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Abstract

The uniform shear flow for rarefied gas is governed by the time-dependent
spatially homogeneous Boltzmann equation with a linear shear force. The main
feature of such flow is that the temperature may increase in time due to the shear-
ing motion that induces viscous heat, and the system strays far from equilibrium.
For Maxwell molecules, we establish the unique existence, regularity, shear-rate-
dependent structure and non-negativity of self-similar profiles for any small shear
rate. The non-negativity is justified through the large time asymptotic stability even
in spatially inhomogeneous perturbation framework, and the exponential rates of
convergence are also obtained with the size proportional to the second order shear
rate. This analysis supports the numerical result that the self-similar profile admits
an algebraic high-velocity tail that is the key difficulty to overcome in the proof.
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1. Intoduction

1.1. Brief Background

In this paper we are concerned with the uniform shear flow (USF for short)
described by the Boltzmann equation in the specific case of Maxwell molecules
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for which particles interacts via the exact inverse power law repulsive potential
U (r) = r−4 (cf. [15]). For the USF of the rarefied gas, the flow velocity behaves
as ush = (αx2, 0, 0) in space, namely, the velocity component in x1-direction
is linear along the x2-direction for a constant shear rate α > 0. The shearing
motion and the induced viscous heating drive the system to depart from equilibrium.
Thus, the energy and hence the temperature monotonically increase in time. It then
becomes interesting to determine the global existence of such USF as well as its
large time behavior. It turns out that for the Maxwell molecules, the existence can
be transferred to look for self-similar profiles by taking into account the growth of
temperature. Moreover, the self-similar profile is determined by non-Maxwellian
solutions of a stationary problem on the Boltzmann equation with the shear force
and the velocity relaxation term whose balance leads to the conservation of energy.
The shear strength affects how far the self-similar profile is from the Maxwellian
equilibrium and a perturbation approach in α is expected to give the existence of
solutions for any small shear rate. In general, the self-similar profile is anisotropic
in velocity variables due to shearing motion. The main feature of the self-similar
profile verified numerically by Monte Carlo simulations (cf. [22]) is that it has the
polynomial large-velocity tail that will induce the key difficulty in studying the
topic.

We remark that the solutions to the Boltzmann equation for the USF are also
called homoenergetic solutions; thesewere introduced byGalkin [21] and Truesdell
[36].Moreover, as pointed out by Truesdell andMuncaster [37], due to no boundary
confinement, the USF is different from the planar Couette flow for a rarefied gas
between two parallel infinite plates moving relative to each other with opposite
velocities, cf. [22, Chapter 5], [31, Chapter 4] and [35, Chapter 4], for instance. We
will study the latter topic accounting for boundary effects in another work.

1.2. Boltzmann Equation for USF

Mathematically, the USF is governed by the spatially homogeneous Boltzmann
equation

∂t F − αv2∂v1F = Q(F, F). (1.1)

Here the unknown F = F(t, v) � 0 stands for the velocity distribution function
of gas particles with velocity v = (v1, v2, v3) ∈ R

3 at time t � 0, and the constant
α > 0 denotes the shear rate asmentioned before. TheBoltzmann collision operator
Q(·, ·) is bilinear taking the non-symmetric form of

Q(F1, F2)(v) =
∫
R3

∫
S2

B0(cos θ)[F1(v′∗)F2(v′) − F1(v∗)F2(v)] dωdv∗, (1.2)

where the velocity pairs (v∗, v) and (v′∗, v′) satisfy the relation

v′∗ = v∗ − [(v∗ − v) · ω]ω, v′ = v + [(v∗ − v) · ω]ω, (1.3)

denoting theω-representation according to conservations ofmomentum and energy
of two particles before and after the collision

v∗ + v = v′∗ + v′, |v∗|2 + |v|2 = |v′∗|2 + |v′|2.
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Through this paper, we assume that the collision kernel B0(cos θ) with cos θ =
(v − v∗) · ω/|v − v∗| is independent of the relative speed |v − v∗| for the Maxwell
molecule model and satisfies the Grad’s angular cutoff assumption

0 � B0(cos θ) � C | cos θ | (1.4)

for a generic constant C > 0.

1.3. Moment Equations and Self-similar Formulation

Provided that F(t, v) decays in large velocity fast enough, we multiply (1.1) by
the Boltzmann collision invariants and take integration in velocity so as to obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt

∫
R3

F dv = 0,

d

dt

∫
R3

v1F dv + α

∫
R3

v2F dv = 0,

d

dt

∫
R3

vi F dv = 0, i = 2, 3,

d

dt

∫
R3

1

2
|v|2F dv + α

∫
R3

v1v2F dv = 0

(1.5)

for any t � 0. In light of this, without loss of generality, we may assume that the
solution F(t, v) to (1.1) satisfies∫

R3
F(t, v) dv = 1,

∫
R3

vi F(t, v) dv = 0, i = 1, 2, 3, ∀ t � 0. (1.6)

The last identity of (1.5) implies that the macroscopic energy of F(t, v) can change
in time due to the appearance of shear force. Physically the shearing motion should
induce the viscous heat into the system so that the energy indeed increases in time.
Moreover, it will be justified later that the heat flux

∫
v1v2F dv turns out to be

strictly negative in large time for any small α > 0.
From [22, Chapter 2] as well as [28, Section 5.1], for the Maxwell molecule

model, a specific solution F(t, v) can be self-similar of the form

F(t, v) = e−3βtG
( v

eβt

)
(1.7)

for a suitable constant β, where the self-similar stationary profile G = G(v) satis-
fies

− β∇v · (vG) − αv2∂v1G = Q(G,G). (1.8)

To find a solution to (1.8), it is natural to require that G(v) also satisfies the same
conservation laws (1.6) as for F(t, v) and in addition G has a fixed positive energy,
namely, without loss of generality,

∫
R3

|v|2G(v) dv = 3. (1.9)
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Therefore, from the solvability of the stationary equation (1.8)
∫
R3

[1, v, |v|2]{−β∇v · (vG) − αv2∂v1G} dv = 0,

the condition energy law (1.9) is equivalent to require that

β = −α

∫
R3 v1v2G dv∫
R3 |v|2G dv

= −α

3

∫
R3

v1v2G dv. (1.10)

Plugging this back to (1.8) gives

1

3

∫
R3

v1v2G dv ∇v · (vG) − v2∂v1G = 1

α
Q(G,G). (1.11)

The above equation is a crucial formulation for studying the existence of G(v) via
the Hilbert’s perturbation approach in the small parameter α > 0. In particular, β
is no longer regarded as an unknown constant, but replaced by a nonlocal integral
term. Note that α > 0 plays the same role as the Knudsen number. We would
emphasize that the current work is only focused on the small shear rate regime with
unit Knudsen number, but it is still possible to make use of (1.11) to discuss the
situation of the large shear rate for small Knudsen number in the hydrodynamic
regime.

1.4. Main Results

With the preparations above, we are ready to state the main results of the paper
regarding the existence and dynamical stability of the self-similar profile G(v). It
should be pointed out that the existence (obtained also in [28]) and the unique-
ness, non-negativity and stability (as well as the analysis of the moments and the
exponential rate of convergence) of self-similar profiles for the USF Boltzmann
equation have been proved in [11] in the class of measures, for small values of the
shear parameter. In particular, the approach used in [28] is based on the fixed point
argument on the integral form of the problem over a set of non-negative Radon
measures, while [11] gives a different proof by means of the Fourier transform
method taking the full advantage of the Bobylev formula in the case of Maxwell
molecules. Instead, in this paper, we consider the smooth solutions via the pertur-
bative approach in α and obtain the C∞ regularity and dependence on α up to the
second order.

Specifically, our first result of the paper is concerned with the existence of
smooth self-similar profiles for the stationary Boltzmann problem (1.11) under the
assumption on smallness of shear rate α > 0. To this end, we define the global
Maxwellian

μ = (2π)−3/2 exp(−|v|2/2), (1.12)

and introduce the velocity weight function wl = wl(v) := (1 + |v|2)l with l ∈ R.
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Theorem 1.1. There is l0 > 0 such that for any l � l0, there is α0 = α0(l) > 0
depending on l such that for any α ∈ (0, α0), the stationary Boltzmann equation
(1.11) admits a unique smooth solution G = G(v)∈ C∞(R3) satisfying

∫
R3

[1, v, |v|2]G(v) dv = [1, 0, 3], (1.13)

and ∥∥∥∥wl∇k
v

[
G −

(
1 − α

2b0
v1v2

)
μ

]∥∥∥∥
L∞

� Ck,lα
2 (1.14)

for any integer k � 0, where Ck,l is a constant independent of α, and b0 is a positive
constant defined by

b0 = 3π
∫ 1

−1
B0(z)z

2(1 − z2) dz. (1.15)

Remark 1.1. Here are a few remarks in order on Theorem 1.1.

(a) The estimate (1.14) implies that as α → 0, the self-similar profileG(v) behaves
as

G(v) = μ − α

2b0
v1v2μ + O(α2), (1.16)

where μ is uniquely determined by conservation laws (1.13), and correspond-
ingly by (1.10), as α → 0, the constant β behaves as

β = α2

6b0
+ O(α3). (1.17)

Thus, Theorem 1.1 not only gives the existence of smooth solutions G(v), but
also provides the α-dependent structure of G. Note that beyond the expansion
(1.16) up to the first order, it is possible to further obtain the coefficient velocity
functions of the second and third orders of α by iteration, see [22, (2.126) and
(2.127), page 88]. Moreover, (1.17) implies that β is strictly positive and hence
by (1.9), the energy of the self-similar solution (1.7), given by

∫
R3

|v|2F(t, v) dv = 3e2βt ,

indeed tends to infinity exponentially in time.
(b) In general, from (1.14), G(v) has to be anisotropic in v due to the shearing

motion, and any l-th order velocity moments of G(v) are finite as long as the
shear rateα > 0 is small enough. Due to the dependence ofα0 on l, in particular,
one can choose α0(l) ∼ 1

l for any l > 0 large enough from the later proof,
it is impossible to obtain a positive shear rate α0 such that (1.14) holds true
uniformly in any l > 0, particularly allowing l → ∞. In fact, as discussed in
[22, Chapter 2.1, page 57], for any value of the shear rate α, all the velocity
moments of order k with k � kc(α) are divergent. As α increases, the threshold
order kc(α) decreases but it always holds that kc(α) > 2. This property exactly
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features that G(v) may admit the polynomial large-velocity tail as confirmed
numerically by Monte Carlo simulations. It is also left open to obtain a sharp
estimate on kc(α) as well as the existence of G(v) whenever α > 0 becomes
larger and larger.

(c) The constant b0 > 0, describing the magnitude of collisions, is obviously
finite under the angular cutoff assumption (1.4), and it has been assumed to be
independent of α > 0, meaning that the shear rate need to be small enough
compared to the strength of collisions. It is interesting to further study the
property of self-similar profiles in case when collisions are strong or weak
enough corresponding to the hydrodynamic limit or the free molecule limit,
respectively. Furthermore, since b0 can be well-defined even in the case of the
angular non-cutoff by (1.15), it is also interesting to extend the current result
to the non-cutoff situation that is certainly more challenging than the current
consideration due to the necessary L∞ estimates on solutions.

Moreover, we are concerned with the global existence and large time behavior
of solutions to the original USF equation (1.1) supplemented with a suitable initial
data, namely, in terms of the self-similar reformulation (1.7) with the value of β

obtained from Theorem 1.1, it is natural to further study whether or not it is holds
true that

e3βt F(t, eβtv) → G(v) (1.18)

in a certain sense as time goes to infinity whenever they are close to each other
initially, where G(v) is the self-similar profile obtained in Theorem 1.1 and the
constant β is defined by (1.10) in terms of G(v). As a byproduct, a direct conse-
quence of such large time asymptotic stability is the non-negativity of G(v).

To treat the issue, instead of directly starting with the spatially homogeneous
Boltzmann equation (1.1) for the USF, we turn to the spatially inhomogeneous
setting for a more general purpose. In fact, let the rarefied gas flow be contained
in an infinite channel Tx1 × Rx2 and uniform in x3-direction, then the governing
Boltzmann equation takes the form of

∂t F̃ + w1∂x1 F̃ + w2∂x2 F̃ = Q(F̃, F̃) (1.19)

for the spatially inhomogeneous velocity distribution function F̃ = F̃(t, x1, x2, w)

with t � 0, x1 ∈ T, x2 ∈ R and w = (w1, w2, w3) ∈ R
3. We remark that when

the Knudsen number is involved, under suitable scalings, the formal fluid limit of
(1.19) gives the incompressible Euler or Navier-Stokes equations in the 2D domain
Tx1 ×Rx2 . Asmentioned at the end of Section 1.5 later on, for those fluid equations,
there have been extensive studies of asymptotic stability of the planar Couette flow
(αx2, 0) with an arbitrary α > 0. Thus, it would be interesting to explore the large
time behavior of solutions to (1.19) in connection with the uniform shear flow in
the self-similar framework. We will leave the study of such 2D problem with shear
flows for the future.

Instead, to obtain thenon-negativity ofG(v),we simply look for a one-dimensional
solution of the specific form F̃ = F(t, x1, w1 − αx2, w2, w3) to the 2D problem
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(1.19). Then, one can see that F satisfies the following Boltzmann equation in a
one-dimensional periodic box:

∂t F + v1∂x F − αv2∂v1F = Q(F, F), t > 0, x ∈ T, v ∈ R
3, (1.20)

supplemented with initial data

F(0, x, v) = F0(x, v), x ∈ T, v ∈ R
3. (1.21)

Here for brevity of presentation we have used x to denote the first component of
space variables. The second result of the paper is related to the large time asymp-
totics of solutions to the spatially inhomogeneous problem (1.20) and (1.21).

