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Abstract

We study long time dynamics of combustive processes in random media, mod-
eled by reaction–diffusion equations with random ignition reactions. One expects
that under reasonable hypotheses on the randomness, the large space-time scale
dynamics of solutions to these equations is almost surely governed by a different
effective PDE, which should be a homogeneous Hamilton–Jacobi equation. While
this was previously proved in one dimension as well as for isotropic reactions in
several dimensions (i.e., with radially symmetric laws), we provide here the first
proof of this phenomenon in the general non-isotropic multidimensional setting.
Our results hold for reactions that have finite ranges of dependence (i.e., their val-
ues are independent at sufficiently distant points in space) as well as for some with
infinite ranges of dependence, and are based on proving existence of deterministic
front (propagation) speeds in all directions for these reactions.

1. Introduction

The reaction–diffusion equation

ut = �u + f (x, u, ω), (1.1)

with (t, x) ∈ (0,∞) ×R
d and ω an element of some probability space (�,F ,P),

models a host of physical phenomena occurring in random media. These phe-
nomena all exhibit diffusion, modeled by the Laplacian, as well as some reactive
process, modeled by the non-linear reaction function f . The nature of the latter
process determines the behavior of f in the variable u, which models the property
under study and will take values between its minimum and maximum, customarily
normalized to be 0 and 1.

When u = 0 is an unstable equilibrium for the (x, ω)-dependent ODE u̇ =
f (x, u, ω) and u = 1 a stable one (e.g., when f > 0 for u ∈ (0, 1)), the reaction
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is of the monostable type. A special case of this are the Kolmogorov–Petrovskii–
Piskunov (KPP) or Fisher-KPP type reactions [9,13], for which the growth rate
u−1 f (x, u, ω) of the reactive process is largest near u = 0 for each (x, ω) (e.g., in
the case of logistic growth functions f (x, u, ω) = g(x, ω)u(1−u)). These reactions
are used in, for instance, population dynamics models, with u being the normalized
population density and u−1 f (x, u, ω) the sum of the birth and death rates. When
both u = 0 and u = 1 are asymptotically stable equilibria for u̇ = f (x, u, ω)

(e.g., when f (x, u, ω) = g(x, ω)u(1−u)(u −h(x, ω)) with h(x, ω) ∈ (0, 1)), the
reaction is of the bistable type, used in modeling phase transition processes.

In this paper wewill consider the third main type of reactions, modeling various
combustive processes, including forest fires. Here u is the normalized temperature
and f vanishes for all u below some possibly (x, ω)-dependent ignition temperature
(so u = 0 is typically a stable but not asymptotically stable equilibrium), which
is why these reactions are of the ignition type. Our interest is in the long term
dynamics of solutions to (1.1). The PDE typically exhibits ballistic propagation
of solutions, which means that the state u ∼ 1 invades the region where initially
u ∼ 0 at a linear-in-time rate. If the medium is sufficiently random, one expects
this invasion to acquire a deterministic asymptotic speed as t → ∞, which may
depend on the invading direction but not on the position (or ω), due to averaging
of the variations in the medium over long distances.

This phenomenon is called homogenization, because over large space-time
scales, solutions behave as if the medium were possibly non-isotropic but homo-
geneous (i.e., direction- but not position-dependent). One can study solutions on
these scales by rescaling them via the transformation

uε(t, x, ω) := u
(
ε−1t, ε−1x, ω

)
, (1.2)

with ε > 0 small, which turns (1.1) into

(uε)t = ε�uε + ε−1 f
(
ε−1x, uε, ω

)
. (1.3)

If we now take ε → 0, the hope is to recover some (almost surely) ω-independent
limit uε → ū, in an appropriate sense and for appropriate initial data uε(0, ·, ω),
that should ideally also satisfy some limiting effective PDE.

However, unlike in typical homogenization scenarios, the limiting PDE for
reaction–diffusion equations cannot be another reaction–diffusion equation, or even
another second order parabolic PDE.The reason for this is that one expects solutions
to exhibit uniformly bounded in time width of the regions where transition between
values u ∼ 0 and u ∼ 1 happens, which means that this width becomes zero in
the scaling from (1.2) as ε → 0, and any limiting function ū takes only values 0
and 1. For instance, in the homogeneous deterministic reaction case f (x, u, ω) =
f (u), the simplest solutions are traveling fronts, which are of the form u(t, x) =
U (x · e − ct) for some vector e ∈ S

d−1, where the front profile and speed (U, c)
solve the ODE U ′′ + cU ′ + f (U ) = 0 with boundary values U (−∞) = 1 and
U (∞) = 0. Clearly, the region where u(t, ·) ∈ [η, 1 − η] for any fixed η > 0 is
a slab of a constant-in-t width that shrinks to zero as we take ε → 0 in (1.2), but
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then the limiting solution will be the (discontinuous) characteristic function of the
half-space-time {x · e < ct}, which does not solve a second order parabolic PDE.

This suggests that any effective equation should be of the first order, with any
limiting function ū being its discontinuous solution, taking only values 0 and 1. The
expectation of the effective (asymptotic) propagation speeds being direction- but not
position-dependent then suggests that the effective PDE should be the Hamilton–
Jacobi equation

ūt = c∗
(

− ∇u

|∇u|
)

|∇ū|, (1.4)

with c∗(e)being the (x, ω)-independent effective propagation speed in direction e ∈
S

d−1.Moreover, the traveling front solutions above suggest that in the deterministic
homogeneous reaction case, the speed c∗(e) should be precisely the traveling front
speed c (which is also direction-independent in that case). One may therefore hope
that in the general random case, it is also possible to find some front-like solutions
in all directions e ∈ S

d−1, and that each of these has an associated speed c∗(e) in
some sense.

Unfortunately, there are some serious obstacles to realizing this hope. The first
is that its basic premise, that the width of the transition region where u(t, ·, ω) ∈
[η, 1 − η] stays uniformly bounded in time (or at least o(t)) for any fixed η > 0,
may not be true in some media. The second author in fact showed that this need not
happen for bistable reactions, even for periodic ones in one dimension [28], where
solutions can develop linearly-in-time growing intervals on which they are close to
periodic functions with values strictly away from 0 and 1. As a result, there may
be no analog of a traveling front for such reactions, and hence no homogenization
as described above.

Recalling pictures of forest fires, which are usually actively burning only along
the margins of the already burnt area, one may hope that such issues do not occur
for ignition reactions. The second author showed that this is indeed the case in
dimensions d � 3 [29], where thewidths of the transition regions (properly defined,
as these regions may have complicated geometries in heterogeneous media; see
(1.7) below) indeed remain uniformly bounded in time, by constants depending on
η above and some bounds on the reaction. However, he also showed in [29] that this
need not be the case in dimensions d � 4, where these widths may grow linearly
in time as in the above bistable example. Nevertheless, the relevant examples have
a special structure and it is not clear to what extent they indicate possible almost
sure behaviors of solutions for various stochastic reactions (in particular, those with
finite ranges of spatial dependence).

All of this demonstrates the difficulties associatedwith even thequestionwhether
solutions to (1.1) have some basic properties required for one to be able to initiate
the study of homogenization for (1.1). This is the reason for relatively little progress
in this area, until recently, particularly in the multi-dimensional case d � 2. In the
one-dimensional setting, there are only two directions of propagation of solutions,
and homogenization simply refers to showing that solutions starting from large
enough compactly supported initial data propagate almost surely with some de-
terministic asymptotic speeds c+ (to the right) and c− (to the left). Moreover, the
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transition regions (which are intervals) have trivial geometries. This allowed sev-
eral authors to obtain such “homogenization” results in this setting for all three
types of stationary ergodic reactions—KPP [10], ignition [19,27], and bistable
[19,22,28]—although with some non-trivial limitations in the latter case, due to
the counterexamples from [28] mentioned above. There are also a number of 1D
and quasi-1D results concerning related models and/or periodic reactions, which
we do not discuss here.

Once we move to higher dimensions, the geometry of the level sets of solutions
becomesmuchmore complicated, and relatively little is known. One previous result
appears in the paper [17] by Lions and Souganidis, which studies homogenization
for viscous Hamilton–Jacobi equations. Their Theorem 9.3 states that homoge-
nization also holds for general stationary ergodic KPP reactions in any dimension.
(While it is indicated in [17] that its proof can be obtained viamethods from [17,18]
and two other papers, a proof is not provided there.) The reason why Hamilton–
Jacobi homogenization techniques should be applicable to KPP reaction–diffusion
equations is that the dynamics of solutions for these reactions is determined, to the
leading order, by the linearization of (1.1) (i.e., of f ) at u = 0. This linear PDE can
then be turned into a viscous Hamilton–Jacobi equation with a convex Hamiltonian
via the Hopf-Cole transformation.

This linearization approach can onlywork for KPP reactions, and is not applica-
ble to other types, including other monostable ones. In particular, it cannot be used
in ignition–reaction–based models of combustion, where one has to work with the
original non-linear PDE. Because of this complication, so far there has only been a
single result proving homogenization for (non-KPP) stationary ergodic reactions in
several dimensions. This is a conditional result by Lin and the second author [16],
who proved homogenization for ignition reactions whose Wulff shapes exist and
have no corners (aWulff shape for (1.1), if it exists, is an open set S ⊆ R

d such that
solutions starting from any large enough compactly supported initial data converge
to χS as t → ∞, after being scaled down by t in space). They also showed that
these properties hold for isotropic ignition reactions in dimensions d � 3, with
the dimension limitation being used to show that the Wulff shape exists (recall the
above-mentioned examples of solutions with linearly growing widths of transition
regions in dimensions d � 4 from [29]) and isotropy then guaranteeing that the
Wulff shape is a (corner-less) ball centered at the origin.We also note that it follows
from a result of Caffarelli, Lee, and Mellet [6] that Wulff shapes can have corners,
even for periodic ignition reactions in two dimensions.

In fact, even homogenization for periodic reactions in several dimensions has
seen fairly limited progress until recently, despite many results concerning exis-
tence of pulsating fronts andWulff shapes for such reactions (see [5,16,23,24] and
references therein). While Theorem 9.3 in [17] applies to periodic KPP reactions
(and is based in part on methods from [18], applicable to KPP reactions in periodic
media), homogenization for periodic non-KPP reactions in several dimensions has
only recently been obtained for ignition reactions as a byproduct of the method in
[16], as well as for monostable reactions by Alfaro and Giletti [1] (for initial data
with smooth convex supports, later extended to general convex supports in [16]).



Long Time Dynamics for Combustion in Random Media 37

In this paperwe prove for the first time unconditional stochastic homogenization
for ignition reactions, without assuming the reaction to be isotropic. Our Theorems
1.3 and 1.4 below are valid for random pure ignition reactions (see Definition 1.2)
in dimensions d � 3 that either have a finite range of dependence (see Definition
1.1) or can be uniformly approximated by such reactions. We also extend these
results in Theorems 1.7 and 1.8 to ignition reactions in any dimension, provided
some a priori assumptions on the dynamics of certain special solutions to (1.1) are
satisfied.

Our proof uses a result from [16], which shows that to prove homogenization,
it suffices to show that the above-mentioned propagation speeds c∗(e) (called front
speeds) exist for all directions e ∈ S

d−1, are almost-surelyω-independent, and also
exclusive (see Definition 6.1). This is, however, a difficult problem in general, and
[16] was only able to show existence of a deterministic front speed in direction e
when the reaction has a Wulff shape with outer normal vector e at some point (this
is where the absence of corners is needed), because then the expandingWulff shape
can be used at large times to locally approximate a front-like solution propagating
in direction e.

To show the existence of deterministic front speeds, we apply amethodmodeled
on the one employed by Armstrong and Cardaliaguet [2] in their proof of homog-
enization for Hamilton–Jacobi equations with α-homogeneous (for α � 1) non-
convex (in ∇u) Hamiltonians with finite ranges of dependence. This was the first
proof of stochastic Hamilton–Jacobi homogenization for non-
convex Hamiltonians in several dimensions without special structural hypotheses
(such as H(x,∇u, ω) = H(∇u)+V (x, ω)).While there aremany homogenization
results for convex and level-set-convex Hamiltonians, including in the paper [3] by
Armstrong, Cardaliaguet, and Souganidis where the method from [2] was first used
to study Hamilton-Jacobi equations (it is based on ideas from the study of first
passage percolation [12,25]), non-convexity of the Hamiltonian presents serious
issues. In fact, similarly to our reaction–diffusion setting, there are examples when
homogenization does not happen for Hamilton–Jacobi equations with stationary
ergodic non-convex Hamiltonians [8,26], even in one dimension. The approach in
[2] overcomes these problems by leveraging the finite range of dependence hypoth-
esis (which is akin to an i.i.d. medium setting) and the resulting mixing properties
of the environment to obtain strong quantitative estimates on the solutions where
a soft approach via ergodic theorems does not appear to work. These estimates
involve fluctuations of the values of solutions to the so-called metric problem for
any compact set S ⊆ R

d (which is an appropriate time-independent Hamilton–
Jacobi PDE on R

d\S) with a smooth enough boundary. These estimates improve
at an exponential rate as the distance from S increases, and were then upgraded to
similar estimates for S being any half-space.

Here we apply this strategy to reaction–diffusion equations, with the relevant
estimates involving fluctuations of “arrival times” at any point x ∈ R

d for solutions
initially approximating χS (we only need to consider S = Bk(0) for any k ∈ N).
We still obtain an exponentially-in-d(x, S) decaying estimate (see Proposition 3.8
below), albeit at a slower rate. However, we are also able to extend it to some
reactions with infinite ranges of dependence (see Proposition 4.2) by carefully
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tracking the dependence of this rate on the range of dependence of f when the latter
is finite, something that was described in [2] as completely open in the Hamilton–
Jacobi setting (and appears to remain such at this time)!

After we upgrade this estimate from balls to half-spaces, we are able to prove
existence of deterministic exclusive front speeds in all directions, and thus homog-
enization after using results from [16]. We note that while the effective equations in
Hamilton–Jacobi homogenization are stillHamilton–Jacobi PDE (although someof
their terms can disappear in the homogenization process), and the limiting functions
are their continuous solutions, our limiting functions are discontinuous viscosity so-
lutions to (1.4), which causes extra difficulties in the analysis. For a more thorough
discussion of similarities and differences between Hamilton–Jacobi homogeniza-
tion for non-convex Hamiltonians and reaction–diffusion homogenization, as well
as for further references, we refer the reader to the introduction of [16].

1.1. Hypotheses and Main Results

Let us now turn to our main results. Our goal is to show that as ε → 0, solutions
to (1.3) with initial data approximating χA for any open set A ⊆ R

d converge to
the unique (discontinuous viscosity) solution to (1.4) with initial data χA. Here, of
course, c∗(e) are the deterministic front speeds discussed above, and establishing
their existence forms the bulk of our work.

One can show that if c∗ : Sd−1 → (0,∞) is Lipschitz (which will be our case),
then for any open A ⊆ R

d , there is an open set 	A,c∗ ⊆ (0,∞) × R
d such that

the unique solution to (1.4) with initial data χA is ū := χ	A,c∗ . In fact, this set can
also be found from the formula

	A,c∗ := {
(t, x) ∈ (0,∞) × R

d
∣∣ v(t, x) > 0

}
, (1.5)

where v0 : Rd → R is any Lipschitz function satisfying v0 > 0 on A and v0 < 0 on
R

d\A, and v is the unique (continuous) viscosity solution to (1.4) with v(0, ·) = v0.
The open set 	A,c∗

is then independent of the choice of v0 as above, and ∂	A,c∗

has zero measure.
All these claims are contained in Theorem 5.3 in [16], which is a combination

of results by Barles, Soner, and Souganidis [4], Crandall, Ishii, and Lions [7],
Souganidis [21], and Soravia [20]. The reader can also consult Definition 5.1 in
[16] for the definition of viscosity solutions to initial value problems for (1.4).

We also note that it was shown in the proof of Theorem 1.4(iii) in [16] that for
any convex open A ⊆ R

d we have the explicit formula

	A,c∗ =
⋂

e∈Sd−1

{
(t, x) ∈ (0,∞) × R

d
∣∣∣∣ x · e < sup

y∈∂ A
y · e + c∗(e)t

}
.

In particular, if A = {x ∈ R
d | x · e < 0} is the half-space with outer normal e,

then we obviously have 	A,c∗ = {(t, x) ∈ (0,∞) ×R
d | x · e < c∗(e)t}. This also
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shows that if we let (	A,c∗
)t be the spatial slice of 	A,c∗

at the time t > 0, then
for any open bounded A we have

lim
t→∞

(	A,c∗
)t

t
=

⋂

e∈Sd−1

{
y ∈ R

d
∣∣ y · e < c∗(e)

}

(e.g., in the sense of Hausdorff distances of boundaries of sets). Hence the set
on the right-hand side is the Wulff shape for (1.4), and therefore also for (1.1) if
homogenization holds.

We will consider here stationary ignition reactions that either have finite ranges
of dependence, or can be uniformly approximated by such reactions (see Example
1.5 below for a simple example of the latter). These properties are summarized in
the following definition and in hypothesis (H1) below.

Definition 1.1. Consider a probability space (�,F ,P) that is endowedwith a group
of measure-preserving bijections {ϒy : � → �}y∈Rd such that for all y, z ∈ R

d

we have

ϒy ◦ ϒz = ϒy+z .

A reaction function f : R
d × [0, 1] × � → [0,∞), uniformly continuous in

the first two arguments and with the random variables Xx,u := f (x, u, ·) being F-
measurable for all (x, u) ∈ R

d ×[0, 1], is called stationary if for each (x, y, u, ω) ∈
R
2d × [0, 1] × � we have

f (x, u, ϒyω) = f (x + y, u, ω).

The range of dependence of such f is the infimum of all r ∈ R
+ ∪ {∞} such that

E(U ) and E(V ) are P-independent

for any U, V ⊆ R
d with d(U, V ) � r , where E(U ) is the σ -algebra generated by

the family of random variables {Xx,u | (x, u) ∈ U × [0, 1]}.
Remark. While stationary reactions with finite ranges of dependence are also sta-
tionary ergodic, we will not need to use this property here due to our quantitative
approach. We note that although the main results in [16] apply to stationary ergodic
reactions, that assumption is only needed to prove that all the deterministic (exclu-
sive) front speeds for (1.1) exist and are strong (see Definition 6.1 below), which
we instead prove in Sects. 3–6.

We will consider here stationary reaction functions f : Rd × [0, 1] × � →
[0,∞), and extend them to Rd × R × � by 0 whenever we need to evaluate them
with u /∈ [0, 1]. Additionally, our reactions will be of the ignition type. That is, we
will assume the following hypothesis:

(H1) The reaction f is stationary, Lipschitz in both x and u with constant
M � 1, and there are θ1 ∈ (0, 1

2 ), m1 > 1, and α1 > 0 such that f (·, u, ·) ≡ 0
for u ∈ [0, θ1] ∪ {1}, f (·, u, ·) � α1(1 − u)m1 for u ∈ [1 − θ1, 1), and f is
non-increasing in u ∈ [1 − θ1, 1).
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It is not difficult to see that one cannot hope for general reactions satisfying
(H1) to lead to homogenization for (1.1), even if f is independent of (x, ω) (see,
e.g., [28,29]). Indeed, if f is allowed to vanish at some intermediate value θ ′ ∈
(θ1, 1 − θ1) and is also sufficiently large for some u ∈ (θ1, θ

′), solutions could
easily form “plateaus” with values near θ ′ (or another intermediate value) whose
widths grow linearly in time. And if that happens, the widths of these plateaus will
not vanish even after the scaling from (1.2) is applied.

To avoid this scenario, one should assume that as the argument u grows from 0
to 1 (for any fixed (x, ω)), the reaction f cannot become arbitrarily small (except
near u = 1) once it has become large enough. This is expressed in Definition 2.3
below, whichwas used in [29] to show that not only solutions to (1.1) do not develop
such plateaus, but the transition from values u ∼ 0 to values u ∼ 1 in fact occurs
over uniformly-in-time bounded distances in space (see, e.g., Lemma 2.4 below).
Our most general results apply in this setting, as well as when one instead only
assumes at most O(tα) growth of the above transition distances, with α < 1 (see
hypothesis (H2’) below).

However, for the sake of simplicity, in our first two results we will consider the
case where the reaction does not become arbitrarily small (except near u = 1) after
it has become just positive. That is, once u has exceeded the ignition temperature

θx,ω := sup{θ � 0 | f (x, u, ω) = 0 for all u ∈ [0, θ ]} (∈ [θ1, 1 − θ1)).

Of course, this is the case for any realistic model of combustion, where the reaction
rate is positive at all temperatures above the ignition temperature (its vanishing at
u = 1 is due to fuel exhaustion in systems of equations for temperature and concen-
tration of the reactant,which in certain regimes simplify to (1.1)with f (·, 1, ·) ≡ 0).

Definition 1.2. A reaction f satisfying (H1) is a stationary pure ignition reaction
if for each η > 0 we have

inf
(x,ω)∈Rd×�
θx,ω+η<1−θ1

f (x, θx,ω + η, ω) > 0.

Remark.This definition (with the bound for u ∈ [1−θ1, 1) being inf(x,ω) f (x, u, ω)

> 0) is from [28]. Note that it is trivially satisfied, for instance, when f (x, u, ω) =
g(x, ω)F0(u), with g bounded away from 0 and ∞, Lipschitz in x , and stationary
in ω, and with Lipschitz F0 : [0, 1] → [0,∞) such that F0 = 0 on [0, θ0] ∪ {1}
and F0 > 0 on (θ0, 1) for some θ0 ∈ (0, 1), and F0 is non-increasing and bounded
below by α1(1 − u)m1 near 1 (for some m1, α1).

