |Pdydr < C/ (@2(xi, rm) + a2 (v, 1)) dy dr < Cryy / ar(y,rm)* dy
JW; Wi i

JR;
by (4.3) and because oz (x;, 1), by the choice of x;, is smaller. This integral is at
least as large as the previous one, again because a2 (x;, ry,) is smaller. When we
sum all these terms over i, we get a contribution bounded by Cr,, [ A, ar(y, rm)?,
which is dominated by the right hand side of (4.6) (just keep the last term in the
sum). We are left with the third integral in (4.7). But |Ay ,, — Ag| is majorized in
(4.5), and the corresponding contribution, when we sum over i, is also dominated
by the right-hand side of (4.6). Our claim (4.6) follows.
Because of (4.6) and the fact that the H,, cover Qg, we see that (4.2) yields

y(xo,ro>sc][ IA—AOIZSCIQOI_IZ/ |A — Aol* < S1 + 52,
Qo m Hp

4.9)
where
S1=1Q0l™" Y rmaa(x0, 70)*| Ao| < Caa(x0, r0)°, (4.10)
m
and
=100 Yo [ [Sern] arzef Yo Tamrn) o
' - o ~ (4.11)

because r,, = p™rg and |Qo| = ro| Ay|. We are about to apply Hardy’s inequality,
which says that for | < g < +o0,

o0

Z{%Hzaj]qgcqzaﬁ (4.12)

m=0 j=0
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for any infinite sequence {a,,} of nonnegative numbers. Here we take ¢ = 2 and
i
aj=aj(y) = praz(y,rj). Then

Zp’"{ iaz(y, f’,,')}2 < me/z{ ’Xn:pm/“az()” r,/)}2
m j=0 m j=0

"o 2
< me/z{ 201/4062()1,0')} (4.13)
m j:O
. 2
=Y+ ——3 )l <cYyal
m m + l j:O m

so that

s=cf Yama=cY ot f womlay. @)
5% e

We return to (4.9), use (4.10), and see that

y(x0.70)* < Can(xo. 70> + C Y _p? ][ ar(y, p"ro)*dy  (4.15)
A/
m

0

We kept the squares because our Carleson measure condition is in terms of squares.
Recall that by assumption, a% satisfies a Carleson measure condition, with norm
M, (A). At this stage, deducing that the same thing holds for 2 will only be a
matter of applying the triangle inequality. We write this because of the varying
average in the second term of (4.15), but not much will happen. Pick a surface ball
A = A(xy, rp). It is enough to bound

"1 ,dxdr i ydx dr
I = y(x, 1) C ax(x,r)
AJo aJo

where
4 m o2 dxdr
I, = az(y, p"'r)"dy . “4.17)
xeA Jr=0JyeA(x,3r/2) r

m

Since
3 dxd
// ar(x, 1P < coy (A (4.18)
AJO r

by definition, we may concentrate on I,,,. Of course we apply Fubini. First notice that
y € A" = A(x1,5r1/2) when y € A(x,3r/2) and x € A; since x € A(y, 3r/2),
the integral in the dummy variable x cancels with the normalization in the average,
and we get that

dydr P dydr
In = / / . P / / w (v, ? 2L 419)
yeA’ yeA’ t
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where the second identity is a change of variable (and we used the invariance of dt—’
under dilations). The definition also yields /,, < C, (A)rfl, so we can sum the
series, and we get that I < C91, (A)rf. This completes our proof of (3.17).

We still need to check the second statement (3.18) (the pointwise estimate), and
this will follow from the fact that y is not expected to vary too much. Indeed, we
claim that

y(x,r) < Cy(y,s) whenever |x —y| <rand2r <s <3r. (4.20)

This is simply because T'(x,r) C T(y,s), so if A is well approximated by a
constant coefficient matrix Ag in T'(y, s), this is also true in T (x, r). Now we
square, average, and get that

Fanscl f  Posdds
yeA(x,r) Jse2r,3r)
dyds

- dyds
<Cr d/ / yz(y,s)— SCH)/z(y,S)
yeA(x,r) Jse2r,3r) s s

This completes our proof of Lemma 3.16. O

4.21)
lle < CM(A).