Theorem 1.2. Let G(v) be the self-similar profile obtained in Theorem 1.1 and the
constant β be defined in (1.10). There are constants λ > 0 and C > 0 such that if
F0(x, v) � 0 and

∑
0�γ0�2

∥∥∥wlμ
− 1

2 ∂
γ0
x [F0(x, v) − G(v)]

∥∥∥
L∞ � α, (1.22)

and ∫
T

∫
R3

[F0(x, v) − G] dvdx = 0,
∫
T

∫
R3

vF0(x, v) dvdx = 0, (1.23)

then the Cauchy problem (1.20) and (1.21) admits a unique solution F(t, x, v) � 0
satisfying the following estimates:∥∥∥wl(v)

[
e3βt F(t, x, eβtv) − G(v)

]∥∥∥
L∞

� Ce−λβt
∑

0�γ0�2

∥∥∥wlμ
− 1

2 ∂
γ0
x [F0(x, v) − G(v)]

∥∥∥
L∞ , (1.24)

and ∑
1�γ0�2

∥∥∥wl(v)e3βt∂γ0
x F(t, x, eβtv)

∥∥∥
L∞

� Ce−λt
∑

1�γ0�2

∥∥∥wl(v)μ− 1
2 ∂

γ0
x F0(x, v)

∥∥∥
L∞ , (1.25)

for any t � 0.

Remark 1.2. We give a few remarks on Theorem 1.2 as follows:

(a) Whenever F is spatially homogeneous, as a direct consequence of Theorem 1.2,
the large time asymptotics (1.18) for solutions to the USF (1.1) towards the
self-similar profile G is also justified in the velocity weighted L∞ setting. In
particular, from (1.24) one has

‖wl [e3βt F(t, eβt ·) − G]‖L∞ � Ce−λβt‖wlμ
− 1

2 (F0 − G)‖L∞ (1.26)

for any t � 0.
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(b) Estimate (1.24) or (1.26) implies that the rate of convergence is exponential with
the size proportional to β ∼ α2. Such property features the shearing motion
for small α > 0. In fact, when α = 0, the large time behavior of solutions to
(1.1) is the global Maxwellian equilibrium uniquely determined by initial data
F0(v) through all the conservative fluid quantities, and the convergence rate is
exponential with the size given by the spectral gap of the linearized Boltzmann
operator.

For α > 0, it is not necessary to impose that F0 has the same energy as G except
the mass and momentum conservation (1.23), because in the self-similar setting
the energy of the rescaled distribution function is dissipative with the magnitude
of dissipation rate proportional to β due to the linear relaxation effect arising from
the term −β∇v · (vF). Precisely, let f (t, x, v) = e3βt F(t, x, eβtv), then it follows
from (1.20) that

d

dt

∫
T

dx
∫

1

2
|v|2( f − G) dv + β

∫
T

dx
∫

|v|2( f − G) dv

+ α

∫
T

dx
∫

v1v2( f − G) dv = 0. (1.27)

This identity implies that the size of the exponential convergence rate in (1.24) or
(1.26) is optimal; we also will explain this point in more detail in Section 1.6 later.

(c) Estimate (1.25) implies that the convergence rate of the higher order spatial deriva-
tives is much faster than the one of the zero order, since the size of convergence
is independent of the shear rate α. This indicates that the collision of particles
dominates the long time asymptotics of the energy for the higher order spatial
derivatives.

(d) The smallness assumption (1.22) on initial data implies that the initial perturbation
has to admit an additional large velocity decay as μ1/2. This restriction is essen-
tially due to the perturbation method of the proof. It is interesting to remove such
restriction using an alternative approach, for instance, in [23].

1.5. Literature

In what follows, we mention some known results on the self-similar solutions
to the Boltzmann equation in case of the Maxwell molecule model. When α = 0,
namely, there is no shear effect, themathematical study of the problemwas initiated
by Bobylev and Cercignani [7–9]. Since the energy remains conservative, the self-
similar profile exists onlywhen it has infinite second ordermoments. The dynamical
stability of such infinite energy self-similar profile was proved by Morimoto, Yang
and Zhao [33] in the angular non-cutoff case; see also the previous investigation
Cannone and Karch [13,14] on this topic.

When α �= 0, the global-in-time existence of solutions to the Boltzmann equa-
tion (1.1) for theUSFwas first established byCercignani [16–18]. The group invari-
ant property in the higher dimensional case was discussed in Bobylev, Caraffini and
Spiga [10]. Recently, in series of significant progress by James, Nota andVelázquez
[28–30], the existence of homoenergeticmild solutions as non-negativeRadonmea-
sures was studied in a systematic way for a large class of initial data, where the
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admissible macroscopic shear velocity ush = L(t)x with L(t) := A(I + t A)−1 for
a constantmatrix A is characterized and the asymptotics of homoenergetic solutions
that do not have self-similar profiles is also conjectured in certain situations. An
interesting work byMatthies and Theil [32] also showed that the self-similar profile
does not have the same exponential large-velocity tail as the global Maxwellian.
Applying the Fourier transform method that is a fundamental analysis tool in the
Boltzmann theory introduced by Bobylev [5,6], a recent progress Bobylev, Nota
and Velázquez [11] proved the self-similar asymptotics of solutions in large time
for the Boltzmann equation with a general deformation of the form

∂t F − ∇v · (AvF) = Q(F, F)

under a smallness condition on the matrix A, and they also showed that the self-
similar profile can have the finite polynomial moments of higher order as long as
the norm of A is smaller. It seems that [11] is the only known result on the large
time asymptotics to the self-similar profile in weak topology.

In the end, we remark that there have been extensive studies of stability of
shear flow in an infinite channel domain Tx1 ×Rx2 in the context of fluid dynamic
equations, cf. [34], in particular, we mention great contributions [2–4] recently
made by Bedrossian together with his collaborators. In fact, in comparison with
(1.20) under consideration, it would be more interesting to study the large time
behavior of solutions to the original Boltzmann equation (1.19) in the 2D domain
T×R in order to gain further understandings of the stability issue similar to those
aforementioned works on fluid equations by taking the limit of either small or large
Knudsen number.

1.6. Strategy of the Proof

The main ideas and techniques used in the paper are outlined as follows:

• First of all, in the framework of perturbation, there is a severe velocity-growth
term in the form of v1v2G which is caused by the shearing motion. Specifically,
to solve (1.11), setting the perturbation asG = μ+αμ1/2(G1+GR)whereG1
as in (3.8) is used to remove the zero-order inhomogeneous term, the remainder
GR satisfies an equation of the form

· · · + α

2
v1v2GR + LGR = · · · ,

see (3.9). Here, one can see that α
2 v1v2GR becomes a trouble term to control in

the basic energy estimate in term of the dissipation of the linearized self-adjoint
operator L .

To overcome the difficulty, we borrow the idea given by Caflisch [12], where the
solution is split into two parts: one includes the exponential weight while the other
does not, namely, we set

μ
1
2GR = GR,1 + μ

1
2GR,2.
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The key point here is that we put the bad terms mentioned above into the one
without exponential weight, so as to eliminate the velocity growth. Roughly GR,1
and GR,2 satisfy the coupling equations of the form

· · · − αv2∂v1GR,1 + α

2
v1v2μ

1
2GR,2 + ν0GR = χMKGR,1 + · · · ,

· · · − αv2∂v1GR,2 + LGR,2 = (1 − χM )μ− 1
2KGR,1 + · · · ,

after ignoring the high order or nonlinear terms, where χM is a velocity cutoff
function defined in (2.6), and other notations on K and so on are introduced in
Section 2. We may refer to (3.11) and (3.12) for the full coupling system.
We should point out that as confirmed by the numerical result, one may only expect
the first part GR,1 to decay polynomially in large velocity. To understand this issue
mathematically, we consider the equation of the form

−αv2∂v1GR,1 + ν0GR,1 = · · · ,

where ν0 > 0 is the constant collision frequency corresponding to μ in case of the
Maxwell molecules. Multiplying the above equation with the polynomial weight
wl = (1 + |v|2)l gives

− αv2∂v1(wlGR,1) +
(

ν0 + 2αl
v1v2

1 + |v|2
)

wlGR,1 = · · · . (1.28)

Therefore, given l > 0 large, we need to require 0 < α < α0(l) ∼ 1
l that is small

enough such that

inf
v

(
ν0 + 2αl

v1v2

1 + |v|2
)

� 1

2
ν0

holds true and hencewlGR,1 can be shown to be bounded in all v in terms of (1.28).
• Although the Caflisch’s decomposition provides us the great advantage above, it
also prevents us from deducing the L2 estimates of the solution, particularly for the
first part of the decomposition, due to the decay-loss of the operator K as in (2.4).
To treat the difficulty, we resort to the L∞-L2 method developed recently by Guo
[25]; see also [19,20,27]. One of the key points when applying this approach is
the decay of the operator K for large velocity. At the current stage, it is quite hard
to achieve any decay rates of K. Fortunately, motivated by Arkeryd, Esposito and
Pulvirenti [1], we justify the crucial estimates for suchKwith the algebraic velocity
weight. More precisely, we find out the following “decay” rate for the large power
of the velocity weight

sup
|v|�M

wl |∇k
vK f | � C

l

∑
0�k′�k

‖wl∇k′
v f ‖L∞ ,

with k � 1 and M ∼ l2, where we refer to Proposition 2.1 for more details. Thus,
we can treat χMKGR,1 as a source term. We remark that such estimate holds true
for the Maxwell molecules only, as seen from the derivation of (2.13) in the proof
of Proposition 2.1 later on.
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• Based on the above observations, we treat the steady problem for the existence
of G(v) as follows. We design an approximation procedure (3.14) to obtain the
approximation solution sequence with conservation of mass. Moreover, motivated
by [19], we also introduce the σ -parametrized problem (3.19) with a parameter
0 � σ � 1 to take care of the linear nonlocal terms KG1 and KG2. The method
of characteristics can be directly applied to obtain the explicit solution in case of
σ = 0 and then an iteration argument is employed to extend the solvability from
σ = 0 to σ = 1. Once uniform estimates for the linear inhomogeneous problem
are obtained through Lemma 3.2, we can therefore apply them to construct the
approximation solutions. Passing the limit ε → 0, we then establish the existence
of G(v).

• In addition, the L2 estimate for the second part of the decomposition is also difficult
to obtain due to the inhomogeneous structure of the splitting equation.
To deal with this difficulty, for the steady case, the conservation laws of solutions
are essentially used, so that both the first order correction and the remainder of the
steady solution are microscopic, then the L2 estimate can be directly obtained by
the energy estimate.
As to the unsteady case, since the energy is no longer conserved, the argument
for the steady problem is invalid. In fact, in the time-dependent situation, the zero
order dissipation of the temperature is captured by exploring the structure of the
macroscopic equations which contains the weak damping generated by the shear
flow. More specifically, inspired by the Guo’s energy method, we have to turn to
the macro thirteen moments equations (5.3), (5.4), (5.5) and (5.6) to obtain the
dissipation of the macro components a, b and c, cf. (5.1), in terms of the micro
dissipation. Indeed, for the dissipation of the macro component c, we have found
the cancellation property

(∂xc,
∫ x

0
d12 dy) + (d12, c) = 0,

so that one can derive from (5.3), (5.4) and (5.5) that

d

dt

{
‖c‖2 + (b1,

1

3
αe−βt

∫ x

0
d12 dy)

}
+ 2β‖c‖2 � · · · .

We may refer to (5.20) and the desired estimate (5.24) for more details. The above
energy estimate in perturbation framework is consistent with the energy identity
(1.27) mentioned in Remark 1.2. Furthermore, it is a usual way to derive from the
thirteen-moments equations the dissipation of derivatives of a, b and c, see (5.28),
and the zero-order dissipation of a and b then follows from the Poincaré inequality.
The desired last estimate (5.7) is a consequence of the suitable combination of those
obtained dissipation estimates.

1.7. Organization of the Paper

The rest structure of this paper is arranged as follows. In Section 2 we give
a key estimate for the operator K which shows smallness of χMwlK for large
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enough M and l. The existence of the self-similar stationary profile G(v) for (1.11)
is constructed in Section 3. In Section 4, we turn to the unsteady problem of the
spatially inhomogeneous Boltzmann equation (1.20) and (1.21) and establish the
local-in-time existence of solutions. In Section 5 we are devoted to showing the
global existence of solutions and large time asymptotic behavior for the Cauchy
problem (1.20) and (1.21). Finally, in the appendix Section 6, we list some known
basic estimates on the linearized operator L as well as the nonlinear operators� and
Q, and also present an explicit formula of L(viv jμ

1/2) in the case of the Maxwell
molecule model.

1.8. Notations

We now list some notations used in the paper.

• Throughout this paper, C denotes some generic positive (generally large) con-
stant and λ denotes some generic positive (generally small) constants, where
C and λ may take different values in different places. D � E means that there
is a generic constant C > 0 such that D � CE . D ∼ E means D � E and
E � D.

• We denote ‖ · ‖ the L2(T×R
3)−norm or the L2(T)−norm or L2(R3)−norm.

Sometimes, we use ‖ · ‖L∞ to denote either the L∞(T × R
3)−norm or the

L∞(R3)−norm. Moreover, (·, ·) denotes the L2 inner product in T × R
3 with

the L2 norm ‖ · ‖ and 〈·〉 denotes the L2 inner product in R3
v .

2. Large Velocity Decay of K

Let us first give some notations to be used through the paper. The linearized
collision operator L and nonlinear collision operator � are respecively defined by

Lg = −μ−1/2 {
Q(μ,

√
μg) + Q(

√
μg, μ)

}
, (2.1)

and

�( f, g) = μ−1/2Q(
√

μ f,
√

μg)

=
∫
R3

∫
S2

B0μ
1/2(v∗)[ f (v′∗)g(v′) − f (v∗)g(v)] dωdv∗.