We will therefore start by assuming the following hypothesis:

(H2) f is a stationary pure ignition reaction and d � 3.

The additional restriction d � 3 is necessitated by the above-mentioned sur-
prising result from [29], where the second author showed that even for pure ignition
reactions, transition from values u = η to values u = 1 − η may only occur over
linearly-in-time growing distances for solutions to (1.1) and all small η > 0 in
dimensions d � 4 (while these distances remain bounded in dimensions d � 3).
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We are now ready to state our first main homogenization result. In it and later
we use the notation Br (A) := A+ (Br (0)∪{0}) and A0

r := A\Br (∂ A) for A ⊆ R
d

and r � 0. For the sake of generality, we also allow O(1) shifts and o(1) errors in
initial data as ε → 0 in (1.3).

Theorem 1.3. If f satisfying (H2) has a finite range of dependence, then there is
Lipschitz c∗ : Sd−1 → (0,∞) such that the following holds for any open A ⊆ R

d

and 	A,c∗
from (1.5). If � > 0, and for all ω ∈ � and ε > 0, the function uε(·, ·, ω)

solves (1.3) and satisfies

(1 − θ1)χA0
ψ(ε)

� uε(0, · + yε, ω) � χBψ(ε)(A) + ψ(ε)χRd\Bψ(ε)(A) (1.6)

for some yε ∈ B�(0) and some ψ with limε→0 ψ(ε) = 0 (when yε = 0 and
ψ(ε) = 0, this becomes just (1 − θ1)χA � uε(0, ·, ω) � χA), then for almost all
ω ∈ � we have

lim
ε→0

uε(·, · + yε, ω) = χ	A,c∗

locally uniformly on ([0,∞) × R
d)\∂	A,c∗

.

Remark. Our proofs use results from [16] which in fact show that in all our main
results, 1− θ1 in (1.6) can be replaced by any θ satisfying inf(x,u,ω)∈Rd×[θ,1−θ1]×�

f (x, u, ω) > 0.

We next extend this to the case of reactions with infinite ranges of dependence
that are uniform limits of reactions with finite ranges of dependence. Here we will
also require some uniform decay of f near u = 1. This is the content of the next
two hypotheses.

(H3) There are m3 � 1 and α3 > 0 such that for all η ∈ (0, 1
2θ1] we have

inf
(x,ω)∈Rd×�
u∈[1−θ1/2,1]

( f (x, u − η, ω) − f (x, u, ω)) � α3η
m3 .

(H4) There are m4, n4, α4 > 0 such that for each n � n4, there exists a
stationary reaction fn with range of dependence� n and ‖ fn− f ‖∞ � α4n−m4 .

Theorem 1.4. Theorem 1.3 holds for any f satisfying (H2)–(H4).

While this result does not cover all interesting random pure ignition reactions
with correlations of f (x, u, ·) and f (y, v, ·) decreasing as |x − y| → ∞ (for all
u, v ∈ [0, 1]), it does apply to many of them. Here is a simple such example.

Example 1.5. Let d � 3, F0 : [0, 1] → [0,∞) be Lipschitz with F0 = 0 on
[0, θ0] ∪ {1} and F0 > 0 on (θ0, 1) for some θ0 ∈ (0, 1), and F ′

0(u) � −(1 −
u)m near u = 1 for some m. Also pick some Lipschitz g : Rd → [0,∞) with
supx∈Rd |x |m′

g(x) < ∞ for some m′ > 0, and some Lebesgue measurable a :
[0, 1] → [0, 1]. Consider the product probability space � = [0, 1]Zd

, with the
Lebesgue measure on each copy of [0, 1], and for any k ∈ Z

d , denote by ωk the kth
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coordinate of ω ∈ � (note that these are i.i.d. random variables). Let ϒy : � → �

for y ∈ Z
d be given by (ϒyω)k := ωy+k for all k ∈ Z

d . Then the random reaction
strength model

f (x, u, ω) :=
(
1 + sup

k∈Zd
a(ωk)g(x − k)

)
F0(u)

satisfies (H2)–(H4) (see next paragraph for stationarity), with fn defined as f but
with g replaced by gn(x) := g(x)min{1, d(x,Rd\Bn/2(0))}. Hence Theorem 1.4
applies. Note that f may have infinite range of dependence when g is not compactly
supported.

Note also that while this f is stationary only with respect to integer shifts
(i.e., y ∈ Z

d in Definition 1.1), such settings can be easily transformed to the
case considered in the present paper by letting �̃ := � × [0, 1)d with the product
measure, f̃ (x, u, (ω, z)) := f (x + z, u, ω), and ϒ̃y(ω, z) := (ϒ�y+z�ω, {y + z})
for y ∈ R

d . Since inclusion of yε in (1.6) shows that all our main results continue to
hold if we replace the identified full-measure set �̃′ ⊆ �̃ by

⋃
y∈Rd ϒ̃y�̃

′, which
is of the form �′ × [0, 1)d , they then also apply in integer-shift settings.

In the above example and in Theorem 1.4, reactions f with infinite ranges of
dependence are uniform limits of those with finite ranges of dependence. The next
example is a natural situation when this need not be the case, a reaction–diffusion
analog of the setting where sticks of random unbounded lengths are randomly
positioned in R

d . While Theorem 1.4 does not apply here, one can instead use its
generalization, Theorem 1.7 below, which allows this.

Example 1.6. Consider the setting fromExample 1.5, without the functions g and a.
Instead pick some uniformly bounded and uniformly Lipschitz g j : Rd → [0,∞)

( j ∈ N) that satisfy sup j∈N sup|x |> j |x |m′
g j (x) < ∞ for some m′ > 0, and some

Lebesgue measurable a : [0, 1] → N with |a−1( j)| � j−γ for some γ > 3d + 2
and all j ∈ N. Then

f (x, u, ω) :=
(
1 + sup

k∈Zd
ga(ωk)(x − k)

)
F0(u)

satisfies (H3) and (H4’) below (see Example 1.5 for stationarity), with fn defined
as f but with g j replaced by g j,n(x) := g j (x)min{1, 2d(x,Rd\Bn/2(0))}. This
uses the fact that

∑

j�n/2

(n1+m′
4 + j)d |a−1( j)| = o(n−(2d+1+m′

4))

for some m′
4 > 0 (because γ > 3d + 2), with the left-hand side being (up to

a constant factor) an upper bound on the probability that a(ωk) � max{ n
2 , |k| −

n1+m′
4} for at least one k ∈ Z

d . Hence Theorem 1.7 below applies. Note that f
need not be a uniform limit of reactions with finite ranges of dependence when the
functions g j do not decay uniformly to 0 as x → ∞.
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1.2. Generalizations

As we indicated above, it is not clear whether the limitation on the dimension
in (H2) is necessary to obtain a sufficiently general result. However, since both
conditions in (H2) are only needed to guarantee certain estimates for some special
solutions to (1.1) (see Lemma 2.4 below), including that the transition from values
u ∼ 0 to values u ∼ 1 occurs over spatial distances that grow only sub-linearly
in time, as we mentioned above (Lemma 2.4 shows that in the case of (H2) these
distances are in fact uniformly bounded), we can extend our results to more general
settings as long as these estimates still hold there. In particular, this might be the
case for stationary ignition reactions in dimensions d � 4.

In order to state this alternative to hypothesis (H2), let us define for any 0 < η <

θ < 1 the width of the transition zone from η to θ for a solution u : [0,∞)×R
d →

[0, 1] to (1.1) at some time t � 0 to be (see [29])

Lu,η,θ (t) := inf
{

L > 0
∣∣∣ {x ∈ R

d | u(t, x) � η} ⊆ BL

({
x ∈ R

d | u(t, x) � θ
}) }

.

(1.7)

The special solutions for which we need to assume certain bounds on these quan-
tities will be essentially those evolving from characteristic functions of the balls
Bk(0) ⊆ R

d , with k ∈ N.
It will however be more convenient to work with approximations u0,k of these

characteristic functions that have two useful properties. First, they are close to 1
on Bk(0) but are strictly below 1 (which will allow us to treat general initial data
from (1.6)), and are supported on Bk+R0(0) for some fixed R0. Specifically, we will
require that

(1 − θ∗)χBk (0) � u0,k � (1 − θ∗)χBk+R0 (0) (1.8)

holds with θ∗ > 0 from (2.1) below. We note that we could in fact replace 1 − θ∗
in (1.8) by any θ < 1 satisfying inf(x,u,ω)∈Rd×[θ,1−θ1]×� f (x, u, ω) > 0, but we
make our choice for the sake of convenience (Lemma 2.1 shows that solutions
u : (0,∞) × R

d → [0, 1] with u(t, x) � 1 − θ∗ for some (t, x) ∈ [1,∞) × R
d

converge locally uniformly to 1). The second property is that the corresponding
solutions to (1.1) satisfy ut > 0. For this, it suffices to have

�u0,k + F(u0,k) � 0 (1.9)

with F(u) := inf(x,ω)∈Rd×� f (x, u, ω), which yields �u0,k + f (·, u0,k, ω) � 0
for any ω ∈ �. Then ut > 0 follows for the corresponding solution u at all positive
times because v := ut solves the linear equation vt = �v + fu(x, u(t, x), ω)v

with v(0, ·) � 0 and v(0, ·) �≡ 0 (due to (1.8) and F(1 − θ∗) > 0).
It is easy to construct radial functions satisfying (1.8) and (1.9), since then (1.9)

becomes a simple ordinary differential inequality. (This is in fact possible for any
set S ⊆ R

d , without radial symmetry but still with a uniform R0, and we do so in
Lemma 2.2 below.) Let us now pick one such u0,k for each k ∈ N (any one can be
chosen), and denote by U f the set of all solutions u to (1.1) obtained by choosing
any ω ∈ � and initial data u(0, ·) = u0,k for any k ∈ N. We can now replace (H2)
by
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(H2’) f satisfies (H1) and there are α2 < 1 and m2 > 0 such that

lim sup
t→∞

sup
u∈U f

sup
η>0

Lu,η,1−θ∗(t)

tα2η−m2
< ∞,

lim inf
t→∞ inf

u∈U f

inf
u(t,x)∈[θ∗,1−θ∗] ut (t, x) > 0.

(1.10)

Here U f is as above, with some u0,k satisfying (1.8) and (1.9) for each k ∈
N, and θ∗ = θ∗(M, θ1, m1, α1) from (2.1) and R0 = R0(M, θ1, m1, α1) are
independent of k.

Remark. 1. The first statement in (1.10) allows Lu,η,1−θ∗(t) to grow algebraically
in both η → 0 and t → ∞ (note that α2 < 1 is critical here because the scaling
from (1.2) yields Luε,η,1−θ∗(t) = εLu,η,1−θ∗

(
ε−1t

)
, which will then vanish on any

bounded time interval as we take ε → 0). We note that Lemma 2.4 below shows
that in the case of (H2), the former growth is only logarithmic while the latter is
non-existent.

2. Lemma 2.4 shows that the second statement in (1.10) holds as well if one
assumes (H2) (recall also that all u ∈ U f satisfy ut > 0). Nevertheless, we will
further weaken this hypothesis in Theorem 1.8 below.

3. We could also replace Bk(0) and Bk+R0(0) in (1.8) by Brk (0) and Brk+R0(0)
for any sequence rk → ∞, without any change to our results.

After replacing (H2) by (H2’), we must also adjust (H4) in the extension of
Theorem 1.4, in order to ensure that the reactions fn will satisfy (H2’)with uniform
constants. Note that when (H2) holds, we will show in Corollary 2.7 that fn from
(H4) can be perturbed so that this is the case, but we do not know whether this
remains true when we only assume (H2’).

In addition, we also state this new version of (H4) so that it applies to some
f that are not uniform limits of reactions with finite ranges of dependence (see
Example 1.6 above).

(H4’) There are m4, m′
4, n4, α4 > 0 such that for each n � n4, there exists a

stationary reaction fn with range of dependence � n and

P

⎛
⎝ sup

|x |<n1+m′
4

sup
u∈[0,1]

| fn(x, u, ·) − f (x, u, ·)| > α4n−m4

⎞
⎠ � n−(2d+1+m′

4).

Moreover, (H2’) holds uniformly in n (i.e., reactions fn satisfy (H1) with the
same M, θ1, m1, α1, and (1.10) with U f replaced by

⋃
n�n4 U fn ).

We note that the initial data u0,k used in the definition of U fn are in principle
allowed to be different for distinct n (but θ∗ and R0 are uniform in n; also rk in
Remark 3 above).

Theorem 1.7. Theorem 1.3 holds for any f that either satisfies (H2’) and has a
finite range of dependence, or satisfies (H3) and (H4’).
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Finally, we show that one can also allow a power decay in time in the second
statement in (1.10), at the expense of either having to extend this assumption to a
slightly larger family of special solutions or obtaining the result for a smaller family
of initial data.

For each a ∈ [0, 1
2θ

∗], let U f,a be defined as U f above, but with (1.8) replaced
by

(1 − a)(1 − θ∗)χBk (0) + a � u0,k,a � (1 − a)(1 − θ∗)χBk+R0 (0) + a (1.11)

for initial data denoted u0,k,a instead of u0,k (so now u0,k,a − a is supported in
Bk+R0(0)). ObviouslyU f,0 = U f , and one canfind such initial data (for any S ⊆ R

d

and with R0 uniform in a) via Lemma 2.2 with α1 replaced by α1(1 − 1
8θ1)

m1−1

(since a � 1
8θ1) and then applying the scaling u0,S,a := (1 − a)u0,S + a.

We can now replace (H2’) and (H4’) by

(H2”) f satisfies (H1) and there are α2 < 1, m2 > 0, a2 ∈ [0, 1
2θ

∗], and
α′
2 < min{ 1

m1−1 ,
1−α2

m2
} such that

lim sup
t→∞

sup
a∈[0,a2]

sup
u∈U f,a

sup
η>0

Lu,η+a,1−θ∗(t)

tα2η−m2
< ∞,

lim inf
t→∞ inf

a∈[0,a2]
inf

u∈U f,a

inf
u(t,x)∈[θ∗,1−θ∗] ut (t, x) tα

′
2 > 0.

(1.12)

Here U f,a is as above, with some u0,k,a satisfying (1.11) and (1.9) for each
k ∈ N, and θ∗ = θ∗(M, θ1, m1, α1) from (2.1) and R0 = R0(M, θ1, m1, α1)

are independent of k.
(H4”) f satisfies (H4’) with (H2”) in place of (H2’), and also α′

2 < m4
m3

.

Of course, these hypotheses coincide with (H2’) and (H4’)when a2 = 0 = α′
2.

With them, we can now state our second generalization of Theorems 1.3 and 1.4.

Theorem 1.8. Assume that f either satisfies (H2”) and has a finite range of de-
pendence, or satisfies (H3) and (H4”).

(i) If a2 > 0, then Theorem 1.3 holds for such f .
(ii) If a2 = 0, then Theorem 1.3 holds for such f with A convex and (1.6) replaced

by

(1 − θ1)χA0
ψ(ε)

� uε(0, · + yε, ω) � (1 − �−1)χBψ(ε)(A) .

1.3. Organization of the Paper and Acknowledgements

In Sect. 2 we collect most important notation and prove several preliminary
results. These include Corollary 2.7, which shows that Theorems 1.3 and 1.4 follow
fromTheorem 1.7. It will therefore suffice to prove Theorems 1.7 and 1.8.We prove
the first one in Sect. 6, after obtaining crucial quantitative estimates on long-time
dynamics of solutions to (1.1) in Sects. 3–5 (specifically, Propositions 3.8, 4.2,
and 5.1, with the first two of these being essentially the same result but assuming
(H2’)+finite range in the first and (H3)+(H4’) in the second). In Sect. 7 we then
show how to extend all these results to the cases considered in Theorem 1.8.
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2. Preliminaries and Notation

In this section we collect some previous results and preliminary lemmas, all
of which hold uniformly in ω and without needing to assume stationarity of the
reaction. We will therefore use the following hypothesis.

(H1’) f satisfies (H1) except possibly the stationarity hypothesis.

At the end of the section we also collect all the important notations in one place.
Let us start with a basic lower bound (see, e.g., [29, Lemma 3.1]), which

shows that general solutions to (1.1) propagate with speed no less than some
c0 = c0(M, θ1, m1, α1) > 0. We will choose this to be the unique front speed
for the homogeneous reaction F0 : [0, 1] → [0,∞) defined to be the largest
M-Lipschitz function with F0(u) � α1(1− u)m1χ[1−θ1,1](u) (so clearly F0 � F).

Hence c0 is the unique number such that the PDE ut = uxx +F0(u) in one space
dimension has a traveling front solution u(t, x) = U (x − c0t) with U (−∞) = 1
and U (∞) = 0.

Lemma 2.1. There exists θ2 = θ2(M, θ1, m1, α1) < 1 such that for each c < c0
and θ < 1, there is κ0 = κ0(M, θ1, m1, α1, c, θ) � 1 such that the following holds.
If u : (0,∞) × R

d → [0, 1] is a solution to (1.1) with f satisfying (H1’) and
with some ω ∈ �, and if u(t0, y) � θ2 for some t0 � 1 and y ∈ R

d , then for all
t � t0 + κ0,

inf
|x−y|�c(t−t0)

u(t, x) � θ.

If we also have that ut � 0, then this clearly holds with any t0 � 0 (and κ0 increased
by 1).

Now let

θ∗ := 1

4
min{1 − θ2, θ1}, (2.1)

where θ2 = θ2(M, 1
2θ1, m1, α1(1 − 1

8θ1)
m1−1) < 1.

Remark. Addition of the factors 1
2 and (1 − 1

8θ1)
m1−1 here is due to the scaling

u �→ (1−a)u+a mentioned before (H2”), as we shall see in Sect. 7. All arguments
before Proposition 7.4 will only require θ2 = θ2(M, θ1, m1, α1) here, and also only
that θ∗ � 1

2 min{1 − θ2, θ1}. So we could define θ∗ this way in Theorem 1.7 and
its proof.

In the rest of the paper we will primarily use Lemma 2.1 with c = c0
2 and

θ = 1 − θ∗, and we will therefore define

κ0 := κ0

(
M, θ1, m1, α1,

c0
2

, 1 − θ∗) . (2.2)

Having defined this θ∗, let us next construct the initial data u0,S from the
introduction, which are perturbations of the functions χS that also satisfy (1.9).



Long Time Dynamics for Combustion in Random Media 47

Lemma 2.2. There is R0 = R0(M, θ1, m1, α1) � 1 such that for any f satisfying
(H1’) and S ⊆ R

d , there is a smooth function u0,S satisfying (1.9) and

(1 − θ∗)χS � u0,S � (1 − θ∗)χBR0 (S). (2.3)

Remark. Recall that (1.9) implies that the relevant solutions to (1.1) satisfy ut > 0.
Moreover, (2.3) yields the uniform bound Lu,η,1−θ∗(0) � R0 for all η ∈ (0, 1−θ∗)
and S ⊆ R

d , which is relevant for the next result.

Lemma 2.2 is proved in “Appendix A”.
Let us now turn to the consequences of (H2) obtained in [29]. In fact, these

results hold for the following more general classes of functions.

Definition 2.3. For M, θ1, m1, α1 from (H1) (and F0 defined above), and for any
ζ, ξ > 0, let F(F0, M, θ1, ζ, ξ) be the class of all f satisfying (H1’) such that

inf
(x,ω)∈Rd×�

u∈[γ f (x,ω;ζ ),1−θ1]
f (x, u, ω) � ξ,

where (with the convention inf ∅ = ∞)

γ f (x, ω; ζ ) := inf{u � 0 | f (x, u, ω) > ζu}.
Remark. 1. Although we could instead write F(M, θ1, m1, α1, ζ, ξ), we use nota-
tion from [29].

2. Note that pure ignition reactions belong to
⋃

ξ>0 F(F0, M, θ1, ζ, ξ) for any
ζ > 0.

It was shown in [29] that if d � 3 and f is from the class F(F0, M, θ1, ζ, ξ)

for some F0, M, θ1, ξ and ζ < c20/4, then transitions from values u ∼ 0 to values
u ∼ 1 for fairly general solutions to (1.1) occur over uniformly-in-time bounded
distances. In view of our interest in solutions from U f , with initial data satisfying
Lemma 2.2, the following result will be relevant:

Lemma 2.4. Let d � 3, let F0, M, θ1 be as in Definition 2.3 and θ∗ from (2.1), and
consider any ξ > 0 and ζ < c20/4. There is � > 0 and for any η ∈ (0, 1

2 ) there
are μη, κη > 0 such that if f ∈ F(F0, M, θ1, ζ, ξ) and u solves (1.1) with some
ω ∈ � and initial data satisfying Lemma 2.2 for some S ⊆ R

d , then

sup
t�0& η∈(0,1−θ∗)

Lu,η,1−θ∗(t)

1 + | ln η| � � (2.4)

and for any η > 0 we have

inf
(t,x)∈(κη,∞)×R

d

u(t,x)∈[η,1−η]
ut (t, x) � μη. (2.5)
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Proof. Recall that we have Lu,η,1−θ∗(0) � R0 for all η ∈ (0, 1 − θ∗). We then
obtain (2.5) from [29, Theorem 2.5(i)] with (ε′, ε) = (1 − θ∗, η) (we can choose
there ε0 = θ∗, and then ε′ = 1− ε0), with independence of κη on u due to Remark
1 after the theorem.

