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Abstract

We are concerned with the global existence theory for spherically symmetric
solutions of the multidimensional compressible Euler equations with large initial
data of positive far-field density so that the total initial-energy is unbounded. The
central feature of the solutions is the strengthening of waves as they move radially
inward toward the origin. For the large initial data of positive far-field density,
various examples have shown that the spherically symmetric solutions of the Euler
equations blowup near the origin at a certain time.A fundamental unsolved problem
is whether the density of the global solution would form concentration to become
a measure near the origin for the case when the total initial-energy is unbounded
and the wave propagation is not at finite speed starting initially. In this paper,
we establish a global existence theory for spherically symmetric solutions of the
compressible Euler equations with large initial data of positive far-field density and
relative finite-energy. This is achieved by developing a new approach via adapting
a class of degenerate density-dependent viscosity terms, so that a rigorous proof
of the vanishing viscosity limit of global weak solutions of the Navier–Stokes
equations with the density-dependent viscosity terms to the corresponding global
solution of the Euler equations with large initial data of spherical symmetry and
positive far-field density can be obtained. One of our main observations is that the
adapted class of degenerate density-dependent viscosity terms not only includes the
viscosity terms for the Navier–Stokes equations for shallow water (Saint Venant)
flowsbut also,more importantly, is suitable to achieve the keyobjective of this paper.
These results indicate that concentration is not formed in the vanishing viscosity
limit for the Navier–Stokes approximations constructed in this paper even when the
total initial-energy is unbounded, though the density may blow up near the origin
at certain time and the wave propagation is not at finite speed.
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1. Introduction

We are concerned with the global existence theory for spherically symmetric
solutions of the multidimensional (M-D) compressible Euler equations with large
initial data of positive far-field density, that is, a situationwhere, given constant den-
sity ρ̄ > 0 at infinity, the total initial-energy is unbounded. The study of spherically
symmetric solutions dates back to the 1950s and is motivated by many important
physical problems such as flow in a jet engine inlet manifold and stellar dynam-
ics including gaseous stars and supernovae formation (cf. [19,28,52,55,59]). The
central feature of the solutions is the strengthening of waves as they move radially
inward toward the origin. An existence theory was established in Chen and Pere-
pelitsa [17] and Chen and Schrecker [18] via an approach of vanishing artificial
viscosity for the case when the initial data are of finite-energy, which requires that
ρ̄ = 0. For the far-field density ρ̄ > 0, various physical examples have shown that
the spherically symmetric solutions of the compressible Euler equations blow up
more often near the origin at certain time (see [19,28,38,45,59] and the references
cited therein). The fundamental unsolved problem is whether the density would
form concentration to become a measure near the origin for the case when the total
initial-energy is unbounded and the wave propagation is not at finite speed start-
ing initially. In this paper, we establish a global existence theory for spherically
symmetric solutions in L p

loc of the compressible Euler equations with large initial
data of positive far-field density ρ̄ > 0 and relative finite-energy in RN for N � 2.
This is achieved by developing a new approach via adapting a class of degenerate
density-dependent viscosity terms, so that a rigorous proof of the vanishing viscos-
ity limit of global weak solutions of the compressible Navier–Stokes equations with
the density-dependent viscosity terms to the corresponding global solution of the
Euler equations with large initial data of spherical symmetry and positive far-field
density can be obtained. One of our main observations is that the adapted class of
degenerate density-dependent viscosity terms not only includes the viscosity terms
for the Navier–Stokes equations for shallow water (Saint Venant) flows, among
others (cf. Bresch and Dejardins [2,3], Bresch et al. [5], Lions [39], and Mallet and
Vasseur [44]), but also, more importantly, is suitable to achieve the key objective of
this paper. These results indicate that concentration is not formed in the vanishing
viscosity limit for the Navier–Stokes approximations constructed in this paper even
when the total initial-energy is unbounded, though the density may blow up near
the origin at certain time and the wave propagation is not at finite speed.

More precisely, theM-DEuler equations for compressible isentropic fluids take
the form {

∂tρ + divM = 0,

∂tM + div
(M⊗M

ρ

) + ∇ p = 0
(1.1)

for (t, x) ∈ R+ × R
N with N � 2, where ρ is the density, p is the pressure, and

M ∈ R
N represents themomentum; see alsoChen and Feldman [14] andDafermos

[20].When ρ > 0,U = M
ρ

∈ R
N is the velocity. The constitutive pressure-density

relation for polytropic gases is

p = p(ρ) = κργ ,
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where γ > 1 is the adiabatic exponent; by scaling, constant κ in the pressure-

density relation may be chosen as κ = (γ−1)2

4γ without loss of generality. We are
concerned with the Cauchy problem for (1.1) with the Cauchy data

(ρ,M)|t=0 = (ρ0,M0)(x) −→ (ρ̄, 0) as |x| → ∞, (1.2)

where (ρ̄, 0) is a constant far-field state, for which the initial far-field velocity has
been assumed to be zero in (1.2) without loss of generality, owing to the Galilean
invariance of system (1.1). Since a global solution of the Euler equations (1.1)
normally contains the vacuum states {(t, x) : ρ(t, x) = 0}where the fluid velocity
U (t, x) is not well-defined (even though the far-field density is positive), we will
use the physical variables such as the momentum M(t, x), or M(t,x)√

ρ(t,x)
, which will

be shown to be always well-defined, instead of U (t, x), when the vacuum states
are involved throughout this paper.

In order to construct global spherically symmetric solutions in L p
loc of the Eu-

ler equations (1.1) with large initial data of positive far-field density, ρ̄ > 0, the
approach of vanishing artificial viscosity developed in [17,18] is no longer applied
directly, and the problem has been remained open. To solve this problem, in this
paper, we develop a different approach by adapting a class of degenerate density-
dependent viscosity terms so that the required uniform estimates in terms of the
viscosity coefficients can be achieved for the vanishing viscosity limit. More pre-
cisely, we consider the M-D Navier–Stokes equations for compressible barotropic
fluids with the adapted class of degenerate density-dependent viscosity terms:{

∂tρ + divM = 0,

∂tM + div
(M⊗M

ρ

) + ∇ p = εdiv
(
μ(ρ)D(M

ρ
)
) + ε∇(

λ(ρ)div(M
ρ

)
)
.

(1.3)

Here D(M
ρ

) = 1
2

(∇(M
ρ

) + (∇(M
ρ

))�
)
is the stress tensor, and the shear and bulk

viscosity coefficients μ(ρ) and λ(ρ) depend on the density and may vanish on the
vacuum. Indeed, in the derivation of the Navier–Stokes equations from the Boltz-
mann equation by the Chapman–Enskog expansions, the viscosity terms depend
on the temperature, which are translated into the dependence on the density for
barotropic flows (cf. [42]). Moreover, for the shallow water (Saint Venant) models,
N = 2, γ = 2, and (μ(ρ), λ(ρ)) = (ρ, 0) (cf. Lions [39, §8.4]); also see [2,5] for
such models in geophysical flows. This indicates that it is of independent interest
and importance to analyze the Navier–Stokes equations (1.3) with the density-
dependent viscosity terms. In particular, we are also interested in the inviscid limit
of the Navier–Stokes equations (1.3). Formally, as ε → 0+, the Navier–Stokes
equations (1.3) converge to the Euler equations (1.1). A fundamental problem in
mathematical fluid dynamics is whether a rigorous proof of the vanishing viscosity
limit of the solutions of the Navier–Stokes equations (1.3) to the Euler equations
(1.1) could be provided.

There is an extensive literature on the analysis of the vanishing artificial/numerical
viscosity limit to the isentropic Euler equations. For the 1-D case with general L∞
initial data, it has been analyzed by DiPerna [23], Ding et al. [22], Ding [21], Chen
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[10,11], Lions et al. [40,41], and Huang andWang [32] via the methods of entropy
analysis and compensated compactness. Also see DiPerna [24], Morawetz [46],
Perthame and Tzavaras [48], and Serre [54] for general 2 × 2 strictly hyperbolic
systems of conservation laws. The vanishing artificial viscosity limit to general
strictly hyperbolic systems of conservation laws with general small BV initial data
was first established by Bianchini and Bressan [1] via direct BV estimates with
small oscillation; see also [8,9] and the references cited therein for the rate of
convergence.

For the study of spherically symmetric weak solutions, the local existence of
such solutions outside a solid ball at the origin was discussed inMakino and Takeno
[43] for the case 1 < γ � 5

3 ; also see Yang [61,62]. A first global existence of
spherically symmetric solutions in L∞ including the origin was established in Chen
[12] for a class of L∞ Cauchy data of arbitrarily large amplitude, which model out-
going blast waves and large-time asymptotic solutions. A compactness framework
was established in LeFloch and Westdickenberg [37] to construct finite-energy so-
lutions to the isentropic Euler equations with spherical symmetry and finite-energy
initial data for the case 1 < γ � 5

3 . As indicated earlier, the convergence of the van-
ishing artificial viscosity approximate solutions to the corresponding finite-energy
entropy solution of the M-D Euler equations with large initial data of spherical
symmetry was established in [17,18] for any γ > 1 for the case ρ̄ = 0.

For the compressible Navier–Stokes equations with constant viscosity coeffi-
cients (that is, μ and λ are constants), the global existence of solutions has been
studied extensively; see [30,35] and the references cited therein for the 1-D case.
For x ∈ R

N , N ≥ 2, Lions [39] first obtained the global existence of renormal-
ized solutions, provided that γ is suitably large, which was further extended by
Feireisl et al. [25] to γ > N

2 and by Plotnikov and Weigant [49] to γ = N
2 , and

by Jiang and Zhang [34] to γ > 1 under the spherical symmetry. When μ and λ

depend on the density, the Navier–Stokes equations (1.3) become degenerate when
ρ → 0. Such cases were analyzed in Bresch et al. [5] based on the new mathemati-
cal entropy—the BD entropy, first discovered by Bresch and Desjardins [2] for the
particular case (μ, λ) = (ρ, 0), and later generalized by Bresch and Desjardins [3]
to include the case of any viscosity coefficients (μ, λ) satisfying the BD relation:
λ(ρ) = ρμ′(ρ) − μ(ρ); also see Bresch and Desjardins [4]. When the initial data
are of spherical symmetry, Guo et al. [29] obtained the global existence of spher-
ically symmetric weak solutions of the system for γ ∈ (1, 3) in a finite ball with
Dirichlet boundary conditions. Also see [7,58].

The idea of regarding inviscid gases as viscous gases with vanishing physi-
cal viscosity can date back the seminal paper by Stokes [56] and the important
contributions of Rankine [50], Hugoniot [33], and Rayleigh [51] (cf. Dafermos
[20]). However, the first rigorous convergence analysis of the inviscid limit from
the barotropic Navier–Stokes to Euler equations was made by Gilbarg [26] much
later, in which the existence and vanishing viscous limit of the Navier–Stokes shock
layers was established. For the convergence analysis confined in the framework of
piecewise smooth solutions, see [27,31,60] and the references cited therein.
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The key objective of this paper is to establish the global existence of spherically
symmetric solutions of (1.1):

ρ(t, x) = ρ(t, r), M(t, x) = m(t, r)
x
r

for r = |x|, (1.4)

subject to the initial condition that

(ρ,M)(0, x) = (ρ0,M0)(x) = (ρ0(r),m0(r)
x
r
) −→ (ρ̄, 0) as r → ∞

(1.5)

with ρ̄ > 0 and relative finite-energy. To achieve this, we establish the vanishing
viscosity limit of the corresponding spherically symmetric solutions of the Navier–
Stokes equations (1.3) with the adapted class of degenerate density-dependent vis-
cosity terms and approximate initial data of similar form to (1.5). For spherically
symmetric solutions of form (1.4), systems (1.1) and (1.3) become{

ρt + mr + N−1
r m = 0,

mt + (m2

ρ
+ p

)
r + N−1

r
m2

ρ
= 0,

(1.6)

and{
ρt + mr + N−1

r m = 0,

mt + (m2

ρ
+ p

)
r + N−1

r
m2

ρ
= ε

(
(μ + λ)((m

ρ
)r + N−1

r
m
ρ
)
)
r − ε N−1

r
m
ρ
μr .

(1.7)

respectively.
In Chen and Perepelitsa [15], the vanishing viscosity limit of smooth solutions

for the 1-D Navier–Stokes equations to the corresponding relative finite-energy
solution of the Euler equations has been established for ρ̄ > 0; also see [16]
for the 1-D shallow water case. In [17,18], the convergence of artificial viscosity
approximate smooth solutions to the corresponding finite-energy entropy solution
of the Euler equations (1.6) with spherical symmetry and large initial data has been
established for ρ̄ = 0 (also see [53]). As indicated earlier, in this paper, we develop
a different approach to investigate the vanishing physical viscosity limit of the
weak solutions of the M-D Navier–Stokes equations (1.3) with spherical symmetry
to the corresponding relative finite-energy solution of the Euler equations (1.1)
with large initial data of positive far-field density ρ̄ > 0. Owing to the non-zero
initial density at infinity so that the total initial-energy is unbounded, which may
cause the possibility for additional nature of singularities at origin r = 0 and
far-field r = ∞, several key techniques for the previous uniform estimates as in
[15,17,18] no longer apply. In particular, for the weak solutions of the Navier–
Stokes equations, it is essential to ensure enough decay of solutions a priori as
r → ∞ so that integration by parts on unbounded regions can be performed for
the key estimates in the proof.

We now describe some of our approach and techniques involved to solve the
problem posed in this paper. Owing to the singularity at r = 0, it has not been clear
yet whether there always exists a global smooth solution of the Cauchy problem
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of the Navier–Stokes equations with smooth large initial data of spherical sym-
metry. To achieve our key objective, the main point of this paper is first to obtain
global weak solutions of the compressible Navier–Stokes equations with some
uniform estimates and the H−1

loc -compactness, so that the compactness framework
in [15] can be applied. For this purpose, we first construct smooth approximate
solutions (ρε,δ,b,mε,δ,b), depending on the three parameters (ε, δ, b), through the
Navier–Stokes equations (1.7); see (3.1)–(3.4). Noting that the spherically symmet-
ric Navier–Stokes equations (1.7) become singular at the origin, we first remove
the origin in the approximate problem. For the smooth approximate solutions as
designed, it is direct to obtain the basic energy estimate, Lemma 3.1. Under relation
(2.20), we also obtain the BD entropy estimate, Lemma 3.2. Similar to that in [15],
we can obtain the uniform higher integrability of the density; see Lemma 3.3.

To employ the compactness framework in [15], we still need the uniform higher
integrability of the velocity, as described in Proposition 4.1, for all γ > 1. To prove
this, we apply the relative entropy pair (η̃, q̃) of the spherically symmetric Euler
equations (1.6) to obtain (4.54) in §4. The most difficult terms are the second and
third terms on the right-hand side of (4.54), which are essential for the M-D case
(these two terms do not appear for the 1-D case). By a careful analysis on the
relative entropy pair, we see that

m∂ρη̃(ρ,m) + m2

ρ
∂m η̃(ρ,m) − q̃(ρ,m) � Cγ (ρ̄)

(m2

ρ
+ e(ρ, ρ̄)

)
(1.8)

for some constant Cγ (ρ̄) > 0, which implies that the third term on the right-hand
side of (4.54) can be bounded by using the basic energy at least locally; see Lemma
4.8 for the details. In fact, estimate (1.8) is quite subtle. Since the left-hand side

of (1.8) contains the terms on |m|3
ρ2 and ργ+θ , we have to deal with such terms;

otherwise, the higher integrability of the velocity may not be obtained. This is
achieved by our observation of underlying cancellation by dividing it into several
cases; see (4.40)–(4.52) for the details of its proof.

From the expression of q̃ in (4.60), in order to control the second term r N−1q̃
on the right-hand side of (4.54), we need to obtain some decay rate estimate of
(ρε,δ,b − ρ̄,mε,δ,b)(t, r) as r → ∞. To achieve this, we first obtain the upper
and lower bounds of density ρε,δ,b so that they are independent of b. With these
bounds of the density and property (4.1) satisfied by the approximate initial data, we
can prove a better decay estimate for (ρε,δ,b − ρ̄,mε,δ,b)(t, r), uniformly in b; see
Lemmas 4.6–4.7 inmore detail. Then the decay estimate allows us to control r N−1q̃ .
Since the boundary values of (ρε,δ,b, uε,δ,b

r )(t, b) are determined by the equations
andmaydependon ε, we integrate (4.54) over [0, T ]×[b−1, b]×[d, D] to avoid the
trace estimates, so that Proposition 4.1 is obtained. Then we take the limit, b → ∞,
to obtain the global existence of a strong solution (ρε,δ,Mε,δ) = (ρε,δ,mε,δ x

r )

for (1.3) on [0,∞) × (RN \ Bδ(0)) for each fixed δ > 0. Noting that the second
term on the right-hand side of (4.3) vanishes when b → ∞, we obtain the desired
estimates in Proposition 5.2.
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By similar arguments as in [29,44], we can then take the limit, δ → 0+, to
obtain the global weak solution (ρε,Mε) = (ρε,mε x

r ) of the Cauchy problem for
(1.3). To prove that

∂tη(ρε,mε) + ∂r q(ρε,mε) is compact in H−1
loc (R2+),

special care is required, since (ρε,mε) is only a weak solution and ∂tη(ρε,mε) +
∂r q(ρε,mε) is only a local boundedRadonmeasure for each fixed ε > 0.Moreover,
since the viscosity coefficients depend on the density, we cannot say that (m

ε

ρε )r is
a function due to the possible appearance of the vacuum in general so that it is not
suitable to use the weak form of (ρε,mε) to prove the H−1

loc -compactness. In fact,
the H−1

loc -compactness is achieved through smooth approximate solutions and their
limits.

Based on the uniform estimates and the H−1
loc -compactness, we then employ

the compactness framework in [15] to take the vanishing viscosity ε → 0 for all
γ > 1. On the other hand, we have to be careful to pass the limit, ε → 0, in the
momentum equations (see (5.42)), since it is quite delicate to vanish the right-hand
side of (5.42) by using the uniform estimates in Theorem 5.12. To overcome this
difficulty, we employ underlying cancellations and introduce a new function V ε,
which is uniformly bounded in L2(0, T ; L2) so that the right-hand side of (5.42)
is expressed by (5.43). Then we can vanish the viscosity terms by using the new
expression.

The paper is organized as follows: in §2, we first introduce the notion of relative
finite-energy solutions of the Cauchy problem (1.1)–(1.2) for the compressible Eu-
ler equations and then state Main Theorem I: Theorem 2.2 for the global existence
of such solutions. To establish Theorem 2.2, we construct global weak solutions
of the Cauchy problem (1.3) and (2.6) for the compressible Navier–Stokes equa-
tions and analyze their vanishing viscosity limit, as stated in Main Theorem II:
Theorem 2.4. We also give several related remarks. In §3, we first construct global
approximate smooth solutions (ρε,δ,b,mε,δ,b) and make the basic energy estimate
and the BD entropy estimate of (ρε,δ,b,mε,δ,b), uniformly bounded in (ε, δ, b),
for the Navier–Stokes equations (3.1). In §4, we derive the higher integrability
of the approximate smooth solutions (ρε,δ,b,mε,δ,b) uniformly in b. In §5, we
first take the limit, b → ∞, of (ρε,δ,b,mε,δ,b) to obtain global strong solutions
(ρε,δ,mε,δ) of system (3.1) with some uniform bounds in (ε, δ), and then we take
the limit, δ → 0+, to obtain global, spherically symmetric weak solutions of the
Navier–Stokes equations (1.3) with some desired uniform bounds and the H−1

loc -
compactness, which are essential for us to employ the compensated compactness
framework in §6 to establish Theorem 2.2. In the appendix, we construct the ap-
proximate initial data with desired estimates, which are used for the construction
of the approximate solutions in §3.

Throughout this paper, we denote L p(�),Wk,p(�), and Hk(�) as the standard
Sobolev spaces on domain � for p ∈ [1,∞]. We also use L p(�; r N−1dr) or
L p([0, T ) × �; r N−1drdt) for � ⊂ R+ with measure r N−1dr or r N−1drdt
correspondingly, and L p

loc([0,∞); r N−1dr) to represent L p([0, R); r N−1dr) for
any fixed R > 0.
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2. Mathematical Problems and Main Theorems

In this section, we first introduce the notion of relative finite-energy solutions
of the Cauchy problem (1.1)–(1.2) for the compressible Euler equations.

Definition 2.1. A pair (ρ,M) is said to be a relative finite-energy solution of the
Cauchy problem (1.1)–(1.2) if the following conditions hold:

(i) ρ(t, x) � 0 almost everywhere, and (M, M√
ρ
)(t, x) = 0 almost everywhere

on the vacuum states {(t, x) : ρ(t, x) = 0};
(ii) For almost everywhere t > 0, the total relative energy with respect to the

far-field state (ρ̄, 0) is finite:∫
RN

(1
2

∣∣ M√
ρ

∣∣2 + e(ρ, ρ̄)
)
(t, x) dx � E0, (2.1)

where

E0 :=
∫
RN

(1
2

∣∣ M0√
ρ0

∣∣2 + e(ρ0, ρ̄)
)
(x) dx < ∞ (2.2)

is the finite total relative initial-energy, and e(ρ, ρ̄) is the relative internal
energy respective to ρ̄ > 0:

e(ρ, ρ̄) := κ

γ − 1

(
ργ − ρ̄γ − γ ρ̄γ−1(ρ − ρ̄)

); (2.3)

(iii) For any ζ(t, x) ∈ C1
0([0,∞) × R

N ),∫
R
N+1+

(
ρζt + M · ∇ζ

)
dxdt +

∫
RN

(ρ0ζ )(0, x) dx = 0; (2.4)

(iv) For all ψ(t, x) = (ψ1, . . . , ψN )(t, x) ∈ (
C1
0([0,∞) × R

N )
)N ,∫

R
N+1+

(
M · ∂tψ + M√

ρ
· ( M√

ρ
· ∇)

ψ + p(ρ) divψ
)
dxdt

+
∫
RN

M0(x) · ψ(0, x) dx = 0, (2.5)

where and whereafter we always use R
N+1+ := R+ × R

N = (0,∞) × R
N for

N ≥ 2.

Our first main theorem of this paper is

Theorem 2.2 (Main Theorem I: Existence of Spherically Symmetric Solutions of
the Euler Equations). Consider the Cauchy problem of the Euler equations (1.1)
with large initial data of spherical symmetry of form (1.5). Let (ρ0,M0)(x) satisfy
(2.2) with the positive far-field density ρ̄ > 0. Then there exists a global relative
finite-energy solution (ρ,M)(t, x) of (1.1) and (1.5) with spherical symmetry of
form (1.4) in the sense of Definition 2.1, where (ρ,m)(t, r) is determined by the
corresponding Cauchy problem of system (1.6) with the initial data (ρ0,m0)(r)
given in (1.5).
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To establishTheorem2.2,wefirst construct globalweak solutions of theCauchy
problem of the compressible Navier–Stokes equations (1.3) with appropriately
adapted degenerate density-dependent viscosity terms and approximate initial data

(ρ,M)|t=0 = (ρε
0,Mε

0)(x) −→ (ρ0,M0)(x) as ε → 0, (2.6)

constructed as in the appendix satisfying Lemmas A.1–A.2 and Lemma A.3(i).
For clarity, we adapt the viscosity terms with (μ, λ) = (ρ, 0) in (1.3), as the

case for the shallow water (Saint Venant) models, and ε ∈ (0, 1] without loss
of generality throughout this paper. The arguments also work for a general class
of degenerate density-dependent viscosity terms; see Remark 2.7 below for more
details.

