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Abstract

We are concerned with the global existence theory for spherically symmetric
solutions of the multidimensional compressible Euler equations with large initial
data of positive far-field density so that the total initial-energy is unbounded. The
central feature of the solutions is the strengthening of waves as they move radially
inward toward the origin. For the large initial data of positive far-field density,
various examples have shown that the spherically symmetric solutions of the Euler
equations blow up near the origin at a certain time. A fundamental unsolved problem
is whether the density of the global solution would form concentration to become
a measure near the origin for the case when the total initial-energy is unbounded
and the wave propagation is not at finite speed starting initially. In this paper,
we establish a global existence theory for spherically symmetric solutions of the
compressible Euler equations with large initial data of positive far-field density and
relative finite-energy. This is achieved by developing a new approach via adapting
a class of degenerate density-dependent viscosity terms, so that a rigorous proof
of the vanishing viscosity limit of global weak solutions of the Navier—Stokes
equations with the density-dependent viscosity terms to the corresponding global
solution of the Euler equations with large initial data of spherical symmetry and
positive far-field density can be obtained. One of our main observations is that the
adapted class of degenerate density-dependent viscosity terms not only includes the
viscosity terms for the Navier—Stokes equations for shallow water (Saint Venant)
flows but also, more importantly, is suitable to achieve the key objective of this paper.
These results indicate that concentration is not formed in the vanishing viscosity
limit for the Navier—Stokes approximations constructed in this paper even when the
total initial-energy is unbounded, though the density may blow up near the origin
at certain time and the wave propagation is not at finite speed.
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1. Introduction

We are concerned with the global existence theory for spherically symmetric
solutions of the multidimensional (M-D) compressible Euler equations with large
initial data of positive far-field density, that is, a situation where, given constant den-
sity p > 0 at infinity, the total initial-energy is unbounded. The study of spherically
symmetric solutions dates back to the 1950s and is motivated by many important
physical problems such as flow in a jet engine inlet manifold and stellar dynam-
ics including gaseous stars and supernovae formation (cf. [19,28,52,55,59]). The
central feature of the solutions is the strengthening of waves as they move radially
inward toward the origin. An existence theory was established in Chen and Pere-
pelitsa [17] and Chen and Schrecker [18] via an approach of vanishing artificial
viscosity for the case when the initial data are of finite-energy, which requires that
p = 0. For the far-field density p > 0, various physical examples have shown that
the spherically symmetric solutions of the compressible Euler equations blow up
more often near the origin at certain time (see [19,28,38,45,59] and the references
cited therein). The fundamental unsolved problem is whether the density would
form concentration to become a measure near the origin for the case when the total
initial-energy is unbounded and the wave propagation is not at finite speed start-
ing initially. In this paper, we establish a global existence theory for spherically
symmetric solutions in sz)c of the compressible Euler equations with large initial
data of positive far-field density /o > 0 and relative finite-energy in RY for N > 2.
This is achieved by developing a new approach via adapting a class of degenerate
density-dependent viscosity terms, so that a rigorous proof of the vanishing viscos-
ity limit of global weak solutions of the compressible Navier—Stokes equations with
the density-dependent viscosity terms to the corresponding global solution of the
Euler equations with large initial data of spherical symmetry and positive far-field
density can be obtained. One of our main observations is that the adapted class of
degenerate density-dependent viscosity terms not only includes the viscosity terms
for the Navier—Stokes equations for shallow water (Saint Venant) flows, among
others (cf. Bresch and Dejardins [2,3], Bresch et al. [5], Lions [39], and Mallet and
Vasseur [44]), but also, more importantly, is suitable to achieve the key objective of
this paper. These results indicate that concentration is not formed in the vanishing
viscosity limit for the Navier—Stokes approximations constructed in this paper even
when the total initial-energy is unbounded, though the density may blow up near
the origin at certain time and the wave propagation is not at finite speed.

More precisely, the M-D Euler equations for compressible isentropic fluids take
the form

{8z/0~|—d1v/\/l -0, 0

WM + div(MEM) 1 vp =0
for (1,x) € Ry x RN with N > 2, where p is the density, p is the pressure, and
M eRN represents the momentum; see also Chen and Feldman [14] and Dafermos

[20]. When p > 0,U = % € R¥ is the velocity. The constitutive pressure-density
relation for polytropic gases is

p = pp) =«p’,
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where ¥y > 1 is the adiabatic exponent; by scaling, constant « in the pressure-

2
density relation may be chosen as k¥ = (V;” without loss of generality. We are
concerned with the Cauchy problem for (1.1) with the Cauchy data

(0, M)li=0 = (po, Mo)(x) —> (p, 0) as [x| — oo, (1.2)

where (p, 0) is a constant far-field state, for which the initial far-field velocity has
been assumed to be zero in (1.2) without loss of generality, owing to the Galilean
invariance of system (1.1). Since a global solution of the Euler equations (1.1)
normally contains the vacuum states {(¢, X) : p(¢, x) = 0} where the fluid velocity
U (¢, x) is not well-defined (even though the far-field density is positive), we will
use the physical variables such as the momentum M(¢, x), or ﬁf%’ which will
be shown to be always well-defined, instead of U (¢, x), when the vacuum states
are involved throughout this paper.

In order to construct global spherically symmetric solutions in Lﬁm of the Eu-
ler equations (1.1) with large initial data of positive far-field density, p > 0, the
approach of vanishing artificial viscosity developed in [17,18] is no longer applied
directly, and the problem has been remained open. To solve this problem, in this
paper, we develop a different approach by adapting a class of degenerate density-
dependent viscosity terms so that the required uniform estimates in terms of the
viscosity coefficients can be achieved for the vanishing viscosity limit. More pre-
cisely, we consider the M-D Navier—Stokes equations for compressible barotropic
fluids with the adapted class of degenerate density-dependent viscosity terms:

dp + divM = 0,
HM + div(M) +Vp= sdiv(u(p)D(/‘TA)) + ev(x(p)div(%)).
(1.3)

Here D(%) = %(V(%) + (V(%))T) is the stress tensor, and the shear and bulk
viscosity coefficients w(p) and A(p) depend on the density and may vanish on the
vacuum. Indeed, in the derivation of the Navier—Stokes equations from the Boltz-
mann equation by the Chapman—Enskog expansions, the viscosity terms depend
on the temperature, which are translated into the dependence on the density for
barotropic flows (cf. [42]). Moreover, for the shallow water (Saint Venant) models,
N =2,y =2,and (u(p), A(p)) = (p, 0) (cf. Lions [39, §8.4]); also see [2,5] for
such models in geophysical flows. This indicates that it is of independent interest
and importance to analyze the Navier—Stokes equations (1.3) with the density-
dependent viscosity terms. In particular, we are also interested in the inviscid limit
of the Navier—Stokes equations (1.3). Formally, as ¢ — 0+, the Navier—Stokes
equations (1.3) converge to the Euler equations (1.1). A fundamental problem in
mathematical fluid dynamics is whether a rigorous proof of the vanishing viscosity
limit of the solutions of the Navier-Stokes equations (1.3) to the Euler equations
(1.1) could be provided.
There is an extensive literature on the analysis of the vanishing artificial/numerical

viscosity limit to the isentropic Euler equations. For the 1-D case with general L*°
initial data, it has been analyzed by DiPerna [23], Ding et al. [22], Ding [21], Chen
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[10,11], Lions et al. [40,41], and Huang and Wang [32] via the methods of entropy
analysis and compensated compactness. Also see DiPerna [24], Morawetz [46],
Perthame and Tzavaras [48], and Serre [54] for general 2 x 2 strictly hyperbolic
systems of conservation laws. The vanishing artificial viscosity limit to general
strictly hyperbolic systems of conservation laws with general small BV initial data
was first established by Bianchini and Bressan [1] via direct BV estimates with
small oscillation; see also [8,9] and the references cited therein for the rate of
convergence.

For the study of spherically symmetric weak solutions, the local existence of
such solutions outside a solid ball at the origin was discussed in Makino and Takeno
[43] for the case 1 < ¥y < §; also see Yang [61,62]. A first global existence of
spherically symmetric solutions in L* including the origin was established in Chen
[12] for a class of L*° Cauchy data of arbitrarily large amplitude, which model out-
going blast waves and large-time asymptotic solutions. A compactness framework
was established in LeFloch and Westdickenberg [37] to construct finite-energy so-
lutions to the isentropic Euler equations with spherical symmetry and finite-energy
initial data forthe case 1 < y < % As indicated earlier, the convergence of the van-
ishing artificial viscosity approximate solutions to the corresponding finite-energy
entropy solution of the M-D Euler equations with large initial data of spherical
symmetry was established in [17,18] for any y > 1 for the case p = 0.

For the compressible Navier—Stokes equations with constant viscosity coeffi-
cients (that is, ;© and A are constants), the global existence of solutions has been
studied extensively; see [30,35] and the references cited therein for the 1-D case.
Forx € RY, N > 2, Lions [39] first obtained the global existence of renormal-
ized solutions, provided that y is suitably large, which was further extended by
Feireisl et al. [25] to y > % and by Plotnikov and Weigant [49] to y = %, and
by Jiang and Zhang [34] to ¥ > 1 under the spherical symmetry. When p and A
depend on the density, the Navier—Stokes equations (1.3) become degenerate when
o — 0. Such cases were analyzed in Bresch et al. [5] based on the new mathemati-
cal entropy—the BD entropy, first discovered by Bresch and Desjardins [2] for the
particular case (i, A) = (p, 0), and later generalized by Bresch and Desjardins [3]
to include the case of any viscosity coefficients (i, A) satisfying the BD relation:
A(p) = pit/(p) — w(p); also see Bresch and Desjardins [4]. When the initial data
are of spherical symmetry, Guo et al. [29] obtained the global existence of spher-
ically symmetric weak solutions of the system for y € (1, 3) in a finite ball with
Dirichlet boundary conditions. Also see [7,58].

The idea of regarding inviscid gases as viscous gases with vanishing physi-
cal viscosity can date back the seminal paper by Stokes [56] and the important
contributions of Rankine [50], Hugoniot [33], and Rayleigh [51] (¢f. Dafermos
[20]). However, the first rigorous convergence analysis of the inviscid limit from
the barotropic Navier—Stokes to Euler equations was made by Gilbarg [26] much
later, in which the existence and vanishing viscous limit of the Navier—Stokes shock
layers was established. For the convergence analysis confined in the framework of
piecewise smooth solutions, see [27,31,60] and the references cited therein.
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The key objective of this paper is to establish the global existence of spherically
symmetric solutions of (1.1):

p(t,x) = p(t,r), M, x)=m(t, r)—X for r = |x|, (1.4)
r
subject to the initial condition that

(o, M)(0,x) = (po, Mo)(x) = (po(r),mo(r))r—() — (p,0) asr— o0
(1.5)

with p > 0 and relative finite-energy. To achieve this, we establish the vanishing
viscosity limit of the corresponding spherically symmetric solutions of the Navier—
Stokes equations (1.3) with the adapted class of degenerate density-dependent vis-
cosity terms and approximate initial data of similar form to (1.5). For spherically
symmetric solutions of form (1.4), systems (1.1) and (1.3) become

{pﬁmﬁ#mzo, 06
2 N—1m? :
mi + (% + p), + 52 =0,

r

and

-
2 2
mi+ (% +p), + L = (e 4+ M ((2), + X)) —edmy,
(1.7)

{pt Fme 4+ Y=Ly =0,

respectively.

In Chen and Perepelitsa [15], the vanishing viscosity limit of smooth solutions
for the 1-D Navier—Stokes equations to the corresponding relative finite-energy
solution of the Euler equations has been established for p > 0; also see [16]
for the 1-D shallow water case. In [17,18], the convergence of artificial viscosity
approximate smooth solutions to the corresponding finite-energy entropy solution
of the Euler equations (1.6) with spherical symmetry and large initial data has been
established for p = 0 (also see [53]). As indicated earlier, in this paper, we develop
a different approach to investigate the vanishing physical viscosity limit of the
weak solutions of the M-D Navier—Stokes equations (1.3) with spherical symmetry
to the corresponding relative finite-energy solution of the Euler equations (1.1)
with large initial data of positive far-field density o > 0. Owing to the non-zero
initial density at infinity so that the total initial-energy is unbounded, which may
cause the possibility for additional nature of singularities at origin r = 0 and
far-field r = oo, several key techniques for the previous uniform estimates as in
[15,17,18] no longer apply. In particular, for the weak solutions of the Navier—
Stokes equations, it is essential to ensure enough decay of solutions a priori as
r — 00 so that integration by parts on unbounded regions can be performed for
the key estimates in the proof.

We now describe some of our approach and techniques involved to solve the
problem posed in this paper. Owing to the singularity at » = 0, it has not been clear
yet whether there always exists a global smooth solution of the Cauchy problem
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of the Navier—Stokes equations with smooth large initial data of spherical sym-
metry. To achieve our key objective, the main point of this paper is first to obtain
global weak solutions of the compressible Navier—Stokes equations with some
uniform estimates and the ngcl -compactness, so that the compactness framework
in [15] can be applied. For this purpose, we first construct smooth approximate
solutions (p®%?, m®%?), depending on the three parameters (¢, 8, b), through the
Navier—Stokes equations (1.7); see (3.1)—(3.4). Noting that the spherically symmet-
ric Navier-Stokes equations (1.7) become singular at the origin, we first remove
the origin in the approximate problem. For the smooth approximate solutions as
designed, it is direct to obtain the basic energy estimate, Lemma 3.1. Under relation
(2.20), we also obtain the BD entropy estimate, Lemma 3.2. Similar to that in [15],
we can obtain the uniform higher integrability of the density; see Lemma 3.3.

To employ the compactness framework in [15], we still need the uniform higher
integrability of the velocity, as described in Proposition 4.1, for all y > 1. To prove
this, we apply the relative entropy pair (7, g) of the spherically symmetric Euler
equations (1.6) to obtain (4.54) in §4. The most difficult terms are the second and
third terms on the right-hand side of (4.54), which are essential for the M-D case
(these two terms do not appear for the 1-D case). By a careful analysis on the
relative entropy pair, we see that

m2 m2
md,i(p, m) + 78”’77([)’ m) —q(p,m) = Cy(ﬁ)(7 +e(p,p)  (1.8)

for some constant Cy, (o) > 0, which implies that the third term on the right-hand
side of (4.54) can be bounded by using the basic energy at least locally; see Lemma
4.8 for the details. In fact, estimate (1.8) is quite subtle. Since the left-hand side

3
of (1.8) contains the terms on % and py+9, we have to deal with such terms;

otherwise, the higher integrability of the velocity may not be obtained. This is
achieved by our observation of underlying cancellation by dividing it into several
cases; see (4.40)—(4.52) for the details of its proof.

From the expression of § in (4.60), in order to control the second term r¥ 1§
on the right-hand side of (4.54), we need to obtain some decay rate estimate of
(p&%b — 5, m&%b)(¢,r) as r — oo. To achieve this, we first obtain the upper
and lower bounds of density p®%? so that they are independent of b. With these
bounds of the density and property (4.1) satisfied by the approximate initial data, we
can prove a better decay estimate for (,0"3’5*” - P, m&30) (¢, r), uniformly in b; see
Lemmas 4.6—4.7 in more detail. Then the decay estimate allows us to control rV=14.
Since the boundary values of (ps"s’b , uﬁ’a’b)(t, b) are determined by the equations
and may depend on ¢, we integrate (4.54) over [0, T]x [b—1, b] x[d, D]toavoid the
trace estimates, so that Proposition 4.1 is obtained. Then we take the limit, b — oo,
to obtain the global existence of a strong solution (p®%, M&%) = (p®?%, m*? 1)
for (1.3) on [0, 00) x (RN \ Bs(0)) for each fixed § > 0. Noting that the second
term on the right-hand side of (4.3) vanishes when b — oo, we obtain the desired
estimates in Proposition 5.2.
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By similar arguments as in [29,44], we can then take the limit, § — 0+, to
obtain the global weak solution (p®, M?) = (p%, m® }) of the Cauchy problem for
(1.3). To prove that

m(p®, m®) + 3,q(p°, m®)  is compact in ngcl (Ri),
special care is required, since (p°, m?) is only a weak solution and 9,1 (p®, m®) +
9rq(p°, m®) is only alocal bounded Radon measure for each fixed ¢ > 0. Moreover,
since the viscosity coefficients depend on the density, we cannot say that (’;’—j) 18
a function due to the possible appearance of the vacuum in general so that it is not
suitable to use the weak form of (p?, m®) to prove the ngcl -compactness. In fact,

the ngcl -compactness is achieved through smooth approximate solutions and their
limits.

Based on the uniform estimates and the ngcl -compactness, we then employ
the compactness framework in [15] to take the vanishing viscosity &€ — 0 for all
y > 1. On the other hand, we have to be careful to pass the limit, ¢ — 0, in the
momentum equations (see (5.42)), since it is quite delicate to vanish the right-hand
side of (5.42) by using the uniform estimates in Theorem 5.12. To overcome this
difficulty, we employ underlying cancellations and introduce a new function V¥,
which is uniformly bounded in L?(0, T; L?) so that the right-hand side of (5.42)
is expressed by (5.43). Then we can vanish the viscosity terms by using the new
expression.