To obtain (2.4), we instead use (4.14) in [29]with (ε0, h, t0) = (θ∗, 0, 0) (where
ε0 was used to define the function Z y in (4.14)). Then the bound Z y(t0)−Y h

y (t0) �
R0 for all y ∈ R

d follows from Lu,η,1−θ∗(0) � R0 for all η ∈ (0, 1 − θ∗),
so (4.14) yields Z y(t) − Y h

y (t) � λ for all (t, y) ∈ [0,∞) × R
d and some λ =

λ(F0, M, θ1, ζ, ξ). The definition of Y h
y (t) shows that if u(t, y) � η for some (t, y),

then Y h
y (t) � ψ−1( 1

η
), with ψ ′′(r) + d−1

r ψ ′(r) = ζψ(r) on (0,∞) and ψ(0) = 1

(hence we have limr→∞ r (d−1)/2e−√
ζrψ(r) ∈ (0,∞)). Therefore ψ(r) � e

√
ζr/2

for all large enough r , so Z y(t) � λ + 2√
ζ
| ln η| for all small enough η. But since

Z y(t) is the distance from y to the nearest point x with u(t, x) � 1− ε0 = 1− θ∗,
we obtain Lu,η,1−θ∗(t) � λ + 2√

ζ
| ln η| for all t � 0 and all small enough η > 0.

This yields (2.4) with some � = �(F0, M, θ1, ζ, ξ). ��
The next result is a counterpart of Lemma 2.1 (see [16, Lemma 2.2]). It shows

that the speed of propagation of perturbations of solutions to (1.1) is bounded above
by 2

√
Md (in fact, the bound 2

√
M works as well, but we will not need it here).

Lemma 2.5. Let r > 0 and y ∈ R
d , and let u1 : [0,∞) × Br (y) → (−∞, 1] be a

subsolution and u2 : [0,∞)× Br (y) → [0,∞) a supersolution to (1.1) with some
f satisfying (H1’) and some ω ∈ �. If u1(0, ·) � u2(0, ·) on Br (y), then for all
(t, x) ∈ [0,∞) × Br (y) we have

u1(t, x) � u2(t, x) + 2d e
√

M/d
(
|x−y|−r+2

√
Md t

)
.

Remark. This was stated in [16] with u1, u2 having values in [0, 1] only, but the
proof applies to our case without change.

This yields the following corollary (as above, c1 in this result could be just
2
√

M ):

Corollary 2.6. If u : [0,∞) × R
d → [0, 1] solves (1.1) with some f satisfying

(H1’) and some ω ∈ �, then for any t � 0 we have

{x ∈ R
d | u(t, x) � 1 − θ1} ⊆ Bc1t+κ1

({x ∈ R
d | u(0, x) � θ1}

)
,

where

c1 := 2
√

Md > c0 and κ1 := 1 + √
d/M ln

2d

1 − 2θ1
.

Proof. The claim c1 > c0 follows from the well-known estimate c0 < 2
√

M for
any M-Lipschitz ignition reaction F0. If t � 0 and y /∈ Bc1t+κ1({x | u(0, x) � θ1}),
then Lemma 2.5 with u1 = u, u2 ≡ θ1, and r = c1t + κ1 yields

u(t, y) � θ1 + 2d e−√
M/d κ1 < 1 − θ1,

finishing the proof. ��
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We can now use these results to show that Theorems 1.3 and 1.4 follow from
Theorem 1.7, so it will suffice to prove the latter (and then Theorem 1.8). This
also means that we will assume either (H2’) or (H4’) in the rest of Sects. 2–6.
Hence, then there will be μ∗, κ∗ > 0 such that for any u ∈ U f or u ∈ ⋃

n�n4 U fn ,
respectively, we have

sup
t≥0& η>0

Lu,η,1−θ∗(t)

(1 + tα2)η−m2
� μ−1∗ ,

inf
(t,x)∈[κ∗,∞)×R

d

u(t,x)∈[θ∗,1−θ∗]
ut (t, x) � μ∗.

(2.6)

Notice that while (1.10) only allows us to state the first of these claims for t ≥ κ∗,
one can extend this to all t � 0 (with a different μ∗). This is because Lemma 2.5
with x = y shows that if u(t, y) ≥ η for some u ∈ U f (or u ∈ ⋃

n�n4 U fn ),

(t, y) ∈ [0, κ∗] × R
d , and η > 0, then

d(y, Bk(0)) � R0 + √
Md

(
2κ∗ + M−1 ln

2d

η

)

(when u(0, ·) = u0,k), so Lu,η,1−θ∗(t) satisfies the same upper bound because
ut � 0. We note that we could also include t ∈ [0, κ∗) in the second claim of (2.6),
at the expense of some extra work, but this would not be as useful.

Corollary 2.7. (H2) implies (H2’). Also, (H2) and (H4) imply (H4’) for some
sequence of reactions gn in place of fn, with possibly different M, θ1, n4, α4 and
with m′

4 = ∞.

Proof. Remark 2 after Definition 2.3 and Lemma 2.4 show that (H2) implies (H2’)
with α2 = 0 and any m2 > 0.

Let us now assume (H2) and (H4), and with the convention that [a, b] = ∅ if
a > b, let

f̃n(x, u, ω) := min{ fn(x, v, ω) | v ∈ {u} ∪ [1 − θ1, u]}.
These reactions are non-increasing in u ∈ [1−θ1, 1], and still satisfy ‖ f̃n − f ‖∞ �
α4n−m4 , because f is non-increasing in u ∈ [1− θ1, 1]. Also, each f̃n is obviously
stationary with range of dependence no greater than that of fn .

Next, let φ : Rd+1 → [0,∞) be a smooth function supported in B1(0) and
with integral over B1(0) equal to 1. Then let φn(x, u) := n(d+1)m4φ(nm4x, nm4u),
and consider f̃n ∗ φn (with the convolution in (x, u); recall that all reactions are
extended by 0 to u /∈ [0, 1]). With ∇ being either ∇x or ∂u , we then have

‖∇ f̃n ∗ φn‖∞ � ‖∇ f ∗ φn‖∞ + ‖( f̃n − f ) ∗ ∇φn‖∞
� M + α4n−m4‖∇φn‖1 = M + α4‖∇φ‖1.

Finally, recall F from (1.9) and let F̄(u) := sup(x,ω)∈Rd×� f (x, u, ω), and

g̃n(x, u, ω) := min{max{( f̃n ∗ φn)(x, u, ω), F(u)}, F̄(u)}.
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It is not hard to see that for all large enough n, these functions satisfy (H1)
with (M, θ1) replaced by (M + α4‖∇xφ‖1, 1

2θ1). We also have ‖g̃n − f ‖∞ �
(2M + α4)n−m4 for all large enough n because ‖ f̃n − f ‖∞ � α4n−m4 and
F � f (x, ·, ω) � F̄ for all (x, ω), and the range of dependence of g̃n is at most
n + 2n−m4 � n + 2.

Since f ∈ F(F0, M, θ1, ζ, ξ) for some ζ < c20/4 and ξ > 0, ‖g̃n − f ‖∞ �
(2M + α4)n−m4 yields g̃n ∈ F(F0, M + α4‖∇xφ‖1, 1

2θ1,
1
8 (4ζ + c20),

1
2ξ) for all

large enough n. Therefore, as at the start of this proof, we obtain that the g̃n satisfy
(H2’) uniformly in n, for all large enough n. Hence, the reactions gn := g̃n−2
satisfy (H4’) with possibly different M, θ1, n4, α4 and with m′

4 = ∞. ��
The next result uses Lemma 2.5 and the bound f (·, u, ·) � α1(1 − u)m1 for

u near 1 to essentially obtain an upper bound on κ0(M, θ1, m1, α1,
c0
4 , θ) from

Lemma 2.1 as θ → 1 (we could similarly do this for any c < c0 in place of
c0
4 ).

Lemma 2.8. Let u : [0,∞) ×R
d → [0, 1] solve (1.1) with f satisfying (H1’) and

some ω ∈ �. There is D1 = D1(M, θ1, m1, α1) such that if u(t0, y) � 1 − θ∗ for
some t0 � 1 and y ∈ R

d , then for any θ ∈ [1− θ∗, 1) and t � t0 + D1(1− θ)1−m1

we have

inf
|x−y|�c0(t−t0)/4

u(t, x) � θ.

Proof. Lemma 2.1 shows that with κ0 from (2.2) we have

inf
|x−y|�c0(t−t0)/2

u(t, x) � 1 − θ∗

for any t � t0 + κ0. Since

U (s) = 1 − ((θ∗)1−m1 + (m1 − 1)α1s)−1/(m1−1)

solves the ODE U ′ = α1(1 − U )m1 with U (0) = 1 − θ∗, it follows from Lemma
2.5 that

u(t + s, x) � U (s) − 2de
√

M/d
(
|x−y|−c0(t−t0)/2+2

√
Md s

)

for all (s, x) ∈ [0,∞) × R
d . Picking s := 1

(m1−1)α1
[( 1−θ

2 )1−m1 − (θ∗)1−m1]
makes U (s) � 1+θ

2 . The second term on the right will be no more than 1−θ
2 when

|x − y| � c0
4 (t + s − t0), provided

c0(t + s − t0)

4
− c0(t − t0)

2
+ 2

√
Md s �

√
d/M ln

1 − θ

4d
,

which holds as long as t � t0+D1(1−θ)1−m1 for some D1 = D1(M, θ1, m1, α1) �
κ0. Replacing D1 by D1 + 1

(m1−1)α1
2m1−1 now yields the claim for t + s in place

of t whenever t + s � t0 + D1(1 − θ)1−m1 . ��
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Finally, we will need two results providing estimates on how much solutions to
(1.1) may change when the reaction f is perturbed. The first one concerns the case
when the reaction can change only where the solution is initially close to 1. In it,
we will also use the definition

Tu(x) := inf{t � 0 | u(t, x) � 1 − θ∗}.
Lemma 2.9. Let f1 satisfy (H2’) and f2 satisfy (H1’), and let M∗ := 1+M

μ∗ , with

μ∗, κ∗ from (2.6) for all u ∈ U f1 . Fix some ω ∈ � and let u1, u2 : [0,∞) ×R
d →

[0, 1] solve (1.1) with f1, f2 in place of f , respectively. If u1 ∈ U f1 , t0 � 0, and
for some η ∈ [0, 1

2 min{θ∗, M−1∗ }] we have

f1(x, u, ω) = f2(x, u, ω) whenever u1(t0, x) < 1 − η and u ∈ [0, 1], (2.7)

then

u+(t, x) := u1((1 + M∗η)t + t0, x) + η

is a supersolution to (1.1) with f2 in place of f on (κ∗,∞) × R
d , and

u−(t, x) := u1((1 − M∗η)t + t0, x) − η

is a subsolution to (1.1) with f2 in place of f on (2κ∗,∞) × {x ∈ R
d | u1(t0, x) <

1 − η}.
Moreover, there is D2 = D2(M, θ1, m1, α1) � 1 such that if also

sup
x∈BR(y)

(u2(0, x) − u1(t0, x)) � η

for some y ∈ R
d and R � D2(1 + Tu2(y)), then

Tu2(y) � (1 + M∗η)−1(Tu1(y) − t0 − 2κ∗ − κ0). (2.8)

The proof of Lemma 2.9 appears in “Appendix B”.
Our last preliminary lemma concerns the case when the reaction may be per-

turbed anywhere, although not by a lot.

Lemma 2.10. Let f1 satisfy (H2’) and f2 satisfy (H1’), with at least one of them
satisfying (H3) with α3 � 1, and let M∗, D2 be from Lemma 2.9. Fix some ω ∈ �

and let u1, u2 : [0,∞) × R
d → [0, 1] solve (1.1) with f1, f2 in place of f ,

respectively. If u1 ∈ U f1 , for some y ∈ R
d , R � D2(1 + Tu2(y)), and η ∈

[0, 1
2 min{θ∗, M−1∗ }] we have

f1(x, u, ω) � f2(x, u, ω) − α3η
m3 for all (x, u) ∈ BR(y) × [0, 1], (2.9)

and u2(0, x) � u1(t0, x) for some t0 � 0 and all x ∈ BR(y), then (2.8) holds.

The proof of Lemma 2.10 appears in “Appendix C”.
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2.1. Notations

Since Sects. 3–6 are just the proof of Theorem 1.7, we will assume either (H2’)
or (H3)+(H4’) in them. Any constants C, C0, Cδ, C(δ), . . . may depend on

M, θ1, m1, α1, m2, α2, m3, α3, m4, m′
4, n4, α4, μ∗, κ∗ (2.10)

(except for m3, α3, m4, m′
4, n4, α4 when (H2’) is assumed; dependence on d is

implicit in the whole paper). Any other dependence will be explicitly declared,
for instance, “for some Cδ” or “for some C = C(δ)” will mean that this constant
depends on δ as well as (2.10). These constants may also vary from line to line.
We recall that M, θ1, m1, α1 are from (H1); m2, α2 from (H2’); m3, α3 from (H3);
m4, m′

4, n4, α4 from (H4’); and μ∗, κ∗ from (2.6).
The constants

θ2, θ
∗, c0, κ0, c1, κ1, D1, D2, R0, M∗

also only depend on subsets of (2.10), with θ2, c0, κ0 from Lemma 2.1; θ∗ from
(2.1); R0 from Lemma 2.2; c1, κ1 from Corollary 2.6; D1 from Lemma 2.8; and
M∗, D2 from Lemma 2.9.

For A ⊆ R
d and r � 0 we let Br (A) := A + (Br (0) ∪ {0}) and A0

r :=
A\Br (∂ A) (so A0

0 is the interior of A). For sets U, V ⊆ R
d , we let d(U, V ) :=

inf x∈U & y∈V |x − y| and

dH (U, V ) := max

{
sup
x∈U

d(x, V ), sup
y∈V

d(y, U )

}

be their standard and Hausdorff distances.
Widths Lu,η,θ (t) of transition zones of solutions are defined in (1.7), and the

special sets U f of solutions evolving from approximate characteristic functions of
balls are defined in (H2’).

Finally, we recall that E(U ) is the σ -algebra generated by the family of random
variables { f (x, u, ·) | (x, u) ∈ U × [0, 1]}. Further important notation related to
the dependence of reactions and solutions on ω appears below, particularly early
in Sects. 3 and 5.

3. Fluctuations for Reactions with Finite Ranges of Dependence

The proof of Theorem 1.7 will be based on the analysis of the dynamics of
special solutions, starting from the approximate characteristic functions u0,S of
sets S ⊆ R

d satisfying Lemma 2.2. For each S and ω ∈ �, we therefore let
u(·, ·, ω; S) be the solution to

ut = �u + f (x, u, ω) on (0,∞) × R
d ,

u(0, ·, ω; S) = u0,S on R
d .

(3.1)
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Recall that ut (·, ·, ω; S) � 0 because u0,S satisfies (1.9). Let us also define for any
x ∈ R

d ,

T (x, ω; S) := inf{t � 0 | u(t, x, ω; S) � 1 − θ∗} � 0, (3.2)

with θ∗ from (2.1), which can be thought of as the time when this solution reaches
x .

Our goal is now to estimate the stochastic fluctuations of T (x, ω; S). In this
section we will consider the first case in Theorem 1.7, when the reaction satisfies
(H2’) and has a finite range of dependence. We will only need to treat the cases
when S is either a ball or a half-space. We start with S being a ball, when the
solution in (3.1) will be precisely the one from U f corresponding to (S, ω). Hence,
below always u(·, ·, ω; S) ∈ U f and (2.6) holds for it.

Remark. We note that if we enlarge U f (or each U fn ) to include solutions with
initial data u0,S from Lemma 2.2 for all S from some family S of bounded subsets
ofRd , and (2.6) still continues to holdwith someμ∗, κ∗ > 0, then everything in this
section and the next holdswithout change (andwith uniform constants) for either all
S ∈ S (the results involving balls only) or for all local limits inHausdorff distance of
translations of sets from S (the results involving half-spaces). In particular, Remark
2 after Definition 2.3 and Lemma 2.4 show that if we assume (H2), then we can let
S be the family of all bounded subsets of Rd .

Proposition 3.1. Let f satisfy (H2’) and let

β1 := max

{
m1 − 1

m1
,

m2 + α2

m2 + 1

}
(∈ (0, 1)). (3.3)

There is C0 � 1 such that if f has range of dependence at most ρ ∈ [1,∞) and
S = Bk(0) for some k ∈ N, then for all x ∈ R

d and λ > 0 we have

P
(∣∣T (x, · ; S) − E[T (x, · ; S)]∣∣ � λ

)
� 2 exp

( −λ2

C0(1 + d(x, S))(ρ + d(x, S)β1)

)
.

(3.4)

Remark. 1. The point here is that by choosing λ ∼ d(x, S)γ for some γ ∈
(
1+β1
2 , 1), one obtains a fast-decreasing bound on the probability of O(d(x, S)γ )

fluctuations of T (x, · ; S) from itsmean (the latter is of course∼ d(x, S) by Lemma
2.1 and Corollary 2.6).

2. Note that Remark 2 after Definition 2.3 and Lemma 2.4 show that (H2)
implies (H2’) with α2 = 0 and any m2 > 0, so then β1 = m1−1

m1
. If there is also

θ < 1 such that inf(x,u,ω)∈Rd×(θ,1)×�(1 − u)−1 f (x, u, ω) > 0, then this means
that β1 > 0 can be made arbitrarily small.

The rest of this section is devoted to proving Proposition 3.1 (and then extending
it from balls to half-spaces in Proposition 3.8). We will therefore assume (H2’) and
the range of dependence of f being at most ρ ∈ [1,∞). We will also fix S = Bk(0)
and drop it from the notation (so the functions from (3.1) and (3.2) are u(t, x, ω) and
T (x, ω), respectively) but all estimates will be independent of S (i.e., of k). Recall
that all constants with C in them depend on (2.10), with any other dependence
explicitly stated, and may vary from line to line.
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3.1. Construction of a Martingale

Let K be the set of all non-empty compact subsets of Rd , and endow it with
Hausdorff distance dH . For each a = (a1, . . . , ad) ∈ Z

d , let

Ca := [a1, a1 + 1) × · · · × [ad , ad + 1),

and for each finite ∅ �= A ⊆ Z
d , let

PA :=
{

K ∈ K
∣∣∣∣ K ∩ 1√

d
Ca �= ∅ if and only if a ∈ A

}
.

Let us label all such A as A0, A1, . . . , and denote Pi := PAi . Then {Pi }i∈N0 is a
(pairwise disjoint) partition of the metric space (K, dH ), and diamH (Pi ) = 1 for
each i ∈ N0.

For each i , let

Ki :=
⋃

a∈Ai

1√
d
Ca =

⋃
K∈Pi

K

(note that Ki is not compact), so that for each K ∈ Pi we have

K ⊆ Ki ⊆ B1(K ).

Notice also that for each i, j ∈ N0 we have

if Pi � K ⊆ K ′ ∈ Pj , then Ki ⊆ K j . (3.5)

Next, for any (t, ω) ∈ [0,∞) × � and θ ∈ (0, 1), we let

�u,θ (t, ω) := {x ∈ R
d | u(t, x, ω) � θ}.

Since S is bounded, Lemma 2.5 shows that all these sets are compact. Then for all
i ∈ N0 and t � 0 we let

Ei (t) := {ω ∈ � | �u,θ∗(t, ω) ∈ Pi } ⊆ �,

with θ∗ from (2.1). Then {Ei (t)}i∈N0 is a pairwise disjoint partition of � for each
t � 0 because �u,θ∗(t, ω) �= ∅ (due to θ∗ � 1− θ∗). Also note that α2 < 1 allows
us to only track the evolution of one of the sets �u,θ (see the remark after (H2’)),
and in this section we choose it to be �u,θ∗ . Finally, for (t, ω) ∈ [0,∞) × �, let

ι(t, ω) := i when ω ∈ Ei (t),

and for each (t, x) ∈ [0,∞) × R
d let

Ft,x := {ω ∈ � | x ∈ Kι(t,ω)}.
The latter is a slightly different version of the set of ω for which the solution u has
reached x by time t (we have Ft,x ⊇ {ω ∈ � | T (x, ω) � t} ⊇ Ft−C,x for some
C > 0 and all large enough t , due to (2.6)). Let us also pick A0 so that ι(0, ω) = 0
for each ω ∈ � (note that ι(0, ω) does not depend on ω).

Since ut � 0 and f (·, u, ·) ≡ 0 for u ∈ [0, θ∗], the solution u(·, ·, ω) only
depends on the reaction inside Kι(t,ω) up to time t . Hence, we have the following
lemma.
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Lemma 3.2. For any (t, x) ∈ [0,∞) × R
d and s ∈ [0, t], the set Ei (t) and the

function u(s, x, ·)χEi (t)(·) are E(Ki )-measurable for each i ∈ N0.

Proof. Fix any i ∈ N0, and let g be any reaction satisfying (H1’) and

f (x, u, ω) = g(x, u, ω) for all (x, u, ω) ∈ Ki × [0, 1] × �.

Then for each ω ∈ �, let v be the solution to

vt = �v + g(x, v, ω)

with the same initial data v(0, ·, ω) = u0,S as u, and fix any t � 0. Since ut , vt � 0
and f (·, u, ·) ≡ 0 for u ∈ [0, θ∗], it follows that v(s, ·, ω) = u(s, ·, ω) when-
ever ω ∈ Ei (t) and s � t . Similarly, we have v(s, ·, ω) = u(s, ·, ω) whenever
�v,θ∗(t, ω) ∈ Pi and s � t (with �v,θ defined analogously to �u,θ ). In particular,
ω ∈ Ei (t) if and only if �v,θ∗(t, ω) ∈ Pi .