Definition 2.3. Apair (ρε,Mε) is said to be aweak solution of theCauchy problem
(1.3) and (2.6) with (μ, λ) = (ρ, 0) if the following conditions hold:

(i) ρε(t, x) � 0 almost everywhere, and (Mε, Mε√
ρε )(t, x) = 0 almost everywhere

on the vacuum states {(t, x) : ρε(t, x) = 0},
ρε ∈ L∞(0, T ; Lγ

loc(R
N )), ∇√

ρε ∈ (
L∞(0, T ; L2(RN ))

)N
,

Mε

√
ρε

∈ (
L∞(0, T ; L2(RN ))

)N ;

(ii) For any t2 � t1 � 0 and any ζ(t, x) ∈ C1
0([0,∞) × R

N ), the mass equation
(1.3)1 holds in the sense:∫

RN
(ρεζ )(t2, x) dx −

∫
RN

(ρεζ )(t1, x) dx

=
∫ t2

t1

∫
RN

(
ρεζt + Mε · ∇ζ

)
(t, x) dxdt;

(iii) For anyψ = (ψ1, . . . , ψN ) ∈ (
C2
0 ([0,∞)×R

N )
)N , the momentum equations

(1.3)2 hold in the sense:∫
R
N+1+

(
Mε · ψt + Mε

√
ρε

· ( Mε

√
ρε

· ∇)
ψ + p(ρε) divψ

)
dxdt

+
∫
RN

Mε
0(x) · ψ(0, x) dx

= −ε

∫
R
N+1+

(1
2
Mε · (

�ψ + ∇divψ
) + Mε

√
ρε

· (∇√
ρε · ∇)

ψ

+ ∇√
ρε · ( Mε

√
ρε

· ∇)
ψ

)
dxdt.

Consider spherically symmetric solutions of form (1.4). Then systems (1.1) and
(1.3) for such solutions become (1.6) and (1.7), respectively. A pair of functions
(η(ρ,m), q(ρ,m)) is called an entropy pair of the 1-D Euler system (that is, system
(1.6) with N = 1) if they satisfy

∂tη(ρ,m) + ∂r q(ρ,m) = 0
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for any smooth solution (ρ,m) of the 1-D Euler system; see Lax [36]. Furthermore,
η(ρ,m) is called a weak entropy if

η|ρ=0 = 0 for any fixed u = m

ρ
.

From now on, we also use u = m
ρ
and m alternatively when ρ > 0.

From [41], it is well-known that anyweak entropy pair (η, q) can be represented
by

η(ρ,m) =
∫
R

χ(ρ; s − u)ψ(s) ds,

q(ρ,m) =
∫
R

(θs + (1 − θ)u)χ(ρ; s − u)ψ(s) ds
(2.7)

when ρ > 0, where the kernel is

χ(ρ; s − u) = [ρ2θ − (s − u)2]b+ for b := 3 − γ

2(γ − 1)
> −1

2
and θ := γ − 1

2
.

For instance, whenψ(s) = 1
2 s

2, the entropy pair consists of the mechanical energy
and the associated energy flux

η∗(ρ,m) = 1

2

m2

ρ
+ e(ρ), q∗(ρ,m) = 1

2

m3

ρ2 + me′(ρ), (2.8)

where e(ρ) = κ
γ−1ρ

γ represents the internal energy. Since we expect that (ρ,m)

(t, r) → (ρ̄, 0) with ρ̄ > 0 as r → ∞, we define the relative mechanical energy

η̄∗(ρ,m) = m2

2ρ
+ e(ρ, ρ̄), (2.9)

with e(ρ, ρ̄) defined by (2.3) satisfying (see [15])

e(ρ, ρ̄) � Cγ ρ(ρθ − ρ̄θ )2 (2.10)

for some constant Cγ > 0.

Theorem 2.4 (MainTheorem II: Existence and Inviscid Limit for theNavier–Stokes
Equations). Consider the compressible Navier–Stokes equations (1.3) with N ≥ 2
and the spherically symmetric approximate initial data (2.6) satisfying that, as
ε → 0,

(ρε
0,m

ε
0)(r) → (ρ0,m0)(r) in L1

loc([0,∞); r N−1dr), (2.11)

Eε
0 := ωN

∫ ∞

0
η̄∗(ρε

0,m
ε
0) r

N−1dr → E0, (2.12)

Eε
1 := ε2

∫ ∞

0

∣∣(√ρε
0)r

∣∣2 r N−1dr → 0, (2.13)

and there exists a constant C > 0 independent of ε ∈ (0, 1] such that

Eε
0 + Eε

1 � C(E0 + 1) (2.14)
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for E0 defined in (2.2) and ωN = 2π
N
2 �( N2 )−1 as the surface area of the unit ball

in RN . Then the following statements hold:

Part I. Existence for the Navier–Stokes Equations (1.3): For each ε > 0, there
exists a global spherically symmetric weak solution

(ρε,Mε)(t, x) = (ρε(t, r),mε(t, r)
x
r
) = (ρε(t, r), ρε(t, r)uε(t, r)

x
r
)

of the Cauchy problem of (1.3) and (2.6) in the sense of Definition 2.3, where
uε(t, r) = mε(t,r)

ρε(t,r) almost everywhere on {(t, r) : ρε(t, r) = 0} and uε(t, r) = 0
almost everywhere on {(t, r) : ρε(t, r) = 0}. Moreover, (ρε,mε)(t, r) satisfies the
following uniform bounds:∫ ∞

0
η̄∗(ρε,mε)(t, r) r N−1dr + ε

∫
R
2+

ρε(s, r)|uε(s, r)|2 r N−3drds

� Eε
0

ωN
� C(E0 + 1), (2.15)

ε2
∫ ∞

0

∣∣(√ρε(t, r)
)
r

∣∣2 r N−1dr + ε

∫
R
2+

∣∣((ρε(s, r))
γ
2
)
r

∣∣2 r N−1drds

� C(E0 + 1), (2.16)

for any t > 0, and∫ T

0

∫ D

d

(
ρε(t, r)

)γ+1 drdt � C(d, D, T, E0), (2.17)

∫ T

0

∫ D

0

(
ρε(t, r)|uε(t, r)|3 + (

ρε(t, r)
)γ+θ )

r N−1drdt � C(D, T, E0) (2.18)

for any fixed T ∈ (0,∞) and any compact subset [d, D] � (0,∞), where and
whereafter we denote R2+ := {(t, r) : t ∈ (0,∞), r ∈ (0,∞)}, and C > 0 and
C(d, D, T, E0) > 0 as two universal constants independent of ε, but depending
on (γ, N ) and (d, D, T, E0), respectively.

Let (η, q) be an entropy pair defined in (2.7) for a smooth compact supported
function ψ(s) on R. Then, for ε ∈ (0, 1],

∂tη(ρε,mε) + ∂r q(ρε,mε) is compact in H−1
loc (R2+), (2.19)

where H−1
loc (R2+) represents H−1((0, T ] × �) for any T > 0 and bounded open

subset � � (0,∞).

Part II. InviscidLimit to theEulerEquations (1.1):For the global weak solutions
(ρε,Mε) of the compressible Navier–Stokes equations (1.3) established in Part I,
there exist a subsequence (still denoted) (ρε,mε) and a vector function (ρ,m) such
that, as ε → 0,

(ρε,mε) → (ρ,m)(t, r) in (L p
loc × Lq

loc)([0,∞); r N−1dr),∫ T

0

∫ D

0

∣∣( mε

√
ρε

)
(t, r) − ( m√

ρ

)
(t, r)

∣∣2 r N−1drdt → 0 for any fixed T, D ∈ (0,∞),
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where p ∈ [1, γ + 1), q ∈ [1, 3(γ+1)
γ+3 ), and (ρ,M)(t, x) := (ρ(t, r),m(t, r) xr ) is

a global relative finite-energy solution of spherical symmetry of the Euler equations
(1.1) with initial data (1.5) in the sense of Definition 2.1.

Remark 2.5. In Theorem 2.4, the approximate initial data functions (ρε
0,m

ε
0) sat-

isfying conditions (2.11)–(2.13) are constructed in Lemmas A.1–A.2 and Lemma
A.3(i) in the appendix. Then Theorem 2.2 is a direct corollary of Theorem 2.4.

Remark 2.6. The main point of Theorem 2.4 is to construct suitable Navier–Stokes
approximate solutions that converge strongly to a global relative finite-energy so-
lution of spherical symmetry of the Euler equations (1.1) with initial data (1.5)
in the sense of Definition 2.1 under the relative finite-energy condition (2.2) only.
We can follow the same arguments as in §3–§6 to obtain a rigorous proof of the
inviscid limit from the Navier–Stokes to Euler equations with fixed same initial
data (ρ0,m0) of appropriate regularity and decay at infinity.

Remark 2.7. When both μ and λ are constants, it is still an open problem for the
inviscid limit from (1.7) to (1.6), since the BD entropy estimate is invalid for this
case so that the required uniform estimate for the derivative of the density has not
obtained yet. On the other hand, our analysis in this paper applies to a class of more
general viscosity coefficients (μ(ρ), λ(ρ)). For instance, our results hold for the
class of (μ(ρ), λ(ρ)) that satisfy the BD relation (see [3,44]):

λ(ρ) = ρμ′(ρ) − μ(ρ) (2.20)

with some additional conditions; see also the approximate system (3.1)–(3.4).

3. Approximate Solutions and Basic Uniform Estimates

In this section, we first construct global approximate smooth solutions andmake
their basic energy estimate and the BD entropy estimate, uniformly bounded with
respect to the approximation parameters.

The main difficulty is to obtain some uniform estimates directly for the exact
solutions of the Navier–Stokes equations (1.3) with approximate initial data (1.5),
owing to the potential appearance of the vacuum and singularity of their limits at
both the origin, r = 0, and the far-field, r = ∞, generically. On the other hand, for
our purpose, it suffices to obtain first uniform estimates for appropriately designed
approximate solutions of the Navier–Stokes equations (1.3). To achieve these, we
construct the approximate solutions as the solutions of the following approximate
Navier–Stokes system with positive density (that is, ρ > 0 so that the velocity,
u = m

ρ
, is well-defined) in truncated domains:

{
ρt + (ρu)r + N−1

r ρu = 0,

(ρu)t + (ρu2 + p)r + N−1
r ρu2 = ε

(
(μ + λ)(ur + N−1

r u)
)
r − ε N−1

r uμr .

(3.1)
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Here t > 0 and r ∈ [δ, b] with δ ∈ (0, 1] and b ≥ 1 + δ−1, and

μ(ρ) = ρ + δρα, λ(ρ) = δ(α − 1)ρα (3.2)

with α ∈ ( N−1
N , 1). For concreteness, we take α = 2N−1

2N . It is easy to check that
(μ(ρ), λ(ρ)) in (3.2) satisfy relation (2.20).

We impose (3.1) with the approximate initial data

(ρ, u)(0, r) = (ρ
ε,δ,b
0 , uε,δ,b

0 )(r) for r ∈ [δ, b], (3.3)

and the boundary condition

u(t, δ) = u(t, b) = 0 for t > 0, (3.4)

where ρ
ε,δ,b
0 and uε,δ,b

0 are smooth functions satisfying

0 < (βε)
1
4 � ρ

ε,δ,b
0 � (βε)−

1
2 < ∞ (3.5)

for some small constant β (determined in Lemma A.1).
Such approximate initial data functions in (3.3) have been constructed in the

appendix, which satisfy all the properties in Lemmas A.1–A.3.
For N = 2, 3, the existence of global smooth solutions (ρε,δ,b, uε,δ,b) of (3.1)–

(3.4) with 0 < ρε,δ,b(t, r) < ∞ can be established as in Guo et al. [29]. In fact, for
any N � 2, a similar global existence result for smooth solutions of the approximate
system (3.1)–(3.4) can be obtained by using analogous arguments as in §3 and §4.1
of [29]; see also [30,34]. Since the upper and lower bounds of ρε,δ,b in [29] depend
on parameters (ε, δ, b), the key point of this section is to obtain some uniform
estimates of (ρε,δ,b, uε,δ,b) independent of (δ, b) so that both limits b → ∞ and
δ → 0+ can be taken to obtain the global weak solution of (1.3) and (2.6); see §5.

Throughout this section, for simplicity, we always fix parameters ε, δ ∈ (0, 1]
and b ≥ 1+ δ−1, use uε,δ,b or mε,δ,b alternatively since ρε,δ,b is positive, and drop
the superscripts of solution (ρε,δ,b, uε,δ,b)(t, r) and the approximate initial data
(ρ

ε,δ,b
0 , uε,δ,b

0 ), when no confusion arises. We keep the superscripts when the initial
data functions are involved.

Lemma 3.1 (Basic Energy Estimate). The smooth solution (ρ, u) of (3.1)–(3.4)
satisfies that, for any t > 0,

∫ b

δ

(1
2
ρu2 + e(ρ, ρ̄)

)
(t, r) r N−1dr + ε

∫ t

0

∫ b

δ

(
ρu2r + N − 1

r2
ρu2

)
(s, r) r N−1drds

+ εδ

∫ t

0

∫ b

δ

ρα
{
αu2r + 2(α − 1)(N − 1)

uur
r

+ (
1 + (N − 1)(α − 1)

)
(N − 1)

u2

r2

}
(s, r) r N−1drds

=
∫ b

δ

(1
2
ρ0u

2
0 + e(ρ0, ρ̄)

)
(r) r N−1dr =: Eε,δ,b

0

ωN
, (3.6)
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where Eε,δ,b
0 satisfies the properties stated in Lemma A.3 in the appendix. In par-

ticular, there exists a positive constant cN > 0 (depending only on N ) such that∫ b

δ

(1
2
ρu2 + e(ρ, ρ̄)

)
(t, r) r N−1dr + ε

∫ t

0

∫ b

δ

(
ρu2r + ρu2

r2

)
(s, r) r N−1drds

+ cN εδ

∫ t

0

∫ b

δ

(
ραu2r + ραu2

r2

)
(s, r) r N−1drds

� Eε,δ,b
0

ωN
� C(E0 + 1) for any t > 0, (3.7)

for some constant C > 0 independent of (ε, δ, b), where we have used (A.37).

Proof. Multiplying (3.1)2 by r N−1u and performing integration by parts, we have

d

dt

∫ b

δ

1

2
ρu2 r N−1dr +

∫ b

δ

pru r
N−1dr

= −ε

∫ b

δ

(
(μ + λ)

(
ur + N − 1

r
u
)
(r N−1u)r − (N − 1)μ(r N−2u2)r

)
dr.

(3.8)

For the second term on the left-hand side of (3.8), it follows from (3.1)1 and
integration by parts that∫ b

δ

pru r
N−1dr = κγ

γ − 1

∫ b

δ

ρu(ργ−1)r r
N−1dr

= − κγ

γ − 1

∫ b

δ

(ρur N−1)rρ
γ−1 dr

= κ

γ − 1

∫ b

δ

(ργ )t r
N−1dr

= κ

γ − 1

∫ b

δ

(
ργ − ρ̄γ − γ ρ̄γ−1(ρ − ρ̄)

)
t r

N−1dr

= d

dt

∫ b

δ

e(ρ, ρ̄)(t, r) r N−1dr. (3.9)

For the viscous term, a direct calculation shows

(μ + λ)
(
ur + N − 1

r
u
)
(ur N−1)r − (N − 1)μ(u2r N−2)r

= μ
(
r N−1u2r + (N − 1)r N−3u2

)
+ λ

(
r N−1u2r + 2(N − 1)r N−2uur + (N − 1)2r N−3u2

)
= δρα

(
αr N−1u2r + 2(α − 1)(N − 1)r N−2uur

+ (N − 1)(1 + (α − 1)(N − 1))r N−3u2
)

+ ρ
(
r N−1u2r + (N − 1)r N−3u2

)
. (3.10)
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For the first term on the right-hand side of (3.10), we calculate its discriminant as

4(α − 1)(N − 1)2 − 4α(N − 1)
(
1 + (α − 1)(N − 1)

)
= 4(N − 1)2

(
1 − N

N − 1
α
)

< 0,

since α ∈ ( N−1
N , 1). Thus, there exists a positive constant cN > 0 such that

(μ + λ)
(
ur + N − 1

r
u
)
(r N−1u)r − (N − 1)μ(r N−2u2)r

� ρ
(
u2r + u2

r2
)
r N−1 + cN δρα

(
u2r + u2

r2
)
r N−1. (3.11)

Integrating (3.8) over [0, t] and using (3.9)–(3.11), we obtain (3.6)–(3.7). ��
For (μ, λ) determined by (3.2), system (1.3) admits an additional a priori esti-

mate for the density (via the BD entropy), as observed by Bresch and Desjardins
[2,3] (see also Bresch et al. [6]) with the Dirichlet boundary conditions in the 3-D
case. For the spherically symmetric problem, we have

Lemma 3.2 (BD Entropy Estimate). The smooth solution of (3.1)–(3.4) satisfies

ε2
∫ b

δ

(
(1 + δρα−1 + δ2ρ2(α−1))

ρ2
r

ρ

)
(t, r) r N−1dr

+ ε

∫ t

0

∫ b

δ

(
(1 + δρα−1)ργ−2ρ2

r

)
(s, r) r N−1drds � C(E0 + 1), (3.12)

where we have used

sup
0<ε,δ�1

sup
b≥1+δ−1

(
Eε,δ,b
0 + Eε,δ,b

1

)
� C(E0 + 1), (3.13)

which follows from (A.38), with

Eε,δ,b
1 := ε2

∫ b

δ

(
1 + 2αδρα−1

0 + α2δ2ρ2α−2
0

)∣∣(√ρ0)r
∣∣2 r N−1dr. (3.14)

Proof. It is more convenient to deal with (3.1) in the Lagrangian coordinates for
this proof. We divide the proof into four steps.

1. For simplicity, denote Lb := ∫ b
δ

ρ0(r)r N−1 dr . Note that

d

dt

∫ b

δ

ρ(t, r) r N−1dr = −
∫ b

δ

(ρur N−1)r (t, r) dr = 0.

Then ∫ b

δ

ρ(t, r) r N−1dr =
∫ b

δ

ρ0(r) r
N−1dr = Lb for all t > 0.
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For r ∈ [δ, b] and t ∈ [0, T ], we define the Lagrangian transformation:

x =
∫ r

δ

ρ(t, y) yN−1dy, τ = t,

which translates domain [0, T ] × [δ, b] into [0, T ] × [0, Lb] and satisfies{
∂x
∂r = ρr N−1 > 0, ∂x

∂t = −ρur N−1, ∂τ
∂r = 0, ∂τ

∂t = 1,
∂r
∂x = 1

ρr N−1 > 0, ∂r
∂τ

= u, ∂t
∂τ

= 1, ∂t
∂x = 0.

(3.15)

Applying the Lagrange transformation, system (3.1) becomes{
ρτ + ρ2(r N−1u)x = 0,

uτ + r N−1 px = εr N−1
(
ρ(μ + λ)(r N−1u)x

)
x − ε(N − 1)r N−2μxu,

(3.16)

and the boundary condition (3.4) becomes

u(τ, 0) = u(τ, Lb) = 0 for τ > 0. (3.17)

2. Multiplying (3.16)1 by μ′(ρ) and using (2.20), we have

μτ + ρ(μ + λ)(r N−1u)x = 0. (3.18)

Substituting (3.18) into the viscous term of (3.16)2 leads to

uτ + r N−1 px = −εr N−1(μx )τ − ε(N − 1)r N−2μxu. (3.19)

Note from (3.15) that ∂r
∂τ

= u. Then the last term of (3.19) is rewritten as

ε(N − 1)r N−2μxu = (N − 1)r N−2rτμx = (r N−1)τμx ,

which, with (3.19), yields

(u + εr N−1μx )τ + r N−1 px = 0. (3.20)

3. Multiplying (3.20) by u + εr N−1μx , we have

1

2

d

dτ

∫ Lb

0
(u + εr N−1μx )

2 dx + ε

∫ Lb

0
pxμx r

2N−2dx +
∫ Lb

0
pxu r

N−1dx = 0. (3.21)

For the last term on the left-hand side of (3.21), it follows from integration by parts
and (3.16)1 that∫ Lb

0
pxur

N−1 dx = κ

∫ Lb

0
ργ−2ρτ dx

= κ

γ − 1

∫ Lb

0
(ργ−1)τ dx = d

dτ

∫ Lb

0

e(ρ, ρ̄)

ρ
dx . (3.22)

Substituting (3.22) into (3.21) leads to

d

dτ

∫ Lb

0

(1
2
(u + εr N−1μx )

2 + e(ρ, ρ̄)

ρ

)
dx + ε

∫ Lb

0
pxμx r

2N−2dx = 0.

(3.23)
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Integrating (3.23) over [0, τ ] yields
∫ Lb

0

(1
2
(u + εr N−1μx )

2 + e(ρ, ρ̄)

ρ

)
dx + ε

∫ τ

0

∫ Lb

0
pxμx r

2N−2dxds

=
∫ Lb

0

(1
2
(u0 + εr N−1

0 μ0x )
2 + e(ρ0, ρ̄)

ρ0

)
dx . (3.24)

4. Plugging (3.24) back to the Eulerian coordinates, we have

∫ b

a

(1
2
ρ
∣∣u + ε

μr

ρ

∣∣2 + e(ρ, ρ̄)
)
r N−1dr + ε

∫ τ

0

∫ b

a

pr
ρ

μr r
N−1drds

=
∫ b

a

(1
2
ρ0

∣∣u0 + ε
μ0r

ρ0

∣∣2 + e(ρ0, ρ̄)
)
r N−1dr,

which, with (3.7), leads to (3.12). ��

Lemma 3.3. For given d and D with [d, D] � [δ, b], any smooth solution of (3.1)–
(3.4) satisfies

∫ T

0

∫
K

ργ+1(t, r) drdt � C(d, D, T, E0), (3.25)

where K is any compact subset of [d, D].