The paper is organized as follows: in §2, we first introduce the notion of relative
finite-energy solutions of the Cauchy problem (1.1)—(1.2) for the compressible Eu-
ler equations and then state Main Theorem I: Theorem 2.2 for the global existence
of such solutions. To establish Theorem 2.2, we construct global weak solutions
of the Cauchy problem (1.3) and (2.6) for the compressible Navier—Stokes equa-
tions and analyze their vanishing viscosity limit, as stated in Main Theorem II:
Theorem 2.4. We also give several related remarks. In §3, we first construct global
approximate smooth solutions (p%%?, m*%?) and make the basic energy estimate
and the BD entropy estimate of (,08"”’, ms"s’b), uniformly bounded in (¢, 8, b),
for the Navier—Stokes equations (3.1). In §4, we derive the higher integrability
of the approximate smooth solutions (p®%? m®%?) uniformly in b. In §5, we
first take the limit, » — oo, of (,08*5’1’, mg"s*b) to obtain global strong solutions
(ps’a, m®9%) of system (3.1) with some uniform bounds in (e, §), and then we take
the limit, § — 0+, to obtain global, spherically symmetric weak solutions of the
Navier-Stokes equations (1.3) with some desired uniform bounds and the ngcl-
compactness, which are essential for us to employ the compensated compactness
framework in §6 to establish Theorem 2.2. In the appendix, we construct the ap-
proximate initial data with desired estimates, which are used for the construction
of the approximate solutions in §3.

Throughout this paper, we denote L? (£2), wk.p (2),and H k (€2) as the standard
Sobolev spaces on domain 2 for p € [1, co]. We also use L?”(2; rN_ldr) or
LP([0,T) x €; rN=1drdr) for @ ¢ R, with measure »¥~'dr or rN~-ldrds
correspondingly, and L! ([0, 0o); rV=!dr) to represent L? ([0, R); rV~'dr) for
any fixed R > 0.



1706 G.-Q. G. CHEN & Y. WANG

2. Mathematical Problems and Main Theorems

In this section, we first introduce the notion of relative finite-energy solutions
of the Cauchy problem (1.1)—(1.2) for the compressible Euler equations.

Definition 2.1. A pair (p, M) is said to be a relative finite-energy solution of the
Cauchy problem (1.1)—(1.2) if the following conditions hold:

(i) p(t,x) = 0 almost everywhere, and (M, %)(t, x) = 0 almost everywhere

on the vacuum states {(z, x) : p(t,x) = 0};
(i1) For almost everywhere ¢ > 0, the total relative energy with respect to the
far-field state (o, 0) is finite:

LMEe L oo 5)) 000 dx < Eo, @.1)
RN N2 /p

where

/RN (2|\/—’ + e(po, p))(X) dx < 00 (2.2)

is the finite total relative initial-energy, and e(p, p) is the relative internal
energy respective to p > 0:

e )= (07 = 7 = vi o= ) 2.3)

(iii) For any ¢ (z,x) € C}([0, 00) x R),

/ (Pé’z + M- V{) dxdr +/ (p0¢)(0,x)dx = 0; 2.4)
RYH! RV

(iv) Forall (£, x) = (1, ..., ¥w)(t. x) € (C} ([0, 00) x RN))N

MM
/RNH ( A N (7 V) + p(p) div 1//) dxdr

—i—/ Mox) - ¥ (0,x)dx =0, 2.5)
RN

where and whereafter we always use RY ™ := Ry x RY = (0, 00) x RY for
N > 2.

Our first main theorem of this paper is

Theorem 2.2 (Main Theorem I: Existence of Spherically Symmetric Solutions of
the Euler Equations). Consider the Cauchy problem of the Euler equations (1.1)
with large initial data of spherical symmetry of form (1.5). Let (pg, M) (X) satisfy
(2.2) with the positive far-field density p > 0. Then there exists a global relative
finite-energy solution (p, M)(t, x) of (1.1) and (1.5) with spherical symmetry of
form (1.4) in the sense of Definition 2.1, where (p, m)(t, r) is determined by the
corresponding Cauchy problem of system (1.6) with the initial data (po, mo)(r)
given in (1.5).



Global Solutions of the Compressible Euler Equations 1707

To establish Theorem 2.2, we first construct global weak solutions of the Cauchy
problem of the compressible Navier—Stokes equations (1.3) with appropriately
adapted degenerate density-dependent viscosity terms and approximate initial data

(o, M)li=0 = (pg, MG x) —> (po, Mo)(x) ase — 0, (2.6)

constructed as in the appendix satisfying Lemmas A.1-A.2 and Lemma A.3(i).

For clarity, we adapt the viscosity terms with (u, A) = (p, 0) in (1.3), as the
case for the shallow water (Saint Venant) models, and ¢ € (0, 1] without loss
of generality throughout this paper. The arguments also work for a general class
of degenerate density-dependent viscosity terms; see Remark 2.7 below for more
details.

Definition 2.3. A pair (p°, M?) is said to be a weak solution of the Cauchy problem
(1.3) and (2.6) with (i, A) = (p, 0) if the following conditions hold:

%)(l , X) = 0 almost everywhere

on the vacuum states {(¢, x) : p°(t, x) = 0},

(i) p®(t,x) = 0 almost everywhere, and (M?,

pf € L. T; L], (RY)), V/p? e (L¥0, T; L*(RV))",

loc
3

N

(ii) For any r = 11 2 0 and any ¢ (¢, X) € Cé([O, 00) x R¥), the mass equation
(1.3); holds in the sense:

€ (L=, T: L2®RV)";

f(ps§)(12,x)dx—/ (p°2) (11, x) dx
RN RN
n
=f f (0°¢ + M® - VE)(1, x) dxdr;
51 RN

(iii) Forany ¢ = (Y1, ..., ¥n) € (Ccz)([O, 00) X RN))N, the momentum equations
(1.3) hold in the sense:

e M ME o
/MH (M A N (ﬁ V)Y + p(p )dlvw> dxdr

+/ MG(x) - (0, x) dx

RN

MS
7

+ Vot - (y—p_i V)Y ) dxdr.

(VWet V)Y

— _s/ (lME (AP + Vdivy) +
RQJH 2

Consider spherically symmetric solutions of form (1.4). Then systems (1.1) and
(1.3) for such solutions become (1.6) and (1.7), respectively. A pair of functions
(n(p, m), q(p, m)) is called an entropy pair of the 1-D Euler system (that is, system
(1.6) with N = 1) if they satisfy

aln(p’m) +arCI(pam) = 0
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for any smooth solution (p, m) of the 1-D Euler system; see Lax [36]. Furthermore,
n(p, m) is called a weak entropy if

Nlp=0 =0 foranyﬁxedu:ﬂ.
0

From now on, we also use u = 2 and m alternatively when p > 0.
From [41], it is well-known that any weak entropy pair (1, g) can be represented
by

n(p,m)=/Rx(p;s—u)W(S)ds,

2.7
q(p,m) = fR(Os + (1 =Ou)x(p;s —u)P(s)ds
when p > 0, where the kernel is
- 1 —1
X(p;S—u)z[pze_(s—M)z]i fOI‘bIZT_yl)>—§ and 0 := VT

For instance, when v (s) = %s2, the entropy pair consists of the mechanical energy
and the associated energy flux

2 3

" _Im " _1m ,

where e(p) = —“—p? represents the internal energy. Since we expect that (o, m)
71 P gy p

(t,r) = (p,0) with p > 0 as r — oo, we define the relative mechanical energy

2

e m _
(p.m) = —— +e(p. p), (2.9)
0
with e(p, p) defined by (2.3) satisfying (see [15])
e(p, p) Z Cyp(p” = 5% (2.10)

for some constant C,, > 0.

Theorem 2.4 (Main Theorem II: Existence and Inviscid Limit for the Navier—Stokes
Equations). Consider the compressible Navier—Stokes equations (1.3) with N > 2
and the spherically symmetric approximate initial data (2.6) satisfying that, as
g — 0,

(0§, m§)(r) — (po, mo)(r) in Li.([0, 00); rV~1dr), (2.11)
o0
Ef = a)N/ (o5, m§) rN"'dr — Eo, (2.12)
0
o 2
E§ = 82/ |/ o8 [T rV~1dr — 0, (2.13)
0

and there exists a constant C > 0 independent of ¢ € (0, 1] such that

ES+ ES < C(Eg+ 1) (2.14)
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for Eq defined in (2.2) and oy = 21 5 F(%)_1 as the surface area of the unit ball
in RN, Then the following statements hold:

Part I. Existence for the Navier—Stokes Equations (1.3): For each ¢ > 0, there
exists a global spherically symmetric weak solution

(0%, ME)(t.%) = (p° (¢, 1), m“ (¢, r>§> = (0°(t. 1), p° (L. YU’ (t, r)’r—‘)

of the Cauchgy problem of (1.3) and (2.6) in the sense of Definition 2.3, where
ué(t,r) = ';' (tt rr) almost everywhere on {(t,r) : p®(t,r) # 0} and u®(t,r) =0
almost everywhere on {(t,r) : p®(t,r) = 0}. Moreover, (p¢, m®)(t, r) satisfies the

following uniform bounds:

o0
/ 7% (o, mE) (e, r) rN T ldr + 8/ P8 (s, r)|u®(s, M2 rVN3drds
0 R2

2
EG
S —=C(E+D), (2.15)
WN
o0
@ [ W), P ar e [0 ), P aras
0 R%
S C(Eo+ 1), (2.16)
foranyt > 0, and
/ / pe(t. )" drdr <€, D, T, Eo). (2.17)

/ f (,os(t,r)|u8(t,r)|3+(,08(t,r))y+0)rN_ldrdt§C(D, T, Ep) (2.18)
0 0

for any fixed T € (0, 00) and any compact subset [d, D] € (0, 00), where and
whereafter we denote R% := {(t,r) : t € (0,00), r € (0, 00)}, and C > 0 and
C(d, D, T, Ey) > 0 as two universal constants independent of ¢, but depending
on (y,N)and (d, D, T, Ey), respectively.

Let (n, q) be an entropy pair defined in (2.7) for a smooth compact supported
function yr(s) on R. Then, for ¢ € (0, 1],

o (p®, m®) + d,q(p°,m*) is compactin H,, (R ), (2.19)

where Hloc (R+) represents H™ 10, T] x Q) for any T > 0 and bounded open
subset 2 € (0, 00).

Part I1. Inviscid Limit to the Euler Equations (1.1): For the global weak solutions
(p, M?) of the compressible Navier-Stokes equations (1.3) established in Part 1,
there exist a subsequence (still denoted) (o, m*®) and a vector function (p, m) such
that, as ¢ — 0,

(p°.m®) — (p,m)(t,r) in (L] x L{ ([0, 00); rN"dr),

loc

D &
/0/0|(%)(t,r)—(%)(t,r)| PNoldrdt > 0 forany fixed T, D € (0, 00),
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where p € [1,y + 1), g € [1, 2550, and (p, M)(t, %) = (p(t,7), m(t, 1)) is
a global relative finite-energy solution of spherical symmetry of the Euler equations

(1.1) with initial data (1.5) in the sense of Definition 2.1.

Remark 2.5. In Theorem 2.4, the approximate initial data functions (,05, mf)) sat-
isfying conditions (2.11)—(2.13) are constructed in Lemmas A.1-A.2 and Lemma
A.3(i) in the appendix. Then Theorem 2.2 is a direct corollary of Theorem 2.4.

Remark 2.6. The main point of Theorem 2.4 is to construct suitable Navier—Stokes
approximate solutions that converge strongly to a global relative finite-energy so-
Iution of spherical symmetry of the Euler equations (1.1) with initial data (1.5)
in the sense of Definition 2.1 under the relative finite-energy condition (2.2) only.
We can follow the same arguments as in §3—§6 to obtain a rigorous proof of the
inviscid limit from the Navier—Stokes to Euler equations with fixed same initial
data (pg, mo) of appropriate regularity and decay at infinity.

Remark 2.7. When both p and X are constants, it is still an open problem for the
inviscid limit from (1.7) to (1.6), since the BD entropy estimate is invalid for this
case so that the required uniform estimate for the derivative of the density has not
obtained yet. On the other hand, our analysis in this paper applies to a class of more
general viscosity coefficients (u(p), A(p)). For instance, our results hold for the
class of (u(p), A(p)) that satisfy the BD relation (see [3,44]):

A(p) = pi'(p) — 1(p) (2.20)

with some additional conditions; see also the approximate system (3.1)—(3.4).

3. Approximate Solutions and Basic Uniform Estimates

In this section, we first construct global approximate smooth solutions and make
their basic energy estimate and the BD entropy estimate, uniformly bounded with
respect to the approximation parameters.

The main difficulty is to obtain some uniform estimates directly for the exact
solutions of the Navier—Stokes equations (1.3) with approximate initial data (1.5),
owing to the potential appearance of the vacuum and singularity of their limits at
both the origin, r = 0, and the far-field, »r = oo, generically. On the other hand, for
our purpose, it suffices to obtain first uniform estimates for appropriately designed
approximate solutions of the Navier—Stokes equations (1.3). To achieve these, we
construct the approximate solutions as the solutions of the following approximate
Navier—Stokes system with positive density (that is, p > 0 so that the velocity,
U= %, is well-defined) in truncated domains:

pr + (o) + Y=L pu = 0,
(ow); + (pu? + p)y + Ftpu® = e((u + 1)y + X)), — e up,.
3.1
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Heret > Oandr € [5,b] withé € (0, 1] and b > 1 +6 ! and

w(p) =p+p%  Ap) =8 —1)p* (3.2)

with o € (NT_I, 1). For concreteness, we take o = % It is easy to check that
(u(p), A(p)) in (3.2) satisfy relation (2.20).
We impose (3.1) with the approximate initial data

(0, )0, ) = (P, us>Py(r)  forr € [8, bl, (3.3)
and the boundary condition

u(t,8) = u(t,b) =0 fort >0, (3.4)

where pg’s’b and uf)”s’b are smooth functions satisfying

0 < (Be) < p5% < (Be) 2 < o0 (3.5)

for some small constant 8 (determined in Lemma A.1).

Such approximate initial data functions in (3.3) have been constructed in the
appendix, which satisfy all the properties in Lemmas A.1-A.3.

For N = 2, 3, the existence of global smooth solutions (p®%?, u®%?) of (3.1)-
(3.4)with0 < pg*‘”’(t, r) < oo can be established as in Guo et al. [29]. In fact, for
any N = 2, asimilar global existence result for smooth solutions of the approximate
system (3.1)—(3.4) can be obtained by using analogous arguments as in §3 and §4.1
of [29]; see also [30,34]. Since the upper and lower bounds of pe"s*b in [29] depend
on parameters (&, §, b), the key point of this section is to obtain some uniform
estimates of (p®%?, u®%?) independent of (8, b) so that both limits b — oo and
& — 0+ can be taken to obtain the global weak solution of (1.3) and (2.6); see §5.

Throughout this section, for simplicity, we always fix parameters €, § € (0, 1]
and b > 1+871, use u®%? or m*9:2 alternatively since pg"s’b is positive, and drop
the superscripts of solution (p®%?, u®%?)(¢, r) and the approximate initial data
(pé"s’b, uf)’a’b), when no confusion arises. We keep the superscripts when the initial
data functions are involved.

Lemma 3.1 (Basic Energy Estimate). The smooth solution (p, u) of (3.1)—~(3.4)
satisfies that, for any t > 0,

N

b 1 _ t b 1
/ (Epu2 +e(p, p))(t,r)rVtdr -I—s/ / (pu? + pu®) (s, r)rN"'drds
s 0 Js

uu,
r

72

t rb
+85// p”{au%+2(a—1)(1v—1)
0 Jé
M2
+(14+ WV = D@ = D)V = 15 fis,r) ¥ drds

b 1 Es.ﬁ,b
= | (5p0ud +e(po, ) ) rNdr = —0—, (3.6)
8

2 WN
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where E(g)’é’b satisfies the properties stated in Lemma A.3 in the appendix. In par-
ticular, there exists a positive constant cy > 0 (depending only on N) such that

b 1 t b pu2
/ (—pu2+e(p,/3))(t,r) erldr—i-S/ / (,ouf—f— —)(s,r) rNldrds
5 2 0 Js r

t pb pau2
+cN88/ / (,oauf—i— 5 )(s,r)rN_ldrds
0 Js r
£,8,b

1) foranyt >0, 3.7

wN
for some constant C > 0 independent of (¢, 8, b), where we have used (A.37).

Proof. Multiplying (3.1); by 7 ~!u and performing integration by parts, we have

i ’ l,ouer_ldr —i—/bp urVlar
dr S 2 S "
b
N—1
— —e/ ((u + ) (ur + - w)(rNu), — (N — 1)M(rN*2u2),)dr.
)

(3.8)

For the second term on the left-hand side of (3.8), it follows from (3.1); and
integration by parts that

b Ky b
/ prurN"ldr = —/ pou(p? N, rN=lar
5 y —1Js

= 1/ ("), rNlar
-
K b - —y—1 ~\\ N-1
= y_lfa (o7 = p" —yp" (o —p)),r" " dr
d b N—1
25/5 e(p, p)(t,r)r = dr. (3.9

For the viscous term, a direct calculation shows

(n+ )")(Mr + — lu)(urN*I), — (N = Dp?N2),

+A( wet 2+2(N—1)rN 2u, + (N — 1)?rV=3u?)