Since this holds for each g as above, it follows that Ei (t) ∈ E(Ki ), and then
also that u(s, x, ·)χEi (t)(·) is E(Ki )-measurable for any (s, x) ∈ [0, t] × R

d . ��
For each t � 0, let Gt be the σ -algebra on � generated by

⋃
i∈N0 & s∈[0,t]

E(Ki )|Ei (s).

That is, Gt is generated by all events F ∩ Ei (s) with i ∈ N0, F ∈ E(Ki ), s ∈ [0, t].
Then {Gt }t�0 is a filtration on (�,F), and G0 = E(K0) because E0(0) = � and
Ei (0) = ∅ for i > 0. Lemma 3.2 then shows that u(s, x, ·) is Gt -measurable for
any (t, x) ∈ [0,∞) ×R

d and s � t . Since Ei (s) ∈ E(Ki ) for all i ∈ N0 and s � 0
(so also F ∩ Ei (s) ∈ E(Ki ) above), ι(s, ·) and Fs,x are also Gt -measurable for all
(t, x) ∈ [0,∞) × R

d and s � t .
We note that Gt is actually simpler than its definition suggests, and for each

t � 0 and j ∈ N0 we in fact have

Gt |E j (t) = E(K j )|E j (t) (3.6)

(recall also that {E j (t)} j∈N0 is a partition of � for each t � 0, and note that only
finitelymany of these sets are non-empty due to Lemma 2.5). Indeed, let us consider
any i ∈ N0 and s ∈ [0, t] such that Ei (s) ∩ E j (t) �= ∅. Then there is ω ∈ � such
that

ι(t, ω) = j and ι(s, ω) = i.

From (3.5) and

�u,θ∗(r, ω) ⊆ �u,θ∗(s, ω)

for any such ω, we obtain Ki ⊆ K j . But then Ei (s) ∈ E(Ki ) ⊆ E(K j ) and

E(Ki )|Ei (s)∩E j (t) ⊆ E(K j )|Ei (s)∩E j (t) ⊆ E(K j )|E j (t).

Since this clearly also holds when Ei (s) ∩ E j (t) = ∅, the definition of Gt proves
(3.6).
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Similarly to [2,3],wewill proveProposition 3.1 by studying theGt -adaptedmar-
tingale {Xt := E [T (x, ·) |Gt ]}t�0 for any x ∈ R

d and estimating its increments,
which will then allow us to apply Azuma’s inequality to bound the fluctuations of
T (x, ·).
Lemma 3.3. (Azuma’s inequality) Let {Xk}k∈N0 be a martingale on (�,F ,P). If
for each k ∈ N there is ck � 0 such that |Xk − Xk−1| � ck almost surely, then for
all λ > 0 and n ∈ N,

P[|Xn − X0| � λ] � 2 exp

(
− λ2

2
∑n

k=1 c2k

)
.

We first show that for any ω ∈ Ft,x the difference E[T (x, ·) |Gt ](ω)− T (x, ω)

is uniformly bounded, and 0 if ω ∈ Fs,x when t − s is large enough (note that
Fs,x ⊆ Ft,x if s � t because ut � 0). This is due to Ft,x ∈ Gt and the above-
mentioned relationship of Ft,x and {ω ∈ � | T (x, ω) � t}.
Lemma 3.4. There is C > 0 such that for each (t, x) ∈ [0,∞) × R

d we have
∣∣E[T (x, ·)χFt,x |Gt ] − T (x, ·)χFt,x

∣∣ � C on �,

and if also s ∈ [0, t − C], then

E[T (x, ·)χFs,x |Gt ] = T (x, ·)χFs,x on �. (3.7)

Proof. For any (x, ω) ∈ R
d × �, let

τ(x, ω) := inf
{
t � 0 | x ∈ B1(�u,θ∗(t, ω))

}
� T (x, ω).

If ω ∈ Ft,x for some t � 0, then τ(x, ω) � t due to Kι(t,ω) ⊆ B1(�u,θ∗(t, ω)).
And since u(s, x, ·) is Gt -measurable for all s � t , we see that τ(x, ·)χFt,x (·) is
Gt -measurable.

For each (x, ω) ∈ R
d × �, there is y ∈ B1(x) with u(τ (x, ω), y, ω) � θ∗, so

(2.6) shows that

u
(
τ(x, ω) + κ∗ + μ−1∗ , y, ω

)
� 1 − θ∗, (3.8)

and then Lemma 2.1 yields

u(τ (x, ω) + κ∗ + μ−1∗ + κ0 + 2c−1
0 , x, ω) � 1 − θ∗.

Therefore there is C such that T (x, ω) � τ(x, ω) + C , and hence |T (x, ω) −
τ(x, ω)| � C . Hence for any (t, x) ∈ [0,∞)×R

d weobtain usingGt -measurability
of τ(x, ·)χFt,x ,

∣∣E[T (x, ·)χFt,x |Gt ] − T (x, ·)χFt,x

∣∣ �
∣∣E[τ(x, ·)χFt,x |Gt ] − τ(x, ·)χFt,x

∣∣ + 2C = 2C,

yielding the first claim. If also s � t − C , then for all ω ∈ Fs,x we have

T (x, ω) � τ(x, ω) + C � s + C � t.

Since u(t, x, ·) is Gt -measurable, this shows that so is T (x, ·)χFs,x , and (3.7) fol-
lows. ��
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When ω ∈ �\Ft,x (that is, essentially, when the solution u has not yet reached
x by the time t), we will obtain a different kind of estimate.

Let ρ � 1 be from Proposition 3.1, and for each i ∈ N0 let

gi (x, u, ω) := ψi (x)E[ f (x, u, ·)] + (1 − ψi (x)) f (x, u, ω),

where 0 � ψi � 1 is Lipschitz with a uniform-in-i constant, with ψi ≡ 1 on
Bρ(Ki ) and ψi ≡ 0 on R

d\Bρ+1(Ki ). Then gi is Lipschitz in (x, u) (with a
uniform M-dependent constant � M , which we will call M from now on), and
gi (x, u, ·) is independent of E(Ki ) for all (x, u) ∈ R

d ×[0, 1] because f has range
of dependence at most ρ. Of course,

gi ≡ f on (Rd\Bρ+1(Ki )) × [0, 1] × �. (3.9)

For each ω ∈ �, let now vi be the solution to

(vi )t = �vi + gi (x, vi , ω) on (0,∞) × R
d ,

vi (0, ·, ω) = u0,Ki on R
d ,

with u0,Ki fromLemma 2.2. Then vi (t, x, ·) is independent of E(Ki ) for each (t, x),
and so is

Ti (x, ·) := inf{t � 0 | vi (t, x, ·) � 1 − θ∗}.
Proposition 3.5. There is C � 1 such that for each (t, x) ∈ [0,∞) × R

d and
ω ∈ �\Ft,x we have

∣∣T (x, ω) − t − Tι(t,ω)(x, ω)
∣∣ � C(ρ + d(x, S)β1).

Remark. This shows that the difference of the time it takes to reach x from S and
the sum of any smaller time t and the time it takes to reach x from Kι(t,ω) (which
approximates �u,θ∗(t, ω)) is sublinear in d(x, S). Hence, this result yields a certain
additive structure (up to lower order errors) for the arrival times of solutions with
initial data from Lemma 2.2.

Proof. We will use (t0, x0) in place of (t, x) in the proof. Fix any ω ∈ �\Ft0,x0
and let i := ι(t0, ω). Note that since ω ∈ Ei (t0), we have

�u,θ∗(t0, ω) ⊆ Ki ⊆ B1(�u,θ∗(t0, ω)). (3.10)

Moreover, since x0 /∈ Ki , Lemma 2.1 shows that t0 � κ0 + 2
c0

d(x0, S).
Let us first show that

T (x0, ω) − t0 − Ti (x0, ω) � C(ρ + d(x0, S)β1).

From (2.6) we know that with L1 := μ−1∗ (1 + tα20 )(θ∗)−m2 + 1 we have

�u,θ∗(t0, ω) ⊆ BL1−1(�u,1−θ∗(t0, ω)).

Hence we obtain

Ki ⊆ BL1(�u,1−θ∗(t0, ω)).
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This and Lemma 2.1 now show

BR0(Ki ) ⊆ �u,1−θ∗(t0 + t1, ω) (3.11)

for

t1 := κ0 + 2c−1
0 (R0 + L1),

hence

u(t, ·, ω) � u0,Ki = vi (0, ·, ω) (3.12)

for any t � t0 + t1. Since t0 � κ0 + 2
c0

d(x0, S), there is C > 0 such that

t1 � C(1 + d(x0, S)α2).

Now take

η := min

{
θ∗

2
,

1

2M∗
, d(x0, S)−γ

}
> 0, (3.13)

where

γ := min

{
1

m1
,
1 − α2

m2 + 1

}
∈ (0, 1).

Note that (3.3) shows that

max{γ (m1 − 1), α2 + γ m2, 1 − γ } = β1 < 1. (3.14)

It follows from (3.11) and Lemma 2.8 that for t2 := 4
c0

(ρ + 1) + D1η
1−m1 we

have

u(t0 + t1 + t2, ·, ω) � 1 − η on Bρ+1(Ki ). (3.15)

Moreover, from (3.13) and (3.14) we see that there is C > 0 such that

t3 := t1 + t2 � C(ρ + d(x0, S)α2 + d(x0, S)γ (m1−1))

� C(ρ + d(x0, S)β1). (3.16)

We now apply Lemma 2.9 with ( f, gi , u, vi , t0 + t3,∞) in place of ( f1, f2, u1,

u2, t0, R). Its hypotheses are satisfied due to (3.9), (3.12) and (3.15), and it yields

T (x0, ω) − t0 − t3 � (1 + M∗η)Ti (x0, ω) + 2κ∗ + κ0.

This, (3.16), and Ti (x0, ω) � C(1+ d(x0, Ki )) � C(1+ d(x0, S)) (which follows
from Lemma 2.1, with some C > 0) show that there is indeed some C > 0 such
that

T (x0, ω) − t0 − Ti (x0, ω) � M∗ηTi (x0, ω) + 2κ∗ + κ0 + t3 � C(ρ + d(x0, S)β1).

(3.17)
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Let us now turn to

t0 + Ti (x0, ω) − T (x0, ω) � C(ρ + d(x0, S)β1),

and let η be again from (3.13). We will now need to estimate u from above in terms
of some time-shift of vi . It follows from Lemma 2.9 that

u−(t, x, ω) := u((1 − M∗η)t + t0, x, ω) − η (� 1 − η)

is a subsolution to (1.1) with reaction f on (2κ∗,∞) × (Rd\�u,1−η(t0, ω)). We
also know that vi is a solution of the same equation on (0,∞) × (Rd\Bρ+1(Ki )).
In order to be able to compare them, we need some more estimates involving these
sets.

Since θ∗ � θ1, Corollary 2.6 and (3.10) yield

�u,1−θ∗(t0 + 2κ∗, ω) ⊆ B2c1κ∗+κ1(�u,θ∗(t0, ω)) ⊆ B2c1κ∗+κ1(Ki ).

This and (2.6) show that with L2 := μ−1∗ (1 + (t0 + 2κ∗)α2)η−m2 and

L3 := max{L2 + 2c1κ∗ + κ1, ρ + 1},
we have

�u−,0(2κ∗, ω) ⊆ �u,η(t0 + 2κ∗, ω) ⊆ BL2(�u,1−θ∗(t0 + 2κ∗, ω)) ⊆ BL3(Ki ).

(3.18)

We note that this also implies

�u,1−η(t0, ω) ⊆ �u,η(t0 + 2κ∗, ω) ⊆ BL3(Ki ). (3.19)

Moreover, Lemma 2.8 shows that

BL3(Ki ) ⊆ �vi ,1−η(t4, ω), (3.20)

with t4 := 4
c0

L3 + D1η
1−m1 . Then (3.13), (3.14), and t0 � κ0 + 2

c0
d(x0, S) show

that there is C > 0 such that

t4 � C(ρ + tα20 η−m2 + η1−m1) � C(ρ + d(x0, S)β1). (3.21)

Using (3.20) and (3.18), we find that

vi (t4 + ·, ·, ω) � 1 − η � u−(2κ∗ + ·, ·, ω) on (0,∞) × BL3(Ki ),

vi (t4, ·, ω) � 0 � u−(2κ∗, ·, ω) on Rd\BL3(Ki ).
(3.22)

From (3.9), (3.19), and Lemma 2.9 we also see that vi and u− are, respectively, a
solution and a subsolution to (1.1) with reaction f on (2κ∗,∞) × (Rd\BL3(Ki )).
So the second claim in (3.22) and the comparison principle yield

u−(2κ∗ + ·, ·, ω) � vi (t4 + ·, ·, ω) on [0,∞) × (Rd\BL3(Ki )).

If x0 /∈ BL3(Ki ), then this shows that

T (x0, ω) � (1 − M∗η)(Ti (x0, ω) − t4 + 2κ∗) + t0.
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Using again Ti (x0, ω) � C(1+ d(x0, S)) (as we did above) and (3.21), we obtain

Ti (x0, ω) + t0 − T (x0, ω) � t4 + M∗ηTi (x0, ω) � C(ρ + d(x0, S)β1) (3.23)

for some C > 0. If instead x0 ∈ BL3(Ki ), the first claim in (3.22) and (3.21) again
yield

Ti (x0, ω) + t0 − T (x0, ω) � Ti (x0, ω) � t4 � C(ρ + d(x0, S)β1)

because x0 /∈ Ki (and hence T (x0, ω) � t0). ��
The last ingredient in the proof of Proposition 3.1 is an estimate on the difference

of Tι(t,ω)(x, ω) for two different times t .

Lemma 3.6. There is C > 0 such that for all (x, ω) ∈ R
d × � and t0, t1 � 0 we

have
∣∣Tι(t1,ω)(x, ω) − Tι(t0,ω)(x, ω)

∣∣ � C
(
ρ + |t1 − t0| + d(x, S)β1

)
.

Proof. Let i0 := ι(t0, ω) and i1 := ι(t1, ω), and thenω ∈ Ei0(t0)∩Ei1(t1).Without
loss of generality, let us assume t1 > t0. Then ut � 0 and (3.5) show that Ki0 ⊆ Ki1 .

If x /∈ Ki1 , Proposition 3.5 yields
∣∣Ti1(x, ω) − Ti0(x, ω)

∣∣ � |t1 − t0| + C(ρ + d(x, S)β1).

If x ∈ Ki0 , then Ti1(x, ω) = Ti0(x, ω) = 0. The result follows in either case.
Let us now assume that x ∈ Ki1\Ki0 . Then Ti1(x, ω) = 0, while Lemma 2.1

shows that

Ti0(x, ω) � κ0 + 2c−1
0 d(x, Ki0) � C(1 + dH (Ki0 , Ki1)) (3.24)

for some C > 0. From t1 > t0 and (2.6) we also have

�u,θ∗(t0, ω) ⊆ �u,θ∗(t1, ω) ⊆ B
μ−1∗ (θ∗)−m2 (1+t

α2
1 )

(�u,1−θ∗(t1, ω)),

and Corollary 2.6 yields

�u,1−θ∗(t1, ω) ⊆ Bc1(t1−t0)+κ1(�u,θ∗(t0, ω)).

Hence there is C > 0 such that

dH (�u,θ∗(t0, ω), �u,θ∗(t1, ω)) � C(1 + tα21 + t1 − t0).

Since also dH (Kι(t,ω), �u,θ∗(t, ω)) � 1 for all t � 0 (because �u,θ∗(t, ω) ∈
Pι(t,ω)), this implies

dH (Ki0 , Ki1) � dH (Ki0 , �u,θ∗(t0, ω)) + dH (�u,θ∗(t0, ω), �u,θ∗(t1, ω))

+ dH (�u,θ∗(t1, ω), Ki1) � C(1 + tα21 + t1 − t0).

This and (3.24) yields the claim. ��
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3.2. Proof of Proposition 3.1

If d(x, S) � ρ, then (3.4) holds for all λ > 0 as long as C0 � 2(κ0 +
2
c0

)2(ln 2)−1. This is because T (x, ·) � κ0 + 2
c0

d(x, S) by Lemma 2.1, so one

only needs to consider λ � (κ0 + 2
c0

)(1 + d(x, S)), for which the right-hand side

of (3.4) with this C0 is at least 1 due to ρ � 1
2 (1 + d(x, S)).

It therefore suffices to consider the case d(x, S) > ρ. In particular, we have
x /∈ K0 due to ρ � 1. Let us fix any such x and consider the Gt -adapted martingale
{Xt }t�0 defined by

Xt = Xt (ω) := E[T (x, · ) |Gt ](ω).

We want to apply Azuma’s inequality to it, which means that we need to obtain
a suitable ω-independent bound on |Xt − Xs | for any t > s > 0 (which we fix).
Using

Xt = E[T (x, · )χFs,x |Gt ] + E[T (x, · )χFc
s,x

|Gt ],
Xs = E[T (x, · )χFs,x |Gs] + E[T (x, · )χFc

s,x
|Gs],

we find from Lemma 3.4 (recall that Fs,x ⊆ Ft,x ) that there is C > 0 such that

|Xt − Xs | � |E[T (x, · )χFc
s,x

|Gt ] − E[T (x, · )χFc
s,x

|Gs]| + C

= ∣∣�x /∈KiE[T (x, · )χEi (s) |Gt ] − �x /∈KiE[T (x, · )χEi (s) |Gs]
∣∣ + C.

(3.25)

Here we used that ω /∈ Fs,x precisely when x /∈ Kι(s,ω), and the sums are over all
i ∈ N0 such that x /∈ Ki . From Proposition 3.5 with s in place of t we have
∣∣�x /∈Ki E[T (x, · )χEi (s) |Gt ] − �x /∈Ki E[T (x, · )χEi (s) |Gs ]

∣∣
�
∣∣�x /∈Ki E[Ti (x, · )χEi (s) |Gt ] − �x /∈Ki E[Ti (x, · )χEi (s) |Gs ]

∣∣ + C
(
ρ + d(x, S)β1

)

= ∣∣�i∈N0E[Ti (x, · )χEi (s) |Gt ] − �i∈N0E[Ti (x, · )χEi (s) |Gs ]
∣∣ + C

(
ρ + d(x, S)β1

)
.

The last equality holds because Ti (x, ω) = 0 when x ∈ Ki . Since

E[Ti (x, · )χEi (s) |Gt ] = � j∈N0E[Ti (x, · )χEi (s)∩E j (t) |Gt ]
(recall that Ei (s), E j (t) ∈ Gt ) and Lemma 3.6 yields

∣∣�i, jE
[
Ti (x, · )χEi (s)∩E j (t) |Gt

] − �i, jE
[
Tj (x, · )χEi (s)∩E j (t) |Gt

]∣∣
� C(ρ + |t − s| + d(x, S)β1),

it follows that with some C > 0 and Cρ
t,s,x := C(ρ +|t − s|+d(x, S)β1), we have

|Xt − Xs | �
∣∣�i, jE[Tj (x, · )χEi (s)∩E j (t) |Gt ] − �iE[Ti (x, · )χEi (s) |Gs ]

∣∣ + Cρ
t,s,x

= ∣∣� jE[Tj (x, · )χE j (t) |Gt ] − �iE[Ti (x, · )χEi (s) |Gs ]
∣∣ + Cρ

t,s,x .
(3.26)

We now claim that for any i ∈ N0 we have

E[Ti (x, · )χEi (s) |Gs] = E[Ti (x, · )]χEi (s). (3.27)
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Since Ei (s) ∈ Gs , to prove this, we only need to show that

E[Ti (x, · )χA] = E[Ti (x, · )]P(A) (3.28)

for each A ∈ Gs such that A ⊆ Ei (s). But then A ∈ E(Ki ) by (3.6), so (3.28)
follows from Ti (x, ·) being independent of E(Ki ).

Similarly to (3.27), we also have

E[Tj (x, · )χE j (t) |Gt ] = E[Tj (x, · )]χE j (t)

for any j ∈ N0. Then (3.26) becomes

|Xt − Xs | �
∣∣� jE[Tj (x, · )]χE j (t) − �iE[Ti (x, · )]χEi (s)

∣∣ + Cρ
t,s,x

� �i, j
∣∣E[Tj (x, · )] − E[Ti (x, · )]∣∣χE j (t)∩Ei (s) + Cρ

t,s,x .

Lemma 3.6 now shows that there is C > 0 such that for all ω ∈ � we have

|Xt (ω) − Xs(ω)| � C(ρ + |t − s| + d(x, S)β1). (3.29)

By Lemma 2.1, we have Fτx ,x = � when τx := κ0 + 2
c0

d(x, S). So with C
from Lemma 3.4,

Xt = T (x, ·) for all t � τx + C. (3.30)

Let τ := ρ + d(x, S)β1 and let N be the smallest integer such that Nτ � τx + C .
Then there is C1 > 0 such that N � C1d(x, S)(ρ + d(x, S)β1)−1 (recall that
d(x, S) > ρ � 1). It follows from (3.29) that for k = 0, . . . , N − 1 we have
(uniformly in ω ∈ �)

|X(k+1)τ − Xkτ | � C(ρ + d(x, S)β1). (3.31)

Now Azuma’s inequality (Lemma 3.3), X0 = E[T (x, · ) |G0], and (3.30) with
t = Nτ yield for any λ � 0 (with C changing from line to line),

P
[∣∣T (x, ·) − E[T (x, · ) |G0]

∣∣ � λ
]

� 2 exp

( −λ2

2C N (ρ + d(x, S)β1)2

)

� 2 exp

( −λ2

Cd(x, S)(ρ + d(x, S)β1)

)
.