Proof. We divide the proof into five steps.
1. Let w(r) be a smooth compact support function with suppw ⊆ [d, D] and
w(r) ≡ 1 for r ∈ K . Multiplying (3.1)2 by w(r), we have

(ρuw)t + (
(ρu2 + p)w

)
r + N − 1

r
ρu2w

= ε
(
(μ + λ)(ur + N − 1

r
u)w

)
r − ε

N − 1

r
μr uw

+ (
ρu2 + p − ε(μ + λ)(ur + N − 1

r
u)

)
wr . (3.26)

Integrating (3.26) over [d, r) and multiplying the resultant equation by ρw, we
have

(ρ2u2 + ρp)w2 = −ρw
( ∫ r

d
ρuw dy

)
t
− ρw

∫ r

d

N − 1

y
ρu2w dy

+ ρw

∫ r

d

(
ρu2 + p − ε(μ + λ)

(
uy + N − 1

y
u
))

wy dy

+ ερ(μ + λ)
(
ur + N − 1

r
u
)
w2 − ερw

∫ r

d

N − 1

y
uμyw dy. (3.27)
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A direct calculation shows

ρpw2 = −
(
ρw

∫ r

d
ρuw dy

)
t
−

(
ρuw

∫ r

d
ρuw dy

)
r
+ ρuwr

∫ r

d
ρuw dy

− N − 1

r
ρuw

∫ r

d
ρuw dy − ρw

∫ r

d

N − 1

y
ρu2w dy

+ ρw

∫ r

d

(
ρu2 + p − ε

μ + λ

y

(
yuy + (N − 1)u

))
wy dy

− ερw

∫ r

d

N − 1

y
uμyw dy + ερ(μ + λ)

(
ur + N − 1

r
u
)
w2

:=
8∑
j=1

I j . (3.28)

To estimate the right-hand side of (3.28), we first note from (2.10) and (3.7) that

∫ D

d
ργ r N−1dr � C(D, E0). (3.29)

Using (3.7) and (3.29), we see that

∫ D

d
ρ dr � C

dN−1

∫ D

d
ρ r N−1dr � C(d)

∫ D

d
(ργ + 1) r N−1dr � C(d, D, E0), (3.30)

∫ D

d
ρu2 dr � C

dN−1

∫ D

d
ρu2 r N−1dr � C(d, E0). (3.31)

2. Now it follows from (3.30)–(3.31) that

∣∣∣∣
∫ T

0

∫ D

d
I1 drdt

∣∣∣∣ �
∫ D

d

(∣∣∣(ρw

∫ r

d
ρuw dy

)
(T, r)

∣∣∣ +
∣∣∣(ρw

∫ r

d
ρuw dy

)
(0, r)

∣∣∣)dr
� C(d, D, T, E0), (3.32)∫ T

0

∫ D

d
I2 drdt =

∫ T

0

∫ D

d

(
ρuw

∫ r

d
ρuw dy

)
r
drdt = 0, (3.33)

∣∣∣∣
∫ T

0

∫ D

d
I3 drdt

∣∣∣∣ =
∣∣∣∣
∫ T

0

∫ D

d

(
ρuwr

∫ r

d
ρuw dy

)
drdt

∣∣∣∣ � C(d, D, T, E0), (3.34)
∣∣∣∣
∫ T

0

∫ D

d
I4 drdt

∣∣∣∣ � C(d)

∣∣∣∣
∫ T

0

∫ D

d

(
ρu

∫ r

d
ρu dy

)
drdt

∣∣∣∣ � C(d, D, T, E0), (3.35)
∣∣∣∣
∫ T

0

∫ D

d
I5 drdt

∣∣∣∣ =
∣∣∣∣
∫ T

0

∫ D

d

(
ρw

∫ r

d

N − 1

y
ρu2w dy

)
drdt

∣∣∣∣ � C(d, D, T, E0). (3.36)

3. We now estimate I6. It follows from (3.7) that

∣∣∣ ∫ T

0

∫ D

d

(
ρw

∫ r

d
(ρu2 + p)wy dy

)
drdt

∣∣∣ � C(d, D, T, E0), (3.37)

∣∣∣ ∫ T

0

∫ D

d
ερw

( ∫ r

d

ρ + αδρα

y

(
yuy + (N − 1)u

)
wy dy

)
drdt

∣∣∣
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� C(d, D, E0)
{
ε

∫ T

0

∫ D

d
(ρ + δρα)

(
u2r + u2

y2
+ 1

)
yN−1dydt

}
� C(d, D, T, E0). (3.38)

Then it follows from (3.37)–(3.38) that

∣∣∣ ∫ T

0

∫ D

d
I6 drdt

∣∣∣ � C(d, D, T, E0). (3.39)

4. For I7, it follows from (3.7) and integration by parts that

∣∣∣ ∫ r

d

1

y
uμyw dy

∣∣∣
�

∣∣∣1
r
(μuw)(t, r)

∣∣∣ +
∣∣∣ ∫ r

d

1

y
μ

( − 1

y
uw + uyw + uwy

)
(t, y) dy

∣∣∣
� 1

r

(
(ρ + δρα)|uw|)(t, r) + C(d)

∫ D

d

(
ρu2r + δραu2r

)
r N−1 dr + C(d, D, E0),

which implies that

∣∣∣ ∫ T

0

∫ D

d
I7 drdt

∣∣∣
� C(d, D, T, E0)

(
1 + ε

∫ T

0

∫ D

d
(ρ + δρα)u2r r

N−1drdt
)

+ ε

∫ T

0

∫ D

d
ρ3w2 drdt

� C(d, D, T, E0) + ε

∫ T

0

∫ D

d
ρ3w2 drdt, (3.40)

where we have used α < 1.
For I8, it follows from (3.7) and the Cauchy inequality that

∣∣∣ ∫ T

0

∫ D

d
I8 drdt

∣∣∣ � ε

∣∣∣∣
∫ T

0

∫ D

d
ρ2(ur + N − 1

r
u
)
w2 drdt

∣∣∣∣
+ εδ

∣∣∣∣
∫ T

0

∫ D

d
ρ1+α

(
ur + N − 1

r
u
)
w2 drdt

∣∣∣∣
� C(d)

∫ T

0

∫ D

d
ε(ρ + δρα)

(
u2r + u2

r2
)
r N−1drdt

+ ε

2

∫ T

0

∫ D

d

(
ρ3 + ρ2+α

)
w2 drdt

� C(d, D, T, E0) + ε

∫ T

0

∫ D

d
ρ3w2 drdt. (3.41)

To close the estimate, we still need to bound the last term on the right-hand sides
of (3.40)–(3.41).

We first consider the case: γ ∈ (1, 2]. Notice that

ε

∫ T

0

∫ D

d
ρ3w2 drdt
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� ε

∫ T

0

( ∫ D

d
ργ dr

)
sup

r∈[d,D]
(
ρ3−γ w2) dt

� C(d, D, E0)

∫ T

0
ε sup
r∈[d,D]

(
ρ3−γ w2)dt

� Ĉ(d, D, E0)

∫ T

0

∫ D

d

(
ερ2−γ |ρr |w2 + ερ3−γ w|wr |

)
drdt, (3.42)

where Ĉ(d, D, E0) is a constant depending on (d, D, E0). A direct calculation
shows that

∫ T

0

∫ D

d
ερ2−γ |ρr |w2 drdt �

∫ T

0

∫ D

d
εργ−2ρ2

r drdt + ε

2

∫ T

0

∫ D

d
ρ3(2−γ )w2 drdt

� C(d, D, E0) + ε

2Ĉ(d, D, E0)

∫ T

0

∫ D

d
ρ3w2 drdt, (3.43)

∫ T

0

∫ D

d
ερ3−γ w|wr | drdt �

∫ T

0
ε sup

r
(ρw)(t, r)

( ∫ D

d
ρ2−γ |wr | dr

)
dt

� C(d, D, E0)

∫ T

0
ε sup

r
(ρw)(t, r) dt

� C(d, D, E0)

∫ T

0

∫ D

d
ε
(|ρr |w + ρ|wr |

)
drdt

� C(d, D, E0)
( ∫ T

0

∫ D

d

(
εργ−2ρ2

r + ρ2−γ w
)
drdt + 1

)
� C(d, D, E0). (3.44)

Combining (3.42)–(3.44), we have

ε

∫ T

0

∫ D

d
ρ3w2 drdt � C(d, D, E0) for γ ∈ (1, 2]. (3.45)

For the case: γ ∈ [2, 3], notice that

ε

∫ T

0

∫ D

d
ρ3w2 drdt

� ε

∫ T

0
sup

r∈[d,D]
(
ρ2w)

∫ D

d
ρw dr dt

� C(d, D, E0)

∫ T

0

∫ D

d

(
ερ|ρr |w + ερ2|wr |

)
drdt

� C(d, D, E0)

∫ T

0

∫ D

d

(
ε2ργ−2|ρr |2w + ρ2|wr | + ρ4−γ w

)
drdt

� C(d, D, E0). (3.46)

For case γ ∈ [3,∞), we can immediately see that∫ T

0

∫ D

d
ρ3w2 drdt � C(d, D)

∫ T

0

∫ D

d

(
1 + r N−1ργ

)
drdt � C(d, D, E0).

(3.47)
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Now substituting (3.45)–(3.47) into (3.40)–(3.41), we obtain

∣∣∣ ∫ T

0

∫ D

d
(I7 + I8) drdt

∣∣∣ � C(d, D, T, E0). (3.48)

5. Integrating (3.28) over [0, T ] × [d, D] and then using (3.32)–(3.36), (3.39),
and (3.48), we conclude (3.25). ��

4. Uniform Higher Integrability of the Approximate Solutions

To employ the compensated compactness framework in [15], we further require
the higher integrability of the approximate solutions.

From now on, we denote

M1 := E0 + ρ̄ + ρ̄−1 + δ−1 + ε−1 + sup
b≥1+δ−1

Eε,δ,b
2 < ∞,

M2 := M1 + sup
b≥1+δ−1

Ẽε,δ,b
0 < ∞,

(4.1)

where

Eε,δ,b
2 :=

∫ b

δ

ρ0

(
u2N0 + ∣∣μ0r

ρ0

∣∣2N)
r N−1dr,

Ẽε,δ,b
0 :=

∫ b

δ

(1
2
ρ0u

2
0 + e(ρ0, ρ̄)

)
r2(N−1)+ϑdr

(4.2)

for someϑ ∈ (0, 1). FromLemmaA.3, we note that Eε,δ,b
2 and Ẽε,δ,b

0 are uniformly
bounded with respect to b, while the upper bounds may depend on (ε, δ), so that
M1 and M2 are finite for any fixed (ε, δ), independent of b > 0.

Proposition 4.1. Let [d, D] � [δ, b]. Then the smooth solution of (3.1)–(3.4) sat-
isfies∫ T

0

∫ D

d

(
ρ|u|3 + ργ+θ

)
(t, r) r N−1drdt � C(d, D, T, E0) + C(T, M2)b

− ϑ
2 ,

(4.3)

where ϑ ∈ (0, 1) given in (4.2).

To prove (4.3), we need to integrate the equations from the far-field, so that
the asymptotic behavior of (ρ − ρ̄)(t, r) and u(t, r) near boundary r = b must
be known. Indeed, the key point for Proposition 4.1 is that a decay rate of (ρ −
ρ̄)(t, r) and u(t, r) can be derived, and the positive constant C(T, M2) in (4.3)
is independent of b so that this term vanishes when b → ∞. In order to prove
Proposition 4.1, we require the next six lemmas.

To obtain the asymptotic behavior of ρ(t, r) near boundary r = b, we first need
the lower and upper bounds of ρ(t, r), which are independent of b.
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Lemma 4.2 (Upper Bound of the Density). There exists a constant C(M1) > 0
such that the smooth solution of (3.1)–(3.4) satisfies

0 < ρ(t, r) � C(M1) for t � 0 and r ∈ [δ, b]. (4.4)

Proof. Notice that

{
e(ρ, ρ̄) ∼= |ρ − ρ̄|2 if ρ ∈ [ ρ̄

2 , 2ρ̄],
e(ρ, ρ̄) ∼= |ρ − ρ̄|γ if ρ ∈ R+\[ ρ̄

2 , 2ρ̄].

Denote

A(t) := {r : r ∈ [δ, b], ρ(t, r) � 2ρ̄} (4.5)

with A1(t) := {r : r ∈ [1, b], r ∈ A(t)} ⊂ A(t) and A2(t) := A(t)\A1(t). It is
easy to see that

e(ρ, ρ̄) � C(ρ̄)−1 for r ∈ A(t), (4.6)

which, along with (3.7), yields

Eε,δ,b
0 �

∫ b

δ

e(ρ, ρ̄) r N−1dr �
∫
A1(t)

e(ρ, ρ̄) dr � C(ρ̄)−1|A1(t)|.

Since Eε,δ,b
0 � C(E0 + 1), we have

|A(t)| � |A1(t)| + |A2(t)| � C(ρ̄, E0). (4.7)

Since ρ(t, r) is a continuous function on [δ, b], then, for any r ∈ A(t), there exists
r0 ∈ A(t) such that ρ(t, r0) = 2ρ̄ and |r − r0| � C(ρ̄, E0), which implies that

√
ρ(t, r) �

√
ρ(t, r0) +

∫ r

r0

|ρy(t, y)|
2
√

ρ(t, y)
dy

�
√
2ρ̄ + C(ρ̄, E0)

( ∫ b

δ

ρ2
r

ρ
dr

) 1
2

�
√
2ρ̄ + C(ρ̄, E0)

δ
N−1
2 ε

� C(ρ̄, ε, δ, E0).

This completes the proof. ��
Lemma 4.3. The smooth solution of (3.1)–(3.4) satisfies

∫ b

δ

ρ2N
r

ρ2N r N−1dr � C(T, M1) for any t ∈ [0, T ]. (4.8)
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Proof. We divide the proof into three steps.
1. We rewrite (3.20) as

(εr N−1μx )τ = −uτ − r N−1 px (4.9)

in the Lagrangian coordinates. Integrating (4.9) over [0, τ ] leads to

ε(r N−1μx )(τ, x) = ε(r N−1μx )(0, x) − (
u(x, τ ) − u0(x)

) −
∫ τ

0
(r N−1 px )(s, x) ds. (4.10)

Multiplying (4.10) by (r N−1μx )
2N−1 and integrating the resultant equation yield

ε

∫ Lb

0

∣∣(r N−1μx )(τ )
∣∣2N dx

�
(∫ Lb

0
|(r N−1μx )(τ )|2Ndx

) 2N−1
2N

×
{
‖(u(τ ), u0, (r

N−1μx )(0))‖L2N + CT ‖r N−1(ργ )x‖L2N ((0,τ )×(0,Lb))

}
,

which leads to

∫ Lb

0
|(r N−1μx )(τ )|2Ndx

� C(ε)
{∥∥(u(τ ), u0, (r

N−1μx )(0))
∥∥2N
L2N + CT ‖r N−1(ργ )x‖2NL2N ((0,τ )×(0,Lb))

}
. (4.11)

Notice that |μx | = ∣∣( 1
α
ρ1−α + δ

)
(ρα)x

∣∣ � δ
∣∣(ρα)x

∣∣ and (ργ )x = γ
α
ργ−α(ρα)x . It

follows from (4.4) and (4.11) that∫ Lb

0

∣∣(r N−1(ρα)x
)
(τ )

∣∣2Ndx
� C(T, ε, δ, E0)

{
‖(u(τ ), u0, r

N−1μx
)
(0))‖2NL2N

+ ‖r N−1(ρα)x‖2NL2N ((0,τ )×(0,Lb))

}
. (4.12)

Plugging (4.12) back to the Eulerian coordinates and noting α = 2N−1
2N , we see

that, for t ∈ [0, T ],∫ b

δ

(ρ2N
r

ρ2N

)
(t) r N−1dr

� C(T, ε, δ, E0)

{
Eε,δ,b
2 +

∫ b

δ

(ρu2N )(t) r N−1dr

+
∫ t

0

∫ b

δ

(ρ2N
r

ρ2N

)
(s) r N−1drds

}
. (4.13)

2. In order to close the above estimate, we need to bound
∫ b
δ

ρu2Nr N−1 dr . Multi-
plying (3.1)2 by r N−1u2N−1 and then integrating by parts, we have

1

2N

d

dt

∫ b

δ

ρu2N r N−1dr −
∫ b

δ

p(r N−1u2N )r dr
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= −ε

∫ b

δ

{
(μ + λ)

(
ur + N − 1

r
u
)
(r N−1u2N−1)r − (N − 1)μ(r N−2u2N )r

}
dr. (4.14)

By similar arguments as in (3.10)–(3.11), we obtain

(μ + λ)
(
ur + N − 1

r
u
)
(r N−1u2N−1)r − (N − 1)μ(r N−2u2N )r

� ρu2N−2
{
(2N − 1)u2r + (N − 1)

u2

r2

}
r N−1. (4.15)

For the pressure term, it follows from (4.4) and the Hölder inequality that

∣∣∣∣
∫ b

δ

p(r N−1u2N−1)rdr

∣∣∣∣
=

∣∣∣∣
∫ b

δ

p
(
(2N − 1)r N−1u2N−2ur + (N − 1)r N−2u2N−1) dr ∣∣∣∣

� ε

2

∫ b

δ

ρu2N−2(u2r + u2

r2
)
r N−1dr + C

∫ b

δ

ρ2γ−1u2N−2 r N−1dr

� ε

2

∫ b

δ

ρu2N−2(u2r + u2

r2
)
r N−1dr + C(M1)

(
1 +

∫ b

δ

ρu2N r N−1dr
)
.

(4.16)

Substituting (4.15)–(4.16) into (4.14), we have

d

dt

∫ b

δ

ρu2N r N−1dr � C(M1)
(
1 +

∫ b

δ

ρu2N r N−1dr
)
,

which, with the Gronwall inequality, implies that

∫ b

δ

ρu2N r N−1dr � C(T, M1) for t ∈ [0, T ]. (4.17)

3. Now substituting (4.17) into (4.13) yields that

∫ b

δ

(ρ2N
r

ρ2N

)
(t) r N−1dr � C(T, M1)

(
1 +

∫ t

0

∫ b

δ

(ρ2N
r

ρ2N

)
(s) r N−1drds

)
. (4.18)

Applying the Gronwall inequality to (4.18), we conclude (4.8). ��
With the above preparation, we have the following lower bound of the density:

Lemma 4.4 (Lower Bound of the Density). There exists C(T, M1) > 0 depending
only on (T, M1) such that the smooth solution of (3.1)–(3.4) satisfies

ρ(t, r) � C(T, M1)
−1 > 0 for (t, r) ∈ [0, T ] × [δ, b]. (4.19)
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Proof. Define

B(t) := {r : r ∈ [δ, b], 0 � ρ(t, r) � ρ̄

2
} (4.20)

with B1(t) := {r : r ∈ [1, b], r ∈ B(t)} ⊂ B(t) and B2(t) := B(t)\B1(t).
Similar to (4.6)–(4.7), we have

|B(t)| � C(ρ̄, E0). (4.21)

Since ρ(t, r) is a continuous function on [δ, b], then, for any r ∈ B(t), there exists
r0 ∈ B(t) such that ρ(t, r0) = ρ̄

2 and |r − r0| � C(ρ̄, E0). Thus, for β > 0,

ρ(t, r)−β � ρ(t, r0)
−β + β

∣∣∣ ∫ r

r0
ρ−β−1|ρr | dy

∣∣∣
� C(ρ̄) + β

( ∫ b

δ

|ρr |2N
ρ2N dr

) 1
2N

( ∫
B(t)

ρ− 2βN
2N−1 dr

) 2N−1
2N

� C(ρ̄) + βĈ(T, M1) max
r∈B(t)

ρ(t, r)−β,

where (4.8) has been used in the last inequality. Then we have

max
r∈B(t)

ρ(t, r)−β � C(ρ̄) + βĈ(T, M1) max
r∈B(t)

ρ(t, r)−β.

Taking β > 0 small enough such that βĈ(T, M1) � 1
2 , we obtain

max
r∈B(t)

ρ(t, r)−β � C(ρ̄).

Therefore, we conclude

ρ(t, r) � C(ρ̄)
− 1

β = C(T, M1)
−1 for all r ∈ B(t),

which leads to (4.19). ��
Remark 4.5. Since M1 is independent of b, the key point of Lemmas 4.2 and 4.4 is
that the lower and upper bounds of the density are independent of b.

With the above lower and upper bounds of the density, even though they depend
on (ε, δ), we can have the following weighted estimate:

Lemma 4.6. Let ϑ ∈ (0, 1) be some positive constant. Then the smooth solution
of (3.1)–(3.4) satisfies

∫ b

δ

(1
2
ρu2 + e(ρ, ρ̄)

)
r2(N−1)+ϑdr + ε

∫ T

0

∫ b

δ

(ρ + αδρα)u2r r
2(N−1)+ϑdrds

� C(T, M2). (4.22)
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Proof. The proof consists of five steps.
1. Let L ∈ [0, N ]. Multiplying (3.1)2 by r N−1+Lu and then integrating by parts
yield,

d

dt

∫ b

δ

1

2
ρu2 r N−1+Ldr +

∫ b

δ

pru r
N−1+Ldr

= L

2

∫ b

δ

ρu3 r N−2+Ldr

− ε

∫ b

δ

(μ + λ)
(
ur + N − 1

r
u
)(
ur + N − 1 + L

r
u
)
r N−1+Ldr

+ ε(N − 1)
∫ b

δ

μu
(
2ur + N − 2 + L

r
u
)
r N−2+Ldr. (4.23)

2. It follows from integration by parts, (4.4), and (4.19) that∫ b

δ

pru r
N−1+Ldr

= d

dt

∫ b

δ

e(ρ, ρ̄) r N−1+Ldr − κγ L

γ − 1

∫ b

δ

ρu
(
ργ−1 − ρ̄γ−1) r N−2+Ldr

� −C(T, M1)

∫ b

δ

(
ρu2 + e(ρ, ρ̄)

)
r N−2+Ldr + d

dt

∫ b

δ

e(ρ, ρ̄) r N−1+Ldr.

(4.24)

Using the Sobolev inequality:

‖u(t)‖L∞ � C‖u(t)‖
1
2
L2 ‖ur (t)‖

1
2
L2 , (4.25)

we have

L

2

∣∣∣∣
∫ b

δ

ρu3 r N−2+Ldr

∣∣∣∣
� C‖u‖

1
2
L2‖ur‖

1
2
L2

∫ b

δ

ρu2 r N−2+Ldr

� C(T, M1)

{∫ b

δ

ρu2r r
N−1dr +

( ∫ b

δ

ρu2 r N−2+Ldr
) 4

3
}
, (4.26)

where we have used (4.4), (4.19), and

‖u‖L2 � C(T, M1)
( ∫ b

δ

ρu2 r N−1dr
) 1

2 � C(T, M1).