=5p“< N=142 4 2(a — )Y(N = DrV 2uu,

+ (N =1)(1+ (@ — 1)(N — 1))rN—3u2)
+p(rN U2 + (N — DrV 7R, (3.10)
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For the first term on the right-hand side of (3.10), we calculate its discriminant as
4(a — (N — l)2 —4a(N — 1)(1 + (¢ — 1)(N — 1))

=4(N - D*(1 -

_1oe)<0,

since o € (%, 1). Thus, there exists a positive constant ¢y > 0 such that

N —1
(1 + 1) (ur + W) Nl = (N = Du ),
2 u’ N-1 o, 2 u’ N—1
> p(u, + r—z)r +cnédp (ur + r—z)r ) (3.11)
Integrating (3.8) over [0, ¢] and using (3.9)—(3.11), we obtain (3.6)—(3.7). |

For (u, 1) determined by (3.2), system (1.3) admits an additional a priori esti-
mate for the density (via the BD entropy), as observed by Bresch and Desjardins
[2,3] (see also Bresch et al. [6]) with the Dirichlet boundary conditions in the 3-D
case. For the spherically symmetric problem, we have

Lemma 3.2 (BD Entropy Estimate). The smooth solution of (3.1)-(3.4) satisfies
b
/ (1 480" + 82p%@ 0y Pr )(r, rrVldr

+af / (1 +8p""Hp"2p2) (s, 1) r¥ldrds S C(Eg+ 1), (3.12)

where we have used

sup  sup  (ESYP + ESOP) S C(Eo+ 1), (3.13)
0<e,6<1b>148""

which follows from (A.38), with

b
Ezlz,é,b — 82/ (1—}-20!5,08[71 —}—0{282 20— 2)|( T)O)r\er_ldr. (3_14)
8

Proof. Tt is more convenient to deal with (3.1) in the Lagrangian coordinates for
this proof. We divide the proof into four steps.
1. For simplicity, denote Lj := f ab po0(r)rN=1dr. Note that
d b b
— | p.r) N ldr = —/ (our™ Y, (¢, r)dr = 0.
dt S S
Then

b b
/ p(t,r) PN oldr = / po(r)erldr =1L, forallt > 0.
B s
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For r € [6,b] and ¢ € [0, T], we define the Lagrangian transformation:

.
x=f pt, )YV dy,  T=t,
S

which translates domain [0, 7] x [8, b] into [0, T'] x [0, L] and satisfies

ax _ . N—1 ax _ N-1 9z 9T _

ar or > O’ a pur > or O’ ar 1’ (3 15)
or L 99—, d_q1 & _9 )

dx priv=1 > 9t T 9t T ax

Applying the Lagrange transformation, system (3.1) becomes

Pt +102(VN_114)X =0, (3.16)
e +rV " pye = er" o+ 00N wx), —eN = DN P g,
and the boundary condition (3.4) becomes
u(t,0) =u(r,Lp) =0 fort > 0. 3.17)

2. Multiplying (3.16); by /() and using (2.20), we have
pe+p(u+ 00" ), = 0. (3.18)
Substituting (3.18) into the viscous term of (3.16); leads to
ur +r¥ T pe = —erV ) — e(N = DIV 2. (3.19)
Note from (3.15) that g—; = u. Then the last term of (3.19) is rewritten as
e(N = DrV 2 peu = (N = Dr¥ 2rope = (N Deps,
which, with (3.19), yields
w+er e +rV"p =0, (3.20)
3. Multiplying (3.20) by u 4+ erV~! 1., we have

1d b N=1, \2 ke 2N-2 ke 1
—— u+er™ T uy) dx+£/ et 2N dx+/ peur¥ldx =0.  (3.21)
2dr 0 0 0

For the last term on the left-hand side of (3.21), it follows from integration by parts
and (3.16); that

Ly Lp
/ peur™ ldx = /c/ ¥ 2 pp dx
0 0

Ly d Lp =
=X / o Dedr= L [P 4 o
y—1Jo dr Jo P

Substituting (3.22) into (3.21) leads to

d [k

1 e(p. p Ly _
— (—(u—i—er*l,ux)z—i—M) dx—}—e/ PxMx N =24y = 0.
dr Jo \2 P 0

(3.23)
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Integrating (3.23) over [0, 7] yields

Ly 1 = T Ly
f (—(u + (ErN_ll/«x)2 + M) dx + 8/ f Dx Mx r?N=2dxds
0o \2 p o Jo

Lv 1 _ e(po. p)
:/ (Ewm+w§'mw2+————)m. (3.24)
0 £0

4. Plugging (3.24) back to the Eulerian coordinates, we have

b T rb
1
/ (5lu+e2 4+ eto. ) rN—ldr+a/ Pr PN ards
a \2 o 0 o

a
b
1 Hor |2 — -
Z/ (§Poiuo +e—| +e(,00,,0)) rN=ldr,
a £0
which, with (3.7), leads to (3.12). |

Lemma 3.3. For given d and D with [d, D] € [§, b], any smooth solution of (3.1)—
(3.4) satisfies

T
/ /,o”“(t,r)drdt§C(d,D,T,E0), (3.25)
0 K

where K is any compact subset of [d, D].
Proof. We divide the proof into five steps.
1. Let w(r) be a smooth compact support function with suppw < [d, D] and

w(r) = 1 for r € K. Multiplying (3.1); by w(r), we have

(puw); + ((ou* + p)w), + pu*w
N — N-—1
=e((n+ M + ww) —e L Uw
+ (ou* + p— e+ 1), + V= lu))w,. (3.26)

Integrating (3.26) over [d, r) and multiplying the resultant equation by pw, we
have

(0212 2 _ ’ B "N-1 ,
pu” + pp)w” = —pw puwdy T Pw 5 puwdy
d d

r N—1
+pw/ (,ou2 +p—e(u+r)(uy+ u))wy dy
d

N —1 "N-—1
+ep(u+ M) (ur + u)w2 - 6‘,011)/ upywdy. 3.27)
d

r y
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A direct calculation shows

-
,opw2 = —<pw/ puwdy) — (,ouw/
d ! d

N -1 r d "N—-1 , d

- r,ouwd,ouwy—pwd y,ouwy

A
(yuy + (N — l)u))wy dy

r

-
,ouwdy) +puw,f puwdy
r d

-
+
+,0w/ (,ou2+p—su
d

"N -1 N -1
—gpw/ 5 u,u,ywdy—i—s,o(u—i—)n)(ur—i— . u)wZ
d
8
=> 1. (3.28)
To estimate the right-hand side of (3.28), we first note from (2.10) and (3.7) that
D
/ o’ rN=ldr < C(D, Ey). (3.29)
d
Using (3.7) and (3.29), we see that

D C D D
/ pdr < W/ prVlar < C(d)/ ' +DrN"'dr £ CW, D, Ey), (3.30)
d d d

D C D
/ putdr < —— / ou’ rNldr £ CW, Eyp). (3.31)
d av=1Jy
2. Now it follows from (3.30)—(3.31) that

foT /dD i drdr] £ /dD (/o /d puwdy) (1, )| + | (pw L puwdy) 0, )| )dr

<€, D,T, Eyp), (3.32)

T D T pD r
/ / L drdt = / / (puwf puw dy) drdt =0, (3.33)
0 d 0 d d r
T D T D r
/ / I3 drdt / / <puw, / puw dy) drdt
0 d 0 d d
T D T D r
/ / 1y drdt / / (pu / pu dy) drdt
0 d 0 d d
T pD T pD r
f f Is drdt f / <pw f N1 ou’w dy)drdt
0 d 0 d d y

3. We now estimate Ig. It follows from (3.7) that

<CWd,D,T, Ey), (3.34)

<C@) <CW, D, T, Ey), (3.35)

<CWd,D,T, Ey. (3.36)

T D r
| / / (ow / (pu® + pyw, dy)drde| < C@. D. T Ep),  (3.37)
0 d d

‘/OT LD s,ow(/dr p_‘_yﬂ(yuy + (N — l)u)wy dy)drdt‘
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T D u>
<cW, D, Eo){8/ / (0 +60%) (12 + o 1) yN_ldydt}
0 Jd

<CWd,D,T, Ey). (3.38)

Then it follows from (3.37)—(3.38) that
T D
| / / lodrdt| < C(d. D. T, Eo). (3.39)
0 Jd

4. For I7, it follows from (3.7) and integration by parts that

"1
’/ fu,uvwdy‘
d Yy

1
< |- g,
r

"1 1
+‘/ fp«(—fuw-i—uyw-i-uwy)(t,y)dy‘
d Yy y

=

N | =

D
((p + 8p™) |uwl)(t, r) + C(d) / (pu? + 8p*u?)r" =" dr + C(d, D, Eo),
d

which implies that
T D
’ / / j2 drdt‘
0 d
T D T D
<cW,D,T, EO)(I +s/ / (p+3p“)u%r’v—1drdz) +sf / p3w?drdr
0 d 0 d

T D
< CW.D.T.Ey) +¢ / / pPw?drdr, (3.40)
0 d

where we have used o < 1.
For I3, it follows from (3.7) and the Cauchy inequality that

T D T D N_1
‘ / / I drdt‘ <e¢ / / p? (uy + u)w? drde
0o Ja 0o Ja r

b N-—1
+ &8 / / pH'“(ur—i— u)w2 drdt
0o Ja r
T D u2
< C(d)/ / e(p +8p*)(uy + =) rV~drdt
0o Ja r
e (T (D
+_/ / (p3+,02+a)w2drdt
2Jo Ja

T D
<CWd,D,T, Ey) + sf / o w? drdr. (3.41)
0 d

To close the estimate, we still need to bound the last term on the right-hand sides
of (3.40)—(3.41).
We first consider the case: y € (1, 2]. Notice that

T D
& / / ,03’w2 drdt
0 Jd
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T D
< sf (/ oY dr) sup (o> Vw?)dr
0o “Ja reld, D]

T
<cd,D, Eo)f e sup (p>Vw?)dr
reld, D]

T D
<CW, D, Eo)/ / (0> 77 |prlw? + ep> Y ww,|) drdt, (3.42)
0 d

where C‘(d, D, Ep) is a constant depending on (d, D, Ep). A direct calculation
shows that

T D T D e (T
/ / 0>V |pylw? drdt < / / ep? "2 ptdrdr + 5/ / 3C=y? drdr
0 d 0 d 0 d

T D
< CW. D, Eg) 4+ ——— / / Puldrd,  (3.43)
2C(d, D, Ep) Jo Ja
T D T D
/ / sp37yw|w,|drdt§/ esup(pw)(l,r)(/ p27V|w,|dr>dt
0 d 0 r d
T
< C(d. D. Ep) / & sup(ow)(t, r) dr
0 r
T D
scd.p.e) [ [ (vt phu)aras
0 d

T D
<cCd,D, Eo)</ f (80" 2p? + p* Y w)drdt + 1)
0o Ja
< C(d, D, Ep). (3.44)
Combining (3.42)—(3.44), we have
T D
s/ f o w?drdt £CWd, D, Ey)  fory € (1,2]. (3.45)
0 d

For the case: y € [2, 3], notice that

T D
£ f / ,o3w2 drdt
0o Ja

T D
8/ sup (,ozw) pwdrdt
0 reld,D] d

A

§c<d,D,Eo)f f (eplorlw + ep?uy ) drds
< oV~ -2 2 4—y
Ccd, D, Eo) lpr 2w + p?|w, | + p* Y w) drdt
= CdW,D, Eo). (3.46)

For case y € [3, 00), we can immediately see that

T pD T pD
//p3w2drdt§C(d,D)/ / (1+rV"1pY)drdt < C(d, D, Ey).
0 Jd 0 Jd

(3.47)
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Now substituting (3.45)—(3.47) into (3.40)—(3.41), we obtain

T D
‘f / (I + Ig)drdt| < C(d, D, T. Ey). (3.48)
0 d

5. Integrating (3.28) over [0, T] x [d, D] and then using (3.32)—(3.36), (3.39),
and (3.48), we conclude (3.25). |

4. Uniform Higher Integrability of the Approximate Solutions

To employ the compensated compactness framework in [15], we further require
the higher integrability of the approximate solutions.
From now on, we denote

My:=Eo+p+p ' +6 +e + sup ESPP < oo,
b=146-1

b 4.1)
My := M+ sup Ey < oo,
b>1+5-1
where
8,b b Hor 2N
ES” :=/ po(u%N+ ’—| )rN_ldr,
) po 4.2)

b
~ 1 _ _
EEP :=/(S (E'OO”%Jre(po’p)) p2N=DH0 gy

for some © € (0, 1). From Lemma A.3, we note that E;”S’b and ES‘B’b are uniformly
bounded with respect to b, while the upper bounds may depend on (e, §), so that
M and M, are finite for any fixed (e, §), independent of b > 0.

Proposition 4.1. Let [d, D] € [8, b]. Then the smooth solution of (3.1)—(3.4) sat-
isfies

T D
[ / (plul® + o) (¢, r)rN"ldrdr £ CWd, D, T, Eo) + C(T, My)b~ 7,
0 d
(4.3)

where ¥ € (0, 1) given in (4.2).

To prove (4.3), we need to integrate the equations from the far-field, so that
the asymptotic behavior of (p — p)(¢,r) and u(z, r) near boundary r = b must
be known. Indeed, the key point for Proposition 4.1 is that a decay rate of (p —
p)(t,r) and u(t, r) can be derived, and the positive constant C (T, M>) in (4.3)
is independent of b so that this term vanishes when b — oo. In order to prove
Proposition 4.1, we require the next six lemmas.

To obtain the asymptotic behavior of p(z, r) near boundary » = b, we first need
the lower and upper bounds of p (¢, r), which are independent of b.
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Lemma 4.2 (Upper Bound of the Density). There exists a constant C(M1) > 0
such that the smooth solution of (3.1)—(3.4) satisfies

0<p(t,r)SCMy) fort=0andr € [8,b]. 4.4)

Proof. Notice that

e(p.p) Zlp—pl*  ifpel5.20]
e(p,p)Z1p—pl"  if p € Ry\5,25].

Denote
A@):={r : r €[8,b], p(t,r) = 2p} 4.5)

with Aj(¢) :={r : r € [1,b], r € A(t)} C A(t) and A2(?) := A(H))\A1(t). Itis
easy to see that

e(p,p) 2 C(p)~"  forr e A@), (4.6)

which, along with (3.7), yields
8,b b
Ey™ 2 [5 e(p, p)r"~dr = fA Gk = C() A1),
1(t

Since Eg’a’b < C(Ep + 1), we have
[A(®)] = |A1(1)] + |A2(0)| = C(p, Ep). 4.7

Since p(t, r) is a continuous function on [§, b], then, for any r € A(t), there exists
ro € A(r) such that p(z, ro) = 2p and |r — ro| < C(p, Ep), which implies that

" py(t, )
f, < t, —i—/ )—d
Vo, r) < Vo, ro) RN o

b 2 1

< V/2p + C(5, E0)</ %’dr)2

B
= C(p, Eo)
SVt~
87 ¢

= C(p, &, 3, Ep).

This completes the proof. O

Lemma 4.3. The smooth solution of (3.1)—(3.4) satisfies

b ,02N
/ “rVldr S My foranyt €0, T1. (4.8)
5 P
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Proof. We divide the proof into three steps.
1. We rewrite (3.20) as

er"uy)e = —ur — N py (4.9)

in the Lagrangian coordinates. Integrating (4.9) over [0, t] leads to

eV (@) = eV ) (0, %) — (ulx, ) — uo(x)) — /OZ<rN“px)<s,x> ds. (4.10)

Multiplying (4.10) by (¥ ~!11,)?¥~! and integrating the resultant equation yield

Lp
8/0 ¥ o @
2N-—1

Ly 2N
( / |(rN—1ux>(r>|2Ndx)
0

x [||<u(r>, uo, (X" ) 0)) [ ov + crnrN—l(pV)x||L2N<<o,,)x(o,Lb>)},

[IA

which leads to

Ly
/ N ) @PN da
0
< c@{ @@, uo, N moOD [ + Crlr T O o oy ] @D

Notice that |iy| = [(50' ™ +8)(0")x| Z 8](p*)x| and (p7)x = £ p? = (p%). It
follows from (4.4) and (4.11) that

Ly
/0 (PN 0% ()N dx

< C(T 2.8, B | lw(@), w0, r¥ " ) )23,
1N O NN (0.00%0.2,)) (4.12)
Plugging (4.12) back to the Eulerian coordinates and noting o« = %, we see
that, for ¢t € [0, T],
/ (’O’ o ar
Y
b
<C(T,¢,8, Eo){ ESOD 4 / (pu) (1) rN"1dr
/ f N= ldrds} (4.13)

2. In order to close the above estimate, we need to bound fsb ,ou2N rN=1dr. Multi-
plying (3.1)2 by N ~142N =1 and then integrating by parts, we have

ldb2NN1 b N—1,2N
ﬁg./spu r_dr—/s p(r™ T utt), dr
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b _
= _g/ {(u + M) (ur + lu)(rN—luz’V—l), — (N - 1)u(rN—2u2N),} dr. (4.14)
)

By similar arguments as in (3.10)—(3.11), we obtain

N -1
(W) + ——) N2V, = (N = DN,
2
;pu2N—2{(2N— Du? + (N — 1)”—2}rN—1. (4.15)
r
For the pressure term, it follows from (4.4) and the Holder inequality that
b
‘/ PV LN gy
5

b
/ p(@N = DrV N2y, 4 (N = DV 2N dr
)

e [P w2 b
< _f puZN_z(uf—l——) rN—ldr+C/ P21 N2 N= g,
2 § 7‘2 Fy
e [P u2 b
< 5/ pu2N*2(uf + —2) PNlar + C(Ml)(l —i—/ puzN rN*]dr).
s r s
(4.16)
Substituting (4.15)—(4.16) into (4.14), we have
d b b
— ou*N PN-lgr < C(Ml)(l +/ ou*N erldr>,
dr S S
which, with the Gronwall inequality, implies that
b
/ o PN=lar < (T, My)  fort €0, T]. (4.17)
B

3. Now substituting (4.17) into (4.13) yields that

/ (p’ )(t)rN ldr < C(T, My) 1+//
k)

Applying the Gronwall inequality to (4.18), we conclude (4.8). O

N- ldrds) (4.18)

With the above preparation, we have the following lower bound of the density:

Lemma 4.4 (Lower Bound of the Density). There exists C(T, M) > 0 depending
only on (T, My) such that the smooth solution of (3.1)—(3.4) satisfies

p(t,r) = C(T,M)""' >0  for(r,r) €[0,T] x [8, b]. (4.19)
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Proof. Define
B(t):={r :r€[8,b], 0= p(t,r) = g} (4.20)

with Bi(t) := {r : r € [1,b], r € B(t)} C B(t) and By(t) := B(t)\Bi(?).
Similar to (4.6)—(4.7), we have

|B(t)| < C(p, Ep). 4.21)

Since p(t, r) is a continuous function on [8, b], then, for any r € B(z), there exists
ro € B(t) such that p(t, rg) = § and |r — ro| < C(p, Eo). Thus, for 8 > 0,

r
/ p‘ﬂ‘llprldy‘
ro

b 2N s 28N 2N-1
< C(,5)+ﬂ</ 'p’JN dr)ZN(/ p AT dr) -
5 P B(1)

< C(p) + BC(T, My) max p(t,r)~",
reB(t)

pt, 1) P < pt,ro) P+ B

where (4.8) has been used in the last inequality. Then we have

max p(t.r)" b < Cp)+ BCT, M) max p(t.r)” k.
re t

Taking § > 0 small enough such that 8 C(T M) < 2, we obtain

max p(t,r)"F < C(p).
reB(t)

Therefore, we conclude
1
p(t,r) 2 C(p) F =C(T, M)~  forallr € B(r),
which leads to (4.19). |

Remark 4.5. Since M| is independent of b, the key point of Lemmas 4.2 and 4.4 is
that the lower and upper bounds of the density are independent of b.