(3.32)

Since F0,x = ∅ (because x /∈ K0), Proposition 3.5 with t = 0 (and ι(0, ·) ≡ 0)
yields

|T (x, ω) − T0(x, ω)| � C ′(ρ + d(x0, S)β1)

for someC ′ > 0 and allω ∈ �. This and T0(x, ·) being independent of E(K0) = G0
yield

|E[T (x, · ) |G0] − E[T (x, · )]| � |E[T0(x, · ) |G0] − E[T0(x, · )]| + C ′(ρ + d(x, S)β1)

= C ′(ρ + d(x, S)β1).
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Hence, from (3.32) we obtain for any λ > 0,

P
[∣∣T (x, · ) − E[T (x, · )]∣∣ � λ + C ′(ρ + d(x, S)β1)

]

� 2 exp

( −λ2

Cd(x, S)(ρ + d(x, S)β1)

)
.

So for all λ � C ′(ρ + d(x, S)β1) we have

P
[∣∣T (x, · ) − E[T (x, · )]∣∣ � 2λ

]
� 2 exp

( −λ2

Cd(x, S)(ρ + d(x, S)β1)

)
,

which yields (3.4) for all λ � 2C ′(ρ + d(x, S)β1) as long as C0 � 4C . But (3.4)
also holds for all λ � 2C ′(ρ + d(x, S)β1) as long as C0 � 8(C ′)2(ln 2)−1 because
d(x, S) > ρ � 1 > β1 (and so the right-hand side of (3.4) is � 1). This finishes
the proof.

3.3. Extension to Half-Spaces

We now extend Proposition 3.1 to half-spaces, denoting

H−
e := {x ∈ R

d | x · e � 0}

for e ∈ S
d−1. This means that we need to enlarge U f to include solutions initially

approximating characteristic functions of half-spaces, with (H2’) extending aswell.

Lemma 3.7. (H2’) implies (H2’) with U ′
f in place of U f , with unchanged values

of all the supu∈U f
and infu∈U f in (1.10), and with U ′

f defined as U f but including
the initial functions u0,k from U f as well as all locally uniform limits of their
translations. (These are then functions u0,S satisfying Lemma 2.2 for all balls
S = Bk(y) and all half-spaces S = H−

e + le, due to well-known elliptic regularity
estimates).

In particular, Lemmas 2.9 and 2.10 hold with U f1 replaced by U ′
f1

.

Proof. Stationarity of f again shows that adding translations of the u0,k to U f does
not change any of the sup or inf. Well known parabolic regularity estimates now
show that the sup and inf also remain unchanged when we add locally uniform
limits of these translations to U f . The proofs of Lemmas 2.9 and 2.10 then extend
to U ′

f1
in place of U f1 without change.

Wenote that the elliptic andparabolic regularity (Krylov-SafonovandSchauder)
estimates used here can be found in [11, Theorem 4.6], [15, Theorem 4.1], and [14,
Theorem 8.6.1]. ��
Proposition 3.8. Proposition 3.1 holds for S being either any ball Bk(y) with
(k, y) ∈ N × R

d or any half-space H−
e + le with (e, l) ∈ S

d−1 × R (with the
functions u(·, ·, ·; S) from U ′

f ).
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Proof. The claim for balls is immediate from stationarity. For the same reason, in
the half-space case we only need to consider l = 0. Hence let S = H−

e for some
e ∈ S

d−1.
For each k ∈ N, let Sk := Bk(−ke). Then limk→∞ d(x, Sk) = d(x, S) for each

x ∈ R
d , so by Proposition 3.1 (with C0 independent of S), it suffices to show that

lim sup
k→∞

sup
ω∈�

|T (x, ω; S) − T (x, ω; Sk)| � C

for some C > 0 (depending only on (2.10), as always) and any x ∈ R
d .

Let uω := u(·, ·, ω; S) and uk,ω := u(·, ·, ω; Sk) for each (k, ω) ∈ N× �, and
C := κ0 + 2R0

c0
. We then have uω(C, ·) � uk,ω(0, ·) by Lemma 2.1 and (2.3), so

T (·, ω; S) � T (·, ω; Sk) + C .
Similarly, we have uk,ω(C + 1, ·) � uω(0, ·) in Bk1/2(0). Then from the last

claim in Lemma 2.9 with (η, R) = (0, k1/2 − |x |) we obtain T (x, ω; Sk) �
T (x, ω; S)+C +1+2κ∗+κ0 whenever k1/2 � |x |+ D2(1+κ0+ 2

c0
(d(x, S)+1)),

because then d(x, Sk) � d(x, S) + 1 due to |x | � k1/2, so k1/2 − |x | � D2(1 +
T (x, ω; Sn)) by Lemma 2.1. ��

4. Fluctuations for General Reactions

First, we show that (H4’) implies (H2’).

Lemma 4.1. (H4’) implies that f also satisfies (H2’) (possibly after removing from
� a measure-zero set that is invariant with respect to the group {ϒy}y∈Rd , which
we then do).

Proof. For each k ∈ N, let u0,k,n be the initial datum for Bk(0) that enters in the
definition of U fn (these might in principle be different for distinct n, as we do not
assume them to be those from the proof of Lemma 2.2). By (1.9), (1.8), and elliptic
regularity estimates, there is a subsequence {n j } j∈N such that u0,k,n j converge
uniformly to some u0,k satisfying (1.9) and (1.8) as j → ∞. Since also (H2’) holds
uniformly for fn , and the Borel-Cantelli Lemma shows that some subsequence of
fn j converges to f locally uniformly on R

d for almost every ω ∈ � (and if this
holds for some ω, then it obviously also holds forϒyω with any y ∈ R

d ), it follows
that (H2’) also holds for f , with the above u0,k for each k ∈ N and after removal
of a {ϒy}-invariant measure-zero set from �. ��

We now extend Proposition 3.8 to reactions f satisfying (H3) and (H4’). Recall
(3.2) and that constantswithC in themonly depend on (2.10) unless explicitly stated
otherwise.

Proposition 4.2. Let f satisfy (H3) and (H4’), and with β1 from (3.3) let

β3 := max

{
β1,

m3

m3 + 2m4
,

2d + 2

2d + 2 + m′
4

}
(∈ (0, 1)) (4.1)
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and

ν(a) := sup
n�max{�a�,n4}

P

⎛
⎝ sup

|z|<n1+m′
4

sup
u∈[0,1]

| fn(z, u, ·) − f (z, u, ·)| > α4n−m4

⎞
⎠

(4.2)

for all a � 0 (then ν(a) � max{�a�, n4}−(2d+1+m′
4) by (H4’)). There is C ′

0 � 1
such that for any S (and u) from Proposition 3.8, x ∈ R

d , and λ > 0 we have

P
(|T (x, · ; S) − E[T (x, · ; S)]| � λ

)
� 2 exp

( −λ2

C ′
0(1 + d(x, S)1+β3)

)
+ ν

(
d(x, S)β3

)
.

Remark. Having this and Lemma 4.1, wewill not need to use (H3) and (H4’) again.

Proof. Let us assumewithout loss thatα3 � 1 in (H3). Lemma4.1 shows that f also
satisfies (H2’), and then Lemma 3.7 shows that (H2’) holds with U ′

f ∪⋃
n�n4 U ′

fn

in place of U f .
For each ω ∈ � and S either a ball or a half-space, let u(·, ·, ω, S) be the

solution from U ′
f corresponding to (ω, S), and for each n � n4, let un(·, ·, ω, S)

be the analogous solution from U ′
fn
. (Note that we do not require the initial data for

u and un to be the same, although they may be.) Also let

Tn(x, ω; S) := inf{t � 0 | un(t, x, ω; S) � 1 − θ∗}.
Then (H4’) and Proposition 3.8 show, for all n � n4,

P
(|Tn(x, · ; S) − E[Tn(x, · ; S)]| � λ

)
� 2 exp

(
− λ2

C0(1 + d(x, S))(n + d(x, S)β1)

)
.

(4.3)

Let C1 � n4 be such that (α4
α3

)1/m3C−m4/m3
1 � 1

2 min{θ∗, M−1∗ }.
Stationarity of f, fn shows that the definition of ν(a) above is unchanged when

in it we replace |z| by |z − x |, for any x ∈ R
d . So for each x and n � n4, there is

�n,x ⊆ � such that P(�n,x ) � 1 − ν(n) and

| f (z, u, ω)− fn(z, u, ω)| � α4n−m4 for all (z, u, ω) ∈ B
n1+m′

4
(x) × [0, 1] × �n,x .

Since f satisfies (H3), and u(·, ·, ω; S) ∈ U f and un(·, ·, ω; S) ∈ U fn for each
ω ∈ �n,x , Lemma 2.10 (see Lemma 3.7) applied twice with η = (α4

α3
n−m4)1/m3 ,

y = x , R = n1+m′
4 , t0 = κ0 + 2c−1

0 R0, and ( f1, f2, u1, u2) being

( f, fn, u(·, ·, ω; S), un(·, ·, ω; S)) and ( fn, f, un(·, ·, ω; S), u(·, ·, ω; S)),

respectively, yields for some C > 0 and all n � max{C1, [D2(1 + κ0 + 2
c0

d(x, S))]1/(1+m′
4)},

|Tn(x, ·; S) − T (x, ·; S)| � Cn
− m4

m3 (1 + d(x, S)) + C. (4.4)



66 Yuming Paul Zhang & Andrej Zlatoš

Here we also used Lemma 2.1 to show that Tn(x, ·; S) and T (x, ·; S) are at most
κ0 + 2

c0
d(x, S).

Let now n be the smallest integer such that

n � max
{

C1, d(x, S)β3 , [D2(1 + κ0 + 2c−1
0 d(x, S))]1/(1+m′

4)
}

. (4.5)

Since β3 ≥ 1
1+m′

4
, there is C2 > 0 such that with C from (4.4) we have (uniformly

in x, S)

(1 + d(x, S))(n + d(x, S)β1) � C2(1 + d(x, S)1+β3),

4Cn
− m4

m3 (1 + d(x, S)) + 4C � C2(1 + d(x, S)
1−β3

m4
m3 ) � C2(1 + d(x, S)

1+β3
2 ).

If now λ � C2(1 + d(x, S)(1+β3)/2), then (4.3) and (4.4) imply

P
(|T (x, · ; S) − E[T (x, · ; S)]| � λ

)

� P

(
|Tn(x, · ; S) − E[Tn(x, · ; S)]| � λ

2

)
+ P(�\�n,x )

� 2 exp

( −λ2

4C0C2(1 + d(x, S)1+β3)

)
+ ν

(
d(x, S)β3

)
.

Hence the result holds with C ′
0 := max{4C0C2, 2C2

2 (ln 2)
−1}, because then it

obviously also holds for any λ � C2(1 + d(x, S)(1+β3)/2). ��

5. Convergence of the Mean Propagation Speeds

We now consider (3.1) with S = H−
e + le for any e ∈ S

d−1 and l ∈ R, that is,

ut = �u + f (x, u, ω) on (0,∞) × R
d ,

u(0, ·, ω;H−
e + le) = u0,H−

e +le on R
d .

(5.1)

Here u0,H−
e +le is the initial data used in the definition of U ′

f in Lemma 3.7 (note
that f satisfies (H2’) in both cases under consideration, due to Lemma 4.1). Hence,
u(·, ·, ω;H−

e + le) ∈ U ′
f for all (e, l, ω) ∈ S

d−1 × R × � and (2.6) holds for it.

We will now prove that 1
l E

[
T (le, · ;H−

e )
]
converges as l → ∞, with

T (le, · ;H−
e ) from (3.2) (stationarity shows that the expectation is the same if

le is replaced by any yl with yl · e = l). Note that the reciprocal of this limit can
then be considered the asymptotic mean speed of propagation of the solutions u in
direction e (this mean is technically harmonic).

We also note that all constants in this section will be uniform in e, and recall
that all constants with C in them depend on (2.10), with any other dependence
explicitly indicated, and may vary from line to line.



Long Time Dynamics for Combustion in Random Media 67

Proposition 5.1. For each e ∈ S
d−1 there is T̄ (e) ∈ [ 1

c1
, 1

c0
] (depending also on

f ) and for each δ > 0 there is Cδ � 1 such that the following hold. If f satisfies
(H2’) and has range of dependence at most ρ ∈ [1,∞), then with β1 from (3.3)
we have for all l � 1,

∣∣∣∣
E[T (le, · ;H−

e )]
l

− T̄ (e)

∣∣∣∣ � Cδ
√

ρ l−1+ 1
2 (1+β1)+δ.

If instead f satisfies (H3) and (H4’), then with β3 < 1 from (4.1) we have for all
l � 1,

∣∣∣∣
E[T (le, · ;H−

e )]
l

− T̄ (e)

∣∣∣∣ � Cδ l−1+ 1
2 (1+β3)+δ.

We will fix e in the rest of this section and, for the sake of convenience, we
will sometimes (but not always) dropH−

e from the notation in (3.1) and (3.2) when
S = H−

e . Hence we let

T (x, ω) := T (x, ω;H−
e ) and u(t, x, ω) := u(t, x, ω;H−

e ). (5.2)

Wewill also prove both claims in Proposition 5.1 at the same time, with the notation

β := 1 + β1

2
and C̄ρ := C

√
ρ and φ(l) := 0 (5.3)

if f satisfies (H2’) and has range of dependence at most ρ ∈ [1,∞), and

β := 1 + β3

2
and C̄ρ := C and φ(l) := ν(lβ3) (5.4)

if f satisfies (H3) and (H4’), with ν from (4.2). Here again, C � 1 will be a
constant depending only on (2.10), which may vary from line to line. In particular,
Propositions 3.8 and 4.2 show that in both cases we have for all e ∈ S

d−1, λ > 0,
x ∈ R

d with x · e � 1 (and some C > 0 defining C̄ρ),

P
(∣∣T (x, · ;H−

e ) − E[T (x, · ;H−
e )]∣∣ � λ

)
� 2 exp

(−C̄−2
ρ λ2 (x · e)−2β) + φ(x · e).

(5.5)

We start with the following simple result.

Lemma 5.2. If x · e � l for some (e, l, x) ∈ S
d−1 × R × R

d , then

E
[
T (x, · ;H−

e )
]

� E
[
T (le, · ;H−

e )
] + κ0 + 2c−1

0 R0.

Proof. Since u(0, ·, ω;H−
e ) � u(τ0, ·, ω;H−

e + le − x) for τ0 := κ0 + 2R0
c0

by
Lemma 2.1 and x · e � l, we have

T (le, · ;H−
e ) � T (le, · ;H−

e + le − x) − τ0.

Therefore,

E[T (le, · ;H−
e )] � E[T (le, · ;H−

e + le − x)] − τ0 = E[T (x, · ;H−
e )] − τ0

because f is stationary (if we assume (H4’), this follows from Lemma 4.1) ��
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The next result is an immediate consequence of Lemma 2.1 and Corollary 2.6.

Lemma 5.3. There is t0 � 1, depending only on (2.10), such that for all t � t0 and
ω ∈ �,

u(t, x, ω;H−
e ) � 1 − θ∗ when x · e � c0t

2
,

u(t, x, ω;H−
e ) < 1 − θ∗ when x · e � 2c1t .

In particular, for all x ∈ R
d with x · e � l0 := 2c1t0 and ω ∈ � we have

T (x, ω;H−
e ) ∈

[
x · e

2c1
,
2 x · e

c0

]
. (5.6)

In order to prove Proposition 5.1, it will be necessary to simultaneously prove
it for T (x, · ;H−

e ) with other points x satisfying x · e = l. The Infinite Monkey
“Theorem” shows that in dimensions d � 2, this cannot involve all the points in
the unbounded set {x · e = l}, but we will be able to include all such points with
|x | � O(l) (i.e., within a ball centered at le and with linearly-in-time growing
radius due to (5.6)). This will be sufficient thanks to the speed of propagation of
perturbations of solutions being finite (see Lemma 2.5).

This and Lemma 5.3 motivate the definitions of the cylinders

C−
e (R, l) :=

{
x ∈ R

d
∣∣∣∣ x · e ∈

[
c0
4c1

l, l

]
and |x − (x · e)e| � R

}
,

C+
e (R, l) :=

{
x ∈ R

d
∣∣∣∣ x · e ∈

[
l,
4c1
c0

l

]
and |x − (x · e)e| � R

}

and of the corresponding times

T −
e (R, l, ω) : = inf

{
t � 0 | u(t, ·, ω;H−

e ) � 1 − θ∗ on C−
e (R, l)

}

= sup
{
T (x, ω;H−

e ) | x ∈ C−
e (R, l)

}
,

T +
e (R, l, ω) : = sup

{
t � 0 | u(t, ·, ω;H−

e ) < 1 − θ∗ on C+
e (R, l)

}

= inf
{
T (x, ω;H−

e ) | x ∈ C+
e (R, l)

}
.

Obviously T +
e (R, l, ·) � T −

e (R, l, ·) because ut (t, ·, ·;H−
e ) > 0 for all t > 0.

Our next result shows that means of these times are sufficiently close to
E
[
T (le, · ;H−

e )
]
.

Lemma 5.4. There is C > 0, and for each δ > 0 there is Cδ � 1, such that with
l0 � 1 from Lemma 5.3 we have for all l � l0 and R � 0 (with C̄ρ from (5.3)
resp. (5.4)),

E
[
T −

e (R, l, · )] � E
[
T (le, · ;H−

e )
] + C̄ρ(Cδ + max{R, l}δ lβ)

+C max{R, l}d−1l2 φ

(
c0
4c1

l

)
,

E
[
T +

e (R, l, · )] � E
[
T (le, · ;H−

e )
] − C̄ρ(Cδ + max{R, l}δ lβ)

−C max{R, l}d−1l2 φ(l). (5.7)
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Proof. The definition of T ±
e (R, l, ω) shows that it suffices to consider the case

R � l � l0.
For any λ > 0 we have

P
[
T −

e (R, l, ω) − E [T (le, · )] � λ
]

= P
[
sup

{
T (x, ω) − E [T (le, · )] | x ∈ C−

e (R, l)
}

� λ
]
.

Since Lemma 2.1 yields

|T (x, ω) − T (y, ω)| � κ0 + 2|x − y|
c0

,

for any λ � 4κ0 + 4(
√

d+R0)
c0

=: C1 we obtain

P
[
T −

e (R, l, ω) − E [T (le, · )] � λ
]

� P

[
sup

{
T (x, ω) − E [T (le, · )] | x ∈ C−

e (R, l) ∩ Z
d
}

� λ

2

]

�
∑

x∈C−
e (R,l)∩Zd

P

[
T (x, ω) − E [T (le, · )] � λ

2
+ κ0 + 2R0

c0

]
.

Since x ∈ C−
e (R, l) ∩ Z

d implies x · e � l and f is stationary, Lemma 5.2 now
yields

P
[
T −

e (R, l, ω) − E [T (le, · )] � λ
]

�
∑

x∈C−
e (R,l)∩Zd

P

[
T (x, ω) − E [T (x, · )] � λ

2

]
.

The number of terms in this sum is bounded by C2Rd−1l for some C2 > 0. Since
each x ∈ C−

e (R, l) satisfies d(x,H−
e ) � c0

4c1
l, by (5.5) we have for each λ � C1,

P
[
T −

e (R, l, ω) − E [T (le, · )] � λ
]

� C2Rd−1l exp
(
−C̄−2

ρ λ2 l−2β
)

+C2Rd−1l φ

(
c0
4c1

l

)
.

Moreover, this probability is clearly 0 when λ > κ0 + 2
c0

l. Thus, for each δ > 0
we obtain

E
[
T −

e (R, l, · ) − E [T (le, · )]] =
∫ ∞

0
P
[
T −

e (R, l, ω) − E [T (le, · )] � λ
]
dλ

� max{C1, C̄ρ Rδlβ} + C2Rd−1l
∫ ∞

C̄ρ Rδlβ
exp

(
−C̄−2

ρ λ2l−2β
)
dλ

+ C3Rd−1l2 φ

(
c0
4c1

l

)

� max{C1, C̄ρ Rδlβ} + C2C̄ρ Rd−1l1+β

∫ ∞

Rδ

e−s2ds + C3Rd−1l2 φ

(
c0
4c1

l

)
,
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with some C3 > 0. Since
∫ ∞

r
e−s2ds = e−r2

∫ ∞

0
e−s2−2srds � Ce−r2 ,

it follows from R � l that there is Cδ � 1 such that

Rd−1l1+β

∫ ∞

Rδ

e−s2ds � Rd+βe−R2δ � Cδ.

This proves the first inequality in (5.7). The proof of the second is analogous. ��
We can now show that E

[
T (le, · ;H−

e )
]
is close to being linear in l.

Proposition 5.5. There is C > 0, and for each δ > 0 there is Cδ � 1, such that for
all l, m � 0 we have (with C̄ρ from (5.3) resp. (5.4))

∣∣E [
T ((l + m)e, · ;H−

e )
] − E

[
T (le, · ;H−

e )
] − E

[
T (me, · ;H−

e )
] ∣∣

� C̄ρ(Cδ + (l + m)β+δ).

Remark. We will in fact only need the weaker upper bound C̄ρCδ(l + m)β+δ .

Proof. Without loss of generality, we can assume that l � m � 0, and we also let
l0 be from Lemma 5.3. By Lemma 2.1, for all m � 4c1

c0
l0 we have T (me, ·;H−

e ) �
κ0 + 8c1l0 and

u(τ0, x, · ;H−
e − me) � u(0, x, · ;H−

e ),

with τ0 := κ0 + 8c1l0 + 2c−1
0 R0. This and stationarity of f yield

E
[
T ((l + m)e, · ;H−

e )
] = E

[
T (le, · ;H−

e − me)
]

� τ0 + E
[
T (le, · ;H−

e )
]
.

