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Abstract

We deal with the 3D Navier–Stokes equation in a smooth simply connected
bounded domain, with controls on a non-empty open part of the boundary and a
Navier slip-with-friction boundary condition on the remaining, uncontrolled, part
of the boundary. We extend the small-time global exact null controllability result
in Coron et al. (J Eur Math Soc 22:1625–1673, 2020) from Leray weak solutions
to the case of smooth solutions. Our strategy relies on a refinement of the method
of well-prepared dissipation of the viscous boundary layers which appear near the
uncontrolled part of the boundary, which allows to handle the multi-scale features
in a finer topology. As a byproduct of our analysis we also obtain a small-time
global approximate Lagrangian controllability result, extending to the case of the
Navier–Stokes equations the recent results (Glass and Horsin in J Math Pures Appl
(9) 93:61–90, 2010; Glass and Horsin in SIAM J Control Optim 50: 2726–2742,
2012; Horsin and Kavian in ESAIM Control Optim Calc Var 23:1179–1200, 2017)
in the case of the Euler equations and the result (Glass andHorsin in ESAIMControl
Optim Calc Var 22:1040–1053, 2016) in the case of the steady Stokes equations.

1. Introduction and Main Results

1.1. Setting

We consider an incompressible viscous fluid in a smooth bounded simply con-
nected domain � in R3. We denote by u and p its velocity and its pressure respec-
tively and we assume that they evolve according to the Navier–Stokes equations.
We assume that we can act on a non-empty open part� of the boundary ∂�. On the
remaining part of the boundary, we assume the fluid satisfies a Navier-slip-with-
friction boundary condition. To formalize this boundary condition we introduce
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the normal n pointing outward the domain, and for a vector field f , we define its
tangential part ftan, the strain tensor D( f ) and the tangential Navier boundary
operator N ( f ), respectively, as

ftan := f − ( f · n)n, Di j ( f ) := 1

2
(∂i f j + ∂ j fi ) and

N ( f ) := (D( f )n + M f )tan, (1.1)

where M is a given smooth symmetric matrix-valued function, describing the fric-
tion near the boundary. The Navier condition then reads N (u) = 0; it dates back
to [31]. Finally we prescribe an initial data u0 for the fluid velocity u at time t = 0.
Then the system at stake for the unknowns u and p is

⎧
⎪⎨

⎪⎩

∂t u + u · ∇u − �u + ∇ p = 0 and div u = 0 in �,

u · n = 0 and N (u) = 0 on ∂�\�,

u(t, 0) = u0 in �.

(1.2)

Let us highlight that, in (1.2), there is no boundary condition on the part � of the
boundary ∂�. This is typical of the controllability issue, when one chooses not
to mention explicitly the controls. Indeed the controls which will be used in this
paper are quite intricate, in particular because of their multi-scale feature. Let us
only point out right now that this freedom of choice on � allows, in particular, for
some fluid to go into and out the domain. Let us also mention here that we are not
going to really use a control all the time in the sense that it will be relevant on some
time intervals to choose as boundary condition on � the same Navier condition as
on ∂� \ � so that the system then coincides with its uncontrolled counterpart for
which � = ∅.

1.2. First main result: smooth small-time global exact null controllability

Our first main result is the following small-time global exact null controllability
by solutions for which the velocity vector field u is in the class

C([0, T ]; H1(�)) ∩ L2((0, T ); H2(�)). (1.3)

Theorem 1.1. Let T > 0, and u0 in H1(�) satisfying div u0 = 0 in � and u0 ·n = 0
on ∂�. Then there exists u in the space (1.3) satisfying (1.2) and u(T, ·) = 0.

Theorem 1.1 extends the result in [5] where the existence of u in the weaker
class

Cw([0, T ]; L2(�)) ∩ L2((0, T ); H1(�)), (1.4)

is obtained. Indeed the result in [5] deals with the case where the initial data u0
has only a L2(�) regularity but the proof developed there fails to guarantee that
the constructed solution propagates higher regularity. One underlying reason is
the multi-scale feature of the constructed solution which makes small scales more
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singular in a finer topology. Indeed the question of whether or not a result such as
Theorem 1.1 holds true was explicitly raised in [5, Remark 2] and in [6, Perspective
1].

Remark 1.2. Theorem 1.1 is stated as an existence result. The lack of uniqueness
comes from the fact that multiple controls can drive the initial state to zero, that is
from the fact that there is no boundary condition on� for the initial boundary value
problem (1.2). However, with some bookkeeping, it is possible to exhibit (though in
a quite non-explicit way) from the proof of Theorem1.1 below a boundary condition
to be prescribed on � (which is inhomogeneous and depends on u0) that generates
a unique solution u in the space (1.3) to the corresponding initial boundary value
problem, that is satisfying (1.2) and this boundary condition on �, and this unique
solution u satisfies u(T, ·) = 0.

Remark 1.3. Controllability results such as the one obtained in [5] or in Theorem
1.1 should not be confused with results on the existence of wild solutions vanishing
after a finite time, such as the ones obtained in [2–4]. The latter rely on the lack of
regularity, in particular these solutions do not belong to L2((0, T ); H1(�)).On the
other hand the setting of these papers does not allow any freedom of action, neither
through a part of the boundary nor through an interior part of the domain. On the
contrary, the controllability results of [5] and of Theorem 1.1 take advantage of the
possibility to choose some appropriate boundary conditions on the permeable part
� of the boundary to drive the fluid to rest in finite time. Since the controllability
result of [5] holds for Leray’s class of solutions (1.4), it concerns solutionswhich are
more regular than in [2–4]. However, perhaps, one may think that the gap is narrow
and perhaps only due to temporary technical limitations. The result of Theorem
1.1 shows that it is not the case and that the possibility of a localized action allows
to drive a fluid to rest in finite time in a smooth setting as well. Indeed Theorem
1.1 is stated for H1 initial data and for solutions in the regularity class (1.3), but it
could be easily extended to higher regularity, as the H1 norm is super-critical for
the blow-up issue of the 3D Navier–Stokes equations.

Remark 1.4. Indeed, as in [5] for the case of weak solutions, the proof of Theo-
rem 1.1 can be easily adapted to prove that one may intercept at any given positive
time T any smooth uncontrolled solution to the Navier–Stokes system, that is any
solution to the Navier–Stokes system with Navier condition on the whole boundary
∂�, by the mean of a smooth controlled solution starting from any given initial
data.

Remark 1.5. We deal here with the case of a simply connected domain just for
simplicity. The multiply-connected domain could be covered by some simple mod-
ifications of ourmethod in the casewhere� intersects all the connected components
of ∂�.

Remark 1.6. To simplify the exposition, Theorem 1.1 is stated in the case of an
initial data which is tangent to the whole boundary. The result also holds in the case
where the initial data is only tangent to the uncontrolled part ∂�\� of the boundary.
Indeed, to deduce this slightly more general statement from the one considered in



872 J. Liao et al.

Theorem 1.1, it is sufficient to evolve the system on a short time interval with an
appropriate control on �, smooth in time, initially compatible with the initial data
and vanishing after some small positive time.

1.3. Second main result: lagrangian small-time global approximate controllability

The question that we now address is the possibility of prescribing the motion
of a set of particles, following the Lagrangian description of fluids consisting in
following fluid particles along the flow map associated with a velocity field satis-
fying the system (1.2). This type of Lagrangian controllability notion was raised
in [18], where the authors showed that for the 2-D incompressible Euler equations,
one can indeed prescribe approximately the motion of some specific sets of fluids,
and extended in [19] to the case of the dimension 3. Let us also mention the paper
[24] where an alternative approach was considered, the result [20] in the case of the
steady Stokes equations and the result in [11] about the Lagrangian controllability
of the 1-D Korteweg-de Vries equation.

Our second main result establishes the small-time global approximate La-
grangian controllability of (1.2) meaning that for two smooth contractible sets of
fluid particles, surrounding the same volume, for any given smooth initial velocity
field and any positive time interval, one can find a boundary control such that the
corresponding solution of (1.2) makes the first of the two sets approximately reach
the second one, while staying in the domain in the meantime.

Theorem 1.7. Let T0 > 0, α in (0, 1) and k in N \ {0}. Let u0 in Ck,α(�;R3)

satisfy div u0 = 0 in � and u0 ·n = 0 on ∂�. Let γ0 and γ1 be two Jordan surfaces
included in � such that γ0 and γ1 are isotopic in � and surrounding the same
volume. Then for any η > 0, there are a time T in (0, T0) and a solution (u, p) in
L∞(0, T ; Ck,α(�;R4)) to (1.2) on [0, T ] such that

∀t ∈ [0, T ], φu(t, 0, γ0) ⊂ �, (1.5)

‖φu(T, 0, γ0) − γ1‖Ck < η (1.6)

hold (up to reparameterization), where φu is the flow map associated with u by
∂tφ

u(t, s, x) = u(t, φu(t, s, x)) for any t, s in [0, T ] and for any x in �, and
φu(s, s, x) = x for any s in [0, T ] and for any x in �.

Moreover the same result holds true in the case where u0 is only in H1(�;R3)

with div u0 = 0 in � and u0 · n = 0 on ∂�, with the two following modifications:
one only guarantees the existence of a solution u in the class (1.3) and that (1.6)
holds true with k = 0.

Theorem1.7 therefore extends to the case of theNavier–Stokes equations the results
mentioned above for the case of theEuler equations and of the steady Stokes system;
it answers, in the case of the Navier conditions, an open problem mentioned at the
end of the introduction of [20], in [22, Section 3.3.3] and in [6, Perspective 2].
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Remark 1.8. In Theorem 1.7 we only succeed to assert that there exists a time T
in (0, T0) for which the conclusion holds, and we are not able to guarantee that
T = T0 is convenient. The difficulty is to prevent a possible blowup due to the
vorticity associated with the surface. This difficulty is typical of the 3D case and
was already observed in the case of the Euler equations, see [19].

Remark 1.9. The condition that γ0 and γ1 surround the same volume is well defined
since by the Jordan-Brouwer separation theorem the set R3 \ γ has two connected
components, only one of which being bounded.

Remark 1.10. The conditions that γ0 and γ1 are isotopic and surround the same
volume are necessary for the existence of a smooth volume-preserving flow driving
γ0 exactly to γ1.

Remark 1.11. As in the previous result, see Remark 1.2, the boundary control is
implicit in the statement of Theorem 1.7 as it is given as traces on (0, T ) × � of
the solution.

Remark 1.12. Let us mention that the controllability time T which is provided by
the proof of Theorem 1.7 in Sect. 6 converges to 0 as η goes to 0, what is perhaps
counterintuitive, as thismeans amore andmore accurate achievement of the targeted
final state in a shorter and shorter time. However, this corresponds to a larger and
larger control force, as η goes to 0, and in particular the lack of compactness of
these controlled solutions prevents from passing to the limit and from obtaining the
absurd conclusion of an instant modification of a Jordan surface into another by a
smooth flow map.

1.4. Organization of the rest of the paper

In Sect. 2 we give a scheme of the proof of Theorem 1.1. It will rely on twomain
intermediate results: Theorem2.12,where an approximate solution is built thanks to
a multi-scale asymptotic expansion involving some boundary layers correctors, and
the a priori estimate (2.43) for the remainder term associated with this approximate
solution. An auxiliary problem associated with the boundary layer is investigated
in Sect. 3. Then the proof of Theorem 2.12 is given in Sect. 4. The proof of the a
priori estimate (2.43) is given in Sect. 5. Finally Sect. 6 is devoted to the proof of
Theorem 1.7.

2. Scheme of Proof of Theorem 1.1

This section is devoted to a scheme of proof of Theorem 1.1. We only highlight
here the key steps of the proof, postponing to the next sections the proofs of several
important intermediate results. As in [5,7,29] we will use the “well-prepared dissi-
pation" method which consists in a rapid and violent stage where one makes use of
the inviscid part of the system and of a second stage devoted to the dissipation of the
boundary layers due to the discrepancy between the inviscid and the viscous case.
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As in [5,7] this method is implemented by the means of multi-scale asymptotic ex-
pansions. The extension of this strategy to solutions of the Navier–Stokes equations
in the space (1.3), rather than in the weaker class (1.4), requires much attention, in
particular due to the fast scale associated with the boundary layer which leads to
a more accurate asymptotic expansion and to a more involved preparation of the
dissipation of various terms describing the fluid behaviour in the boundary layer.

2.1. Reduction to approximate controllability problem from a smooth data

In this section we reduce the proof of Theorem 1.1 to a combination of a regu-
larisation result on the uncontrolled Navier–Stokes system, that is on the Navier–
Stokes system with Navier condition on the whole boundary ∂�, of a small-time
local exact null controllability result and of a global approximate null controllability
result.

(1) Let us first state the regularization result.

Theorem 2.1. Let T > 0, p in N
∗ and R > 0. Then there exists a continuous

function CT,p,R(·) from [0,+∞) to [0,+∞) with CT,p,R(0) = 0, such that there
exists T1 in (0, T ) and for any u0 in H1(�), with ‖u0‖H1(�) ≤ R, divergence free
and tangent to ∂�, there exists a unique strong solution u in C([0, T1]; H1(�)) ∩
L2([0, T1]; H2(�)) to (1.2) with u · n = 0 and N (u) = 0 on ∂� such that u is in
C((0, T1]; H p(�)) with

‖u(T1, ·)‖H p(�) ≤ CT1,p,R(‖u0‖H1(�)). (2.1)

In the case where the no-slip conditions is imposed on the boundary ∂�, rather
than the Navier conditions N (u) = 0, such a result dates back to the pioneering
work of Leray and Hopf, see [23,28]. In the case of the Navier conditions the
part of Theorem 2.1 regarding the existence and uniqueness of local-in-time strong
solutions with H1 initial data is also very classical; we refer to the introduction
of [5] for an overview of the literature on the subject. The part of Theorem 2.1
regarding the regularization, that is the bounds (2.1) for p > 1, is also part of the
folklore on the Navier–Stokes equations with Navier boundary conditions, see for
instance [5, Lemma 9]. As we will need a slight generalization of the result in [5]
we present a detailed proof of Theorem 2.1 in the Appendix A. In fact, Theorem
A.1 in the Appendix A will exhibit the exact singular behavior of the solution near
the time zero.

(2) The second ingredient is the following small-time local exact null controllability
result when the initial data is small in H3 established in [21] by Guerrero.

Theorem 2.2. Let T > 0. There exists η > 0 such that for any u0 in H3(�)

divergence free, tangent to ∂� and satisfying ‖u0‖H3(�) < η, there exists u in
C([0, T ]; H3(�)) ∩ L2((0, T ); H4(�)) satisfying (1.2) and u(T, ·) = 0.

(3) The third ingredient will be the following global approximate result:
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Theorem 2.3. Let T > 0, and u0 in H200(�) divergence free and tangent to ∂�.
For any δ > 0, there exists u in C([0, T ]; H1(�)) ∩ L2((0, T ); H2(�)) satisfying
(1.2) and ‖u(T, ·)‖H1(�) < δ.

This last result requires some hard work which will be done below.
On the other hand, with these three ingredients, the proof of Theorem 1.1 is

plain sailing.

Proposition 2.4. A combination of Theorem 2.1, Theorem 2.2 and Theorem 2.3
implies Theorem 1.1.

Proof. The proof will make use of Theorem 2.2, of Theorem 2.3 and of Theorem
2.1 twice. We also need to care about the choice of the small parameters in the right
order. Let η > 0 be associated with T/4 by Theorem 2.2. By Theorem 2.1, with
T/4 instead of T , p = 3, and R = 1, there exists T1 in (0, T/4) and δ in (0, 1) such
that for any u0 in H1(�), with ‖u0‖H1(�) ≤ δ, divergence free and tangent to ∂�,
there exists a unique strong solution u in C([0, T1]; H1(�)) ∩ L2([0, T1]; H2(�))

satisfying (1.2) with u ·n = 0 andN (u) = 0 on ∂�, and with ‖u(T1, ·)‖H3(�) < η.
With these preliminaries at handwe can now proceed to the proof of Proposition 2.4
by chaining some appropriate applications of the three theorems. Let T > 0, and u0
in H1(�) satisfying div u0 = 0 in � and u0 ·n = 0 on ∂�. We apply first Theorem
2.1 with T/4 instead of T , p = 200 and R = ‖u0‖H1(�), so that we obtain the
existence of T ′

1 in (0, T/4) and of a unique strong solution u inC([0, T ′
1]; H1(�))∩

L2([0, T ′
1]; H2(�)) satisfying (1.2) with u · n = 0 andN (u) = 0 on ∂� and with

u(T ′
1, ·) in H200(�). Then we apply Theorem 2.3 with T/4 instead of T , δ > 0

as previously chosen and u(T ′
1, ·) as initial data, so that we obtain the existence

of u in C([T ′
1, T ′

1 + T/4]; H1(�)) ∩ L2((T ′
1, T ′

1 + T/4); H2(�)) satisfying (1.2)
and ‖u(T ′

1 + T/4, ·)‖H1(�) < δ. Now the choice of δ has been done to guarantee,
by Theorem 2.1 again, that there exists a unique strong solution u in C([T ′

1 +
T/4, T1+ T ′

1 + T/4]; H1(�))∩ L2([T ′
1 + T/4, T1+ T ′

1 + T/4]; H2(�)) satisfying
(1.2) with u · n = 0 andN (u) = 0 on ∂� and with ‖u(T1 + T ′

1 + T/4, ·)‖H3(�) <

η. Moreover the choice of η has been done to guarantee, by Theorem 2.2 the
existence of u in C([T1 + T ′

1 + T/4, T1 + T ′
1 + T/2]; H1(�)) ∩ L2([T1 + T ′

1 +
T/4, T1 + T ′

1 + T/2]; H2(�)) satisfying (1.2) and u(T1 + T ′
1 + T/2, ·) = 0.

Then extending u by 0 for t in (T1 + T ′
1 + T/2, T ] provides the existence of u in

C([0, T ]; H1(�))∩ L2((0, T ); H2(�)) satisfying (1.2) on [0, T ] and u(T, ·) = 0.

�

2.2. domain extension

Let O be a smooth extension of the initial domain � such that � ⊂ O and
∂�\� ⊂ ∂O. We denote n to be the outward pointing normal to the extended
domain O, which coincides with the outward pointing normal to � on the uncon-
trolled boundary ∂�\�. We also need to introduce a smooth function ϕ : R3 → R

such that ϕ = 0 on ∂O, ϕ > 0 in O and ϕ < 0 outside of O. Moreover, we
assume that |ϕ(x)| = dist(x, ∂O) in a small neighborhood of ∂O. Hence we
can extend the normal n smoothly by −∇ϕ to the full domain O. We define
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Vδ := {x ∈ O : 0 ≤ ϕ(x) < δ}. Thus there exists a δ0 > 0, such that ϕ = 0
on ∂O and |n| = 1 in Vδ0 .

Theorem 2.3 follows from the following result:

Theorem 2.5. Let T > 0 and u∗ in H200(O) divergence free and tangent to ∂O.
Then for any δ > 0, there are u in C([0, T ]; H1(O)) ∩ L2((0, T ); H2(O)), ξ in
C([0, T ]; H1(O)), supported in O\� and σ a smooth scalar function supported
in (0, T ) × O\�, such that

⎧
⎪⎨

⎪⎩

∂t u + u · ∇u − �u + ∇ p = ξ and div u = σ in (0, T ) × O,

u · n = 0 and N (u) = 0 on (0, T ) × ∂O,

u(0, ·) = u∗ in O,

(2.2)

and ‖u(T, ·)‖H1(O) < δ.

We will see in the next section how the proof of Theorem 2.5 can be reduced to the
proof of an asymptotic result, see Theorem 2.7 below. For the moment let us see
how it allows us to conclude to the proof of Theorem 2.3.

Proposition 2.6. Theorem 2.5 implies Theorem 2.3.

Proof. Let T > 0, and u0 in H200(�) divergence free and tangent to ∂�. Then there
is an extension u∗ in H200(O) of u0 into a divergence free vector field onO tangent
to ∂O. Then applying Theorem 2.5 we are left with considering the restrictions of
u to� to obtain a vector field in C([0, T ]; H1(�))∩ L2((0, T ); H2(�)) satisfying
(1.2) and ‖u(T, ·)‖H1(�) < δ. 
�

2.3. Time scaling and small viscosity

As mentioned above we will use the “well-prepared dissipation" method which
consists in a rapid and violent stage followed by a longer one for which no control is
applied, see [5,7,29] for earlier uses of this method. To implement this two-scales
strategy, we introduce a positive small scale ε � 1 as in [5] and we perform the
time scaling

uε(t, x) := εu(εt, x) and pε(t, x) := ε2 p(εt, x). (2.3)

Thus, we consider (uε, pε) the solution to the following large time and slightly
viscous problem:

∂t u
ε + uε · ∇uε − ε�uε + ∇ pε = ξε in (0, T/ε) × O, (2.4a)

div uε = σε in (0, T/ε) × O, (2.4b)

uε · n = 0 on (0, T/ε) × ∂O, (2.4c)

N (uε) = 0 on (0, T/ε) × ∂O, (2.4d)

uε(0, ·) = εu∗ in O. (2.4e)

Observing the amplitude factor ε in the right hand side of (2.4e), we can deduce
Theorem 2.3 from the following result:
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Theorem 2.7. Let T > 0 and u∗ in H200(O) divergence free and tangent to ∂O.
Then there are some sequences, {uε}ε , {ξε}ε with uε in C([0, T/ε]; H1(O)) ∩
L2((0, T/ε); H2(O)) and ξε in C([0, T/ε]; H1(O)), and {σε}ε a sequence of
smooth scalar functions, for ε in (0, 1), such that the mappings ξε and σε are
supported in O\� as a function of x and compactly supported in (0, T/ε) as a
function of t. Furthermore, (2.4) holds true and

‖uε(T/ε, ·)‖H1(O) = o(ε). (2.5)

The proof of Theorem 2.7 is actually the core of the analysis and its proof will be
detailed in the subsequent sections. Let us start to see here how it entails Theorem
2.5.

Proposition 2.8. Theorem 2.7 implies Theorem 2.5.

Proof. Let T > 0 and u∗ in H200(O) divergence free. Then for any δ > 0, accord-
ing toTheorem2.7, there is ε > 0 and there existuε belongs toC([0, T/ε]; H1(O))∩
L2((0, T/ε); H2(O)), ξε belongs to C([0, T/ε]; H1(O)) and supported in O\�,

σε is a smooth scalar function supported in O\� such that (2.4) holds true and
‖uε(T/ε, ·)‖H1(O) < δε. Let us set

(u, σ )(t, x) := 1

ε
(uε, σ ε)

(
t

ε
, x

)

and (p, ξ)(t, x) := 1

ε2
(pε, ξ ε)

(
t

ε
, x

)

.(2.6)

Then u belongs to C([0, T ]; H1(O))∩ L2((0, T ); H2(O)), ξ and σ are compactly
supported in (0, T ) × O\� so that (2.2) holds true and ‖u(T, ·)‖H1(O) < δ. 
�

2.4. An auxiliary euler solution due to the return method

When ε is small, it is expected that the analysis of the system (2.4) may be built
on the small-time global exact controllability of Euler equations. We therefore
consider the counterpart of the system (2.4) where the viscosity term has been
dropped out. This involves the incompressible Euler equations. For these equations
it is natural to prescribe the condition uε · n = 0 on an impermeable wall, and only
this one. The natural inviscid counterpart of (2.4) is therefore

∂t u
ε + uε · ∇uε + ∇ pε = ξε in (0, T/ε) × O, (2.7a)

div uε = σε in (0, T/ε) × O, (2.7b)

uε · n = 0 on (0, T/ε) × ∂O, (2.7c)

uε(0, ·) = εu∗ in O. (2.7d)

Considering an asymptotic expansion of the form uε = εu1 + o(ε) would
amount to considering the linearized Euler equations around the null state, an
equation which is not controllable, unless the initial data u∗ is the gradient of
a harmonic function, which is not the case in general. In order to overcome this
difficulty,we are going to useCoron’s returnmethod to take profit of the nonlinearity
by forcing the amplitude of the solution thanks to the control. Indeed next result
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asserts that it is possible to guarantee the existence of a controlled solution to the
Euler system with variations of order O(1) on time interval of order O(1), say
(0, T ) (but observe that the allotted time in (2.5) is T/ε), vanishing at both ends of
the time interval.