Remark 4.22. There is also a local version of Lemma 3.16, with the same proof. It
says that if oy (x, r)Z@ is Carleson measure relative to some surface ball 3Ag

(see Definition 1.3) , then y (x, ;’)2d)crJ is Carleson measure on 7'z, with norm

dx dr

r

dxdr

r

ax(x,r)?

<C
C(Ao)

H y(x,r)? (4.23)

C(3Ap)

As usual, C depends only on d. For this the simplest is to observe that since
we use nothing more than the estimate (4.15), and for (3.17) we only care about
(x0,70) € Ta,, we may replace a(y,t) with O when (y,?) ¢ T3.,. Then the
replaced function o satisfies a global square Carleson measure estimate and we
can conclude as above.

The fact that

dx dr

r

y(x,r)? < C |laa(x, r)?

(4.24)

C(340)
for (x, r) € Tx, can be proved as (3.18) above, using the fact that (4.23) also holds
for a slightly larger ball %Ao.

4.2. Proof of Theorems 1 and 2
We will just need to prove Theorem 2, which is more general. Let the matrix A

be as in the statement of both theorems.
We recently completed our proof of Corollary 3.45, which says that

Bu(x, 7o) < %ﬁu (x.r) + Cy (. r)? 4.25)
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whenever u is a positive solution of Lu = —div(AV)u = 0 in T (x, 5r), with
u=0on A(x, 5r).

In the statement of our theorems, u is assumed to be a positive solution of
Lu = 0inT (xg, R), withu = 0 on A(xg, R), so(4.25)holds as soonas A(x, 5r) C
A(xg, R). We pick such a pair (x, r) and iterate (4.25); this yields

k—1
Bulr. tr) < 27¥Bu(x. )+ CY 27y (e g T2, (4.26)
j=0
Hence (writing 7 in place of 7, kry
k=1 '
Bule.r) <27, tg ) + €Y 27y (x 1y T ) (4.27)
j=0

as soon as A(x, SrO_kr) C A(xp, R).
We want to prove the Carleson bound (1.14) on 8, in A(xg, TR), so we give
ourselves a surface ball A = A(y,r) C A(xg, TR). We want to show that

Bulx.s) dx ds

Ta s

<4 + o, (4.28)

dxrdr “ C(A(x0,R))"

where we set )1 = ||a2(x, r)?
Let us first check that

Bu(x,s) <Ct*+CMN whenx € Aand0 <s <. (4.29)

When t > 107!, this is true just because (x, s) € T(xo, TR) and (3.3) says that
Bu(x,s) < 1.0therwise, let k be the largest integer such that 7, kr < 107'R (notice
that k > 0); then A(x, SIJkr) C A(xp, R), so (4.27) holds. In addition, all the
intermediate radii ro_]_lr are also smaller than 107! R, so y (x, 1'0_]_1r)2 <CcM
by (3.18) or (4.24) in Remark 4.22. Then (4.27) says that 8, (x, s) < 27k cm,
and (4.29) follows, with a constant a that depends only on tp (which itself depends
only on d and ). This is because our choice of k gives r(])‘H < 10r/R < 10r.
Call [ the integral in (4.28), and write [ = Z/fiq Iy, with

dx ds

I = / L, -yttt Bu(x, 5) (4.30)
Th -

We single out /_; because we do not have enough room for the argument below
when t is large, but anyway we just need to observe that

"d
I_; <C(z° +‘ﬂ)|A|/ hud < C(T* +Myrd (4.31)
Tor s

by (4.29), which is enough for (4.28). We are left with k¥ > 0 and

ot dx ds
I < Bu(x,s) . (4.32)
xeA x=r(])"+2r s
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Because of our small precaution, we now have that for (x, s) in the domain of
integration ro_ks < 7or < 10~y < 10717 R (because we took 79 < 10~1), so
A(x, 5ty s) C A(xo, R) and we can apply (4.27). In addition, all the surface balls

S5A(x, TO - s) that arise from (4.27) are contained in A(xg, R), so we will be able
to use Remark 4.22 to estimate them as in Lemma 3.16. Thus

dx ds

fe= /xeA/ k+2 2 ’BL‘(X W S)+C22 fy(x TO _1s)2]T

j=0

< C27F @ oyrd +C22 f// y(x, 7! 1s)zdxsi (4.33)

— 2K (z9 4 o) +C22 f// )2dth

—j—1 . .
where we set t = 7 /75 and use the invariance of ds—s.