All this and Lemma 5.2 with (l + m, le) in place of (l, x) yield the claim for all
m � 4c1

c0
l0 and l � m, with any Cδ � 2τ0.

Now assume that l � m � 4c1
c0

l0, and let us first prove the direction

E [T ((l + m)e, · )] − E [T (le, · )] − E [T (me, · )] � C̄ρ(Cδ + lβ+δ).

Pick Rm := D2(1 + 2m
c0

), with D2 from Lemma 2.9, and denote T1(ω) := T −
e

(Rm, l, ω). Then Lemma 5.3 shows that for each ω ∈ � we have T1(ω) ∈ [ l
2c1

, 2l
c0

]
and hence also

u1(T1(ω), ·) � 1 − θ∗ on H−
e + (4c1)

−1c0le

holds with u1 := u(·, ·, ω;H−
e ). Therefore,

u1(T1(ω), ·) � 1 − θ∗ on C−
e (Rm, l) ∪

(
H−

e + (4c1)
−1c0le

)
.
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HenceLemma2.1 shows that,withu2 := u(·, ·, ω;H−
e +le) and τ0 := κ0+ 2R0

c0
,

we have

u1(T1(ω) + τ0, ·) � (1 − θ∗)χH−
e +(l+R0)e

� u2(0, ·) on
{
x ∈ R

d
∣∣ |x − (x · e)e| � Rm

}

Since the set above contains BRm ((l +m)e) and we also have T ((l +m)e, ω;H−
e +

le) � 2m
c0

by Lemma 5.3, we can apply Lemma 2.9 (see Lemma 3.7) with f1 =
f2 = f and

(u1, u2, η, y, t0, R) = (u1, u2, 0, (l + m)e, T1(ω) + τ0, Rm)

to obtain

T ((l + m)e, ω;H−
e ) � T ((l + m)e, ω;H−

e + le) + T1(ω) + τ0 + 2κ∗ + κ0.(5.8)

Taking expectations on both sides of this inequality and using stationarity of f
yields

E
[
T ((l + m)e, · ;H−

e )
]

� E
[
T ((l + m)e, · ;H−

e + le)
] + E [T1(·)] + τ0 + 2κ∗ + κ0

= E
[
T (me, ·;H−

e )
] + E [T1(·)] + τ0 + 2κ∗ + κ0.

Since Rm � Cl and ld+1φ( c0
4c1

l) � C for some C > 0 due to (H4’) and β3 ≥
d+1

2d+1+m′
4
, it now follows from Lemma 5.4 that for any δ > 0, we indeed have

E
[
T ((l + m)e, · ;H−

e )
]

� E
[
T (me, · ;H−

e )
] + E

[
T (le, · ;H−

e )
] + C̄ρ(Cδ + lβ+δ),

with some C, Cδ (and C̄ρ from (5.3) resp. (5.4)).
Let us now turn to the other direction (again assuming l � m � 4c1

c0
l0),

E
[
T (le, · ;H−

e )
] + E

[
T (me, · ;H−

e ) − E
[
T ((l + m)e, · ;H−

e )
]]

� C̄ρ(Cδ + lβ+δ),

the proof of which is a little more involved. With β1 from (3.3), let

η := min

{
θ∗

2
,

1

2M∗
, lβ1−1

}
> 0, (5.9)

and then (see Sect. 2.1 for the other constants)

Rl := 1

μ∗ηm2

(
1 +

(
2l

c0

)α2
)

and Rm := D2

(
1 + 2m

c0

)
.

For any ω ∈ �, denote T ′
1(ω) := T +

e (Rl + Rm, l, ω) and

u′
1(t, x) := u(t + T ′

1(ω), x, ω;H−
e ),

u′
2(t, x) := u(t, x, ω;H−

e + le).

Lemma 5.3 yields T ′
1(ω) ∈

[
l

2c1
, 2l

c0

]
and hence also

u′
1(0, ·) � 1 − θ∗ on H+

e + 4c1c−1
0 le,
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where H+
e := R

d\H−
e . Therefore,

u′
1(0, ·) � 1 − θ∗ on C+

e (Rl + Rm, l) ∪ (H+
e + 4c1c−1

0 le).

From (2.6) and T ′
1(ω) � 2l

c0
we have Rl � Lu,η,1−θ∗(T ′

1(ω)), and so

u′
1(0, ·) � η on

{
x ∈ R

d
∣∣ x · e � l + Rl and |x − (x · e)e| � Rm

}
.(5.10)

As for u′
2, Lemma 2.1 shows that

u′
2(κ0 + 2Rlc0

−1, ·) � 1 − θ∗ on H−
e + (l + Rl)e,

and Lemma 2.8 then shows that for τ l
0 := κ0 + 2Rlc0−1 + D1η

1−m1 we have

u′
2(τ

l
0, ·) � 1 − η onH−

e + (l + Rl)e. (5.11)

Note also that there is C > 0 such that

τ l
0 � C(lα2η−m2 + η1−m1) � Clβ1 (5.12)

because (3.3) shows that

max{(1 − β1)(m1 − 1), α2 + (1 − β1)m2} = β1.

From (5.10) and (5.11) we now have that

u′
2(τ

l
0, ·) � u′

1(0, ·) − η on
{

x ∈ R
d
∣∣ |x − (x · e)e| � Rm

}
.

Since the set above contains BRm ((l +m)e), we can apply Lemma 2.9 (see Lemma
3.7) with f1 = f2 = f and

(u1, u2, η, y, t0, R) = (u′
2, u′

1, η, (l + m)e, τ l
0, Rm)

to obtain

T ((l + m)e, ω;H−
e + le) � (1 + M∗η)

[
T ((l + m)e, ω;H−

e ) − T ′
1(ω)

]

+τ l
0 + 2κ∗ + κ0, (5.13)

provided we also have

T ((l + m)e, ω;H−
e ) − T ′

1(ω) � 2mc0
−1 (5.14)

(notice that T ((l + m)e, ω;H−
e ) � T ′

1(ω) because l + m � 2l � 4c1
c0

l). However

since Lemma 2.1 yields T ((l + m)e, ω;H−
e + le) � κ0 + 2m

c0
, (5.13) obviously

holds even if (5.14) fails. Since T ((m + l)e, ω;H−
e ) � 2(m+l)

c0
� 4l

c0
by Lemma

5.3, we get from (5.9) and (5.12),

T ((l + m)e, ω;H−
e + le) � T ((l + m)e, ω;H−

e ) − T ′
1(ω) + 4lc0

−1M∗η + Clβ1

� T ((l + m)e, ω;H−
e ) − T ′

1(ω) + Clβ1 ,
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for some C > 0. Taking expectations, using stationarity of f , β1 � β, as well
as Rl + Rm � Cl and ld+1φ(l) � C for some C > 0 (due to (H4’), (3.3), and
β3 ≥ d+1

2d+1+m′
4
), and applying Lemma 5.4 shows that for any δ > 0 we indeed have

E
[
T ((l + m)e, · ;H−

e )
]

� E
[
T ((l + m)e, · ;H−

e + le)
] + E

[
T ′
1(·)

] − Clβ1

� E
[
T (me, ·;H−

e )
] + E

[
T (le, · ;H−

e )
] − C̄ρ(Cδ + lβ+δ),

with some C, Cδ (and C̄ρ from (5.3) resp. (5.4)). ��
Now we are ready to prove the main result of this section.

5.1. Proof of Proposition 5.1

Let G(l) := 1
l E[T (le, · )] � 0 and γ := β + δ. It follows from Lemma 2.1 and

Corollary 2.6 that

1

c1
� lim inf

l→∞ G(l) � lim sup
l→∞

G(l) � 1

c0
.

It therefore suffices to show that there isCδ > 0 such that with either C̄δ,ρ := Cδ
√

ρ

(when f satisfies (H2’)) or C̄δ,ρ := Cδ (when f satisfies (H3) and (H4’)), we have
for all l � m � 2,

|G(l) − G(m)| � C̄δ,ρmγ−1. (5.15)

Since β < 1, we only need to consider δ > 0 such that γ < 1.
By Lemma 2.1, G(l) is no more than

1

l

(
2l

c0
+ κ0

)
� 2

c0
+ κ0 (5.16)

for all l � 1, and we also have |T (le, ·) − T (me, ·)| � 4
c0

+ κ0 when |l − m| � 2.
Therefore, there exists C0 > 0 such that for all l, m satisfying m + 2 � l � m � 2
we have

|G(l) − G(m)| �
∣∣∣∣
m − l

m
G(l)

∣∣∣∣ +
1

m
E[|T (le, ·) − T (me, ·)|] � C0m−1. (5.17)

Using Proposition 5.5, we also see that there is Cδ � 1 such that for any l � m � 2
(and with C̄δ,ρ � 1 given above),

|G(l) − G(m)| = 1

l

∣∣∣∣E[T (le, · )] − E[T (me, · )] − l − m

m
E[T (me, · )]

∣∣∣∣

� 1

l

∣∣∣E[T (le, · )] − E[T (me, · )] − E[T ((l − m)e, · )]
∣∣∣

+ l − m

l

∣∣∣∣
1

m
E[T (me, · )] − 1

l − m
E[T ((l − m)e, · )]

∣∣∣∣

� C̄δ,ρlγ−1 + l − m

l
|G(m) − G(l − m)|.

(5.18)
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Now assume that for some p ∈ {2, 3, 4, . . .}, there is Np � 2C0 such that for
all m ∈ [2, 2p] and l � m we have

|G(l) − G(m)| � Npmγ−1. (5.19)

This is in fact true for p = 2, because (5.16) shows that (5.19) holds for all
m ∈ [2, 4] and l � m with N2 = max{4( 2

c0
+ κ0), 2C0}. We will then extend

(5.19) to all m ∈ [2, 2p+1] and l � m, with a relevant new constant Np+1 � Np.
First, note that for any m ∈ [2, 2p+1] and l ∈ [m, 3

2m] we have
|G(l) − G(m)| � (C̄δ,ρ + 3−γ Np)l

γ−1. (5.20)

Indeed, this holds for l ∈ [m, m + 2] due to (5.17) and C0
m � Np

m+2 � 3−γ Np(m +
2)γ−1. And if instead l ∈ [m + 2, 3

2m], then l − m ∈ [2,min{2p, l
3 }], so it follows

from (5.18) and the induction hypothesis (5.19) that

|G(l) − G(m)| � C̄δ,ρlγ−1 + l − m

l
Np(l − m)γ−1 � (C̄δ,ρ + 3−γ Np)l

γ−1.

Let us now consider m ∈ (2p, 2p+1] and l � 3
2m. Let lk := 2−kl for k =

0, 1, . . . , j , with j chosen so that l j ∈ ( 34m, 3
2m]. Since lk = lk−1 − lk , from (5.18)

we obtain

|G(l) − G(l j )| �
j∑

k=1

|G(lk−1) − G(lk)| �
j∑

k=1

C̄δ,ρ lγ−1
k−1

� C̄δ,ρ lγ−1
j

j∑
k=1

(
2 j−k+1

)γ−1
� C̄ ′

δ,ρmγ−1,

where C̄ ′
δ,ρ := C̄δ,ρ( 43 )

1−γ 2γ−1

1−2γ−1 < ∞ (recall that γ < 1).

If l j ∈ [m, 3
2m], then (5.20) yields

|G(l j ) − G(m)| � (C̄δ,ρ + 3−γ Np)l
γ−1
j � (C̄δ,ρ + 3−γ Np)m

γ−1.

If instead l j ∈ ( 3
4m, m

)
, then l j ∈ [2, 2p+1] and m ∈ [l j ,

4
3 l j ]. Hence (5.20) again

yields

|G(m) − G(l j )| � (C̄δ,ρ + 3−γ Np)m
γ−1.

In either case we obtain

|G(l) − G(m)| � |G(l) − G(l j )| + |G(l j ) − G(m)| �
(
C̄δ,ρ + C̄ ′

δ,ρ + 3−γ Np
)

mγ−1.

This, (5.19), and (5.20) now prove (5.19) with p + 1 in place of p (so it holds
for all m ∈ [2, 2p+1] and l � m) and with

Np+1 = C̄δ,ρ + C̄ ′
δ,ρ + 3−γ Np � max

{
Np,

3γ

3γ − 1
(C̄δ,ρ + C̄ ′

δ,ρ)

}
.

Since (5.19) holds for p = 2 with N2 = max{4( 2
c0

+ κ0), 2C0}, it follows that it
holds for any p = 2, 3, . . . with Np = max

{
4( 2

c0
+ κ0), 2C0,

3γ

3γ −1 (C̄δ,ρ + C̄ ′
δ,ρ)

}

=: C̄ ′′
δ,ρ . This proves (5.15).
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6. Deterministic Front Speeds and Proof of Theorem 1.7

We are now ready to prove Theorem 1.7. This is because it was shown in
[16] that such homogenization results for reaction–diffusion equations and related
models follow from appropriate estimates on the dynamics of the solutions to (5.1)
for all vectors e ∈ S

d−1. We will be able to obtain these estimates using the main
results from Sects. 3–5.

Specifically, we will use Proposition 5.1, and either Proposition 3.8 (when we
assume (H2’)) or Proposition 4.2 (when we assume (H3) and (H4’)) in the proof.
We will handle both cases at once, using that either of the latter two propositions
yields (5.5) above, with the notation from either (5.3) in the first case or (5.4) in
the second.

For us, the key result from [16] will be Theorem 5.4, which applies when for
almost all ω ∈ �, the reaction f (·, ·, ω) has deterministic strong exclusive front
speeds in all directions e ∈ S

d−1. We will first define these, following Definitions
1.3, 1.6, and Remark 3 after Hypothesis H’ in [16], and then prove their existence.

Definition 6.1. Let f satisfy (H1) and let e ∈ S
d−1. If there is c∗(e) ∈ R and

�e ⊆ � with P(�e) = 1 such that for each ω ∈ �e and compact K ⊆ H+
e = {x ∈

R
d | x · e > 0},

lim
t→∞ inf

x∈(c∗(e)e−K )t
u(t, x, ω;H−

e ) = 1,

lim
t→∞ sup

x∈(c∗(e)e+K )t
u(t, x, ω;H−

e ) = 0

holds for the solution to (5.1) with l = 0 and some u0,H−
e
satisfying (1.9) and (2.3)

with S = H−
e , then we say that c∗(e) is a deterministic front speed in direction e

for (1.1).
This speed is strong if for each such ω and K , and each � � 0, we have

lim
t→∞ inf

|y|��t
inf

x∈(c∗(e)e−K )t
u(t, x, ϒyω;H−

e ) = 1,

lim
t→∞ sup

|y|��t
sup

x∈(c∗(e)e+K )t
u(t, x, ϒyω;H−

e ) = 0.
(6.1)

And if, in addition, for each such ω and K there is λK ,ω,e : (0, 1] → (0, 1]
satisfying lima→0 λK ,ω,e(a) = 0 such that for each � > 0 and a ∈ (0, 1] we have

lim sup
t→∞

sup
|y|��t

sup
x∈(c∗(e)e+K )t

we,a(t, x, ϒyω) � λK ,ω,e(a), (6.2)

where we,a(·, ·, ω) solves (1.1) with initial data

we,a(0, ·, ω) = χH−
e

+ aχH+
e
,

then c∗(e) is a deterministic strong exclusive front speed in direction e for (1.1).
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Remark. 1. Lemma 2.1 and the comparison principle show that all these defini-
tions are independent of the choice of u0,H−

e
satisfying (1.9) and (2.3). We could

equivalently choose u0,H−
e

:= (1− θ∗)χH−
e
here, but having solutions with ut � 0

will be more convenient.
2. We will show that in Theorem 1.7, λK ,ω,e(a) = a for all (K , ω, e) as above

and all small enough a > 0 (depending on M, θ1, m1, α1, μ∗, K ).

Let us first show that the reactions we consider here have deterministic strong
front speeds, and then we will show that all these speeds are also exclusive.

Proposition 6.2. Assume that f either satisfies (H2’) and has a finite range of
dependence, or satisfies (H3) and (H4’). For each e ∈ S

d−1, let T̄ (e) be from
Proposition 5.1. Then c∗(e) := T̄ (e)−1 ∈ [c0, c1] is the deterministic strong front
speed in direction e for (1.1).

Proof. Fix any e ∈ S
d−1,� � 0, and compact K ′ ⊆ H+

e . Let K ⊆ H+
e be compact

and such that K ′ ⊆ K 0, let dK := d(K ,H−
e ) > 0, and let AK := 1+diam(K )d <

∞. Let us also use the notation (5.2), and for any η ∈ (0, θ∗] and t � 0, let

I η
t (K ,�) :=

{
ω ∈ �

∣∣∣∣ inf
|y|��(t+1)

inf
x∈(c∗(e)e−K )t

u(t, x, ϒyω) < 1 − η

}
.

Assume that u(t, x, ϒyω) � 1− θ∗ for some (t, x, y, ω) ∈ [0,∞)×R
2d ×�.

Since for all y′ ∈ R
d we have u(·, ·, ϒy′ω) = u(·, ·+ y′, ω;H−

e +(y′ ·e)e), Lemma
2.1 and comparison principle yield for all y′ ∈ B√

d(y),

u(· + τ0, · − y′, ϒy′ω) � u(·, · − y, ϒyω),

with τ0 := κ0 + 2c−1
0 (R0 + √

d). Applying Lemma 2.1 again, we obtain for all
y′ ∈ B√

d(y),

u(t + 2τ0, x, ϒy′ω) � u(t + τ0, x + y′ − y, ϒyω) � 1 − θ∗.

Then Lemma 2.8 shows that if η ∈ (0, θ∗] and τη := 2τ0 + 4c−1
0

√
d + D1η

1−m1 ,
then

u(t + τη, ·, ϒy′ω) � (1 − η)χB√
d (x) (6.3)

for all y′ ∈ B√
d(y). This shows that we can only have ω ∈ I η

t (K ,�) for some
t � τη if

inf
(x,y)∈Z K ,�,t

u(t − τη, x, ϒyω) < 1 − θ∗,

where ZK ,�,t := ((c∗(e)e − K )t ∩Z
d) × (B�(t+1)(0) ∩Z

d). From this we obtain

P[I η
t (K ,�)] �

∑
(x,y)∈Z K ,�,t

P
[
u(t − τη, x, ϒyω) < 1 − θ∗]
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=
∑

(x,y)∈Z K ,�,t

P
[
T (x, ϒyω) > t − τη

]
.

If t � 2(τη+κ0+ 2
c0

), then fromLemma 2.1we have T (x, ϒyω) � t −τη whenever

x · e � 1 + c0t
4 . Hence, with Z ′

K ,�,t := {(x, y) ∈ ZK ,�,t | x · e > 1 + c0t
4 } we

obtain

P[I η
t (K ,�)] �

∑

(x,y)∈Z ′
K ,�,t

P
[
T (x, ϒyω) > t − τη

]
. (6.4)

Note also that there is C > 0 such that this sum has at most C(1 + �d)AK t2d

terms.
Consider any (x, y) ∈ Z ′

K ,�,t , where t � 2(τη + κ0 + 2
c0

). With the notation

from (5.3) resp. (5.4), and β ′ := 1+β
2 ∈ (0, 1), Proposition 5.1 and stationarity of

f yield
∣∣∣∣
E[T (x, · )]

x · e
− 1

c∗(e)

∣∣∣∣ � C̄ρ(x · e)β
′−1.

Since x · e � (c∗(e) − dK )t and c∗(e) = T̄ (e)
−1 � c1, we obtain

E[T (x, · )] � x · e

c∗(e)
+ C̄ρ(x · e)β

′ � t − dK t

c∗(e)
+ C̄ρ((c∗(e) − dK )t)β

′ � t − dK t

2c1

whenever

t � max

{
(2C̄ρc1+β ′

1 d−1
K )

1
1−β′ , 2(τη + κ0 + 2c0

−1), 4c1d−1
K τη

}
.

Hence for such t , (5.5) yields C > 0 (defining C̄ρ via (5.3) resp. (5.4)) such that

P
[
T (x, ϒyω) > t − τη

]
� P

[∣∣T (x, ϒyω) − E[T (x, · )]∣∣ � dK t

2c1
− τη

]

� 2 exp

(
−C̄−2

ρ

(
dK t

2c1
− τη

)2

(x · e)−2β

)
+ φ(x · e)

� 2 exp
(
−C̄−2

ρ d2
K t2−2β

)
+ Ct−β3(2d+1+m′

4)

when (x, y) ∈ Z ′
K ,�,t , where we also used that c0t

4 � x · e � c1t and τη � dK
4c1

t
(recall that C can change from line to line). This and (6.4) show that for all large
enough t we have

P
[
I η
t (K ,�)

]
� C(1 + �d)AK t2d

(
exp

(
−C̄−2

ρ d2
K t2−2β

)
+ t−β3(2d+1+m′

4)
)

.

Then
∑

n�1 P[I η
n (K ,�)] < ∞ since β3 > 2d+1

2d+1+m′
4
, so the Borel-Cantelli

Lemma shows that for a.e. ω ∈ �, there is Nω such that ω /∈ ⋃
n�Nω

I η
n (K ,�).