Lemma 2.9. There exists a solution (u0, p0, ν0, σ 0) in C∞([0, T ]×O;R3 ×R×
R
3 × R) to the system:

∂t u
0 + u0 · ∇u0 + ∇ p0 = ν0 in (0, T ) × O, (2.8a)

div u0 = σ 0 in (0, T ) × O, (2.8b)

u0 · n = 0 on (0, T ) × ∂O, (2.8c)

u0(0, ·) = 0 in O, (2.8d)

u0(T, ·) = 0 in O, (2.8e)

such that the flow�0 defined by ∂s�
0(t, s, x) = u0(s,�0(t, s, x))and�0(t, t, x) =

x satisfies

∀ x ∈ O, ∃ tx ∈ (0, T ), �0(0, tx , x) ∈ O \ �. (2.9)

Moreover, u0 can be chosen such that:

∇ × u0 = 0 in [0, T ] × O. (2.10)

In addition, ν0 and σ 0 are supported in O\�, (u0, p0, ν0, σ 0) are compactly sup-
ported in (0, T ). In the sequel, when we need it, we will implicitly extend them by
zero after T.

Lemma 2.9 is the key argument of many papers concerning the small-time
global exact controllability of Euler equations, cf. [8] for 2D simply connected
domains, [9] for general 2D domains when � intersects all connected components
of ∂�, [15] for 3D simply connected domains, in [13] for general domains when
� intersects all connected components of ∂�. Let us also refer to [16,17] and to
[5, Lemma 2].

With this particular auxiliary Euler solution in hands, Coron’s return method
consists in looking for solutions to (2.7) admitting asymptotic expansions of the
form: uε = u0 + εu1 + o(ε) and pε = p0 + εp1 + o(ε), with some controls ξε and
σε also admitting asymptotic expansions of the same form: ξε = ν0 + εν1 + o(ε)

and σε = σ 0 + εσ 1 + o(ε). Indeed, by gathering the terms of order O(ε), we are
led to the following equations for (u1, p1):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u1 + u0 · ∇u1 + u1 · ∇u0 + ∇ p1 = ν1 in (0, T ) × O,

div u1 = σ 1 in (0, T ) × O,

u1 · n = 0 on (0, T ) × ∂O,

u1|t=0 = u0 in O.

This is the linearisation of the Euler equations around u0, and the fact that the vector
field u0 satisfies (2.9) is a crucial gain with respect to the null state.
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In the sequelwewill use such equations onlywith zero control on the divergence
(corresponding to setting σ 1 = 0) but also with a source term f supported in the
whole domain O in the first equation. We therefore consider the linearized Euler
system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u + u0 · ∇u + u · ∇u0 + ∇ p = ν + f in R+ × O,

div u = 0 in R+ × O,

u · n = 0 in R+ × ∂O,

u(0, ·) = u0 in O,

(2.11)

where f is a given source term whereas ν is a control force to be chosen supported
in O\�.

Lemma 2.10. Let k, p in N+. Let u0 in H p(O) with div u0 = 0 and u0 · n = 0 on
∂O. Let f in Ck

γ (R+; H p(O)) (see Definition 3.2) and ∇× f is supported in [0, T ]
as a function of time t. Then there are ν(t, x) in Ck(R+; H p−1(O)), supported in
O\� as a function of x and supported in [0, T ] as a function of time t, and u in
Ck(R+; H p(O)), supported in [0, T ], such that (2.11) holds true. Moreover the
unique pressure p, for which the integral condition

∫

O p dx = 0 is satisfied at any
time, is in Ck−1

γ (R+; H p(O)).

Remark 2.11. Though we do not require f to be supported in [0, T ], when t ≥ T ,
since f is curl-free, f can be represented as a part of the pressure term and has
decay. In this case, it will be used to solve u4 below.

Proof. The existence and uniqueness of a solution inCk(R+; H p(O)) to the system
(2.11) makes no debate, the point is here to choose an appropriate control function
ν, supported in O\� as a function of x , such that the solution u of (2.11) vanishes
when t ≥ T . We can prove the Lemma by the argument in Lemma 3 of [5] and
Duhamel formula. For sake of completeness let us quickly recall the key observation
that ω := ∇ × u satisfies

{
∂tω + u0 · ∇ω − ω · ∇u0 + (div u0)ω = ∇ × ν + ∇ × f in R+ × O,

ω(0, ·) = ∇ × u0 in O.
(2.12)

By Duhamel’s formula, we wish to find a solution

ω(t, x) = ω1(t, x) +
∫ t

0
ω2(s, t, x)ds, (2.13)

where ω1 and ω2 satisfy
{

∂tω1 + u0 · ∇ω1 − ω1 · ∇u0 + (div u0)ω1 = ∇ × ν1, in R+ × O,

ω1(0, ·) = ∇ × u0, in O,
(2.14)

and
{

∂sω2 + u0 · ∇ω2 − ω2 · ∇u0 + (div u0)ω2 = ∇ × ν2, {(s, t)/ s ≥ t} × O,

ω2(t, t, ·) = ∇ × f (t, ·), R+ × O.
(2.15)
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By the argument inLemma3of [5]we canfind control functions ν1, ν2 and solutions
ω1, ω2 of (2.14) and (2.15). We take ν = ν1 + ∫ t

0 ν2(s, t, x)ds, and define ω by
(2.13). Then ω is a solution of (2.12). Since u0 in H p(O), f in Ck

γ (R+; H p(O))

and ∇ × f is supported in [0, T ], we can check from the proof of Lemma 3 of
[5] that ν in Ck(R+; H p−1(O)) and is supported in O\� as a function of x and is
supported in [0, T ] as a function of time t ,ω inCk(R+; H p−1(O)) and is supported
in [0, T ]. Since u satisfies ∇ × u = ω inO, div u = 0, inO and u ·n = 0 on ∂O, it
is in Ck(R+; H p(O)) and supported in [0, T ]. By the first equation of (2.11) and
the Poincaré inequality we obtain the part of Lemma 2.10 concerning the pressure.

�

2.5. Boundary layer and multi-scale asymptotic expansion

Since only the impermeability condition is considered in (2.7), a corrector
has to be added to the Euler equation to guarantee the Navier slip-with-friction
boundary condition (2.4d). The role of this corrector is to accurately describe the
behaviour of the fluid close to the boundary in a layer which vanishes as ε goes to
0. For the Navier conditions, in the uncontrolled setting, it was highlighted in [25]
that the thickness of this boundary layer is O(

√
ε) and the the amplitude of the

corrector term is also O(
√

ε). Moreover, a multiscale asymptotic expansion of the
solutions to the uncontrolled Navier–Stokes equations in the small viscosity limit
involving a boundary layer term v, which involves an extra variable describing the
fast variations of the fluid velocity in the normal direction near the boundary, is
given. This corrector v is given as a solution to an initial boundary value problem
with a boundary condition with respect to this extra variable, that is, in a informal
way, an asymptotic expansion of the form

uε ∼ u0(t, x) + √
εv

(
t, x, ϕ(x)/

√
ε
)
. (2.16)

Indeed the boundary layer corrector is described by a smooth vector field v ex-
pressed in terms both of the slow space variable x in O and a fast scalar variable
z = ϕ(x)/

√
ε, where v(t, x, z) satisfies an equation of the form

∂tv + (u0 · ∇)v − ∂zzv = 0 (2.17)

for x in Ō and z in R+, with the following boundary condition at z = 0:

∂zv(t, x, 0) = 2N (u0)(t, x). (2.18)

The interest in prescribing (2.18) is that the velocity vector field given by (2.16)
satisfies theNavier condition (2.4d), up to an error termof order o(1), due to the slow
derivatives of v. Indeed it is more convenient to consider an evolution equation for
v which is slightly more complicated than (2.17), and which in particular contains
some extra-terms which are of lower order but allow to propagate the pointwise
orthogonality condition

v(t, x, z) · n(x) = 0, (2.19)
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including the inside domain, not only on the boundary, from the initial and boundary
data to positive times. For this type of linear hyperbolic-parabolic (focusing on t, x
or t, z) equation, the Cauchy theory is now well-understood, see [22,33,34].

The analysis in [25] was performed for times of order O(1), and in general this
type of multiscale asymptotic expansions fails to describe the vanishing viscosity
limit of the Navier–Stokes equation for large times of order O(1/ε), even in the
case where the Euler solution stays smooth for all times. However since the Euler
solution u0 at stake here vanishes after the time T , the equations (2.17) and (2.18),
for t ≥ T , reduce to

∂tv − ∂zzv = 0, for z ∈ R+, and ∂zv(t, x, 0) = 0, (2.20)

where the dependence in the slow variable x only appears through the “initial” data
v(x, z) := v(T, x, z). This heat system dissipates towards the null state for large
times. However the decay at the final time t = T/ε is only given by

∥
∥
∥
∥
√

εv

(
T

ε
, ·, ϕ(·)√

ε

)∥
∥
∥
∥

L2(O)

= O (ε) , (2.21)

which is, unfortunately, not sufficient in view of the wished estimate (2.5) and of
the tentative expansion (2.16).

2.6. Well-prepared dissipation method

This difficulty was already presented in [5,6], and there to overcome this diffi-
culty, the authors make use of the well-prepared dissipationmethod, which was first
introduced in [29] in the case of the 1DBurgers equation. The idea is to enhance the
natural dissipation of the boundary layer after the time T by an appropriate control
before, that is in guaranteeing that v satisfies a finite number of vanishing moment
conditions for k in N of the form

∀x ∈ O,

∫

R+
zkv(x, z) dz = 0, (2.22)

so that the estimate (2.21) holds true butwith o (ε) in the right hand side. By linearity
the moments of v in left hand side of (2.22) can be decomposed as the sum of an
addend due to the free evolution of v and of an addend due to the control. Indeed
due to the properties of the vector field u0, see (2.9), it is possible to generate some
moments outside, and to convect inside the physical original domain in the time
interval [0, T ]. This allows us to ensure the condition (2.22) for all x in O.

2.7. Backflow

Thanks to the orthogonality condition (2.19), the divergence of the vector field
(t, x) �→ v

(
t, x, ϕ(x)/

√
ε
)
is not singular in ε. Still it is not zero, there is an error

term of order O(1), due to the slow derivatives of v. To compensate for this part,
we set

w(t, x, z) := −
∫ ∞

z
div v(t, x, z′)dz′, (2.23)
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and consider instead of the expansion (2.16) the refined asymptotic expansion

uε ∼ u0(t, x) + √
εv

(
t, x, ϕ(x)/

√
ε
) + εw

(
t, x, ϕ(x)/

√
ε
)
n. (2.24)

This expansion has the advantage over (2.16) to satisfy (2.7b) (observe that the
right-hand-side has to be zero in � because of the support condition on σε) up
to an error of order O(ε). The new term, the last one in (2.24), corresponds to
a boundary layer on the normal velocity. The choice to integrate from infinity in
(2.23) is precisely to guarantee that w vanishes as z goes to infinity. Then the new
issue is thatw(t, x, 0) is not zero so that the right-hand-side of (2.24) cannot satisfy
the impermeability condtition (2.4c). Then a new correction is considered by the
mean of what we call a backflow velocity. Aswwill be constructed with the integral
condition

∫

∂O
w(t, x, 0)dx = 0,

there is a solution φ to the following Neumann problem:
{

�φ = 0 in O,

∂nφ = −w(·, ·, 0) on ∂O.

Thanks to (2.10), we observe that the so-called backflow velocity ∇φ satisfies
⎧
⎪⎪⎨

⎪⎪⎩

∂t∇φ + u0 · ∇∇φ + ∇φ · ∇u0 + ∇
(

− ∂tφ − u0 · ∇φ
)

= 0, in R+ × O,

div∇φ = 0, in R+ × O,

(∇φ) · n = −w(·, ·, 0), in R+ × ∂O;
(2.25)

that is, ∇φ satisfies the Euler equations linearized around u0. Then the asymptotic
expansion

uε ∼ u0(t, x) + √
εv

(
t, x, ϕ(x)/

√
ε
) + ε

(
w

(
t, x, ϕ(x)/

√
ε
)
n + ∇φ(t, x)

)
(2.26)

is better than the asymptotic expansion (2.24) in the sense that the impermeability
condition (2.4c) is now satisfied up to error term o(ε).

2.8. Approximate solutions

Indeed by expanding further the asymptotic expansion, in particular expanding
the velocity into an expansion of the form

uε
a(t, x) := u0(t, x) + √

εv1(t, x, ϕ(x)/
√

ε)

+
4∑

j=2

ε
j
2
(
u j (t, x) + v j (

t, x, ϕ(x)/
√

ε
) + ∇φ j (t, x)

+ w j (
t, x, ϕ(x)/

√
ε
)
n(x)

)
,

(2.27)
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with some profiles satisfying somePDEs of the previous types butwith extra forcing
terms due to error terms associated with the profiles which are already determined,
we will be able to construct some approximate solutions uε

a , pε
a to the system (2.4)

associated with some control forces ξε and σ 0 (on the divergence the control given
by Lemma 2.9 will be sufficient).

These solutions are approximate in the sense that

∂t u
ε
a − ε�uε

a + uε
a · ∇uε

a + ∇ pε
a = ξε + ε2F in O, (2.28a)

div uε
a = σ 0 + ε2H in O, (2.28b)

uε
a · n = 0 on ∂O, (2.28c)

N (uε
a) = ε2G on ∂O, (2.28d)

uε
a |t=0 = εu∗ − ε2R0 in O, (2.28e)

where H , G, F and R0 are error terms which satisfy some uniform bounds in some
appropriate spaces which we now define. Let us introduce a cut-off function χ in
C∞
0 (R3) such that χ = 0 when |ϕ| ≥ δ0 and χ = 1 when |ϕ| < δ0

2 , where δ0 is
selected in Sect. 2.2, and the vector fields set

W :=
{
w0 := ϕn, w1 := (

0,−∂3ϕ, ∂2ϕ
)�

, w2 := (
∂3ϕ, 0,−∂1ϕ

)�
,

w3 := (−∂2ϕ, ∂1ϕ, 0
)�

, w4 := (
∂3(x3(1 − χ)), 0,−∂1(x3(1 − χ))

)�
,

w5
0 := (

∂2(x1(1 − χ)),−∂1(x1(1 − χ)), 0
)�}

.

It is easy to observe that w j are tangential to ∂O, 0 ≤ j ≤ 5. Moreover, for
1 ≤ j ≤ 5, w j · n = 0 in Vδ0/2 and divw j = 0 inO. Now we define the tangential
derivatives

Z j := w j · ∇ for 0 ≤ j ≤ 5 and Zα := Zα0
0 · · · Zα5

5 for α = (α0, · · · , α5).

(2.29)

Let us observe that

∇Z j = Z j∇ + ∇w j · ∇, (2.30)

�Z j = Z j� + 2∇w j : ∇2 + �w j · ∇. (2.31)

Generally, for |α| = m in N+, we can use Leibniz formula to find that

[�, Zα] =
∑

|β|,|γ |≤m−1

(cβ∇2Zβ + cγ ∇Zγ ), (2.32)

for some smooth functions cβ and cγ depended only on the vector field W.

Let us also observe that, for 1 ≤ i, j ≤ 5,

the commutators [∂n, Zi ], [Z0, Zi ], [Zi , Z j ] are tangential derivatives.(2.33)
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Indeed, [∂n, Zi ] = (n · ∇)wi · ∇ − (wi · ∇)n · ∇, and, on one hand (wi · ∇n) · ∇
is a tangential derivative since wi · ∇n · n = 0 in Vδ0 , while on the other hand, due
to wi · n = 0 in Vδ0/2 and ∇n is symmetric, we have

n · ∇wi · n = −n · ∇n · wi = −wi · ∇n · n = 0

in Vδ0/2, so that n · ∇wi · ∇ is also a tangential derivative. Moreover notice that
for 1 ≤ i ≤ 5, wi · ∇ϕ = wi · n = 0, we find that [Z0, Zi ] = ϕ[∂n, Zi ] is also a
tangential derivative. Finally, for 1 ≤ i, j ≤ 5, it holds that

[Zi , Z j ] = (wi · ∇w j − w j · ∇wi ) · ∇.

Since wi · n = w j · n = 0 and ∇n is symmetric, we have

wi · ∇w j · n − w j · ∇wi · n = −wi · ∇n · w j + w j · ∇n · wi = 0.

Thus [Zi , Z j ] is a tangential derivative and (2.33) holds true.
We define the Sobolev conormal spaces

Hm
co(O) :=

{
u ∈ L2(O) : Zαu ∈ L2(O), |α| ≤ m

}

with norm

‖u‖m :=
( ∑

|α|≤m

‖Zαu‖2L2

) 1
2
. (2.34)

In the same way, we set

‖u‖k,∞ :=
∑

|α|≤k

‖Zαu‖L∞ ,

and we say u in W k,∞
co if ‖u‖k,∞ is finite. Finally for t ≥ 0, we denote 〈t〉 :=√

1 + t2.

Theorem 2.12. Let γ > 1, k, p, s, q in N+ with k ≥ 2, p ≥ 8, s, q ≥ 4. Assume
u∗ is smooth enough, say it satisfies (4.2) in Sect. 4.1. Then there exist uε

a, pε
a

and ξε satisfy (2.28a)-(2.28e) with F, G, H and R0 satisfying, for 0 ≤ j ≤ k,

p1 + p2 ≤ p − 3, p2 ≤ s − 2, m ≤ p − 3,

∥
∥∂

j
t Z p1(

√
ε∂n)

p2

(
F
H

)
∥
∥

L2(O)
� ε

1
4 〈t〉−γ ,(2.35)

∥
∥∂

j
t Z p1(

√
ε∂n)

p2

(
F
H

)
∥
∥

L∞(O)
� 〈t〉−γ , (2.36)

‖H‖Hm (∂O) + ‖∂ j
t G‖H p−1(O) � 〈t〉−γ , (2.37)

ε− 1
4 ‖Z p1(

√
ε∂n)

p2 R0‖L2(O) + ‖Z p1(
√

ε∂n)
p2 R0‖L∞(O) � ε− 1

2 , (2.38)

Moreover uε
a satisfies,

‖uε
a‖W 1,∞(O) + ‖∇uε

a‖m,∞ + √
ε‖∇2uε

a‖m−1,∞ � 〈t〉−γ , (2.39)

‖uε
a − u0‖m,∞ + √

ε‖∇(u0
a − u0)‖m,∞ �

√
ε〈t〉−γ , (2.40)

‖uε
a(T/ε, ·)‖H1(O) = o(ε). (2.41)

The proof of Theorem 2.12 will be presented in Sect. 4.
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2.9. Remainder estimate

It follows from the well-posedness of he Navier–Stokes equations with Navier
boundary conditions (for fixed ε) that for every ε in (0, 1), there is T ε ∈ (0, T/ε]
and a solution (uε, pε) to (2.4) with ξε given by Theorem 2.12 and σε := σ 0, for
each ε, where σ 0 is given by Lemma 2.9.

We define a family of vector fields R, neglecting an index for the dependence
on ε for sake of levity, by

uε = uε
a + ε2R. (2.42)

The latter R stands for “remainder " as we hope to be able to find such a vector field
with a nice behaviour in ε. Indeed we will prove in Sect. 5 the following a priori
estimate:

ε2 sup
t∈(0,T ε)

‖R(t, ·)‖H1(O) � ε
5
4 . (2.43)

This entails that T ε = T
ε
and, with (2.41), that (2.5) holds true. This concludes the

scheme of proof of Theorem 2.7, and then according to Proposition 2.8, Proposition
2.6 and Proposition 2.4, this also concludes the scheme of proof of Theorem 1.1. To
complete the proof of Theorem 2.7 it remains to prove the two main intermediate
results which are Theorem 2.12 and the a priori estimate (2.43). In Sect. 3, we will
study an auxiliary problem associated with the boundary layer on the tangential
velocity. It will be instrumental in the proof of Theorem 2.12 which will be given
in Sect. 4.

Compared to [5], we consider a more accurate asymptotic expansion, (2.27)
rather than (2.26) and the large time behaviour of the higher order terms requires to
adapt the well-prepared dissipation method. Moreover, the estimate of the remain-
der is performed in H1 rather than in L2, which requires much more work.

3. Well-Prepared Dissipation of Tangential Boundary Layers with Forcing

We set

u0
� (t, x) := u0(t, x) · n(x)

ϕ(x)
in R+ × O, (3.1)

where u0 is given by Lemma 2.9 and we observe that u0
� is smooth in O. Let

B0 = B0(t, x) be a smooth field of 3 × 3 matrices such that for any v in R3,

B0v := v · ∇u0 + (u0 · ∇n · v)n − (v · ∇u0 · n)n. (3.2)

The key property associated with B0 is that for a smooth vector field v(t, x),

(u0 · ∇v + B0v) · n = u0 · ∇(v · n) in Vδ0 . (3.3)
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We are interested in this section by the following type of constrained initial-
boundary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tv + u0 · ∇v + B0v − u0
� z∂zv − ∂2z v = ξ + f, in R+ × ∂O × R+,

∂zv|z=0 = g, in R+ × O,

v · n = 0, in R+ × ∂O × R+,

v|t=0 = v0, in ∂O × R+,

(3.4)

where f and g are given source terms whereas ξ is a control force to be chosen.
Problem like (3.4) will be useful to construct such boundary layer correctors of the
tangential velocity as that described in Sect. 2.5. As already mentioned, the Cauchy
theory for this type of linear hyperbolic-parabolic (respectively in t, x and in t, z)
equation is nowwell-understood, see [22,33,34], and our concern will rather be the
large time asymptotics and in particular the implementation of the well-prepared
dissipation method alluded in Sect. 2.6 in the presence of source terms. This will
be useful in the next section in the course of constructing the higher order terms v j

for j ≥ 2 alluded in (2.27).
Let us introduce the following weighted Sobolev spaces:

Definition 3.1. For z in R, we denote 〈z〉 := √
1 + z2 and for s and q in N, we set

Hs
q (R+) :=

{
f ∈ Hs(R+) :

s∑

j=0

∫

R+
〈z〉2q |∂ j

z f (z)|2dz < +∞
}
,

endowed with it natural associated norm. In the same way we define Hs
q (R) and

the norm

‖ f ‖Hs
q (R) :=

( s∑

j=0

∫

R

〈z〉2q |∂ j
z f (z)|2dz

) 1
2
.

Observe that by the Plancherel theorem, we have the following equivalence of
norms:

‖ f ‖Hs
q (R) ∼

q∑

j=0

(∫

R

〈ζ 〉2s |∂ j
ζ f̂ (ζ )|2dζ

) 1
2
. (3.5)

Here f̂ denotes the Fourier transform of f .

Definition 3.2. Let k in N, γ > 0 and X a Banach space with norm ‖ · ‖X . We
define the space Ck

γ (R+; X) of the functions f in Ck(R+; X) such that

‖ f ‖Ck
γ (R+;X) := sup

t≥0,0≤ j≤k

(‖∂ j
t f (t)‖X 〈t〉γ )

< +∞,

where

Ck(R+; X) := {
f : ∂

j
t f ∈ C(R+; X), 0 ≤ j ≤ k

}
.
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Let S(R) the Schwartz space of smooth functions on R whose derivatives are
rapidly decreasing. Let us denote by S(R+) the set of the restrictions to R+ of the
functions of S(R).