3. For the viscous term, a direct calculation shows that

− (μ + λ)
(
ur + N − 1

r
u
)(
ur + N − 1 + L

r
u
)
r N−1+L

+ (N − 1)μu
(
2ur + N − 2 + L

r
u
)
r N−2+L
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� −1

2
(ρ + αδρα)u2r r

N−1+L + C(T, M1)r
N−3+Lρu2. (4.27)

4. Substituting (4.24) and (4.26)–(4.27) into (4.23) yields

d

dt

∫ b

δ

(1
2
ρu2 + e(ρ, ρ̄)

)
r N−1+Ldr + ε

2

∫ b

δ

(ρ + αδρα)u2r r
N−1+Ldr

� C(T, M1)
{ ∫ b

δ

(
ρu2 + e(ρ, ρ̄)

)
r N−2+Ldr +

( ∫ b

δ

ρu2r N−2+L dr
) 4

3

+
∫ b

δ

ρu2r r
N−1dr

}
. (4.28)

5. Taking L = 1 in (4.28), integrating the resultant inequality over [0, t], and
using (3.7) yield∫ b

δ

(1
2
ρu2 + e(ρ, ρ̄)

)
r Ndr + ε

2

∫ t

0

∫ b

δ

(ρ + αδρα)u2r r
Ndrds

�
∫ b

δ

(1
2
ρ0u

2
0 + e(ρ0, ρ̄)

)
r Ndr + C(T, M1)

� C(T, M2) for all t ∈ [0, T ].
Then, taking L = 2, 3, . . . , N − 1 in (4.28) step by step, we have∫ b

δ

(1
2
ρu2 + e(ρ, ρ̄)

)
r2N−2dr + ε

2

∫ t

0

∫ b

δ

(ρ + αδρα)u2r r
2N−2drds

�
∫ b

δ

(1
2
ρ0u

2
0 + e(ρ0, ρ̄)

)
r2N−2dr + C(T, M2)

� C(T, M2) for all t ∈ [0, T ]. (4.29)

Finally, taking L = N − 1 + ϑ with ϑ ∈ (0, 1) in (4.28) and integrating it over
[0, t], then it follows from (4.29) that∫ b

δ

(1
2
ρu2 + e(ρ, ρ̄)

)
r2N−2+ϑdr + ε

∫ t

0

∫ b

δ

(ρ + αδρα)u2r r
2N−2+ϑdrds

�
∫ b

δ

(1
2
ρ0u

2
0 + e(ρ0, ρ̄)

)
r2N−2+ϑdr + C(T, M2)

� C(T, M2) for all t ∈ [0, T ].
This completes the proof. ��
Lemma 4.7 (Decay Estimates). Any smooth solution of (3.1)–(3.4) satisfies that,
for all r ∈ [1, b],

|(ρ − ρ̄)(t, r)| � C(T, M2)r
− 3

4 (N−1)− ϑ
4 , (4.30)∫ T

0

(|u(t, r)| + |u(t, r)|3) dt � C(T, M2)r
−N+1− ϑ

2 for any T > 0. (4.31)
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Proof. It follows from (3.12), (4.4), (4.19), and (4.22) that, for all t ∈ [0, T ],∫ b

1

(
(|(ρ − ρ̄)(t, r)|2 + |u(t, r)|2)r N−1+ϑ + |ρr (t, r)|2

)
r N−1dr

+
∫ T

0

∫ b

1
|ur (t, r)|2 r2(N−1)+ϑdrdt � C(T, M2). (4.32)

For any r ∈ [n, n + 1] ∩ [1, b] with n + 1 � [b], it follows from (4.32) and the
Sobolev inequality that

|(ρ − ρ̄)(t, r)|2 � 2
( ∫ n+1

n
|(ρ − ρ̄)(t, r)|2dr

) 1
2
( ∫ n+1

n
|ρr (t, r)|2dr

) 1
2

+
∫ n+1

n
|(ρ − ρ̄)(t, r)|2dr

� Cn− 3
2 (N−1)− ϑ

2

( ∫ n+1

n
|(ρ − ρ̄)(t, r)|2 r2(N−1)+ϑdr

) 1
2

×
( ∫ n+1

n
|ρr (t, r)|2 r N−1dr

) 1
2

+ n−2(N−1)−ϑ

∫ n+1

n
|(ρ − ρ̄)(t, r)|2 r2(N−1)+ϑd

� C(T, M2)r
− 3

2 (N−1)− ϑ
2 .

Similarly, for r ∈ [n, n + 1] ∩ [1, b] with n + 1 � [b], it follows from (4.25)
and (4.32) that

|u(t, r)|2 � Cr−2(N−1)−ϑ

∫ n+1

n
|u(t, r)|2 r2(N−1)+ϑdr

+ Cr−2(N−1)−ϑ

(∫ n+1

n
|u(t, r)|2 r2(N−1)+ϑdr

) 1
2

×
( ∫ n+1

n
|ur (t, r)|2 r2(N−1)+ϑdr

) 1
2

� C(T, M2)r
−2(N−1)−ϑ

(( ∫ n+1

n
|ur (t, r)|2 r2(N−1)+ϑdr

) 1
2 + 1

)
,

which yields

|u(t, r)| + |u(t, r)|3

� C(T, M2)r
−N+1− ϑ

2

( ∫ n+1

n
|ur (t, r)|2 r2(N−1)+ϑdr + 1

)
. (4.33)

Integrating (4.33) over [0, T ], we obtain∫ T

0

(|u(t, r)| + |u(t, r)|3) dt � C(T, M2)r
−N+1− ϑ

2 for any r ∈ [1, [b]].
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Finally, we consider the case that r ∈ [b − 1, b]. Then, by the same arguments
as above, we see that, for r ∈ [b − 1, b],

|(ρ − ρ̄)(r)| � C(T, M2)b
− 3

2 (N−1)− ϑ
2 ,∫ T

0

(|u(t, r)| + |u(t, r)|3)dt � C(T, M2)b
−N+1− ϑ

2 .

Combining all the above estimates, we prove (4.30)–(4.31). This completes the
proof. ��

Choosing ψ(s) = 1
2 s|s| in (2.7) leads to the corresponding entropy pair as⎧⎪⎪⎨

⎪⎪⎩
η#(ρ,m) = 1

2
ρ

∫ 1

−1
(u + ρθ s)|u + ρθ s|[1 − s2]b+ ds,

q#(ρ,m) = 1

2
ρ

∫ 1

−1
(u + θρθ s)(u + ρθ s)|u + ρθ s| [1 − s2]b+ ds,

(4.34)

where b = 3−γ
2(γ−1) , θ = γ−1

2 , and m = ρu as indicated earlier. Then a direct
calculation shows

|η#(ρ,m)| � Cγ

(
ρ|u|2 + ργ

)
, q#(ρ,m) ≥ C−1

γ

(
ρ|u|3 + ργ+θ

)
, (4.35)

where and whereafter Cγ > 0 is a universal constant depending only on γ > 1.
Moreover, notice that

∂ρη# =
∫ 1

−1

( − 1

2
u + (θ + 1

2
)ρθ s

)|u + ρθ s| [1 − s2]b+ ds,

∂mη# =
∫ 1

−1
|u + ρθ s| [1 − s2]b+ ds.

(4.36)

Then

|η#m | � Cγ (|u| + ρθ ), |η#ρ | � Cγ (|u|2 + ρ2θ ),

η#ρ(ρ, 0) = 0, η#m(ρ, 0) = 2ρθ

∫ 1

0
s[1 − s2]b+ds.

(4.37)

Now we define the relative entropy pair as⎧⎨
⎩

η̃(ρ,m) = η#(ρ,m) − η#(ρ̄, 0) − η#m(ρ̄, 0)m,

q̃(ρ,m) = q#(ρ,m) − q#(ρ̄, 0) − η#m(ρ̄, 0)
(m2

ρ
+ p(ρ) − p(ρ̄)

)
.

(4.38)

With these, we have the following useful lemma:

Lemma 4.8. The relative entropy pair (η̃, q̃) satisfies

m∂ρη̃(ρ,m) + m2

ρ
∂m η̃(ρ,m) − q̃(ρ,m) � Cγ (ρ̄)

(m2

ρ
+ e(ρ, ρ̄)

)
, (4.39)

where Cγ (ρ̄) > 0 is a positive constant depending only on (γ, ρ̄).
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Proof. The estimate for (4.39) is very subtle, which will be used to overcome the
singularity from the far-field in the M-D case, different from the 1-D case. The
proof is divided into three steps.

1. Claim: (η#, q#) satisfies

m∂ρη#(ρ,m) + m2

ρ
∂mη#(ρ,m) − q#(ρ,m)

� min
{
0,−q#(ρ, 0) + Cγ ρθ−1m2}, (4.40)

where q#(ρ, 0) = θρ3θ+1
∫ 1

0
s3[1 − s2]b+ ds.

A direct calculation shows that

m∂ρη#(ρ,m) + m2

ρ
∂mη#(ρ,m) − q#(ρ,m)

= θ

2
ρ1+θ

∫ 1

−1
(u − ρθ s)s|u + ρθ s|[1 − s2]b+ ds. (4.41)

Now we divide the proof into three cases.

Case 1. u � 0 and |u| � ρθ . For this case, u + ρθ s � 0 for s ∈ [−1, 1]. Then

m∂ρη# + m2

ρ
∂mη# − q# = 0. (4.42)

On the other hand, we have

m∂ρη# + m2

ρ
∂mη# − q# = 0 = −q#(ρ, 0) + q#(ρ, 0)

= −q#(ρ, 0) + θ

∫ 1

0
s3[1 − s2]b+ dsρ1+3θ

� −q#(ρ, 0) + Cγ ρθ−1m2, (4.43)

where we have used that ρθ � |u| in the last inequality.
Case 2. u � 0 and |u| < ρθ . For this case, s0 := − u

ρθ ∈ (−1, 0], which implies

that u2 − s2ρ2θ � 0 for s � |s0|. Then

m∂ρη# + m2

ρ
∂mη# − q# = θρ1+θ

∫ 1

|s0|
(u2 − s2ρ2θ )s[1 − s2]b+ ds � 0. (4.44)

On the other hand, we have

m∂ρη# + m2

ρ
∂mη# − q#

= θρ1+θ

∫ 1

|s0|
(u2 − s2ρ2θ )s[1 − s2]b+ ds
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= θρ1+θu2
∫ 1

|s0|
s[1 − s2]b+ ds − θρ1+3θ

∫ 1

0
s3[1 − s2]b+ ds

+ θρ1+3θ
∫ |s0|

0
s3[1 − s2]b+ ds

� −q#(ρ, 0) + Cγ ρ1+θu2 + Cγ ρ1+3θ |s0|2
� −q#(ρ, 0) + Cγ ρθ−1m2. (4.45)

Case 3. u � 0. Similar to (4.42)–(4.45), we also obtain (4.40).
Combining Cases 1–3, we conclude the claim for (4.40).

2. Claim: (η#, q#) satisfies

η#m(ρ̄, 0)(p(ρ) − p(ρ̄)) − q#(ρ, 0) + q#(ρ̄, 0)

= 2ρ̄θ

∫ 1

0
s[1 − s2]b+ ds

(
p(ρ) − p(ρ̄) − p′(ρ̄)(ρ − ρ̄)

)
− 4θ2

3γ − 1

∫ 1

0
s[1 − s2]b+ ds

(
ρ1+3θ − ρ̄1+3θ − (1 + 3θ)ρ̄3θ (ρ − ρ̄)

)
, (4.46)

η#m(ρ̄, 0)
(
p(ρ) − p(ρ̄)

) + q#(ρ̄, 0)

=
∫ 1

0
s[1 − s2]b+ ds

(
2ρ̄θ p(ρ) − 4θ3

γ (3γ − 1)
ρ̄γ+θ

)
. (4.47)

A direct calculation shows that∫ 1

0
s3[1 − s2]b+ ds = 1

2
B(2, 1 + b) = 1

2(2 + b)
B(1, 1 + b)

= 1

2 + b

∫ 1

0
s[1 − s2]b+ ds, (4.48)

where we have used the properties of the beta function B(·, ·). Using (4.48), we
have

η#m(ρ̄, 0)
(
p(ρ) − p(ρ̄)

) − q#(ρ, 0) + q#(ρ̄, 0)

= 2ρ̄θ

∫ 1

0
s[1 − s2]b+ ds

(
p(ρ) − p(ρ̄) − p′(ρ̄)(ρ − ρ̄)

)
− θ

2 + b

∫ 1

0
s[1 − s2]b+ ds

(
ρ1+3θ − ρ̄1+3θ − γ κ

2(2 + b)

θ
ρ̄3θ (ρ − ρ̄)

)
.

(4.49)

Combining 2+b = 3γ−1
4θ and γ κ

2(2+b)
θ

= 1+3θ with (4.49), we conclude (4.46).
For (4.47), we note that

η#m(ρ̄, 0)
(
p(ρ) − p(ρ̄)

) + q#(ρ̄, 0)

=
∫ 1

0
s[1 − s2]b+ ds

(
2ρ̄θ p(ρ) + (

θ

2 + b
− 2κ)ρ̄γ+θ

)
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=
∫ 1

0
s[1 − s2]b+ ds

(
2p(ρ) − 4θ3

γ (3γ − 1)
ρ̄γ

)
ρ̄θ ,

which implies (4.47).

3. Noting (2.10) and (4.5), we have

e(ρ, ρ̄)IA(t)(r) � Cγ ρ(ρθ − ρ̄θ )2 IA(t)(r)

� Cγ ρ(1 − 1

2θ
)2ρ2θ IA(t)(r)

� Cγ p(ρ) IA(t)(r). (4.50)

If r ∈ A(t), then it follows from (4.40) and (4.47) that

(
m∂ρη̃(ρ,m) + m2

ρ
∂m η̃(ρ,m) − q̃(ρ,m)

)
IA(t)(r)

=
{(
m∂ρη#(ρ,m) + m2

ρ
∂mη#(ρ,m) − q#(ρ,m)

)
+ η#m(ρ̄, 0) · (p(ρ) − p(ρ̄)) + q#(ρ̄, 0)

}
IA(t)(r)

�
∫ 1

0
s[1 − s2]b+ ds

(
2ρ̄θ p(ρ) − 4θ3

γ (3γ − 1)
ρ̄γ+θ

)
IA(t)(r)

� Cγ (ρ̄)p(ρ)IA(t)(r)

� Cγ (ρ̄)e(ρ, ρ̄) IA(t)(r), (4.51)

where (4.50) has been used in the last inequality.
On the other hand, for r ∈ Ac(t) = [δ, b] \ A(t), it follows from (4.40) and

(4.46) that

(
m∂ρη̃(ρ,m) + m2

ρ
∂m η̃(ρ,m) − q̃(ρ,m)

)
IAc(t)(r)

=
{(
m∂ρη#(ρ,m) + m2

ρ
∂mη#(ρ,m) − q#(ρ,m)

)
+ η#m(ρ̄, 0) (p(ρ) − p(ρ̄)) + q#(ρ̄, 0)

}
IAc(t)(r)

�
{
q#(ρ̄, 0) + η#m(ρ̄, 0) (p(ρ) − p(ρ̄)) − q#(ρ, 0)

}
IAc(t)(r) + Cγ ρθ−1m2 IAc(t)(r)

= 2ρ̄θ

∫ 1

0
s[1 − s2]b+ ds

(
p(ρ) − p(ρ̄) − p′(ρ̄)(ρ − ρ̄)

)
IAc(t)(r)

− 4θ2

3γ − 1

∫ 1

0
s[1 − s2]b+ ds

(
ρ1+3θ − ρ̄1+3θ − (1 + 3θ)ρ̄3θ (ρ − ρ̄)

)
IAc(t)(r)

+ Cγ ρθ−1m2 IAc(t)(r)

� 2ρ̄θ

∫ 1

0
s[1 − s2]b+ ds

(
p(ρ) − p(ρ̄) − p′(ρ̄)(ρ − ρ̄)

)
IAc(t)(r)

+ Cγ ρθ−1m2 IAc(t)(r)

� Cγ

(
ρθ−1m2 + e(ρ, ρ̄)

)
IAc(t)(r)

� Cγ (ρ̄)
(m2

ρ
+ e(ρ, ρ̄)

)
IAc(t)(r), (4.52)
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where we have used (2.3) and ρθ (t, r) � (2ρ̄)θ for r ∈ Ac(t). Combining (4.51)
with (4.52), we conclude (4.39). ��

Now we are in the position to prove the key estimate, Proposition 4.1.

Proof of Proposition 4.1. We divide the proof into six steps.

1. For η̃(ρ,m) defined in (4.38), we multiply (3.1)1 by r N−1∂ρη̃(ρ,m) and (3.1)2
by r N−1∂m η̃(ρ,m) to obtain

(r N−1η̃)t + (r N−1q̃)r + (N − 1)r N−2( − q̃ + m∂ρη̃ + m2

ρ
∂m η̃

)
= εr N−1∂m η̃

{(
(ρ + αδρα)(ur + N − 1

r
u)

)
r − N − 1

r
(ρ + δρα)r u

}
. (4.53)

Let y ∈ [b − 1, b] and r ∈ [d, D]. Integrating (4.53) over [r, y] leads to

q̃(t, r)r N−1

= d

dt

∫ y

r
η̃(t, z) zN−1dz + q̃(t, y)yN−1

+ (N − 1)
∫ y

r

( − q̃ + m∂ρη̃ + m2

ρ
∂m η̃

)
(t, z) zN−2dz

− ε

∫ y

r
∂m η̃

{(
(ρ + αδρα)(uz + N − 1

z
u)

)
z − N − 1

z
(ρ + δρα)zu

}
zN−1dz. (4.54)

Integrating (4.54) over [0, T ] × [b − 1, b] × [d, D], we have
∫ T

0

∫ D

d
q̃(t, r) r N−1drdt

= (N − 1)
∫ T

0

∫ b

b−1

∫ D

d

∫ y

r

(
m∂ρη̃ + m2

ρ
∂m η̃ − q̃

)
(t, z) zN−2dzdrdydt

+
∫ b

b−1

∫ D

d

∫ y

r

(
η̃(T, z) − η̃(0, z)

)
zN−1dzdrdy

+ (D − d)

∫ T

0

∫ b

b−1
q̃(t, y) yN−1dydt

− ε

∫ T

0

∫ b

b−1

∫ D

d

∫ y

r
∂m η̃

{(
(ρ + αδρα)(uz + N − 1

z
u)

)
z

− N − 1

z
(ρ + δρα)zu

}
zN−1dzdrdydt

=:
4∑
j=1

J j . (4.55)

2. For J1 in (4.55), it follows from (3.7) and Lemma 4.8 that
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J1 � Cγ (ρ̄)
D

d

∫ T

0

∫ b

d

(
ρu2 + e(ρ, ρ̄)

)
(t, z) zN−1dzdt

� Cγ (ρ̄)
DT

d
(E0 + 1). (4.56)

3. For J2 in (4.55), we first note that |∂mmη#(ρ,m)| � 2
ρ

∫ 1
0 [1 − s2]b+ ds. This,

combining (4.36) and (4.37) with the Taylor expansion of η#(ρ,m) atm = 0, yields

η#(ρ,m) = 2
∫ 1

0
s[1 − s2]b+ ds ρθm + R1(ρ,m) (4.57)

with

|R1(ρ,m)| � Cγ

m2

ρ
. (4.58)

Then it follows from (2.10), (4.37)–(4.38), and (4.57)–(4.58) that

|η̃(ρ,m)| � 2
∫ 1

0
s[1 − s2]b+ ds |m(ρθ − ρ̄θ )| + |R1(ρ,m)| � Cγ

(m2

ρ
+ e(ρ, ρ̄)

)
,

which, along with (3.7), implies

|J2| =
∣∣∣∣
∫ b

b−1

∫ D

d

∫ y

r

(
η̃(T, z) − η̃(0, z)

)
zN−1dzdrdy

∣∣∣∣ � Cγ D(E0 + 1).

(4.59)

4. For the third term J3 in (4.55), we need to use the decay properties obtained in
Lemma 4.7. A direct calculation shows that

|q#(ρ,m) − q#(ρ, 0)| � Cγ

( |m|3
ρ2 + ρ2θ |m|),

which, with (4.46), yields

q̃(ρ,m) = 4θ2

3γ − 1

∫ 1

0
s[1 − s2]b+ ds

(
ρ1+3θ − ρ̄1+3θ − (1 + 3θ)ρ̄3θ (ρ − ρ̄)

)
− 2ρ̄θ

∫ 1

0
s[1 − s2]b+ ds

(
ρu2 + p(ρ) − p(ρ̄) − p′(ρ̄)(ρ − ρ̄)

)
+ (

q#(ρ, ρu) − q#(ρ, 0)
)

� C(T, M2)
(|ρ − ρ̄|2 + |u|3 + |u|), (4.60)

where we have used the Taylor expansion, (4.4), and (4.19) in the last inequality.
Now it follows from (4.60) and Lemma 4.7 that

|J3| � C(T, M2)D
∫ b

b−1

∫ T

0

(|ρ − ρ̄|2 + |u|3 + |u|)(t, y) yN−1dydt

� C(T, M2)b
− ϑ

2 . (4.61)
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5. For J4 in (4.55), we regard η̃m(ρ, ρu) as a function of (ρ, u) to obtain

|∂m η̃(ρ, ρu)| � Cγ

(|u| + |ρθ − ρ̄θ |),
|∂mu η̃(ρ, ρu)| � Cγ , |∂mρη̃(ρ, ρu)| � Cγ ρθ−1,

(4.62)

which, with integration by parts, leads to

|J4| � ε

∫ T

0

∫ b

b−1

∫ D

d

∣∣∣∣
∫ y

r
zN−1∂m η̃

{(
(ρ + αδρα)uz

)
z + (ρ + αδρα)(

N − 1

z
u)z

+ (α − 1)δ(ρα)z
N − 1

z
u
}
dz

∣∣∣∣ dydrdt
� Cε

∫ T

0

∫ b

b−1

∫ D

d

∫ y

r

(
(ρ + δρα)

(∣∣uz(zN−1∂m η̃)z
∣∣ + ∣∣∂m η̃ (

u

z
)z

∣∣zN−1)
+ δρα

∣∣(zN−1∂m η̃)z
u

z

∣∣) dzdrdydt

+ Cε

∫ T

0

∫ D

d

(∣∣(r N−1(ρ + δρα)∂m η̃ur
)
(t, r)

∣∣
+ δ

∣∣(r N−2ραu∂m η̃
)
(t, r)

∣∣) drdt

+ CDε

∫ T

0

∫ b

b−1

(∣∣(yN−1(ρ + δρα)∂m η̃uy
)
(t, y)

∣∣
+ δ

∣∣(yN−2ραu∂m η̃
)
(t, y)

∣∣) dydt. (4.63)

In order to estimate the terms on the right-hand side of (4.63), we notice that

e(ρ, ρ̄) IB(t)(r) � C(ρ̄)−1, (4.64)

where B(t) is defined in (4.20). Then combining (4.64)with (2.10), (3.7), and (4.21)
implies that

∫ b

d

(
ρα(ρθ − ρ̄θ )2

)
(t, r) r N−1dr

� C(ρ̄)

∫ b

d
IBc(t)(r)

(
ρ(ρθ − ρ̄θ )2

)
(t, r) r N−1dr

+
∫ b

d
IB(t)(r)

(
ρα(ρθ − ρ̄θ )2

)
(t, r) r N−1dr

� C(ρ̄)

∫ b

d
e(ρ, ρ̄)(t, r) r N−1dr + C(ρ̄)

∫ b

d
IB(t)(r) r

N−1dr

� C(ρ̄)

∫ b

d
e(ρ, ρ̄)(t, r) r N−1dr + C(ρ̄)

∫ b

d
IB(t)(r) e(ρ, ρ̄)(t, r) r N−1dr

� C(ρ̄, E0). (4.65)

Combining (4.62) and (4.65) with (3.7), (3.12), and the Cauchy inequality, we
conclude that the first term on the right-hand side of (4.63) are bounded by
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C(d)

∫ T

0

∫ b

b−1

∫ D

d

∫ y

r

{
εz2(ρ + δρα)(u2z + ργ−3ρ2

z ) + εδραu2

+ ρα(ρθ − ρ̄θ )2 + z2
(
ρu2 + e(ρ, ρ̄)

)}
zN−3dzdrdydt

� C(ρ̄, d, D, T, E0). (4.66)

Using (3.7), (3.12), (4.65), and the Cauchy inequality, we can bound the second
term on the right-hand side of (4.63) by

C(D, d)

∫ T

0

∫ D

d

{
ε(ρ + δρδ)u2r + εδρα u

2

r2
+ (ρu2 + e(ρ, ρ̄))

+ ρα(ρθ − ρ̄θ )2
}
r N−1drdt

� C(ρ̄, d, D, T, E0). (4.67)

Using (3.7), (3.12), (4.4), (4.19), (4.65), the Cauchy inequality, and Lemma 4.7,
the last term on the right-hand side of (4.63) can be bounded by

CD

d

∫ T

0

∫ b

b−1

(
ε(ρ + δρα)|uy |2 + (

ρu2 + e(ρ, ρ̄)
))

yN−1dydt

+ C(M2, T )

∫ T

0

∫ b

b−1
|u(t, y)|2 yN−1dydt

� C(ρ̄, d, D, T, E0) + C(T, M2)b
− ϑ

2 . (4.68)

6. Substituting (4.56), (4.59), (4.61), and (4.63)–(4.68), we have

∫ T

0

∫ D

d
r N−1q̃(t, r) drdt � C(ρ̄, d, D, T, E0) + C(T, M2)b

− ϑ
2 . (4.69)

Then (4.3) follows from (3.7), (4.35), and (4.69). This completes the proof. ��

Employing Proposition 4.1, we can obtain the following higher integrability
estimate up to the origin:

Lemma 4.9. The smooth solution of (3.1)–(3.4) satisfies

∫ T

0

∫ 1

δ

(
ρ|u|3 + ργ+θ

)
(t, r) r N−1drdt � C(T, E0) + C(T, M2) b

− ϑ
2 . (4.70)

Proof. Let w(r) be a smooth non-negative cut-off function with suppw ⊂ [0, 2]
and w(r) ≡ 1 for r ∈ [0, 1]. Multiplying (3.1)1 by w∂ρη#(ρ,m)

r N−1 and (3.1)2 by w∂mη#(ρ,m)r N−1, we have
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(wη#r N−1)t + (wq#r N−1)r − wr q
#r N−1

+ (N − 1)w
( − q# + m∂ρη# + m2

ρ
∂mη#

)
r N−2

= εw∂mη#
{(

(ρ + αδρα)(ur + N − 1

r
u)

)
r − N − 1

r
(ρ + δρα)r u

}
r N−1.