Note that L f = ν f − K f with

ν =
∫
R3

∫
S2

B0(cos θ)μ(v∗) dωdv∗ = ν0,

K f = μ− 1
2

{
Q(μ

1
2 f, μ) + Qgain(μ,μ

1
2 f )

}
, (2.2)

where Qgain denotes the positive part of Q in (1.2). The kernel of L , denoted as
ker L , is a five-dimensional space spanned by {1, v, |v|2 − 3}√μ := {φi }5i=1. We
further define a projection from L2 to ker(L) by

P0g =
{
ag + bg · v + (|v|2 − 3)cg

}√
μ
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for g ∈ L2, and correspondingly denote the operator P1 by P1g = g −P0g, which
is orthogonal to P0.

It is also convenient to define

L f = −{Q( f, μ) + Q(μ, f )} = ν f − K f,

with

ν f = ν0 f, K f = Q( f, μ) + Qgain(μ, f ) = √
μK

(
f√
μ

)
, (2.3)

according to (2.2). Note that we have

K f =
∫
R3

∫
S2

B0(cos θ)( f ′∗μ′ − f∗μ + μ′∗ f ′) dωdv∗. (2.4)

The main goal of this section is to present a crucial estimate onKmeaning that
the weighted velocity derivatives of K are small for large velocities as long as the
power of the polynomial velocity weight is large enough. Such a property plays a
vital role in the proof of the next sections.

Proposition 2.1. LetK be given by (2.4), then for any positive integer k � 1, there
is C > 0 such that for any arbitrarily large l > 0, there is M = M(l) > 0 such
that it holds that

sup
|v|�M

wl |∇k
vK f | � C

l

∑
0�k′�k

‖wl∇k′
v f ‖L∞ . (2.5)

In particular, one can choose M = l2.

Proof. Fix an integer k � 1, and take l > 0 that can be arbitrarily large. Let M > 0
be large to be suitably chosen in terms of l in the later proof. We define χM (v) to
be a non-negative smooth cutoff function such that

χM (v) =
{
1, |v| � M + 1,
0, |v| � M.

(2.6)

In light of (2.4), we have

wlχM∇k
vK f

def= I1 + I2,

with

I1 = −wlχM

∫
R3

∫
S2

B0 f (v∗)∇k
vμ(v) dωdv∗,

and

I2 = wlχM

∑
k1�k

Ck1
k

{∫
R3

∫
S2

B0∇k1
v f (v′∗)∇k−k1

v μ(v′) dωdv∗
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+
∫
R3

∫
S2

B0∇k1
v f (v′)∇k−k1

v μ(v′∗) dωdv∗
}
.

We now compute I1 and I2. For I1, one directly has

I1 � CwlχM∇k
vμ(v)‖wl f ‖L∞

∫
R3

w−1
l dv � Ce− M2

16 ‖wl f ‖L∞ , (2.7)

thanks to the assumption that M � 1 and l > 3
2 , for instance.

For I2, we first rewrite it as

I2 = wlχM

∑
k1�k

Ck1
k

∫
R3

∫
S2

B∗
0∇k1

v f (v′)∇k−k1
v μ(v′∗) dωdv∗,

where B∗
0 = 1

2 (B0(cos θ)+ B0(sin θ)).As it is shown in [1, (3.2), pp.397], we now
resort to the Carleman’s representation, i.e.

∫
R3

∫
S2

B∗
0∇k1

v f (v′)∇k−k1
v μ(v′∗) dωdv∗

=
∫
R3

∇k−k1
v μ(v′∗)
|v − v′∗|2

∫
E(v,v′∗)

∇k1
v f (v′)B∗

0 d�v′dv′∗,

where

E(v, v′∗) = {v′∣∣(v − v′) · (v − v′∗) = 0, |v − v′| � |v − v′∗|} ⊂ R
2,

and �v′ is the Lebesgue measure on the hyperplane E(v, v′∗). Next, we define

χ1 = χ1(ξ) =
{
1, |ξ | <

|v|√
2
,

0, otherwise,

and χ0 = 1 − χ1. We then decompose I2 into

I2 = wlχM

∑
k1�k

Ck1
k

∫
R3

∇k−k1
v μ(v′∗)χ0(v

′∗)
|v − v′∗|2

∫
E(v,v′∗)

∇k1
v f (v′)χ0(v

′)B∗
0 d�v′dv′∗

+ wlχM

∑
k1�k

Ck1
k

∫
R3

∇k−k1
v μ(v′∗)χ1(v

′∗)
|v − v′∗|2

∫
E(v,v′∗)

∇k1
v f (v′)χ0(v

′)B∗
0 d�v′dv′∗

+ wlχM

∑
k1�k

Ck1
k

∫
R3

∇k−k1
v μ(v′∗)χ0(v

′∗)
|v − v′∗|2

∫
E(v,v′∗)

∇k1
v f (v′)χ1(v

′)B∗
0 d�v′dv′∗

def=
3∑

n=1

I2,n .
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Note that the term simultaneously involving μχ1 and f χ1 has vanished due to the
fact that |v′|2 + |v′∗|2 = |v|2 + |v∗|2. We now turn to estimate I2,n(1 � n � 3)
term by term. First of all, a direct computation gives

∇k−k1
v μ(v′∗) � Cμ

1
2 (v′∗), wlχ|v|�Mμ

1
4 (v′∗)χ0(v

′∗) � Ce− M2
32 . (2.8)

Moreover, standard calculation yields

∫
R3

μ
1
4 (v′∗)

|v − v′∗|2
dv′∗ � C〈v〉−2. (2.9)

By using (2.8) and (2.9), one sees that, for l > 3
2 ,

I2,1, I2,3 � Ce− M2
32 〈v〉−2

∑
k1�k

‖wl∇k1
v f ‖L∞

∫
R2

w−l(v
′) d�v′

� Ce− M2
32

∑
k1�k

‖wl∇k1
v f ‖L∞ . (2.10)

It remains now to estimate the delicate term I2,2 where the smallness is hard to be
obtained. As [1, Proposition 3.1, pp.397], we introduce the two cutoff functions

χδ(v
′∗) =

{
1, |v′∗| < δ|v|,
0, otherwise,

χη(v∗) =
{
1, |v∗| < η|v|,
0, otherwise,

where 0 < δ < η < 1. Then we spilt I2,2 as

I2,2 = wlχM

∑
k1�k

Ck1
k

∫
R3

∇k−k1
v μ(v′∗)χ1(v

′∗)(1 − χδ(v
′∗))

|v − v′∗|2
∫
E(v,v′∗)

∇k1
v f (v′)χ0(v

′)B∗
0 d�v′dv′∗

+ wlχM

∑
k1�k

Ck1
k

∫
R3

∇k−k1
v μ(v′∗)χ1(v

′∗)χδ(v
′∗)

|v − v′∗|2
∫
E(v,v′∗)

∇k1
v f (v′)χ0(v

′)χη(v∗)B∗
0 d�v′dv′∗

+ wlχM

∑
k1�k

Ck1
k

∫
R3

∇k−k1
v μ(v′∗)χ1(v

′∗)χδ(v
′∗)

|v − v′∗|2

×
∫
E(v,v′∗)

∇k1
v f (v′)χ0(v

′)(1 − χη(v∗))B∗
0 d�v′dv′∗

def=
3∑

n=1

In
2,2.
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Performing similar calculations as to those for obtaining (2.10), one has

I1
2,2 � Ce− δ2M2

16
∑
k1�k

‖wl∇k1
v f ‖L∞

∫
R2

w−l(v
′) d�v′

� Ce− δ2M2
16

∑
k1�k

‖wl∇k1
v f ‖L∞ . (2.11)

For I2
2,2, we first have that if |v′∗| < δ|v| and |v∗| < η|v|, then

|v′ − v| = |v∗ − v′∗| � (η + δ)|v|, |v′| = |v|2 + |v∗|2 − |v′∗|2 � (1 − δ2)|v|2,
which further implies that the measure of E(v, v′∗) is bounded as

|E(v, v′∗)| � π(η + δ)2|v|2 � 4πη2|v|2,
and it holds true that

(1 + |v′|2)−l � (1 + (1 − δ2)|v|2)−l � (1 + |v|2)−l(1 − δ2)−l .

Consequently, applying (2.8) and (2.9) again, we obtain

I2
2,2 � CwlχM

∑
k1�k

∫
R3

μ
1
2 (v′∗)

|v − v′∗|2
∫
E(v,v′∗)

∇k1
v f (v′)χ0(v

′)χη(v∗) d�v′dv′∗

� Cwl(v)χM 〈v〉−2
∑
k1�k

‖wl∇k1
v f ‖L∞η2|v|2(1 + |v|2)−l(1 − δ2)−l

� Cη2(1 − δ2)−l
∑
k1�k

‖wl∇k1
v f ‖L∞ . (2.12)

We are now in a position to compute the last term I3
2,2. Since for the case of I3

2,2,
we have |v′∗| < δ|v| and |v∗| � η|v|, then it follows that

|v′|2 = |v|2 + |v∗|2 − |v′∗|2 � |v|2 + η2|v|2 − δ2|v|2 = (1 + η2 − δ2)|v|2,
which implies

I3
2,2 � CwlχM 〈v〉−2

∑
k1�k

‖wl∇k1
v f ‖L∞

∫ +∞

|v|
√

1+η2−δ2

r

(1 + r2)l
dr

� C
∑
k1�k

‖wl∇k1
v f ‖L∞χM 〈v〉−2wl(v)

1

l − 1

(
1 + (1 + η2 − δ2)|v|2

)−l+1

� C

l

∑
k1�k

‖wl∇k1
v f ‖L∞ , (2.13)

where the last inequality holds due to the fact that 1 + η2 − δ2 � 1 and l � 1.
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Therefore, putting (2.11), (2.12) and (2.13) together, we arrive at

I2,2 � C

{
e− δ2M2

32 + η2(1 − δ2)−l + 1

l

} ∑
k1�k

‖wl∇k1
v f ‖L∞ . (2.14)

Furthermore, if one chooses δ = 1
l , η = 1√

l
and M = l2 � 1, then

(1 − δ2)−l < e, e− δ2M2
32 � e− M

32 . (2.15)

As a consequence, (2.14) and (2.15) give rise to

I2,2 �
{
1

M
+ 2

l

} ∑
k1�k

‖wl∇k1
v f ‖L∞ . (2.16)

Finally, the desired estimate (2.5) follows from (2.7), (2.10) and (2.16). This ends
the proof of Proposition 2.1. ��

3. Steady Problem

This section is devoted to studying the steady problem

− β∇v · (vG) − αv2∂v1G = Q(G,G) (3.1)

with

β = −α

3

∫
R3

v1v2G dv, (3.2)

where the solution G(v) is required to satisfy
∫
R3

G dv = 1,
∫
R3

vi G dv = 0, i = 1, 2, 3,
∫
R3

|v|2G dv = 3, (3.3)

which is equivalent to the fact that G has the same fluid quantities as μ in (1.12)
for any α > 0. Note that through the paper we have omitted the dependence of G
on the parameter α.

Since one expects G → μ as α → 0, to look for the solution, let us first set

G = μ + α
√

μ {G1 + GR} , (3.4)

with P0G1 = 0 and P0GR = 0 such that (3.3) holds true, i.e.
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
R3

G1
√

μ dv =
∫
R3

GR
√

μ dv = 0,
∫
R3

G1vi
√

μ dv =
∫
R3

GRvi
√

μ dv = 0, i = 1, 2, 3,
∫
R3

G1|v|2√μ dv =
∫
R3

GR |v|2√μ dv = 0,

(3.5)
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where G1 accounts for the first order correction and GR denotes the higher order
remainder. We now turn to determine G1 and derive the equation for the remainder
GR . In fact, plugging (3.4) into (3.2) gives

β = −α

3

∫
R3

v1v2G dv = −α2

3

∫
R3

v1v2μ
1/2(G1 + GR) dv, (3.6)

which implies that β is at least the second order of α. Therefore, substituting (3.4)
into (3.1), one can write

− β

α
μ− 1

2 ∇v · (vμ) − βμ− 1
2 ∇v · (vμ

1
2 (G1 + GR))

+ v1v2μ
1
2 − αμ− 1

2 v2∂v1(μ
1
2 (G1 + GR))

+ LG1 + LGR = α�(G1,G1)

+ α{�(GR,G1) + �(G1,GR)} + α�(GR,GR). (3.7)

To remove the zero order term from (3.7), we set

G1 = −L−1(v1v2μ
1
2 ),

where we have noticed that v1v2μ
1
2 ∈ (ker L)⊥ so that G1 is well-defined and

G1 ∈ (ker L)⊥ is purely microscopic, satisfying (3.5). Moreover, it follows from
Lemma 6.6 that

G1 = − 1

2b0
v1v2μ

1
2 (3.8)

with the constant b0 > 0 defined in (1.15). Then, (3.7) is further reduced to

βμ− 1
2 ∇v · (vμ

1
2GR) − αμ− 1

2 v2∂v1(μ
1
2GR) + LGR

= β

α
μ− 1

2 ∇v · (vμ) + βμ− 1
2 ∇v · (vμ

1
2G1) + αμ− 1

2 v2∂v1(μ
1
2G1)

+ α�(G1,G1) + α{�(GR,G1) + �(G1,GR)} + α�(GR,GR), (3.9)

and in light of (3.8), β in (3.6) is given as

β = β0 − α2

3

∫
R3

v1v2μ
1/2GR dv, (3.10)

where for later use we have denoted

β0 = −α2

3

∫
R3

v1v2μ
1/2G1 dv = α2

6b0
> 0.