The goal of this section is to prove the following result, where the notation [x]
designates the floor integer part of a real number x :

Proposition 3.3. Let γ > 0 and s, q, k, p in N with k ≥ 1. Set n := [ q
2 + γ ],

γ̃ := 2n + 3, s̃ := s + 2k + 2n, q̃ := 2n + 3, (3.6)

k′ := [ s + 1

2
] + k + n, k̃ := k + k′ − 1, p̃ := p + k′ + 1. (3.7)

Let

f ∈ Ck̃
γ̃ (R+; H p̃(O; Hs̃

q̃ (R+))) and g ∈ Ck̃
γ̃ (R+; H p̃(O)),

such that f (t, x, z) and g(t, x) are supported in Vδ as a function of x and such that
f (t, x, z) · n(x) = g(t, x) · n(x) = 0, for any t ≥ 0, x in O and z in R+. Let

v0(x, z) = A(0, x, z) ∈ H p+2(O; C∞
0 (R+)), (3.8)

where A(t, x, z) will be defined in (3.31) soon.
Then there are

ξ ∈ Ck−1(R+; H p(O;S(R+))) and v ∈ Ck
γ (R+; H p(O; Hs

q (R+))),

such that (3.4) holds true. Moreover there is a continuous function S̃ : R+ → R+,
such that for any positive δ, δ ≤ S̃(δ), and ξ is supported in (O\�) ∩ VS̃(δ)

as
a function of x and is compactly supported in (0, T ) as a function of time t, and
satisfies ξ(t, x, z)·n(x) = 0, for all t in (0, T ), x in (O\�)∩VS̃(δ)

and z inR+, and
v is supported in VS̃(δ)

as a function of x . Moreover, if f and g are both supported
away from t = 0 as a function of time t, then so does v.

The first key observation towards the proof of Proposition 3.3 is that for t ≥ T ,
we have u0 = 0, u0

� = 0, B0 = 0 and we look for a control ξ which is compactly
supported in (0, T ), so the equations for v reduces to

⎧
⎪⎨

⎪⎩

∂tv − ∂2z v = f, in [T,+∞) × O × R+,

∂zv|z=0 = g, in [T,+∞) × O,

v · n = 0, in [T,+∞) × ∂O × R+,

with an “initial" data at t = T which has no reason to be zero. To prepare the part
of the proof of Proposition 3.3 regarding the decay in time, we first single out some
well-prepared dissipation conditions for the heat equation on the full line (in space)
with non-zero “initial" data at t = T and non-zero source term:

{
∂tv − ∂2z v = f, in [T,+∞) × O × R+,

v|t=T = v(T, ·, ·), in O × R+.
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For n in N and x in R, we set

sn(x) :=
n∑

k=0

xk

k! . (3.9)

Lemma 3.4. Let γ > 0 and k, s, q, n in N and

n ≥ q

2
+ γ − 1. (3.10)

Let γ̃ , s̃, and q̃ be as in (3.6). Let v0 in Hs+2k
q̃ (R) and f in C0

γ̃
(R+; H s̃

q̃ (R)) when

k = 0 and f in Ck−1
γ̃

(R+; H s̃
q̃ (R)) when k ≥ 1, such that

(
∂

j
ζ

(
v̂0(ζ ) +

∫ ∞

0
sn(τζ 2) f̂ (τ, ζ )dτ

))
∣
∣
∣
∣
ζ=0

= 0, for 0 ≤ j ≤ 2n + 1,(3.11)

Then the Cauchy problem
{

∂tv − ∂2z v = f, in [0,+∞) × R,

v|t=0 = v0, in R

has a unique solution v in Ck
γ (R+; Hs

q (R)).

Proof. We first observe that it is sufficient to deal with the case where k = 0,
since the general case follows by using that for 0 ≤ i ≤ k, for z in R and t ≥ 0,
∂ i

t v = ∂2z ∂ i−1
t v + ∂ i−1

t f .
The Fourier transform v̂(t, ·) of v(t, ·) is given, for t ≥ 0 and ζ in R, by

v̂(t, ζ ) = e−tζ 2
(
v̂0(ζ ) +

∫ t

0
eτζ 2 f̂ (τ, ζ )dτ

)
. (3.12)

Let us observe that

∀ j ∈ N, ∃C j > 0 such that ∀t > 0, ∀ζ ∈ R, |∂ j
ζ (e−tζ 2)| ≤ C j 〈t〉 j

2 e− 3
4 tζ 2 .

(3.13)

Now we decompose the proof of Lemma 3.4 into the following two steps:
Step 1: we first prove that, for 0 ≤ t ≤ 1, ‖u(t, ·)‖Hs

q (R) is bounded. Indeed, for
0 ≤ t ≤ 1 and s < s̃, q < q̃, it follows from (3.5), (3.12), the Leibniz formula and
(3.13) that

‖v(t, ·)‖Hs
q (R) �

q∑

j=0

‖〈ζ 〉s∂
j
ζ v̂(t, ζ )‖L2

ζ

�
q∑

j=0

∑

j1+ j2= j

(
‖〈ζ 〉s∂

j1
ζ (e−tζ 2)∂

j2
ζ v̂0(ζ )‖L2

ζ
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+‖〈ζ 〉s
∫ t

0
∂

j1
ζ (e−(t−τ)ζ 2)∂

j2
ζ f̂ (τ, ζ )dτ‖L2

ζ

)

� ‖v0‖Hs
q̃ (R) + ‖ f ‖C0

γ̃
(R+;Hs̃

q̃ (R))
.

Thus for 0 ≤ t ≤ 1, ‖v(t, ·)‖Hs
q (R) is bounded.

Step 2: It remains to prove that there existsC > 0 such that for t ≥ 1, ‖v(t, ·)‖Hs
q

≤
C〈t〉−γ . Indeed, for t ≥ 1, by (3.12), we write

v̂(t, ζ ) =
4∑

i=1

Ii (t, ζ ), (3.14)

where

I1(t, ζ ) := e−tζ 2
(
v̂0(ζ ) +

∫ +∞

0
sn(τζ 2) f̂ (τ, ζ )dτ

)
,

I2(t, ζ ) := −e−tζ 2
∫ +∞

t
4

sn(τζ 2) f̂ (τ, ζ )dτ,

I3(t, ζ ) := e−tζ 2
∫ t

4

0

(
eτζ 2 − sn(τζ 2)

)
f̂ (τ, ζ )dτ,

I4(t, ζ ) :=
∫ t

t
4

e−(t−τ)ζ 2 f̂ (τ, ζ )dτ.

Thanks to (3.13), to conclude this second step, it is sufficient to show that, for
1 � i � 4, 0 ≤ j ≤ q and t ≥ 1,

‖〈ζ 〉s∂
j
ζ Ii (t, ζ )‖L2

ζ
� 〈t〉−γ .

We observe that for t ≥ 1,

t ≤ 〈t〉 ≤ √
2t. (3.15)

• Estimate of I1
Since u0 and f satisfies (3.11), we have, for 0 ≤ j2 ≤ q, by the Taylor formula,

|∂ j2
ζ (v̂0(ζ ) +

∫ +∞

0
sn(τζ 2) f̂ (τ, ζ )dτ)|

� |ζ |2n+2− j2‖∂2n+2
ζ

(
v̂0(ζ ) +

∫ +∞

0
sn(τζ 2) f̂ (τ, ζ )dτ

)‖L∞
ζ

� |ζ |2n+2− j2‖∂2n+2
ζ

(
v̂0(ζ ) +

∫ +∞

0
sn(τζ 2) f̂ (τ, ζ )dτ

)‖H1
ζ

� |ζ |2n+2− j2
(‖v0‖H0

q̃ (R) + ‖ f ‖C0
γ̃
(R+;Hs̃

q̃ (R))

)

≤ C |ζ |2n+2− j2 .
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This together with the Leibniz formula, (3.13) and (3.15) implies that for 0 ≤ j ≤ q
and t ≥ 1,

‖〈ζ 〉s∂
j
ζ I1(t, ζ )‖L2

ζ
�

∑

j1+ j2= j

‖〈ζ 〉se− 3
4 tζ 2〈t〉 j1

2 |ζ |2n+2− j2‖L2
ζ

� t−(n+ 5
4− j

2 ).

Thus, thanks to (3.10), we achieve

‖〈ζ 〉s∂
j
ζ I1(t, ζ )‖L2

ζ
≤ C〈t〉−γ . (3.16)

• Estimate of I2
By the Leibniz formula and (3.13), for 0 ≤ j ≤ q, we find

‖〈ζ 〉s∂
j
ζ I2(t, ζ )‖L2

ζ
�

∑

j1+ j2+ j3= j

‖〈ζ 〉s
∫ ∞

t
4

∂
j1
ζ (e−tζ 2)∂

j2
ζ (sn(τζ 2))∂

j3
ζ f̂ (τ, ζ )dτ‖L2

ζ

�
∑

j1+ j2+ j3= j

‖
∫ ∞

t
4

〈t〉 j1
2 e− 3

4 tζ 2〈τ 〉n〈ζ 〉s+2n|∂ j2
ζ f̂ (τ, ζ )|dτ‖L2

ζ

�
∫ ∞

t
4

〈t〉 q
2 〈τ 〉n‖ f (τ, ·)‖Hs+2n

q
dτ.

Since ‖ f (τ, ·)‖Hs+2n
q

� 〈τ 〉−(2n+3), by using (3.10), we deduce that

‖〈ζ 〉s∂
j
ζ I2(t, ζ )‖L2

ζ
≤ C〈t〉−γ . (3.17)

• Estimate of I3
By Taylor’s expansion and by induction on j , we prove that for all j inN, there

exists C j,n > 0 such that for all τ > 0, for all ζ in R,

|∂ j
ζ (eτζ 2 − sn(τζ 2))| ≤ C j,nτ n+1|ζ |2n+2− j e(2− 1

j+1 )τζ 2
.

Then, for 0 ≤ j ≤ q, by the Leibniz formula, one has

‖〈ζ 〉s∂
j
ζ I3(t, ζ )‖L2

ζ

�
∑

j1+ j2+ j3= j

‖〈ζ 〉s
∫ t

4

0
∂

j1
ζ (e−tζ 2)∂

j2
ζ (eτζ 2 − sn(τζ 2))∂

j3
ζ f̂ (τ, ζ )dτ‖L2

ζ

�
∑

j1+ j2+ j3= j

‖〈ζ 〉s
∫ t

4

0
〈t〉 j1

2 e− 3
4 tζ 2τ n+1|ζ |2n+2− j2e2τζ 2 |∂ j3

ζ f̂ (τ, ζ )|dτ‖L2
ζ

�
∑

j1+ j2+ j3= j

t
j1+ j2
2 −n−1‖

∫ t
4

0
〈ζ 〉sτ n+1|∂ j3

ζ f̂ (τ, ζ )|dτ‖L2
ζ

� t
q
2 −n−1

∫ t
4

0
τ n+1‖ f (τ, ·)‖Hs

q
dτ.

Since ‖ f (τ, ·)‖Hs
q

� 〈τ 〉−γ̃ and (3.15), we obtain

‖〈ζ 〉s∂
j
ζ I3(t, ζ )‖L2

ζ
≤ C〈t〉 q

2 −n−1 ≤ C〈t〉−γ . (3.18)
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• Estimate of I4
By (3.13), we find, for 0 ≤ j ≤ q,

‖〈ζ 〉s∂
j
ζ I4(t, ζ )‖L2

ζ
�

∑

j1+ j2= j

‖
∫ t

t
4

∂
j1
ζ (e−(t−τ)ζ 2)〈ζ 〉s∂

j2
ζ f̂ (τ, ζ )dτ‖L2

ζ

�
∑

j1+ j2= j

‖
∫ t

t
4

〈t − τ 〉 j1
2 e− 3(t−τ )

4 ζ 2〈ζ 〉s |∂ j2
ζ f̂ (τ, ζ )|dτ‖L2

ζ

�
∫ t

t
4

〈τ 〉 q
2 ‖ f (τ, ·)‖Hs

q
dτ.

Since ‖ f (t, ·)‖Hs
q

� 〈τ 〉−(2n+3), we infer

‖〈ζ 〉s∂
j
ζ I4(τ, ζ )‖L2

ζ
� 〈t〉 q

2 −2n−2 ≤ 〈t〉−γ . (3.19)

By combining the estimates, (3.14), (3.16), (3.17), (3.18) and (3.19), we deduce
that there exists C > 0 such that for t ≥ 1, ‖v(t, ·)‖Hs

q
≤ C〈t〉−γ .

Finally by combining step 1 with step 2, we conclude that v belongs to
C0

γ (R+; Hs
q (R)). 
�

We now turn to the following counterpart for the whole line z ∈ R of the
initial-boundary value problem (3.4):

{
∂t V + u0 · ∇V + B0V − u0

� z∂z V − ∂2z V = � + F, in R+ × O × R,

V |t=0 = 0, in O × R.
(3.20)

We recall that B0 is defined in (3.2).

Lemma 3.5. Let γ > 0, k, p, s, q, n in N, k ≥ 1 satisfying n ≥ q
2 + γ − 1. Let

γ̃ , s̃, q̃ be as in (3.6) and δ > 0 be a small constant. Let

F ∈ Ck−1
γ̃

(R+; H p+1(O; Hs̃
q̃ (R)), (3.21)

with F(t, x, z) being supported in Vδ as a function of x and F(t, x, z) · n(x) = 0,
for all t ≥ 0, x in O and z in R.

Then there are

�(t, x, z) ∈ Ck−1(R+; H p(O;S(R))) and V ∈ Ck
γ (R+; H p(O; Hs

q (R))),

such that (3.20) holds true, and there is a continuous function S̃ : R+ → R+,
such that for any positive δ, δ ≤ S̃(δ), and � is supported in (O\�) ∩ VS̃(δ)

as
a function of x and is compactly supported in (0, T ) as a function of time t, and
satisfies �(t, x, z) · n(x) = 0, for all t in (0, T ), x in (O\�) ∩ VS̃(δ)

and z in R,
and V is supported in VS̃(δ)

as a function of x and satisfies V (t, x, z) · n(x) = 0,
for all t ≥ 0, x in O and z in R.

Moreover, if F is supported away from t = 0 as a function of time t, then so
does V .
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Proof. For 0 ≤ j ≤ 2n + 1 and x in O, let

γ j (x) := ∂
j
ζ

∫ ∞

0
sn(τζ 2)F̂(T + τ, x, ζ )dτ |ζ=0,

where F̂(t, x, ·) is the partial Fourier transform of F(t, x, z) with respect to the z
variable. We use ζ as dual variable of z by the partial Fourier transform. We also
recall that sn is defined in (3.9). By (3.21), for 0 ≤ j ≤ 2n + 1, γ j in H p+1(O).

We look for a control profile �, with the properties mentioned in the statement of
Lemma 3.5, such that there is a solution V in Ck(R+; H p(O; Hs

q (R))) to (3.20)
satisfying

(∂
j
ζ V̂ (T, x, ζ ) + γ j (x))|ζ=0 = 0, for 0 ≤ j ≤ 2n + 1 and x ∈ O, (3.22)

where V̂ (t, x, ·) is the partial Fourier transform of V (t, x, ·). Then, for t ≥ T , as
u0 = 0, u0

� = 0 and B0 = 0, the first equation in (3.20) reduces to

∂t V − ∂2z V = F, in O × R. (3.23)

Therefore it would follow from Lemma 3.4 that V in Ck
γ (R+; H p(O; Hs

q (R))).
Indeed for a given control profile �, with the properties mentioned in the state-

ment of Lemma 3.5, the existence of a solution V in Ck(R+; H p(O; Hs
q (R))) to

(3.20), supported in a neighborhood of the boundary as a function of x and satisfy-
ing V (t, x, z) · n(x) = 0, for all t ≥ 0, x in O and z in R, can be proved along the
same lines as [25, Proposition 5]. We therefore focus on the existence of a control
profile � for which the corresponding solution V to (3.20) satisfies the conditions
(3.22). In this perspective we first observe that the Cauchy problem (3.20) for V
translates into the following one for V̂ :

{
∂t V̂ + u0 · ∇ V̂ + (B0 + ζ 2 − u0

� )V̂ − u0
� ζ ∂ζ V̂ = �̂ + F̂,

V̂ |t=0 = 0.
(3.24)

Let

H(x, ζ ) :=
2n+1∑

j=0

γ j (x)
ζ j

j ! χ1(ζ ).

Here χ1 in C∞
0 (R) is a cut-off function satisfying χ1(ζ ) = 1 when |ζ | ≤ 1 and

χ1(ζ ) = 0 when |ζ | ≥ 2, so that H in H p+1(O; C∞
0 (R)) and

∂
j
ζ H(x, ζ )|ζ=0 = γ j (x) for 0 ≤ j ≤ 2n + 1 and x ∈ O. (3.25)

Let

F̃ := F̂ + u0 · ∇H + (B0 + ζ 2 − u0
� )H − u0

� ζ ∂ζ H. (3.26)

By (3.21), for 0 ≤ j ≤ 2n + 1, the function ∂
j
ζ F̃ |ζ=0 is in Ck−1

γ̃
(R+; H p(O)).
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Using (2.9), we can prove the existence of � with the properties mentioned in
the statement of Lemma 3.5, such that for 0 ≤ j ≤ 2n + 1, the unique solution Q j

to

{
∂t Q j + u0 · ∇Q j + B0Q j − ( j + 1)u0

� Q j = − j ( j − 1)Q j−2 + ∂
j
ζ �̂|ζ=0 + ∂

j
ζ F̃ |ζ=0,

Q j |t=0 = γ j (x),
(3.27)

where �̂(t, x, ·) is the Fourier transform of �(t, x, ·), satisfies
Q j (T, x) = 0, for 0 ≤ j ≤ 2n + 1 and x ∈ O. (3.28)

We refer here to [5, Lemma 7], see also the discussion in Sect. 2.6. By differen-
tiating (3.24), by (3.25) and by using the uniqueness of the Cauchy problem (3.27),
we observe that the solution V to (3.20), for the control profile�mentioned above,
satisfies

Q j (t, x) = ∂
j
ζ V̂ (t, x, ζ )|ζ=0 + γ j (x), for 0 ≤ j ≤ 2n + 1, t ∈ R+ and x ∈ O.

(3.29)

By combining (3.28) and (3.29), we conclude that (3.22) is satisfied. From the
construction of � and Q j we can see that, if F vanishes near t = 0, so does V .

Finally, thanks to the argument in [5, Section 3.4], there is a continuous function
S̃ : R+ → R+, such that for any positive δ, δ ≤ S̃(δ), and V is supported in VS̃(δ)

.

We can choose δ small enough such that S̃(δ) < δ0. (Recall that δ0 is defined in
Sect. 2.2). 
�

Now we are in a position to complete the proof of Proposition 3.3.

Proof of Proposition 3.3. Let

g1 := g,

g j+1 := ∂t g j + u0 · ∇g j

+B0g j − (2 j − 1)u0
� g j − (∂

2 j−1
z f )|z=0+ for 1 ≤ j < k′. (3.30)

It is clear that g j is supported in Vδ as a function of x , g j · n = 0 and g j in

Ck̃+1− j
γ̃

(R+; H p̃+1− j (O)) for 1 ≤ j ≤ k′.
For z ≥ 0, we denote

A(t, x, z) :=
k′

∑

j=1

g j (t, x)
z2 j−1

(2 j − 1)!χ1(z), (3.31)

where χ1 in C∞
0 (R) is an even cut-off function as in the proof of Lemma 3.5. One

can check that

A ∈ Ck
γ̃ (R+; H p+2(O; C∞

0 (R+))),

and satisfies

∂
2 j−1
z A|z=0+ = g j , for 1 ≤ j ≤ k′. (3.32)
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Let

F := f − (∂t A + u0 · ∇ A + B0A − u0
� z∂z A − ∂2z A). (3.33)

It is easy to check that

F ∈ Ck−1
γ̃

(R+; H p+1(O; Hs̃
q̃ (R+))).

By combining (3.30), (3.32) and (3.33), we observe that ∂
2 j−1
z F |z=0 = 0 for

1 ≤ j < k′. Thus, extending F by F(t, x, z) := F(t, x, |z|), and by the definition
of k′, we have

F ∈ Ck−1
γ̃

(R+; H p+1(O; Hs̃
q̃ (R))),

which is supported in Vδ as a function of x . Thus we can use Lemma 3.5 to find �

and V , such that, in particular, (3.20) holds true. Let

v(t, x, z) := V (t, x, z) + A(t, x, z), in R+ × ∂O × R+. (3.34)

Then v satisfies all the properties listed in Proposition 3.3. In particular it follows
from (3.20), (3.30), (3.32) and (3.34) that (3.4) holds true, with v0 = A(0, x, z) in
H p+2(O; C∞

0 (R+)). In particular, if f and g are both supported away from t = 0
as a function of time t , the so do A, V and v, and v0 = 0. 
�

4. Proof of Theorem 2.12

let us first introduce a Lemma which handles multiplication in space
Ck

γ (R+; H p(O; Hs
q (R+))).

Lemma 4.1. Let γ > 0, k, p, s, q in N+ with p ≥ 4 and s ≥ 2. Let U in
Ck

γ (R+; H p(O)) and V, Ṽ in Ck
γ (R+; H p(O; Hs

q (R+))) be scalar functions, then,
one has

U V, Ṽ V ∈ Ck
γ (R+; H p(O; Hs

q (R+))). (4.1)

Proof. By Definition 3.2 and Sobolev imbedding, for 0 ≤ j ≤ k, 0 ≤ |α| ≤ p − 2
and 0 ≤ β ≤ s − 1,

∂
j

t ∂α
x U ∈ L∞(R+ × O) and ∂

j
t ∂α

x ∂β
z V ∈ L∞(R+ × O × R+).

Note that when p ≥ 4 and s ≥ 2,

[ p

2

]
≤ p − 2 and

[ s

2

]
≤ s − 1.

Then we can easily check (4.1) by definition. 
�
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4.1. Construction of profiles

Recall that u0 is given by Lemma 2.9 which is smooth, curl-free and compactly
supported in (0, T ) as a function of time t . Now we construct an approximate
solution of form (2.27). Plug (2.27) into (2.28), and we can find the equation for ui

and vi . For the equation of vi , profiles v j , u j with j < i will play roles as source
terms. We use Proposition 3.3 to find profile v j . But there will be some regularity
loss. Thanks to Lemma 3.4, we need more regularity of the source term to gain
decay of the solution.

Let γ > 1, k, p, s, q in N+ and set n := [ q
2 + γ ]. We define the mapping �

by setting �(γ, k, p, s, q) := (γ̃ , k̃, p̃, s̃, q̃), where γ̃ , k̃, p̃, s̃, q̃ are given by (3.6)
and (3.7).

From now on, we fix γ > 1, k, p, s, q in N+ with k ≥ 2, p ≥ 8, s, q ≥ 4, we
denote

(γ4, k4, p4, s4, q4) := (γ, k, p, s, q),

(γi , ki , pi − 1, si − 1, qi − 2) := �(γi+1, ki+1, pi+1, si+1, qi+1) for 1 ≤ i ≤ 3.