Set ¢ = k — j, which runs between 1 and +00. And for each value of £ > 0,
we have that Zk jik—j=t 27J < 2. Hence when we sum over k, we get that

doh=c) 27+ ! +CZ// y(x,1)?

k>0 k>0 >1

dr
= C +Mrd + C/ / y(x, r)sz < %+ My,
AJO

dx dr

by Lemma 3.16 or Remark 4.22. This completes our proof of (4.28), and the
theorems follow.

5. Proof of Corollary 1.15

Let us first prove a Caccioppoli type result for solutions on Whitney balls. Since
it is an interior estimate, it holds on any domain 2 C RYt! For X € 2, denote
by §(X) the distance of X to 9£2.

Lemma 5.1. Let A be a (d + 1) x (d + 1) matrix of real-valued functions on R4+
satisfying the ellipticity condition (1.1), and for some Cy € (0, 00),

IVA(X)|6(X) <Co forany X € £2. (5.2)

Let Xo € 2 C Rt be given, andr = 8(Xo). Letu € W2(B,(Xy)) be a solution
of Lu = —div(AVu) = 0in B, (Xo). Then for any ) € R,

c
/ ‘Vzu(X)‘ dX = IVi(X) — Aegr|? dX
Bry4(Xo) By j2(Xo)

+CA? / IVA(X)|? dX, (5.3)
r/2(X0)

where C depends only on d, |1y and Cy.
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Proof. By (5.2),|VA(X)| < 8Cy/r forany X € B7,/8(X0), whichmeans Ais Lips-
chitz in B73(Xo). So from [10] Theorem 8.8, it follows that u € W*2(B3, (X0)).

Let ¢ € C3°(By/2(X0)), with ¢ = 1 on B,/4(Xo), Vol ~ < % Write “9"
to denote a fixed generic derivative. Since u € WM(B%(XO)), o(u — At)(pz €

W(}’Z(Br/z(Xo)) forany A € R. Therefore, there exists {vx} C C3°(B,/2(Xp)) such
that v converges to d(u—rt)@2in WI’Z(B,/Z(XO)). Set] = f |Vou(X)|? p(X)*dX.
Observe that for any A € R,

I =/ IVa(u(x, 1) — A)|? @(x, 1) dx dr.
Rd+1
By ellipticity, we have
I < MO/ A, DOVI(u(x, 1) — A1) - Vo(u(x, 1) — At)e(x, £)* dx dr
Rd+!1
- uo/ AVOU — A1) -V (a(u - At)<p2> dx dr
Rd+!1

—2/L0/ AVI(u —At) - Vo o(u — Lt)pdxdr
Rd+1
=: pol1 — 2pola.

For I, we use Cauchy—Schwarz to get

1/2
|| < pol'? (/ 10 — A 1)) |[Vel* dx dt>
Rd+1
1 C
5-1+%/ IV(u — A1)? dx dr.
8 1 JBpxo
For I, we use the sequence {vy} and write
If = / AV(u — A1) - Vg dx dr
Rd+!1
= / 0(AV(u —At)-Vug) dxdr — / AV(u — At) - Vovi dx dt
Rd+!1 Rd+1
—/ 0A(x,t)V(u — At)) - Vg dx dr.
Rd+!1
Note that the first term on the right-hand side vanishes because it is a derivative

of a WL2(R*1) compactly supported function. Moreover, since Lu = 0 and
dvg € Cgo(Br/z(Xo)) is a valid test function, we have

I{‘ = A/ AVt - Vov, dx dr — / 0A(x,1)V(u — At)) - Vo dx dz.
RA+1 RA+1
Let agz4 be the last column vector of A, then we have

/ AVt - Vovg dx dt =/ agy1 - Voypdxdr = —/ divag4q dvg dx dr.
Rd+!1 Rd+!1 Rd+1
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Hence,

|| = <

lim Ilk A / divagyi 8(8u(p2) dx dt
k—o00 Rd+1

+ ‘/ AA(x, )V (u — A1) - V(d(u — A1)g?) dx dr
Rd+1

=:I11 + I1».