With the above lower and upper bounds of the density, even though they depend
on (¢, §), we can have the following weighted estimate:

Lemma 4.6. Let v € (0, 1) be some positive constant. Then the smooth solution
of (3.1)—(3.4) satisfies

b 1 T b
/6 (Epuz+e(p,p‘))r2(N*‘>”dr+st /B(p+aap“)u$r2<N*‘>+ﬁdrds

< C(T, M»). (4.22)
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Proof. The proof consists of five steps.
1. Let L € [0, N]. Multiplying (3.1), by ¥ ~!*Ly and then integrating by parts

yield,

d b 1 b
I i zpuerfHLdr—i—/é prurN71+Ldr

L b
_ _/ o3 N2+ gy
2 Js

— lu)(ur + N-1+L +Lu)rN_“rLdr

b
—8/ (M+k)(ur+N
Fy r

N-2+1L
—+u) pN=2HL gy, (4.23)

r

b
+&(N — 1)/ ,uu(Zur +
s
2. It follows from integration by parts, (4.4), and (4.19) that
b
/ pri pN-IHL gy
s

d b L b
== | ep, p)r¥N1HLdr — &/ pu(p? =1 — 571y PN,
dr Js y—1Js

1\

b b
d
—C(T, My) f (pu? +e(p. p) PN hdr + / e(p, p)rV-1*Ldr,
8 s
(4.24)

Using the Sobolev inequality:
1

1 1
lu@llLe = Cllu®ll ;2 llur I, (4.25)
we have
L b
- / pu’ rN=2HEgy
2 1/s

1 1 b
2 2 2 N-2+4L
< Cllal sy, [ pu V2 Lar
1)

b b 4
< C(T, Ml){/ ou? rNldr 4 (/ ,ouer_2+Ldr)3 } (4.26)
$ §

where we have used (4.4), (4.19), and

1

b 1
full < ([ o r¥lar)* < e,

3. For the viscous term, a direct calculation shows that

_ lu)(ur + —N _: +Lu)rN7]+L

N
—(u+ )‘«)(ur +

N-—-2+1L
+ (N — l)uu(Zur + %u)rlv*HL
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1
< =5 (0 +asphyulr NI L O, My N e @27)

4. Substituting (4.24) and (4.26)—(4.27) into (4.23) yields

d (b1 _ e [P
o (z,ou2 +e(p, p)) rN T Edr + 3 / (p + adp®)uZ rV "1 Edr
s 8

b b
= C(T, Ml){ /8 (pu +e(p, p)) rN=*tEdr + (/5 purN =L dr)

4
3

b
+/ pu%erldr}. (4.28)
B

5. Taking L = 1 in (4.28), integrating the resultant inequality over [0, ¢], and
using (3.7) yield

b 1 e t prb
/ (E,ou2 +e(p, ,6)) rNdr + 2 / / (o + aSp“)u% rNdrds
8 0 Js

b
1 -
< /8 (5 poug + e(po, ) r™dr + C(T, My)
< C(T, M») forall r € [0, T].

Then, taking L = 2,3, ..., N — 1 in (4.28) step by step, we have
b 1 e t b
/ (5'0”2 +e(p, ,5)) r?N=24r + > / [ (p + aép“)u% r?N=2drds
) 0 Js

b
1 _ _
< [ oo+ eton. ) Y2+ €1
< C(T, M) forall 7 € [0, T]. (4.29)

Finally, taking L = N — 1 4+ 9 with & € (0, 1) in (4.28) and integrating it over
[0, ¢], then it follows from (4.29) that

b t pb

1

/ (E,ou2 +e(p, ,5)) PPN g, g / / (p+ aapa)uf r2N =247 q4rds
8 0 Js

b
1 - _
é/ (Ep‘”‘% + e(po, p)) r*N T dr + C(T, My)
s
< C(T, M) forall z € [0, T].
This completes the proof. O

Lemma 4.7 (Decay Estimates). Any smooth solution of (3.1)—(3.4) satisfies that,
forallr € [1, b],

(o — p)(t. )| < C(T, My)r—iN=D=5 (4.30)

T
/ (lut, )| + lut, r)*) dt < C(T, Mo)yr V15 forany T > 0. (431)
0
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Proof. 1t follows from (3.12), (4.4), (4.19), and (4.22) that, for all ¢ € [0, T],
b
/1 (o = o) (e, I+ lult, )Y 4 1p, 2, 1)1?) PN dr
T b
+/ / lup (2, r) > rPN=Dqrdr < C(T, Ma). (4.32)
0 1

For any r € [n,n + 11N [1, b] with n + 1 < [b], it follows from (4.32) and the
Sobolev inequality that

1 1

_ ) n+l _ ) 1 n+l 5 5
=aenf <2 [ 1e=panfa) ([ i)

n+1 5
+/ (o — p)(t, r)|~dr
n
3 9 ntl 3
<3V = e nP A ar)
n

n+l %
x (/ o, )N )
n
2 1 n 2 2(N-1
+n 20 *ﬂf G = )&, )P 2D *d
n

< C(T. My)r—3(N=-D=%

Similarly, for r € [n,n + 11N [1, 5] with n + 1 < [b], it follows from (4.25)
and (4.32) that

n+1
|I/l(l, r)|2 é Crfz(Nfl)fﬁ / |M([, r)|2 rZ(Nfl)Jrl?dr

n

n+1 %
+ Cr2WN=D=0 (/ lu(t, r)|? r2<N—1>+l’dr)
n

1

n+1 2
X (/ |ur(z‘,r)|2 rZ(N_l)'H?dr)
n

n+l 1
< C(T, Mz)rW”ﬁ((/ |uy (1, ;~)|2r2<"’*‘>+19dr)2 + 1>,
n

which yields
Ju(e, r)| + (. r)P

n+1
< C(T, Mz)r—N“—Z(/ luy (2, r))? rPN=D+H0q, 4 1). (4.33)
n
Integrating (4.33) over [0, T'], we obtain

T 24
/ (lut, )| + lu(e, r)P)dr < C(T, My)rNT1=2  forany r e [1, [b]].
0
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Finally, we consider the case that » € [b — 1, b]. Then, by the same arguments
as above, we see that, forr € [b — 1, b],

(o — p)(r)| < C(T, Ma)b=2V-D=1
T
f (jut, )] + lu(t, r)PP)dr < C(T, Mp)b~V+1-5.
0

Combining all the above estimates, we prove (4.30)—(4.31). This completes the
proof. O

Choosing ¥ (s) = %s|s| in (2.7) leads to the corresponding entropy pair as

2
1 1
Ao = 30 [ w0 @+ ol sl =571

1 1
n*(p.m) = Sp f @+ p")lu + p’s|1 = 5713 ds,
— (4.34)

where b = 2(3}7—1’1), 0 = VT_I, and m = pu as indicated earlier. Then a direct

calculation shows
(0. m)| £ Cy(plul® + 0"). q*(p.m) = C (plul® + p7*7)., (435

where and whereafter C,, > 0 is a universal constant depending only on y > 1.
Moreover, notice that

1 1 1
dpn" = L (= 5u+ @+ p"s)lu+ ps|[1 = 5713 ds,

| (4.36)
A’ = f lu + p%s|[1 — 5218 ds.
—1
Then
Inf | < Cy(lul+ p%). Il < Cy(lul* + p*9),
# # 6 ! 24106 (4'37)
50,0 =0 0.0 =20 [ i1 =51t
Now we define the relative entropy pair as
iitp, m) =n"(p, m) —n*(p,0) — nf (5, O)m,
(4.38)

2
- _ _ m _
G(p.m)=q"(p.m)—q*(5,0) — n} (b, o>(7 + p(p) — p(p)).
With these, we have the following useful lemma:

Lemma 4.8. The relative entropy pair (1], ) satisfies

m2 m2
mpii(p,m) + = mii(p, m) = 4o, m) £ Cy (D) (= +ep. ). (439

where C), (p) > 01is a positive constant depending only on (y, p).
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Proof. The estimate for (4.39) is very subtle, which will be used to overcome the
singularity from the far-field in the M-D case, different from the 1-D case. The
proof is divided into three steps.

1. Claim: (n*, g%) satisfies

# m* # #
mopn (p,m)+78mn (p,m) —q"(p, m)

< min {0, —¢*(p, 0) + C, p"~'m?}, (4.40)

1
where ¢* (p, 0) = 6p¥ 1! / s7[1 — 5218 ds.
0
A direct calculation shows that

# m* # #
mapn (p,m)+78mn (p,m) —q"(p, m)

0 1
- §p1+9 f l(u — ps)slu+ p’s|[1 — 5218 ds. (4.41)

Now we divide the proof into three cases.

Case 1.u > 0 and |u| = p?. For this case, u + p’s > 0 for s € [—1, 1]. Then
m2
mdpon’' + 7amn*’* —4*=0. (4.42)

On the other hand, we have

2
m
md,n" + 7amn# —¢"=0=—¢"(p,0) +¢*(0,0)

1
= —q#<p,0)+9/ s — 5715 dsp'
0
< —4"(p.0)+ C,p"'m?, (4.43)

where we have used that p? < |u| in the last inequality.

Case 2. u > 0 and |u| < p?. For this case, 5o :== —% € (—1, 0], which implies
0
that u2 — s2p% < 0 fors > |so|. Then

2 1
md,n" + m?amn# —q"=0p"" | W —sp*)s[1 - 5210 ds £0. (4.44)

Isol
On the other hand, we have

2
m
mapn# + 7am’7# - q#

1
= gp!+ w? = s2p2)s[1 — Sz]i ds
Isol
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1 1
=9p1+9u2/ s[1—s%1% ds —9p1+39/ s — 5218 ds
[sol 0

Isol
+9,01+39/ s3[1 —s2]i ds
0

—q* (0. 0) + Cyp" U + C, 0" |50

<
< —q*(p.0) + Cyp"'m?. (4.45)

Case 3. u < 0. Similar to (4.42)—(4.45), we also obtain (4.40).
Combining Cases 1-3, we conclude the claim for (4.40).

2. Claim: (n*, g%) satisfies
(5. 0)(p(p) — p(8) — % (p. 0) + 4% (5. 0)
1
=24’ /0 s[1 =515 ds (p(p) — p(B) — P (B) (0 — P))

402
3y —1
(5,00 (p(o) — p(P) +q* (5. 0)

1
=/ s[1— 5210 ds (2,50[7(,0) -
0

1
[ str= s as (o1 = 51 (1430050 - ). (446)
0

~y+6
y(3y_1),0y ) (4.47)

A direct calculation shows that

13 21b _1 —
s[l—s]+ds—EB(2,1+b)_ B(1,14+0b)
0

22+ b)
1 1
= mfo s[1 — 5218 ds, (4.48)

where we have used the properties of the beta function B(-, -). Using (4.48), we
have

(5.0 (p(p) — p(D) — " (p,0) + 4" (5., 0)
1
= 24" /0 s[1 =715 ds(p(p) = p(5) = P'(B)(p — 7))
0 ! . 22+b) _ _
T s[l—sz]_[;_ds<,01+30—,01+39—)/K¥,039(,0—,0)).
(4.49)

Combining 2+ b = 221 and yx 2&2 = 1436 with (4.49), we conclude (4.46).
For (4.47), we note that

(5,0 (p(p) — p(D)) +¢* (5, 0)

- / = 2 ds (26" p(o) + 2 20)5"*)
0 + 2+5b
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1 493
_ _ 216 _ ~y\ =0
—fo sl =215 ds (2p(0) e )&’

which implies (4.47).
3. Noting (2.10) and (4.5), we have
e(p. D) ay(r) Z Cypp(p® = p7) Ta(y(r)
> Cyp(l — 2%)%29 Lagry(r)
> Cyp(p) Lag (r). (4.50)

If r € A(¢), then it follows from (4.40) and (4.47) that

2
(md,ii(p, m) + m?amﬁ(p, m) —G(p, m)) Lag(r)

2
= {mon* o, m) + = 0. m) — ¥ (0, m)
(5,00 (0(0) = P + 4" (5. O} Lay (1)

1 463

< _J2qb ~0 -
< [ st = as (270 -~
< Cy ()PP A ()

< Cy(pep, p) Iy (1), (4.51)

where (4.50) has been used in the last inequality.
On the other hand, for r € A°(t) = [§, b] \ A(¢), it follows from (4.40) and
(4.46) that

/5y+0)IA(t)(r)

2
(md,ii(p. m) + m?amw, m) = G(p. m)) Laeqo) (r)

2
= {(mapn#(p, m) + %Gmn#(p, m) —q"(p. m))
+ 15,0 (p(p) = P(P) + 4" (5. 0) | Lae 1 ()
< 4" 3.0 + 155,00 (0(0) = P(P) = 4" (9. O} Laciy (1) + €~ L 1)

1
= 2° /0 s11— 518 ds (p(0) — p(3) — P'P)p — ) Lactr ()

492 1 ~ _ ~
~ 3 -1 / s[1 =718 ds (o' = 5" — (1 4+36)5" (0 — P)) Lac( (r)
- 0

+ Cy p? 7 m? Lpe o (r)

1
< 2p° /0 s[1 =715 ds (p(0) = p(3) = P'(B)(p — ) Lac(r ()

+ Cypeflmzlf,c(,)(r)
S Cy(p"'m? + e(p, ) Lac (r)

2
<c, <ﬁ>('"7 +e(p, ) Laco (), (4.52)
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where we have used (2.3) and p? (¢, r) < (25)? for r € A°(r). Combining (4.51)
with (4.52), we conclude (4.39). O

Now we are in the position to prove the key estimate, Proposition 4.1.

Proof of Proposition 4.1. We divide the proof into six steps.