We observe that, for 0 ≤ i ≤ 3,

ni+1 =
[qi+1

2
+ γi+1

]
≥ 3, k′

i+1 =
[

si+1 + 1

2

]

+ ki+1 + ni+1 ≥ 7,

γi = 2ni+1 + 3 ≥ qi+1 + 2γi+1 + 1 ≥ γi+1 + 6,

ki = ki+1 + k′
i+1 − 1 ≥ ki+1 + 6,

pi = pi+1 + k′
i+1 + 1 ≥ pi+1 + 8,

si = si+1 + 2ki+1 + 2ni+1 ≥ si+1 + 10,

qi = 2ni+1 + 3 ≥ qi+1 + 2γi+1 + 1 ≥ qi+1 + 3.

Let

δ1 := S̃(δ) and δi := S̃(δi−1) for 2 ≤ i ≤ 4.

Recall that S̃ : R+ → R+ is a continuous function satisfying S̃(0) = 0 and
S̃(δ) ≥ δ for any δ > 0, we can choose and fix a small δ > 0 such that δ4 < δ0,

where δ0 is defined in Sect. 2.2.
We assume that the initial data u∗ satisfies

u∗ ∈ H p1−1(O). (4.2)

• Main velocity boundary layer
Let χ2 a cut-off function such that χ2(x) = 1 when x in Vδ/2, and χ2(x) = 0

when x in O\Vδ. Set

g1 := 2N (u0)χ2(x). (4.3)

Then g1 is in C∞(R+ × O), is supported in Vδ as a function of x , is compactly
supported in (0, T ) as a function of time, and g1 · n = 0. By Proposition 3.3, there
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exist ξ1 in Ck1−1(R+; H p1(O;S(R+)) and v1 in Ck1
γ1 (R+; H p1(O; (Hs1

q1 (R+)))

such that
⎧
⎪⎨

⎪⎩

∂tv
1 + u0 · ∇v1 + B0v1 − u0

� z∂zv
1 − ∂2z v1 = ξ1, in R+ × ∂O × R+,

∂zv
1|z=0 = g1, in R+ × O

v1|t=0 = 0, in O × R+.

(4.4)

Moreover, ξ1 is supported in (O\�) ∩ Vδ1 as a function of x and is compactly
supported in (0, T ) as a function of time t , and v1 is supported in Vδ1 as a function
of x and is supported away from t = 0 as a function of time t , and ξ1 ·n = v1 ·n = 0,
for any t ≥ 0, x in O and z ≥ 0.
• Main pressure boundary layer

We set

π2(t, x, z) := −
∫ +∞

z

(−u0 · ∇n · v1 + v1 · ∇u0 · n)
dz′.

Then π2 is in Ck1
γ1 (R+; H p1(O; Hs1

q1−2(R+))) and

∂zπ
2 = −u0 · ∇n · v1 + v1 · ∇u0 · n. (4.5)

Moreover, π2 is supported in Vδ1 as a function of x , and is supported away from
t = 0 as a function of time t .
• Main normal velocity boundary layer

We set

w2(t, x, z) := −
∫ ∞

z
div v1(t, x, z′)dz′. (4.6)

Then ∂zw
2 = div v1 and w2 is Ck1

γ1 (R+; H p1−1(O; Hs1
q1−2(R+))) is supported in

Vδ1 as a function of x and its t support is away from t = 0. Similar to the proof in
Sect. 6.1 of [35], we find that

∫

∂O
w2(t, x, 0)dx = 0. (4.7)

• Main backflow velocity

Let φ2 be a solution of the following Neumann problem:
{

�φ2 = 0 in O,

∂nφ
2 = −w2(t, x, 0) on ∂O.

(4.8)

Thanks to (4.7), there exists a unique solution φ2 in Ck1
γ1 (R+; H p1(O)) up to a

constant and φ2 is supported away from t = 0 as a function of time t .
• Linearized Euler flow

It follows from Lemma 2.9 that �u0 is supported inO\� and is smooth. Thus,
by Lemma 2.10 and (4.2), there are ν2 in Ck1(R+; H p1−2(O)), supported inO \�
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as a function of x , u2 in Ck1(R+; H p1−1(O)) and p2 in Ck1−1
γ1 (R+; H p1−1(O))

such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u2 + u0 · ∇u2 + u2 · ∇u0 + ∇ p2 = ν2 + �u0, in R+ × O,

u2 · n = 0, in R+ × ∂O,

div u2 = 0, in R+ × O,

u2 = u∗, in O.

(4.9)

Moreover, ν2, u2 and p2 are supported in [0, T ] as functions of time t .
• Subprincipal tangential boundary layer

Let

f 2 := −[
v1 · ∇v1 + 2n · ∇∂zv

1 − �ϕ∂zv
1 − w2∂zv

1 + ∇π2]

tan
−(n · ∇u0)tanw2 − (u0 · ∇n)w2, (4.10)

g2 := 2N (v1)|z=0χ2(x). (4.11)

By Lemma 4.1, we find that f 2 is in Ck1
γ1 (R+; H p1−1(O; Hs1−1

q1−2(R+))) and g2 is

in Ck1
γ1 (R+; H p1−1(O)) satisfy the conditions of Proposition 3.3, that is, f 2 and

g2 are supported in Vδ1 as functions of x and are supported away from t = 0 as
functions of time t , and satisfy f 2(t, x, z) · n(x) = g2(t, x) · n(x) = 0 for any
t ≥ 0, x in O and z ≥ 0. Therefore there exist ξ2 in Ck2−1

γ2 (R+; H p2(O;S(R+)))

and a solution v2 in Ck2
γ2 (R+; H p2(O; Hs2

q2 (R+))) to
⎧
⎪⎨

⎪⎩

∂tv
2 + u0 · ∇v2 + B0v2 − u0

� z∂zv
2 − ∂2z v2 = ξ2 + f 2 in R+ × O × R+,

∂zv
2|z=0 = g2 on R+ × O × {z = 0},

v2|t=0 = 0 on O × R+.

(4.12)

Furthermore, ξ2 is supported in (O\�) ∩ Vδ2 as a function of x and is compactly
supported in (0, T ) as a function of time t , and v2 is supported inVδ2 as a function of
x and is supported away from t = 0 as a function of time t , and ξ2 ·n = v2 ·n = 0.
• Subprincipal pressure boundary layer

We set

π3(t, x, z) := −
∫ +∞

z

(
∂tw

2 + u0 · ∇w2 − u0 · ∇n · v2 + (v2 + w2n) · ∇u0 · n

−u0
� z′∂zw

2 + v1 · ∇v1 · n − ∂2z w2 + ∂nπ
2
)
(t, x, z′)dz′.

Then it follows from Lemma 4.1 that π3 is in Ck2
γ2 (R+; H p2(O; Hs2

q2−2(R+)) and

∂zπ
3 =∂tw

2 + u0 · ∇w2 − u0 · ∇n · v2 + (v2 + w2n) · ∇u0 · n
− u0

� z∂zw
2 + v1 · ∇v1 · n − ∂2z w2 + ∂nπ

2.
(4.13)

Moreover, π3 is supported in Vδ2 as a function of x and is supported away from
t = 0 as a function of time t .
• Subprincipal normal velocity boundary layer
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Let

w3(t, x, z) := −
∫ ∞

z
div (v2 + w2n)(t, x, z′)dz′. (4.14)

Then ∂zw
3 = div (v2 + w2n) and w3 is in Ck2

γ2 (R+; H p2−1(O; Hs2
q2−2(R+)) is

supported in Vδ2 as a function of x and is supported away from t = 0 as a function
of time t , furthermore

∫

∂O
w3(t, x, 0)dx = 0. (4.15)

• Lower order backflow velocity

Let φ3 be a solution of the following Neumann problem:
{

�φ3 = 0 in O,

∂nφ
3 = −w3(t, x, 0) on ∂O.

(4.16)

Thanks to (4.15), there exists a unique solution φ3 in Ck2
γ2 (R+; H p2(O)) up to a

constant and φ3 is supported away from t = 0 as a function of time t .
• Lower order interior flow

We take

u3(t, x) = ν3(t, x) = 0, p3(t, x) = 0 for t ∈ R+, x ∈ O. (4.17)

• Lower order tangential velocity boundary layer
Let

f̃ 3 :=∇π3 + v1 · ∇(u2 + ∇φ2 + v2 + w2n)

+ (u2 + ∇φ2 + v2 + w2n) · ∇v1

− w2∂z(v
2 + w2n) − w3∂zv

1 − �v1

+ 2n · ∇∂z(v
2 + w2n) − �ϕ∂z(v

2 + w2n),

(4.18)

and

f 3 := −( f̃ 3)tan − (n · ∇u0)tanw3 − (u0 · ∇n)w3, (4.19)

g3 := 2N (u2 + v2 + ∇φ2 + w2n)|z=0χ2(x). (4.20)

Thanks to Lemma 4.1, f 3 in Ck2
γ2 (R+; H p2−1(O; , Hs2−1

q2−2(R+)) and g3 in Ck2
γ2

(R+; H p2−1(O)) and satisfy f 3(t, x, z) ·n(x) = g3(t, x) ·n(x) = 0 for any t ≥ 0,
x in O and z ≥ 0. Moreover f 3 and g3 are supported in Vδ2 as functions of x .
Then, by using Proposition 3.3, there exist ξ3 in Ck3−1

γ3 (R+; H p3(O;S(R+))), v3

in Ck3
γ3 (R+; H p3(O; Hs3

q3 (R+)) and v30 in H p3+2(O; C∞
0 (R+)) such that

⎧
⎪⎨

⎪⎩

∂tv
3 + u0 · ∇v3 + B0v3 − u0

� z∂zv
3 − ∂2z v3 = ξ3 + f 3 in R+ × O × R+,

∂zv
3|z=0 = g3 on R+ × O × {z = 0},

v3|t=0 = v30 on O × R+.

(4.21)
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Moreover, ξ3 is supported in (O\�) ∩ Vδ3 as a function of x , v3 is supported in
Vδ3 as a function of x and ξ3 · n = v3 · n = 0.
• A lower order pressure boundary layer

We set

π4(t, x, z) := −
∫ +∞

z

(
∂tw

3 + u0 · ∇w3 − u0 · ∇n · v3 − u0
� z′∂zw

3

+ (v3 + w3n) · ∇u0 · n − ∂2z w3 + f̃ 3 · n
)
(t, x, z′)dz′.

Hence ∂zπ
4 in Ck3

γ3 (R+; H p3(O; Hs3
q3−2(R+)) and

∂zπ
4 := ∂tw

3 + u0 · ∇w3 − u0 · ∇n · v3 + (v3 + w3n) · ∇u0 · n
−u0

� z∂zw
3 − ∂2z w3 + f̃ 3 · n. (4.22)

Furthermore, π4 is supported in Vδ3 as a function of x .
• A lower order normal velocity boundary layer

Set

w4(t, x, z) := −
∫ ∞

z
div (v3 + w3n)(t, x, z′)dz′. (4.23)

Then ∂zw
4 = div (v3 + w3n) and w4 belongs to Ck3

γ3 (R+; H p3−1(O; Hs3
q3−2(R+))

and is supported inVδ3 as a functionof x ,withw4|t=0 = w4
0 in H p3+1(O; C∞

0 (R+)).
Moreover w4 satisfies

∫

∂O
w4(t, x, 0)dx = 0. (4.24)

• A lower order backflow velocity

Let φ4 be a solution of the following Neumann problem:
{

�φ4 = 0 in O,

∂nφ
4 = −w4(t, x, 0) on ∂O.

(4.25)

Thanks to (4.24), there exists a unique solution φ4 in Ck3
γ3 (R+; H p3(O)) up to a

constant, with φ4|t=0 = φ4
0 in H p3+2(O).

• A lower order interior flow
Let

l4 := −u2 · ∇u2 + �u2 ∈ Ck2
γ2

(R+; H p2−2(O)), (4.26)

and obeserve that curl l4 is supported in [0, T ] as a function of time. By Lemma
2.10, there are ν4 in Ck3(R+; H p3−2(O)), supported in O \ � as a function of x ,
u4 in Ck3

γ3 (R+; H p3−1(O)) and p4 in Ck3−1
γ3 (R+; H p3−1(O)) such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t u4 + u0 · ∇u4 + u4 · ∇u0 + ∇ p4 = ν4 + l4 in R+ × O,

div u4 = 0 in R+ × O,

u4 · n = 0 on R+ × ∂O,

u4|t=0 = 0 in O.

(4.27)
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Moreover, ξ4, u4 and p4 are supported in [0, T ] as functions of time t .
• a lower order tangential velocity boundary layer

Set

f̃ 4 :=v1 · ∇(u3 + ∇φ3 + v3 + w3n) + (u2 + φ2 + v2 + w2n) · ∇(v2 + w2n)

+ (v2 + w2n) · ∇(u2 + φ2 + v2 + w2n) + (u3 + ∇φ3 + v3 + w3n) · ∇v1

− w2∂z(v
3 + w3n) − w3∂z(v

2 + w2n) − w4∂zv
1 − �(v2 + w2n)

+ 2n · ∇∂z(v
3 + w3n) − �ϕ∂z(v

3 + w3n) + ∇π4,

(4.28)

and

f 4 := − f̃ 4tan − (n · ∇u0)tanw4 − (u0 · ∇n)w4, (4.29)

g4 := 2N (u3 + ∇φ3 + v3 + w3n)|z=0χ2(x). (4.30)

Thanks to Lemma 4.1, one can check that f 4 in Ck3
γ3 (R+; H p3−1(O; Hs3−1

q3−2(R+))

and g4 in Ck3
γ3 (R+; H p3−1(O)) and satisfy f 4(t, x, z) · n(x) = g4(t, x) · n(x) = 0

for any t ≥ 0, x inO and z ≥ 0. Moreover f 4 and g4 are supported in Vδ3 as func-
tions of x . ThenbyusingProposition3.3, there exist ξ4 inCk4−1

γ4 (R+; H p4(O;S(R+))),

v4 in Ck4
γ4 (R+; H p4(O; Hs4

q4 (R+)) and v40 in H p4+2(O; C∞
0 (R+)) such that

⎧
⎪⎨

⎪⎩

∂tv
4 + u0 · ∇v4 + B0v4 − u0

� z∂zv
4 − ∂2z v4 = ξ4 + f 4 in O,

∂zv
4|z=0 = g4 in O,

v4|t=0 = v40 in O.

(4.31)

Moreover ξ4 is supported in (O\�) ∩ Vδ4 as a function of x and is compactly
supported in (0, T ) as a function of time t , and v4 is supported in Vδ4 as a function
of x and ξ4 · n = v4 · n = 0.
• A last pressure boundary layer

We set

π5(t, x, z) := −
∫ +∞

z

(
∂tw

4 + u0 · ∇w4 + (v4 + w4n) · ∇u0 · n

− u0 · ∇n · v4 − u0
� z′∂zw

4 − ∂2z w4 + f̃ 4 · n
)
(t, x, z′)dz′,

Then π5 in Ck4
γ4 (R+; H p4(O; Hs4

q4−2(R+)) and

∂zπ
5 := ∂tw

4 + u0 · ∇w4 − u0 · ∇n · v4 + (v4 + w4n) · ∇u0 · n
−u0

� z∂zw
4 − ∂2z w4 + f̃ 4 · n. (4.32)

Moreover, π5 is supported in Vδ4 as a function of x .
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In summary, we have now constructed

u j ∈Ck j−1 (R+; H p j−1−1(O)), p j ∈ Ck j−1−1(R+; H p j−1−1(O)), 2 ≤ j ≤ 4,

ν j ∈Ck j−1 (R+; H p j−1−2(O)), φ j ∈ C
k j−1
γ j−1 (R+; H p j−1 (O)), 2 ≤ j ≤ 4,

v j ∈C
k j
γ j (R+; H p j (O; H

s j
q j (R+))), π j+1 ∈ C

k j
γ j (R+; H p j (O; H

s j
q j −2(R+))), 1 ≤ j ≤ 4,

w j ∈C
k j−1
γ j−1 (R+; H p j−1−1(O; H

s j−1
q j−1−2(R+))), 2 ≤ j ≤ 4,

ξ j ∈C
k j −1
γ j (R+; H p j (O;S(R+))), 1 ≤ j ≤ 4.

Moreover, u j , p j , ν j and ξ j are supported in [0, T ] as functions of time t , ν j and
ξ j are supported in O\� as functions of x , v j , w j+1, π j+1 are supported in Vδ j

as functions of x and v j · n = ξ j · n = 0. Furthermore, v1, v2, φ2, φ3, w2 and w3

are supported away from t = 0 as a function of time t .

4.2. Construction of the family of approximate solutions

Let us start with a notation: for a profile f (t, x, z), we define

{ f }ε := f
(

t, x,
ϕ(x)√

ε

)
.

We define the approximate solutions via

uε
a := u0 + √

ε{v1}ε +
4∑

j=2

ε
j
2
(
u j + ∇φ j + {v j }ε + {w j }εn

)
, (4.33)

pε
a := p0 +

4∑

j=2

ε
j
2
(

p j − ∂tφ
j − u0 · ∇φ j + {π j }ε

)
, (4.34)

ξε := ν0 + √
ε{ξ1}ε +

4∑

j=2

ε
j
2
(
ν j + {ξ j }ε

)
. (4.35)

4.3. Consistency estimates of the approximate solutions

Below we use a slight abuse of notations by denoting, for an integer m, by
Zm any iterated tangential derivatives Zα where α = (α0, · · · , α5) is in N

5 with
|α| = m, where we recall that the notation Zα is defined in (2.29) of Sect. 2.8.

Lemma 4.2. Let γ > 0, k, p, s, q in N with p ≥ 3 and s ≥ 1. Let the profile V in
Ck

γ (R+; H p(O; Hs
q (R+))) and is supported in Vδ0 . Then one has

(1) for 0 ≤ j ≤ k, p1 + p2 ≤ p − 1 and p2 ≤ s,

‖∂ j
t Z p1(

√
ε∂n)

p2{V }ε‖L2(O) � ε
1
4 〈t〉−γ , (4.36)
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(2) for 0 ≤ j ≤ k, p1 + p2 ≤ p − 2 and p2 ≤ s − 1,

‖∂ j
t Z p1(

√
ε∂n)

p2{V }ε‖L∞(O) � 〈t〉−γ , (4.37)

(3) for m ≤ p − 1,

‖{V }ε‖Hm (∂O) � 〈t〉−γ . (4.38)

Proof. We first observe that
√

ε∂n{V }ε = √
ε{∂nV }ε + {∂z V }ε,

Z0{V }ε = {Z0V }ε + {z∂z V }ε and Z j {V }ε = {Z j V }ε for 1 ≤ j ≤ 5.

We can take the normal derivatives p2 times, take the tangential derivatives p1
times and take the time derivatives j times and use [25, Lemma 3] to get (4.36).
For (4.37), we use Sobolev imbedding H1(R+) ↪→ L∞(R+) for variable z and
H2(O) ↪→ L∞(O) for variable x . For (4.38), we use the trace theorem to get
Hm+1(O) ↪→ Hm(∂O). 
�

Let us now turn to the justification of the consistence of the approximate solu-
tions constructed in (4.33-4.35) with the system (2.28a-2.28e).
• Consistency of (2.28a). Definition and estimate of F.

By (4.33)-(4.35), (2.8a), (2.25), (4.4)-(4.6), (4.9), (4.10), (4.12), (4.13), (4.14),
(4.17)-(4.19), (4.21), (4.22), (4.23), (4.26)-(4.29), (4.31) and (4.32), we find that
uε

a satisfies (2.28b) with

F := − {n∂zπ
5}ε + √

ε
{
v1 · ∇(u4 + ∇φ4 + v4 + w4n)

+ (u2 + ∇φ2 + v2 + w2n) · ∇(u3 + ∇φ3 + v3 + w3n)

− w2∂z(v
4 + w4n) + (u3 + ∇φ3 + v3 + w3n) · ∇(u2 + ∇φ2 + v2 + w2n)

− w3∂z(v
3 + w3n) + (u4 + ∇φ4 + v4 + w4n) · ∇v1 − w4∂z(v

2 + w2n)

− �(u3 + ∇φ3 + v3 + w3n) + 2n · ∇∂z(v
4 + w4n) − �ϕ∂z(v

4 + w4n)
}

ε

+ ε
{
(u2 + ∇φ2 + v2 + w2n) · ∇(u4 + ∇φ4 + v4 + w4n)

+ (u3 + ∇φ3 + v3 + w3n) · ∇(u3 + ∇φ3 + v3 + w3n) − w3∂z(v
4 + w4n)

+ (u4 + ∇φ4 + v4 + w4n) · ∇(u2 + ∇φ2 + v2 + w2n) − w4∂z(v
3 + w3n)

− �(u4 + ∇φ4 + v4 + w4n)
}

ε

+ ε
3
2

{
(u3 + ∇φ3 + v3 + w3n) · ∇(u4 + ∇φ4 + v4 + w4n)

+ (u4 + ∇φ4 + v4 + w4n) · ∇(u3 + ∇φ3 + v3 + w3n) − w4∂z(v
4 + w4n)

}

ε

+ ε2
{
(u4 + ∇φ4 + v4 + w4n) · ∇(u4 + ∇φ4 + v4 + w4n)

}

ε
.

(4.39)

By the constructions of ui , φi , vi , wi and the definition of γi , ki , pi , si , qi ,we have
ui + ∇φi in Ck

γ (R+; H p(O)) and vi + win in Ck
γ (R+; H p(O; Hs

q (R+))). Then
(2.35) and (2.36) for the part of F is a direct consequence of Lemma 4.1 and Lemma
4.2.
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• Consistency of (2.28b). Definition and estimate of H.

By (2.8b), (4.8), (4.9), (4.14), (4.16), (4.17), (4.23), (4.25) and (4.27), we find
that uε

a satisfies (2.28b) with

H := {div (v4 + w4n)}ε. (4.40)

By construction div (v4 + w4n) in Ck
γ (R+; H p−1(O; Hs

q (R+))), so Lemma
4.2 immediately leads to the estimates, (2.35), (2.36) and (2.37) for the part of H .
• Consistency of (2.28d). Definition and estimate of G.

By (4.3), (4.4), (4.11), (4.12), (4.20), (4.21), (4.30 ) and (4.31), uε
a satisfies

(2.28d) with

G := N (u4 + ∇φ4 + v4 + w4n)|z=0. (4.41)

By construction, u4 + ∇φ4 in Ck3
γ3 (R+; H p3−1(O)) and v4 + w4n in Ck

γ (R+; H p

(O; Hs
q (R+))). Bydefinitionofγi , ki , pi , si , qi ,wefind thatG inCk

γ (R+; H p−1(O)),
which is exactly (2.37) for the part of G.
• Consistency of (2.28c) and (2.28e). Definition and estimate of R0.

By (2.8c), (2.8d), (4.4), (4.6), (4.8), (4.9), (4.12), (4.14), (4.16), (4.17), (4.21),
(4.23), (4.25), (4.27) and (4.31), (2.28c) and (2.28e) are satisfied with

R0 = −ε
1
2 v30 − (v40 + ∇φ4

0 + w4
0n), (4.42)

and (2.38)) is a direct consequences of Lemma 4.2.

4.4. Verification of (2.39)–(2.41)

Let us verify (2.39) and (2.40) first. Since u0 is smooth and has compact support
in t ,

‖u0‖W 1,∞(O) + ‖∇u0‖m−1,∞ + ‖∇2u0‖m−1,∞ � χ[0,T ](t). (4.43)

By construction, v j in Ck
γ (R+; H p(O; Hs

q (R+))), 1 ≤ j ≤ 4. Then it follows
from (4.37) of Lemma 4.2 that, for 1 ≤ j ≤ 4, m ≤ p − 3,

√
ε‖{v j }ε‖W 1,∞ + √

ε‖∇{v j }ε‖m−1,∞ + ε‖∇2{v j }ε‖m−1,∞ � 〈t〉−γ .