For 111, we use Cauchy—Schwarz, |divay4+1| < (d+1) |VA|, and Young’s inequal-
ity to get

L < |x|/ |divad+1|32u<p2dxdt+2|x|/ |divag, ] d(u — Ar)@de dx d
Rd+1 RA+1

2 1/2 1/2
<Al (/’azu) gozdxdt) </|divad+1|2<p2dxdt)
1/2 1/2
+2 2 (/|8(u —A)? |[Vol|* dx dt) (/ |divagy1]® ¢? dx dt)

1. ¢
< -1+—2/ |0(u — A0)|? dxdt+c/\2/ IVA|* dx dr.
8 17 JB X0 By2(Xo)

For 11, we have
1125/ 9ACe, D]V ( — A1) [V ()2 d dr
]Rd“

+2/ |0A(x, )V (u — At) - Vi (u — At)gp| dx dt
Rd+!1

1/2
< [1/? / 10A1? |V (u — At)|*> dx dr
Br/Z(XO)

C
+—/ 10A| |V (u — At)|* dx dr.
r J B, (Xo)
By (5.2), and because for any X € B,2(Xo), §(X) > r/2, one sees
1 c(,C
1125—1+¥/ IV (u — 20)? dxdr.
8 r By /2(Xo)

Collecting all the estimates, we can hide [ to the left-hand side and obtain the
desired estimate. m]

Let us point out that the assumption (5.2) on A in Lemma 5.1 is harmless, as it
is a consequence of the classical DKP condition (1.16). We are now ready to prove
Corollary 1.15.

Proof of Corollary 1.15. Observe that (1.16) implies |[VA(x, )|t < CCy for any
(x,1) € Rfl for some C depending only on the dimension.
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Fix A C A(xo, R/2). Consider any (x, 3r) € Tx, and write X = (x, 3r/2).
Let Ay 3 = Ax 3, (u) be defined as in (1.9). By Lemma 5.1,

2 2 C 2
‘v u(y,t)‘ dydr < 5 Vu(y. 1) = ae 0| dydt
By ja(X) = JB.p(X)

+CA% 5, ][ IVA(y, t)|* dydr.
By 2 (X)

Notice that B, 2(X) C W(x,2r) = A(x,2r) x (r,2r] and B,2(X) C T (x, 3r).
Hence we can enlarge the region of the integrals on the right-hand side and then
multiply both sides by u(x, 3r)2r3 to get

2 2 2
fB,/4<x> |V2u(y, )|~ dy dtr3 3 Cr frican |V@u(y, 1) — A 3et)|” dyds
u(x,3r)? - u(x, 3r)?
Cr3x2
— VA, O dydr.
u(x,3r) W (x,2r)

By Lemma 2.8, and then the definitions (1.8)—(1.10) of &(x, r), Ay 3, and B, (x, 3r),

T, 5000 V2, | dyde
u(x, 3r)?

=

2
2 ~ 2
- C JCT(xq3r) |V(M(y, 1) — )\x,3rt)| dydr c (fT(x,Sr) du(y,0)dy dt) a(x, 2r)
- r fT(x,Sr) [Vu(y, )|* dy dt rfT(x,3r) |Vu(y, 1)|? dydr
~ 2
< CBu(x,3r) " Ca(x,2r) '

r r

Now we apply Theorem 1 and the DKP assumption (1.16) and get

3 dx dr

JCB,/4(X) [V2u(y, t)|2 dydr
/TA u(x,3r)?
dx dr
r

dx dr

<c /[ Bux.3n) +c/ . 22 2Y < ¢y (4 Co) Al
Ta Ta

5.4

We now use Fubini and Harnack’s inequality to obtain a lower bound for the left-
hand side of (5.4). By Fubini,