1. Forfj(p, m) defined in (4.38), we multiply (3.1); by rV ! 9,1(p, m) and (3.1),
by rN=19,,7i(p, m) to obtain
2 m?
N+ VP A (N = DIV (— G+ mopT + - dm)

= er‘lamﬁ{((p T B + —u), ———(p+ 5p"‘)ru}- (4.53)

Lety € [b—1,b] and r € [d, D]. Integrating (4.53) over [r, y] leads to

g, rrV!

d
- a/ 7.2 e + GG )y
oo mE N2
+<N—1)f (= mdyii + “0,) 0.2
Yy ~ N —1 N—1 _
- 8/ Ol {((p + adp®) (u; + Tu))z — T(p +8p°‘)zu} Nz, (4.54)

Integrating (4.54) over [0, T] x [b — 1, b] x [d, D], we have

T prD
/ f G, ryrN"drds
0 Jd

T b D y m2
=W - 1)/ / / / (maﬂﬁ + — 0l — ‘?)(l‘, 2) zV2dzdrdyds
o Jo—1Ja Jr 0
b D y
+/ / f (I(T, 2) = 7i(0,2)) 2V~ 'dzdrdy
b—1Jd r
T rb
+ (D —d)/o /b 1é(t, y) yVldyd:

T rb D py N—1
e [ s (o @+ F ),
0 b—1Jd r <

N —1
(p + Sp“)zu} NV =ldzdrdyds
z

4
=: Z Jj. (4.55)
j=1

2. For Jj in (4.55), it follows from (3.7) and Lemma 4.8 that
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D [T b ) _ N—1
Ji éCy(p)E/O /d (pu” +e(p, p))(t,2) 2" 'dzdr
DT
< Cy(ﬁ)T(Eo +1). (4.56)

3. For J» in (4.55), we first note that |3, 1" (0, m)| < % fol[l — 5219 ds. This,
combining (4.36) and (4.37) with the Taylor expansion of % (0, m) atm = 0, yields

1
n*(p, m) :2/ s(1— %1% ds pm + Ri(p, m) (4.57)
0
with
m2
[R1(p, m)| < CV7. (4.58)

Then it follows from (2.10), (4.37)—(4.38), and (4.57)—(4.58) that

~ ! _ m2 _
Iii(p, m)| < 2/0 s[1— 5218 ds [m(o? — p7) + |Ri(p, m)| < cy(7 +elp, p)),

which, along with (3.7), implies

b D py
/b 1/01 / (7T 2) = 71(0.2)) "~ 'dzdrdy| < €, D(Eo +1).
(4.59)

|2| =

4. For the third term J3 in (4.55), we need to use the decay properties obtained in
Lemma 4.7. A direct calculation shows that

| ?
14" (0. m) = 4" (0. O = Cy (S + p*ml).

which, with (4.46), yields

462
3y —1

1
-2’ /O s[1 =515 ds (pu® + p(p) — p(p) = P'(B)(p = P))

+ (¢*(p. pu) — ¢*(p, 0))
< C(T, Ma) (Ip — 1> + lul® + |ul), (4.60)

1
q(p,m) /0 s =515 ds (o' = 51 — (1 4+30)5” (0 - 5))

where we have used the Taylor expansion, (4.4), and (4.19) in the last inequality.
Now it follows from (4.60) and Lemma 4.7 that

b T
|J3|§C(T,M2>be 1/0 (Ip = p1* + lul® + |ul) (2, y) yN~'dyds

< C(T, Ma)b™ 7. (4.61)
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5. For Jy in (4.55), we regard 1,, (0, pu) as a function of (p, u) to obtain

|0mn (0, pu)| = Cy(|u| + |p9 — 59|),

. _ B (4.62)
mufi(0, pu)| < Cyy |9mpfi (0, pu)| < C,p% 71,

which, with integration by parts, leads to

T prb D
e [
0 b—1Jd

N

—1
u);
Z

y
[ 0 | (0 o), + o+ asp
i
N —1
u}dz
Z
T rb D py u
é&// //(<p+8p“>(}uz<zN*‘amﬁ>z|+}amﬁmz
0 b—1Jd r Z
+8pa|(ZN—lamﬁ)zg|> dzdrdydt
T D
+Cs/0 L (|(rN—1(p+3p“)amﬁu,.)(z,r)\

+ 8] (N2 % ud ) 1, r)|) drdt

+ (@ = D3(p%):

dydrdrs

ZNfl)

+CDe /OT /: (|(yN" (0 + 80")dmijuy) (£, ¥)|
+ 8| (V2 0% ud ) 1, y)|) dydr. (4.63)
In order to estimate the terms on the right-hand side of (4.63), we notice that
e(p, p) Ipy(r) 2 C(p) ", (4.64)

where B(t) is defined in (4.20). Then combining (4.64) with (2.10), (3.7), and (4.21)
implies that

/db (0% (0" = ")t r) P dr
= C(p) /db Igey () (00 — p")?) (e, r) rV1dr
+ /db Ipay () (0% (0" — %)), ry PV~ dr
< Cp) /db e(p, p)t, r)rVN"ldr + C(p) /:7 Iy (r) V= dr

b b
< C(p) fd e(p, p)(t,r)rV1dr + C(p) /d Iy (r)e(o, p)(t, r)rN~tdr
< C(p, Ep). (4.65)

Combining (4.62) and (4.65) with (3.7), (3.12), and the Cauchy inequality, we
conclude that the first term on the right-hand side of (4.63) are bounded by
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T rb D py
C(d) / / / / {szz(p + 80" (W2 + p” 7 p2) + e8p®u’
0 b—1Jd r

+ 070" = 5+ (o + ep, ) | N Pdzdrdyds
= C(p,d, D, T, Ep). (4.66)

Using (3.7), (3.12), (4.65), and the Cauchy inequality, we can bound the second
term on the right-hand side of (4.63) by

T D M2 ~
(D, d) /0 /d [e0o +80% 0 + 8805 + (ou + e(p, )
+ pa(p9 _ ,59)2}}’N_Idrdt
< C(5.d. D.T, Ey). “.67)

Using (3.7), (3.12), (4.4), (4.19), (4.65), the Cauchy inequality, and Lemma 4.7,
the last term on the right-hand side of (4.63) can be bounded by

cp (T b _ _
T (04801, 4 (o0 4 0. 7)) ¥
0 b—1
T b
+c<Mz,T>/ / (e, )2 YV dyde
0 b—1
< C(p,d, D, T, Eg) + C(T, My)b™ 7. (4.68)

6. Substituting (4.56), (4.59), (4.61), and (4.63)—(4.68), we have
T D o
/ / NG, rydrdt £ C(p,d, D, T, Eg) + C(T, M)b™ 2. (4.69)
0 d

Then (4.3) follows from (3.7), (4.35), and (4.69). This completes the proof. O

Employing Proposition 4.1, we can obtain the following higher integrability
estimate up to the origin:

Lemma 4.9. The smooth solution of (3.1)—(3.4) satisfies

T 1
f / (plul® + p? )¢, r) r¥"drdr £ C(T, Eo) + C(T, Ma)b™%. (4.70)
0 )

Proof. Let w(r) be a smooth non-negative cut-off function with suppw C [0, 2]
and w(r) = 1 for r € [0,1]. Multiplying (3.1); by wapn#(p,m)
rN=1and (3.1)2 by wd,n® (o, m)rV !, we have
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n'r N + gV, — wegtrV !

2
m
+ (N — l)w( — q# + mapn# + 73,,17;#)}"1\]_2

N 1
= ewdyn" {((,o + adp®) (uy + . ”))r -— (p+ Sp"‘),u}rN‘l_
4.71)

Integrating (4.71) over [r, 2] with r < 2, and then integrating the resultant equation
over [0, T'] x [8, 2] and using (4.40), we have

T 2
/ / w(r)q#(t, r) PN-lay
0 §

2 2 2 2
= './5 / WO, 3y dydr _/5 / YV wn* 0, y) yNdydr
r r

T 2 2
+/0 /8/wy(y)q#(t,y)yN_ldydrdt
r

T 2 2
—8/0 /8 / w " ((p + adp®uy), yV " dydrds
T 2 2 “ u :
—(N—l)S/O / / w(y)dmn (p+oz8p")(;)ny’ dydrds
§ r

T 2 2 u
— (N — I)(a — 1)&8 / / / w3 dun® (0%, — y¥'dydrdr
0 P r y

=1 (4.72)

j=1
For I, it follows from (4.35) and Lemma 3.1 that

2 2
I1§C/ (p|u|2+py)<T,y>yN—1dy+f (poluol? + p7) () yV 1 dy
) )

2
1 i} B
§C/8 (1+ 5ol +e(p, 7)) (@, 3) ¥ dy

+ C/: (1+ %Poluolz +e(po, ) () ¥V 'dy
S C(Eo+ ). (4.73)
For I, we use Proposition 4.1 withd = 1 and D = 2 to obtain
T (2
L < C/O /1 g (6, y) YV~ ldydt £ C(T, Eg) + C(T, M) b™%.  (4.74)

For I3, we integrate by parts to obtain

T 2 p2
I=(N-1s / f / (0 + adp®)uy dun*w(y) yN dydrds
0 § r
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“f
o
/

/(p+a8p Yty I wy (y) YV dydrdt

(,0 + adp®)u, 0pmn #w(r) rNdrdr

/ / (0 + a8 uy @un®)yw(y) yN " dydrds

(4.75)

We regard n’fn(p, pu) as a function of (p, u) to see that

mun” (0, o) + 0" 13mpn™ (0, pu)| < €y,

which, with (4.37) and Lemmas 3.1-3.2, leads to
: " 2 3 2\ N—1
2131 S C/ / e(p + 80%) (luy|” 4+ p” > py) ¥V~ dydr
; 0 Js
J=2

+/ / (e(p + 8p™)ul* + (o + p**r 1) yN~1dyds
0 )

< C(T, Ey). (4.76)

To estimate /31, we have to be more careful, since the weight is yN =2 that may not
be enough. Fortunately, we can gain a weight y by changing the order of integration:

T 2
I = (N — e / / (0 + 8™ty B w(3) (v — $)yV 2 ydr
0 )
T 2
< Ce/ / (0 + adp®)uy|(lul + %)y~ dyds
0 )
< C(T, Ep). 4.77)
Combining (4.75)—(4.76) with (4.77) yields
I; £ C(T, Ey). 4.78)

For 14, using (4.37) and changing the order of integration as in (4.77), we have

14<Cs/ /f(|“|+,0)(,0+063,0)(|uy|+u) yV=2dydrdr

§C(T,Eo)+C/ / (8(,0+8,o°‘)%
0o Js y

< C(T, Eyp). (4.79)

+(p” + oM h) y¥ - dyds



Global Solutions of the Compressible Euler Equations 1737

Finally, for I5, we first integrate by parts and then change the order of integration
as in (4.77) to obtain

T pr2 2

u
Is < C(T, Eo)+C85/0 /5 p“(|uy|2+py‘3|py|2+?+py‘1)yN“dydt
< C(T, Ey). (4.80)

Substituting (4.73)—(4.74) and (4.78)—(4.80) into (4.72), and using (4.35), we
conclude (4.70). |

We now prove a lemma which is needed when we take the limit b — oo.

Lemma 4.10. The smooth solution of (3.1)—(3.4) satisfies that, for any t € [0, T],

T
lur (72 + /0 (lus 132 + lurr (D172) dt < C(T Nuor 2. Ma).  (4.81)
Proof. 1t follows from (3.1); that

—8((,1,L + k)ur)r + pu; = H, (4.82)

where H := —puu, — p, +e(u + )\)(Nr_l u)r + sgukr. Multiplying (4.82) by
u; and integrating it over [§, b], we have

ed [b b e [P b
——/ (u+x>|ur|2dr+/ pu?dr=—/ (u+x>t|ur|2dt+f Hu, dr.
2dr Js s 2 Js 8
(4.83)
Using (3.7), (3.12), (4.4), (4.19), and the Sobolev inequality:

1 1
lurlizoe < C(Nurll 2 + llurl 7o Ml 72),

we obtain
e b
2
—/ G+ Dl 2 dr
2 Js
b 2
< C(T, Mz)/ (Iorul + lur| + [ul)lur|*dr
s
1 ) 1 5
< o, M Il ol (lar 132 e 22 + Nl 1)
1 5 1 1
S L e e A (e PR e Y e S )

3 1
< (T, M)l 135 + e 22 U 172 + Nl 1+ 1, (4.84)

b
|f Hu[dr|
5

1 b b
ggf p|ut|2dr+C/ o ' HI*dr
B b
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1 b
< o, M| (Il + D)1l or ) 122+l + gfé pluil dr

A

1 b
S / plus*dr + C(T, Ma)(llur |3, + 1). (4.85)
)

To close the above estimate, we combine (4.82) with (3.7), (3.12), (4.4), and (4.19)
to obtain

lutrr 122 < €T M I/Bc 122 + o It 2 Nt 2 + 1 HIZ |
< C(T, M) | I/puals + 2t 2 + 13 + 1)
< o, M IvpurlZ, + 13, +1). (4.86)
Combining (4.83)—(4.86), we obtain
d b b b
—/ (M-H»)Iurlzdr-i-/ pudr < C(T, Mz){1+nur||izf (-t Wl ).
dr 8 s )

Applying the Gronwall inequality, we have

b t b
/(u+x>|ur|2dr+/ f pu? drds < C(T, |luo, |l 12, M2),
) 0 )

which, with (4.86), implies (4.81). |

5. Limits of the Approximate Solutions for the Navier-Stokes Equations

In this section, we first take the limit, b — oo, to obtain global strong solu-
tions (,08'5, u®%) of the Navier—Stokes equations with some uniform bounds. Then
we take the limit, § — 0+, to obtain global, spherically symmetric weak solu-
tions of the Navier—Stokes equations (1.3) with some desired uniform bounds on
[0, T] x [0, 00), which are essential for us to employ the compensated compactness
framework in §6.

5.1. Passage the Limit: b — 00

In this subsection, we fix parameters (¢, §) and denote the solution of (3.1)—
(3.4) as (p&%b, ut%) 1t follows from (A.31)—(A.32) and Lemmas A.1-A.3 in the
appendix that there exist sequences of smooth approximate initial data functions

(pg"s’b, uf)"s’b) and (pg"s, uf)"s) satisfying (3.5) and the properties:

&,8,b &,8,b &, £,0 . . _

(Po g M)(r) - <;;0 o )(r) in L} (8, 00); rN=1dr) as b — oo,
£,0, £,0, g, &,

(E, ,E~1 ) = (Ey°, E;Y) as b — 00,

Eg’a’b + ES"S’b + IIuS’r‘S’blle is uniform bounded in b,

(5.1)
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where

o0
ESY: / (o5, m&®) rV=ldr < o0, (5.2)
S

o
Ef’s T = 82/ (l + 20[6(,0(6)’6)0‘_1 + a282(p8’8)2"‘_2)|( pg’a)r|2rN_1dr < 00.
s
(5.3)

~ From (3.7), (3.12), (4.4), (4.19), and (4.81), there exists a positive constant
C > 0 that may depend on (e, §, T'), but is independent of b, so that

0<C ' <p®%P,r)<C, (5.4)
,8,b = 8,b £,6,b
tes[ng (H(pa = p,u” )”Hl([ab + o HL2 Sb]))(t)
/ @ ) | s oy (O S C. (5.5)

We extend p&%2 (¢, r) and u®%2 (¢, r) to [0, T1x[8, oo) by defining p= %2 (¢, r) = p
and u®%b (¢, r) = 0 forall r € [0, T] x (b, 00). Then it follows from (5.5) and the
Aubin-Lions lemma that

(p=%b, w5y s compact in C([0, T1; L] .[8, 00)) with p € [1, 00).

More precisely, we have

Lemma 5.1. There exist functions (p*”‘s, us®) (¢, r) so that, as b — oo (up to a
subsequence),

(5% w5ty — (p®0, u®%) strongly in C([0, T1; LIOC[S 00)) forall p € [1, 00).

In particular, as b — oo (up to a subsequence),

£,8,b 8,5)

(p ,u‘g"g’b) — (,08’8, u almost everywhere (t,r) € [0, T] x [§, 00).

Using Lemma 5.1, it can immediately be proven that (p®%, u®9%) is a weak solu-
tion of the initial-boundary value problem (IBVP) of the Navier—Stokes equations
(3.1):

(0. )0, 1) = (p§°, uy®)(r)  forr € [8,00), 56
Uly—s =0 fort > 0. '
Moreover, it follows from (5.4)—(5.5) and the lower semicontinuity that
0<C ' <p¥r<C, (5.7)

8 _ = ,&8y|2 8,82
sup ( (%% — p, u®) | + 1p2°12, )(t)
1€[0,T] ” “H (18,00)) 1 L2([8,00))

T
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These facts yield that the weak solution (pg"s, u&%) of (5.6) is indeed a strong
solution. The uniqueness of this strong solution (p®?, u*%) is ensured by properties
(5.7—(5.8), the corresponding version of Lemmas 3.1-3.2 (that is, (5.10)—(5.11)
below), and the basic L?—energy estimate as in §3. This implies that the whole
sequence (p®%? u®%) converges to (0%, u®%) as b — oo.

Then it is direct to know that (p*°, M®®)(1,x) = (o*%(t,r), m*(t,r) %)
with p&9(z, x) > 0 is a strong solution of the initial-boundary problem of system
(1.3) with (h, g) determined by (3.2) for (¢, x) € [0, 00) X (RN\Bg (0)) with the
following initial-boundary data:

(058, M&9)(0,%) = (p° (r), m§°(r) %),
MES(t,X)Ixea By 0) = 0.

From Lemma 5.1, (3.7), (3.12), (3.25), (4.3)—-(4.4), (4.70), (5.1), Fatou’s lemma,
and the lower semicontinuity, we have

(5.9)

Proposition 5.2. Under assumption (5.1), for any fixed (g, §), there exists a unique
strong solution (p&°, u®?®) of IBVP (5.6). Moreover, (p®%, u®%) satisfies (5.7) and,
fort € (0,T],

1
[ Gertwesr s et ) e ar
s
T o0 | 86|2
+8/ / pe"sluf"s|2+ —)(s ) rV"ldrds
r
£,8|2
+CN88/ / (,Oaa)a ul P+ e 2' ))(s,r)rN_ldrds
r

< E° < C(Eg+ 1), (5.10)
* 2 _ _ -
e’ / (1070 [ 4 80"y 2 4 620" 220 ) 1, )V~ ar

+e/f (10" %), 1 4+ 80057 #3182 ) s. 1) PV~ drds

< C(Ep+ 1), (5.11)
T D
| [ @ ianaa < ca. .1 . (5.12)
0 d
T D
/ / (0% 1u®?P + (0**) ) (t, r) PN~ Ndrdr £ C(D, T, Ep) (5.13)
0 8

for any fixed T > 0 and any compact subset [d, D] of (8, 00), where cy > 0 is
some constant depending only on N determined in Lemma 3.1.

5.2. Passage the Limit: 6 — 0+

In this subsection, for fixed ¢ > 0, we consider the limit, § — 0+, to obtain
the weak solution of the Navier—Stokes equations. It follows from Lemma A.3 in
the appendix that
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(05", m§®)(r) = (p§. m)(r) in Li ([0, 00); rN1dr) as § — 0+,

5.14
(E5° EPY) — (E, E?) as 8 — 0. (>.14)

To take the limit, we have to be careful since the weak solution may involve the
vacuum state. We use similar compactness arguments as in [29,44] to consider the
limit: § — 0+4. We first extend our solution (,06’5, u®%) as the zero extension of
(028, u®?®) outside [0, T'] x [8, 00).