(4.44)

The same inequality holds for w jn with 2 ≤ j ≤ 4, since they also belong to the
spaceCk

γ (R+; H p(O; Hs
q (R+))).Foru j ,2 ≤ j ≤ 4, it belongs toCk(R+; H p(O))

and is supported in [0, T ]. Hence Sobolev imbedding Theorem ensures that, for
2 ≤ j ≤ 4, m ≤ p − 3,

‖u j‖W 1,∞(O) + ‖∇u j‖m−1,∞ + ‖∇2u j‖m−1,∞ � χ[0,T ](t). (4.45)

For ∇φ j , 2 ≤ j ≤ 4, it belongs to Ck
γ (R+; H p(O)). Then it follows form Sobolev

imbedding Theorem that, for 2 ≤ j ≤ 4, m ≤ p − 3,

‖∇φ j‖W 1,∞(O) + ‖∇2φ j‖m−1,∞ + ‖∇3φ j‖m−1,∞ � 〈t〉−γ . (4.46)
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Combine (4.43)-(4.46), we have verified (2.39) and (2.40).
Let us move on to (2.41). Since u0 is smooth and u j in Ck(R+; H p(O)) for

2 ≤ j ≤ 4, and they both supported in [0, T ], one has
‖u0‖H1(O) + ‖u j‖H1(O) ≤ χ[0,T ](t).

For ∇φ j in Ck
γ (R+; H p(O)), 2 ≤ j ≤ 4,

‖∇φ j‖H1(O) � 〈t〉−γ .

For v j in Ck
γ (R+; H p(O; Hs

q (R+))), 1 ≤ j ≤ 4, it follows from Lemma 4.2 that

√
ε‖{v j }ε‖H1(O) � ε

1
4 〈t〉−γ .

The same estimates holds for w jn. By gathering the above estimates, we find that

‖uε
a(t, ·)‖H1(O) � χ[0,T ](t) + ε〈t〉−γ + ε

1
4 〈t〉−γ .

As a result, it comes out

‖uε
a(T/ε, ·)‖H1(O) � εγ+ 1

4 .

Since γ > 1, (2.41) holds true.

5. Estimates of the Remainder R

The goal of this section is to establish the a priori estimate (2.43) for the
remainder term R defined by (2.42). We also introduce the remainder pressure
term π such that pε = pε

a + ε2π . Then in view of (2.4), (2.28) and (2.42), we write

∂t R − ε�R + uε · ∇ R + R · ∇uε
a + ∇π = −F and

div R = −H in R+ × O, (5.1a)

R · n = 0 and N (R) = −G on R+ × ∂O, (5.1b)

R|t=0 = R0 in O. (5.1c)

These equations are satisfied up to the time T ε introduced in Sect. 2.9. At the end of
this section, once the a priori estimate (2.43) in hands, we will deduce that T ε ≥ T

ε
.

We will start with a L2 estimate in Sect. 5.1, then we will turn to tangential
derivatives estimates in Subsection 5.2. We will also need to handle the estimate
of one normal derivative, and for that, we introduce an appropriate substitute to
the vorticity, see (5.37), which is in the spirit of [30]. We will see in Sect. 5.3
that this quantity, as the vorticity, allows us to estimate one normal derivative. The
advantage of this quantity over the vorticity is that its time evolution is easier to be
investigated; this will be done in Sect. 5.4. The estimate of the terms involving the
pressure are quite difficult and are therefore postponed to Sect. 5.5. An estimate of
‖R‖1,∞ will be obtained in Sect. 5.6. The end of the proof of (2.43) will be given
in Sect. 2.9.
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5.1. L2 Estimates

From now on, we simplify ‖ · ‖L2(O) as ‖ · ‖.
Proposition 5.1. There exist a constant C > 0, such that the remainder R satisfies

‖R(t)‖2 + ε

∫ t

0
‖∇ R‖2dt ′ ≤ Cε− 1

4 for 0 ≤ t ≤ T ε. (5.2)

Proof. Let P the Leray projection operator to the divergence free vector field, we
decompose R into R = PR + ∇φ. Hence φ satisfies �φ = div R = −H inO and
∂nφ = R · n = 0 on ∂O. By elliptic regularity and (2.35), one has

‖(I − P)R‖H1(O) � ‖H‖L2(O) � ε
1
4 〈t〉−γ . (5.3)

Next we estimate PR. Indeed by taking L2 inner product of (5.1a) with PR, we
find

1

2

d

dt
‖PR(t)‖2 − ε

∫

O
�R · PR +

∫

O
(uε · ∇ R) · PR

+
∫

O
(R · ∇uε

a) · PR +
∫

O
∇π · PR = −

∫

O
F · PR.

(5.4)

Let us now estimate each term of (5.4), from the right to the left.

• Since F satisfies (2.35), we have

|
∫

O
F · PR| � ‖F‖‖PR‖ � ε

1
4 〈t〉−γ

(‖PR‖2 + 1
)
. (5.5)

• On the other hand, in view of (5.1b), we get, by an integration by parts, that
∫

O
∇π · PR = 0.

• Let us now move to the term before in (5.4). We first deduce from (5.3) that

‖R‖ � ‖PR‖ + ε
1
4 〈t〉−γ , (5.6)

which, together with (2.39), ensures that

|
∫

O
(R · ∇uε

a) · PR| � ‖∇uε
a‖L∞(O)‖R‖‖PR‖ � 〈t〉−γ

(‖PR‖2 + ε
1
2 〈t〉−2γ )

.

(5.7)

• To deal with the third term in (5.4), we start with using again the Helmholtz-
Leray decomposition to deduce that

∫

O
(uε · ∇ R) · PR =

∫

O
(uε · ∇PR) · PR +

∫

O
(uε · ∇(I − P)R) · PR.

(5.8)
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Thanks to (2.4b), (2.4c), and σ 0 is supported on [0, T ], we get, by using inte-
gration by parts, that

|
∫

O
(uε · ∇PR) · PR| � 〈t〉−γ ‖PR‖2. (5.9)

Moreover, to deal with the last term in (5.8), we first use the decomposition
(2.42) to obtain

|
∫

O
(uε · ∇(I − P)R) · PR| � ‖∇(I − P)R‖(‖uε

a‖L∞‖PR‖ + ε2‖R‖2L4).

Observing from Korn’s inequality and (5.6) that

‖R‖H1 � ‖D(R)‖ + ‖PR‖ + ε
1
4 〈t〉−γ . (5.10)

Then recalling that ‖R‖L4 � ‖R‖ 1
4 ‖∇ R‖ 3

4 , and using again (5.6), we find

‖R‖2L4 � (‖PR‖ + ε
1
4 〈t〉−γ )

1
2 (‖D(R)‖ + ‖PR‖ + ε

1
4 〈t〉−γ )

3
2

� λ‖D(R)‖2 + Cλ(‖PR‖2 + ε
1
2 〈t〉−2γ ),

for a small constant λ > 0, where in the last step, we used Young’s inequality.
As a consequence, we deduce from (5.3) and (2.39) that

|
∫

O
(uε · ∇(I − P)R) · PR| � ε

1
4 〈t〉−γ (〈t〉−γ ‖PR‖

+ε2λ‖D(R)‖2 + ε2Cλ(‖PR‖2 + ε
1
2 〈t〉−2γ ))

� ε2λ‖D(R)‖2 + Cλε
1
4 〈t〉−γ (‖PR‖2 + 1).(5.11)

• For the second term of the energy equality, (5.4), we start with the following
integration by parts:

−
∫

O
�R · PR = 2

∫

O
D(R) · D(PR) + 2

∫

∂O
(D(R) · n)tan · PR.

Then, on the one hand, it follows from (5.3) that

2
∫

O
D(R) · D(PR) =2‖D(R)‖2 − 2

∫

O
D(R) · D((I − P)R)

≥‖D(R)‖2 − C‖D((I − P)R)‖2
≥‖D(R)‖2 − Cε

1
4 〈t〉−γ ,

(5.12)

and, on the other hand, by using boundary condition N (R) = G on ∂O, one
has

∫

∂O
(D(R) · n)tan · PR =

∫

∂O
(
G − (M R)tan

) · PR

=
∫

O
div

(
n(G − (M R)tan) · PR

)
,
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so that thanks to (5.6), (5.10) and (2.37), for λ > 0,we get, by applyingYoung’s
inequality, that

|
∫

∂O
(D(R) · n)tan · PR| � λ‖D(R)‖2 + Cλ(‖PR‖2 + 〈t〉−2γ ). (5.13)

By inserting the estimates, (5.5), (5.7), (5.9), (5.11) and (5.13), into (5.4), we
arrive at
1

2

d

dt
‖PR(t)‖2 + ε‖D(R)‖2 ≤ Cελ‖D(R)‖2 + Cλ(ε + 〈t〉−γ )‖PR‖2 + ε

1
4 〈t〉−γ .

Choosing λ small enough such that Cλ < 1
2 and note that (2.38) implies

‖PR0‖ ≤ ‖R0‖ � ε− 1
4 , (5.14)

then we use Gronwall inequality to find that

‖PR(t)‖2 + ε

∫ t

0
‖D(R)‖2dt ′ ≤ Cε− 1

4 for 0 ≤ t ≤ T ε.

Together with (5.3) and (5.10), we thus conclude the proof of (5.2). 
�

5.2. Tangential Derivatives Estimates

We now estimate the tangential derivatives of the remainder. Recall that the
tangential derivatives Zα are defined in (2.29) of Sect. 2.8 and the conormal Sobolev
norm ‖ · ‖m is defined in (2.34). Let us start by estimating ∇ R on the boundary.

Lemma 5.2. Let m ≥ 1. It holds that

‖∇ R‖Hm−1(∂O) � ‖R‖Hm (∂O) + 〈t〉−γ . (5.15)

Proof. Indeed we only need to estimate ‖∂nR‖Hm−1(∂O). On the one hand, we
deduce from the boundary conditions: N (R) = −G, R · n = 0 on ∂O, that

(∂nR − ∇n · R + 2M R)tan = −2G on ∂O,

from which, with (2.37), we infer

‖(∂nR)tan‖Hm−1(∂O) � ‖R‖Hm (∂O) + ‖G‖Hm−1(∂O) � ‖R‖Hm (∂O) + 〈t〉−γ .

(5.16)

On the other hand, div R = −H gives us

∂nR · n +
∑

j

c j Z j R = −H (5.17)

for some smooth functions c j , which depends only on vector field w j . Thus, by
(2.37),

‖∂nR · n‖Hm−1(∂O) � ‖R‖Hm (∂O) + ‖H‖Hm−1(∂O) � ‖R‖Hm (∂O) + 〈t〉−γ .

(5.18)

Combining the estimate (5.16) with (5.18), we have proved the part of (5.15) re-
garding ‖∂nR‖Hm−1(∂O). The other part of the estimate is straightforward. 
�
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Proposition 5.3. Let 1 ≤ m ≤ p − 3 be an integer. Then there exists a constant
C1 > 0 such that for any t in [0, T ε],
d

dt
‖R(t)‖2m+C1ε‖∇ R‖2m � ε‖∇ R‖2m−1 +

∑

|α|≤m

|
∫

O
Zα∇π · Zα R| + ε

1
4 〈t〉−γ

+ ‖R‖2m(ε + 〈t〉−γ ) + ε2(‖R‖1,∞‖∇ R‖m−1‖R‖m + ‖∇ R‖L∞‖R‖2m).

(5.19)

Proof. Let 1 ≤ � ≤ p − 3 be an integer and α be a multi-index with |α| = �. By
applying Zα to (5.1a), we obtain

∂t Zα R − ε�Zα R + uε · ∇Zα R + Zα(R · ∇uε
a) + Zα∇π

= Zα F − ε[�, Zα]R + [uε · ∇, Zα]R,

Taking L2 inner product of the above equation with Zα R gives rise to

1

2

d

dt
‖Zα R(t)‖2 − ε

∫

O
�Zα R · Zα R +

∫

O
(uε · ∇Zα R) · Zα R +

∫

O
Zα∇π · Zα R

= −
∫

O
Zα(R · ∇uε

a) · Zα R +
∫

O
Zα F · Zα R − ε

∫

O
[�, Zα]R · Zα R

+
∫

O
[uε · ∇, Zα]R · Zα R.

(5.20)

In what follows, we shall handle term by term above in (5.20).

• We start with estimating the second term in (5.20), which relies on the following
lemma:

Lemma 5.4. Let 1 ≤ |α| ≤ m. There exist constants C1, C > 0 such that

−
∫

O
�Zα R · Zα R ≥ C1‖∇Zα R‖2 − C‖R‖2m − C〈t〉−2γ . (5.21)

We postpone its proof to the end of this subsection.

• For the third term of (5.20), since div uε = σ 0 in O, uε · n = 0 on ∂O, and σ 0

is supported on [0, T ], we get, by using integration by parts, that

|
∫

O
(uε · ∇Zα R) · Zα R| � 〈t〉−γ ‖R‖2m . (5.22)

.
• By using the Leibniz formula and (2.39), we find

|
∫

O
Zα(R · ∇uε

a) · Zα R| �
∑

α1+α2=α

|
∫

O
Zα1 R · Zα2∇uε

a · Zα R|

�〈t〉−γ ‖R‖2m .

(5.23)

• (2.35) ensures that

|
∫

O
Zα F · Zα R| � ε

1
4 〈t〉−γ

(‖R‖2m + 1
)
. (5.24)
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• Thanks to (2.32) and Zα(R · n) = 0 on ∂O, we get, by using integration by
parts, that

|
∫

O
ε[�, Zα]R · Zα R| �|

∫

O

∑

|β|,|γ |≤m−1

ε(cβ∇2Zβ R + cγ ∇Zγ R) · Zα R|

�ε(‖∇ R‖m + ‖R‖m)‖∇ R‖m−1

+ ε‖∇ R‖Hm−1(∂O)‖R‖Hm (∂O).

Moreover, due to trace Theorem (see (87) of [30] for instance) that

‖R‖2Hm (∂O) � ‖R‖2m + ‖R‖m‖∇ R‖m, (5.25)

and Lemma 5.2, for any λ > 0, we infer

‖∇ R‖Hm−1(∂O)‖R‖Hm (∂O) �‖R‖2Hm (∂O) + 〈t〉−2γ

�‖R‖2m + ‖R‖m‖∇ R‖m + 〈t〉−2γ

�λ‖∇ R‖2m + Cλ‖R‖2m + 〈t〉−2γ .

(5.26)

As a result, it comes out

ε|
∫

O
[�, Zα]R · Zα R| ≤ λε‖∇ R‖2m + Cλε(‖∇ R‖2m−1 + ‖R‖2m + 〈t〉−2γ ),

(5.27)

• For the last term, we use the decomposition (2.42) to get
∫

O
[uε · ∇, Zα]R · Zα R =

∫

O
[u0 · ∇, Zα]R · Zα R

+
∫

O
[(uε

a − u0) · ∇, Zα]R · Zα R

+ ε2
∫

O
[R · ∇, Zα]R · Zα R.

We write

u0 · ∇ =
∑

j

c j Z j + (u0 · n)∂n =
∑

j

c j Z j + u0
� Z0, (5.28)

for some smooth functions c j .

Thanks to (2.33), we can easily show by induction that [Z j , Zα], 0 ≤ j ≤ 5, is
a tangential derivative of order m. Note that u0 is supported in [0, T ], we have

|
∫

O
[u0 · ∇, Zα]R · Zα R| � χ[0,T ](t)‖R‖2m . (5.29)

On the other hand, applying the Leibniz formula yields

[(uε
a − u0) · ∇, Zα]R =

∑

α1+α2=α,α1 �=0

cα1 Zα1 (uε
a − u0)Zα2∇ R + (uε

a − u0)[∇, Zα]R,
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for some smooth functions cα1 depended on the vector field W.

It follows from (2.40) that

‖[(uε
a − u0) · ∇, Zα]R‖ �

√
ε〈t〉−γ ‖∇ R‖m−1,

which implies

|
∫

O
[(uε

a − u0) · ∇, Zα]R · Zα R| �
√

ε〈t〉−γ ‖∇ R‖m−1‖R‖m

� ε‖∇ R‖2m−1 + 〈t〉−2γ ‖R‖2m . (5.30)

Applying the Leibniz formula once again gives

[R · ∇, Zα]R =
∑

α1+α2=α,α1 �=0

cα1 Zα1 R · Zα2∇ R + R[∇, Zα]R.

Yet it follows fromgeneralized Sobolev-Gagliardo-Nirenberg-Morse inequality
that

‖[R · ∇, Zα]R‖ � ‖R‖1,∞‖∇ R‖m−1 + ‖∇ R‖L∞‖R‖m,

so that we infer

|
∫

O
[R · ∇, Zα]R · Zα R| � ‖R‖1,∞‖∇ R‖m−1‖R‖m + ‖∇ R‖L∞‖R‖2m .

(5.31)

Combining (5.29), (5.30) with (5.31), we arrive at

|
∫

O
[uε · ∇, Zα]R · Zα R| �ε‖∇ R‖2m−1 + 〈t〉−2γ ‖R‖2m

+ ε2(‖R‖1,∞‖∇ R‖m−1‖R‖m + ‖∇ R‖L∞‖R‖2m).

(5.32)

By inserting the estimates, (5.21), (5.22), (5.23), (5.24), (5.27) and (5.32), into
(5.20), and then by summing up (5.2) with the resulting inequality over all the
multi-indices α with 1 ≤ |α| ≤ m, finally choosing λ to be sufficiently small, we
arrive to (5.19). 
�

Let us now present the proof of Lemma 5.4.

Proof of Lemma 5.4. We first get, by using integration by parts, that

−
∫

O
�Zα R · Zα R = 2

∫

O
|D(Zα R)|2 + 2

∫

∂O
(D(Zα R) · n)tan · Zα R.

(5.33)

It follows from Korn’s inequality that

‖D(Zα R)‖2 ≥ C1‖∇Zα R‖2 − C2‖Zα R‖2. (5.34)

As N (R) = G on ∂O, we have

(D(Zα R) · n)tan = −(M Zα R)tan + ZαG + [N , Zα]R,
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so that there holds
∫

∂O
(D(Zα R) · n)tan · Zα R =

∫

∂O
(ZαG − (M Zα R)tan) · Zα R

+
∫

∂O
[N , Zα]R · Zα R.

(5.35)

We are going to estimate each term of the right hand side of (5.35).
On the one hand, by virtue of (2.37) and for any λ > 0, we get, by applying

Young’s inequality, that

∣
∣
∫

∂O
(ZαG − (M Zα R)tan) · Zα R

∣
∣

= ∣
∣
∫

O
div

(
n(ZαG − (M Zα R)tan) · Zα R

)∣
∣

� ‖ZαG‖H1‖Zα R‖ + (‖ZαG‖ + ‖Zα R‖)‖Zα R‖H1

� λ‖∇Zα R‖2 + Cλ(‖ZαG‖2H1 + ‖Zα R‖2)
� λ‖∇Zα R‖2 + Cλ(〈t〉−2γ + ‖Zα R‖2).

On other hand, we deduce from (5.26) that

∣
∣
∫

∂O
[N , Zα]R · Zα R

∣
∣ � ‖∇ R‖Hm−1(∂O)‖R‖Hm (∂O)

≤ λ‖∇ R‖2m + Cλ

(‖R‖2m + 〈t〉−2γ )
.

By substituting the above inequalities into (5.35), we achieve

∣
∣
∫

∂O
(D(Zα R) · n)tan · Zα R

∣
∣ ≤ 2λ‖∇ R‖2m + 2Cλ

(‖R‖2m + 〈t〉−2γ )
. (5.36)

By inserting (5.34) and (5.36) into (5.33) and choosing λ to be sufficiently
small, we arrive at (5.21). 
�

5.3. An Appropriate Substitute to the Vorticity

Weobserve that the right hand sideof (5.19) involves‖∇ R‖m−1 and‖√ε∇ R‖∞,
so that we need to estimate at least one normal derivative of R. We define

η := √
ε(N (R) + G)χ(x), (5.37)

where χ is a cut-off function defined in Sect. 2. From the definition of η, we know
that η = 0 on the boundary ∂O. Observe that this property is not satisfied by the
vorticity curl R; this is indeed the reason why we would rather use η following [30]
than curl R.

Lemma 5.5. Let m ≥ 1. The following equivalences hold true:

‖η‖m−1 + ‖R‖m + √
ε〈t〉−γ ≈ ‖√ε∇ R‖m−1 + ‖R‖m + √

ε〈t〉−γ , (5.38)

‖η‖L∞ + ‖R‖1,∞ + √
ε〈t〉−γ ≈ ‖√ε∇ R‖∞ + ‖R‖1,∞ + √

ε〈t〉−γ . (5.39)
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Proof. Let us focus on the proof of (5.38). We first deduce from the definitions
(1.1) and (5.37), and the estimate of G in (2.37) that

‖η‖m−1 � ‖√ε∇ R‖m−1 + ‖R‖m + √
ε〈t〉−γ ,

which implies

‖η‖m−1 + ‖R‖m + √
ε〈t〉−γ � ‖√ε∇ R‖m−1 + ‖R‖m + √

ε〈t〉−γ . (5.40)

To prove the other side of the inequality (5.40), we introduce

� f := ftan. (5.41)

Then notice that

D(R)n = 1

2
(∂nR + ∇ R · n)tan and

(∇ R j n j
)

tan = (∇ R j )tann j ,

we have

√
ε‖χ�∂nR‖m−1 � ‖η‖m−1 + ‖R‖m + √

ε〈t〉−γ .

On the other hand, by definitions of χ and of the norm ‖ · ‖m , one has

‖(1 − χ)�∂nR‖m−1 � ‖R‖m .

And it follows from (5.17) and (2.35) that

‖∂nR · n‖m−1 � ‖R‖m + ε
1
4 〈t〉−γ .

As a consequence, we obtain

‖∂nR‖m−1 �‖χ�∂nR‖m−1 + ‖(1 − χ)�∂nR‖m−1 + ‖∂nR · n‖m−1

�‖η‖m−1 + ‖R‖m + √
ε〈t〉−γ .

(5.42)

(5.42) shows that the other side of the inequality (5.40) holds, which leads to (5.38).
The equivalence (5.39) can be proved along the same line. 
�

By virtue of (5.38) and (5.39), we can rewrite (5.19) as

d

dt
‖R(t)‖2m + C1ε‖∇ R‖2m �ε‖∇ R‖2m−1 +

∑

|α|≤m

|
∫

O
Zα∇π · Zα R| + ε

1
4 〈t〉−γ

+ (‖η‖2m−1 + ‖R‖2m)
(
ε + 〈t〉−γ

+ ε2(‖η‖2L∞ + ‖R‖21,∞)
)
.

(5.43)
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5.4. Time Evolution of the Auxiliary Quantity

Let us now estimate the time evolution of ‖η(t)‖m−1, which appears in the right
hand side of (5.43).

Proposition 5.6. Let 1 ≤ m ≤ p − 3. Then there exist a constant C1 > 0 such that
for any t ∈ [0, T ε],

d

dt
‖η(t)‖2m−1 + C1ε‖∇η‖2m−1

�ε‖∇η‖2m−2 + ε
1
4 〈t〉−γ +

∑

|β|≤m−1

√
ε
∣
∣
∫

O
Zβ (χN (∇π)) · Zβη

∣
∣

+ (
ε + 〈t〉−γ + ε2(‖η‖2L∞ + ‖R‖21,∞)

) (
‖η‖2m−1 + ‖R‖2m

)
.

(5.44)

Here the term ε‖∇η‖2m−2 does not appear on the right-hand side of (5.44) when
m = 1.