(4.71)

Integrating (4.71) over [r, 2]with r � 2, and then integrating the resultant equation
over [0, T ] × [δ, 2] and using (4.40), we have∫ T

0

∫ 2

δ

w(r)q#(t, r) r N−1dr

�
∣∣∣∣
∫ 2

δ

∫ 2

r
w(y)η#(T, y) yN−1dydr −

∫ 2

δ

∫ 2

r
yN−1w(y)η#(0, y) yN−1dydr

∣∣∣∣
+

∫ T

0

∫ 2

δ

∫ 2

r
wy(y)q

#(t, y) yN−1dydrdt

− ε

∫ T

0

∫ 2

δ

∫ 2

r
w(y)∂mη#

(
(ρ + αδρα)uy

)
y y

N−1dydrdt

− (N − 1)ε
∫ T

0

∫ 2

δ

∫ 2

r
w(y)∂mη# (ρ + αδρα) (

u

y
)y y

N−1dydrdt

− (N − 1)(α − 1)εδ
∫ T

0

∫ 2

δ

∫ 2

r
w(y)∂mη# (ρα)y

u

y
yN−1dydrdt

:=
5∑
j=1

I j . (4.72)

For I1, it follows from (4.35) and Lemma 3.1 that

I1 � C
∫ 2

δ

(
ρ|u|2 + ργ

)
(T, y) yN−1dy +

∫ 2

δ

(
ρ0|u0|2 + ρ

γ
0

)
(y) yN−1dy

� C
∫ 2

δ

(
1 + 1

2
ρ|u|2 + e(ρ, ρ̄)

)
(t, y) yN−1dy

+ C
∫ 2

δ

(
1 + 1

2
ρ0|u0|2 + e(ρ0, ρ̄)

)
(y) yN−1dy

� C
(
E0 + 1). (4.73)

For I2, we use Proposition 4.1 with d = 1 and D = 2 to obtain

I2 � C
∫ T

0

∫ 2

1
q#(t, y) yN−1dydt � C(T, E0) + C(T, M2) b

− ϑ
2 . (4.74)

For I3, we integrate by parts to obtain

I3 = (N − 1)ε
∫ T

0

∫ 2

δ

∫ 2

r
(ρ + αδρα)uy ∂mη#w(y) yN−2dydrdt
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+ ε

∫ T

0

∫ 2

δ

∫ 2

r
(ρ + αδρα)uy ∂mη#wy(y) y

N−1dydrdt

+ ε

∫ T

0

∫ 2

δ

∫ 2

r
(ρ + αδρα)uy (∂mη#)yw(y) yN−1dydrdt

+ ε

∫ T

0

∫ 2

δ

(ρ + αδρα)ur ∂mη#w(r) r N−1drdt

:=
4∑
j=1

I3 j . (4.75)

We regard η#m(ρ, ρu) as a function of (ρ, u) to see that

|∂muη
#(ρ, ρu)| + ρ1−θ |∂mρη#(ρ, ρu)| � Cγ ,

which, with (4.37) and Lemmas 3.1–3.2, leads to

4∑
j=2

I3 j � C
∫ T

0

∫ 2

δ

ε(ρ + δρα)
(|uy |2 + ργ−3ρ2

y

)
yN−1dydt

+
∫ T

0

∫ 2

δ

(
ε(ρ + δρα)|u|2 + (ργ + ρα+γ−1)

)
yN−1dydt

� C(T, E0). (4.76)

To estimate I31, we have to be more careful, since the weight is yN−2 that may not
be enough. Fortunately, we can gain aweight y by changing the order of integration:

I31 = (N − 1)ε
∫ T

0

∫ 2

δ

(ρ + αδρα)uy ∂mη#w(y) (y − δ)yN−2dydt

� Cε

∫ T

0

∫ 2

δ

(ρ + αδρα)|uy |(|u| + ρθ ) yN−1dydt

� C(T, E0). (4.77)

Combining (4.75)–(4.76) with (4.77) yields

I3 � C(T, E0). (4.78)

For I4, using (4.37) and changing the order of integration as in (4.77), we have

I4 � Cε

∫ T

0

∫ 2

δ

∫ 2

r
(|u| + ρθ )(ρ + αδρα)

(|uy | + |u|
y

)
yN−2dydrdt

� C(T, E0) + C
∫ T

0

∫ 2

δ

(
ε(ρ + δρα)

|u|2
y2

+ (ργ + ρα+γ−1)
)
yN−1dydt

� C(T, E0). (4.79)
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Finally, for I5, we first integrate by parts and then change the order of integration
as in (4.77) to obtain

I5 � C(T, E0) + Cεδ

∫ T

0

∫ 2

δ

ρα
(|uy |2 + ργ−3|ρy |2 + u2

y2
+ ργ−1) yN−1dydt

� C(T, E0). (4.80)

Substituting (4.73)–(4.74) and (4.78)–(4.80) into (4.72), and using (4.35), we
conclude (4.70). ��

We now prove a lemma which is needed when we take the limit b → ∞.

Lemma 4.10. The smooth solution of (3.1)–(3.4) satisfies that, for any t ∈ [0, T ],

‖ur (t)‖2L2 +
∫ T

0

(‖ut (t)‖2L2 + ‖urr (t)‖2L2

)
dt � C(T, ‖u0r‖L2 , M2). (4.81)

Proof. It follows from (3.1)1 that

−ε
(
(μ + λ)ur

)
r + ρut = H, (4.82)

where H := −ρuur − pr + ε(μ + λ)
( N−1

r u
)
r + ε N−1

r uλr . Multiplying (4.82) by
ut and integrating it over [δ, b], we have

ε

2

d

dt

∫ b

δ

(μ + λ)|ur |2 dr +
∫ b

δ

ρu2t dr = ε

2

∫ b

δ

(μ + λ)t |ur |2 dt +
∫ b

δ

Hut dr.

(4.83)

Using (3.7), (3.12), (4.4), (4.19), and the Sobolev inequality:

‖ur‖L∞ � C
(‖ur‖L2 + ‖ur‖

1
2
L2 ‖urr‖

1
2
L2

)
,

we obtain

ε

2

∫ b

δ

(μ + λ)t |ur |2 dr

� C(T, M2)

∫ b

δ

(|ρr u| + |ur | + |u|)|ur |2 dr
� C(T, M2)

{
‖u‖

1
2
L2‖ρr‖L2

(‖ur‖2L2‖urr‖
1
2
L2 + ‖ur‖

5
2
L2

)
+ ‖u‖

1
2
L2‖ur‖

5
2
L2 + ‖ur‖2L2

(‖ur‖L2 + ‖ur‖
1
2
L2‖urr‖

1
2
L2

)}
� C(T, M2)

{(‖ur‖2L2 + ‖ur‖
5
2
L2

)‖urr‖ 1
2
L2 + ‖ur‖3L2 + 1

}
, (4.84)

∣∣ ∫ b

δ

Hut dr
∣∣

� 1

8

∫ b

δ

ρ|ut |2 dr + C
∫ b

δ

ρ−1|H |2 dr
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� C(T, M2)
{(‖u‖2L∞ + 1

)‖(ρr , ur )‖2L2 + ‖u‖2L2

}
+ 1

8

∫ b

δ

ρ|ut |2 dr

� 1

8

∫ b

δ

ρ|ut |2dr + C(T, M2)
(‖ur‖3L2 + 1

)
. (4.85)

To close the above estimate, we combine (4.82) with (3.7), (3.12), (4.4), and (4.19)
to obtain

‖urr‖2L2 � C(T, M2)
{
‖√ρut‖2L2 + ‖ρr‖2L2‖ur‖L2‖urr‖L2 + ‖H‖2L2

}
� C(T, M2)

{
‖√ρut‖2L2 + ‖ur‖L2‖urr‖L2 + ‖ur‖3L2 + 1

}
� C(T, M2)

{
‖√ρut‖2L2 + ‖ur‖3L2 + 1

}
. (4.86)

Combining (4.83)–(4.86), we obtain

d

dt

∫ b

δ

(μ + λ)|ur |2 dr +
∫ b

δ

ρu2t dr � C(T, M2)
{
1 + ‖ur‖2L2

∫ b

δ

(μ + λ)|ur |2 dr
}
.

Applying the Gronwall inequality, we have∫ b

δ

(μ + λ)|ur |2 dr +
∫ t

0

∫ b

δ

ρu2t drds � C(T, ‖u0r‖L2 , M2),

which, with (4.86), implies (4.81). ��

5. Limits of the Approximate Solutions for the Navier–Stokes Equations

In this section, we first take the limit, b → ∞, to obtain global strong solu-
tions (ρε,δ, uε,δ) of the Navier–Stokes equations with some uniform bounds. Then
we take the limit, δ → 0+, to obtain global, spherically symmetric weak solu-
tions of the Navier–Stokes equations (1.3) with some desired uniform bounds on
[0, T ]×[0,∞), which are essential for us to employ the compensated compactness
framework in §6.

5.1. Passage the Limit: b → ∞
In this subsection, we fix parameters (ε, δ) and denote the solution of (3.1)–

(3.4) as (ρε,δ,b, uε,δ,b). It follows from (A.31)–(A.32) and Lemmas A.1–A.3 in the
appendix that there exist sequences of smooth approximate initial data functions
(ρ

ε,δ,b
0 , uε,δ,b

0 ) and (ρ
ε,δ
0 , uε,δ

0 ) satisfying (3.5) and the properties:⎧⎪⎨
⎪⎩

(ρ
ε,δ,b
0 ,mε,δ,b

0 )(r) → (ρ
ε,δ
0 ,mε,δ

0 )(r) in L1
loc([δ,∞); r N−1dr) as b → ∞,

(Eε,δ,b
0 , Eε,δ,b

1 ) → (Eε,δ
0 , Eε,δ

1 ) as b → ∞,

Eε,δ,b
2 + Ẽε,δ,b

0 + ‖uε,δ,b
0r ‖L2 is uniform bounded in b,

(5.1)
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where

Eε,δ
0 : =

∫ ∞

δ

η̄∗(ρε,δ
0 ,mε,δ

0 ) r N−1dr < ∞, (5.2)

Eε,δ
1 : = ε2

∫ ∞

δ

(
1 + 2αδ(ρ

ε,δ
0 )α−1 + α2δ2(ρ

ε,δ
0 )2α−2)∣∣(√ρ

ε,δ
0

)
r

∣∣2 r N−1dr < ∞.

(5.3)

From (3.7), (3.12), (4.4), (4.19), and (4.81), there exists a positive constant
C̃ > 0 that may depend on (ε, δ, T ), but is independent of b, so that

0 < C̃−1 � ρε,δ,b(t, r) � C̃, (5.4)

sup
t∈[0,T ]

(∥∥(ρε,δ,b − ρ̄, uε,δ,b)
∥∥2
H1([δ,b]) + ∥∥ρ

ε,δ,b
t

∥∥2
L2([δ,b])

)
(t)

+
∫ T

0

∥∥(uε,δ,b
t , uε,δ,b

rr )
∥∥2
L2([δ,b])(t) dt � C̃ . (5.5)

We extendρε,δ,b(t, r) and uε,δ,b(t, r) to [0, T ]×[δ,∞) by definingρε,δ,b(t, r) = ρ̄

and uε,δ,b(t, r) = 0 for all r ∈ [0, T ] × (b,∞). Then it follows from (5.5) and the
Aubin-Lions lemma that

(ρε,δ,b, uε,δ,b) is compact in C([0, T ]; L p
loc[δ,∞)) with p ∈ [1,∞).

More precisely, we have

Lemma 5.1. There exist functions (ρε,δ, uε,δ)(t, r) so that, as b → ∞ (up to a
subsequence),

(ρε,δ,b, uε,δ,b) → (ρε,δ, uε,δ) strongly in C([0, T ]; L p
loc[δ,∞)) for all p ∈ [1,∞).

In particular, as b → ∞ (up to a subsequence),

(ρε,δ,b, uε,δ,b) → (ρε,δ, uε,δ) almost everywhere (t, r) ∈ [0, T ] × [δ,∞).

Using Lemma 5.1, it can immediately be proven that (ρε,δ, uε,δ) is a weak solu-
tion of the initial-boundary value problem (IBVP) of the Navier–Stokes equations
(3.1): {

(ρ, u)(0, r) = (ρ
ε,δ
0 , uε,δ

0 )(r) for r ∈ [δ,∞),

u|r=δ = 0 for t � 0.
(5.6)

Moreover, it follows from (5.4)–(5.5) and the lower semicontinuity that

0 < C̃−1 � ρε,δ(t, r) � C̃, (5.7)

sup
t∈[0,T ]

(∥∥(ρε,δ − ρ̄, uε,δ)
∥∥2
H1([δ,∞))

+ ‖ρε,δ
t ‖2L2([δ,∞))

)
(t)

+
∫ T

0

∥∥(uε,δ
t , uε,δ

rr )
∥∥2
L2([δ,∞))

(t) dt � C̃ . (5.8)
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These facts yield that the weak solution (ρε,δ, uε,δ) of (5.6) is indeed a strong
solution. The uniqueness of this strong solution (ρε,δ, uε,δ) is ensured by properties
(5.7)–(5.8), the corresponding version of Lemmas 3.1–3.2 (that is, (5.10)–(5.11)
below), and the basic L2–energy estimate as in §3. This implies that the whole
sequence (ρε,δ,b, uε,δ,b) converges to (ρε,δ, uε,δ) as b → ∞.

Then it is direct to know that (ρε,δ,Mε,δ)(t, x) = (ρε,δ(t, r),mε,δ(t, r) x
r )

with ρε,δ(t, x) > 0 is a strong solution of the initial-boundary problem of system
(1.3) with (h, g) determined by (3.2) for (t, x) ∈ [0,∞) × (

R
N\Bδ(0)

)
with the

following initial-boundary data:{
(ρε,δ,Mε,δ)(0, x) = (ρ

ε,δ
0 (r),mε,δ

0 (r) x
r ),

Mε,δ(t, x)|x∈∂Bδ(0) = 0.
(5.9)

FromLemma 5.1, (3.7), (3.12), (3.25), (4.3)–(4.4), (4.70), (5.1), Fatou’s lemma,
and the lower semicontinuity, we have

Proposition 5.2. Under assumption (5.1), for any fixed (ε, δ), there exists a unique
strong solution (ρε,δ, uε,δ) of IBVP (5.6). Moreover, (ρε,δ, uε,δ) satisfies (5.7) and,
for t ∈ (0, T ],∫ ∞

δ

(1
2
ρε,δ|uε,δ|2 + e(ρε,δ, ρ̄)

)
(t, r) r N−1dr

+ ε

∫ T

0

∫ ∞

δ

(
ρε,δ|uε,δ

r |2 + ρε,δ |uε,δ|2
r2

)
(s, r) r N−1drds

+ cN εδ

∫ T

0

∫ ∞

δ

(
(ρε,δ)α

(|uε,δ
r |2 + |uε,δ|2

r2
))

(s, r) r N−1drds

� Eε,δ
0 � C(E0 + 1), (5.10)

ε2
∫ ∞

δ

(∣∣(√ρε,δ)r
∣∣2 + δ(ρε,δ)α−2|ρε,δ

r |2 + δ2(ρε,δ)2α−3|ρε,δ
r |2

)
(t, r) r N−1dr

+ ε

∫ T

0

∫ ∞

δ

(∣∣((ρε,δ)
γ
2
)
r

∣∣2 + δ(ρε,δ)γ+α−3|ρε,δ
r |2

)
(s, r) r N−1drds

� C(E0 + 1), (5.11)∫ T

0

∫ D

d
(ρε,δ)γ+1(t, r) drdt � C(d, D, T, E0), (5.12)

∫ T

0

∫ D

δ

(
ρε,δ|uε,δ|3 + (ρε,δ)γ+θ

)
(t, r) r N−1drdt � C(D, T, E0) (5.13)

for any fixed T > 0 and any compact subset [d, D] of (δ,∞), where cN > 0 is
some constant depending only on N determined in Lemma 3.1.

5.2. Passage the Limit: δ → 0+
In this subsection, for fixed ε > 0, we consider the limit, δ → 0+, to obtain

the weak solution of the Navier–Stokes equations. It follows from Lemma A.3 in
the appendix that
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{
(ρ

ε,δ
0 ,mε,δ

0 )(r) → (ρε
0,m

ε
0)(r) in L1

loc([0,∞); r N−1dr) as δ → 0+,

(Eε,δ
0 , Eε,δ

1 ) → (Eε
0, E

ε
1) as δ → 0.

(5.14)

To take the limit, we have to be careful since the weak solution may involve the
vacuum state. We use similar compactness arguments as in [29,44] to consider the
limit: δ → 0+. We first extend our solution (ρε,δ, uε,δ) as the zero extension of
(ρε,δ, uε,δ) outside [0, T ] × [δ,∞).

Lemma 5.3. There exists a function ρε(t, r) such that, as δ → 0+ (up to a
subsequence),

(ρε,δ,
√

ρε,δ) → (ρε,
√

ρε) almost everywhere and strongly in C(0, T ; Lq
loc)

(5.15)

for any q ∈ [1,∞), where Lq
loc means L

q(K ) for any K � (0,∞).

Proof. It follows from (5.10)–(5.11) that√
ρε,δ ∈ L∞(0, T ; H1

loc) ↪→ L∞(0, T ; L∞
loc) uniformly.

Notice that, for fixed ε > 0, the solution sequence (ρε,δ, uε,δ) satisfies (3.1) for
(t, r) ∈ [0,∞) × [δ,∞). Using (5.10) and the mass equation (3.1)1, we see that

∂t
√

ρε,δ = −(
√

ρε,δuε,δ)r + 1

2

√
ρε,δuε,δ

r − N − 1

2r

√
ρε,δuε,δ

is uniformly bounded in L2(0, T ; H−1
loc ), which, using the Aubin-Lions lemma,

implies that√
ρε,δ is compact in C(0, T ; Lq

loc) for any q ∈ [1,∞).

Since
√

ρε,δ and
√

ρε,δuε,δ are uniformly bounded in L∞(0, T ; L∞
loc) and

L∞(0, T ; L2
loc) respectively, we see that

ρε,δuε,δ =
√

ρε,δ
(√

ρε,δuε,δ
)

is uniformly bounded in L∞(0, T ; L2
loc). (5.16)

Then it follows from the mass equation (3.1)1 that

∂tρ
ε,δ = −(ρε,δuε,δ)r − N − 1

r
ρε,δuε,δ is uniformly bounded in L∞(0, T ; H−1

loc ).

Moreover, we obtain that

ρε,δ
r = 2

√
ρε,δ(

√
ρε,δ)r is uniformly bounded in L∞(0, T ; L2

loc).

Then the Aubin-Lions lemma implies that

ρε,δ is compact in C(0, T ; Lq
loc) with q ∈ [1,∞).

��
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Corollary 5.4. The pressure function sequence p(ρε,δ) is uniformly bounded in
L∞(0, T ; Lq

loc) for all q ∈ [1,∞] and, as δ → 0+ (up to a subsequence),

p(ρε,δ) → p(ρε) strongly in Lq(0, T ; Lq
loc) for all q ∈ [1,∞). (5.17)

Lemma 5.5. As δ → 0+ (up to a subsequence), mε,δ converges strongly in
L2(0, T ; Lq

loc) to some function mε(t, r) for all q ∈ [1,∞), which implies that

mε,δ(t, r) = (ρε,δuε,δ)(t, r) → mε(t, r) almost everywhere in [0, T ] × (0,∞).

Proof. A direct calculation shows that

mε,δ
r = 2

(√
ρε,δ

)
r

(√
ρε,δuε,δ

) +
√

ρε,δ
(√

ρε,δuε,δ
r

)
(5.18)

is uniformly bounded in L2(0, T ; L1
loc). Thus, it follows from (5.16)–(5.18) that

mε,δ is uniformly bounded in L2(0, T ;W 1,1
loc ). (5.19)

It follows from (5.10) and (5.17) that ∂r
(
(
√

ρε,δuε,δ)2
)
, N−1

r

(√
ρε,δuε,δ

)2,
and ∂r p(ρε,δ) are uniformly bounded in L∞(0, T ;W−1,1

loc ), L∞(0, T ; L1
loc), and

L2(0, T ; H−1
loc ), respectively.