But since K ′ ⊆ K 0 means there is τ such that

(c∗(e)e − K ′)t ⊆ (c∗(e)e − K )�t�
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for all t � τ , from ut � 0 and the definition of I η
t (K ,�) we obtain

inf
|y|��t

inf
x∈(c∗(e)e−K ′)t

u(t, x, ϒyω) � 1 − η

for all such ω and all t ≥ max{Nω, τ }. Applying this argument with η = 1
n ,� = n,

and K ′ = {x ∈ R
d | x · e ∈ [ 1n , n] and |x − (x · e)e| � n} for each n ∈ N yields

�1 ⊆ � with P(�1) = 1 for which the first statement in (6.1) holds.
It remains to prove the the second statement for some �2 with P(�2) = 1, as

we can then take �e := �1 ∪ �2. The proof is similar to that of the first statement.
With the setup from the start of its proof, we now let

I η
t (K ,�) :=

{
ω ∈ �

∣∣∣∣ sup
|y|��t

sup
x∈(c∗(e)e+K )t

u(t, x, ϒyω) > η

}
.

Assume that u(t, x, ϒyω) > η for some (t, x, y, ω) ∈ [0,∞)×R
2d ×�. Then

(2.6) shows that with Lt,η := μ−1∗ (1 + tα2)η−m2 , there is x ′ ∈ BLt,η (x) such that

u(t, x ′, ϒyω) � 1 − θ∗.

Lemma 2.1 now shows that

u(t + κ0 + 2c−1
0 Lt,η, x, ϒyω) � 1 − θ∗.

In the same way as we obtained (6.3) (but using Lemma 2.1 instead of Lemma 2.8),
we now get for all y′ ∈ B√

d(y) and with τt,η := 3κ0 + 2
c0

(Lt,η + R0 + 2
√

d),

u(t + τt,η, ·, ϒy′ω) � (1 − θ∗)χB√
d (x).

So similarly to (6.4), with ZK ,�,t := ((c∗(e)e + K )t ∩ Z
d) × (B�t (0) ∩ Z

d) we
get for all t � 0,

P[I η
t (K ,�)] �

∑
(x,y)∈Z K ,�,t

P
[
T (x, ϒyω) � t + τt,η

]
. (6.5)

And again, there is C > 0 such that this sum has at most C(1 + �d)AK t2d terms.
Let d ′

K := dH (K ,H−
e ) and consider any t � 1

c0
and (x, y) ∈ ZK ,�,t . Then

c∗(e)t � 1 and

x · e ∈ [(c∗(e) + dK )t, (c∗(e) + d ′
K )t]. (6.6)

Thus Proposition 5.1 and c∗(e) = T̄ (e)−1 imply, as above (with β ′ = 1+β
2 ),

E[T (x, · )] � x · e

c∗(e)
− C̄ρ(x · e)β

′ � t + dK t

c∗(e)
− C̄ρ((c∗(e) + d ′

K )t)β
′

� t + dK t

2c1
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whenever

t � max

{
(2C̄ρ(c1 + d ′

K )1+β ′
d−1

K )
1

1−β′ , c−1
0 , CK ,η

}
,

where CK ,η is such that τt,η � dK t
4c1

for all t � CK ,η (this exists because α2 < 1,

and will be used next). Hence for such t , (5.5) yields C > 0 (defining C̄ρ via (5.3)
resp. (5.4)) such that

P
[
T (x, ϒyω) � t + τt,η

]
� P

[∣∣T (x, ϒyω) − E[T (x, · )]∣∣ � dK t

2c1
− τt,η

]

� 2 exp

(
−C̄−2

ρ

(
dK t

2c1
− τt,η

)2

(x · e)−2β

)
+ φ(x · e)

� 2 exp
(−C̄−2

ρ d2
K (1 + d ′

K )−2β t2−2β) + Ct−β3(2d+1+m′
4)

when (x, y) ∈ ZK ,�,t ,wherewe also used (6.6) and τt,η � dK t
4c1

in the last inequality.
This and (6.5) show that for all large enough t we have

P[I η
t (K ,�)] � C(1 + �d)AK t2d

(
exp

(−C̄−2
ρ d2

K (1 + d ′
K )−2β t2−2β) + t−β3(2d+1+m′

4)
)

.

We can now conclude the proof of the second statement in (6.1) as we did the
proof of the first statement, this time using that

(c∗(e)e + K ′)t ⊆ (c∗(e)e + K )�t�
for all large enough t . ��
Remark. This proof shows that (6.1) holds with �t replaced by exp(tγ ) for any
γ < 2 − 2β.

Proposition 6.3. Under the hypotheses of Proposition 6.2, for each e ∈ S
d−1, the

speed c∗(e) is also a deterministic strong exclusive front speed in direction e for
(1.1).

Proof. Having Proposition 6.2, this proof is now similar to the one of [16, Theorem
1.7(i)].

For any (e, a, ω) ∈ S
d−1 × (0, 1) × �, let u(·, ·, ω;H−

e ) and we,a(·, ·, ω) be
from Definition 6.1, and let τa := 1 + D1a1−m1 . Lemma 2.9 (see Lemma 3.7)
shows that if a ∈ (0, 1

2 min{θ∗, M−1∗ }], then
u+(t, x) := u((1 + M∗a)t + τa, x, ω;H−

e ) + a

is a supersolution to (1.1) on (κ∗,∞) × R
d . Moreover, ut � 0 and Lemma 2.8

show that

u+(κ∗, ·) � u(τa, ·, ω;H−
e ) + a � we,a(0, ·, ω).

The comparison principle now yields for all t � 0,

u+(t + κ∗ + τa, ·) � we,a(t, ·, ω).
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It now follows from Proposition 6.2 that (6.2) holds with λK ,ω,e(a) = a for
all � � 0 and all compact K ⊆ H+

e + M∗a c∗(e)e. This is true for all a ∈
(0, 1

2 min{θ∗, M−1∗ }], so the result follows after letting λK ,ω,e(a) := 1 for all a ∈
( 12 min{θ∗, M−1∗ }, 1]. ��

6.1. Proof of Theorem 1.7

For any e ∈ S
d−1, let �e ⊆ � with P(�e) = 1 be the set from Definition

6.1 and let c∗(e) be the corresponding deterministic strong exclusive front speed
for (1.1) from Proposition 6.3. Let A ⊆ S

d−1 be a dense countable set and let
�0 := ⋂

e∈A �e. Then P(�0) = 1, and for each ω ∈ �0, (1.1) with this fixed ω

has a strong exclusive front speed c∗(e) in each direction e ∈ A (i.e., (6.1) and (6.2)
hold for this fixed ω and each e ∈ A, � � 0, and compact K ⊆ H+

e ).
Then [16, Theorem 4.4(i)] shows that (1.1) with this fixed ω has a strong exclu-

sive front speed c∗
ω(e) in each direction e ∈ S

d−1, and c∗
ω is Lipschitz with Lipschitz

constant only depending on M . But then c∗
ω(e) must be independent of ω ∈ �0 for

each e ∈ S
d−1 (instead of just all e ∈ A), and hence equals c∗(e) from Proposition

6.3 because P(�0) = 1.
Theorem 1.7 now follows directly from [16, Theorem 5.4] applied separately

to each ω ∈ �0 (see also the remarks after Hypothesis H’ in [16]).

7. Proof of Theorem 1.8

In this section we will show how to extend the above analysis to the cases
considered in Theorem 1.8. We can obviously assume α′

2 > 0 without loss, and all
constants with C in them may depend on (2.10) as well as on α′

2.
Since we now replace (H2’) by (H2”), the estimates (2.6) instead become

sup
t≥0& η>0

Lu,η+a,1−θ∗(t)

(1 + tα2)η−m2
� μ−1∗ ,

inf
(t,x)∈[κ∗,∞)×R

d

u(t,x)∈[θ∗,1−θ∗]
ut (t, x)tα

′
2 � μ∗

(7.1)

for all a ∈ [0, a2] and either all u ∈ U f,a (when assuming (H2”)) or all u ∈⋃
n�n4 U fn ,a (when assuming (H3) and (H4”)), again with some μ∗, κ∗ > 0.
We will first assume without loss that a2 = 0. Then of course also a = 0 and

U f,a = U f above, so (7.1) is just (2.6) with the extra factor of tα
′
2 in the second

estimate. We will now show how the results in Sects. 2–6 and their proofs change
due to this.

Of the results in Sect. 2, clearly only Lemmas 2.9 and 2.10 are affected by this
change. They will instead become the following two results.

Lemma 7.1. Let f1 satisfy (H2”) and f2 satisfy (H1’), and let M∗ := 2α′
2 1+M

μ∗ , with

μ∗, κ∗ from (7.1) for all u ∈ U f1 . Fix some ω ∈ � and let u1, u2 : [0,∞) ×R
d →
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[0, 1] solve (1.1) with f1, f2 in place of f , respectively. If u1 ∈ U f1 , t0 � 0,

T � 2κ∗, and for some η ∈ [0, 1
2 min{θ∗, M−1∗ (T + t0)−α′

2}] we have

f1(x, u, ω) = f2(x, u, ω) whenever u1(t0, x) < 1 − η and u ∈ [0, 1],
then

u+(t, x) := u1((1 + M∗(T + t0)
α′
2η)t + t0, x) + η

is a supersolution to (1.1) with f2 in place of f on (κ∗, T ) × R
d , and

u−(t, x) := u1((1 − M∗(T + t0)
α′
2η)t + t0, x) − η

is a subsolution to (1.1) with f2 in place of f on (2κ∗, T ) × {x ∈ R
d | u1(t0, x) <

1 − η}.
Moreover, there is D2 = D2(M, θ1, m1, α1) � 1 such that if also Tu2(y) � T ,

and

sup
x∈BR(y)

(u2(0, x) − u1(t0, x)) � η

for some y ∈ R
d and R � D2(1 + Tu2(y)), then

Tu2(y) �
(
1 + M∗(T + t0)

α′
2η
)−1

(Tu1(y) − t0 − 2κ∗ − κ0).

Proof. The proof is the same as that of Lemma 2.9, replacing (2.6) by (7.1) and
using τ±(t) := (1± M∗(T + t0)α

′
2η)t + t0. In particular, we use in it that for t � T

we have

M∗(T + t0)
α′
2ημ∗((1 + M∗(T + t0)

α′
2η)t + t0)

−α′
2

� M∗(T + t0)
α′
2ημ∗(2T + t0)

−α′
2 � (1 + M)η.

We also have D2 := 2
√

Md ln 4d
θ∗ as before. ��

Lemma 7.2. Let f1 satisfy (H2”) and f2 satisfy (H1’), with at least one satisfy-
ing (H3) with α3 � 1, and let M∗, D2 be from Lemma 7.1. Fix some ω ∈ �

and let u1, u2 : [0,∞) × R
d → [0, 1] solve (1.1) with f1, f2 in place of f ,

respectively. If u1 ∈ U f1 , for some y ∈ R
d , R � D2(1 + Tu2(y)), and η ∈

[0, 1
2 min{θ∗, M−1∗ (max{Tu2(y), 2κ∗} + t0)−α′

2}] we have

f1(x, u, ω) � f2(x, u, ω) − α3η
m3 for all (x, u) ∈ BR(y) × [0, 1],

and u2(0, ·) � u1(t0, ·) for some t0 � 0 and all x ∈ BR(y), then

Tu2(y) �
(
1 + M∗(max{Tu2(y), 2κ∗} + t0)

α′
2η
)−1 (

Tu1(y) − t0 − 2κ∗ − κ0
)
.

Proof. The proof is the same as that of Lemma 2.10, replacing (2.6) and Lemma
2.9 by (7.1) and Lemma 7.1 with T := max{Tu2(y), 2κ∗}, and using τ+(t) :=
(1 + M∗(T + t0)α

′
2η)t + t0. ��
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We can now extend all of Sects. 3–5 to (H2”) in place of (H2’), and obtain the
following analog of Proposition 6.2.

Proposition 7.3. Assume that f either satisfies (H2”) and has a finite range of
dependence, or satisfies (H3) and (H4”). Then for each e ∈ S

d−1, (1.1) has a
deterministic strong front speed c∗(e) ∈ [c0, c1] in direction e.

Proof. In the whole proof, we assume without loss that a2 = 0 (and so a = 0 as
well). When extending results from Sect. 3, we assume that f satisfies (H2”) and
has range of dependence at most ρ ∈ [1,∞); in Sect. 4 we instead assume (H3)
and (H4”); and in Sects. 5 and 6 we assume either of these two cases, as before.

Most of Sect. 3 is unchanged, with (3.3) replaced by

β1 := max

{
(1 + α′

2)(m1 − 1)

m1
,
(1 + α′

2)m2 + α2

m2 + 1

}
, (7.2)

which is still in (0, 1) thanks to α′
2 < min{ 1

m1−1 ,
1−α2

m2
}. The first adjustment is

required in Lemma 3.4, where we used the second claim in (2.6) to obtain (3.8).
We have here u(τ (x, ω), y, ω) ≥ θ∗ for some y ∈ B1(x), and can instead use
Lemma 2.1 to get

u(τ (x, ω) + κ0 + 2c−1
0 (Lu,θ∗,1−θ∗(τ (x, ω)) + 1), x, ω) � 1 − θ∗.

Since the first claim in (7.1) (with a = 0 and η = θ∗) yields C > 0 such that

κ0 + 2c−1
0 (Lu,θ∗,1−θ∗(τ (x, ω)) + 1) � C(1 + τ(x, ω)α2)

(recall that u ∈ U f ) and Lemma 2.1 also implies τ(x, ω) � C(1 + t) whenever
ω ∈ Ft,x , we have T (x, ·) � τ(x, ·) + C(1+ tα2) on Ft,x . Hence the first claim of
Lemma 3.4 becomes

∣∣E[T (x, ·)χFt,x |Gt ] − T (x, ·)χFt,x

∣∣ � C(1 + tα2) on �,

while the second holds only for s ∈ [0, t − C(1 + tα2)].
As for Proposition 3.5, instead of (3.13) we let

η := C−1
1 (ρ + d(x0, S))−γ ,

where C1 > 0 will be chosen shortly and

γ := min

{
1 + α′

2

m1
,
1 + α′

2 − α2

m2 + 1

}
> 0. (7.3)

Note that then, similarly to (3.14), we have

max{γ (m1 − 1), α2 + γ m2, 1 + α′
2 − γ } = β1 < 1 (7.4)

(in particular, γ > α′
2), and (3.15) and (3.16) continue to hold. Now we pick C1 so

that with with T := max{T (x0, ω), Ti (x0, ω), 2κ∗} we have

η � min

{
θ∗

2
,
(T + t0 + t3)−γ

2M∗

}
,
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which is possible due tomax{T (x0, ω), Ti (x0, ω), t0} � C(1+d(x0, S)) and (3.16).
Then we can use Lemma 7.1 with this T and η (instead of Lemma 2.9) to see that
(3.17) becomes

T (x0, ω) − t0 − Ti (x0, ω) � M∗η
(
T + t0 + t3

)α′
2Ti (x0, ω) + 2κ∗ + κ0 + t3

� C(ρ + d(x0, S)β1)

because β1 � 1+α′
2 − γ . This ends the first half of the proof. Using again Lemma

7.1 instead of Lemma 2.9 in the second half of it, with η as above, shows that

u−(t, x) := u((1 − M∗η(T + t0)
α′
2)t + t0, x) − η

is a subsolution to (1.1) on (2κ∗, T ) × (Rd\�u,1−η(t0, ω)). The rest of the proof
does not use the second claim in (2.6) and is unchanged (using this u− and also
(7.4)), with (3.23) becoming

Ti (x0, ω) + t0 − T (x0, ω) � t4 + M∗η(T + t0)
α′
2Ti (x0, ω) � C(ρ + d(x0, S)β1).

This finishes the proof.
The proof of Lemma 3.6 remains the same. In the proof of Proposition 3.1,

the change in Lemma 3.4 turns the C in (3.25) and (3.30) into C(1 + tα2) (recall
that s � t in the argument), which is then added to the right-hand sides of (3.26)
and (3.29). Then (3.30) shows that there is C > 0 such that Xt = T (x, ·) for all
t � C(1 + d(x, S)), and we now pick N to be the smallest integer with Nτ �
C(1 + d(x, S)). The estimate N � C1d(x, S)(ρ + d(x, S)β1)−1 now still holds
(recall that d(x, S) > ρ � 1 here), and (3.31) remains unchanged because the
term added to (3.29) is estimated by C(1 + (Nτ)α2) � C(1 + d(x, S)β1) because
α2 < β1. The rest of the proof of Proposition 3.1 remains the same.

Lemmas 3.7 and 4.1 are unchanged except for replacement of (H2’), (H4’),
U f , U ′

f , Lemma 2.9, and Lemma 2.10 in their statements and proofs by (H2”),
(H4”), U f,a , U ′

f,a , Lemma 7.1, and Lemma 7.2, respectively (here we can even

allow any fixed a2 ∈ [0, 1
2θ

∗] in (H2”), although a2 = 0 is sufficient). The proof
of Proposition 3.8 also remains the same, using Lemma 7.1 (with T = ∞ because
η = 0) instead of Lemma 2.9.

In Proposition 4.2, we replace (4.1) by

β3 := max

{
β1,

(1 + 2α′
2)m3

m3 + 2m4
,

2d + 2

2d + 2 + m′
4

}
, (7.5)

which is still in (0, 1) thanks to α′
2 < m4

m3
. Then when we use Lemma 2.10 in the

proof, we replace it by Lemma 7.2 with the same η := (α4
α3

n−m4)1/m3 , but now we
need to pick n so that

α
1/m3
4 α

−1/m3
3 n

− m4
m3 � 1

2
min{θ∗, M−1∗ (T + κ0 + 2c−1

0 R0)
−α′

2},

with T := max{T (x, ω; S), Tn(x, ω; S), 2κ∗}. Since T � C(1 + d(x, S)) due to
Lemma 2.1, and β3

m4
m3

> α′
2 due to α′

2 < m4
m3

and (7.5), there is again C1 > 0 such
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that it suffices to let n be the smallest integer for which (4.5) holds. Then a double
application of Lemma 7.2 replaces (4.4) by

|Tn(x, · ; S) − T (x, · ; S)| � Cn
− m4

m3 (1 + T )1+α′
2 + C � Cn

− m4
m3 (1 + d(x, S))1+α′

2 + C.

Since there is again C2 > 0 such that

4Cn
− m4

m3 (1 + d(x, S))1+α′
2 + 4C � C2(1 + d(x, S)

1+α′
2−β3

m4
m3 ) � C2(1 + d(x, S)

1+β3
2 )

because 1+α′
2−β3

m4
m3

� 1+β3
2 , the rest of the proof of Proposition 4.2 is unchanged.

Most of Sect. 5 is also unchanged, with the only two adjustments needed in the
proof of Proposition 5.5. We used Lemma 2.9 when proving (5.8), and we can just
replace it by Lemma 7.1 without any other change because there we had η = 0.
We also used Lemma 2.9 when proving (5.13), and the change to Lemma 7.1 now
requires us to replace (5.9) by

η := C−1
1 min

{
θ∗, M−1∗ l−γ

}
,

with γ from (7.3) (recall that (7.4) shows γ � 1+α′
2 −β1 � 1−β1, so η � lβ1−1

as well; in fact, we could have chosen this η in (5.9) as well) and C1 � 2 such that
with T = max{κ0 + 2(l+m)

c0
, 2κ∗} we have η � 1

2M∗ (T + τ l
0)

−α′
2 . This is possible

because of (5.12) and γ � α′
2. Then replacing Lemma 2.9 by Lemma 7.1 with this

T yields

T ((l + m)e, ω;H−
e + le) � (1 + M∗η(T + τ l

0)
α′
2)[

T ((l + m)e, ω;H−
e ) − T ′

1(ω)
] + τ l

0 + 2κ∗ + κ0

instead of (5.13). But the addition of (T + τ l
0)

α′
2 here does not require further

changes because

M∗η(T + τ l
0)

α′
2T ((l + m)e, ω;H−

e ) � Cl1+α′
2−γ � Clβ1

by (7.4) (recall that we assume here l � m � 4c1
c0

l0).
The proofs of Propositions 5.1 and 6.2 then remain unchanged, finishing the

proof. ��
We are only able to obtain an (H2”)-version of Proposition 6.3 when a2 > 0,

and we do so below. But even without that, we can already prove Theorem 1.8(ii).

Proof of Theorem 1.8(ii). This is identical to the proof of Theorem 1.7 above, with
theword “exclusive” and (6.2) dropped, and usingProposition 7.3 and [16, Theorem
1.4(iii)] instead of Proposition 6.3 and [16, Theorem 5.4], respectively. Note that
f is also stationary ergodic in [16, Theorem 1.4(iii)], but this is only used in the
first paragraph of its proof to show existence of deterministic strong front speeds
for all e ∈ S

d−1 (which we proved in Proposition 7.3), so that result extends to the
case in hand. ��
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To prove Theorem 1.8(i), we need to show that the deterministic strong front
speeds from Proposition 7.3 are exclusive. For this, we will need some uniform
estimates on the reactions

fa(x, u, ω) := f (x, (1 − a)u + a, ω)

1 − a

for (x, u, ω) ∈ R
d × [0, 1] × �. Note that the transformation u �→ u−a

1−a turns
solutions u to (1.1) for which a � u � 1 into solutions to (1.1) with fa in place of
f for which 0 � u � 1.

Proposition 7.4. Assume that f either satisfies (H2”) with a2 > 0 and has a finite
range of dependence, or satisfies (H3) and (H4”) with a2 > 0. Then for each
(a, e) ∈ (0, a2]×S

d−1, (1.1) with fa in place of f has a deterministic strong front
speed c∗

a(e) ∈ [c0, c1] in direction e, and lima→0 c∗
a(e) = c∗(e) holds uniformly in

e ∈ S
d−1 (with c∗(e) from Proposition 7.3).

Proof of Theorem 1.8(ii). Clearly fa satisfies (H1) with the same M and m1, and
θ1 and α1 replaced by 1

2θ1 and α1(1− 1
8θ1)

m1−1, respectively (recall that a � a2 �
1
8θ1).