To solve (3.9) on GR , it is necessary to use the decomposition
√

μGR = GR,1 + √
μGR,2,

where GR,1 and GR,2 are supposed to satisfy

− β∇v · (vGR,1) − αv2∂v1GR,1 + β

2
|v|2μ 1

2GR,2



The Boltzmann Equation for Uniform Shear Flow 1965

+ α
v1v2

2
μ

1
2GR,2 + ν0GR − χMKGR,1

= β

α
∇v · (vμ) + β∇v · (vμ

1
2G1) + αv2∂v1(μ

1
2G1) + αQ(μ

1
2G1, μ

1
2G1)

+ α{Q(μ
1
2GR, μ

1
2G1) + Q(μ

1
2G1, μ

1
2GR)} + αQ(μ

1
2GR, μ

1
2GR),

(3.11)

and

−β∇v · (vGR,2) − αv2∂v1GR,2 + LGR,2 − (1 − χM )μ− 1
2KGR,1 = 0, (3.12)

respectively. Here, we recall that ν0 and K are defined in (2.3). Moreover, in order
for GR to satisfy (3.5), we require that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
R3

GR,1 dv +
∫
R3

√
μGR,2 dv = 0,

∫
R3

vi GR,1 dv +
∫
R3

vi
√

μGR,2 dv = 0, i = 1, 2, 3,
∫
R3

|v|2GR,1 dv +
∫
R3

|v|2√μGR,2 dv = 0.

(3.13)

The existence of (3.11) and (3.12) under conditions (3.13) will be established
through the approximation solution sequence by iteratively solving the equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εGn+1
R,1 − βn∇v · (vGn+1

R,1 ) − αv2∂v1G
n+1
R,1 + ν0G

n+1
R,1 − χMKGn+1

R,1

+ βn

2
|v|2μ 1

2Gn+1
R,2 + α

v1v2

2
μ

1
2Gn+1

R,2 − βn+1 − α2

6b0

α
∇v · (vμ)

= βn∇v · (vμ
1
2G1) + α

6b0
∇v · (vμ) + αv2∂v1(μ

1
2G1)

+ αQ(μ
1
2G1, μ

1
2G1)

+ α{Q(μ
1
2Gn

R, μ
1
2G1) + Q(μ

1
2G1, μ

1
2Gn

R)} + αQ(μ
1
2Gn

R, μ
1
2Gn

R),

εGn+1
R,2 − βn∇v · (vGn+1

R,2 ) − αv2∂v1G
n+1
R,2 + LGn+1

R,2

− (1 − χM )μ− 1
2KGn+1

R,1 = 0,

(3.14)

for a small parameter ε > 0, where we have denoted

μ
1
2Gn

R = Gn
R,1 + μ

1
2Gn

R,2,

βn = β0 − α2

3

∫
R3

v1v2(G
n
R,1 + μ

1
2Gn

R,2) dv, n � 0, (3.15)

the constant β0 is defined in (3.10), and initially for n = 0 we set

G0
R,1 = G0

R,2 = 0.

Indeed, whenever [Gn
R,1,G

n
R,2] is given, one has to solve the linear inhomogeneous

system (3.14) for [Gn+1
R,1 ,Gn+1

R,2 ] as βn and G1 are also given. Thus, the approxima-
tion solution sequence {[Gn

R,1,G
n
R,2]}∞n=1 would be expected to be well-defined.
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For brevity we have omitted the explicit dependence of {[Gn
R,1,G

n
R,2]}∞n=1 on ε.

Note that we put the penalty terms εGn+1
R,i (i = 1, 2) on the left hand side of (3.14)

so as to guarantee the mass conservation in (3.5). In addition, since it holds that
〈

α

6b0
∇v · (vμ) + αv2∂v1(μ

1
2G1), |v|2μ 1

2

〉
= 0,

and
〈

βn+1 − α2

6b0

α
∇v · (vμ) + αv2∂v1G

n+1
R,1 , |v|2

〉
+ 〈αv2∂v1G

n+1
R,2 , |v|2μ 1

2 〉 = 0,

one sees that

〈Gn+1
R,1 , [1, vi , |v|2]〉 + 〈Gn+1

R,2 , [1, vi , |v|2]μ 1
2 〉 = 0, i = 1, 2, 3, (3.16)

for any ε > 0.
We first show that in an appropriate function space there exists a solution

[GR,1,GR,2] satisfying
〈GR,1, [1, vi , |v|2]〉 + 〈GR,2, [1, vi , |v|2]μ 1

2 〉 = 0, i = 1, 2, 3 (3.17)

to the coupled linear inhomogeneous system corresponding to (3.14). To do so, in
terms of (3.14), let us first define the following linear operator parameterized by
σ ∈ [0, 1] (cf. [19]):

Lσ [G1,G2] = [L 1
σ ,L 2

σ ][G1,G2],
where⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L 1
σ [G1,G2] = εG1 − β ′∇v · (vG1) − αv2∂v1G1 + ν0G1 − σχMKG1

+ β ′

2
|v|2√μG2 + α

v1v2

2
√

μG2 − β ′′(G)

α
∇v · (vμ),

L 2
σ [G1,G2] = εG2 − β ′∇v · (vG2) − αv2∂v1G2

+ ν0G2 − σKG2 − σ(1 − χM )μ− 1
2KG1.

Here K is defined as (2.2), β ′ is a given constant satisfying β ′ ∼ α2, and

β ′′(G) = −α2

3

∫
R3

v1v2(G1 + μ
1
2G2) dv. (3.18)

Then we consider the solvability of the general coupled linear system
{
L 1

σ [G1,G2] = F1,

L 2
σ [G1,G2] = F2,

(3.19)

where F1 and F2 are given sources satisfying
{

〈F1, [1, vi , |v|2]〉 + 〈F2, [1, vi , |v|2]μ 1
2 〉 = 0, i = 1, 2, 3,

‖wl∇k
vF1‖L∞ + ‖wl∇k

vF2‖L∞ < +∞, for any k � 0.
(3.20)
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In what follows, we look for solutions to the system (3.19) in the Banach space

Xα,m =
{
[G1,G2]∈ Wm,∞(R3

v)
∣∣ ∑
0�k�m

‖wl∇k
v [G1,G2]‖L∞ < +∞,

〈G1, [1, vi , |v|2]〉 + 〈G2, [1, vi , |v|2]μ 1
2 〉 = 0, i = 1, 2, 3

}
,

associated with the norm

‖[G1,G2]‖Xα,m =
∑

0�k�m

{
‖wl∇k

vG1‖L∞ + ‖wl∇k
vG2‖L∞

}
.

Let us now deduce the a priori estimate for the parameterized linear system (3.19).

Lemma 3.1. (a priori estimate) Let [G1,G2] ∈ Xα,m with α > 0 and m � 0 be
a solution to (3.19) with ε > 0 suitably small, σ ∈ [0, 1] and [F1,F2] satisfying
(3.20). There is l0 > 0 such that for any l � l0 arbitrarily large, there are α0 =
α0(l) > 0 and large M = M(l) > 0 such that for any 0 < α < α0, the solution
[G1,G2] := L −1

σ [F1,F2] satisfies the following estimate

‖[G1,G2]‖Xα,m = ‖L −1
σ [F1,F2]‖Xα,m

� CL

∑
0�k�m

{
‖wl∇k

vF1‖L∞ + ‖wl∇k
vF2‖L∞

}
, (3.21)

where L −1
σ denotes the solution operator for the problem (3.19) and the constant

CL > 0 is independent of σ , ε and α.

Proof. The proof is divided into two steps.
Step 1. L∞ estimates. Taking 0 � k � m and l, we set H1,k = wl∇k

vG1 and

H2,k = wl∇k
vG2. Then, Hk = [H1,k, H2,k] satisfies the following equations:

εH1,k − β ′∇v · (vH1,k) + 2lβ ′ |v|2
1 + |v|2 H1,k − αv2∂v1H1,k

+ 2lα
v2v1

1 + |v|2 H1,k + ν0H1,k

− σχMwlK
(
H1,k

wl

)
− wl

β ′′(H0
wl

)

α
∇k

v∇v · (vμ)

= 1|γ ′|=1wlβ
′Cγ ′

γ ∇v · (∂γ ′
v∂γ−γ ′

v G1) + 1γ ′=(0,1,0)αC
γ ′
γ wl∂v1∂

γ−γ ′
v G1

− β ′

2
wl

∑
γ ′�γ

Cγ ′
γ ∂γ ′

v (|v|2μ 1
2 )∂γ−γ ′

v G2 − α

2

∑
γ ′�γ

wlC
γ ′
γ ∂γ ′

v

(
v1v2

√
μ
)
∂γ−γ ′
v G2

+ σ
∑

0<γ ′�γ

Cγ ′
γ wl(∂

γ ′
v (χMK))

(
∂γ−γ ′
v G1

)
+ wl∇k

vF1, (3.22)
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and

εH2,k − β ′∇v · (vH2,k) + 2lβ ′ |v|2
1 + |v|2 H2,k − αv2∂v1H2,k + 2lα

v2v1

1 + |v|2 H2,k

+ ν0H2,k − σwl K

(
H2,k

wl

)

= 1|γ ′|=1wlβ
′Cγ ′

γ ∇v · (∂γ ′
v∂γ−γ ′

v G2) + 1γ ′=(0,1,0)αC
γ ′
γ wl∂v1∂

γ−γ ′
v G2

+ σwl

∑
0<γ ′�γ

Cγ ′
γ (∂γ ′

K )
(
∂γ−γ ′
v G2

)

+ σ
∑
γ ′�γ

Cγ ′
γ wl∂

γ ′
v ((1 − χM )μ− 1

2K)
(
∂γ−γ ′
v G1

)
+ wl∇k

vF2, (3.23)

whereH0
def= [H1, H2] = [H1,0, H2,0] = wl [G1,G2]. The method of characteristics

will be employed to construct the existence of solutions to (3.22) and (3.23) in L∞
space (cf. [20]). To do so, we first introduce a uniform parameter t , and regard
Hi,k(v) = Hi,k(t, v)(i = 1, 2), then define the characteristic line [s, V (s; t, v)] for
both the equations (3.22) and (3.23) going through (s, v) such that

⎧⎨
⎩

dV1
ds = −β ′V1(s; t, v) − αV2(s; t, v),
dVi
ds = −β ′Vi (s; t, v), i = 2, 3,
V (t; t, v) = v,

(3.24)

which is equivalent to

V1(s; t, v) = eβ ′(t−s)(v1 + αv2(t − s)),

Vi (s; t, v) = eβ ′(t−s)vi , i = 2, 3.

Integrating along the backward trajectory (3.24), one can write the solutions of
(3.22) and (3.23) as the mild form of

H1,k = e− ∫ t
0 Aε(τ,V (τ ))dτ H1,k(V (0))

+ σ

∫ t

0
e− ∫ t

s Aε(τ,V (τ ))dτ
{
χMwlK

(
H1,k

wl

)}
(V (s)) ds

−
∫ t

0
e− ∫ t

s Aε(τ,V (τ ))dτ

{
wl

β ′′(H0
wl

)

α
∇k

v∇v · (vμ)

}
(V (s)) ds

+
∫ t

0
e− ∫ t

s Aε(τ,V (τ ))dτ
{
1|γ ′|=1wlβ

′Cγ ′
γ ∇v · (∂γ ′

v∂γ−γ ′
v G1)

+ 1γ ′=(0,1,0)αC
γ ′
γ wl∂v1∂

γ−γ ′
v G1

}
(V (s)) ds

−
∫ t

0
e− ∫ t

s Aε(τ,V (τ ))dτ
{

β ′

2
wl

∑
γ ′�γ

Cγ ′
γ ∂γ ′

v (|v|2μ 1
2 )∂γ−γ ′

v G2
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+ α

2

∑
γ ′�γ

wlC
γ ′
γ ∂γ ′

v

(
v1v2

√
μ
)
∂γ−γ ′
v G2

}
(V (s)) ds

+ σ

∫ t

0
e− ∫ t

s Aε(τ,V (τ ))dτ

⎧⎨
⎩1|γ |�1

∑
0<γ ′�γ

Cγ ′
γ wl(∂

γ ′
v (χMK))

(
∂γ−γ ′
v G1

)⎫⎬
⎭ (V (s)) ds

+
∫ t

0
e− ∫ t

s Aε(τ,V (τ ))dτ
(
wl∇k

vF1

)
(V (s)) ds

def=
7∑

i=1

Ii , (3.25)

and

H2,k = e− ∫ t
0 Aε(τ,V (τ ))dτ H2,k(V (0))

+ σ

∫ t

0
e− ∫ t

s Aε(τ,V (τ ))dτ
[
wl K

(
H2,k

wl

)]
(V (s)) ds

+
∫ t

0
e− ∫ t

s Aε(τ,V (τ ))dτ
{
1|γ ′|=1wlβ

′Cγ ′
γ ∇v · (∂γ ′

v∂γ−γ ′
v G2)

+ 1γ ′=(0,1,0)αC
γ ′
γ wl∂v1∂

γ−γ ′
v G2

}
(V (s)) ds

+ σ

∫ t

0
e− ∫ t

s Aε(τ,V (τ ))dτ

⎧⎨
⎩1|γ |�1wl

∑
0<γ ′�γ

Cγ ′
γ (∂γ ′

K )
(
∂γ−γ ′
v G2

)⎫⎬
⎭ (V (s)) ds

+ σ

∫ t

0
e− ∫ t

s Aε(τ,V (τ ))dτ

⎧⎨
⎩wl

∑
γ ′�γ

Cγ ′
γ ∂γ ′

v ((1 − χM )μ− 1
2K)

(
∂γ−γ ′
v G1

)⎫⎬
⎭ (V (s)) ds

+
∫ t

0
e− ∫ t

s Aε(τ,V (τ ))dτ
(
wl∇k

vF2

)
(V (s)) ds

def=
13∑
i=8

Ii , (3.26)

where

Aε(τ, V (τ )) = ν0 + ε − 3β ′ + 2lβ ′ |V (τ )|2
1 + |V (τ )|2 + 2lα

V2(τ )V1(τ )

1 + |V (τ )|2 � ν0/2,

(3.27)

provided that ε > 0, β ′ ∼ α2, lβ ′ ∼ lα2, and lα is suitably small. In what follows,
we will estimate Ii (1 � i � 13) term by term.
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Since the parameter t here is arbitrary, we may take t sufficiently large such
that

e− ∫ t
0 Aε(τ,V (τ )) dτ � e− ν0 t

2 � 1

8
,

from which one sees that

I1 � 1

8
‖H1,k‖L∞ , I8 � 1

8
‖H2,k‖L∞ .