From (5.10), we see that√
(ρε,δ)α

(√
δ (ρε,δ)α(uε,δ

r + N − 1

r
uε,δ)

)
and

√
ρε,δ

(√
ρε,δ(uε,δ

r + N − 1

r
uε,δ)

)
are uniformly bounded in L2(0, T ; L2

loc).
Since(
μ(ρε,δ) + λ(ρε,δ)

)(
uε,δ
r + N − 1

r
uε,δ

)
=

(
αδ

√
(ρε,δ)α +

√
(ρε,δ)2−α

) (√
(ρε,δ)αuε,δ

r + N − 1

r

√
(ρε,δ)αuε,δ

)
,

we conclude that

∂r

((
μ(ρε,δ) + λ(ρε,δ)

)(
uε,δ
r + N − 1

r
uε,δ

))
is uniformly bouneded in L2(0, T ; H−1

loc ). Also, it follows from (5.10)–(5.11) that

N − 1

r
∂rμ(ρε,δ)uε,δ = 2(N − 1)

r

(
(
√

ρε,δ)r + αδ(ρε,δ)α− 3
2 ρε,δ

r

)(√
ρε,δuε,δ

)
is uniformly bounded in L2(0, T ; L1

loc). Then we conclude that

∂tm
ε,δ is uniformly bounded in L2(0, T ;W−2, 43

loc ),

which, with (5.19) and the Aubin-Lions lemma, implies that

mε,δ is compact in L2(0, T ; L p
loc) for all p ∈ [1,∞).

��
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Lemma 5.6. mε(t, r) = 0 almost everywhere on {(t, r) : ρε(t, r) = 0}. Further-
more, there exists a function uε(t, r) so that mε(t, r) = ρε(t, r)uε(t, r) almost
everywhere, uε(t, r) = 0 almost everywhere on {(t, r) : ρε(t, r) = 0}, and

mε,δ → mε strongly in L2(0, T ; L p
loc) for p ∈ [1,∞),

mε,δ√
ρε,δ

→ mε

√
ρε

= √
ρεuε strongly in L2(0, T ; L2

loc).

Proof. Since mε,δ√
ρε,δ

r
N−1
2 is uniformlybounded in L∞(0, T ; L2), thenFatou’s lemma

implies

∫ T

0

∫ ∞

0
lim inf
δ→0+

|mε,δ(t, r)|2
ρε,δ(t, r)

r N−1drdt

� lim
δ→0+

∫ T

0

∫ ∞

0

|mε,δ(t, r)|2
ρε,δ(t, r)

r N−1drdt < ∞.

Thus,mε(t, r) = 0 almost everywhere on {(t, r) : ρε(t, r) = 0}. Then, if the limit
velocity uε(t, r) is defined by setting uε(t, r) := mε(t,r)

ρε(t,r) almost everywhere on
{(t, r) : ρε(t, r) = 0} and uε(t, r) = 0 almost everywhere on {(t, r) : ρε(t, r) =
0}, we have

mε(t, r) = ρε(t, r)uε(t, r) almost everywhere,∫ T

0

∫ ∞

0

∣∣ mε

√
ρε

∣∣2r N−1 drdt =
∫ T

0

∫ ∞

0
ρε|uε|2r N−1drdt < ∞.

Moreover, it follows from (5.13) and Fatou’s lemma that, for [d, D] � (0,∞),

∫ T

0

∫ D

d
ρε|uε|3 drdt � lim

δ→0+

∫ T

0

∫ D

d

|mε,δ|3
(ρε,δ)2

drdt � C(d, D, T, E0) < ∞.

(5.20)

Next, since mε,δ and ρε,δ converge almost everywhere, it is direct to know that
sequence

√
ρε,δuε,δ = mε,δ√

ρε,δ
converges almost everywhere to

√
ρεuε = mε√

ρε on

{(t, r) : ρε(t, r) = 0}. Moreover, for any given positive constant R > 0, it follows
from Lemmas 5.3 and 5.6 that√

ρε,δuε,δ I|uε,δ |�R → √
ρεuε I|uε |�R almost everywhere (5.21)

For R � 1, we cut the L2-norm as follows:

∫ T

0

∫ D

d

∣∣√ρε,δuε,δ − √
ρεuε

∣∣2 drdt
�

∫ T

0

∫ D

d

∣∣√ρε,δuε,δ I|uε,δ |�R − √
ρεuε I|uε |�R

∣∣2 drdt
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+ 2
∫ T

0

∫ D

d

∣∣√ρε,δuε,δ I|uε,δ |�R

∣∣2 drdt
+ 2

∫ T

0

∫ D

d

∣∣√ρεuε I|uε |�R

∣∣2 drdt. (5.22)

It is direct to know that
√

ρε,δuε,δ I|uε,δ |�R is uniformly bounded in L∞(0, T ; L p
loc)

for all p ∈ [1,∞). Then it follows from (5.21) that∫ T

0

∫ D

d

∣∣√ρε,δuε,δ I|uε,δ |�R − √
ρεuε I|uε |�R

∣∣2 drdt → 0 as δ → 0 + .

(5.23)

Using (5.20), we have∫ T

0

∫ D

d

(∣∣√ρε,δuε,δ I|uε,δ |�R

∣∣2 + ∣∣√ρεuε I|uε |�R

∣∣2) drdt
� 1

R

∫ T

0

∫ D

d

(
ρε,δ|uε,δ|3 + ρε|uε|3) drdt � C(d, D, T, E0)R

−1. (5.24)

Substituting (5.23)–(5.24) into (5.22) leads to

lim
δ→0+

∫ T

0

∫ D

d

∣∣√ρε,δuε,δ − √
ρεuε

∣∣2 drdt � C(d, D, T, E0)R
−1 for all R > 0.

Then the lemma follows by taking R → ∞. ��
Let (ρε,mε) be the limit obtained above. By using Fatou’s lemma and the lower

semicontinuity and Proposition 5.2, it is direct to obtain

Proposition 5.7. Under assumption (5.14), for any fixed ε and T > 0, the limit
functions (ρε,mε) = (ρε, ρεuε) satisfy

ρε(t, r) � 0 almost everywhere, (5.25)

uε(t, r) = 0,
( mε

√
ρε

)
(t, r) = √

ρε(t, r)uε(t, r) = 0

almost everywhere on {(t, r) : ρε(t, r) = 0}, (5.26)∫ ∞

0

(1
2

∣∣∣ mε

√
ρε

∣∣∣2 + e(ρε, ρ̄)
)
(t, r) r N−1dr + ε

∫
R
2+

∣∣∣ mε

√
ρε

∣∣∣2(s, r) r N−3drds

� Eε
0 � E0 + 1 for t � 0, (5.27)

ε2
∫ ∞

0

∣∣(√ρε(t, r)
)
r

∣∣2 r N−1dr + ε

∫
R
2+

∣∣((ρε(s, r))
γ
2
)
r

∣∣2 r N−1drds

� C(E0 + 1) for t � 0, (5.28)∫ T

0

∫ D

d
(ρε)γ+1(t, r) drdt � C(d, D, T, E0), (5.29)

∫ T

0

∫ D

0

(
ρε|uε|3 + (ρε)γ+θ

)
(t, r) r N−1drdt � C(D, T, E0), (5.30)

where [d, D] � (0,∞).
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We now show that

(ρε,Mε)(t, x) = (ρε(t, r),mε(t, r)
x
r
) (5.31)

is a weak solution of the Cauchy problem (1.3) and (2.6) in R
N in the sense of

Definition 2.3.

Lemma 5.8. Let 0 � t1 < t2 � T , and let ζ(t, x) ∈ C1([0, T ] × R
N ) be any

smooth function with compact support. Then

∫
RN

ρε(t2, x)ζ(t2, x) dx

=
∫
RN

ρε(t1, x)ζ(t1, x) dx +
∫ t2

t1

∫
RN

(
ρεζt + Mε · ∇ζ

)
dxdt. (5.32)

Proof. Notice that (ρε,δ,Mε,δ) is a strong solution of (1.3) and (5.9) over [0,∞)×(
R

N \ Bδ(0)
)
. It follows from (1.3)1 and a direct calculation that

0 =
∫ t2

t1

∫
RN \Bδ(0)

(
(ρε,δ)t + divMε,δ

)
ζ(t, x) dxdt

=
∫
RN \Bδ(0)

ρε,δζ dx
∣∣∣t2
t1

−
∫ t2

t1

∫
RN \Bδ(0)

(
ρε,δζt + Mε,δ · ∇ζ

)
dxdt

=
∫
RN

ρε,δζ dx
∣∣∣t2
t1

−
∫ t2

t1

∫
RN

(
ρε,δζt + Mε,δ · ∇ζ

)
dxdt, (5.33)

where we have used the fact that (ρε,δ,mε,δ) is extended by zero in [0, T ]× [0, δ).
Notice that, for i = 1, 2,∣∣∣ ∫

RN

(
ρε,δ − ρε

)
(ti , x)ζ(ti , x) dx

∣∣∣
�

∣∣∣ ∫
RN \Bσ (0)

(
ρε,δ − ρε

)
(ti , x)ζ(ti , x) dx

∣∣∣
+

∣∣∣ ∫
Bσ (0)

(
ρε,δ − ρε

)
(ti , x)ζ(ti , x) dx

∣∣∣. (5.34)

Denote

φ(t, r) :=
∫

∂B1(0)
ζ(t, rω) dω ∈ C1

0([0, T ] × [0,∞)). (5.35)

Then, with (5.15), for any fixed σ > 0, we have

lim
δ→0+

∣∣∣ ∫
RN \Bσ (0)

(
ρε,δ − ρε

)
(ti , x)ζ(ti , x) dx

∣∣∣
= ωN lim

δ→0+

∣∣∣ ∫ ∞

σ

(
ρε,δ − ρε

)
(ti , r)φ(ti , r) r

N−1dr
∣∣∣ = 0. (5.36)
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Using (5.10) and (5.27), we obtain∣∣∣ ∫
Bσ (0)

(ρε,δ − ρε)(ti , x)ζ(ti , x) dx
∣∣∣

� C‖ζ‖L∞
{ ∫ σ

0

(
(ρε,δ)γ + (ρε)γ

)
r N−1dr

} 1
γ
σ
N (1− 1

γ
)

� C(E0)‖ζ‖L∞σ
N (1− 1

γ
) → 0 as σ → 0, (5.37)

which, along with (5.34) and (5.36), yields

lim
δ→0+

∫
RN

ρε,δ(ti , x)ζ(ti , x) dx =
∫
RN

ρε(ti , x)ζ(ti , x) dx for i = 1, 2.

(5.38)

From (5.35), a direct calculation shows

φr =
∫

∂B1(0)
ω · ∇ζ(t, rω) dω (5.39)

which, with (5.15) and Lemma 5.6, implies

lim
δ→0+

∫ t2

t1

∫
RN \Bσ (0)

(
ρε,δζt + Mε,δ · ∇ζ

)
dxdt

= ωN lim
δ→0+

∫ t2

t1

∫ ∞

σ

(
ρε,δφt + mε,δφr

)
r N−1drdt

= ωN

∫ t2

t1

∫ ∞

σ

(
ρεφt + mεφr

)
r N−1drdt

=
∫ t2

t1

∫
RN \Bσ (0)

(
ρεζt + Mε · ∇ζ

)
dxdt. (5.40)

Similar to that in (5.37), we also have∣∣∣ ∫ t2

t1

∫
Bσ (0)

(ρε,δ − ρε)ζt dxdt
∣∣∣ � C(T, E0)‖ζt‖L∞ σ

N (1− 1
γ

)
,

∣∣∣ ∫ t2

t1

∫
Bσ (0)

(Mε,δ − Mε
) · ∇ζ dxdt

∣∣∣
� C‖∇ζ‖L∞

{ ∫ t2

t1

∫ σ

0

( |mε,δ|2
ρε,δ

+ |mε|2
ρε

)
(t, r)r N−1 drdt

} 1
2

×
{ ∫ t2

t1

∫ σ

0

(
ρε,δ + ρε

)
(t, r)r N−1 drdt

} 1
2

� C(T, E0)‖∇ζ‖L∞σ
N
2 (1− 1

γ
)
,

which, with (5.40), yields

lim
δ→0+

∫ t2

t1

∫
RN

(
ρε,δζt + Mε,δ · ∇ζ

)
dxdt =

∫ t2

t1

∫
RN

(
ρεζt + Mε · ∇ζ

)
dxdt.

(5.41)
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Combining (5.38) and (5.41) with (5.33), we conclude (5.32). ��
Lemma 5.9. Let ψ(t, x) ∈ (

C2
0 ([0,∞) × R

N )
)N

be any smooth function with
suppψ � [0, T ) × R

N for some fixed T ∈ (0,∞). Then

∫
R
N+1+

{
Mε · ∂tψ + Mε

√
ρε

· ( Mε

√
ρε

· ∇)
ψ + p(ρε) divψ

}
dxdt

+
∫
RN

Mε
0(x) · ψ(0, x) dx

= −ε

∫
R
N+1+

{1
2
Mε · (

�ψ + ∇divψ
) + Mε

√
ρε

· (∇√
ρε · ∇)

ψ

+ ∇√
ρε · ( Mε

√
ρε

· ∇)
ψ

}
dxdt (5.42)

= √
ε

∫
R
N+1+

√
ρε

{
V ε x ⊗ x

r2
+

√
ε

r

mε

√
ρε

(
IN×N − x ⊗ x

r2
)} : ∇ψ dxdt, (5.43)

where V ε(t, r) ∈ L2(0, T ; L2(RN )) is a function such that∫ T

0

∫
RN

|V ε(t, x)|2dxdt � CE0

for some C > 0, independent of T > 0.

Proof. Let ψ = (ψ1, . . . , ψN ) ∈ (
C2
0 ([0,∞) ×R

N )
)N be a smooth function with

suppψ � [0, T ) × R
N . For any given σ ∈ (0, 1], let χσ (r) ∈ C∞(R) be a cut-off

function satisfying that

χσ (r) = 0 for r � σ, χσ (r) = 1 for r � 2σ,

|χ ′
σ (r)| � C

σ
, |χ ′′

σ (r)| � C

σ 2 .
(5.44)

Denote �σ (t, x) := ψ(t, x)χσ (|x|).
Taking δ small enough so that δ � σ , then it follows from (1.3)2 and integration

by parts that∫
R
N+1+

{
Mε,δ · ∂t�σ + Mε,δ√

ρε,δ
· ( Mε,δ√

ρε,δ
· ∇)

�σ + p(ρε,δ) div�σ

}
dxdt

+
∫
RN

Mε,δ
0 (x) · �σ (0, x) dx

=: J ε,δ
1 + J ε,δ

2 , (5.45)

where

J ε,δ
1 := δε

∫
R
N+1+

(ρε,δ)α
{
D(

Mε,δ

ρε,δ
) : ∇�σ + (α − 1)div

(Mε,δ

ρε,δ

)
div�σ

}
dxdt,

(5.46)
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J ε,δ
2 : = −ε

∫
R
N+1+

{1
2
Mε,δ · (

��σ + ∇div�σ

) + Mε,δ√
ρε,δ

· (∇√
ρε,δ · ∇)

�σ

+ ∇
√

ρε,δ · ( Mε,δ√
ρε,δ

· ∇)
�σ

}
dxdt

= ε

∫
R
N+1+

√
ρε,δ

√
ρε,δD(

Mε,δ

ρε,δ
) : ∇�σ dxdt. (5.47)

A direct calculation leads to

∂i
(Mε,δ

j

ρε,δ

) = uε,δ
r

xi x j
r2

+ uε,δ

r

(
δi j − xi x j

r2
)
. (5.48)

Using (5.10), there exists a function V ε(t, r) so that

√
ε
√

ρε,δD(
Mε,δ

j

ρε,δ
) ⇀ V ε x ⊗ x

r2
+

√
ε

r

mε

√
ρε

(
IN×N − x ⊗ x

r2
)

(5.49)

in L2(0, T ; (L2(RN\Bσ (0)))N×N ) as δ → 0+ for any given σ > 0. Moreover,
we have ∫ T

0

∫
RN

∣∣V ε
∣∣2 dxdt � CE0. (5.50)

It follows from (5.10) and (5.48) that

|J ε,δ
1 | � C(‖ψ‖C1 , suppψ, σ)

√
εδ

{ ∫
supp�σ

(ρε,δ)α r N−1drdt
} 1

2

×
{
δε

∫
supp�σ

(ρε,δ)α
(
|uε,δ

r |2 + |uε,δ|2
r2

)
r N−1drdt

} 1
2

� C(‖ψ‖C1 , suppψ, σ, E0)
√

εδ → 0 as δ → 0 + . (5.51)

Denote

φ1σ (t, r) :=
∫

∂B1(0)

(
ω · (��σ )(t, rω) + ω · (∇div�σ )(t, rω)

)
dω.

Then it is clear that φ1σ ∈ C2
0 ([0, T ] × (0,∞)). Thus, using Lemma 5.6, we have∫

R
N+1+

Mε,δ · (
��σ + ∇div�σ

)
dxdt

= ωN

∫
R
2+
mε,δφ1σ r N−1 drdt → ωN

∫
R
2+
mεφ1σ r N−1 drdt

=
∫
R
N+1+

Mε · (
��σ + ∇div�σ

)
dxdt as δ → 0. (5.52)
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Similarly, using Lemmas 5.3 and 5.6, we can prove

∫
R
2+

{ Mε,δ√
ρε,δ

· (∇√
ρε,δ · ∇) + ∇

√
ρε,δ · ( Mε,δ√

ρε,δ
· ∇)}

�σ dxdt

→
∫
R
2+

{ Mε

√
ρε

· (∇√
ρε · ∇) + ∇√

ρε · ( Mε

√
ρε

· ∇)}
�σ dxdt as δ → 0. (5.53)

Combining (5.49) with (5.52)–(5.53), we obtain that, as δ → 0,

J ε,δ
2 → − ε

∫
R
N+1+

{1
2
Mε · (

��σ + ∇div�σ

) + Mε

√
ρε

· (∇√
ρε · ∇)

�σ

+ ∇√
ρε · ( Mε

√
ρε

· ∇)
�σ

}
dxdt

= √
ε

∫
R
N+1+

√
ρε

{
V ε x ⊗ x

r2
+

√
ε

r

mε

√
ρε

(
IN×N − x ⊗ x

r2
)} : ∇�σ dxdt.

(5.54)

Also, by similar arguments as in (5.52), applying Lemma 5.3, Corollary 5.4, and
Lemma 5.6, we have∫

R
N+1+

{
Mε,δ · ∂t�σ + Mε,δ√

ρε,δ
· ( Mε,δ√

ρε,δ
· ∇)

�σ + p(ρε,δ) div�σ

}
dxdt

+
∫
RN

Mε,δ
0 (x) · �σ (0, x) dx

→
∫
R
N+1+

{
Mε · ∂t�σ + Mε

√
ρε

· ( Mε

√
ρε

· ∇)
�σ + p(ρε)div�σ

}
dxdt

+
∫
RN

Mε
0(x) · �σ (0, x) dx

as δ → 0, which, with (5.54), yields∫
R
N+1+

{
Mε · ∂t�σ + Mε

√
ρε

· ( Mε

√
ρε

· ∇)
�σ + p(ρε) div�σ

}
dxdt

+
∫
RN

Mε
0(x) · �σ (0, x) dx

= −ε

∫
R
N+1+

{1
2
Mε · (

��σ + ∇div�σ

) + Mε

√
ρε

· (∇√
ρε · ∇)

�σ

+ ∇√
ρε · ( Mε

√
ρε

· ∇)
�σ

}
dxdt

= √
ε

∫
R
N+1+

√
ρε

{
V ε x ⊗ x

r2
+

√
ε

r

mε

√
ρε

(
IN×N − x ⊗ x

r2
)} : ∇�σ dxdt. (5.55)

Next, we consider the limit, σ → 0, in (5.55). We first define
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ϕ(t, r) : =
∫

∂B1(0)
ω · ψ(t, rω) dω

= 1

r N−1

∫
∂Br (0)

ω · ψ(t, y) dSy

= 1

r N−1

∫
Br (0)

divψ(t, y) dy, (5.56)

which implies

|ϕ(t, r)| � C(‖ψ‖C1)r; (5.57)

also see [34,53]. Using (5.56), Lebesgue’s dominated convergence theorem, and
Proposition 5.7, we have

lim
σ→0

{∫
R
N+1+

Mε · ∂t�σ dxdt +
∫
RN

Mε
0(x) · �σ (0, x) dx

}

= ωN lim
σ→0

{∫
R
2+
mε ∂tϕ χσ (r) r N−1drdt +

∫ ∞

0
mε

0(r)ϕ(0, r)χσ (r) r N−1dr

}

= ωN

∫
R
2+
mε ∂tϕ r N−1drdt + ωN

∫ ∞

0
mε

0(r)ϕ(0, r) r N−1dr

=
∫
R
N+1+

Mε · ∂tψ dxdt +
∫
RN

Mε
0(x) · ψ(0, x) dx. (5.58)

Using (5.57) and Proposition 5.7, we have

∣∣∣∣∣
∫
R
N+1+

( |mε|2
ρε

+ p(ρε)
)(

ψ · x
r

)
χ ′

σ (r) dxdt

∣∣∣∣∣
� C

∫ T

0

∫ 2σ

σ

( |mε|2
ρε

+ p(ρε)
)|ϕ(t, r)χ ′

σ (r)| r N−1drdt

� C
∫ T

0

∫ 2σ

σ

( |mε|2
ρε

+ p(ρε)
)
r N−1drdt → 0 as σ → 0, (5.59)∣∣∣∣∣ε

∫
R
N+1+

mε

√
ρε

(
√

ρε)r
(
ψ · x

r

)
χ ′

σ (r) dxdt

∣∣∣∣∣
� Cε

∫ T

0

∫ 2σ

σ

∣∣ mε

√
ρε

(
√

ρε)r
∣∣ |ϕ(t, r)χ ′

σ (r)| r N−1drdt

� C
∫ T

0

∫ 2σ

σ

( |mε|2
ρε

+ ε2
∣∣(√ρε)r

∣∣2) r N−1drdt → 0 as σ → 0, (5.60)∣∣∣∣∣
∫
R
N+1+

χ ′
σ (r)

√
ρε

{
V ε x ⊗ x

r2
+

√
ε

r

με

√
ρε

(
IN×N − x ⊗ x

r2
)} : (

ψ ⊗ x
r

)
dxdt

∣∣∣∣∣
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=
∣∣∣∣∣
∫
R
N+1+

χ ′
σ (r)

√
ρεV ε

(
ψ · x

r

)
dxdt

∣∣∣∣∣
� C

∣∣∣∣
∫ T

0

∫ 2σ

σ

√
ρεV ε r N−1drdt

∣∣∣∣ → 0 as σ → 0. (5.61)

Using (5.59)–(5.61), Lebesgue’s dominated convergence theorem, and Proposition
5.7, we obtain

lim
σ→0

∫
R
N+1+

{ Mε

√
ρε

· (
Mε

√
ρε

· ∇)�σ + p(ρε) div�σ

}
dxdt

=
∫
R
N+1+

{ Mε

√
ρε

· (
Mε

√
ρε

· ∇)ψ + p(ρε) divψ
}
dxdt, (5.62)

lim
σ→0

∫
R
N+1+

{ Mε

√
ρε

· (∇√
ρε · ∇)�σ + (∇√

ρε) · (
Mε

√
ρε

· ∇)�σ

}
dxdt

=
∫
R
N+1+

{ Mε

√
ρε

· (∇√
ρε · ∇)ψ + (∇√

ρε) · (
Mε

√
ρε

· ∇)ψ
}
dxdt, (5.63)

lim
σ→0

∫
R
N+1+

√
ρε

{
V ε x ⊗ x

r2
+

√
ε

r

mε

√
ρε

(
IN×N − x ⊗ x

r2
)} : ∇�σ dxdt

=
∫
R
N+1+

√
ρε

{
V ε x ⊗ x

r2
+

√
ε

r

mε

√
ρε

(
IN×N − x ⊗ x

r2
)} : ∇ψ dxdt. (5.64)

We notice that

�(�σ )i = χσ (r)�ψi + 2∇ψi · ∇χσ (r) + ψi�χσ (r),

∂idiv�σ = χσ (r) ∂idivψ + divψ ∂iχσ (r) + ∂iψ · ∇χσ (r)

+ xi
r

χ ′′
σ (r) ψ · x

r
+ χ ′

σ (r)ψ · (∇xi
r

− xi
r2

x
r

)
.