2
f VZu(y, )| dydr
/ Brja 0 | | r3dx dr
Ta

u(x, 3r)?
2—d

2 r
V2 t(/ 1 H—— drdrdydr.
u(y, 1) o Bra(x)(¥ )u(x,3r)2 rdy

= Cd /
(y.eR4H!
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Observe that if |(y, 1) — (x, 3r/2)| < %, thentr ~r,t < %, and the latter implies

that 15, /4(X) (v,t) = 1. So the right-hand side is bounded from below by
2 r27d
Vzu(y,t)‘ / ——— dxdrdydz.
(x

Cd/ >
(.)€ (e 3r/2)€By(y.n) H(X, 37)
By Harnack, u(x, 3r) < Cu(y, t) when (x, 3r/2) € B;/7(y, t). Hence

2
f |V2u(y, t)|” dydt ) 3
/ Brja 0 ; Pdxdr > Cd/ V2u(y, z)( S dyd
Ta M(.X, 3r) (y,t)ETA I/l(y, t)
From this and (5.4), the desired result follows. |

Remark 5.5. If we apply the more precise estimate (1.14) in (5.4), we can get the
following stronger result. For t € (0, 1/2), we have

dx dr

r

’Vzu(x,t)|2t3

L dx dr

<Ct*+C |a(x, r)?

C(A(xg,TR)

)

C(A(x0.R))

for some C and @ > 0 depending only on d and 1¢. As a consequence, if u is the

Green function with pole at infinity (see Lemma 6.1 for the definition), then we

have that

V2G> (x, n[* 3
G®(x,1)?2

,dx dr

r

dxdr|| <C

c

alx,r)

C

6. Optimality

In this section, we construct an operator that does not satisfy the DKP con-
dition and such that Sge(x, 1) dxrd’ fails to be a Carleson measure. Moreover,
we find a sequence of operators {L,} that satisfy the DKP condition with con-
stants increasing to infinity as n goes to infinity, and for any fixed 1 < Ry < oo,
|82 (e, VEL oy ) = Cln = 1), where B, (x,r) = Bgge(x,r), and G;° is the
Green function withopole at infinity for L,. A similar construction is used in [6]
Remark 3.2 and [4]. As we shall see, it is very simple to get a bad oscillating be-
haviour for G* in the vertical direction; it is typically harder to get oscillation in
the horizontal variables, as would be needed for bad harmonic measure estimates.

Let us give the precise definition of the Green function with pole at infinity.
One can prove the following lemma as in [15], Lemma 3.7.

Lemma 6.1. Let L = — div AV be an elliptic operator on R‘f‘l. Then there exists
a unique function U € C (Ri“) such that

LTU=0 inRLH!

U>0 in Ri“

U(x,0) =0 forallx € R¢,

and U (0, 1) = 1. We call the unique function U the Green function with pole at
infinity for L.
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Let A(x, 1) = a(t)] for (x,1) € RL™, where I is the d + 1 identity matrix,
and a(z) is a positive scalar function on R;. Let L = —div A(x, 1)V. We claim
that the Green function with pole at infinity for L in R‘r“l is (modulo a harmless
multiplicative constant)

1
G(x,t) =g(t) with g(0)=0, g’(t):%. (6.2)

In fact, it is easy to check that LG =0in Rf’l , G(x, 0) = 0, and the uniqueness
of G*™ does the rest. The derivatives of G are simple. They are

1
V:G(x,t) =0, 0;G(x,t) = —. (6.3)
a(t)
Now we set
% when ¢ > 2100,
a(t)={1 when 2% 4 cg2%~1 < < 2%+l _ (2%,
2 when 22k+l 4 C022k <t< 22k+2 _ C()22k+1,

for all k € Z with k < 49, and a(¢) is smooth in the remaining strips Sy =
(2% — co2k=1, 2k 4 ¢o2k=1) with

100
ld' ()] = — forte S =@ — o2 2" + 2.
co2

Here, cp > 0 is a constant that will be taken sufficiently small and fixed. Addition-
ally, we can make sure that a(t) = % in a small neighborhood of r = 2¥ to simplify
our computations.

We construct the approximation of a(¢) as follows. Set

a(t) whent >2"21,
an(t) = 3

3 when 0 < 1 < 2721,

Then a, converges to a pointwise in Ri“.