If we now assume (H2”) and finite range of dependence of f , and let ua := u−a
1−a

for some u ∈ U f,a with initial datum u0,k,a , then ua
t = �ua + fa(x, ua, ω) on

(0,∞) ×R
d (with the same ω) and its initial datum 1

1−a (u0,k,a − a) satisfies (1.8)

and (1.9) (with F now defined via fa). Moreover, (1.12) and a2 � 1
2 show that we

also have

lim sup
t→∞

sup
a∈[0,a2]

sup
u∈U f,a

sup
η>0

Lua ,η,1−2θ∗(t)

tα2η−m2
< ∞,

lim inf
t→∞ inf

a∈[0,a2]
inf

u∈U f,a

inf
ua(t,x)∈[θ∗,1−2θ∗] ua

t (t, x)tα
′
2 > 0.

Hence for each such fa we have (H2”) with a2 = 0, θ∗ replaced by 2θ∗, the above
constants in (H1), andU fa := {ua | u ∈ U f,a} (and the samem2, α2, α

′
2). Moreover,

there are μ∗, κ∗ > 0 such that (7.1) holds for all a ∈ [0, a2] and u ∈ U fa , with θ∗
replaced by 2θ∗. This and the remark after (2.1) (which shows that replacing θ∗ by
2θ∗ in (7.1) does not change any of the above proofs) now show that Proposition
7.3 holds for all the fa , and all constants in its proof are uniform in a ∈ [0, a2]. In
particular, (7.1) holds with the same μ∗, κ∗ > 0 (and θ∗ replaced by 2θ∗) for all
a ∈ [0, a2] and u ∈ U ′

fa
(see Lemma 3.7), and the first claim in Proposition 5.1

holds for fa with β1 from (7.2) and Cδ uniform in a ∈ [0, a2].
The same argument applies when we assume (H3)+(H4”), where the passage

to fa and fn,a also replaces α3 by α3(1− θ1
8 )m3−1 in (H3) and α4 by α4(1− θ1

8 )−1

in (H4”). Again we obtain Proposition 7.3 for all the fa , as well as that (7.1) holds
with someμ∗, κ∗ > 0 (andwith θ∗ replaced by 2θ∗) for all a ∈ [0, a2] and u ∈ U ′

fa
,

and the second claim in Proposition 5.1 holds for fa with β3 from (7.5) and Cδ

uniform in a ∈ [0, a2].
It therefore remains to prove the last claim, with the above deterministic strong

front speeds denoted c∗
a(e) (where clearly c∗

0(e) = c∗(e)). To achieve this, we will
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use uniformity of the estimates inProposition5.1 ina ∈ [0, a2].We therefore denote
by ve,a(·, ·, ω) the solution to (5.1) with f replaced by fa , some (e, ω) ∈ S

d−1×�,
and l = 0 (then of course ve,a(·, ·, ω) ∈ U ′

fa
). We also let

ue,a(·, ·, ω) := (1 − a)ve,a(·, ·, ω) + a ∈ U ′
f,a, (7.6)

with U ′
f,a obtained from U f,a as in Lemma 3.7, and for any x ∈ R

d ,

Te,a(x, ω) := inf{t � 0 | ve,a(t, x, ω) � 1 − θ∗}
= inf{t � 0 | ue,a(t, x, ω) � 1 − (1 − a)θ∗},

T ′
e,a(x, ω) := inf{t � 0 | ue,a(t, x, ω) � 1 − θ∗}.

These definitions, Lemma 2.1, and a2 � 1
2θ

∗ show that there is C such that

T ′
e,a � Te,a � T ′

e,a + C. (7.7)

We will treat both cases (H2”)+finite range and (H3)+(H4”) at once, using the
notation fromeither (5.3) in thefirst case or (5.4) in the second.Then the claims from
Proposition 5.1, with δ := 1−β

2 and C̄ ′
ρ := C(1−β)/2C̄ρ independent of (e, a, ω)

become ∣∣∣∣
E[Te,a(le, ω)]

l
− 1

c∗
a(e)

∣∣∣∣ � C̄ ′
ρ l−(1−β)/2 (7.8)

for all (e, a, ω) ∈ S
d−1 × [0, a2] × � and all l � 1.

Lemma 2.1 shows that ue,a(τ0, ·, ·) � ue,0(0, ·, ·) with τ0 := κ0 + 2R0
c0

, hence
the comparison principle yields ue,a(τ0 + t, ·, ·) � ue,0(t, ·, ·) for all t � 0. This
and (7.6) immediately imply

T ′
e,a � Te,0 + τ0,

so c∗
a(e) � c∗(e) for all (e, a) ∈ S

d−1 × [0, a2] by (7.7) (this also shows that
c∗

a(e) � c0).
Since T ′

e,a(le, ·) � Cl for all l � 1 by Lemma 2.1, Lemma 7.1 with f1 = f2 =
f and

(u1, u2, η, t0, T, R) = (ue,0, ue,a, a, τ0,max{T ′
e,a(le, ·), 2κ∗},∞)

yields

Te,0(le, ·) � T ′
e,a(le, ·) + C(1 + l1+α′

2a).

as long as l ∈ [1, (C ′a)−1/α′
2 ] (for some C, C ′ > 0). It follows by (7.7) that for

such l we have

Te,0(le, ·) � Te,a(le, ·) + C(1 + l1+α′
2a).

Picking l := a−1/2α′
2 and using (7.8) now yield for all small enough a (depending

only on (2.10) and α2),

c∗(e)−1 � c∗
a(e)−1 + Ca1/2 + C̄ ′

ρ a(1−β)/4α′
2 .

Since β < 1, α′
2 > 0, and c∗

a(e) � c∗(e), the uniform convergence claim follows.
��
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We can now extend Proposition 6.3 to the case a2 > 0.

Proposition 7.5. Under the hypotheses of Proposition 7.4, for each e ∈ S
d−1, the

speed c∗(e) is a deterministic strong exclusive front speed in direction e for (1.1).

Proof of Theorem 1.8(ii). Fix any e ∈ S
d−1, and let ue,a be from (7.6) and c∗

a(e)
from Proposition 7.4. From that proposition and f (·, a, ·) ≡ 0 for all a ∈ [0, a2]
we know that for almost all ω ∈ � we have

lim
t→∞ sup

|y|��t
sup

x∈(c∗
a(e)e+K )t

ue,a(t, x, ϒyω) = a (7.9)

for each a ∈ [0, a2]∩Q,� > 0, and compact K ⊆ H+
e = {x ∈ R

d | x ·e > 0}. Fix
any such ω, and then any compact K ⊆ H+

e . Let K ′ ⊆ H+
e be compact and such

that K ⊆ (K ′)0. Proposition 7.4 then yields δ ∈ (0, a2] such that for all a ∈ [0, δ]
we have

c∗(e)e + K ⊆ (c∗
a(e)e + K ′)(1 + 2δ). (7.10)

Since α′
2 < min{ 1

m1−1 ,
1−α2

m2
}, there exists T0 � κ∗ such that for all T � T0 we

have

ηT � θ∗

2
and max

{
M∗(T + κ∗ + τT )α

′
2ηT , (τT + 2κ∗)T −1

}
� δ, (7.11)

where ηT := T −γ with γ := 1
2 (α

′
2 + 1

m1−1 ), and τT := 1 + D1η
1−m1
T with D1

from Lemma 2.8.
Now fix any � > 0. We see from (7.9) that for each a ∈ [0, a2] ∩Q, there is a

function ϕa : [0,∞) → [0,∞) such that limt→∞ ϕa(t) = 0 and

sup
t�T

sup
|y|��t

sup
x∈(c∗

a(e)e+K ′)t
ue,a(t, x, ϒyω) � a + ϕa(T ). (7.12)

Pick any T � T0 and a ∈ [0, δ] ∩ Q, and let we,a be from Definition 6.1. Then
Lemma 2.8 yields ue,a(τT , ·, ·) � 1−ηT onH−

e , so from ue,a � a and (ue,a)t � 0
we see that

ue,a(t + τT , ·, ·) + ηT � we,a(0, ·, ·) (7.13)

for all t � 0. Since Lemma 7.1 and (7.11) show that

u+(t, x, ·) := ue,a((1 + M∗(T + κ∗ + τT )α
′
2ηT )t + τT , x, ·) + ηT

is a supersolution to (1.1) on (κ∗, T +κ∗)×R
d , the comparison principle and (7.13)

yield

u+(t + κ∗, x, ·) � we,a(t, x, ·)
for all (t, x) ∈ [0, T ] ×R

d . This, (7.11), (7.10), (7.12), and (ue,a)t � 0 now show
that

sup
|y|��T

sup
x∈(c∗(e)e+K )T

we,a(T, x, ϒyω)
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� sup
|y|��T

sup
x∈(c∗(e)e+K )T

ue,a((1 + M∗(T + κ∗ + τT )α
′
2ηT )(T + κ∗)

+ τT , x, ϒyω) + ηT

� sup
|y|��T

sup
x∈(c∗(e)e+K )T

ue,a((1 + δ)T + τT + 2κ∗, x, ϒyω) + ηT

� sup
|y|��T

sup
x∈(c∗(e)e+K )T

ue,a((1 + 2δ)T, x, ϒyω) + ηT

� sup
|y|��(1+2δ)T

sup
x∈(c∗

a(e)e+K ′)(1+2δ)T
ue,a((1 + 2δ)T, x, ϒyω) + ηT

� a + ϕa((1 + 2δ)T ) + T −γ .

Hence

lim
t→∞ sup

|y|��t
sup

x∈(c∗(e)e+K )t
we,a(t, x, ϒyω) � a

for all a ∈ [0, δ] ∩ Q (and the previously fixed (ω, K ,�)). Since we,a is non-
decreasing in a, this extends to all a ∈ [0, δ], and since δ does not depend on �,
we obtain (6.2) with λK ,ω,e(a) = a + (1 − a)χ(δ,1](a), so the result follows. ��
Proof of Theorem 1.8(i). This is now identical to the proof of Theorem 1.7 in
Sect. 6, using Proposition 7.5 in place of Proposition 6.3. ��
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Appendix A. Proof of Lemma 2.2

If F0 is the function defined before Lemma 2.1, then we have

δ = δ(M, θ1, m1, α1) := min
u∈[1−2θ1/3,1−θ∗] F0(u) > 0. (A.1)

We now claim that for each L � 1, there is RL := RL(M, θ1, m1, α1) and a smooth
function uL : Rd → R such that

(1 − θ∗)χS � uL � (1 − θ∗)χBRL (S), (A.2)

|�uL | + |∇uL |2 � δ

L
(A.3)

hold on R
d , and for each x ∈ R

d with uL(x) < 1−θ∗
3 we have

�uL(x) � 0. (A.4)
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Note that if we also had 1 − 2
3θ1 � 1−θ∗

3 (which is not the case), then (A.1) and
(A.3) would show that for such uL (with L � 1) we have

F0 (uL(x)) � δ � −�uL(x)

whenever uL(x) ∈
[
1−θ∗
3 , 1 − θ∗

]
, so this and (A.4) would yield

�uL + F0(uL) � 0

on R
d . Hence the result would follow with u0,S := u1 and R0 := R1 because

F0 � F .
Let us now prove the claim. For any a ∈ (0, 1

8 ), let 0 �≡ ξa : Rd → R be a smooth,
radially symmetric, non-negative function supported in Ba(0), and define

ϕa := ζ ∗ ξa

‖ζ ∗ ξa‖L1
,

where

ζ(x) :=
{(|x |2−d − 2d−2

)
+ if d � 3,

ln−(2|x |) if d = 2.

Notice that ζ is sub-harmonic on R
d\{0}, and it is supported and integrable in

B1/2(0). Therefore it is not hard to see that

lim
a→∞

∫

Ba(0)
ϕa(x)dx = 0. (A.5)

Since ξa is supported in Ba(0), we also have

�ϕa(x) =
∫

Rd
�ζ(x − y)ξa(y)dy � 0

for all x ∈ R
d\Ba(0). Thus, for any R � 1, the function

ϕa,R(x) := R−dϕa(R−1x)

satisfies

�ϕa,R � 0 (A.6)

on R
d\Ba R(0).

Next, for some N � 1 (to be determined later), take

u = ua,R,N ,S := (1 − θ∗)χBN R(S) ∗ ϕa,R .

Direct computations then yield

|∇u(x)| �
∫

Rd
|∇ϕa,R(y)|dy = R−1

∫

B1(0)
|∇ϕa(y)|dy,

|�u(x)| �
∫

Rd

∣∣�ϕa,R(y)
∣∣ dy = R−2

∫

B1(0)
|�ϕa(y)| dy
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because ϕa is supported in B1(0). Hence (A.3) will hold with uL := u provided
R = R(a, δ, L) is chosen large enough. And then N � 1 shows that (A.2) will
also hold as long as we pick RL � (N + 1)R (given this R, as well as some yet to
be determined a and N ).
It remains to show (A.4) when u(x) < 1−θ∗

3 . If d(x, S) � (N + a)R, then (A.6)
yields

�u(x) = (1 − θ∗)
(
χBN R(S) ∗ �ϕa,R

)
(x) � 0,

so (A.4) holds. If d(x, S) � (N + a)R, let z ∈ S ∩ B(N+a)R(x). Then

(χBN R(S) ∗ ϕa,R)(x) �
∫

BN R(z)
ϕa,R(x − y)dy =

∫

BN (z′)
ϕa(y)dy,

with z′ := z−x
R , so |z′| � N + a. From (A.5) and radial symmetry of ϕa , we get

lim
N→∞ lim

a→0

∫

BN ((N+a)(1,0,...,0))
ϕa(y)dy = 1

2
,

so there are universal a ∈ (0, 1
8 ) and N � 1 such that the last integral is at least 1

3 .
Then

u(x) = (1 − θ∗)(χBN R(S) ∗ ϕa,R)(x) � 1 − θ∗

3

holds when d(x, S) � (N + a)R, so (A.4) holds when u(x) < 1−θ∗
3 and the claim

is proved.
Next, to prove the lemma, recall that 1 − 2

3θ1 ∈ ( 1−θ∗
3 , 1 − θ∗) and take u0,S :=

ψ(uL), for some L � 1 and some ψ : [0, 1 − θ∗] → [0, 1 − θ∗] satisfying the
following:

(i) ψ is smooth and non-decreasing on [0, 1 − θ∗];
(ii) ψ(0) = 0, ψ(1 − θ∗) = 1 − θ∗ and ψ( 1−θ∗

3 ) = 1 − 2
3θ1,

(iii) ψ ′′ = 0 on [0, 1−θ∗
3 ].

From (i,ii) and (A.2) we clearly have

(1 − θ∗)χS � u0,S � (1 − θ∗)χBRL (S),

so it suffices to take R0 := RL and verify (1.9).
When uL(x) < 1−θ∗

3 , (A.4) and (i,iii) yield

�ψ(uL(x)) + F0(ψ(uL(x))) � ψ ′(uL(x))�uL(x) + ψ ′′(uL(x))|∇uL(x)|2 � 0.

When uL(x) � 1−θ∗
3 , (A.1) and (ii) yield F0(ψ(uL(x))) � δ. Hence with

L = L(M, θ1, m1, α1) := max{‖ψ ′‖∞, ‖ψ ′′‖∞},
we get

�ψ(uL(x)) + F0(ψ(uL(x))) � ψ ′(uL(x))�uL(x) + ψ ′′(uL(x))|∇uL(x)|2 + δ

� δ − L(|�uL(x)| + |∇uL(x)|2).
So (1.9) follows from (A.3) and F0 � F , concluding the proof.
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Appendix B. Proof of Lemma 2.9

Let us drop ω from the notation. Also recall that we extend the reactions by 0 to
u /∈ [0, 1].
Let us startwith four estimates involving the reactionswhereu1(t, x) /∈ (θ∗, 1−θ∗).
From (2.1) and η � θ∗

2 we get θ∗ + η � θ1. Hence (H1) shows that for u � θ∗ we
have

f1(·, u) ≡ f2(·, u ± η) ≡ 0 (B.1)

on R
d , while for u � 1 − η we have

f1(·, u) � 0 ≡ f2(·, u + η) (B.2)

onRd . If u1(t, x) ∈ [1− θ∗, 1−η) for some (t, x) ∈ [t0,∞)×R
d , then (u1)t � 0

shows that u1(t0, x) < 1 − η, so (H1) and (2.7) yield

f1(x, u1(t, x)) = f2(x, u1(t, x)) � f2(x, u1(t, x) + η). (B.3)

Finally, if u1(t, x) ∈ [1 − θ∗, 1] for some (t, x) ∈ [t0,∞) × R
d and u1(t0, x) <

1 − η, then (H1) and (2.7) again yield

f1(x, u1(t, x)) � f1(x, u1(t, x) − η) = f2(x, u1(t, x) − η). (B.4)

Denote τ±(t) := (1 ± M∗η) t + t0, so that u±(t, x) = u1(τ±(t), x) ± η. If now
u1(τ+(t), x) /∈ (θ∗, 1 − θ∗) for some (t, x) ∈ (0,∞) × R

d , then (B.1), (B.2), and
(B.3) yield

[(u+)t − �u+ − f2(·, u+)](t, x)

� (1 + M∗η)(u1)t (τ+(t), x) − �u1(τ+(t), x) − f1(x, u1(τ+(t), x))

= M∗η(u1)t (τ+(t), x)

� 0.

Similarly, if u1(τ−(t), x) /∈ (θ∗, 1 − θ∗) and u1(t0, x) < 1 − η, then (B.1), (B.2),
and (B.4) yield

[(u−)t − �u− − f2(·, u−)](t, x) � 0.

Let us now consider those (t, x) ∈ (κ∗,∞)×R
d for which u1(τ+(t), x) ∈ (θ∗, 1−

θ∗). Then (u1)t (τ+(t), x) � μ∗ by (2.6), so | f2(x, u+(t, x))− f2(x, u1(τ+(t), x))|
� Mη yields

[(u+)t − �u+ − f2(·, u+)](t, x)

� (1 + M∗η)(u1)t (τ+(t), x) − �u1(τ+(t), x) − f2(x, u1(τ+(t), x)) − Mη

� (u1)t (τ+(t), x) − �u1(τ+(t), x) − f1(x, u1(τ+(t), x)) + M∗ημ∗ − Mη

� 0,
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where we again used (2.7) due to u1(t0, x) < 1 − θ∗ < 1 − η. Similarly if
u1(τ−(t), x) ∈ (θ∗, 1 − θ∗) for some (t, x) ∈ (2κ∗,∞) × R

d (so τ−(t) > κ∗
because M∗η � 1

2 ), we obtain

[(u−)t − �u− − f2(·, u−)](t, x) � 0.

This proves the claims about u+ and u−.
If now u2(0, ·) � u1(t0, ·)+η on BR(y), from (u1)t � 0 we also obtain u2(0, ·) �
u+(κ∗, ·) there. Since u+ is a supersolution to (1.1) with f2 in place of f on
(κ∗,∞) × BR(y), Lemma 2.5 yields

u2(t, y) � u+(t + κ∗, y) + 2de2Mt−√
M/d R

for all t � 0. Hence,

u2(t, y) � u+(t + κ∗, y) + θ∗

2

for all t ∈ [0, Tu2(y)] as long as

R � 2
√

Md Tu2(y) + √
d/M ln

4d

θ∗ ,

which will be guaranteed by taking D2 := 2
√

Md ln 4d
θ∗ .

It follows from η � θ∗
2 and the definition of Tu2(y) that,

u1(τ+(Tu2(y) + κ∗), y) � u2(Tu2(y), y) − η − θ∗

2
� 1 − 2θ∗.

By Lemma 2.1, we have

u1(τ+(Tu2(y) + κ∗) + κ0, y) � 1 − θ∗.

Therefore

Tu1(y) � τ+(Tu2(y) + κ∗) + κ0 � (1 + M∗η)Tu2(y) + 2κ∗ + κ0 + t0. (B.5)

Appendix C. Proof of Lemma 2.10

We again have (B.1) and (B.2). For (x, u) ∈ BR(y) × [1 − θ∗, 1 − η], (H3) and
(2.9) yield either

f1(x, u) � f1(x, u + η) + α3η
m3 � f2(x, u + η)

(if f1 satisfies (H3)) or

f1(x, u) � f2(x, u) − α3η
m3 � f2(x, u + η)
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(if f2 does), replacing (B.3). Hence, as in the proof of Lemma 2.9 and with τ+, u+
from it, we have that if u1(τ+(t), x) /∈ (θ∗, 1 − θ∗) for some (t, x) ∈ (0,∞) ×
BR(y), then

[(u+)t − �u+ − f2(·, u+)](t, x) � 0.

Let us now consider those (t, x) ∈ (κ∗,∞) × BR(y) for which u1(τ+(t), x) ∈
(θ∗, 1 − θ∗). Then (u1)t (τ+(t), x) � μ∗ by (2.6), so

f2(x, u+(t, x)) − f1(x, u1(τ+(t), x)) � α3η
m3 + Mη � (1 + M)η

yields

[(u+)t − �u+ − f2(·, u+)](t, x)

� (1 + M∗η)(u1)t (τ+(t), x) − (�u1)(τ+(t), x) − f1(x, u1(τ+(t), x)) − (1 + M)η

� M∗ημ∗ − (1 + M)η

= 0.

Hence u+ is a supersolution to (1.1) with f2 in place of f on (κ∗,∞) × BR(y).
Since we also have u2(0, ·) � u+(κ∗, ·) on BR(y) due to (u1)t � 0, (B.5) follows
via Lemmas 2.5 and 2.1 as at the end of the proof of Lemma 2.9.
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