Lemma 5.3. There exists a function p®(t,r) such that, as § — 0+ (up to a
subsequence),

(ps"s, Vv pe8) = (0%, / p?) almost everywhere and strongly in C(0, T; L?OC)
(5.15)

forany g € [1, 00), where LI means L1(K) for any K € (0, 00).

loc

Proof. Tt follows from (5.10)—(5.11) that
Ved e L0, T; Hl,) < L™, T; LYS)  uniformly.

Notice that, for fixed ¢ > 0, the solution sequence (p®%, u®?) satisfies (3.1) for
(t,r) € [0, 00) x [8, 00). Using (5.10) and the mass equation (3.1), we see that

2r

is uniformly bounded in L2(0, T; ngcl), which, using the Aubin-Lions lemma,
implies that

q
loc

&8 is compactin C(0, T; Ly ) for any g € [1, 00).
Since /p®? and /p®?u®® are uniformly bounded in L>°(0, T; L) and
L0, T; Ll20c) respectively, we see that

p=0ut® = \/pe3(y/ p=-Sut?) is uniformly bounded in L*(0, T3 L). (5.16)

loc

Then it follows from the mass equation (3.1); that

1

N —
9 p°t = —(p>%u®?), — ———p®%u>% is uniformly bounded in L>(0, T; ngcl).

Moreover, we obtain that

pf"s = 2/ p%%(y/ p&%), is uniformly bounded in L*°(0, T; L120c)-

Then the Aubin-Lions lemma implies that

,08’6 is compact in C(0, T; L{

loc

) with g € [1, 00).
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Corollary 5.4. The pressure function sequence p(p®%) is uniformly bounded in
L0, T; LY ) forall g € [1, oo] and, as § — 0+ (up to a subsequence),

loc

p(p°%) = p(p°)  strongly in L1(0, T; LY ) forall g € [1, 00). (5.17)

loc

Lemma 5.5.As § — 04 (up to a subsequence), m®° converges strongly in

L2(O, T; Lfoc) to some function mé(t, r) for all g € [1, 00), which implies that
m&o(t,r)y = (p=°ut®)(t,r) = m®(t,r)  almost everywhere in [0, T x (0, 00).

Proof. A direct calculation shows that
m&? =2(vpe8) (Vptut?) + v/ ped (v peut?) (5.18)
is uniformly bounded in L0, T; Llloc). Thus, it follows from (5.16)—(5.18) that

m®®  is uniformly bounded in L>(0, T; W,\1). (5.19)

It follows from (5.10) and (5.17) that d, ((v/p5%u?)?), X=L(\/pedus9)?,
and 3, p(p>?) are uniformly bounded in L>(0, T’ ngcl’l), L>(0,T; L}, and
L%, T: ngcl), respectively.

From (5.10), we see that

V() (V8 (02D up® + —Nr_ Luth)) and /o (ot St + —Nr_ )

: : 2 .72
are uniformly bounded in L=(0, T'; L;_ ).
Since

-1

N
(™) + (™) (uy® + ut?)

N -1
— (a(g\/(ps,s)a + \/(ps,8)2—a> <\/(p£"s)“uf’8 + (Ios,é)aus,é)’
r
we conclude that

N -1
0 (1™ + (0 D) (up? + =——u))

r

is uniformly bouneded in L%, T: ngcl ). Also, it follows from (5.10)—(5.11) that

N —1 2(N —-1) 3
TarM(pE,a)us,s — f(( /106’5)}’ + (X(S(,OS'S)O[ zpf,(s)( /pe,éue‘a)
is uniformly bounded in L2(0, T; LI]OC). Then we conclude that

_» 4
3m®>®  is uniformly bounded in L2(0, T’ WIOCZ, ol

which, with (5.19) and the Aubin-Lions lemma, implies that

m®® s compactin L0, T; L”

loc

) forall p € [1, 00).
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Lemma 5.6. m®(t, r) = 0 almost everywhere on {(t,r) : p°(t,r) = 0}. Further-
more, there exists a function u®(t,r) so that m®(t,r) = p®(t, r)u®(t,r) almost
everywhere, u®(t,r) = 0 almost everywhere on {(t,r) : p(t,r) = 0}, and

me® — m¢ strongly in L2(O, T; L{Z)C)for p €[l,00),
ma,é mé )
= — T =./ptu’ strongly in L*(0, T; L120c)‘

Proof. Since \7_881’ *3* is uniformly boundedin L (0, T; L2), then Fatou’s lemma
e

T 00 £,0 2
m>°(t
/ / lim inf —| @ )l rNldrde
0 5—>0+  p=3(t,r)

o0 £,6
t
hm// jm” (r)| PNldrdr < 0.

§—0+ 88(1‘ r)

implies

A

Thus, m®(t, r) = 0 almost everywhere on {(¢, r) : p®(¢, r) = 0}. Then, if the limit
velocity u®(t, r) is defined by setting u®(z,r) := mg ((tt rr)) almost everywhere on
{(t,r) : p°(t,r) # 0} and u® (¢, r) = 0 almost everywhere on{(t,r) : pt(t,r) =

0}, we have

mé(t,r) = p°(t, r)u®(t,r) almost everywhere,

T 0 € ) T 00
/ / |—= """ drd: :/ f p°lu Pr¥ ! drds < oo
o Jo P 0o Jo

Moreover, it follows from (5.13) and Fatou’s lemma that, for [d, D] € (0, 00),

T D | 85|3
0% |luf P drdr < hm/ / drdt £C(d, D, T, Ep) < 0.
/(.) ./d 8—0+ ¢ (po0)?
(5.20)

Next, since m®? and pt 8 converge almost everywhere, it is direct to know that
&,8 &
sequence +/p&dutd = % converges almost everywhere to /pfu® = &"pT on
o

{(z,r) : p®(t,r) # 0}. Moreover, for any given positive constant R > 0, it follows
from Lemmas 5.3 and 5.6 that

v p8»5u8’51|ue,5|§R — /pfu’l . <p  almost everywhere (5.21)
For R 2 1, we cut the L2-norm as follows:
T D 5
/ / |\/,08’5u€’5 — Vpru| drdt
0 d
T D 5 5
§ /0 A |V ,06’5148’ I|u£'5|§R —\/peuelmséR drdt
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T D
+2/0 /t; ’V ps'Bu&S[lus,élzRFdet
T D 2

It is direct to know that \/ p#-95* 1,5 < g 1s uniformly bounded in L*>°(0, T'; Lf;c)
for all p € [1, 00). Then it follows from (5.21) that

T D
‘/‘O /‘; |\/ ,Os’(sug’sl‘ug,algR — v/ pgugllug‘gﬂzdrdt —> 0 as (S — 0 =+ .

(5.23)
Using (5.20), we have
trr £.8,,60 2 T 6 2
/o /d (|\/p7” I|usﬁ|;R| + |\/,0>u 1‘us|;R| )drdt
1 T D
= E/o /d (071" + p°lu*) drdt £ C(d, D, T, E)R™'. (5.24)

Substituting (5.23)—(5.24) into (5.22) leads to
T D
Slir(r)l / / |V pedut? — ,/p6u5|2drdz <CWd,D,T,E)R™" forall R > 0.
—0+Jo Jd
Then the lemma follows by taking R — oo. O

Let (p®, m®) be the limit obtained above. By using Fatou’s lemma and the lower
semicontinuity and Proposition 5.2, it is direct to obtain

Proposition 5.7. Under assumption (5.14), for any fixed € and T > 0, the limit
Sfunctions (pf, m®) = (p°, p®u®) satisfy

p8(t,r) 2 0 almost everywhere, (5.25)
mE
us(tvr):()a T — (t’r)z pg([’r)us([’r)zo
()00 = o
almost everywhere on {(t,r) : p°(t,r) = 0}, (5.26)

€ 2
(s,7) rN=3drds

2
+e(pf, ,5)>(t, MV ldr + 8/
R:

R
g
6SEo+1 fort20, (5.27)

<
2 [P, Pt e [ ), [ aras
0 R

2
2
< C(Eg+1) fort =0, (5.28)
T D
/ / (051, ) drdt < C(d. D, T, o), (5.29)
0 d
T D
/ / (o1 P + () ™) (t, r) PN ldrde < C(D, T, Ey), (5.30)
0 0

where [d, D] € (0, 00).
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We now show that

(P, MO, %) = (p°(t, 1), m*(t, r))r—() (5.31)

is a weak solution of the Cauchy problem (1.3) and (2.6) in R in the sense of
Definition 2.3.

Lemma5.8.Let 0 < 11 < 1o < T, and let £(t,x) € C'([0, T] x RN) be any
smooth function with compact support. Then

fpg(tz,X)é“(tz,X)dX
RN
n
=[ pf(tl,X)i(tl,X)dX+/ / (p°¢ + M® - V) dxdr. (5.32)
RN 131 RN

Proof. Notice that (pg"s, M?%)isa strong solution of (1.3) and (5.9) over [0, c0) X
(RN \ Bs (0)). It follows from (1.3); and a direct calculation that

4]
0= / / ((pg”s); + divM‘*‘S);(r, x) dxdz¢
n JRN\B;(0)

%) [5)
=/ P> dx —/ / (p%°¢ + M®° . V¢) dxdt
RN\ B;5(0) n n JRN\B;(0)

t o)
= /RN pf0¢ dx : —f /RN (p™°¢ + M* . V) dxdt, (5.33)
1

where we have used the fact that (%%, m®?) is extended by zero in [0, T'] x [0, §).
Notice that, fori =1, 2,

‘/ (p°° = p°) (1, X)L (8, %) dX‘
RN
<| / (% = 7)1, )£ (1 %) dX
RN\ B, (0)
+ ‘/ (p*° — p%) (1, X (i, X) dx’. (5.34)
B, (0)
Denote
ot r) = / ¢(t, ro) do € CJ([0, T] x [0, 00)). (5.35)
3B1(0)
Then, with (5.15), for any fixed o > 0, we have
§—0+

lim ‘ / (p*° — p%) (1, )¢ (t;, X) dx‘
RN\ B, (0)

= wy lim 0. (5.36)

§—0+

f (0 = %) i, ) PN
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Using (5.10) and (5.27), we obtain
I RCEEV ARSI
Bs(0)

o N 1
s C||§||L00{ /0 ((0°%)7 + (p°)) rN_ldr}ygN“‘V)

N(1-1)
S C(Eo)|¢llL=o v -0 aso — 0, (5.37)
which, along with (5.34) and (5.36), yields

lim pg”g(t,-,x)g(ti,x)dX='/ o, x) (6, x)dx  fori =1,2.
8—0+ JrN RN
(5.38)

From (5.35), a direct calculation shows
by = / -Vt ro)do (5.39)
9B1(0)

which, with (5.15) and Lemma 5.6, implies

n
lim / / (p%°¢ + M®° . V¢) dxdt
=0+ J1y JRV\B, (0)

n o0
wy lim / (p£’3¢t + m8’8¢r) rNldrdr
8%0*‘1’ 1 o
15) o0
wy f / (0" +m° ;) rNldrdr
131 o

n
= / / (p°¢ + M® - V) dxdr. (5.40)
n1 JRN\B, (0)

Similar to that in (5.37), we also have

_1
(0™ = p*) dxde| £ C(T, Eq) gl o7,

o (0)

(M8 — MC) - Ve dxd|
B (0)

h po |m8,5|2 |m8|2 3 1
< CIvel| f / (P + ) arar)

{f/ (0%° + p°) (t,r)rN*‘drdt}%
n

< C(T, E)|V¢ || oo 7077,
which, with (5.40), yields

%) 4]
lim/ / (,08’5{,+M£’5~V§)dxdt:f / (p°¢ + M® - V) dxdr.
§—0+ 1 RN n RN
(5.41)
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Combining (5.38) and (5.41) with (5.33), we conclude (5.32). |

Lemma 5.9. Let ¥ (t,X) € (Cg([O, 00) X RN))N be any smooth function with
supp ¥ € [0, T) x RN for some fixed T € (0, 00). Then

&

e M* o
_/MH {M Y N (ﬁ V) + p(p )dww}dxdr

+/ MG(x) - (0, x) dx

- /]RN-H {2/\45 (A + Vdivy) + pi (9Ver vy
+ V. /pE - ( V) faxds

x®x m X ® X
:«/E‘/%N_H ,/ps VS r2 {\/—(INXN 2 )] :dexdt, (543)
+

where VE(t,r) € L*(0, T; L>(RN)) is a function such that

T
/ / |VE(r, x)|>dxdr < CEq
0 RN
for some C > 0, independent of T > 0.

(5.42)

Proof. Letyr = (Y1, ..., ¥nN) € (Cg([O, o0) X IRN))N be a smooth function with

supp ¥ € [0, T) x RN, For any given o € (0, 1], let x, (r) € C®(R) be a cut-off
function satisfying that

xo(r) =0 forr <o, xs@)=1forr 2 20,

C C (5.44)
|Xé(”)| < g» |X¢/r/(”)| < p~

Denote W, (¢, X) := ¥ (t, X) xo (|X]).

Taking 8 small enough so that § < o, then it follows from (1.3); and integration
by parts that

./\/15’5 Me,é
/ M a + T (T
R«’X“’ p&‘, p&‘,

- / ME? (%) - W, (0, x) dx
RN
= J70 + U5,

V)W, + p(p™?) div w,,] dxdr

(5.45)

where

Ma,zS M€,5
Jl _68/ (pE,(S)a{D( 5 ) : V\IJU —+ (Q’ — l)dlv( 5 )le\I'g} dth,
RN+ P& P

(5.46)
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1 ) Me,é
P R— /MH {EM&B (AW, + VdivW,) + = (Vo5 - V)W,

W=

./\/15’5
TV (T .V)\Ifaldxdt
(p i)

£,6
=¢ /N+1 v p&dy/ pg’gD(M ) : VW, dxdr. (5.47)
R

pa, S
A direct calculation leads to
£,8

M° XiXx u Xix
j SXiXj KX
o ) =ut ] +T(5’f - )- (5.48)

3 (

Using (5.10), there exists a function V¢ (¢, r) so that

ME? XQ® X e m® XQ® X
Ve p#iD( psfa ) — V¢ ot g_F(INxN - r_2) (5.49)

in L2(0, T; (L>(RN\ B, (0)))N*¥) as § — 0+ for any given o > 0. Moreover,
we have

T
// Ve | dxdr < CEy. (5.50)
0 JRN
It follows from (5.10) and (5.48) that

1
EP TS CAler, supp v, 0)v/ed | f (" ¥ ardr)’

supp Vo
|u8,5|2 %
X {58/ (,08’5)“’<|uf’8|2 + —2> rN_ldrdt}
supp W, r
S C(I¥ e, supp ¥, o, Eg)vVes — 0 aséd — 0+. (5.51)

Denote

P1o(t, 1) = / (a) (A, (t, rw) + o - (Vdiv,)(t, rw)) dw.
9B1(0)
Then it is clear that ¢, € Cg([O, T] x (0, 00)). Thus, using Lemma 5.6, we have

M8 (AW, + VdivW,) dxdr

N1
Ry
= a)N/ m® g1, rV "V drdr — a)Nf mere r™Vdrde

RZ R%

= M (AW, + Vdivl, ) dxdr  as$§ — 0. (5.52)

N+
R+
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Similarly, using Lemmas 5.3 and 5.6, we can prove

M65
f [F (V/pe - V) + V/ped - (F

_>f2 {M (VVp? - V) +V/pE ( V)}\I/gdxdt as§ — 0. (5.53)

} W, dxdt

Combining (5.49) with (5.52)—(5.53), we obtain that, as § — 0,
R {lMS (AY, + Vdiv,) + M (Vy/p? - V)W
2 Rﬁ“ 2 o 7 \/F 7
M&‘
IV (= V)W, fdxds

® ®
:\/E/RN+l 1/,()"3{V8Xr2x {j_(leN z ZX)} L VW, dxdr.
+

(5.54)

Also, by similar arguments as in (5.52), applying Lemma 5.3, Corollary 5.4, and
Lemma 5.6, we have

Ma,& Ma S

£,8 .8 .
»/Rfﬂ {M 0o +F (F'V)‘pa"'P(P )le‘I’g}dth

- / M5 (x) - W, (0, x) dx
RN

ME M?E
€ (. T
- A%i/“ {M -0 Wy + —,08 (\/F V)\I'd + p(p )le\IJa}dth

—I—/ M{(x) - W, (0, x) dx
]RN
as § — 0, which, with (5.54), yields

M ME
€ _ e — . & :
/1‘@'“ {./\/l -0 Wy + i («/F V)‘I’U + p(p )le\IJU}dxdt

+/ MG(X) - W, (0, x) dx
RN

1, , Me

P /RQ’“ {EM (AW, + Vdiv, ) + ¥ . (V,/ps V)W
£

+ VP (ﬁg V)W, | dxdi

— 8X®X f m® X®X .
_ﬁ</ﬂ§f+l \//?{V 72 - J_(INxN ) )}.V\IJU dxdr. (5.55)

Next, we consider the limit, o — 0, in (5.55). We first define
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o(t,r): = f w- Y, ro)dow
9B1(0)

: /
= - Y(t,y)dS
r¥=1 Jas, o) '
1 .
= N1 / divy(z,y) dy, (5.56)
r B,(0)
which implies
lp@t, I = CUYllenr; (5.57)

also see [34,53]. Using (5.56), Lebesgue’s dominated convergence theorem, and
Proposition 5.7, we have

o—0

lim { ME - 9,0, dxdt—i—/ ME(x) - Wy (0, x)dx}
]R$+l

o—0

(o)
= oy lim {/2 m® 3¢ Xo (r) r~'drd +/ mq(r)e(0, r)Xo(r)erdr}
R2 0

o
=a)N/2 m® BtwrN_ldrdt—i—a)N/ mé(r)p(0, ryrV=ldr
R 0

+

= ME - 3 dxdt —i—/ MG(x) - (0, x) dx. (5.58)
RN

N+1
R+

Using (5.57) and Proposition 5.7, we have

12
f (|mgI +p(p8))(x/f-’r—‘)x;(r)dxdt

P
T2 me?
§C/O / ( pE +pp ))W)(t r)Xa(”)|rN Lards

T 20 2
§c/0 ('p| +p(p*)) rVldrdr - 0 aso — 0, (5.59)

(W - =) x5 () dxdr

(. x| N~ drde
< T 2o |ms|2 200 /e 12\ .N—1
= C (7 + 2 |( pg)r| )r drdt - 0 aso — O’ (5.60)

‘ANHXé(”)\/E[VEX}%X \/_ (IN><N X®X)} (W@ )dth

r
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= ‘ /R AN AG(E ’r—‘)dxdt
y

20

Ve VErNTldrds

Using (5.59)—(5.61), Lebesgue’s dominated convergence theorem, and Proposition
5.7, we obtain

<cC -0 aso — 0. (5.61)

lim o yp_i : (i\//l—p_i V), —i—p(pg)div\llg}dxdt

_ /R " {%_i.(y_p_i.v)wp(pa)divw}dxdt, (5.62)
c}i_r)nO/]MH i\//l_g (V/p* - V)W, + (V/p?) - }dxdt

_ /R . { yp_z L, 563
f{ { T - >}

8x®x fm XQX\]
\F{v - ﬁ(INXN r—z)}.Vlﬂdxdt. (5.64)

RN-H

‘We notice that

AVs)i = Xo () AY; + 2V - Vo (r) + i Axo (r),
0;div¥, = xo (r) 0;divyr + divw 0iXo (r) + 0; Y - Vo (1) (5.65)

+ IO O (= 52).