Next, Proposition 2.1 and (3.27) give that

I2 � C

l
‖H1,k‖L∞

∫ t

0
e− ν0

2 (t−s) ds � C

l
‖H1,k‖L∞ .

In view of (3.18), it follows that for l > 5/2,

I3 � Cα

∫
R3

|v1v2(G1 + μ
1
2G2)| dv

∫ t

0
e− ν0

2 (t−s) ds

� Cα‖wlG1‖L∞
∫
R3

|v1v2w−1
l | dv + Cα‖wlG2‖L∞

∫
R3

|μ 1
2 w−1

l | dv
� Cα‖H1,0‖L∞ + Cα‖H2,0‖L∞ .

For I4, noticing that β ′ ∼ α2, we have

I4 � Cβ ′‖wl∇v · (∂γ ′
v∂γ−γ ′

v G1)‖L∞
∫ t

0
e− ν0

2 (t−s) ds

+ Cα‖wl∂v1∂
γ−γ ′
v G1‖L∞

∫ t

0
e− ν0

2 (t−s) ds

� Cα
∑
k′�k

‖H1,k′ ‖L∞ .

Similarly, it holds that

I5, I10 � Cα
∑
k′�k

‖H2,k′ ‖L∞ .

For I6, we first rewrite ∂
γ ′
v (χMK)(∂

γ−γ ′
v G1) as

∂γ ′
v (χMK)(∂γ−γ ′

v G1)

=
∑

γ ′′�γ ′
Cγ ′′

γ ′ ∂γ ′−γ ′′
v χM∂γ ′′

v K(∂γ−γ ′
v G1)

=
∑

γ ′′�γ ′
Cγ ′′

γ ′ ∂γ ′−γ ′′
v χM

{
Q(∂γ ′′

v μ, ∂γ−γ ′
v G1) + Q(∂γ−γ ′

v G1, ∂γ ′′
v μ)

}
.

Then one sees that

I61k�1 � C
∥∥∥wl{Q(∂γ ′′

v μ, ∂γ−γ ′
v G1) + Q(∂γ−γ ′

v G1, ∂γ ′′
v μ)‖

∥∥∥
L∞

∫ t

0
e− ν0

2 (t−s) ds
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� C
∑
k′<k

‖H1,k′ ‖L∞ ,

according to Lemma 6.4. And likewise, we also have

I12 � C
∑
k′�k

‖H1,k′ ‖L∞ .

Next, by using Lemma 6.3, one gets

I111k�1 � C
{∥∥∥w1�gain(∂

γ ′
(
√

μ), ∂γ−γ ′
v G2)

∥∥∥
L∞

+
∥∥∥w1�(∂γ−γ ′

v G2, ∂γ ′
(
√

μ))

∥∥∥
L∞

} ∫ t

0
e− ν0

2 (t−s) ds

� C
∑
k′<k

‖H2,k′ ‖L∞ .

For I7 and I13, one directly has

I7 � C‖wl∇k
vF1‖L∞ , I13 � C‖wl∇k

vF2‖L∞ .

Finally, for the delicate term I9, we divide our computations into the following
three cases.
Case 1. |V | � M with M suitably large. From Lemma 6.2, it follows that

∫
kw(V, v∗) dv∗ � C

(1 + |V |) � C

M
.

Using this, it follows that

I9 � sup
0�s�t

∫
R3

kw(V, v∗) dv∗‖H2,k‖L∞ � C

M
‖H2,k‖L∞ . (3.28)

Case 2. |V | � M and |v∗| � 2M . In this situation, we have |V − v∗| � M , then

kw(V, v∗) � Ce− εM2
8 kw(V, v∗)e

ε|V−v∗|2
8 .

By virtue of Lemma 6.2, one sees that
∫
kw(V, v∗)e

ε|V−v∗|2
8 dv∗ is still bounded. At

this stage, we have by a similar argument as for obtaining (3.28) that

I9 � Ce− εM2
8 ‖H2,k‖L∞ .

To obtain the final bound for I9, we are now in a position to handle the last case.
Case 3. |V | � M , |v∗| � 2M . In this case, our strategy is to convert the bound in
L∞-norm to the one in L2-norm which will be established later on. To do so, for
any large M > 0, we choose a number p = p(M) to define

kw,p(V, v∗) ≡ 1|V−v∗|� 1
p ,|v∗|�pkw(V, v∗), (3.29)
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such that sup
V

∫
R3 |kw,p(V, v∗) − kw(V, v∗)| dv∗ � 1

M . One then has

I9 � C sup
s

∫
|v∗|�2M

kw,p(V, v∗)|∇k
vG2(v∗)|dv∗ + 1

M
‖H2,k‖L∞

� C(p) sup
s

‖∇k
vG2‖ + 1

M
‖H2,k‖L∞ ,

according to Hölder’s inequality and the fact that
∫
R3 k2w,p(V, v∗)dv∗ < ∞.

Therefore, it follows that for any large M > 0,

I9 � C

(
e− εM2

8 + 1

M

)
‖H2,k‖L∞ + C sup

s
‖∇k

vG2‖. (3.30)

Combining all the estimates above together, we now conclude to have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖H1,k‖L∞ �
(
1

8
+ C

l
+ Cα

)
‖H1,k‖L∞ + Cα‖H1,0‖L∞

+ Cα
∑
k′�k

‖H2,k′ ‖L∞ + 1k�1C
∑
k′<k

‖H1,k′ ‖L∞ + C‖wl∇k
vF1‖L∞ ,

‖H2,k‖L∞ �
(
1

8
+ C

M
+ Cα

)
‖H2,k‖L∞ + 1k�1C

∑
k′<k

‖H2,k′ ‖L∞

+ C
∑
k′�k

‖H1,k′ ‖L∞ + C‖∇k
vG2‖ + C‖wl∇k

vF2‖L∞ .

(3.31)

It should be pointed out that the constant C in (3.31) is independent of σ and ε.
Step 2. L2 estimates. We now deduce the L2 estimate on G2 which is necessary due
to (3.31). Let us start from themacroscopic part of (G1,G2). Recalling the definition
of P0, at this stage, we may write

P0G2 = (a2 + b2 · v + c2(|v|2 − 3))
√

μ,

and define the projection P̄0, from L2 to ker(L), as

P̄0G1 = (a1 + b1 · v + c1(|v|2 − 3))μ,

and because [G1,G2] ∈ Xα,m , it also follows that

a1 + a2 = 0, b1 + b2 = 0, c1 + c2 = 0. (3.32)

The following significant observation will be used in the later deductions:

ν0 f − σK f = (1 − σ)ν0 f + σ L f, ν0 f − σK f = (1 − σ)ν0 f + σL f. (3.33)

By applying (3.33) and (3.32), for any k � 0, we get from 〈∇k
vP1(3.19)2,∇k

vP1G2〉
and Lemma 6.1 that

1

2
min{ν0, δ0}‖∇k

vP1G2‖ − C1k�1‖P1G2‖
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� C
∣∣∣
〈
∇k

vP1[(1 − χM )μ− 1
2KG1],∇k

vP1G2
〉∣∣∣

1
2

+ C‖∇k
vF2‖ + Cα|[a1,b1, c1]|, (3.34)

and using Lemma 6.4, one also has∣∣∣∣
〈
∇k

vP1[(1 − χM )μ− 1
2KG1],∇k

vP1G2
〉∣∣∣∣

� η‖∇k
vP1G2‖2 + Cη

∥∥∥∇k
vP1[(1 − χM )μ− 1

2KG1]
∥∥∥2

� η‖∇k
vP1G2‖2 + Cη

∥∥∥∇k
v [(1 − χM )μ− 1

2KG1]
∥∥∥2

+ Cη

∥∥∥∇k
vP0[(1 − χM )μ− 1

2KG1]
∥∥∥2

� η‖∇k
vP1G2‖2 + Cη

∑
k′�k

‖wl∇k′
v G1‖2L∞ . (3.35)

For l > 5/2, it follows that

|[a1,b1, c1]| � C‖wlG1‖L∞ . (3.36)

Now, (3.34), (3.35) and (3.36) give rise to
∑

0�k�m

‖∇k
vP1G2‖ + |[a1,b1, c1]| � C

∑
0�k′�k

‖wl∇k′
v G1‖L∞

+ C
∑

0�k�m

‖wl∇k
vF2‖L∞ , (3.37)

for l > 5/2, where C > 0 is independent of ε.
Consequently, taking the linear combination of (3.31) and (3.37) for 0 � k � m

and adjusting constants, we arrive at
∑

0�k�m

{‖H1,k‖L∞ + ‖H2,k‖L∞
}

� C
∑

0�k�m

‖wl∇k
v [F1,F2]‖L∞ .

This shows the desired estimate (3.21) and ends the proof of Lemma 3.1. ��
With Lemma 3.1 in hand, we now turn to prove the existence of solutions

to (3.19) in L∞ framework by the contraction mapping method. We employ the
continuity technique in the parameter σ developed in [19].

Lemma 3.2. Under the same assumption of Lemma 3.1, there exists a unique so-
lution [G1,G2] ∈ Xα,m to (3.19) with σ = 1 satisfying

∑
0�k�m

{
‖wl∇k

vG1‖L∞ + ‖wl∇k
vG2‖L∞

}

� C
∑

0�k�m

{
‖wl∇k

vF1‖L∞ + ‖wl∇k
vF2‖L∞

}
. (3.38)
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Proof. As inLemma3.1,wedenoteL −1
σ to be the solution operator for the problem

(3.19) and (3.20). RecallingH0 = [H1,0, H2,0] = wl [G1,G2], if σ = 0, then (3.22)
and (3.23) with k = 0 can be reduced to

εH1 − β ′∇v · (vH1) + 2lβ ′ |v|2
1 + |v|2 H1 − αv2∂v1H1 + 2lα

v2v1

1 + |v|2 H1 + ν0H1

+ β ′

2
|v|2√μH2 + α

v1v2

2
√

μH2 − wl

β ′′(H0
wl

)

α
∇v · (vμ) = wlF1,

and

εH2 − β ′∇v · (vH2) + 2lβ ′ |v|2
1 + |v|2 H2 − αv2∂v1H2 + 2lα

v2v1

1 + |v|2 H2 + ν0H2

= wlF2,

respectively. Then, in this case of σ = 0, the existence of L∞-solutions can be
easily proved by the characteristic method and the contraction mapping theorem,
since there is no trouble term involving K orK. That is, one can directly show that

‖L −1
0 [F1,F2]‖Xα,m � CL ‖[F1,F2]‖Xα,m . (3.39)

We now define an operator

Tσ [G1,G2] = L −1
0

[
σχMKG1 + F1, σ (1 − χM )μ− 1

2KG1 + σKG2 + F2

]
.

Moreover, since [G1,G2] ∈ Xα,m , one also has

〈KG1, [1, vi , |v|2]〉 + 〈KG2, [1, vi , |v|2]μ 1
2 〉 = 0, 1 � i � 3,

according to (3.33), which further implies

〈Tσ [G1,G2], [φ, φμ
1
2 ]〉 = 0,

for any ε > 0, where φ denotes 1, vi (i = 1, 2, 3), and |v|2. Then (3.39) yields

‖Tσ [G1,G2] − Tσ [G′
1,G′

2]‖Xα,m

=
∥∥∥L −1

0

[
σχMK

(
G1 − G′

1

)
, σ (1 − χM )wlμ

− 1
2K

(
G1 − G′

1

)

+ σwl K
(
G2 − G′

2

) ]∥∥∥
Xα,m

= σ

∥∥∥L −1
0

[
wlχMK

(
G1 − G′

1

)
, (1 − χM )wlμ

− 1
2K

(
G1 − G′

1

)

+ wl K
(
G2 − G′

2

) ]∥∥∥
Xα,m

� σCL ‖[G1 − G′
1,G2 − G′

2]‖Xα,m � 1

2
‖[G1 − G′

1,G2 − G′
2]‖Xα,m , (3.40)

provided that σ ∈ [0, σ∗] with 0 < σ∗ � min{ 1
2CL

}.
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Thus, we obtain a unique fixed point [G1,G2] in Xα,m such that

Tσ [G1,G2] = [G1,G2],
which is equivalent to

L0[G1,G2] =
[
σχMKG1 + F1, σ (1 − χM )μ− 1

2KG1 + σKG2 + F2

]
.

Therefore [G1,G2] is a unique solution to the system
Lσ [G1,G2] = [F1,F2] , σ ∈ [0, σ∗].

Next, we define

Tσ∗+σ = L −1
σ∗

[
σχMKG1 + F1, σ (1 − χM )μ− 1

2KG1 + σKG2 + F2

]
.

Since the constantCL in (3.21) is uniform in σ ∈ [0, 1], one can further verify that
Tσ∗+σ with σ ∈ [0, σ∗] is also a contraction mapping on Xα,m by using a similar
argument as for obtaining (3.40). Namely, we have shown the existence of L −1

2σ∗
on Xα,m and (3.21) holds true for σ = 2σ∗. Hence, step by step, one can see that
L −1

1 exists in case σ = 1 and (3.38) also follows simultaneously. This completes
the proof of Lemma 3.2. ��

Once Lemma 3.2 has been obtained, we can now turn to complete the

Proof of Theorem 1.1. We prove the existence of Wm,∞ solution to the coupled
system (3.11) and (3.12) under the condition (3.17).