(5.65)

It follows from (5.57) and Proposition 5.7 that∣∣∣∣∣
N∑
i=1

ε

∫
R
N+1+

mε xi
r

{
2∇ψi · ∇χσ + ψi�χσ + divψ ∂iχσ (r) + ∂iψ · ∇χσ (r)

+ xi
r

χ ′′
σ (r)

(
ψ · x

r

) + χ ′
σ (r)

(
ψ · ∇xi

r
− (

ψ · x
r

) xi
r2

)}
dxdt

∣∣∣∣
� C(‖ψ‖C1)

∫ T

0

∫ 2σ

σ

ε|mε|
(
|χ ′

σ (r)| + 1

r
ϕ(r)|χ ′

σ (r)| + ϕ(r)|χ ′′
σ (r)|

)
r N−1drdt

� C(‖ψ‖C1)

∫ T

0

∫ 2σ

σ

ε|mε| r N−2drdt

� C(‖ψ‖C1)

{∫ T

0

∫ 2σ

σ

ρε r N−1drdt

} 1
2
{
ε

∫ T

0

∫ 2σ

σ

|mε|2
ρε

r N−3drdt

} 1
2

→ 0 as σ → 0. (5.66)
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Using (5.65)–(5.66), Lebesgue’s dominated convergence theorem, and Propo-
sition 5.7, we have

lim
σ→0

ε

∫
R
N+1+

Mε · (
��σ + ∇div�σ

)
dxdt

= ε

∫
R
N+1+

Mε · (
�ψ + ∇divψ

)
dxdt. (5.67)

Substituting (5.58), (5.62)–(5.64), and (5.67) into (5.55), we conclude (5.42)–
(5.43). ��
Remark 5.10. It is not so clear to show that the right-hand side terms of (5.42)
vanish as ε → 0 by direct arguments. However, we can prove the vanishing of
these terms by using (5.43), which is the main reason why the form of (5.43) is
important to us.

We also need the H−1
loc -compactness of weak entropy dissipation measures of

(ρε,mε).

Lemma 5.11 (H−1
loc -compactness). Let (η, q) be a weak entropy pair defined in

(2.7) for any smooth compact supported function ψ(s) on R. Then, for ε ∈ (0, 1],
∂tη(ρε,mε) + ∂r q(ρε,mε) is compact in H−1

loc (R2+). (5.68)

Proof. To obtain (5.68), we have to be careful since (ρε,Mε) is a weak solution
of the Navier–Stokes equations (1.3). In fact, we first have to study the equation for
∂tη(ρε,mε) + ∂r q(ρε,mε) in the distributional sense, which is much complicated
than that in [15,17]. We divide the proof into five steps.

1. Since

η(ρ,m) = ρ

∫ 1

−1
ψ(u + ρθ s)[1 − s2]b+ ds,

q(ρ,m) = ρ

∫ 1

−1
(u + θρθ s)ψ(u + ρθ s)[1 − s2]b+ ds,

it follows from [15, Lemma 2.1] that

|η(ρ,m)| + |q(ρ,m)| � Cψρ for γ ∈ (1, 3], (5.69)

|η(ρ,m)| � Cψρ, |q(ρ,m)| � Cψ

(
ρ + ρ1+θ

)
for γ ∈ (3,∞), (5.70)

|∂ρη(ρ,m)| � Cψ

(
1 + ρθ

)
, |∂mη(ρ,m)| � Cψ. (5.71)

Moreover, if ∂mη(ρ, ρu) is regarded as a function of (ρ, u), then

|∂mρη| � Cψρθ−1, |∂muη| � Cψ. (5.72)

2. Denote (ηε,δ, qε,δ) := (η, q)(ρε,δ,mε,δ) and (ηε, qε) := (η, q)(ρε,mε) for
simplicity. Multiply (3.1)1 by ηε,δ

ρ , (3.1)2 by η
ε,δ
m , and add them together to obtain
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∂tη
ε,δ + ∂r q

ε,δ

= −N − 1

r
mε,δ

(
ηε,δ

ρ + uε,δηε,δ
m

)
+ ε∂mηε,δ

{(
ρε,δ(uε,δ

r + N − 1

r
uε,δ)

)
r − N − 1

r
ρε,δ
r uε,δ

}
+ ε∂mηε,δ

{
αδ

(
(ρε,δ)α(uε,δ

r + N − 1

r
uε,δ)

)
r − δ

N − 1

r

(
(ρε,δ)α

)
r u

ε,δ
}
.

(5.73)

Let φ(t, r) ∈ C∞
0 (R2+), and let δ � 1 so that supp(φ(t, ·)) � (δ,∞). Multiplying

(5.73) by φ and integrating by parts, we have∫
R
2+

(
∂tη

ε,δ + ∂r q
ε,δ

)
φ drdt

= −
∫
R
2+

N − 1

r
mε,δ

(
ηε,δ

ρ + uε,δηε,δ
m

)
φ drdt

− ε

∫
R
2+

ρε,δ(∂mηε,δ)r
(
uε,δ
r + N − 1

r
uε,δ

)
φ drdt

− ε

∫
R
2+

ρε,δ∂mηε,δ
(
uε,δ
r + N − 1

r
uε,δ

)
φr drdt

− ε

∫
R
2+

∂mηε,δ N − 1

r
ρε,δ
r uε,δφ drdt

− αεδ

∫
R
2+
(ρε,δ)α(∂mηε,δ)r

(
uε,δ
r + N − 1

r
uε,δ

)
φ drdt

− αεδ

∫
R
2+

(
(ρε,δ)α∂mηε,δ

(
uε,δ
r + N − 1

r
uε,δ

)
φr

+ ∂mηε,δ N − 1

r
(ρε,δ)α−1ρε,δ

r uε,δφ
)
drdt

:=
6∑
j=1

I ε,δ
j . (5.74)

3. It is direct to see that

ηε,δ → ηε almost everywhere in {(t, r) : ρε(t, r) = 0} as δ → 0 + . (5.75)

In {(t, r) : ρε(t, r) = 0},
|ηε,δ| � Cψρε,δ → 0 = ηε as δ → 0 + . (5.76)

Thus, combining (5.75) with (5.76), we have

ηε,δ → ηε almost everywhere as δ → 0 + . (5.77)

Similarly, we have

qε,δ → qε almost everywhere as δ → 0 + . (5.78)
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Let K � (0,∞) be any compact subset. For γ ∈ (1, 3], it follows from (5.12) and
(5.69) that∫ T

0

∫
K

(|ηε,δ| + |qε,δ|)γ+1 drdt � Cψ

∫ T

0

∫
K

|ρε,δ|γ+1 drdt

� Cψ(K , T, E0). (5.79)

For γ ∈ (3,∞), it follows from (5.13) and (5.70) that∫ T

0

∫
K

(|ηε,δ| + |qε,δ|) γ+θ
1+θ drdt � Cψ

∫ T

0

∫
K

(|ρε,δ| γ+θ
1+θ + |ρε,δ|γ+θ

)
drdt

� Cψ(K , T, E0). (5.80)

We take p1 = γ + 1 > 2 when γ ∈ (1, 3], and p1 = γ+θ
1+θ

> 2 when γ ∈ (3,∞).
Then it follows from (5.79)–(5.80) that

(ηε,δ, qε,δ) is uniformly bounded in L p1
loc(R

2+), (5.81)

which, with (5.77)–(5.78), implies that, up to a subsequence,

(ηε,δ, qε,δ) → (ηε, qε) in L2
loc(R

2+) as δ → 0 + .

Thus, for any φ ∈ C1
0(R

2+), we see that, as δ → 0+ (up to a subsequence),∫
R
2+

(
∂tη

ε,δ + ∂r q
ε,δ

)
φ drdt = −

∫
R
2+

(
ηε,δ∂tφ + qε,δ∂rφ

)
drdt

→ −
∫
R
2+

(
ηε∂tφ + qε∂rφ

)
drdt =

∫
R
2+

(
∂tη

ε + ∂r q
ε
)
φ drdt. (5.82)

Furthermore, (ηε, qε) is uniformly bounded in L p1
loc(R

2+) for some p1 > 2, which
implies that

∂tη
ε + ∂r q

ε is uniformly bounded in ε > 0 in W−1,p1
loc (R2+). (5.83)

4. Now we estimate the terms on the right-hand side of (5.74). For I ε,δ
1 , a direct

calculation shows that |ηρ + uηm | � Cψ

(
1+ ρθ

)
, which, together Lemma 5.6 and

similar arguments as to those in (5.75)–(5.77), leads to

N − 1

r
mε,δ

(
ηε,δ

ρ + uε,δηε,δ
m

) → N − 1

r
mε

(
ηε

ρ + uεηε
m

)
almost everywhere as δ → 0 + .

(5.84)

Then it follows from (5.12)–(5.13) that∫ T

0

∫
K

∣∣∣N − 1

r
mε,δ

(
ηε,δ

ρ + uε,δηε,δ
m

)∣∣∣ 76 drdt
� C(K )

∫ T

0

∫
K

(
ρε,δ|uε,δ|2 + ρε,δ + (ρε,δ)γ

) 7
6 drdt
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�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C(K )
(
1 +

∫ T

0

∫
K

ρε,δ|uε,δ|3 drdt
) 7

9
( ∫ T

0

∫
K

(
1 + |ρε,δ|γ+1)drdt) 2

9

for γ ∈ (1, 3],
C(K )

(
1 +

∫ T

0

∫
K

ρε,δ|uε,δ|3 drdt
) 7

9
( ∫ T

0

∫
K

(
1 + |ρε,δ|γ+θ

)
drdt

) 2
9

for γ ∈ (3,∞)

� C(K , T, E0). (5.85)

Using (5.84)–(5.85), we have

I ε,δ
1 → −

∫
R
2+

N − 1

r
mε

(
ηε

ρ + uεηε
m

)
φ drdt as δ → 0 + (up to a subsequence),

(5.86)∫ T

0

∫
K

∣∣∣N − 1

r
mε

(
ηε

ρ + uεηε
m

)∣∣∣ 76 drdt � C(K , T, E0). (5.87)

For I ε,δ
2 , I ε,δ

4 , and I ε,δ
5 , it follows from (5.10)–(5.11) and (5.71)–(5.72) that

∫ T

0

∫
K

∣∣∣ερε,δ(∂mηε,δ)r
(
uε,δ
r + N − 1

r

mε,δ

ρε,δ

)∣∣∣ drdt
� Cψ(K )

∫ T

0

∫
K

(
ερε,δ|uε,δ

r |2 + ε(ρε,δ)γ−2|ρε,δ
r |2 + ρε,δ|uε,δ|2) drdt

� Cψ(K , T, E0),∫ T

0

∫
K

∣∣∣ε N − 1

r
∂mηε,δρε,δ

r uε,δ
∣∣∣ drdt

� Cψ(K )
(
ε2

∫ T

0

∫
K

|ρε,δ
r |2
ρε,δ

drdt
) 1

2
( ∫ T

0

∫
K

ρε,δ|uε,δ|2 drdt
) 1

2

� Cψ(K , T, E0),∫ T

0

∫
K

∣∣∣εδ(ρε,δ)α(∂mηε,δ)r
(
uε,δ
r + N − 1

r
uε,δ

)∣∣ drdt
� Cψ(K )

∫ T

0

∫
K

εδ(ρε,δ)α
(|uε,δ

r |2 + (ρε,δ)γ−3|ρε,δ
r |2 + |uε,δ|2) drdt

� Cψ(K , T, E0).

Thus, there exist local bounded Radon measures με
1, μ

ε
2, and με

3 on R
2+ so that, as

δ → 0+ (up to a subsequence),

− ερε,δ(∂mηε,δ)r
(
uε,δ
r + N − 1

r
uε,δ

)
⇀ με

1,

− ε∂mηε,δ N − 1

r
ρε,δ
r uε,δ ⇀ με

2,

− αεδ(ρε,δ)α(∂mηε,δ)r
(
uε,δ
r + N − 1

r
uε,δ

)
⇀ με

3.
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In addition,

με
i ((0, T ) × V ) � Cψ(K , T, E0) for i = 1, 2, 3, (5.88)

for each open subset V ⊂ K . Then we have

I ε,δ
2 + I ε,δ

4 + I ε,δ
5 → 〈με

1 + με
2 + με

3, φ〉 as δ → 0 + (up to a subsequence).
(5.89)

For I ε,δ
3 , we notice from (5.10) that∫ T

0

∫
K

∣∣∣√ερε,δ∂mηε,δ
(
uε,δ
r + N − 1

r
uε,δ

)∣∣∣ 43 drdt
� Cψ(K )

∫ T

0

∫
K

∣∣∣√ερε,δ(|uε,δ
r | + |uε,δ|)

∣∣∣ 43 drdt
� Cψ(K )

(
ε

∫ T

0

∫
K

(
ρε,δ|uε,δ

r |2 + ρε,δ|uε,δ|2) drdt) 2
3
( ∫ T

0

∫
K

|ρε,δ|2drdt
) 1

3

� Cψ(K , T, E0).

Then there exists a function f ε such that, as δ → 0+ (up to a subsequence),

√
ερε,δ∂mηε,δ

(
uε,δ
r + N − 1

r
uε,δ

)
⇀ f ε weakly in L

4
3
loc(R

2+), (5.90)∫ T

0

∫
K

| f ε| 43 drdt � Cψ(K , T, E0). (5.91)

It follows from (5.90) that, as δ → 0+ (up to a subsequence),

I ε,δ
3 → √

ε

∫ T

0

∫
K

f εφr drdt. (5.92)

For I ε,δ
6 , it follows from (5.10)–(5.11) and (5.71) that

|I ε,δ
6 | �Cψ(suppφ)εδ

∫
R
2+

(
(ρε,δ)α

(|uε,δ
r | + |uε,δ |)φr + ∣∣(ρε,δ)α−1ρε,δ

r uε,δφ
∣∣) drdt

�Cψ(suppφ)εδ
( ∫

R
2+

(
ρε,δ |uε,δ

r |2 + ρε,δ |uε,δ |2)|φr | drdt
) 1

2

×
( ∫

R
2+
(ρε,δ + 1) |φr | drdt

) 1
2

+ Cψ(suppφ)
√

δ
(
ε2δ

∫
R
2+
(ρε,δ)α−2|ρε,δ

r |2 |φ| drdt
) 1

2

×
( ∫

R
2+
(ρε,δ)α |uε,δ |2 |φ| drdt

) 1
2

�Cψ(suppφ, ‖φ‖C1 , T, E0)
√

δ

×
(√

ε + ( ∫
R
2+

ρε,δ |uε,δ |3 |φ| drdt) 1
3
( ∫

R
2+

|ρε,δ |3(α− 2
3 ) |φ| drdt) 1

6
)

�Cψ(suppφ, ‖φ‖C1 , T, E0)
(√

ε + 1
)√

δ → 0 as δ → 0+, (5.93)
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where we have used α = 2N−1
2N ∈ [ 34 , 1) for N � 2.

5. Taking δ → 0+ (up to a subsequence) on both sides of (5.74), then it follows
from (5.82), (5.86), (5.89), and (5.92)–(5.93) that

∂tη
ε + ∂r q

ε = −N − 1

r
mε

(
ηε

ρ + uεηε
m

) + με
1 + με

2 + με
3 − √

ε f ε
r (5.94)

in the sense of distributions. From (5.87)–(5.88), we see that

−N − 1

r
mε

(
ηε

ρ + uεηε
m

) + με
1 + με

2 + με
3 (5.95)

are bounded uniformly in ε > 0 as Radon measures. From (5.91), we have

√
ε f ε

r → 0 in W
−1, 43
loc (R2+) as ε → 0 + . (5.96)

Thus, it follows from (5.95)–(5.96) that

∂tη
ε + ∂r q

ε is confined in a compact subset of W−1,p2
loc (R2+) for some p2 ∈ (1, 2).

(5.97)

The interpolation compactness theorem (cf. [13,22]) indicates that, for p2 > 1,
p1 ∈ (p2,∞], and p0 ∈ [p2, p1),

(compact set of W−1,p2
loc (R2+)) ∩ (bounded set of W−1,p1

loc (R2+))

⊂ (compact set of W−1,p0
loc (R2+)),

which is a generalization ofMurat’s lemma in [47,57]. Combining this interpolation
compactness theorem for 1 < p2 < 2, p1 > 2, and p0 = 2 with the facts in (5.83)
and (5.97), we conclude (5.68). ��

Combining Proposition 5.7 with Lemmas 5.8–5.9 and 5.11, we have

Theorem 5.12. Let (ρε
0,m

ε
0) be the initial data satisfying (2.11)–(2.14). For each

ε > 0, there exists a spherical symmetry weak solution

(ρε,Mε)(t, x) := (ρε(t, r),mε(t, r)
x
r
)

of the compressible Navier–Stokes equations (1.3) in the sense of Definition 2.3.
Moreover, (ρε,mε)(t, r) = (ρε(t, r), ρε(t, r)uε(t, r)), with uε(t, r) := mε(t,r)

ρε(t,r)
almost everywhere on {(t, r) : ρε(t, r) = 0} and uε(t, r) := 0 almost everywhere
on {(t, r) : ρε(t, r) = 0 or r = 0}, satisfies the following bounds:

ρε(t, r) � 0 almost everywhere,( mε

√
ρε

)
(t, r) = √

ρε(t, r)uε(t, r) = 0 almost everywhere on {(t, r) : ρε(t, r) = 0},∫ ∞

0

(1
2

∣∣∣ mε

√
ρε

∣∣∣2 + e(ρε, ρ̄)
)
(t, r) r N−1dr + ε

∫
R
2+

∣∣∣ mε

√
ρε

∣∣∣2(s, r) r N−3drds

� Eε
0 � E0 + 1 for t > 0, (5.98)
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ε2
∫ ∞

0

∣∣(√ρε(t, r)
)
r

∣∣2 r N−1dr + ε

∫
R
2+

∣∣((ρε(s, r))
γ
2
)
r

∣∣2 r N−1drds

� C(E0 + 1) for t > 0,∫ T

0

∫ D

d
(ρε)γ+1(t, r) drdt � C(d, D, T, E0), (5.99)

∫ T

0

∫ D

0

(
ρε|uε|3 + (ρε)γ+θ

)
(t, r) r N−1drdt � C(D, T, E0) (5.100)

for any fixed T > 0 and any compact subset [d, D] � (0,∞).
Let (η, q) be an entropy pair defined in (2.7) for a smooth compact supported

function ψ(s) on R. Then, for ε ∈ (0, 1],
∂tη(ρε,mε) + ∂r q(ρε,mε) is compact in H−1

loc (R2+).

6. Proof of the Main Theorems

In this section, we give a complete proof of Main Theorem II: Theorem 2.4,
which leads to Main Theorem I: Theorem 2.2, as indicated in Remark 2.5.

The uniform estimates and compactness properties obtained in Theorem 5.12
imply that the weak solutions (ρε,mε) of the Navier–Stokes equations (1.7) sat-
isfy the compensated compactness framework in Chen-Perepelitsa [15]. Then the
compactness theorem established in [15] for the case γ > 1 (also see LeFloch-
Westdickenberg [37] for γ ∈ (1, 5/3]) implies that there exist functions (ρ,m)(t, r)
such that

(ρε,mε) → (ρ,m) almost everywhere (t, r) ∈ R
2+ as ε → 0 + (up to a subsequence).

By similar arguments as to those in the proof of Lemma 5.6, we find that
m(t, r) = 0 almost everywhere on {(t, r) : ρ(t, r) = 0}. We can define the
limit velocity u(t, r) by setting u(t, r) := m(t,r)

ρ(t,r) almost everywhere on {(t, r) :
ρ(t, r) = 0} and u(t, r) := 0 almost everywhere on {(t, r) : ρ(t, r) = 0 or r =
0}. Then we have

m(t, r) = ρ(t, r)u(t, r).

We can also define ( m√
ρ
)(t, r) := √

ρ(t, r)u(t, r), which is 0 almost everywhere

on the vacuum states {(t, r) : ρ(t, r) = 0}. Moreover, we obtain that, as ε → 0+,

mε

√
ρε

≡ √
ρεuε → m√

ρ
≡ √

ρu strongly in L2([0, T ] × [0, D], r N−1drdt).

(6.1)

Notice that |m| 3(γ+1)
γ+3 � C

( |m|3
ρ2 + ργ+1

)
, which, along with (5.99)–(5.100),

implies

(ρε,mε) → (ρ,m) in L p
loc(R

2+) × Lq
loc(R

2+) as ε → 0+ (6.2)
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for p ∈ [1, γ +1) and q ∈ [1, 3(γ+1)
γ+3 ), where Lq

loc(R
2+) represents Lq([0, T ]×K )

for any T > 0 and K � (0,∞).
From the same estimates, we also obtain the convergence of the relative me-

chanical energy as ε → 0+:

η̄∗(ρε,mε) → η̄∗(ρ,m) in L1
loc(R

2+).

Since η̄∗(ρ,m) is a convex function, by passing the limit in (5.98), we have∫ t2

t1

∫ ∞

0
η̄∗(ρ,m)(t, r) r N−1drdt � (t2 − t1)

∫ ∞

0
η̄∗(ρ0,m0)(r) r

N−1dr,

which implies

∫ ∞

0
η̄∗(ρ,m)(t, r) r N−1dr �

∫ ∞

0
η̄∗(ρ0,m0)(r) r

N−1dr for almost everywhere t � 0.

(6.3)

This indicates that there is no concentration formed in the density ρ(t, r) at origin
r = 0.

Define

(ρ,M)(t, x) := (ρ(t, r),m(t, r)
x
r
) = (ρ(t, r), ρ(t, r)u(t, r)

x
r
). (6.4)

From (6.3), we know that M√
ρ

= √
ρu x

r is well-defined and in L2 for almost

everywhere t > 0. We now prove that (ρ,M)(t, x) is a weak solution of the
Cauchy problem for the Euler equations (1.1) in RN .