Proof. In view of (5.1), η satisfies

∂tη − ε�η + uε · ∇η = − √
εχN (F + ∇π + R · ∇uε

a)

+ √
ε
(
∂t − ε� + uε · ∇)

(χG)

− ε
3
2 [�,χN ]R + √

ε[u0 · ∇, χN ]R

+ √
ε[(uε − u0) · ∇, χN ]R.

Applying Zβ with |β| = m − 1 to the above equation yields

∂t Zβη − ε�Zβη + uε · ∇Zβη = −√
εZβ

(
χN (F + ∇π + R · ∇uε

a)
)

+√
εZβ(∂t − ε� + uε · ∇)(χG)

−ε
3
2 [�, Zβ(χN )]R

+√
ε[u0 · ∇, Zβ(χN )]R

+√
ε[(uε − u0) · ∇, Zβ(χN )]R.

Note that η = 0 on ∂O and Zβ is tangential derivative, we have Zβη = 0 on ∂O.
Then we get, by taking L2 inner product of the above equation with Zβη, that

1

2

d

dt
‖Zβη(t)‖2 + 2ε‖D(Zβη)‖2 �

8∑

i=1

|Ii |, (5.45)

where

I1 :=
∫

O
uε · ∇Zβη · Zβη,

I2 := √
ε

∫

O
Zβ(χN (F)) · Zβη,

I3 := √
ε

∫

O
Zβ(χN (∇π)) · Zβη,
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I4 := √
ε

∫

O
Zβ

(
χN (R · ∇uε

a)
) · Zβη,

I5 := √
ε

∫

O
(∂t − ε� + uε · ∇)(Zβ(χG)) · Zβη,

I6 := ε
3
2

∫

O
[�, Zβ(χN )]R · Zβη,

I7 := √
ε

∫

O
[u0 · ∇, Zβ(χN )]R · Zβη,

I8 := √
ε

∫

O
[(uε − u0) · ∇, Zβ(χN )]R · Zβη.

First, regarding the second term in the left hand side of (5.45), we observe from
Korn’s inequality that

‖D(Zβη)‖ ≥ C1‖∇Zβη‖ − C2‖Zβη‖. (5.46)

Let us now handle term by term in the right-hand side of (5.45).
• Estimate of I1.

Since uε satisfies (2.4b), (2.4c), and σε = σ 0 is supported in [0, T ], by using
integration by parts, we find

|I1| � 〈t〉−γ ‖η‖2m−1. (5.47)

• Estimate of I2.
By virtue of (2.35), we get, by applying the Cauchy-Schwarz inequality, that

|I2| � ε
1
4 〈t〉−γ

(
1 + ‖η‖2m−1

)
. (5.48)

• Estimate of I3.
We simply estimate I3 by the third term on the right-hand side of (5.44). We

remark that we do not try to get rid of the pressure at this step. Indeed this delicate
issue will be postponed to Sect. 5.5.
• Estimate of I4.

Recalling (5.41) and in view of (1.1), we write

√
εχN (R · ∇uε

a) = √
εχ�

(1

2
(∂n(R · ∇uε

a) + ∇(R · ∇uε
a) · n) + M(R · ∇uε

a)
)
.

Since M is a smooth matrix-valued function and m ≤ p − 3, we get, by applying
Leibniz formula and (2.39), that

‖√εχN (R · ∇uε
a)‖m−1 �

√
ε〈t〉−γ ‖∇ R‖m−1 + 〈t〉−γ ‖R‖m−1,

which, together with (5.38), ensures that

|I4| � 〈t〉−γ
(‖R‖2m + ‖η‖2m−1

) + √
ε〈t〉−3γ . (5.49)
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• Estimate of I5.
We split it into two terms

I5 = I51 + I52 with I51 := √
ε

∫

O
(∂t − ε� + uε

a · ∇)
(
Zβ(χG)

) · Zβη,

I52 := ε
5
2

∫

O
R · ∇(Zβ(χG)) · Zβη.

Thanks to (2.37) and (2.39), χ is a smooth function, for m ≤ p − 3, we infer

|I51| �
√

ε
(‖∂t G‖m−1 + ε‖∇2G‖m−1 + ‖uε

a‖L∞(O)‖∇G‖m−1
)‖η‖m−1

�
√

ε〈t〉−γ ‖η‖m−1,

and

|I52| � ε
5
2 ‖R‖‖∇G‖m−1‖η‖m−1 � ε

5
2 〈t〉−γ ‖R‖m‖η‖m−1,

so that we achieve

|I51 �
√

ε〈t〉−γ
(
1 + ε2‖R‖m

)‖η‖m−1. (5.50)

• Estimate of I6.
In view of (5.1b), we decompose I6 = I61 + I62 with

I61 := ε

∫

O
[�, Zβ ](η − √

εχG) · Zβη and I62 := ε
3
2

∫

O
Zβ [�,χN ]R · Zβη.

On the one hand, thanks to (2.32), we write

∫

O
[ε�, Zβ ](η − √

εχG) · Zβη = ε

∫

O

∑

|β1|,|β2|<m−1

(
cβ1∇2Zβ1η + cβ2∇Zβ2η

) · Zβη

−ε
3
2

∫

O
[�, Zβ ](χG) · Zβη,

where cβ1 , cβ2 are smooth functions depend only on vector fieldW. Due to Zβη = 0
on ∂O, by using integration by parts and (2.37), we infer

|I61| �ε‖∇η‖m−1‖∇η‖m−2 + ε‖∇η‖m−2‖η‖m−1 + ε
3
2 〈t〉−γ ‖η‖m−1

≤λε‖∇η‖2m−1 + Cλε(‖∇η‖2m−2 + ‖η‖2m−1) + Cε
3
2 〈t〉−γ ,

(5.51)

where λ > 0 is a small constant.
On the other hand, we write

[�,χN ]R = �χN (R) + 2
√

ε∇χ : ∇N (R)

+χ(��)
(
D(R) · n + M R

) + 2
√

εχ(∇�) : ∇(
D(R) · n + M R

)

+χ�
(
D(R) · �n + 2∇D(R) : ∇n + (�M)R + 2∇M : ∇ R

)
.
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Corresponding to the second and the forth term above, we use integration by parts
in I62. Then we deduce from (5.38) that

|I62| �ε
3
2 ‖∇ R‖m−1

(‖∇η‖m−1 + ‖η‖m−1
)

≤λε‖∇η‖2m−1 + Cλε
(‖η‖2m−1 + ‖R‖2m

) + Cλε
2〈t〉−2γ .

(5.52)

• Estimate of I7.
We write

[ u0 · ∇, Zβ(χN )]R = [u0 · ∇, Zβ ](χN (R)) + Zβ [u0 · ∇, χN ]R.

It follows from (5.28) that u0 · ∇ is a tangential derivative. So that thanks to the
observation (2.33), we find that [u0 · ∇, Zβ ] is an operator of linear combination
of tangential derivatives of order m − 1. Then due to the fact that u0 is supported
in [0, T ], we infer

√
ε‖[u0 · ∇, Zβ(χN )]R‖ �

√
εχ[0,T ](t)‖∇ R‖m−1 � 〈t〉−γ ‖∇ R‖m−1,

which together with (5.38) implies

|I7| � 〈t〉−γ
(‖R‖2m + ‖η‖2m−1

) + ε〈t〉−3γ . (5.53)

• Estimate of I8.
We first decompose I8 as

I8 =
6∑

i=1

I8i ,

with

I81 :=
∫

O
[(uε

a − u0) · ∇, Zβ ]η · Zβη,

I82 := −√
ε

∫

O
[(uε

a − u0) · ∇, Zβ ](χG) · Zβη

I83 := √
ε

∫

O
Zβ [(uε

a − u0) · ∇, χN ]R · Zβη

I84 := ε2
∫

O
[R · ∇, Zβ ]η · Zβη

I85 := −ε
5
2

∫

O
[R · ∇, Zβ ](χG) · Zβη

I86 := ε
5
2

∫

O
Zβ [R · ∇, χN ]R · Zβη

Next we deal with all the terms above.
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• Estimate of I81. In view of (2.30), we write

[(uε
a − u0) · ∇, Zβ ]η =

∑

β1+β2=β,β1 �=0

cβ1 Zβ1 (uε
a − u0) · Zβ2∇η + (uε

a − u0) · [∇, Zβ ]η,

where cβ1 , cβ2 are smooth functions depend only on vector filedW. Then thanks
to (2.40), we infer

|I81| �
√

ε〈t〉−γ ‖∇η‖m−2‖η‖m−1 � ε‖∇η‖2m−2 + 〈t〉−2γ ‖η‖2m−1.

(5.54)

• Estimate of I82. It follows from (2.37) and (2.40) that

|I82| �
√

ε‖uε
a − u0‖m−1,∞‖G‖Hm−1‖η‖m−1 � ε

3
4 〈t〉−2γ ‖η‖m−1.

(5.55)

• Estimate of I83. In view of (1.1), we write

[(uε
a − u0) · ∇, χN ]R = [(uε

a − u0) · ∇, χ�](D(R) · n + M R
)

+χ�
(
(uε

a − u0) · ∇(D(R) · n)

−D((uε
a − u0) · ∇ R) · n) + ((uε

a − u0) · ∇M)R
)
.

Notice that the second order derivatives of R vanish on the right hand side
above, we deduce that

|I83| �
√

ε
(‖uε

a − u0‖m−1,∞ + ‖∇(uε
a − u0)‖m−1,∞

)‖∇ R‖m−1‖η‖m−1,

which together with (2.40) and (5.38) ensures that

|I83| �
√

ε〈t〉−γ ‖∇ R‖m−1‖η‖m−1 � 〈t〉−γ (‖η‖2m−1 + ‖R‖2m) + ε〈t〉−3γ .

(5.56)

• Estimate of I84. In view of (2.30), we write

I84 = ε2
∫

O

( ∑

β1+β2=β,β1 �=0

cβ1 Zβ1 R · Zβ2∇η + R · [∇, Zβ ]η
)

· Zβη.

We remark that if we use directly use the generalized Sobolev-Gagliardo-
Nirenberg-Morse inequality above, there appears the term, ‖∇η‖L∞ , which
we do not have the estimate. To overcome this difficulty, we use integrations
by parts to transfer the ∇ on terms like Zβ2∇η into other terms. Notice that
Zβη = 0 on ∂O, no boundary term appears during this process. Then by apply-
ing the generalized Sobolev-Gagliardo-Nirenberg-Morse inequality, we find

|I84| �ε2
(‖Z R‖L∞‖η‖m−2 + ‖R‖m−1‖η‖L∞

)‖∇η‖m−1

+ ε2
(‖∇ R‖L∞‖η‖m−1 + ‖∇ R‖m−1‖η‖L∞

)‖η‖m−1

+ ε2‖R‖L∞‖∇η‖m−1‖η‖m−1,

from which, with (5.38) and (5.39), we infer

|I84| ≤ λε‖∇η‖2m−1 + Cλε(‖η‖2m−1 + ‖R‖2m)(ε‖η‖2L∞ + ε‖R‖21,∞ + 1) + Cε2〈t〉−γ .

(5.57)
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• Estimate of I85. Along the same line to the estimate of I84, we write

[R · ∇, Zβ ](χG) =
∑

β1+β2=β,β1 �=0

cβ1 Zβ1 R · Zβ2∇(χG) · Zβη

+R · [∇, Zβ ](χG) · Zβη,

from which, with (2.37) and m ≤ p − 3, we infer

|I85| � ε
5
2 〈t〉−γ ‖R‖m−1‖η‖m−1. (5.58)

• Estimate of I86. In view of (1.1), we write

R =[R · ∇, χ�](D(R) · n + M R)

+ χ�
(
R · ∇(D(R) · n) − D(R · ∇ R) · n + (R · ∇M)R

)
.

Notice that the second order derivatives of R vanish on the right-hand side
above, we deduce from the generalized Sobolev-Gagliardo-Nirenberg-Morse
inequality, that

ε
5
2 ‖[R · ∇, χN ]R‖m−1 � ε

5
2
(‖∇ R‖L∞ + ‖R‖L∞

)(‖∇ R‖m−1 + ‖R‖m−1
)
,

which, together with (5.38) and (5.39), ensures that

|I86| � ε
(‖η‖2m−1 + ‖R‖2m

)(
1 + ε‖η‖2L∞ + ε‖R‖21,∞

) + ε2〈t〉−γ . (5.59)

By summing up the estimates, (5.54-5.59), we arrive at

|I8| ≤λε‖∇η‖2m−1 + C
(
ε‖∇η‖2m−2 + ε

1
4 〈t〉−γ

)

+ Cλ

(
ε + 〈t〉−γ + ε2(‖η‖2L∞ + ‖R‖21,∞)

) (
‖η‖2m−1 + ‖R‖2m

)
.
(5.60)

By inserting the estimates, (5.47), (5.48), (5.49), (5.50), (5.50), (5.51), (5.52),
(5.53) and (5.60), into (5.45) and summing over the resulting inequalities with the
multi-indices α with |α| ≤ m, and finally choosing λ to be sufficiently small, we
obtain (5.44). This ends the proof of Proposition 5.6. 
�

By summing up (5.43) and (5.44), we achieve

d

dt

(‖R(t)‖2m + ‖η(t)‖2m−1

) + ε
(‖∇ R‖2m + ‖∇η‖2m−1

)

� ε
(‖∇ R‖2m−1 + ‖∇η‖2m−2

) + ε
1
4 〈t〉−γ

+ (
ε + 〈t〉−γ + ε2(‖η‖2L∞ + ‖R‖21,∞)

)(‖η‖2m−1 + ‖R‖2m
)

+
∑

|α|≤m

∣
∣
∫

O
Zα∇π · Zα R

∣
∣ + √

ε
∑

|β|≤m−1

∣
∣
∫

O
ZβχN (∇π) · Zβη

∣
∣.

(5.61)

To estimate the two integrals in (5.61), we will have to deal with the pressure
estimates in the coming subsection.
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5.5. Estimate of the Pressure Term

In view of (5.1), the pressure π satisfies
{

�π = −div F − div (uε · ∇ R + R · ∇uε
a) + ∂t H − ε�H in O,

∂nπ = −F · n − (uε · ∇ R + R · ∇uε
a) · n + ε�R · n on ∂O.

We start the estimate of ∇π with the following toy model:

Lemma 5.7. Let π1 be determined by
{

�π1 = −div F in O,

∂nπ1 = −F · n on ∂O,
(5.62)

Then for any non-negative integer �, one has

‖∇π1‖� � ‖F‖�. (5.63)

Proof. We proceed by induction on �. By taking L2 inner product of the first
equation of (5.62) and using integrations by parts, we find

‖∇π1‖2 = −
∫

O
F · ∇π1,

which implies ‖∇π1‖ ≤ ‖F‖; therefore (5.63) holds for � = 0.
Next we assume that (5.63) holds for � = m − 1 with � ≥ 1. We are going to

prove that (5.63) holds for � = m. Indeed by applying Zα with |α| = m to (5.62),
we get

−�Zαπ1 − [Zα,�]π1 = Zαdiv F.

By taking L2 inner product of the above equation with Zαπ1 and using integration
by parts, we obtain

‖∇Zαπ1‖2 =
4∑

i=1

Ji , (5.64)

where

J1 :=
∫

∂O
[∂n, Zα]π1Zαπ1, J2 := −

∫

O
[�, Zα]π1Zαπ1,

J3 := −
∫

∂O
Zα(F · n)Zαπ1, J4 :=

∫

O
Zαdiv F Zαπ1.

Let us now handle term by term the quantities above.
• Estimate of J1.

Notice that Z0 = 0 on ∂O, so that if Zα contains the tangential vector field
Z0, J1 = 0. Without loss of generality, we may assume that Zα is composed of Zi

with 1 ≤ i ≤ 5. We write, Zα = Zi1 Zα1 , |α1| = � − 1, then

[∂n, Zα] = [∂n, Zi1 ]Zα1 + Zi1 [∂n, Zα1 ].
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As presented in Sect. 2.8, the vector fields, [∂n, Zi1 ], are also tangential derivatives.
By induction, [∂n, Zα] is a tangential derivative operator of order m. By trace
inequality, (5.25), we infer

|J1| � ‖π1‖2Hm (∂O) � ‖π1‖2m + ‖π1‖m‖∇π1‖m � ‖∇π1‖m−1‖∇π1‖m .

(5.65)

• Estimate of J2.
To deal with the commutator, we use (2.32) to write

∫

O
[�, Zα]π1Zαπ1 =

∑

|α1|,|α2|≤m−1

∫

O
(
cα1∇2Zα1π1 + cα2∇Zα2π1

)
Zαπ1,

(5.66)

where cα1 , cα2 are some smooth functions. Yet we do not want the second order
normal derivative of π1 to appear in (5.66). The idea is to use integration by parts.
The cost is that boundary terms like

∫

∂O n · cα1 · ∇Zα1π2Zαπ2 will appear. In
general, we can not guarantee that n · cα1 · ∇ is a tangential derivative. One attempt
is to use the boundary condition, ∂nπ1 = −F ·n, and then the boundary terms will
be bounded by ‖F · n‖Hm (∂O). Although Lemma 4.2 gives ‖F‖Hm (∂O) � 〈t〉−γ ,

so that ‖F · n‖Hm (∂O) will gives rise to an appropriate estimate of π1. But when
we apply similar estimate to deal with π3, term like ‖R · ∇ R‖Hm (∂O) will appear,
which is out of control.

To overcome the above mentioned difficulty, we distinguish the terms in (5.66)
into two cases.

• If Zα contains a field Z0, then Zα = 0 on ∂O. In this case, we use integration
by parts to get

|J2| � ‖∇π2‖m−1‖∇π2‖m .

• If Zα does not contain any Z0, we write

Zα = Zk1 Zk2 · · · Zkm with Zki = wki · ∇, ki ∈ {1, 2, 3, 4, 5}, 1 ≤ i ≤ m,

for wki given in Sect. 2.8.
As a convention, let Zα0 = Zβm+1 be the identity operators, we denote

Zαi := Zk1 · · · Zki and Zβi := Zki · · · Zkm with 1 ≤ i ≤ m.

Then by (2.31), we write

[�, Zα]π1 =
m∑

i=1

Zαi−1 [�, Zki ]Zβi+1π1

=
m∑

i=1

Zαi−1
(
�wki · ∇Zβi+1π1 + 2∇wki : ∇2Zβi+1π1

)
.
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Notice that for ki �= 0, wki ·n = 0 in Vδ0/2, |n| = 1 in Vδ0 and∇n is symmetric,
we have

n · ∇wki · n = −n · ∇n · wki = −wki · ∇n · n = 0, in Vδ0/2.

So that ∇wki : ∇2 contains at most one normal derivative and this implies

‖[�, Zα]π1‖ � ‖∇π1‖m .

As a result, it turns out that

|J2| � ‖∇π1‖m−1‖∇π1‖m . (5.67)

• Estimate of J3 + J4
Again we distinguish to the following two cases:

• If Zα contains Z0, then Zα = 0 on ∂O. In this case J3 = 0. For J4, we use
integration by parts to get

J4 =
∑

|α1|≤m

∫

O
cα1 · ∇Zα1 F Zαπ1

=
∑

|α1|≤m

∫

O
Zα1 F(div cα1 Zαπ1 + cα1 · ∇Zαπ1),

from which, we infer

|J4| � ‖∇π1‖m‖F‖m .

• If Zα does not contain Z0, notice that for 1 ≤ i ≤ 5, Zi = wi ·∇ andwi ·n = 0
in Vδ0/2 and divwi = 0, we get, by using integration by parts, that
∫

O
Zαdiv F Zαπ1 = (−1)m

∫

O
div F Z2απ1

= (−1)m
∫

∂O
F · nZ2απ1 − (−1)m

∫

O
F · ∇Z2απ1

=
∫

∂O
Zα(F · n)Zαπ1 +

∑

|α1|≤m

∫

O
cα1 F · Zα1∇Zαπ1

=
∫

∂O
Zα(F · n)Zαπ1 +

∑

|α1|≤m

∫

O
∇Zαπ1 · Zα1(cα1 F),

where cα1 are some smooth functions depend only on the vector field in W.
As a consequence, we obtain

J3 + J4 =
∑

|α1|≤m

∫

O
∇Zαπ1 · Zα1(cα1 F),

which implies

|J3 + J4| � ‖∇π1‖m‖F‖m . (5.68)
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In view of (5.64), by summarizing the estimates, (5.65), (5.67) and (5.68), we
conclude the proof of (5.63). 
�
Proposition 5.8. For 1 ≤ m ≤ p − 4 and for t ∈ [0, T ε], we have

‖∇π‖m � ε
1
4 〈t〉−γ + ε‖∇ R‖m + 〈t〉−γ ‖R‖m + ε2

(‖R‖L∞‖∇ R‖m + ‖R‖m‖∇ R‖L∞
)
.

(5.69)

Proof. We first decompose π into four terms π = π1 + π2 + π3 + π4, where π1,
π2, π3 and π4 are determined respectively by (5.62) and

{
�π2 = ∂t H in O,

∂nπ2 = 0 on ∂O,
(5.70)

{
�π3 = −div (uε · ∇ R + R · ∇uε

a) in O,

∂nπ3 = −(uε · ∇ R + R · ∇uε
a) · n on ∂O,

(5.71)

and
{

�π4 = −ε�H in O,

∂nπ4 = ε�R · n on ∂O.
(5.72)

• The estimate of∇π1.

The estimate ∇π1 relies on Lemma 5.7. Indeed we deduce from Lemma 5.7
and (2.35) that

‖∇π1‖� � ε
1
4 〈t〉−γ for 0 ≤ � ≤ p − 3. (5.73)

• The estimate of ∇π2.

We claim that for 0 ≤ � ≤ p − 3,

‖∇π2‖� � ε
1
4 〈t〉−γ . (5.74)

Without losing generality, we may assume that
∫

O π2 = 0. Again we proceed
by induction on �. Indeed by taking L2 inner product of the (5.70) with π2 and then
using integrations by parts and the Poincaré inequality, we find

‖∇π2‖2 = −
∫

O
(�π2)π2 = −

∫

O
(∂t H)π2 � ‖∂t H‖‖∇π2‖,

which together with (2.35) yields (5.74) for � = 0.
Next let us assume that (5.74) holds for � ≤ m − 1 ≤ p − 4, we are going to

prove that (5.74) holds for � = m. In order to do it, we apply Zα with |α| ≤ m to
(5.70) and then taking L2 inner product of the resulting equation with Zαπ2 and
using integration by parts, we obtain

‖∇Zαπ2‖2 =
∫

∂O
(∂nZαπ2)Zαπ2 −

∫

O
(�Zαπ2)Zαπ2

=
∫

∂O
[∂n, Zα]π2Zαπ2 −

∫

O
(Zα∂t H)Zαπ2 +

∫

O
[�, Zα]π2Zαπ2,

(5.75)
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where we used ∂nπ2 = 0 on ∂O, so that Zα∂nπ2 = 0 on ∂O.

As the estimate of J1 in the proof of Lemma 5.7, if Zα contains Z0, the first
term of the right hand side of (5.75) disappear. Otherwise, [∂n, Zα] is a tangential
differential operator of order m. Then we get, by applying the trace inequality
(5.25), that

|
∫

∂O
[∂n, Zα]π2Zαπ2| � ‖π2‖2Hm (∂O) � ‖π2‖2m + ‖π1‖m‖∇π2‖m � ‖∇π2‖m−1‖∇π2‖m .