It follows from (5.57) and Proposition 5.7 that

szl Vo +ViAxe +diviy 0; xo (r) + 0% - VX (r)

RN+]

Xi X ’ Vx; X, X;
+7Xg(r)(1ﬁ';)+)(g(”)(1ﬁ'T—(I/f-;)r—z)}dxdt
T 20 . . 1 ) , Ve
éC(IWIICOfO / elm| (15 ()] + ~0 (Mg ()] + 9 () )] ) rV " ardr

T 20
< C(¥len f f elm? PN =2drds
0 o

T 20 3 T (20 |2 3
< Cyllen) {/ / p° rN_ldrdt} {e/ / —ng_3drdt}
0 Jo 0 Jo o

-0 aso—0. (5.66)
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Using (5.65)—(5.66), Lebesgue’s dominated convergence theorem, and Propo-
sition 5.7, we have

lim & ME - (AW, + VdivW, ) dxds

o—0 Rﬂ“

=¢ M- (AY + Vdivy ) dxdr. (5.67)
RQY-H

Substituting (5.58), (5.62)—(5.64), and (5.67) into (5.55), we conclude (5.42)-
(5.43). O

Remark 5.10. 1t is not so clear to show that the right-hand side terms of (5.42)
vanish as ¢ — 0 by direct arguments. However, we can prove the vanishing of
these terms by using (5.43), which is the main reason why the form of (5.43) is
important to us.

We also need the ngcl -compactness of weak entropy dissipation measures of
(p*, m®).

Lemma 5.11 (ngcl -compactness). Let (1, q) be a weak entropy pair defined in
(2.7) for any smooth compact supported function ¥ (s) on R. Then, for ¢ € (0, 1],

n(p%, m®) + 8,q(p°, m®)  is compact in ngcl (Ri). (5.68)

Proof. To obtain (5.68), we have to be careful since (p¢, M?) is a weak solution
of the Navier—Stokes equations (1.3). In fact, we first have to study the equation for
on(pf, m®) 4+ 9,q(p°, m®) in the distributional sense, which is much complicated
than that in [15,17]. We divide the proof into five steps.

1. Since
1
ppom =p [ vt o =518 ds
—1

1
q(p,m) = p/ (u+0p")9 (u + p")[1 = s°15 ds,
—1

it follows from [15, Lemma 2.1] that

In(p,m)l +lg(p,m)| < Cyp  fory e(1,3], (5.69)
In(p.m)| < Cyp, lg(p.m)| < Cy(p+p'") fory e (3,00), (5.70)
19,m(0.m)| = Cy (14 0%),  [8un(p, m)| < Cy. (5.71)

Moreover, if 9,,n7(p, pu) is regarded as a function of (p, u), then

Bmpnl < Cyp”™',  19munl < Cy. (5.72)

2. Denote (n*%,¢%°%) := (n,q)(p*%, m*%) and (n°, ¢°) = (. q)(p*, m®) for
simplicity. Multiply (3.1); by nf;‘s, (3.1)2 by 17,‘3;8, and add them together to obtain
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™’ + 9.¢5°
N—-1 5 5 5 &8
= m® (r/f,’ +u°n;;°)
N —1

+Eamr}8’5[(p£’6(uf’6 +

N —1
us,B))r _ - pf,éus,é}

N —1 N —1
+ Eamns,é[as((pe,ﬁ)a(ui,ﬁ + - ué‘,é))r _ 8 - ((ps,é)a)rus,

1753

a}.

(5.73)

Leto(t,r) € Cgo(Ri), and let § < 1 so that supp(¢ (¢, ) € (8, 0o). Multiplying

(5.73) by ¢ and integrating by parts, we have

/ (3% + 8,¢°) ¢ drdt
®
N —1
=— 111’3’5(17/*;"S + us"snf,;‘s)qb drdt
R, T

N -1
— 8/ p8,5(amn8,5)r (uf,5 + _u8,5)¢ drds
R3 r

+

N —1
u€’5)¢r drdt

_ 8/ pé‘,ﬁamné‘,s (M’é:,a +
RZ

+

N -1

—8/ Onn®® ——— p=Oouslp drdr

R% r
£,8\a £,8 £,8 N—-1 £,8

—agd | (p) Omn®%)r (u® + . u®®)p drds

RJr

N -1
r

— (185/ <(ps,8)aamn£,3 (ufS + us,é)d)r
RZ

+

N -1
+ 8m7,]8,5 (pE,(S)(x—lp;E‘,(Sus,(S(b) drdt
r

= ZI;’S.

j=1
3. It is direct to see that
£,0

n®° — n®  almost everywhere in {(¢,7) : p°(t,r) #0} asé — 0 +.

In{(z,r) : p*(t,r) =0},
|n8’5|§C¢p8’8—>0=ns asd — 0+.
Thus, combining (5.75) with (5.76), we have

n®% — 1  almost everywhere as § — 0 + .

Similarly, we have

q”"’a — g¢®  almost everywhere as § — 0 + .

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)
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Let K € (0, 0o) be any compact subset. For y € (1, 3], it follows from (5.12) and
(5.69) that

T T
/ / (|n8,5| + |q8,5|))’+1 drdt g C;/; f / |p8,5|)/+1 drdt
0 K 0 K

S Cy(K, T, Ey). (5.79)

For y € (3, 00), it follows from (5.13) and (5.70) that

T jar) T 0
/ / (lns,ﬁl + |q8,8|) 0 drdt é CW/ / (|p€’5|% + |pe,6|y+9) drds
0 K 0 K
S Cy(K, T, Ey). (5.80)

Wetake py =y + 1 >2wheny € (1,3],and p; = % > 2 when y € (3, 00).
Then it follows from (5.79)—(5.80) that

n*°, qs"s) is uniformly bounded in L’ (R ), (5.81)

loc

which, with (5.77)—(5.78), implies that, up to a subsequence,
M™°,¢"%) > (", q°) I L (RY) as§ — 0 +.
Thus, for any ¢ € C (R ), we see that, as § — 0+ (up to a subsequence),

/Rz (9 + 9,¢%°)p drdt = — /Rz (n*°8,¢ + ¢*°,¢) drdt

+ +

— —/2 (n°0:¢ + q°0,¢) drdr = /2 (0m° + 0,q°)¢ drdt. (5.82)
R RZ

Furthermore, (1°, ¢°) is uniformly bounded in L'

1OC(]R ) for some p; > 2, which
implies that

9n° + 9,g°  is uniformly bounded in & > 0 in WIOCl Pl (R ). (5.83)

4. Now we estimate the terms on the right-hand side of (5.74). For 1 f ’5, a direct
calculation shows that |, + un,| < Cy (1 + ,09), which, together Lemma 5.6 and
similar arguments as to those in (5.75)—(5.77), leads to

N —1

r

m®? (778'(S +u® 57],81,5) —m® (nf, + ugn;) almost everywhere as § — 0+ .
r

P
(5.84)

Then it follows from (5.12)—(5.13) that

—1

7
+u88 S‘S)‘6drdt

7
< C(K) /0 /K (071" P 4 p™° + (07)7) drd
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T 7 2
C(K)(l—i—/ /p5’5|u8’8|3drdt ° / / +|p”|y+‘)drdz)9
0 K
< for y € (1, 3],
C(K)(1+/ /ps"slug’alsdrdt 9 f / +|,085|V+9)drdt>9
0 K
for y € (3, 00)
< C(K,T, E). (5.85)

Using (5.84)—(5.85), we have

N —1
If’s - — /;{2 - m®(n, + unj,)¢ drds as § — 0+ (up to a subsequence),
¥

(5.86)
-1

7
(0 +utns,)|"drdr < C(K, T, Eo). (5.87)

For 1”‘, 1%, and 12, it follows from (5.10)=(5.11) and (5.71)~(5.72) that
2 sy

/ / ‘8/056(8 ngs)r( 8d 4 lp’ )‘drdl

é C][/(K)/ / (8108,5'”?8'2 +8(p8,5)y—2|p;~3,8|2 +p8,5|u8,8|2) drdt
0 K

é Cw(K7 T7 EO)7

T
I
<c¢(1<) /f"o’ ddt // 058 |t )2 drdz)§

= Cy(K, T, E),
r £,8\a £,8 £,8 N -1 £,8
; ‘sé(p’) Omn™)r (uf® + - u®®)| drd:
K

T
< Cy(K) / / e8(0“ ) (lup® 1P + (o) 1o P + [u™|?) drd
0 K

< Cy (K, T, Eyp).

1
B pEPu | drde

Thus, there exist local bounded Radon measures ,u‘i s ,u%, and ug on Rﬁ_ so that, as
8 — 0+ (up to a subsequence),

N -1

= o™ @)y (" + ——u") — uf,
N-1
= e ——p ™ = i,
N-1

&

— aed(p")* @un™)r (uf® + ut®) = u.
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In addition,

WO, T) x V) < Cy (K, T, Eo)

fori =1,2,3,
for each open subset V C K. Then we have

(5.88)
+ sz’(S + I;"S — (u] +u5+ uj, ¢) asdé — 0+ (up to a subsequence)

(5.89)
For I 3 we notice from (5.10) that

! s s(es , N— 1
/ / ‘\/5,05’ Omn® (uf + ) drdz
0 JK r

T 4
< Cy(K) / / Veptdug | + )| arar
0 K

T 2
<cye [ [ (oot ot P arar)
0 K

drdt
< Cy (K, T, Eyp).

4
3

/ /|p85| drdt

Then there exists a function f¢ such that, as § — 0+ (up to a subsequence)
£, &8 (638 N -1 £,8 & .
Vep©Po,n®° (ul’ + u®%) — f° weakly in L
r

T
/ / |£513 drdt £ Cy (K. T, Ep).
0 K

It follows from (5.90) that, as § — 0+ (up to a subsequence)

T
[N ﬁ/ / [, drdr.
0 K

For I, it follows from (5.10)—(5.11) and (5.71) that

15| < Cy (supp @)es fR (D (1 + 100 1) @y + (™) piut g ) drdr

SR, (5.90)

(5.91)

(5.92)

T

1
< ¢y (supp #)es / ("l ot )i drdr )
R:

T

1
£,8 2
< ([0 + o)
+ CytsuppdB(e2 [ o 21pe0 P gl dra)
T

1
< ([ @t gl arar)’
]
< Cy (supp ¢, gllct, T, Eo)v/s
x (Ve ([ oo tgtaran) ([ 100 P g aran)’
R% RZ
< Cy (supp b, l1gllct. T, Eo)(vVe + 1)v/8 — 0

o=

as § — 0+, (5.93)
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where we have used o = % € [%, 1) for N = 2.

5. Taking § — 0+ (up to a subsequence) on both sides of (5.74), then it follows
from (5.82), (5.86), (5.89), and (5.92)—(5.93) that
N -1
i +9,q° = _ng(n; +utns) + ul +us+us—Veff (594

in the sense of distributions. From (5.87)—(5.88), we see that

N—1
—Tmf(nf, +utng,) 4wl + s+ uh (5.95)

are bounded uniformly in ¢ > 0 as Radon measures. From (5.91), we have

. -1.%
Veff—0 inW, (R ase—0+. (5.96)
Thus, it follows from (5.95)—(5.96) that

9;n° + 0,¢° is confined in a compact subset of ngcl P2 (Ri) for some p; € (1,2).
5.97)

The interpolation compactness theorem (cf. [13,22]) indicates that, for p, > 1,
p1 € (p2,00], and po € [p2, p1),

(compact set of ngcl’p 2(R%)) N (bounded set of ngcl’p '(R2))
C (compact set of ngcl POURL)),

which is a generalization of Murat’s lemma in [47,57]. Combining this interpolation
compactness theorem for 1 < p» < 2, p; > 2, and pg = 2 with the facts in (5.83)
and (5.97), we conclude (5.68). |

Combining Proposition 5.7 with Lemmas 5.8-5.9 and 5.11, we have

Theorem 5.12. Let (pj, m() be the initial data satisfying (2.11)—(2.14). For each
& > 0, there exists a spherical symmetry weak solution

(0%, M) (. %) == (o (. 1), m* (¢, r)’;‘)

of the compressible Navier—Stokes equations (1.3) in the sense of Definition 2.3.
Moreover, (p¢, mé)(t,r) = (pf(t,r), p(t, u(t,r)), with ué(t,r) = 'ZS((;:))
almost everywhere on {(t,r) : p®(t,r) # 0} and u®(¢t, r) := 0 almost everywhere
on{(t,r) : p°(t,r) =0 or r = 0}, satisfies the following bounds:

pf(t,r) 20 almost everywhere,

mE
£

(7
/“(1""; )m;
0 21Vt AN
SESSEg+1 fort >0, (5.98)

)(t, r) =+/pt(t,r)u’(t,r) =0 almost everywhere on {(t,r) : p°(t,r) = 0},

2
(s, r) PN 3drds

2
+e(p®, ﬁ))(l,r)rN_ldr +s/
R
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&2 /00 |(\/,08(t, r))r|2rN7'dr + &‘/2 ‘((ps(s, r))%)r|2r}v7'drds
0 R

SC(Ey+1) fort>D0,

T D
/ / Y, rdrdt £ CWd, D, T, Ep), (5.99)
0 d
T D
/ / (p°1uf 1P + (0 ™) (¢, r) N~ drdt £ C(D, T, Eo) (5.100)
0 0

for any fixed T > 0 and any compact subset [d, D] € (0, 00).
Let (1, q) be an entropy pair defined in (2.7) for a smooth compact supported
function yr(s) on R. Then, for ¢ € (0, 1],

orn(p®, m®) + 0,q(p°, m®)  is compact in ngcl (Ri).

6. Proof of the Main Theorems

In this section, we give a complete proof of Main Theorem II: Theorem 2.4,
which leads to Main Theorem I: Theorem 2.2, as indicated in Remark 2.5.

The uniform estimates and compactness properties obtained in Theorem 5.12
imply that the weak solutions (p®, m?) of the Navier-Stokes equations (1.7) sat-
isfy the compensated compactness framework in Chen-Perepelitsa [15]. Then the
compactness theorem established in [15] for the case y > 1 (also see LeFloch-
Westdickenberg [37] for y € (1, 5/3]) implies that there exist functions (p, m) (¢, r)
such that

(%, m®) — (p,m)  almost everywhere (t,r) € Rf_ as e — 0+ (up to a subsequence).

By similar arguments as to those in the proof of Lemma 5.6, we find that
m(t,r) = 0 almost everywhere on {(¢,7) : p(¢,r) = 0}. We can define the
limit velocity u(z, r) by setting u(zt, r) := '[’)’((frr)) almost everywhere on {(t,7) :
p(t,r) # 0} and u(z, r) := 0 almost everywhere on {(¢,r) : p(t,7r) =0 orr =
0}. Then we have

m(t,r) = p(t,r)u(t,r).

We can also define (%)(z‘, r) := /p(t, r)u(t, r), which is 0 almost everywhere
on the vacuum states {(¢, r) : p(t, r) = 0}. Moreover, we obtain that, as ¢ — 0+,

m® m
=./pfu® > — = /pu strongly in L%([0, T] x [0, D], rN=drdr).
NI JP

6.1

3(y+D ;
Notice that |m| = < C("Z—f + p¥™1), which, along with (5.99)~(5.100),
implies

(RZ) x L (R%)ase — 0+ (6.2)

loc

(p°,m°) > (p,m) inLf

loc
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forpe[l,y+1)andg € [1, 3(;?31)), where quoc(Ri) represents L4([0, T] x K)

forany T > O and K € (0, 00).
From the same estimates, we also obtain the convergence of the relative me-
chanical energy as ¢ — 0+:

7*(p°.m*) — i*(p,m)  in Li (RY).