According to Lemma 3.2, there indeed exists a unique solution [Gn+1
R,1 ,Gn+1

R,2 ]
to the system (3.14) satisfying (3.16), provided that [Gn

R,1,G
n
R,2] ∈ Xα,m for any

m � 0. We now show that the solution sequence {[Gn
R,1,G

n
R,2]}∞n=0 is a Cauchy

sequence in Xα,m−1 with m � 1, hence it is convergent and the limit is the unique
solution of the following system

εGR,1 − β∇v · (vGR,1) − αv2∂v1GR,1 + β

2
|v|2√μGR,2

+ α
v1v2

2
√

μGR,2 + ν0GR,1 − χMKGR,1

= β

α
∇v · (vμ) + β∇v · (vμ

1
2G1) + αv2∂v1(μ

1
2G1) + αQ(μ

1
2G1, μ

1
2G1)

+ α{Q(μ
1
2GR, μ

1
2G1) + Q(μ

1
2G1, μ

1
2GR)} + αQ(μ

1
2GR, μ

1
2GR),

(3.41)

and

εGR,2 − β∇v · (vGR,2) − αv2∂v1GR,2 + LGR,2 − (1 − χM )μ− 1
2KGR,1 = 0.

(3.42)

To do this, we first denote

β̃n+1 = βn+1 − βn = −α2

3

∫
v1v2μ

1/2G̃n+1
R dv,
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with βn given by (3.15), and set

μ1/2G̃n+1
R = G̃n+1

R,1 + μ1/2G̃n+1
R,2 ,

with

[G̃n+1
R,1 , G̃n+1

R,2 ] = [Gn+1
R,1 − Gn

R,1,G
n+1
R,2 − Gn

R,2].

Then G̃n+1
R,1 and G̃n+1

R,2 satisfy the equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εG̃n+1
R,1 − βn∇v · (vG̃n+1

R,1 ) − αv2∂v1 G̃
n+1
R,1 + ν0G̃

n+1
R,1 − χMKG̃n+1

R,1

+ βn

2
|v|2√μG̃n+1

R,2 + α
v1v2

2
√

μG̃n+1
R,2 − β̃n+1

α
∇v · (vμ)

= β̃n∇v · (vGn
R,1) + β̃n∇v · (vμ

1
2G1)

+ α{Q(μ
1
2 G̃n

R, μ
1
2G1) + Q(μ

1
2G1, μ

1
2 G̃n

R)}
+ α

{
Q(μ

1
2 G̃n

R, μ
1
2 G̃n) + Q(μ

1
2 G̃n

R, μ
1
2Gn

R) + Q(μ
1
2Gn

R, μ
1
2 G̃n

R)
}

def= M(G̃n
R, G̃n

R),

εG̃n+1
R,2 − βn∇v · (vG̃n+1

R,2 ) − αv2∂v1 G̃
n+1
R,2

+ LG̃n+1
R,2 − (1 − χM )μ− 1

2KG̃n+1
R,1 = 0,

(3.43)

with

〈G̃n
R,1, [1, vi , |v|2]〉 + 〈G̃n

R,2, [1, vi , |v|2]μ 1
2 〉 = 0, i = 1, 2, 3.

Our goal next is to prove

‖[G̃n+1
R,1 , G̃n+1

R,2 ]‖Xα,m−1 � Cα‖[G̃n
R,1, G̃

n
R,2]‖Xα,m−1 , (3.44)

under the condition that

‖[Gn
R,1,G

n
R,2]‖Xα,m < Cα,m, (3.45)

where the constant Cα,m is finite independent of n. In fact, on the one hand, thanks
to Lemma 3.1, it follows that

‖[G̃n+1
R,1 , G̃n+1

R,2 ]‖Xα,m−1 � C
∑

0�k�m−1

‖wl∇k
xM(G̃n

R, G̃n
R)‖∞,

whereM(G̃n
R, G̃n

R) is given in (3.43). On the other hand, we get from Lemma 6.4
that

∑
0�k�m−1

‖wl∇k
xM(G̃n

R, G̃n
R)‖∞ � Cα

∑
0�k�m−1

{
‖wl∇k

x G̃
n
R,1‖2L∞ + ‖wl∇k

x G̃
n
R,2‖2L∞

}

+ Cα
∑

0�k�m−1

‖wl∇k
x G̃

n
R‖L∞

∑
0�k�m

‖wl∇k
x G

n
R‖L∞ ,
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which is further bounded by

Cα
∑

0�k�m−1

{
‖wl∇k

v G̃
n
R,1‖L∞ + ‖wl∇k

v G̃
n
R,2‖L∞

}
,

due to (3.45). Thus, (3.44) is valid, in other words, {[Gn
R,1,G

n
R,2]}∞n=0 is a Cauchy

sequence in Xα,m−1 for α > 0 suitably small. Hence,

[Gn
R,1,G

n
R,2] → [Gε

R,1,G
ε
R,2]

strongly in Xα,m−1 as n → +∞, and

βn → βε = α2

6b0
− α2

3

∫
R3

v1v2(G
ε
R,1 + μ1/2Gε

R,2) dv. (3.46)

And the limit [Gε
R,1,G

ε
R,2] is a unique solution to (3.41) and (3.42). Furthermore,

it can be directly shown that [Gε
R,1,G

ε
R,2] enjoys the estimate

‖[Gε
R,1,G

ε
R,2]‖Xα,m � Cα. (3.47)

Furthermore, taking the limit ε → 0, we may repeat the same procedure as for
letting n → ∞, so that the limit function [GR,1,GR,2] ∈ Xα,m is the unique
solution of (3.11) and (3.12) and enjoys the same bound as (3.47).

Moreover, for any ε > 0, it follows that

ε〈Gε
R,1, 1〉 + ε〈Gε

R,2, μ
1
2 〉 = 0,

(ε + βε)〈Gε
R,1, v1〉 + (ε + βε)〈Gε

R,2, v1μ
1
2 〉 + α〈Gε

R,1, v2〉
+ α〈Gε

R,2, v2μ
1
2 〉 = 0,

(ε + βε)〈Gε
R,1, vi 〉 + (ε + βε)〈Gε

R,2, viμ
1
2 〉 = 0, i = 2, 3,

and

(ε + βε)〈Gε
R,1, |v|2〉 + (ε + βε)〈Gε

R,2, |v|2μ 1
2 〉 = 0,

consequently,

〈Gε
R,1, [1, vi , |v|2]〉 + 〈Gε

R,2, [1, vi , |v|2]μ 1
2 〉 = 0, i = 1, 2, 3, (3.48)

since βε > 0 due to (3.47) and (3.46) and α can be suitably small. Taking ε → 0
in (3.48) gives rise to (3.3). This finishes the proof of Theorem 1.1. ��
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4. Local Existence

In the previous section, via the perturbation approach we have proved the ex-
istence of the self-similar profile G(v) governed by the steady problem (1.11)
whenever the shear rate α is suitably small. However, the non-negativity of G(v)

is still unknown. Thus, we will study the time-dependent problem and obtain the
time-asymptotic stability of G(v) under initial small perturbations, which in turn
can give the non-negativity of G(v). To be more general, we reformulate the prob-
lem in the spatially inhomogeneous setting where the one-dimensional transport
only along the v1-direction is allowed.We remark that the justification of dynamical
stability in the 2D framework as for the original problem (1.19) should be more
challenging and is hence left for the future study.

The goal of this section is to first establish the existence of the unique local-
in-time solution to the Cauchy problem (1.20) and (1.21) in the one-dimensional
spatially inhomogeneous setting. The proof of the global existence as well as the
large time behavior of solutions will be given in the next section. In light of (1.7),
we let

F(t, x, v) = e−3βt f (t, x,
v

eβt
)

def= e−3βt f (t, x, ξ),

then the Cauchy problem (1.20) and (1.21) is converted to{
∂t f + eβtξ1∂x f − β∇ξ · (ξ f ) − αξ2∂ξ1 f = Q( f, f ), t > 0, x ∈ T, ξ ∈ R

3,

f (0, x, ξ) = F0(x, ξ), x ∈ T, ξ ∈ R
3.

(4.1)

We notice that as mentioned in (1.18), F(t, x, v) is expected to behave like
e−3βtG(e−βtv) in large time and hence f (t, x, ξ) should tend asymptotically to-
wards the self-similar profile G(ξ), where the self-similar profile G is determined
in Theorem 1.1. Now, setting f̃ (t, x, ξ) = f (t, x, ξ) − G(ξ) as the perturbation,
one can see that f̃ = f̃ (t, x, ξ) satisfies⎧⎪⎪⎨

⎪⎪⎩

∂t f̃ + eβtξ1∂x f̃ − β∇ξ · (ξ f̃ ) − αξ2∂ξ1 f̃

= Q( f̃ , f̃ ) + Q( f̃ ,G) + Q(G, f̃ ), t > 0, x ∈ T, ξ ∈ R
3,

f̃ (0, x, ξ) = F0(x, ξ) − G(ξ), x ∈ T, ξ ∈ R
3.

Defining next f̃ (t, x, ξ) = √
μg̃ and recalling G = μ + √

μ{αG1 + αGR}, we
have⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂t g̃ + eβtξ1∂x g̃ − β∇ξ · (ξ g̃) + β

2
|ξ |2 g̃ − αξ2∂ξ1 g̃ + α

2
ξ1ξ2 g̃ + Lg̃

= �(g̃, g̃) + �(g̃, αG1 + αGR) + �(αG1 + αGR, g̃), t > 0, x ∈ T, ξ ∈ R
3,

g̃(0, x, ξ) = g̃0 = F0(x, ξ) − G(ξ)√
μ

, x ∈ T, ξ ∈ R
3.

(4.2)

To solve (4.2), since there is a strong growth term α
2 ξ1ξ2 g̃ in (4.2), it is more

convenient to consider the decomposition
√

μg̃ = g1 + √
μg2, where g1 and g2

satisfy
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t g1 + eβtξ1∂x g1 − β∇ξ · (ξg1) − αξ2∂ξ1g1 + ν0g1

= χMKg1 − β

2
|ξ |2μ 1

2 g2 − α

2
μ

1
2 ξ1ξ2g2

+ H̃(g1, g2), t > 0, x ∈ T, ξ ∈ R
3,

g1(0, x, ξ) = 0, x ∈ T, ξ ∈ R
3,

(4.3)

and
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t g2 + eβtξ1∂x g2 − β∇ξ · (ξg2) − αξ2∂ξ1g2 + Lg2

= μ−1/2(1 − χM )Kg1, t > 0, x ∈ T, ξ ∈ R
3,

g2(0, x, ξ) = F0(x, ξ) − G(ξ)√
μ

def= g̃0(x, ξ), x ∈ T, ξ ∈ R
3,

(4.4)

respectively. Here

H̃(g1, g2) = Q(g1 + μ
1
2 g2, g1 + μ

1
2 g2) + Q(g1 + μ

1
2 g2, μ

1
2 (αG1 + αGR)

+ Q(μ
1
2 (αG1 + αGR), g1 + μ

1
2 g2).

We shall look for solutions of (4.3) and (4.4) in the following function space

Ȳα,T =
{
[G1,G2] ∈ L∞(0, T ;W 2,∞

x L∞
v )

∣∣
∑
γ0�2

sup
0�t�T

{‖wl∂
γ0
x G1(t)‖L∞ + α‖wl∂

γ0
x G2(t)‖L∞

}
< +∞,

〈G1, [1, vi ]〉 + 〈G2, [1, vi ]μ 1
2 〉 = 0, i = 1, 2, 3

}
,

supplemented with the norm

‖[G1,G2]‖Ȳα,T
=

∑
γ0�2

sup
0�t�T

{‖wl∂
γ0
x G1(t)‖L∞ + α‖wl∂

γ0
x G2(t)‖L∞

}
.

Theorem 4.1. (Local existence) Under the conditions listed in Theorem 1.2, there
exits T∗ > 0 which may depend on α such that the coupling systems (4.3) and (4.4)
admit a unique local in time solution [g1(t, x, ξ), g2(t, x, ξ)] satisfying

‖[g1, g2]‖Yα,T∗ � 2α.

Proof. Our proof is based on the Duhamel’s principle and contraction mapping
method. We first consider the following approximation equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t g1 + eβtξ1∂x g1 − β∇ξ · (ξg1) − αξ2∂ξ1g1 + ν0g1

= χMKg′
1 − β

2
|ξ |2μ 1

2 g′
2

− α

2
μ

1
2 ξ1ξ2g

′
2 + H̃(g′

1, g
′
2), t > 0, x ∈ T, ξ ∈ R

3,

g1(0, x, ξ) = 0, x ∈ T, ξ ∈ R
3,

(4.5)
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and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t g2 + eβtξ1∂x g2 − β∇ξ · (ξg2) − αξ2∂ξ1g2 + ν0g2

= Kg′
2 + μ− 1

2 (1 − χM )Kg′
1, t > 0, x ∈ T, ξ ∈ R

3,

g2(0, x, ξ) = F0(x, ξ) − G(ξ)√
μ

def= g̃0(x, ξ), x ∈ T, ξ ∈ R
3.

(4.6)

Let [g1, g2] be a solution of the pair of (4.5) and (4.6) with [g′
1, g

′
2] being given.

Then the nonlinear operator N is formally defined as

N ([g′
1, g

′
2]) = [g1, g2].