(5.76)

On the other hand, it follows from (2.35) that

|
∫

O
(Zα∂t H)Zαπ2| � ε

1
4 〈t〉−γ ‖π2‖m . (5.77)

For the last term in the right hand side of (5.75), we deduce along the same line
to that of J2 in the proof of Lemma 5.7 that

|
∫

O
[�, Zα]π2Zαπ2| � ‖∇π2‖m−1‖π2‖m . (5.78)

On the other hand, it follows from the boundary condition ∂nπ2 = 0 that

‖∇π2‖Hm−1(O) ≈ ‖π2‖Hm (O).

Then by inserting the estimates (5.76),(5.77) and (5.78) into (5.75) and then sum-
ming up the resulting inequalities for |α| ≤ m, we obtain

‖∇π2‖2m ≤ C
(‖∇π2‖m−1‖∇π2‖m + ε

1
4 〈t〉−γ ‖∇π2‖m−1

)
,

which, together with the inductive assumption, ensures (5.74) for � = m. This
proves (5.74).
• The estimate of∇π3.

Due to div uε = σ 0 and div R = −H, we write

div (uε · ∇ R) = div
(
R · ∇uε − Huε − σ 0R

)
.

On the other hand, due to uε · n = R · n = 0 on ∂O and ∇n is symmetric, one has

(uε · ∇ R) · n = −(uε · ∇n) · R = −(R · ∇n) · uε = (uε · ∇n) · R.

In view of (5.71), π3 verifies
{

�π3 = −div
(
R · ∇(uε + uε

a) − σ 0R − Huε
)

in O,

∂nπ3 = −R · ∇(uε + uε
a) · n on ∂O.

From Lemma 5.7 and the generalized Sobolev-Gagliardo-Nirenberg-Morse in-
equality, we infer that

‖∇π3‖m �‖R · ∇(uε + uε
a) − σ 0R − Huε‖m

�‖R‖m‖∇uε
a‖m,∞ + ε2

(‖R‖L∞‖∇ R‖m + ‖R‖m‖∇ R‖L∞
)

+ ‖σ 0‖m,∞‖R‖m + ‖H‖m‖uε
a‖m,∞ + ε2‖H‖m,∞‖R‖m,



924 J. Liao et al.

which, together (2.35), (2.36), (2.39), and the fact that σ 0 is smooth and supported
in [0, T ], ensures that for m ≤ p − 3,

‖∇π3‖m � 〈t〉−γ ‖R‖m + ε
1
4 〈t〉−γ + ε2

(‖R‖L∞‖∇ R‖m + ‖R‖m‖∇ R‖L∞
)
.

(5.79)

• The estimate of∇π4.

In view of (5.72), we write

�(π4 + εH) = 0 in O and ∂n(π4 + εH) = −ε�R · n + ε∂nH on ∂O,

from which, we deduce that for m ≥ 1

‖∇(π4 + εH)‖m � ε‖�R · n − ∂nH‖
Hm− 1

2 (∂O)
.

yet it follows from (2.35) and trace theorem that, for m ≤ p − 4,

ε‖�H‖m � ε
1
4 〈t〉−γ ,

ε‖∂nH‖
Hm− 1

2 (O)
� ε‖∇2H‖m � ε

1
4 〈t〉−γ .

As a result, it turns out that

‖∇π4‖m � ε‖�R · n‖
Hm− 1

2 (∂O)
+ ε

1
4 〈t〉−γ .

The term ‖�R · n‖
Hm− 1

2 (∂O)
above can be handled exactly as that in Proposition

19 of [30] so that

‖�R · n‖
Hm− 1

2 (∂O)
� ‖∇ R‖m .

Then we obtain, for 1 ≤ m ≤ p − 4,

‖∇π4‖m � ε‖∇ R‖m + ε
1
4 〈t〉−γ . (5.80)

By summarizing the estimates (5.73), (5.74), (5.79) and (5.80), we arrive at
(5.69). This completes the proof of Proposition 5.8. 
�

With Proposition 5.8, we now turn to the estimate of the two integrals involving
the pressure term in (5.61).

Corollary 5.9. Let 2 ≤ m ≤ p −4. Then for α, β satisfying |α| ≤ m, |β| ≤ m −1,
and any λ > 0 there exists Cλ so that

|
∫

O
Zα∇π · Zα R| ≤λε‖∇ R‖2m + Cε

1
4 〈t〉−γ

+ Cλ

(
ε + 〈t〉−γ + ε2(‖η‖2L∞ + ‖R‖21,∞)

)‖R‖2m,

(5.81)

and
√

ε|
∫

O
ZβχN (∇π) · Zβη| ≤ λε‖∇η‖2m−1 + Cλ

(
ε

1
2 〈t〉−2γ + ε4〈t〉−2γ ‖R‖2L∞

)

+ Cλ

(
ε + 〈t〉−2γ + ε3(‖η‖2L∞ + ‖R‖21,∞)

)

(‖R‖2m + ‖η‖2m−1).

(5.82)
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Proof. Thanks to (5.69), for any λ > 0, we get, by applying Young’s inequality,
that

|
∫

O
Zα∇π · Zα R| ≤ λε‖∇ R‖2m + ε

1
4 〈t〉−γ + Cλ

(
ε + 〈t〉−γ

) ‖R‖2m
+

(
Cλε

3‖R‖2L∞ + ε2‖∇ R‖L∞
)

‖R‖2m,

which together with (5.39) ensures (5.81).
On the other hand, due to η = 0 on ∂O, by using integration by parts and

Young’s inequality, we find that for any λ > 0,

√
ε|

∫

O
ZβχN (∇π) · Zβη| ≤ λε‖∇η‖2m−1 + Cλ‖∇π‖2m−1, (5.83)

Yet it follows from (5.69), (5.38) and (5.39) that

‖∇π‖2m−1 � ε
1
2 〈t〉−2γ + ε4〈t〉−2γ ‖R‖2L∞

+(
ε + 〈t〉−2γ + ε3(‖η‖2L∞ + ‖R‖21,∞)

)
(‖R‖2m + ‖η‖2m−1).

Substituting the above estimate into (5.83) leads to (5.82). 
�
By inserting the estimates (5.81) and (5.82) into (5.61) and choosing λ to be

sufficiently small, we deduce that for 2 ≤ m ≤ p − 4 and for t in [0, T ε],
d

dt

(‖R(t)‖2m + ‖η(t)‖2m−1) + ε
(‖∇ R‖2m + ‖∇η‖2m−1

)

� ε
(‖∇ R‖2m−1 + ‖∇η‖2m−2

) + ε
1
4 〈t〉−γ + ε4〈t〉−2γ ‖R‖2L∞

+ (
ε + 〈t〉−γ + ε2(‖η‖2L∞ + ‖R‖21,∞)

)
(‖η‖2m−1 + ‖R‖2m).

(5.84)

In order to close the estimate of (5.84), we still need the estimate of ‖R‖1,∞
and ‖η‖L∞ , which will be the content of the next section.

5.6. Estimate of ‖R‖1,∞ and ‖η‖L∞

Proposition 5.10. Let m > 3 be an integer. Then one has

ε‖R(t)‖21,∞ ≤ C
(‖R(t)‖2m + ‖η(t)‖2m−1 + ε〈t〉−2γ )

. (5.85)

Proof. We first deduce from Proposition 20 of [30] that for m0 > 1,

‖R(t)‖2L∞ ≤ C
(‖∂nR(t)‖m0‖R(t)‖m0 + ‖R(t)‖2m0

)
,

which, together with (5.38), implies

ε‖R(t)‖2L∞ ≤C
(
ε‖∂nR(t)‖m0‖R(t)‖m0 + ε‖R(t)‖2m0

)

≤C
(‖η(t)‖2m−1 + ‖R(t)‖2m + ε〈t〉−2γ )

if m ≥ m0 + 1.
(5.86)

Along the same lines, we can prove similar estimate for ‖Z R‖L∞ if m ≥ m0 + 2.

�
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In order to estimate ‖η‖L∞ , we introduce

η̃ := √
ε∇ ∧ R. (5.87)

Lemma 5.11. Let η and η̃ be determined respectively by (5.37) and (5.87). Then
one has

‖η‖L∞ + ‖R‖1,∞ + √
ε〈t〉−γ ≈ ‖η̃‖L∞ + ‖R‖1,∞ + √

ε〈t〉−γ .

Proof. On the one hand, it follows from (5.39) that

‖η̃‖L∞ �
√

ε‖∇ R‖L∞ � ‖η‖L∞ + ‖R‖1,∞ + √
ε〈t〉−γ ,

which implies

‖η̃‖L∞ + ‖R‖1,∞ + √
ε〈t〉−γ � ‖η‖L∞ + ‖R‖1,∞ + √

ε〈t〉−γ . (5.88)

On the other hand, due to n ∧ (∇ ∧ R) = ∇ R · n − ∂nR, we have
√

ε‖∂nR‖L∞ � ‖η̃‖L∞ + √
ε‖Z R‖L∞ + √

ε‖∂nR · n‖L∞ .

However, it follows from (5.17) and (2.36) that

‖∂nR · n‖L∞ � ‖Z R‖L∞ + 〈t〉−γ ,

so that
√

ε‖∂nR‖L∞ � ‖η̃‖L∞ + ‖R‖1,∞ + √
ε〈t〉−γ .

This together with (5.37) shows that the other side of the inequality (5.88) holds.
This concludes the proof of Lemma 5.11. 
�
Now let us set

Nm(t) := ‖R(t)‖2m + ‖η(t)‖2m−1 + ε‖η̃(t)‖2L∞ . (5.89)

Note that (2.38) implies

‖R0‖m � ε− 1
4 , ‖∇ R0‖m−1 � ε− 3

4 , ‖∇2R0‖m−2 � ε− 5
4 . (5.90)

Hence

‖η0‖m−1 �
√

ε‖∇ R0‖m−1 � ε− 1
4 and ‖η̃0‖L∞(O)

�
√

ε‖∇ R0‖H1(O) � ε− 3
4 . (5.91)

Therefore

Nm(0) � ε− 1
2 . (5.92)
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Proposition 5.12. Let Nm(t) be determined by (5.89). Then there exist constant
ε0, C so that for ε ≤ ε0, 4 ≤ m ≤ p − 4

Nm(t) + ε

∫ t

0

(‖∇ R‖2m + ‖η‖2m−1

)
ds ≤ Cε− 1

2 for t ≤ T ε. (5.93)

Proof. In view of (5.1), η̃ satisfies

∂t η̃ − ε�η̃ + uε · ∇η̃ + √
ε∇uε ∧ ∇ R + √

ε∇ ∧ (R · ∇uε
a) = √

ε∇ ∧ F.

Maximum principle for the transport-diffusion equation ensures that

‖η̃(t)‖L∞ ≤ ‖η̃0‖L∞ + √
ε

∫ t

0

(‖∇ ∧ F‖L∞ + ‖∇uε ∧ ∇ R‖L∞ + ‖∇ ∧ (R · ∇uε
a)‖L∞

)
ds.

(5.94)

Applying (2.36) gives
√

ε‖∇ ∧ F(s)‖L∞ � 〈s〉−γ .

On the other hand, it follows from (2.39) that
√

ε‖∇uε ∧ ∇ R(s)‖L∞ �
√

ε〈s〉−γ ‖∇ R(s)‖L∞ + ε
5
2 ‖∇ R(s)‖2L∞ .

Notice that

√
ε∇ ∧ (R · ∇uε

a) = √
ε
(
∂i R · ∇(uε

a) j − ∂ j R · ∇(uε
a)i

)

3×3
+ R · ∇(

√
ε∇ ∧ uε

a),

we infer
√

ε‖∇ ∧ (R · ∇uε
a)(s)‖L∞ � 〈s〉−γ

(√
ε‖∇ R(s)‖L∞ + ‖R(s)‖L∞).

By inserting the above estimates into (5.94) and then using (5.38), (5.39) and (5.91),
we achieve

‖η̃(t)‖L∞ � ε− 3
4 +

∫ t

0

(
〈s〉−γ + √

ε
(〈s〉−γ ‖∇ R‖L∞ + ε2‖∇ R‖2L∞

)

+〈s〉−γ
(‖η̃‖L∞ + ‖R‖L∞

))
ds

� ε− 3
4 +

∫ t

0
〈s〉−γ

(‖η̃‖L∞ + ‖R‖1,∞ + ε
3
2 (‖η̃‖2L∞ + ‖R‖21,∞)

)
ds,

from which, with (5.85) and (5.89), we deduce

ε‖η̃(t)‖2L∞ � ε− 1
2 +

∫ t

0
〈s〉−γ

(
Nm + ε2N2

m

)
ds.

For any t ≤ T ε, by integrating (5.84) over [0, t] and then summing up the resulting
inequality with the above inequality, we obtain for 2 ≤ m ≤ p − 4 that

Nm(t) + ε
(‖∇ R‖2

L2
t (Hm

co)
+ ‖∇η‖2

L2
t (Hm−1

co )

) ≤ C
(
ε
(‖∇ R‖2

L2
t (Hm−1

co )
+ ‖∇η‖2

L2
t (Hm−2

co )

)

+ ε− 1
2 +

∫ t

0

(
(ε + 〈s〉−γ )Nm + ε2N2

m

)
ds

)
.

(5.95)
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On the other hand, thanks to Propositions 5.3 and 5.6, we get, by a similar derivation
of (5.95), that

N1(t) + ε
(‖∇ R‖2

L2
t (H1

co)
+ ‖∇η‖2

L2
t (L2)

) ≤ C
(
ε− 1

2 + ε‖∇ R‖2
L2

t (L2)

+
∫ t

0

(
(ε + 〈s〉−γ )Nm + ε2N2

m

)
ds

)
,

which, together with Proposition 5.1, ensures that

N1(t) + ε
(‖∇ R‖2

L2
t (H1

co)
+ ‖∇η‖2

L2
t (L2)

) ≤ C
(
ε− 1

2 +
∫ t

0

(
(ε + 〈s〉−γ )Nm + ε2N2

m

)
ds

)
.

(5.96)

By virtute of (5.95) and (5.96), we get by an inductive argument that

Nm(t) + ε
(‖∇ R‖2

L2
t (H1

co)
+ ‖∇η‖2

L2
t (L2)

) ≤ C
(
ε− 1

2 +
∫ t

0

(
(ε + 〈s〉−γ )Nm + ε2N2

m

)
ds

)
,

from which and a comparison argument, we infer

Nm(t) + ε
(‖∇ R‖2

L2
t (H1

co)
+ ‖∇η‖2

L2
t (L2)

)

≤ Cε− 1
2

(
1 − C2ε

3
2 t

)−1
exp

(
C

∫ t

0
(ε + 〈s〉−γ ) ds

)
for t ≤ T ε ≤ T

ε
.

(5.97)

In particular, if we take ε to be so small that ε ≤ (2T C2)− 2
3 ,we deduce from (5.97)

that

Nm(t) + ε
(‖∇ R‖2

L2
t (H1

co)
+ ‖∇η‖2

L2
t (L2)

) ≤ CeCT ε− 1
2 ,

which yields (5.93). This completes the proof of Proposition 5.12. 
�

5.7. End of the Proof of (2.43)

For our purpose, we can take (γ, k, p, s, q) = (2, 2, 8, 4, 4) in Sect. 4 and m =
4.Byan iteration argument,wefind that (γ1, k1, p1, s1, q1) = (107, 166, 178, 252, 107)
and u0 and u∗ belongs to H177(O) are sufficient.

Then for any t ∈ (0, T ε), we deduce from (5.38) that

ε2‖R(t)‖H1(O) � ε
3
2
(‖R(t)‖1 + ‖η(t)‖ + √

ε〈t〉−γ
)
,

from which, with (5.89) and (5.93), we infer

ε2‖R(t)‖H1(O) � ε
3
2N

1
2
4 (t) + ε2 ≤ Cε

5
4 .

This concludes the proof of (2.43).
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6. Proof of Theorem 1.7

This section is devoted to the proof of Theorem 1.7. The scheme of the proof
of Theorem 1.7 is very similar to that of Theorem 1.1 with some simplifications
due to the facts that the statement of Theorem 1.7 only promises approximate
controllability (see [19, Remark 3]), and for one positive time before the imparted
time, which can be chosen arbitrarily small (recall Remark 1.8). Therefore there
is no need of the well-prepared dissipation of the boundary layers as we did in
Sect. 2.1 in the course of proving Theorem 1.1. Again we make use of a rapid
and violent control so that the behavior of the system will follow from the one of
its inviscid counterpart. Let us therefore recall a few ingredients used in [19] to
tackle the inviscid case. We recall the notation for the flow map already used in the
statement of Theorem 1.7: with a vector field u depending on t in [0, T ] and on
the space variable x , we associate, when it makes sense (below we will only need
flow maps in some cases where the classical Cauchy-Lipschitz theorem applies),
the flow map φu such that ∂tφ

u(t, s, x) = u(t, φu(t, s, x)) for any t, s in [0, T ]
and for any x in �, and φu(s, s, x) = x for any s in [0, T ] and for any x in �. First
thanks to a construction due to Krygin [27], given γ0 and γ1 two Jordan surfaces
included in � such that γ0 and γ1 are isotopic in � and surrounding the same
volume, there exists a volume-preserving diffeotopy h in C∞([0, 1] × �;�) such
that ∂t h is compactly supported in (0, 1) × �, h(0, γ0) = γ0 and h(1, γ0) = γ1.
Then the smooth vector field X (t, x) := ∂t h(t, h−1(x)) is compactly supported in
(0, 1) × � and satisfies for all t in [0, 1], φX (t, 0, γ0) ⊂ �, φX (1, 0, γ0) = γ1 and
div X = 0 in (0, 1) × �. Then, thanks to [19, Proposition 2.2], for any ν > 0 and
k in N, there exists θ0 in C∞

0 ((0, 1) × �;R) such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∀ t ∈ [0, 1], �xθ
0 = 0 in �,

∂θ0

∂n
= 0 on [0, 1] × (∂� \ �),

∀ t ∈ [0, 1], φ∇θ0(t, 0, γ0) ⊂ �,

‖φ∇θ0(1, 0, γ0) − γ1‖Ck (S2) ≤ ν,

(6.1)

up to a reparameterization. Above S2 is the two-dimensional torus.
With these ingredients of the inviscid case in hands, let us now start the proof

of Theorem 1.7; it is split into two parts, depending on the regularity of the initial
data.
Proof of the first part of Theorem 1.7. Case where u0 is in Ck,α(�;R3)

We first consider the case where u0 is in Ck,α(�;R3), with α in (0, 1) and k
in N \ {0}, and satisfies div u0 = 0 in � and u0 · n = 0 on ∂�. One also assumes
that T0 > 0, γ0 and γ1 two Jordan surfaces included in � such that γ0 and γ1 are
isotopic in � and surrounding the same volume, are given.

We first use the scaling transformation (2.3) to transform our original problem
(1.2) to (2.4). Then we consider the same expansion as in the proof of Theorem
1.1, that is, (2.42), with uε

a being given by (2.27) and u0 := e(∇θ0), where θ0 is
given by (6.1) and e is a linear continuous extension operator from Ck,β(�;R3) →
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Ck,β
0 (O;R3).Of course,u0 thus constructed verifiesLemma2.9 except (2.9),which

is unnecessary here.
Let us first focus on proving (1.6) for k = 0, while maintaining the condition

(1.5). It follows from (5.86) and (5.93) that

ε2
∫ 1

0
‖R(t)‖L∞(O) dt ≤ Cε

3
2

∫ 1

0

(‖η(t)‖m−1 + ‖R(t)‖m + ε
)

dt if m > 2

≤ Cε
(‖ε 1

2 η‖L2((0,1);Hm−1
co )

+ ε
1
2 ‖R‖L∞((0,1);Hm−1

co )
+ ε

)

≤ C
√

ε. (6.2)

We remark that the choice of 1 is quite arbitrary but the fact that we consider here
times of order O(1), not of order O(1/ε) as in the proof of (2.42), makes the use
of the well-prepared dissipation of the boundary layers unnecessary here.

With thus obtained uε, we define u via (2.6) and we denote by p the corre-
sponding pressure. Then (u, p) is in L∞(0, T ; Ck,α(�;R4)) and satisfies (1.2) on
[0, ε]. We denote by φu(t, s, x) and φu0(t, s, x) the flow maps associated with u
and u0 respectively. Then in view of (2.6) and (2.42), we write

∂t
(
φu(t, s, x) − φu0 (t/ε, s, x)

) =1

ε

(
uε(t/ε, φu(t, s, x)) − u0(t/ε, φu0 (t/ε, s, x))

)

=1

ε

(
u0(t/ε, φu(t, s, x)) − u0(t/ε, φu0 (t/ε, s, x))

)

+ 1

ε
Rε(t/ε, φu(t, s, x)) with Rε := uε

a − u0 + ε2R,

from which we get, by applying Gronwall’s inequality, that

∥
∥φu(t, s, ·) − φu0(t/ε, s, ·)∥∥L∞(O)

≤ ε−1‖Rε(t/ε)‖L1((s,t);L∞(O)) exp
(1

ε

∫ t

s
‖∇u0(t ′)‖L∞(O) dt ′

)
.

On the other hand, it follows from (2.40) and (6.2) that

‖ua
ε − u0‖L∞((0,ε)×O) ≤ Cε

1
2 ,

1

ε

∫ ε

0
‖∇u0(t ′)‖L∞(O) dt ′ ≤ ‖∇u0‖L∞((0,1)×O),

ε‖Rε(t/ε)‖L1((0,ε);L∞(O)) = ε2‖Rε‖L1((0,1);L∞(O)) ≤ C
√

ε,

so that for any t, s ∈ [0, ε] it holds that
∥
∥φu(t, s, ·) − φu0(t/ε, s, ·)∥∥L∞(O)

≤ C
√

ε. (6.3)

Then (6.1), together with (6.3), ensures that

∥
∥φu(ε, 0, γ0) − γ1

∥
∥

L∞(S2)
≤∥

∥φu(ε, 0, ·) − φ∇θ0(1, 0, ·)∥∥L∞(�)

+ ∥
∥φ∇θ0(1, 0, γ0) − γ1

∥
∥

L∞(S2)

≤C
(√

ε + ν
)
.

(6.4)
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This entails (1.5) and (1.6) for k = 0, with the time T := ε ∈ (0, T0), by ap-
propriate choices of ν and ε. Now to prove (1.6) for k > 0 it is sufficient to use
the counterpart of (6.3) for higher order derivatives, see for instance [26, Equation
(23)]. This estimate is performed in a compact set K such that an open neighbor-
hood of ∪t∈[0,ε] φu(t, 0, γ0) is contained in K and such that K is included in�, the
existence of such a compact set is granted by the condition (1.5). The higher order
estimates of the velocity field on K are deduced, by Sobolev embedding, from the
estimate of ‖R(t)‖m in Proposition 5.12, since on K , ‖R(t)‖m is equivalent to the
usual Sobolev norm of order m, by the very definition of the the Sobolev conormal
spaces in (2.34). The details are left to the reader.

This completes the proof of the first part of Theorem 1.7. 
�
Proof of the Second Part of Theorem 1.7. Case where u0 is in H1(�;R3)

Let us now tackle the case where the initial data u0 is only in H1(�;R3),
with still the compatibility conditions: div u0 = 0 in � and u0 · n = 0 on ∂�. In
this case we first use the regularization result of Theorem 2.1, or more precisely
of Theorem A.1 in the Appendix A. More precisely, for ν > 0, which will be
chosen small enough later on, we consider u to be the unique solution in u ∈
C([0, ν]; H1(�)) ∩ L2([0, ν]; H2(�)) of (A.1) on [0, ν] with initial data u0. In
particular, for any s0 in (2, 3), we deduce from interpolation inequality and (A.2)
that

∥
∥t

s0
2 −1u

∥
∥

L2((0,ν);Hs0 (�))
≤C

∥
∥t

1
2 u

∥
∥s0−2

L2((0,ν);H3(�))
‖u‖3−s0

L2((0,ν);H2(�))
≤ C(‖u0‖H1),

from which, along with the Sobolev imbedding theorem, we infer that for any s0
in (5/2, 3),

‖∇u‖L1((0,ν);L∞(�)) ≤C
∥
∥t

s0
2 −1u

∥
∥

L2((0,ν);Hs0 (�))

∥
∥t1−

s0
2
∥
∥

L2(0,ν)
≤ C(‖u0‖H1)ν

3−s0
2 .