LetL, = —divA,(x,1)V = —div (a,(t)V), and let G,, be the Green function
with pole at infinity for L,, whose formula are given in (6.2).

We now compute the DKP constant for A,,. Notice that [VA,| # 0 only in the
strips near 2% with width ¢o2* for —2n < k < 100, so it is easy to get the following
estimate.

sup |VAn(y,t)|2rdx dr
(y,1)eW(x,r)

% 2k 204100

S| PN
(c02%)? €0

~ H|a,/1(t)|2tdx dtHC

k=—2n
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Similarly, we can compute the DKP constant for A.

sup |VA(y,t)|2rdx dr
(y,t)eW(x,r)

:\v,”|a’(t)|2tdxdtH ~col Z =00
C

Now we turn to §,,. Recall the definition of 8 (x r) (1.12) and the simple expressions
for the derivatives of G, (6.3). Set b, (t) = ( ) and compute B, (x, r) with T (x, r)
replaced by A(x, r) x (0, r) in the deﬁmtlon of B(x, r); then

2
Jyencen B0 [0Ga G0 = #F ace o HGa .1 dy'ar'|” drdy
Syeaw.n Jio IVGa (., DI* drdy
2
_Jo 1ba(@) = £ ba(s)ds|” dr
Jo 1ba(D)? dr

The estimates with our initial definition of 7' (x, r) would be very similar, or could be
deduced from the estimates with A(x, r) x (0, r) because T (x, r/10) C A(x,r) X
0,7) C T(x,10).

Notice that 8, (x,r) = 0 whenr < 2~ 2n We estimate H,B,, (x,r) d" dr

Bn(x, 1) =

(6.4)

H c(A RO
for some fixed Ry > 1. For simplicity, we only do the calculation when Ro < 2100,
The main observation is that for any 27+2 < < Ro,

2

-
1 _
by (1) —]g b,(s)ds| > 1000 fort e 272", rI\(UrSk). (6.5)
Once we have (6.5), we can obtain the lower bound for Hﬂn (x,r) d" dr ”C(AR )
follows. First, observe that the total measure of those Sj that intersects 272", r]is
controlled. Namely,
—2n+j+1
Uesen 272 = D0 002 = @2 < daor,
k=—2n
where j is the integer that 272"+/ < r < 272"*+/+1 Therefore,
r r 2 1 = —4cp
/ b, (1) —][ b,(s)ds| dt > / dr > r =: Cor.
0 0 221 r\ (U Sp) 1000 1000

On the other hand, we have for |b,(t)|> dt < r since |b,| < 1. Then by the formula
(6.4) for B,, we obtain

Bu(x,r) > Cy forr e [272"F2 Ryl
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Thus,

dx dr |A RO\ dr
sup  —= ,311 (x,r)— Co—
0<R§R0 AR 2-2n+2 r

= Caco ((2n — 2) In2 +1In Ro) > Cd,co(zn -2).

Now we justify (6.5). This is true simply because the average for b, (s) ds takes
value strictly between 1 and 1 sowhent is away from the strips Sk, b, (¢) should
be different than for by (s) ds. We just need to make sure that the lower bound does
not depend on n in a way that would cancel the blow up.

We first simplify our computation of for by, (s) ds by observing that we can take
co = 0. This is because if ¢y # 0, we can always require the average of b, in (0, r)
to be the same as the case when b,, is not smoothed out (that is cp = 0), as long
as r does not lie in any strip Sk, by choosing our a, carefully. But if r € Sk, this
should not affect for by (s) ds much if we take cg to be sufficiently small.

Fix 27212 < r < Ry. If 2%k0 < r < 2%k0+L for some ko € Z, then a direct
computation shows

—2n 22k0

-
b ds =1 .
]ﬁ n(s) ds + 2r 3r

If 2%%0 < p < 2%+ for some ko € Z, then

r 1 2—2}1 22ko+1
b ds = = .
]ﬁ () ds =5+ 5=+,

Since by, is either 1 or 1/2 in (0, r)\ Sk, a case-by-case computation shows that for
any 2722 < < Ro, |by(t) — fy bu(s)ds| = &5 fort € [272", r]\Sk. Then with
co > 0 sufficiently small, we have (6.5).
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