Our aim is to prove that there exists a sufficiently small T∗ > 0 such thatN [g′
1, g

′
2]

has a unique fixed point in some Banach space by adopting the contractionmapping
method. In fact, since ∑

γ0�2

‖wl∂
γ0
x g̃0‖L∞ � α,

we can define the Banach space

Yα,T =
{
(G1,G2)∈ L∞(0, T ;W 2,∞

x L∞
v )

∣∣
∑
γ0�2

sup
0�t�T

{‖wl∂
γ0
x G1(t)‖L∞ + α‖wl∂

γ0
x G2(t)‖L∞

}
� 2α,

G1(0) = 0, G2(0) = g̃0
}
,

associated with the norm

‖[G1,G2]‖Yα,T =
∑
γ0�2

sup
0�t�T

{‖wl∂
γ0
x G1(t)‖L∞ + α‖wl∂

γ0
x G2(t)‖L∞

}
.

We now show that

N : Yα,T → Yα,T ,

is well-defined and N is a contraction mapping for some T > 0.
Let us denote h1 = wl∂

γ0
x g1 and h2 = wl∂

γ0
x g2 with γ0 � 2, then [h1, h2]

satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t h1 + eβtξ1∂xh1 − β∇ξ · (ξh1) − αξ2∂ξ1h1 + 2lβ
|ξ |2

1 + |ξ |2 h1

+ 2lα
ξ2ξ1

1 + |ξ |2 h1 + ν0h1

= χMwlK
(
h′
1

wl

)
− β

2
|ξ |2μ 1

2 h′
2 − α

2
μ

1
2 ξ1ξ2h

′
2

+ wl∂
γ0
x H̃(g′

1, g
′
2), t > 0, x ∈ T, ξ ∈ R

3,

h1(0, x, ξ) = 0, x ∈ T, ξ ∈ R
3,

(4.7)
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t h2 + eβtξ1∂xh2 − β∇ξ · (ξh2) − αξ2∂ξ1h2 + 2lβ
|ξ |2

1 + |ξ |2 h2

+ 2lα
ξ2ξ1

1 + |ξ |2 h2 + ν0h2 − wl K

(
h′
2

wl

)

= wlμ
−1/2(1 − χM )K

(
h′
1

wl

)
, t > 0, x ∈ T, ξ ∈ R

3,

h2(0, x, ξ) = wl∂
γ0
x g̃0(x, ξ), x ∈ T, ξ ∈ R

3,

(4.8)

where h′
i = wl∂

γ0
x g′

i (i = 1, 2).
Next, we define the characteristic line [s, X (s; t, x, ξ), V (s; t, x, ξ)] for equa-

tions (4.7) and (4.8) passing through (t, x, ξ) such that
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dX
ds = eβsV1(s; t, x, ξ),

dV1
ds = −βV1(s; t, x, ξ) − αV2(s; t, x, ξ),

dVi
ds = −βVi (s; t, x, ξ), i = 2, 3,

X (t; t, x, ξ) = x, V (t; t, x, ξ) = ξ,

which is equivalent to
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X (s; t, x, ξ) = eβ(t−s)
(
x − (t − s)ξ1 − 1

2
α(t − s)2ξ2

)
,

V1(s; t, x, ξ) = eβ(t−s)(ξ1 + αξ2(t − s)),

Vi (s; t, x, ξ) = eβ(t−s)ξi . i = 2, 3.

(4.9)

Using this, as (3.25) and (3.26), we can write the solution of (4.7) as

[h1, h2] = Q(g′
1, g

′
2) = [Q1(g

′
1, g

′
2),Q2(g

′
1, g

′
2)],

with

Q1(g
′
1, g

′
2) =

∫ t

0
e− ∫ t

s A(τ,V (τ )) dτ
{
χMwlK

(
h′
1

wl

)}
(V (s)) ds

+ β

2

∫ t

0
e− ∫ t

s A(τ,V (τ )) dτ |V (s)|2√μ(V (s))h′
2(V (s)) ds

+ α

∫ t

0
e− ∫ t

s A(τ,V (τ )) dτ V1(s)V2(s)

2
√

μ(V (s))h′
2(V (s)) ds

+
∫ t

0
e− ∫ t

s A(τ,V (τ )) dτ
(
wl H̃

)
(V (s)) ds, (4.10)

and

Q2(g
′
1, g

′
2) = e− ∫ t

0 A(τ,V (τ )) dτ (wl∂
γ0
x g̃0)(X (0), V (0))

+
∫ t

0
e− ∫ t

s A(τ,V (τ )) dτ
{
(1 − χM )μ− 1

2 wlK
(
h′
1

wl

)}
(V (s)) ds
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+
∫ t

0
e− ∫ t

s A(τ,V (τ )) dτ
[
wl K

(
h′
2

wl

)]
(V (s)) ds, (4.11)

where A = Aε − ε.

Let [g′
1, g

′
2] ∈ Yα,T∗ . In light of (3.27), taking L∞ estimates of Q[g′

1, g
′
2] and

applying Lemmas 6.2, 6.4 and 2.1, one directly has

∑
γ0�2

sup
0�t�T∗

‖Q1[g′
1, g

′
2]‖L∞ �

(
C

l
+ Cα

)
T∗

∑
γ0�2

sup
0�t�T∗

‖h′
1‖L∞

+ CαT∗
∑
γ0�2

sup
0�t�T∗

‖h′
2‖L∞ � α

2
, (4.12)

and
∑
γ0�2

sup
0�t�T∗

α‖Q2[g′
1, g

′
2]‖L∞

� α + CT∗α
∑
γ0�2

{
sup

0�t�T∗
‖h′

1‖L∞ + sup
0�t�T∗

‖h′
2‖L∞

}
� 3α

2
, (4.13)

provided that T∗ > 0 is suitably small. And similarly, for [g′
1, g

′
2] ∈ Yα,T∗ and

[g′′
1 , g

′′
2 ] ∈ Yα,T∗ , it follows that

∑
γ0�2

sup
0�t�T∗

‖Q1[g′
1, g

′
2] − Q1[g′′

1 , g
′′
2 ]‖L∞

�
(
C

l
+ Cα

)
T∗

∑
γ0�2

sup
0�t�T∗

‖h′
1 − h′′

1‖L∞

+ CαT∗
∑
γ0�2

sup
0�t�T∗

‖h′
2 − h′′

2‖L∞

� 1

4

∑
γ0�2

{
sup

0�t�T∗
‖h′

1 − h′′
1‖L∞ + α sup

0�t�T∗
‖h′

2 − h′′
2‖L∞

}
, (4.14)

and
∑
γ0�2

α sup
0�t�T∗

‖Q2[g′
1, g

′
2] − Q2[g′′

1 , g
′′
2 ]‖L∞

� CT∗α
∑
γ0�2

{
sup

0�t�T∗
‖h′

1 − h′′
1‖L∞ + sup

0�t�T∗
‖h′

2 − h′′
2‖L∞

}

� 1

4

∑
γ0�2

{
sup

0�t�T∗
‖h′

1 − h′′
1‖L∞ + α sup

0�t�T∗
‖h′

2 − h′′
2‖L∞

}
, (4.15)
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for T∗ > 0 small enough. Here, the following type of estimates have been also
used:

‖wl [Q(μ
1
2 g′

2, μ
1
2 g′

2) − Q(μ
1
2 g′′

2 , μ
1
2 g′′

2 )]‖L∞

� ‖wl Q(μ
1
2 (g′

2 − g′′
2 ), μ

1
2 (g′

2 − g′′
2 ))‖L∞ + ‖wl Q(μ

1
2 (g′

2 − g′′
2 ), μ

1
2 g′′

2 )‖L∞

+ ‖wl Q(μ
1
2 g′′

2 , μ
1
2 (g′

2 − g′′
2 ))‖L∞

� C
{
‖wl [g′

2 − g′′
2 ]‖2L∞ + 2‖wl g

′′
2‖L∞‖wl [g′

2 − g′′
2 ]‖L∞

}
.

Consequently, (4.14) and (4.15) lead to

‖Q[g′
1, g

′
2] − Q[g′′

1 , g
′′
2 ]‖Yα,T∗ � 1

2
‖[g′

1, g
′
2] − [g′′

1 , g
′′
2 ]‖Yα,T∗ .

This together with (4.12) and (4.13) imply that there exists T∗ > 0 such thatN is a
contraction mapping on Yα,T∗ . Hence, there exists a unique [g1, g2] ∈ Yα,T∗ such
that

[g1, g2] = N (g1, g2).

This completes the proof of Theorem 4.1. ��

5. Convergence to the Steady State

Following the previous section regarding the local existence, the goal of this
section is to establish the global existence of the Cauchy problem (1.20) and (1.21).
More precisely, we shall construct a unique global-in-time solution around the
self-similar profile, and also prove its large time asymptotic behavior with the
exponential rate of convergence.

As in the previous sections, we denote the macroscopic part of g̃ by

P0 g̃ = {a + b · ξ + c(|ξ |2 − 3)}√μ. (5.1)

By taking the velocity moments

μ
1
2 , ξ jμ

1
2 ,

1

6
(|ξ |2 − 3)μ

1
2 , Ai j =

(
ξiξ j − δi j

3
|ξ |2

)
μ

1
2 , Bi = 1

10
(|ξ |2 − 5)ξiμ

1
2

with 1 � i, j � 3 for the equation
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t g̃ + eβtξ1∂x g̃ − β∇ξ · (ξ g̃) + β

2
|ξ |2g̃ − αξ2∂ξ1 g̃ + α

2
ξ1ξ2 g̃ + Lg̃

= �(g̃, g̃) + �(g̃, αG1 + αGR) + �(αG1 + αGR, g̃)︸ ︷︷ ︸
F̃

,

t > 0, x ∈ T, ξ ∈ R
3,

g̃(0, x, ξ) = g̃0 = F0(x, ξ) − G(ξ)√
μ

, x ∈ T, ξ ∈ R
3,

(5.2)
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one sees that the coefficient functions [a,b, c] = [a,b, c](t, x) satisfy the fluid-
type system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t a + eβt∂xb1 = 0,

∂t b1 + βb1 + eβt∂x (a + 2c) + αb2 + eβt∂x

∫
R3

ξ21
√

μP1g̃ dξ = 0,

∂t bi + βbi + eβt∂x 〈A1i ,P1g̃〉 = 0, i = 2, 3,

(5.3)

∂t c + βa + 2βc + eβt

3
∂xb1 + eβt

6
∂x

∫
R3

ξ1(|ξ |2 − 3)
√

μP1g̃ dξ

+α

3
〈A12,P1g̃〉 = 0, (5.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t 〈A11,P1g̃〉 + 4eβt

3
∂xb1 + eβt∂x 〈ξ1A11,P1g̃〉 + 2β〈A11,P1g̃〉

+ 4α

3
〈A12,P1g̃〉 + 〈Lg̃, A11〉 = 〈F̃, A11〉,

∂t 〈A12,P1g̃〉 + eβt∂xb2 + eβt∂x 〈ξ1A12,P1g̃〉 + 2β〈A12,P1g̃〉
+ α(a + 2c) + α〈A22,P1g̃〉 + 〈Lg̃, A12〉 = 〈F̃ , A12〉,

∂t 〈A13,P1g̃〉 + eβt∂xb3 + eβt∂x 〈ξ1A13,P1g̃〉 + 2β〈A13,P1g̃〉
+ α〈A23,P1g̃〉 + 〈Lg̃, A13〉 = 〈F̃ , A13〉,

(5.5)

and

∂t 〈B1,P1g̃〉 + eβt∂x c + eβt∂x 〈ξ1B1,P1g̃〉 + β

5
b1 + β

10
〈(|ξ |2 − 3)ξ1

√
μ,P1g̃〉

+ α

5
b2 + α

5

∫
R3

ξ21 ξ2
√

μP1g̃ dξ + α〈B2,P1g̃〉 + 〈Lg̃, B1〉 = 〈F̃, B1〉, (5.6)

respectively. Here and in the sequel, we have denoted [b1, b2, b3] = b. From (5.3)
and the initial condition (1.23), it follows that

∫
T

a dx =
∫
T

bi dx = 0, 1 � i � 3.

We are now in a position to complete the

Proof of Theorem 1.2. The global existence of (5.2) follows from the standard
continuation argument based on the local existence which has been established in
Section 4 and the a priori estimate. In what follows, we intend to obtain the a priori
estimate

sup
0�t�T

eλβγ0 t
{‖wl∂

γ0
x g1(t)‖L∞ + αγ0‖wl∂

γ0
x g2(t)‖L∞

}

� C
∑
γ0�2

αγ0‖wl∂
γ0
x g̃0‖L∞ , γ0 � 2, (5.7)
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under the a priori assumption that [g1, g2] is a unique solution to the coupled system
(4.3) and (4.4) and satisfies

sup
0�t�T

eλβγ0 t
{‖wl∂

γ0
x g1(t)‖L∞ + αγ0‖wl∂

γ0
x g2(t)‖L∞

}
� ααγ0 , γ0 � 2. (5.8)

Here,

0 < λ <
1

4
min{1, λ0} (5.9)

with λ0 being determined as (5.28). Moreover, αγ0 and βγ0 are defined as

αγ0 =
{

α, γ0 = 0,
1, γ0 = 1, 2,

βγ0 =
{

β, γ0 = 0,
1, γ0 = 1, 2.