Consequently, according to the classical Cauchy-Lipschitz theorem, the vector field
u generates a unique flow map φu(t, s, x) on [0, ν]. Furthermore, for any t, s in
[0, ν], it holds that

∥
∥φu(t, s, x) − x

∥
∥

L∞(�)
≤

∫ ν

0
‖u(t, ·)‖L∞(�) dt

≤∥
∥t

1
2 u

∥
∥

L∞((0,ν);H2(�))

∫ ν

0
t−

1
2 dt ≤ C(‖u0‖H1)

√
ν.

(6.5)

In particular, this entails that for any t in [0, ν], φu(t, 0, γ0) ⊂ � and that the Jordan
surface γ∗ := φu(ν, 0, γ0) satisfies

∥
∥γ∗ − γ0

∥
∥

L∞(S2)
≤ C(‖u0‖H1)

√
ν. (6.6)

Moreover it follows from (A.2) that u∗ := u(ν, ·) belongs to H∞(�). Thus we
can use the first part of Theorem 1.7, in particular the estimate (6.4) on the time
interval [ν, ν + ε], so that there exists an extension of u, which we still denote
by u, to the time interval [ν, ν + ε] such that u is in C([0, ν + ε]; H1(�)) and in
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L2([0, ν + ε]; H2(�)) and generates a flow φu such that for any t in [ν, ν + ε],
φu(t, ε, γ0) ⊂ �, such that

∥
∥φu(ν + ε, ν, γ0) − γ1

∥
∥

L∞(S2)
≤ C

√
ε. (6.7)

Furthermore, φu(ν+ε, ν, ·) is Lipschitz. Thus combining these three last properties
with (6.6), and choosing ε and ν small enough, we arrive at

‖φu(ν + ε, 0, γ0) − γ1‖L∞(S2) ≤‖φu(ν + ε, ν, γ∗) − φu(ν + ε, ν, γ0)‖L∞(S2)

+ ‖φu(ν + ε, ν, γ0) − γ1‖L∞(S2)

≤C(‖u0‖H1)
(√

ε + √
ν
)
,

while maintaining the condition that for any t in [0, ν + ε], φu(t, 0, γ0) ⊂ �.
This completes the proof of the second part of Theorem 1.7. 
�

Acknowledgements. All the authors are supported by K. C. Wong Education Foundation.
F. Sueur is partially supported by the Agence Nationale de la Recherche, Project IFS-
MACS, grant ANR-15-CE40-0010, Project SINGFLOWS, grant ANR-18-CE40-0027-01,
and Project BORDS, grant ANR-16-CE40-0027-01; and by the H2020-MSCA-ITN-2017
program, Project ConFlex, Grant ETN-765579. P. Zhang is partially supported by NSF of
China under Grants 11731007, 12031006 and 11688101. F. Sueur warmly thanks Morning-
side center of Mathematics, CAS, for its kind hospitality during his stays in May 2018 and
October 2019.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Appendix A. On the Regularization of the Uncontrolled Strong Solutions to
the Navier–Stokes Equations with Navier Boundary Conditions

In this appendixwe prove a regularization result of the uncontrolled strong solutions
to the Navier–Stokes equations with Navier boundary conditions on the whole
boundary ∂�, that is, to the following system:

⎧
⎪⎨

⎪⎩

∂t u + u · ∇u − �u + ∇ p = 0, and div u = 0 in �,

u · n = 0 and N (u) = 0 on ∂�,

u = u0 at t = 0.

(A.1)

Theorem A.1. Let T > 0, p in N
∗ and R > 0. Then there exists a continuous func-

tion CT,p,R from [0,+∞) to [0,+∞) with CT,p,R(0) = 0, such that there exists T1
in (0, T ) and for any u0 in H1(�), with ‖u0‖H1(�) ≤ R, divergence free and tan-
gent to ∂�, the unique strong solution u in C([0, T1]; H1(�))∩L2([0, T1]; H2(�))

to (A.1) satisfies
∑

0≤ j≤ p
2

∥
∥t

p−1
2 ∂

j
t u

∥
∥

L∞
T1

(H p−2 j (�))
+

∑

0≤ j≤ p+1
2

∥
∥t

p−1
2 ∂

j
t u

∥
∥

L2
T1

(H p+1−2 j (�))

≤ C p,T1,R(‖u0‖H1(�)). (A.2)
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As recalled in Sect. 2.1 The goal of this section is to present the proof of Theorem
2.1. The local-in-time existence and uniqueness of strong solutions with H1 initial
data is classical. The interest of Theorem A.1 is to detail the regularization in time
of this strong solution near the time zero. In particular it implies the part of Theorem
2.1 regarding the regularization.

Proof. We will proceed by induction on p. We start with recalling how to prove
the case p = 1, by proving first a L2(�) energy estimate and then a H1(�) energy
estimate.
• L2(�) energy estimate

Indeed, we first get, by taking L2(�) inner product of the u equation in (A.1) with
u, that

1

2

d

dt
‖u(t)‖2L2(�)

+ (u · ∇u|u)L2(�) − (�u|u)L2(�) + (∇ p|u)L2(�) = 0.(A.3)

Here and in all that follows, we always denote ( f |g)L2(�) := ∫

�
f g dx .

Due to div u = 0 and u · n|∂� = 0, we have

(u · ∇u|u)L2(�) = 0 = (∇ p|u)L2(�) .

Moreover it follows from Stokes formula that

− (�u|u)L2(�) =
∫

∂�

[(∇ × u) × u] · n d S +
∫

�

|∇ × u|2 dx .

By inserting the above equalities into (A.3), we obtain

1

2

d

dt
‖u(t)‖2L2(�)

+ ‖∇ × u‖2L2(�)
=

∫

∂�

[u × (∇ × u)] · n d S. (A.4)

Let us denote by Mw the shape operator associated with �. Recall that, since � is
smooth, the shape operator Mw is smooth and for any x in ∂�, it defines a self-
adjoint operator with values in the tangent space Tx . Then we have the following
result, see [1,12].

Lemma A.2. For any smooth divergence free vector field u satisfying u · n = 0 on
∂�, we have

[D(u)n + Mwu]tan = 1

2
(∇ × u) × n. (A.5)

However, due to N (u)|∂� = 0, we deduce from Lemma A.2 that

[u × (∇ × u)] · n∣
∣
∂�

=u · [(∇ × u) × n]
∣
∣
∂�

=2 [(Mw − M)u]tan · u
∣
∣
∂�

=2 [(Mw − M)u] · u
∣
∣
∂�

,

(A.6)
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where we used u · n∣
∣
∂�

= 0 in the last step. Then by applying Stokes formula and
Young’s inequality, we find that for any λ > 0, there exists Cλ so that

∣
∣
∫

∂�

[(∇ × u) × u] · n d S
∣
∣ =2

∣
∣
∫

�

div
[(

(Mw − M)u · u
)
n
]

dx
∣
∣

≤λ‖∇u‖2L2(�)
+ Cλ‖u‖2L2(�)

,

(A.7)

On the other hand, due to div u = 0 in � and u ·n|∂� = 0, we deduce from Korn’s
type inequality (see [10] for instance) that there exists a positive constant C� so
that

‖∇ × u‖2L2(�)
≥ 1

C�

‖u‖2H1(�)
− ‖u‖2L2(�)

. (A.8)

By inserting the estimates, (A.7) and (A.8), into (A.4) and taking λ = 1
2C�

in the
resulting inequality, we achieve

d

dt
‖u(t)‖2L2(�)

+ 1

C�

‖u‖2H1(�)
≤ C‖u‖2L2(�)

. (A.9)

Applying Gronwall’s inequality gives rise to

‖u‖2L∞
t (L2(�))

+ 1

C�

‖u‖2
L2

t (H1(�))
≤ ‖u0‖2L2(�)

eCt . (A.10)

• H1(�) energy estimate

By taking L2(�) inner product of the u equation of (A.1) with ∂t u, we get

‖∂t u‖2L2(�)
− (�u|∂t u)L2(�) + (∇ p|∂t u)L2(�) = − (u · ∇u|∂t u)L2(�) .(A.11)

Notice that ∂t u · n|∂� = 0, by applying Stokes formula and along the same line to
the proof of (A.6), we obtain

− (�u|∂t u)L2(�) =
∫

∂�

[(∇ × u) × ∂t u] · n d S +
∫

�

(∇ × u) · (∇ × ∂t u) dx

=2
∫

∂�

∂t u(M − Mw)u d S + 1

2

d

dt

∫

�

|∇ × u|2 dx,

which together with the facts: M is a symmetric matrix and Mw is a self-adjoint
operator on Tx , ensures that

− (�u|∂t u)L2(�) = d

dt

(∫

∂�

u(M − Mw)u d S + 1

2

∫

�

|∇ × u|2 dx
)
.

Again due to ∂t u · n|∂� = 0, one has

(∇ p|∂t u)L2(�) = 0.
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By inserting the above equalities into (A.11), we achieve

d

dt

(∫

∂�

u(M − Mw)u d S + 1

2

∫

�

|∇ × u|2 dx
)

+ ‖∂t u‖2L2(�)
= − (u · ∇u|∂t u)L2(�)

≤ ‖u‖L6(�)‖∇u‖L3(�)‖∂t u‖L2(�)

≤ C‖u‖H1(�)‖∇u‖
1
2
L2(�)

‖∇u‖
1
2
H1(�)

‖∂t u‖L2(�).

Applying Young’s inequality yields

d

dt

(∫

∂�

u(M − Mw)u d S + 1

2

∫

�

|∇ × u|2 dx
)

+ 3

4
‖∂t u‖2L2(�)

≤ Cλ

(
1 + ‖u‖4H1(�)

)‖∇u‖2L2(�)
+ λ‖∇2u‖2L2(�)

.

(A.12)

Moreover in view of (A.1), we write
⎧
⎪⎨

⎪⎩

−�u + ∇ p = −∂t u − u · ∇u

div u = 0 in �,

u · n = 0 and N (u) = 0 on ∂�.

(A.13)

The following type of Cattabriga-Solonnikov estimate can be proved along the
same line to that of Theorem 2.2 in [32]:

Lemma A.3. Let k be a non-negative integer and � be a bounded domain with
sufficiently smooth boundary. Let f in Hk(�) and g in Hk+1(�) with

∫

�
g dx = 0.

Then the non-homogeneous Stokes problem
⎧
⎪⎨

⎪⎩

−�u + ∇ p = f

div u = g in �,

u · n = 0 and N (u) = 0 on ∂�

has a unique solution (u, p) so that

‖∇2u‖Hk (�) + ‖∇ p‖Hk (�) ≤ C
(‖ f ‖Hk (�) + ‖∇g‖Hk (�)

)
. (A.14)

Then it follows from Lemma A.3 and (A.13) that

‖∇2u‖L2(�) ≤C
(‖∂t u‖L2(�) + ‖u · ∇u‖L2(�)

)

≤C
(‖∂t u‖L2(�) + ‖u‖H1(�)‖∇u‖

1
2
L2(�)

‖∇u‖
1
2
H1(�)

)
,

from which, we infer

‖∇u‖H1(�) ≤ C
(‖∂t u‖L2(�) + (1 + ‖u‖2H1(�)

)‖∇u‖L2(�)

)
. (A.15)

By substituting (A.15) into (A.12) and then taking λ = 1
4C , we achieve

d

dt

(∫

∂�

u(M − Mw)u d S + 1

2

∫

�

|∇ × u|2 dx
)
+1

2
‖∂t u‖2L2(�)

≤C
(
1 + ‖u‖4H1(�)

)‖∇u‖2L2(�)
.

(A.16)
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On the other hand, it follows from trace inequality (5.25) that

∣
∣
∫

∂�

u(M − Mw)u d S
∣
∣ ≤ C‖u‖2L2(∂�)

≤C
(‖u‖2L2(�)

+ ‖u‖L2(�)‖∇u‖L2(�)

)

≤ 1

4C�

‖u‖2H1(�)
+ C‖u‖2L2(�)

,

so that in view of (A.8), there exists a large enough constant K which satisfies

E1(u) := K‖u‖2L2(�)
+

∫

∂�

u(M − Mw)u d S + 1

2

∫

�

|∇ × u|2 dx ≥ 1

4C�

‖u‖2H1(�)
.

(A.17)

Then we get, by summing up K×(A.9) and (A.16), that

d

dt
E1(u) + 1

2
‖∂t u‖2L2(�)

≤ C E1(u)
(
1 + E2

1(u)
)
, (A.18)

from which, we deduce by a comparison argument that for any T > 0 and
R > 0, there exists a continuous function CT,p,R from [0,+∞) to [0,+∞) with
CT,1,R(0) = 0, such that there exists T1 in (0, T ) and such that for any u0 in H1(�),
with ‖u0‖H1(�) ≤ R, divergence free and tangent to ∂�, the unique strong solution
u in C([0, T1]; H1(�))∩ L2([0, T1]; H2(�)) to (A.1) satisfies (A.2) holds true for
p = 1.
• Higher energy estimates
Inductively, we assume that (A.2) holds for p ≤ � − 1, we are going to show that
(A.2) holds for p = �. Without loss of generality, we may assume that � is an even
integer. The odd integer case can be proved along the same line. Indeed we first
get, by applying ∂

�/2
t to (A.1), that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂
1+ �

2
t u + ∂

�
2

t (u · ∇u) − �∂
�
2

t u + ∇∂
�
2

t p = 0,

div ∂
�
2

t u = 0 in (0, T1) × �,

∂
�
2

t u · n = 0 and N (∂
�
2

t u) = 0 on (0, T1) × ∂�,

(A.19)

from which, we get, by a similar derivation of (A.4) that

1

2

d

dt

(
t�−1‖∂

�
2

t u(t)‖2L2(�)

) + t�−1‖∇ × ∂
�
2

t u‖2L2(�)
= � − 1

2
t�−2‖∂

�
2

t u‖2L2(�)

+ t�−1
∫

∂�

[
∂

�
2

t u × (∇ × ∂
�
2

t u)
] · n d S − t�−1(∂

�
2

t (u · ∇u)|∂
�
2

t u
)

L2(�)
.

(A.20)

Similarly to (A.7), we have

t�−1
∣
∣
∫

∂�

[
∂

�
2

t u × (∇ × ∂
�
2

t u)
] · n d S

∣
∣ ≤ λ

∥
∥t

�−1
2 ∇∂

�
2

t u
∥
∥2

L2(�)
+ Cλ

∥
∥t

�−1
2 ∂

�
2

t u
∥
∥2

L2(�)
.
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On the other hand, due to u · n|∂� = 0 and div u = 0, we get, by using integration
by parts, that

(
∂

�
2

t (u · ∇u)|∂
�
2

t u
)

L2(�)
=(

∂
�
2

t (u · ∇u) − u · ∇∂
�
2

t u|∂
�
2

t u
)

L2(�)

= −
∑

�1+�2= �
2

�1≥1

C�1
�
2

(
∂

�1
t u ⊗ ∂

�2
t u|∇∂

�
2

t u
)

L2(�)
,

from which we infer

t�−1
∣
∣
(
∂

�
2

t (u · ∇u)|∂
�
2

t u
)

L2(�)

∣
∣

�
∑

�1+�2= �
2

�1≥1

t�−1‖∂�1
t u‖L3(�)‖∂�2

t u‖L6(�)‖∇∂
�
2

t u‖L2(�)

�
∑

�1+�2= �
2

�1≥1

t�−1‖∂�1
t u‖

1
2
L2(�)

‖∂�1
t u‖

1
2
H1(�)

‖∂�2
t u‖H1(�)‖∇∂

�
2

t u‖L2(�)

≤ λ
∥
∥t

�−1
2 ∂

�
2

t u
∥
∥2

H1(�)
+ Cλ‖u‖4H1(�)

∥
∥t

�−1
2 ∂

�
2

t u
∥
∥2

L2(�)

+ Cλ

∑

�1+�2= �
2

1≤�1≤ �
2−1

∥
∥t�1−

1
2 ∂

�1
t u

∥
∥2

H1(�)

∥
∥|t�2∂�2

t u
∥
∥2

H1(�)
.

By substituting the above estimates into (A.20) and using Korn’s type inequality
(A.8), we find

1

2

d

dt

∥
∥t

�−1
2 ∂

�
2

t u(t)
∥
∥2

L2(�)
+ 1

C�

∥
∥t

�−1
2 ∂

�
2

t u
∥
∥2

H1(�)

≤ � − 1

2

∥
∥t

�
2−1∂

�
2

t u
∥
∥2

L2(�)
+ Cλ

(
1 + ‖u‖4H1(�)

)∥
∥t

�−1
2 ∂

�
2

t u
∥
∥2

L2(�)

+ 2λ
∥
∥t

�−1
2 ∂

�
2

t u
∥
∥2

H1(�)
+ Cλ

∑

�1+�2= �
2

1≤�1≤ �
2−1

∥
∥t�1−

1
2 ∂

�1
t u

∥
∥2

H1(�)

∥
∥|t�2∂�2

t u
∥
∥2

H1(�)
.

By taking λ = 1
4C�

in the above inequality and then applying Gronwall’s inequality
to the resulting inequality, we achieve

∥
∥t

�−1
2 ∂

�
2

t u
∥
∥2

L∞
t (L2(�))

+ 1

C�

∥
∥t

�−1
2 ∂

�
2

t u
∥
∥2

L2
t (H1(�))

≤ C exp
(

C
(
1 + t‖u‖4L∞

t (H1(�))

))

×
(∥
∥t

�
2−1∂

�
2

t u
∥
∥2

L2
t (L2(�))

+
∑

�1+�2= �
2

1≤�1≤ �
2−1

∥
∥t�1−

1
2 ∂

�1
t u

∥
∥2

L2
t (H1(�))

∥
∥|t�2∂�2

t u
∥
∥2

L∞
t (H1(�))

)
,
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from which, with the inductive assumption, we deduce that

∥
∥t

�−1
2 ∂

�
2

t u
∥
∥2

L∞
T1

(L2(�))
+ 1

C�

∥
∥t

�−1
2 ∂

�
2

t u
∥
∥2

L2
T1

(H1(�))
≤ C�,T1(‖u0‖H1(�)).(A.21)

On the other hand, for any non-negative integer j ≤ �
2 − 1, we infer from the

inductive assumption that
∥
∥t

�−1
2 ∂

j
t u

∥
∥

L∞
T1

(H�−2 j (�))
=∥

∥t
�−1
2 ∇2∂

j
t u

∥
∥

L∞
T1

(H�−2−2 j (�))
+ ∥

∥t
�−1
2 ∂

j
t u

∥
∥

L∞
T1

(H�−1−2 j (�))

≤∥
∥t

�−1
2 ∇2∂

j
t u

∥
∥

L∞
T1

(H�−2−2 j (�))
+ C�,T1(‖u0‖H1(�)).

Moreover in view of (A.1), we write

−�∂
j

t u + ∇∂
j

t p = −∂
j+1

t u − ∂
j

t (u · ∇u),

from which, with Lemma A.3, we infer
∥
∥t

�−1
2 ∇2∂

j
t u

∥
∥

L∞
T1

(H�−2−2 j (�))
�

∥
∥t

�−1
2 ∂

j+1
t u

∥
∥

L∞
T1

(H�−2−2 j (�))

+ ∥
∥t

�−1
2 ∂

j
t (u · ∇u)

∥
∥

L∞
T1

(H�−2−2 j (�))
.

As a result, we get that
∥
∥t

�−1
2 ∂

j
t u

∥
∥

L∞
T1

(H�−2 j (�))
≤C�,T1(‖u0‖H1(�)) + ∥

∥t
�−1
2 ∂

j+1
t u

∥
∥

L∞
T1

(H�−2−2 j (�))

+ ∥
∥t

�−1
2 ∂

j
t (u · ∇u)

∥
∥

L∞
T1

(H�−2−2 j (�))
, ∀ j ≤ �

2
− 1.
(A.22)

However, it follows from Moser type inequality and the inductive assumption that
∥
∥t

�−1
2 ∂

j
t ∇(u ⊗ u)

∥
∥

L∞
T1

(H�−2−2 j (�))
�

∑

j1+ j2= j

∥
∥t j1+ 1

2 ∂
j1

t u
∥
∥

L∞
T1

(H2(�))

× ∥
∥t

�−2
2 − j+ j2∂

j2
t u

∥
∥

L∞
T1

(H�−2 j−1(�))

≤C�,T1(‖u0‖H1(�)).

Substituting the above estimates into (A.22) gives rise to
∥
∥t

�−1
2 ∂

j
t u

∥
∥

L∞
T1

(H�−2 j (�))
≤C�,T1(‖u0‖H1(�)) + ∥

∥t
�−1
2 ∂

j+1
t u

∥
∥

L∞
T1

(H�−2−2 j (�))
.

We deduce from this inequality and from (A.21), by an iterative argument, that
∑

0≤ j≤ �
2

∥
∥t

�−1
2 ∂

j
t u

∥
∥

L∞
T1

(H�−2 j (�))
≤ C�,T1(‖u0‖H1(�)). (A.23)

Exactly along the same line to the proof of (A.23), for any non-negative integer
j ≤ �

2 − 1, we infer from the inductive assumption that

∥
∥t

�−1
2 ∂

j
t u

∥
∥

L2
T1

(H�+1−2 j (�))
≤∥

∥t
�−1
2 ∇2∂

j
t u

∥
∥

L2
T1

(H�−1−2 j (�))
+ C�,T1(‖u0‖H1(�)).
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On the other hand it follows from Lemma A.3 that
∥
∥t

�−1
2 ∇2∂

j
t u

∥
∥

L2
T1

(H�−1−2 j (�))
�

∥
∥t

�−1
2 ∂

j+1
t u

∥
∥

L2
T1

(H�−1−2 j (�))

+ ∥
∥t

�−1
2 ∂

j
t (u ⊗ u)

∥
∥

L∞
T1

(H�−2 j (�))
.

For, any j ≤ �
2 − 1, it follows from Moser type inequality and the inductive

assumption that

∥
∥t

�−1
2 ∂

j
t (u ⊗ u)

∥
∥

L2
T1

(H�−2 j (�))
�

∑

j1+ j2= j

∥
∥t j1+ 1

2 ∂
j1

t u
∥
∥

L∞
T1

(H2(�))

× ∥
∥t

�−2
2 − j+ j2∂

j2
t u

∥
∥

L2
T1

(H�−2 j (�))

≤C�,T1(‖u0‖H1(�)).

As a result, for any j ≤ �−1
2 , we arrive at

∥
∥t

�−1
2 ∂

j
t u

∥
∥

L2
T1

(H�+1−2 j (�))
≤C�,T1(‖u0‖H1(�)) + ∥

∥t
�−1
2 ∂

j+1
t u

∥
∥

L2
T1

(H�−1−2 j (�))
,

from which, with (A.21), we deduce by an iterative argument that

∑

0≤ j≤ �
2

∥
∥t

�−1
2 ∂

j
t u

∥
∥

L2
T1

(H�+1−2 j (�))
≤ C�,T1(‖u0‖H1(�)). (A.24)

By combining (A.23) and (A.24), we obtain that (A.2) holds for p = �.This finishes
the proof of (A.2) and therefore the proof of Theorem 2.1. 
�
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