Let ζ(t, x) ∈ C1
0([0,∞) × R

N ) be a smooth, compactly supported function.
Then it follows from (5.32) that∫

R
N+1+

(
ρεζt + Mε · ∇ζ

)
dxdt +

∫
RN

ρε
0(x)ζ(0, x) dx = 0. (6.5)

Let φ(t, r) be the corresponding function defined in (5.35). Using (6.2) and
similar arguments as in the proof of Lemma 5.8, we obtain that, for any fixed
σ > 0,

lim
ε→0+

∫ ∞

0

∫
RN \Bσ (0)

(
ρεζt + Mε · ∇ζ

)
dxdt

= ωN lim
ε→0+

∫ ∞

0

∫ ∞

σ

(
ρεφt + mεφr

)
r N−1drdt

= ωN

∫ ∞

0

∫ ∞

σ

(
ρφt + mφr

)
r N−1drdt

=
∫ ∞

0

∫
RN \Bσ (0)

(
ρζt + M · ∇ζ

)
dxdt. (6.6)

Using (6.3) and by similar arguments as to those in (5.37), we have∣∣∣ ∫ ∞

0

∫
Bσ (0)

(ρε − ρ)ζt dxdt
∣∣∣
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� C(‖ζ‖C1 , supp ζ )
{ ∫ ∞

0

∫ σ

0

(
(ρε)γ + ργ

) |φt | r N−1drdt
} 1

γ
σ
N (1− 1

γ
)

� C(‖ζ‖C1 , supp ζ, E0) σ
N (1− 1

γ
) → 0 as σ → 0, (6.7)∣∣∣ ∫ ∞

0

∫
Bσ (0)

(Mε − M) · ∇ζ dxdt
∣∣∣

� C
{ ∫ ∞

0

∫ σ

0

( |mε|2
ρε

+ m2

ρ

)
(t, r) |φr | r N−1drdt

} 1
2

×
{ ∫ ∞

0

∫ σ

0

(
ρε + ρ

)
(t, r) |φr | r N−1drdt

} 1
2

� C(‖ζ‖C1 , supp ζ, E0)σ
N
2 (1− 1

γ
) → 0 as σ → 0, (6.8)

which, with (6.6)–(6.8), implies

lim
δ→0+

∫
R
N+1+

(
ρεζt + Mε · ∇ζ

)
dxdt =

∫
R
N+1+

(
ρζt + M · ∇ζ

)
dxdt. (6.9)

Letting ε → 0+ in (6.5) and using (6.9), we conclude that (ρ,M) satisfies (2.4).
Nextwe consider themomentumequations. Letψ = (ψ1, . . . , ψN ) ∈ (

C2
0 (R×

R
N )

)N be a smooth function with compact support, and let χσ (r) ∈ C∞(R) be
a cut-off function satisfying (5.44). Without loss of generality, we assume that
suppψ ⊂ [−T, T ] × BD(0). Denote �σ = ψχσ . Then we have∣∣∣∣ε

∫
R
N+1+

{1
2
Mε · (

��σ + ∇div�σ

) + Mε

√
ρε

· (∇√
ρε · ∇)

�σ

+ (∇√
ρε) · ( Mε

√
ρε

· ∇)
�σ

}
dxdt

∣∣∣∣
=

∣∣∣∣∣√ε

∫
R
N+1+

√
ρε

{
V ε x ⊗ x

r2
+

√
ε

r

mε

√
ρε

(
IN×N − x ⊗ x

r2
)} : ∇�σ dxdt

∣∣∣∣∣
� C

{ ∫
R
N+1+

|V ε|2 dx + ε

∫
R
2+

|mε|2
ρε

r N−3drdt
} 1

2
{
ε

∫
R
N+1+

ρε|∇�σ |2 dxdt
} 1

2

� C(σ, D, T, E0)
√

ε → 0 as ε → 0. (6.10)

Using (6.1) and (6.10), and passing the limit: ε → 0+ (up to a subsequence) in
(5.55), we obtain∫

R
N+1+

{
M · ∂t�σ + M√

ρ
· ( M√

ρ
· ∇)

�σ + p(ρ) div�σ

}
dxdt

+
∫
RN

M0(x) · �σ (0, x) dx = 0. (6.11)

Notice that, for any T > 0 and D > 0,∫ T

0

∫ D

0

(m2

ρ
+ ργ

)
(t, r) r N−1drdt � C(D, T, E0), (6.12)
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which, with similar arguments as to those in (5.58), leads to

lim
σ→0

{ ∫
R
N+1+

M · ∂t�σ dxdt +
∫
RN

M0(x) · �σ (0, x) dx
}

=
∫
R
N+1+

M · ∂tψ dxdt +
∫
RN

M0(x) · ψ(0, x) dx. (6.13)

Using (5.56)–(5.57) and (6.12), we have∣∣∣∣∣
∫
R
N+1+

(m2

ρ
+ p(ρ)

)(
ψ · x

r

)
χ ′

σ (r) dxdt

∣∣∣∣∣
� C

∫ ∞

0

∫ 2σ

σ

(m2

ρ
+ p(ρ)

)
ϕ(t, r)|χ ′

σ (r)| r N−1drdt

� C
∫ T

0

∫ 2σ

σ

(m2

ρ
+ p(ρ)

)
r N−1drdt → 0 as σ → 0,

which, with (6.12) and the Lebesgue dominated convergence theorem, leads to

lim
σ→0

∫
R
N+1+

{ M√
ρ

· ( M√
ρ

· ∇)
�σ + p(ρ) div�σ

}
dxdt

=
∫
R
N+1+

{ M√
ρ

· ( M√
ρ

· ∇)
ψ + p(ρ) divψ

}
dxdt. (6.14)

Substituting (6.13)–(6.14) into (6.11), we conclude that (ρ,M) satisfies (2.5).
By the Lebesgue theorem, we can weaken the assumption: ψ ∈ C2

0 as ψ ∈ C1
0 .

This completes the proof of Theorem 2.4. ��
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Appendix A. Construction and Estimates of Approximate Initial Data

In this appendix, we construct the approximate initial data functions with desired
estimates and regularity. From (1.5), we know that there exists a constant R � 1
so that

0 <
1

2
ρ̄ � ρ0(r) � 3

2
ρ̄ for r � R. (A.1)
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We first cut-off the density function ρ0(r) as

ρ̃ε
0(r) =

⎧⎪⎨
⎪⎩

(βε)
1
4 if ρ0(r) � (βε)

1
4 ,

ρ0(r) if (βε)
1
4 � ρ0(r) � (βε)− 1

2 ,

(βε)− 1
2 if ρ0(r) � (βε)− 1

2 ,

(A.2)

where ε ∈ (0, 1], and 0 < β � 1 is a given small positive constant, which is used

to ensure (βε)
1
4 � (βε)− 1

2 for all ε ∈ (0, 1]. It is easy to check that

ρ̃ε
0(r) � ρ0(r) + 1, ρ̃ε

0(r) → ρ0(r) as ε → 0 almost everywhere r ∈ R+.

(A.3)

To keep the L p-properties of mollification, it is more convenient to smooth out
the initial data in the original coordinate R

N ; so we do not distinguish between
functions (ρ0,m0)(r) and (ρ0,m0)(x) = (ρ0,m0)(|x|) when no confusion arises.
It follows from (2.2)–(2.3) that ρ0(x) ∈ Lγ

loc(R
N ). Using the convexity of e(ρ, ρ̄),

we have

0 � e(ρ̃ε
0(x), ρ̄) � e(ρ0(x), ρ̄). (A.4)

Combining (2.2) with (A.3)–(A.4) and the Lebesgue dominated convergence the-
orem, we obtain

lim
ε→0+

∫
K

(∣∣ρ̃ε
0(x) − ρ0(x)

∣∣γ + ∣∣√ρ̃ε
0(x) − √

ρ0(x)
∣∣2γ )

dx = 0 (A.5)

for any K � R
N .

Since we need a better decay property for approximate initial data, we further
cut-off the function ρ̃ε

0(x) at the far-field:

ρ̂ε
0(x) =

{
ρ̃ε
0(x) if |x| � (βε)− 1

2N ,

ρ̄ if |x| > (βε)− 1
2N .

(A.6)

Here we further choose β small enough so that |x| � (βε)− 1
2N � R + 2 for all

ε ∈ (0, 1]. It is clear that ρ̂ε
0(x) is not a smooth function so that we need to mollify

ρ̂ε
0(x). Let J (x) be the standard mollification function and Jσ (x) := 1

σ N J ( x
σ
) for

σ ∈ (0, 1). For later use, we take σ = ε
1
4 and define ρε

0(x) as

ρε
0(x) :=

( ∫
RN

√
ρ̂ε
0(x − y)Jσ (y) dy

)2
. (A.7)

Then ρε
0(x) is still a spherically symmetric function, that is, ρε

0(x) = ρε
0(|x|).

Lemma A.1. For any given ε ∈ (0, 1], ρε
0(x) defined in (A.7) is in C∞(RN ) with

(βε)
1
4 � ρε

0(x) � (βε)− 1
2 and satisfies
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lim
ε→0+

(∥∥ρε
0 − ρ0

∥∥
Lγ
loc(R

N )
+

∣∣∣ ∫
RN

(
e(ρε

0(x), ρ̄) − e(ρ0(x), ρ̄)
)
dx

∣∣∣) = 0, (A.8)

ε2
∫
RN

∣∣∇x

√
ρε
0(x)

∣∣2 dx � C
√

ε, (A.9)∫
RN

e(ρε
0(x), ρ̄)(1 + |x|)N−1+ϑ dx � CE0ε

− N−1+ϑ
2N , (A.10)

where E0 is defined in (2.12), and ϑ ∈ (0, 1).

Proof. We divide the proof into four steps.

1. We first consider the first part of (A.8). A direct calculation shows

∣∣√ρε
0(x) − √

ρ0(x)
∣∣

�
∣∣∣ ∫

RN

(√
ρ̂ε
0(x − y) − √

ρ0(x − y)
)
Jσ (y) dy

∣∣∣
+

∣∣∣ ∫
RN

(√
ρ0(x − y) − √

ρ0(x)
)
Jσ (y) dy

∣∣∣. (A.11)

For any given M � 1, it follows from (A.11) and Hölder’s inequality that∫
|x|�M+1

∣∣√ρε
0(x) − √

ρ0(x)
∣∣2γ dx

� C
∫
RN

Jσ (y)
∫

|x|�M+1

(∣∣√ρ̂ε
0(x − y) − √

ρ0(x − y)
∣∣2γ

+ ∣∣√ρ0(x − y) − √
ρ0(x)

∣∣2γ )
dxdy

� C sup

|y|�ε
1
4

∥∥√
ρ0(· + y) − √

ρ0(·)
∥∥
L2γ ({|x|�M+1})

+ C
∥∥√

ρ̃ε
0 − √

ρ0
∥∥
L2γ ({|x|�M+2}) → 0 (A.12)

as ε → 0+, where we have used (A.5), σ = ε
1
4 , and ρ̂ε

0(x) = ρ̃ε
0(x) for |x| �

(βε)− 1
2N . Using (A.12), we immediately obtain∫

|x|�M+1
|ρε

0(x) − ρ0(x)|γ dx → 0 as ε → 0. (A.13)

2. We now consider the second part of (A.8). For any given M � 1, it follows from
(A.13) that

lim
ε→0+

∫
|x|�M+1

(
e(ρε

0(x), ρ̄) − e(ρ0(x), ρ̄)
)
dx = 0. (A.14)

For |x| > M + 1 with M � R + 1, noting (A.1)–(A.2) and (A.6)–(A.7), we have

0 <
1

2
ρ̄ � ρε

0(x) � 3

2
ρ̄. (A.15)
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It follows from (A.2) and (A.6) that
∣∣√ρ̂ε

0(x)−
√

ρ̄
∣∣ �

∣∣√ρ̃ε
0(x)−

√
ρ̄
∣∣ for x ∈ R

N ,
which, with (A.15), yields∫

|x|>M+1
e(ρε

0(x), ρ̄) dx

� C(ρ̄)

∫
|x|>M+1

∣∣√ρε
0(x) − √

ρ̄
∣∣2dx

� C(ρ̄)

∫
|x|>M+1

∣∣∣ ∫
RN

(√
ρ̂ε
0(x − y) − √

ρ̄
)
Jσ (y)dy

∣∣∣2dx
� C(ρ̄)

∫
|x|>M

∣∣√ρ̂ε
0(x) − √

ρ̄
∣∣2 dx

� C(ρ̄)

∫
|x|>M

∣∣√ρ̃ε
0(x) − √

ρ̄
∣∣2 dx

= C(ρ̄)

∫
|x|>M

∣∣√ρ0(x) − √
ρ̄
∣∣2 dx

� C(ρ̄)

∫
|x|>M

e(ρ0(x), ρ̄) dx. (A.16)

For any given small � > 0, there exists M(�) � 1 such that∫
|x|>M(�)

e(ρ0(x), ρ̄) dx � �. (A.17)

Using (A.14) and (A.16)–(A.17), we have∣∣∣∣
∫
RN

(
e(ρε

0(x), ρ̄) − e(ρ0(x), ρ̄)
)
dx

∣∣∣∣
�

∣∣∣∣∣
∫

|x|�M(�)+1

(
e(ρε

0(x), ρ̄) − e(ρ0(x), ρ̄)
)
dx

∣∣∣∣∣
+ C(ρ̄)

∫
|x|>M(�)

e(ρ0(x), ρ̄) dx

� C(ρ̄)�,

provided that ε � 1. Then (A.8) is proved.

3. Noting (A.6), we have

∂xi

√
ρε
0(x) =

⎧⎨
⎩

∫
RN

√
ρ̂ε
0(x − y)∂yi Jσ (y) dy for |x| � 1 + (βε)− 1

2N ,

0 for |x| � 1 + (βε)− 1
2N ,
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which, with (A.2) and (A.6), leads to

ε2
∫
RN

∣∣∣∇x

√
ρε
0(x)

∣∣∣2dx = Cε2

σ 2

∫
|x|�1+(βε)

− 1
2N

sup
y∈RN

ρ̂ε
0(y) dx

� Cε2

σ 2 (βε)−1 � Cε
1
2 ,

where we have used σ = ε
1
4 . Thus, (A.9) is proved.

4. We finally consider (A.10). Noting (A.6), we see that ρε
0(x) = ρ̄ for all |x| �

1 + (βε)− 1
2N , which, with (A.8), implies∫

RN
e(ρε

0(x), ρ̄)(1 + |x|)N−1+ϑdx

=
∫

|x|�1+(βε)
− 1
2N

e(ρε
0(x), ρ̄)(1 + |x|)N−1+ϑdx

� Cε− N−1+ϑ
2N

∫
|x|�1+(βε)

− 1
2N

e(ρε
0(x), ρ̄) dx

� C(E0 + 1)ε− N−1+ϑ
2N .

Therefore, we have proved (A.10). ��
Denote I[4δ,δ−1](x) to be the characteristic function {x ∈ R

N : 4δ � |x| � δ−1}
with 0 < δ � 1. Now, for the approximation of the velocity, we define uε

0(x) and
uε,δ
0 (x):

uε
0(x) := 1√

ρε
0(x)

( m0√
ρ0

)
(x), (A.18)

uε,δ
0 (x) := 1√

ρε
0(x)

∫
RN

( m0√
ρ0

I[4δ,δ−1]
)
(x − y)Jδ(y) dy, (A.19)

where ρε
0(x) is the approximate density function defined in Lemma A.1.

Lemma A.2. The function uε
0(x) defined in (A.18) satisfies∫

RN
ρε
0(x)|uε

0(x)|2 dx ≡
∫
RN

|m0(x)|2
ρ0(x)

dx for any ε ∈ (0, 1], (A.20)

lim
ε→0+ ‖ρε

0u
ε
0 − m0‖L1

loc(R
N ) = 0. (A.21)

The function uε,δ
0 (x) defined in (A.19) is in C∞

0 (RN ) and satisfies

supp uε,δ
0 ⊂ {x ∈ R

N : 2δ � |x| � 1 + δ−1}, (A.22)

lim
δ→0+

∫
RN

ρε
0(x)|uε,δ

0 (x)|2 dx =
∫
RN

ρε
0(x)|uε

0(x)|2 dx, (A.23)

lim
δ→0+

∥∥ρε
0u

ε,δ
0 − ρε

0u
ε
0

∥∥
L1
loc(R

N )
= 0, (A.24)
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∫
RN

ρε
0(x)|uε,δ

0 (x)|2(|x| + 1)N−1+ϑ dx � CE0δ
−N+1−ϑ , (A.25)

where E0 is defined in (2.12).

Proof. (A.20) follows directly from (A.18). Using (A.12) and (A.18), we have∫
|x|�M

∣∣(ρε
0u

ε
0 − m0)(x)

∣∣ dx
=

∫
|x|�M

∣∣(√ρε
0 − √

ρ0
)
(x)(

m0√
ρ0

)(x)
∣∣ dx

�
( ∫

RN

|m0(x)|2
ρ0(x)

dx
) 1

2
( ∫

|x|�M

∣∣(√ρε
0 − √

ρ0
)
(x)

∣∣2 dx) 1
2

→ 0 as ε → 0 (A.26)

for any M � 1, which leads to (A.21).
From (A.19), it is clear that uε,δ

0 (x) ∈ C∞
0 (RN ) and supp uε,δ

0 ⊂ {x ∈ R
N : 2δ �

|x| � 1+δ−1}. For any given small constant � > 0, there exist small ε = ε(�) > 0
and large M = M(�) � 1 such that

∫
B2ε (0)∪{|x|�M(�)}

|m0(x)|2
ρ0(x)

dx � �. (A.27)

Taking δ > 0 small enough so that ε � 6δ, then it follows from (A.19) that∫
ε�|x|�M+2

∣∣∣(√
ρε
0u

ε,δ
0 − m0√

ρ0

)
(x)

∣∣∣2dx → 0 as δ → 0 + . (A.28)

Since ε � 6δ, we have∫
Bε (0)∪{|x|≥M+1}

∣∣√ρε
0(x)u

ε,δ
0 (x)

∣∣2 dx
�

∫
Bε (0)∪{|x|≥M+1}

∣∣∣ ∫
RN

( m0√
ρ0

I[4δ,δ−1]
)
(x − y)Jδ(y) dy

∣∣∣2 dx
�

∫
B2ε (0)∪{|x|≥M}

|m0(x)|2
ρ0(x)

dx � �. (A.29)

It follows from (A.18) and (A.27)–(A.29) that∫
RN

∣∣(√ρε
0u

ε,δ
0 −

√
ρε
0u

ε
0

)
(x)

∣∣2 dx
=

∫
RN

∣∣(√ρε
0u

ε,δ
0 − m0√

ρ0

)
(x)

∣∣2 dx
�

∫
ε�|x|�M+2

∣∣(√ρε
0u

ε,δ
0 − m0√

ρ0

)
(x)

∣∣2 dx
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+ C
∫
B2ε (0)∪{|x|�M}

|m0(x)|2
ρ0(x)

dx

→ 0 as δ → 0+, (A.30)

which leads to (A.23).
Using (A.30), we have

∫
|x|�M

∣∣(ρε
0u

ε,δ
0 − ρε

0u
ε
0)(x)

∣∣ dx
�

( ∫
|x|�M

ρε
0(x) dx

) 1
2
( ∫

RN

∣∣(√ρε
0u

ε,δ
0 −

√
ρε
0u

ε
0

)
(x)

∣∣2dx) 1
2

→ 0 as δ → 0+,

which implies (A.24).
Finally, noting (A.23) and uε,δ

0 (x) = 0 for |x| � 1 + δ−1, we obtain∫
RN

ρε
0(x)|uε,δ

0 (x)|2(|x| + 1)N−1+ϑ dx

�
∫

|x|�1+δ−1
ρε
0(x)|uε,δ

0 (x)|2(|x| + 1)N−1+ϑ dx

� Cδ−N+1−ϑ

∫
RN

ρε
0(x)|uε,δ

0 (x)|2 dx

� Cδ−N+1−ϑ

∫
RN

|m0(x)|2
ρ0(x)

dx

� CE0δ
−N+1−ϑ ,

which yields (A.25). ��
With ρε

0(x), u
ε
0(x), and uε,δ

0 (x) defined above, we can construct the approximate

initial data (ρ
ε,δ,b
0 ,mε,δ,b

0 )(r) = (ρ
ε,δ,b
0 , ρ

ε,δ,b
0 uε,δ,b

0 )(r) for (3.1) and (3.4), and

(ρ
ε,δ
0 ,mε,δ

0 )(r) = (ρ
ε,δ
0 , ρ

ε,δ
0 uε,δ

0 )(r) for (5.6): For b � 1 + δ−1, define

(ρ
ε,δ,b
0 , uε,δ,b

0 )(r) := (ρε
0(x), u

ε,δ
0 (x))I[δ,b](x) for r = |x| ∈ [δ, b] (A.31)

to be the initial data for IBVP (3.1) and (3.4). On the other hand, for IBVP (5.6),
we define

(ρ
ε,δ
0 , uε,δ

0 (r) := (ρε
0(x), u

ε,δ
0 (x))I[δ,∞)(x) for r = |x| ∈ [δ,∞). (A.32)

Then, combining Lemma A.1 with Lemma A.2, we obtain

Lemma A.3. The following three results hold:

(i) As ε → 0,

(Eε
0, E

ε
1) → (E0, 0),

(ρε
0,m

ε
0)(r) → (ρ0,m0)(r) in L1

loc([0,∞); r N−1dr),
(A.33)

where Eε
0, E

ε
1 , and E0 are defined in (2.12), (2.13), and (2.2), respectively.
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(ii) For any fixed ε ∈ (0, 1], as δ → 0,

(Eε,δ
0 , Eε,δ

1 ) → (Eε
0, E

ε
1),

(ρ
ε,δ
0 ,mε,δ

0 )(r) → (ρε
0,m

ε
0)(r) in L1

loc([0,∞); r N−1dr),
(A.34)

where Eε,δ
0 and Eε,δ

1 are defined in (5.2)–(5.3).
(iii) For any fixed (ε, δ), as b → ∞,

(Eε,δ,b
0 , Eε,δ,b

1 ) → (Eε,δ
0 , Eε,δ

1 ), (A.35)

(ρ
ε,δ,b
0 ,mε,δ,b

0 )(r) → (ρ
ε,δ
0 ,mε,δ

0 )(r) in L1
loc((δ,∞); r N−1dr), (A.36)

where Eε,δ,b
0 , Eε,δ,b

1 , Eε,δ,b
2 , and Ẽε,δ,b

0 are defined in Lemmas 3.1–3.2 and

(4.2). In addition, the upper bounds of Eε,δ,b
0 , Eε,δ,b

1 , Eε,δ,b
2 , and Ẽε,δ,b

0 are
independent of b (but may depend on ε, δ), and

Eε,δ,b
0 + Eε,δ,b

1 � C(E0 + 1), (A.37)

Ẽε,δ,b
0 �

∫ b

δ

η̄∗(ρε,δ,b
0 ,mε,δ,b

0 )r N−1(1 + r)N−1+ϑ dr

� CE0
(
δ−N+1−ϑ + ε− N−1+ϑ

2N
)
, (A.38)

for some C > 0 independent of (ε, δ, b), where ϑ ∈ (0, 1) is any fixed constant.
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