Since 77*(p, m) is a convex function, by passing the limit in (5.98), we have

n o0 o0
f / i (o, m)(t,r)rN"ldrdr £ (- 11) / i (po, mo) (r) rV ~'dr,
11 0 0

which implies

o0 o0
/ 7o, m)t, ryrN"ldr < / 7* (00, mo)(r) rN"'dr for almost everywhere t = 0.
0 0
(6.3)

This indicates that there is no concentration formed in the density p(z, ) at origin
r=0.
Define

(. M)(t.%) == (p(t. ). m(t, r)’r—‘) = (p(t.r). p(t. rut, r)’rf). (6.4)

From (6.3), we know that % = ﬁu’;‘ is well-defined and in L? for almost

everywhere t > 0. We now prove that (p, M)(¢, X) is a weak solution of the
Cauchy problem for the Euler equations (1.1) in RV,

Let ¢(t,x) € Col([O, 00) x RY) be a smooth, compactly supported function.
Then it follows from (5.32) that

/ (p°¢ + M® - V) dxdt + / p6(x)¢(0, x) dx = 0. (6.5)
Ri”rl RN
Let ¢ (z, r) be the corresponding function defined in (5.35). Using (6.2) and

similar arguments as in the proof of Lemma 5.8, we obtain that, for any fixed
o >0,

o0
lim / / (p°¢ + M® - V) dxdt
e=>0+Jo  JRN\B, (0)
o o
=y lim/ / (p’sqb,—i-mg(br)rN_]drdt
e—=0+ Jo o

o o
= wy / / (pd)[ + m¢r) rNldrde
0 o

=/0 /RN\B o (p¢ + M - Vi) dxdr. (6.6)

Using (6.3) and by similar arguments as to those in (5.37), we have

| /0 ” / (0)<p8—p)ctdxdr(
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00 o 1 1
gC(n;ncl,suppc){/O /0((pgv+pV)|¢z|rN*1drdt}VaN<17>

1
S CUIglers supp e, EO)GN(l_V) —-0 aso — 0, (6.7)
o0
‘/ / (ME—M)-ngxdt‘
0 Bs(0)

§c{/0°°/0“<
x {[000/0" (p° + p)(t. 1) |¢r|”N71drdt}%

N 1
< C(Itllerrsupp s, E)o 277 >0 aso — 0, (6.8)
which, with (6.6)—(6.8), implies

£12 2 1
] + ) ) | PV drde )
pe P

: & B _ .
S /Ri’“ (p°¢ + M® - V) dxdr = /Rﬁ“ (pC + M -VZ)dxdt.  (6.9)

Letting ¢ — 04 in (6.5) and using (6.9), we conclude that (p, M) satisfies (2.4).
Next we consider the momentum equations. Let ¢y = (Y1, ..., ¥n) € (Cg (Rx

RN ))N be a smooth function with compact support, and let x,(r) € C°(R) be
a cut-off function satisfying (5.44). Without loss of generality, we assume that
suppy C [—T,T] x Bp(0). Denote ¥, = 1 x,. Then we have

1 ) ME
‘8 /Rilﬁ-l {EMs ’ (A\pa + leV\I’a) + ﬁ ’ (V\//? V)\I’a

+ vy - (X V) ¥, | dxdi

/pF
XQX /e mf X ® X
_ & & ~ _ .
_ ‘\/E/MH,//) {V — \/F(INxN — )}.V\Ilgdxdt
|m8|2 1 1
gc{f |V£|2dx+s/ —rN_3drdt]2 {s/ ,08|V\IJU|2dxdt}2
RY+ R2 P° RY+
<C(o,D, T,E))v/e >0 ase — 0. (6.10)

Using (6.1) and (6.10), and passing the limit: ¢ — 0+ (up to a subsequence) in
(5.55), we obtain

M M '
Aqﬂ {veanwg + 7 (G5 V¥ + ) divi, | dxdr

+/ Mop(x) - ¥5(0,x)dx = 0. (6.11)
RN

Notice that, forany 7 > 0 and D > 0,

T pD m2
/ / (— +p")(t,r)r¥"'drdt £ C(D, T, Ey), (6.12)
0 0 P
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which, with similar arguments as to those in (5.58), leads to

o—0

lim { M- 0,0, dxdr + | Mo(x) - W, (0, x) dx]
RﬁJrl RN

= M - 0,y dxdrt —|—/ Mox) - ¥ (0, x) dx. (6.13)
RN

N1
R+

Using (5.56)—(5.57) and (6.12), we have

0

m2 X ,
/MH (= P@) (¥ - 2)xo () dxdt

o0 20 m2 , N1
<c /0 / (% + P Dl ) arar

T r2 m2
< C/ / (— +p()r"drdt -0 aso — 0,
0 o 1Y

which, with (6.12) and the Lebesgue dominated convergence theorem, leads to

. M M .
lim, /M“ [ (5= - V)W + p(o) div, | axdr

NG
M M
= /RN+1 [ﬁ : (ﬁ'v)wp(p) diw/f}dxdt. (6.14)

Substituting (6.13)—(6.14) into (6.11), we conclude that (p, M) satisfies (2.5).
By the Lebesgue theorem, we can weaken the assumption: ¢ € Cg asy € Cé.
This completes the proof of Theorem 2.4. O

Acknowledgements. The authors would like to thank Didier Bresch for helpful suggestions.
The research of Gui-Qiang G. Chen was supported in part by the UK Engineering and Phys-
ical Sciences Research Council Awards EP/L015811/1 and EP/V008854/1, and the Royal
Society—Wolfson Research Merit Award (UK). The research of Yong Wang was partially
supported by the National Natural Sciences Foundation of China No. 12022114, 11771429,
11671237, and 11688101.

Declaration
Conflicts of interest: The authors declare that they have no conflict of interest.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Appendix A. Construction and Estimates of Approximate Initial Data
In this appendix, we construct the approximate initial data functions with desired
estimates and regularity. From (1.5), we know that there exists a constant R > 1

so that

1
O0<2h = po(r) =

[NSYOS)

5  forr = R. (A.1)
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We first cut-off the density function po(r) as

(Be)i  if po(r) < (Be)3,
Fo(r) = 1 po(r) i (Be)® < po(r) < (Be) 2, (A2)
(Be)"T if po(r) = (Be) "2,

where ¢ € (0, 1], and 0 < B < 1 is a given small positive constant, which is used
to ensure (ﬂs)% < (ﬂs)_% for all ¢ € (0, 1]. It is easy to check that

o (r) = po(r) + 1, p6(r) = po(r) as e — 0 almost everywhere r € R
(A.3)

To keep the LP-properties of mollification, it is more convenient to smooth out
the initial data in the original coordinate R"; so we do not distinguish between
functions (pg, mo)(r) and (pg, mo)(X) = (oo, mo)(|X|) when no confusion arises.
It follows from (2.2)—(2.3) that po(x) € L{:)C (RM), Using the convexity of e(p, p),
we have

0 = e(p)(x), p) = e(po(x), ). (A4)

Combining (2.2) with (A.3)-(A.4) and the Lebesgue dominated convergence the-
orem, we obtain

lim / (185 = 0| + [/ 5560 = Voo [ ) dx =0 (A5)
e—=0+ Jg

forany K € RV.
Since we need a better decay property for approximate initial data, we further
cut-off the function ,58 (x) at the far-field:

s = [ 7600 i1 = (g
0 poifIx| > (Be

)7,
)_L (A.6)

2N

Here we further choose 8 small enough so that |x| = (ﬂs)_ﬁ = R + 2 for all
e € (0, 1]. It is clear that ,68 (x) is not a smooth function so that we need to mollify
,65 (x). Let J(x) be the standard mollification function and J, (X) := OLNJ (g) for
o € (0, 1). For later use, we take o = 8% and define p(j(x) as
2

o0 = ( [ agx =@ ay) (AT)

Then pj(x) is still a spherically symmetric function, that is, pg(x) = pg(|X]).

Lemma A.1. For any given & € (0, 1], p5(x) defined in (A.7) is in C*™ (RN with
(,38)% < pp(x) = (,38)_% and satisfies
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—0+

&2 /RN Vi /s 0)|* dx < CV/, (A9)

/ e(p§ (). 5)(1+ XN+ dx < CEoe™ "3, (A.10)
RN

gim (o = pol 1y vy + | /R (). ) = ep(x), ) dx|) =0, (AS)

where Ey is defined in (2.12), and ¥ € (0, 1).

Proof. We divide the proof into four steps.

1. We first consider the first part of (A.8). A direct calculation shows
/P65 — v/ po )|
< ‘ /RN (VAEx—y) — Voo (x —¥)) Js (¥) dy‘

+\fRN (VAo =) = Voo () o () dy. (A11)

For any given M > 1, it follows from (A.11) and Holder’s inequality that

e 2y
— d
/.x|gM+1|‘/p°(X) Veox)|7 dx
gc/ s sex—y) — Vpox — )|
scf mm ) o (WEx= - Vo=l

+ |Vpox —y) — \/po(X)|2V) dxdy

§ C sup ||\/I00( + Y) - \/pO(.)”LzV(“X\éM—Q—l})
lyl<ed

+ C”\/;(é)‘ - m”L”({\x|§M+2}) - O (A12)

as ¢ — 04, where we have used (A.5), o0 = e%, and p§(x) = pj(x) for [x| <
(ﬁe)_ﬁ. Using (A.12), we immediately obtain

/ lpg(X) — po(x)|¥ dx - 0  ase — 0. (A.13)
x| <M+1

2. We now consider the second part of (A.8). For any given M >> 1, it follows from
(A.13) that

lim (e(pp(x), p) — e(po(x), p)) dx = 0. (A.14)
e—0+ XISM+1

For |x| > M + 1 with M = R + 1, noting (A.1)-(A.2) and (A.6)—(A.7), we have
3

0< —
2

A
A

p=py(x) = Sp. (A.15)

N =
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It follows from (A.2) and (A.6) that | /5§ (x) — /2| < |/55(x) —/B| forx € RV,
which, with (A.15), yields

[ et pax
[x|>M+1

sce) [ e - Vilax

Ix|>

2
< C(p) [ (=9 = V3) s ] ax
x|>M+1 "' JRN
gcw)/l g = V7l ax

gcw)fl A = Vol ax
=C@) | Voo - Vo[ dx

[x]>

S C(p) N ME(po(X),ﬁ) dx. (A.16)

For any given small ¢ > 0, there exists M (o) > 1 such that

/ e(o0(x), 5) dx < . (A17)
[x|>M (o)

Using (A.14) and (A.16)—(A.17), we have

‘ fR (e§ 0. 7) — elpo(x), ) dx

<

/ (e(o5 (), ) — e(po(x), 7)) dx
[X|SM(0)+1

+C(p) e(po(x), p) dx
[xI>M (o)

= C(p)o,
provided that ¢ < 1. Then (A.8) is proved.
3. Noting (A.6), we have

o { / Jo =i Jo )y for x| < 1+ (Be)
0

for |x| =2 1 + (Be)~ 2N
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which, with (A.2) and (A.6), leads to

2 Ce? N
eZ/RN VX\/%‘ dx = — L sup p5(y) dx

2 L
o Ix|S1+(Be) " 2N yeRN

C 2
< = (Be)' S Cet,
o

where we have used o = 8%. Thus, (A.9) is proved.

4. We finally consider (A.10). Noting (A.6), we see that pj(x) = p for all [x| =
1 + (Be)~ 27, which, with (A.8), implies

/ e(ot (), p)(1 + [x)V 17 dx
RN
= / L e(ps(x), p)(1 + [xDV 1 dx
Ix|S14(Be)” 2N

— 147
< ce M / | e(pf ), ) dx
Ix|S1+(Be) 2N
N—-1+9

< C(Eg+ e~ ov

Therefore, we have proved (A.10). |

Denote Ij45 5-17(X) to be the characteristic function {x € RN : 45 < x| <671
with 0 < § < 1. Now, for the approximation of the velocity, we define u((x) and

£,8 .
uy" (x):

1 mo
—)(X), (A.18
Voo (%) («/Po)(x )

£5 (x) 1 / (moI
u = 1
’ Vop®) Je a0

where pg(x) is the approximate density function defined in Lemma A.1.

up(x) 1=

)(x = y)Js(y) dy, (A.19)

Lemma A.2. The function ug(X) defined in (A.18) satisfies

/ 3 e 2 _ / |mO(X)|2
Py X |ug(x)|”dx = ——dx forany e € (0, 1], (A.20)
RN RN 00(X)

li fup — =0. A.21
Jm, lloouo = moll) ) (a.21)

The function ug’a(x) defined in (A.19) is in Cgo (RN) and satisfies

suppuy’ C (x e RV : 25 < x| S 14571, (A.22)
li s u’ ()2 d =/ & (X) |u (%) | dx, A23
Jim /R L PG P dx = |05 00l (0 dx (A23)

BE}&L ”105”8’6 — PHUG ”L]IDC(]RN) =0, (A.24)
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[, Aol x0TI ax S CE Y as)
RN

where Ey is defined in (2.12).

Proof. (A.20) follows directly from (A.18). Using (A.12) and (A.18), we have

/|< (P — mo))| dx

V0) (=) () dx
= [ 55 = IO 000

mo) | 3 - 2\
< (B (] - e

—-0 ase—>0 (A.26)

for any M > 1, which leads to (A 21).

From (A.19), it is clear that ”() (x) € Cy° (RM) and suppu e (xeRN : 25 <
x| < 1481} For any given small constant ¢ > 0, there exist small € = €(g) > 0
and large M = M (o) > 1 such that

mo(x)|*

/Bzéww{xle(g)} 0 (X)

"
A

(A.27)

Taking § > 0 small enough so that € = 68, then it follows from (A.19) that

/€<x|<M+2‘</;8 “" - f0>(x)) x>0 asé—>0+. (A.28)

Since € 2 68, we have

/ |/ o6 (x u(g)"s(x)}zdx
B (0)U{|x|>M+1}

2
< [ ) - s ay| ax
/BE(O>U{|X>M+1 o (e 071

Imo(x)|? d

<]
Bac (OU(Ix|=M}  P0(X)

»
A
LS

(A.29)

It follows from (A.18) and (A.27)—(A.29) that

[, 16/ = fogug) o ax

s 5 _ Mo
/RN Py /7o )(x )‘ dx
£,8 mo
S R d
/<|X|<M+2 Polte «/_o)( 0 ax

A
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2
+C/ |mo(x)]
BoeOU{x|ZM)  LO(X)

0 asd— O+, (A.30)

dx

which leads to (A.23).
Using (A.30), we have

[, i = ity ax
X|=

= (_/mgM £6(X) dx)%(/w |(\/'0>5“85 - \/FSMS)(X)Fdx)%

— 0 asd — 0+,
which implies (A.24).
Finally, noting (A.23) and ug"s(x) =0 for |x| > 1+ 5!, we obtain
/ PECOlg () (Ix] + DY+ d
RN
< / 5 () uy® )2 (1x| + DN dx
x| <1481

< csNH / P’ 0 dx
R

2
< C5—N+1—19/ de
RN po(X)

é CE08_N+1_19,
which yields (A.25). |

With p(x), ug(x), and ug"s(x) defined above, we can construct the approximate
initial data (o5>", m§>")(r) = (o5>", p5 > uy®")(r) for (3.1) and (3.4), and
(8, mi*)(r) = (5%, p&°uly®)(r) for (5.6): Forb = 1+ 8™, define

5P ug ") (r) = (o), uly’ s py(x)  forr = x| € [8,5] (A3D)

to be the initial data for IBVP (3.1) and (3.4). On the other hand, for IBVP (5.6),
we define

05 ug’ (r) = (P§x), u5’ ))is.00)(x)  forr = |x| € [5,00).  (A.32)
Then, combining Lemma A.1 with Lemma A.2, we obtain
Lemma A.3. The following three results hold:

(i) Ase — 0,
(Eg, ET) — (Eo, 0),
(05, m)(r) = (po. mo)(r) i Lie(10, 00); r¥~"dr),

where Ejj, E{, and Ey are defined in (2.12), (2.13), and (2.2), respectively.

(A.33)
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(i) For any fixed ¢ € (0, 1], as § — 0,

0 0
(Eg°, E}°) — (E§, ES),

&, £, e & . 1 N—1 (A.34)
(pg™ > my ) (r) = (pg, mg)(r) in Li,.([0, 00); r™ = "dr),
where Eg"s and Ef’a are defined in (5.2)—(5.3).
(iii) For any fixed (¢, 8), as b — oo,
(EEPP, ESPy > (EE°, ES9), (A.35)

10.

05", *‘“’)(r)—wp mg*)r) in Ligo((8. 00): V=), (A36)

where E‘L”s b E;;,s,b E;‘S’b nd Ee‘a’b are defined in Lemmas 3.1-3.2 and
(4.2). In addition, the upper bounds of Ee /8.5 Ef'a’b, E;"S’b, and E(g)’&’b are
independent of b (but may depend on ¢, §), and

E;*" + EPOP < C(Eo + 1), (A.37)

b
ES,S,b §/ —*(psSb mga by N=1(1 4 p)N=147 g,
5

N—1+0
2N

S CEy(8™Nt!7 467 ), (A.38)

for some C > O independent of (¢, 8, b), where 9 € (0, 1) is any fixed constant.
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