Step 1. L∞ estimates. Recalling (4.10) and (4.11), one has

eλβγ0 t |h1| �
3∑

i=1

Ji , eλβγ0 t |h2| �
6∑

i=4

Ji , (5.10)

with

J1 = eλβγ0 t
∫ t

0
e− ∫ t

s A(τ,V (τ )) dτ
{
χMwlK

(
h1
wl

)}
(V (s)) ds,

J2 = β

2
eλβγ0 t

∫ t

0
e− ∫ t

s A(τ,V (τ )) dτ |V (s)|2√μ(V (s))h2(V (s)) ds

+ αeλβγ0 t
∫ t

0
e− ∫ t

s A(τ,V (τ )) dτ V1(s)V2(s)

2
√

μ(V (s))h2(V (s)) ds,

J3 = eλβγ0 t
∫ t

0
e− ∫ t

s A(τ,V (τ )) dτ
(
wl H̃

)
(V (s)) ds,

J4 = eλβγ0 t e− ∫ t
0 A(τ,V (τ )) dτ (wl∂

γ0
x g̃0)(X (0), V (0)),

J5 = eλβγ0 t
∫ t

0
e− ∫ t

s A(τ,V (τ )) dτ
{
(1 − χM )μ− 1

2 wlK
(
h1
wl

)}
(V (s)) ds,

and

J6 = eλβγ0 t
∫ t

0
e− ∫ t

s A(τ,V (τ )) dτ
[
wl K

(
h2
wl

)]
(V (s)) ds.

In what follows, we will compute each Ji , 1 � i � 6, separately. Since β > 0
is sufficiently small and λ satisfies (5.9), in view of (3.27), (5.8), Lemma 6.4 and
Proposition 2.1, one directly has

J1 � C

l

∑
0�s�t

eλβγ0 s‖h1(s)‖L∞eλβγ0 t
∫ t

0
e− ν0

2 (t−s)eλβγ0 s ds

� C

l

∑
0�s�t

eλβγ0 s‖h1(s)‖L∞ ,
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J2 � Cα
∑

0�s�t

eλβγ0 s‖h2(s)‖L∞ ,

J3 � Cα
∑

0�s�t

eλβγ0 s (‖h1(s)‖L∞ + ‖h2(s)‖L∞) ,

J4 � eλβγ0 t−
ν0
2 t‖wl∂

γ0
x g̃0‖L∞ � ‖wl∂

γ0
x g̃0‖L∞ ,

J5 � C
∑

0�s�t

eλβγ0 s‖h1(s)‖L∞ .

For the delicate term J6, we first split it as

J6 = eλβγ0 t
{∫ t−ε

0
+

∫ t

t−ε

}
ds e− ∫ t

s A(τ,V (τ ))dτ

[
wl K

(
h2
wl

)]
(V (s))

def= J6,1 + J6,2,

where ε > 0 is small enough. Then, for J6,2, by applying (3.27) and Lemma 6.3,
one has

|J6,2| � C
∑

0�s�t

eλβγ0 s‖h2(s)‖L∞
∫ t

t−ε

eλβγ0 t e− ν0
2 (t−s)e−λβγ0 s ds

� Cε
∑

0�s�t

eλβγ0 s‖h2(s)‖L∞ .

However, J6,1 needs more attentions. We rewrite J6,1 as

J6,1 = eλβγ0 t
∫ t−ε

0
ds e− ∫ t

s A(τ,V (τ )) dτwl(V (s))
∫
R3

k(V (s), ξ∗)
h2(s, X (s), ξ∗)

wl(ξ∗)
dξ∗.

Then as for obtaining (3.30), we divide the computations in the following three
cases.
Case 1. |V (s)| � M with M suitably large. In view of Lemma 6.2, it follows that

∫
kw(V, ξ∗) dξ∗ � C

(1 + |V |) � C

M
,

which implies

J6,1 �
∑

0�s�t

eλβγ0 s‖h2(s)‖L∞
∫ t−ε

0
ds eλβγ0 t e− ν0

2 (t−s)e−λβγ0 s

∫
R3

kw(V (s), ξ∗) dξ∗

� C

M

∑
0�s�t

eλβγ0 s‖h2(s)‖L∞
∫ t−ε

0
e− ν0

4 (t−s) ds
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� C

M

∑
0�s�t

eλβγ0 s‖h2(s)‖L∞ . (5.11)

Case 2. |V (s)| � M and |ξ∗| � 2M . In this situation one has |V (s) − ξ∗| � M , so
it holds that

kw(V, ξ∗) � Ce− εM2
16 kw(V, v∗)e

ε|V−ξ∗|2
16 ,

where one sees that the integral
∫
kw(V, ξ∗)e

ε|V−ξ∗|2
16 dξ∗ is further bounded accord-

ing to Lemma 6.2. Thus as for obtaining (5.11), one has

J6,1 � Ce− εM2
16

∑
0�s�t

eλβγ0 s‖h2(s)‖L∞ .

Case 3. |V | � M , |ξ∗| � 2M . In this bad case, one possible way is to convert the
bound in L∞-norm to the one in L2-norm by an iteration approach. As in the proof
of Lemma 3.1 (Case 3), we compute J6,1 as

J6,1 � eλβγ0 t
∫ t−ε

0
ds e− ∫ t

s A(τ,V (τ )) dτ

∫
|ξ∗|�2M

kw,p(V (s), ξ∗)|h2(s, X (s), ξ∗)| dξ∗

+ 1

M

∑
0�s�t

eλβγ0 s‖h2(s)‖L∞ ,

where kw,p is given by (3.29). Next, by plugging the above estimates for J4, J5
and J6 into the second inequality of (5.10), one has

eλβγ0 t |h2| � C‖wl∂
γ0
x g̃0‖L∞ + C

∑
0�s�t

eλβγ0 s‖wl h1(s)‖L∞

+ Ceλβγ0 t
∫ t−ε

0
ds 1|V (s)|�Me− ∫ t

s A(τ,V (τ ))dτ e−λβγ0 s

×
∫

|ξ∗|�2M
kw,p(V (s), v∗)eλβγ0 s |h2(s, X (s), ξ∗)| dξ∗.

Substituting it again, we get

eλβγ0 t |h2| � Ceλβγ0 t
∫ t−ε

0
ds 1|V |�Me− ∫ t

s A(τ,V (τ ))dτ e−λβγ0 s

∫
|ξ∗|�2M

kw,p(V (s), ξ∗)eλβγ0 s

×
∫ s−ε

0
ds1 1|V (s1)|�Me

− ∫ s
s1
A(τ,V (τ ))dτ

e−λβγ0 s1

×
∫

|ξ ′∗|�2M
kw,p(ξ∗, ξ ′∗)eλβγ0 s1 |h2(s1, X (s1), ξ

′∗)| dξ∗dξ ′∗
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+ C‖wl∂
γ0
x g̃0‖L∞ + C sup

0�s�t
eλβγ0 s‖wl h1(s)‖L∞ . (5.12)

On the other hand, thanks to (4.9), it follows that

X (s1) = X (s1; s, X (s), ξ∗)

= eβ(s−s1)
(
X (s; t, x, ξ) − (s − s1)ξ∗1 − 1

2
α(s − s1)

2ξ∗2
)

= eβ(s−s1)
(
eβ(t−s)

(
x − (t − s)ξ1 − 1

2
α(t − s)2ξ2

)

−(s − s1)ξ∗1 − 1

2
α(s − s1)

2ξ∗2
)

,

and

V1(s1) = V1(s1; s, X (s), ξ∗) = eβ(s−s1) (ξ∗1 + αξ∗2(t − s)) ,

Vi (s1) = Vi (s1; s, X (s), ξ∗) = eβ(s−s1)ξ∗i , i = 2, 3.

Therefore, for s − s1 � ε, one has
∣∣∣∣ ∂ξ∗1
∂X (s1)

∣∣∣∣ = e−β(s−s1)

s − s1
� ε−1e−β(s−s1).

Let y = X (s1), then it holds that
∣∣∣∣eβ(s−s1)X (s; t, x, ξ) − 1

2
αeβ(s−s1)(s − s1)

2ξ∗2 − y

∣∣∣∣
� eβ(s−s1)|s − s1||ξ∗1| � 2Meβ(s−s1)|s − s1|,

where we have used the fact that |ξ∗| � 2M in order to further estimate the integral
term on the right hand side of (5.12). Consequently, if γ0 = 0, we can bound the
integral term on the right hand side of (5.12) as

Ceλβt
∫ t

0
ds

∫ s−ε

0
ds1e

− ν0
2 (t−s)e− ν0

2 (s−s1)e−λβs1

×
∫

|ξ ′∗|�2M

∫
|ξ∗2|2+|ξ∗3|2�4M2

(∫
|ξ∗1|�2M

|eλβs1h2(s1, y, ξ
′∗)|2dξ∗1

) 1
2

dξ∗2dξ∗3dξ ′∗

� Ceλβt
∫ t

0
ds

∫ s−ε

0
ds1e

− ν0
2 (t−s)e− ν0

2 (s−s1)e−λβs1 e
− β

2 (s−s1)

(s − s1)
1
2

×
∫

|ξ ′∗|�2M

(∫
�′

|eλβs1g2(s1, y, ξ
′∗)|2 dy

) 1
2

dξ ′∗

� Ceλβt
∫ t

0
ds

∫ s−ε

0
ds1e

− ν0
2 (t−s)e− ν0

2 (s−s1)e−λβs1 e
− β

2 (s−s1)

(s − s1)
1
2

×
(
M

1
2 e

β
2 (s−s1)|s − s1| 12 + 1

)(∫
R3

∫
T

|eλβs1g2(s1, y, ξ
′∗)|2 dydξ ′∗

) 1
2



The Boltzmann Equation for Uniform Shear Flow 1989

� C sup
0�s�t

eλβs‖g2(s)‖,

where we have denoted

�′ =
{
y

∣∣∣∣|eβ(s−s1)X (s; t, x, ξ) − 1

2
αeβ(s−s1)(s − s1)

2ξ∗2 − y| � 2Meβ(s−s1)|s − s1|
}

.

While for γ0 = 1, 2, because
∣∣∣ ∂X (s1)

∂x

∣∣∣ = eβ(t−s1), we can also bound the integral

term on the right hand side of (5.12) as

Ceλt
∫ t

0
ds

∫ s−ε

0
ds1 e

− ν0
2 (t−s)e− ν0

2 (s−s1)e−λs1

∫
|ξ ′∗|�2M

(∫
|ξ∗1|�2M

|eλs1h2(s1, y, ξ
′∗)|2 dξ∗1

) 1
2

dξ ′∗

� Ceλt
∫ t

0
ds

∫ s−ε

0
ds1e

− ν0
2 (t−s)e− ν0

2 (s−s1)e−λs1 e
− β

2 (s−s1)

(s − s1)
1
2

eγ0β(t−s1)

×
∫

|ξ ′∗|�2M

(∫
�′

|eλs1∂
γ0
y g2(s1, y, ξ

′∗)|2 dy
) 1

2

dξ ′∗

� Ceλt
∫ t

0
ds

∫ s−ε

0
ds1 e

− ν0
2 (t−s)e− ν0

2 (s−s1)e−λs1 e
− β

2 (s−s1)

(s − s1)
1
2

eγ0β(t−s1)

×
(
M

1
2 e

β
2 (s−s1)|s − s1| 12 + 1

)(∫
R3

∫
T

|eλs1∂
γ0
y g2(s1, y, ξ

′∗)|2 dydξ ′∗
) 1

2

� C sup
0�s�t

eλs‖∂γ0
y g2(s)‖,

where we notice that 0 < β ∼ α2 � ν0.
By plugging the above estimates into (5.10), we then conclude

eλβγ0 t |h1| � Cα
∑

0�s�t

eλβγ0 s‖wl h2(s)‖L∞ , (5.13)

and

eλβγ0 t |h2| � C‖wl∂
γ0
x g̃0‖L∞ + C

∑
0�s�t

eλβγ0 s‖wl h1(s)‖L∞

+ C sup
0�s�t

eλβγ0 s‖∂γ0
x g2(s)‖. (5.14)

Step 2. L2 estimates. Recall
√

μg̃ = g1 + √
μg2. We now denote

di j = 〈Ai j ,P1g̃〉 = 〈Ai jμ
− 1

2 , P̄1g1〉 + 〈Ai j ,P1g2〉,
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and we also use the notations

P1g̃ = P̄1g1 + P1g2, P0 g̃ = P̄0g1 + P0g2,

with

P̄1g1 = g1 − P̄0g1, and P̄0g1 = (a1 + b1 · ξ + c1(|ξ |2 − 3))μ(ξ).

We now clarify the relation for P0g2, P1g2, P0 g̃ and P1g̃. Noticing
√

μg̃ = g1 +√
μg2, one sees that

P0g2 = P0 g̃ − P0

(
g1√
μ

)
.

Therefore it holds that

‖P0g2‖ � ‖P0 g̃‖ +
∥∥∥∥P0

(
g1√
μ

)∥∥∥∥ � ‖P0 g̃‖ + C‖wl g1‖L∞ , for l >
5

2
, (5.15)

and in particular,

‖[a2,b2]‖ = ‖[a − a1,b − b1]‖ � ‖∂x [a,b]‖ + C‖wl g1‖L∞ ,

‖c2‖ � ‖c‖ + C‖wl g1‖L∞ , for l >
5

2
. (5.16)

Likewise, one obtains that

‖〈P1g̃, |ξ |3μ 1
2 〉‖ � ‖P1g2‖ + C‖wl g1‖L∞ , for l > 3. (5.17)

Wemultiply (5.3) by αe−βt

6

∫ x
0 d12 dy and (5.4) by c, respectively, add them together

and then take integrationof the resulting equation in x ∈ T. Further using integration
by parts, one has

d

dt

(
b1,

αe−βt

6

∫ x

0
d12 dy

)
−

(
b1,

αe−βt

6

∫ x

0
∂t d12 dy

)
+ β

(
b1,

αe−βt

6

∫ x

0
d12 dy

)

+ β

(
b1,

αe−βt

6

∫ x

0
d12 dy

)
+ α

6

(
∂xa,

∫ x

0
d12 dy

)
+ α2

6

(
b2,

∫ x

0
d12 dy

)

− α

6

(∫
R3

ξ21
√

μP1 g̃ dξ, d12

)
+ 1

2

d

dt
‖c‖2 + β(a, c) + 2β‖c‖2 − eβt

3
(b1, ∂x c)

− eβt

6

(∫
R3

ξ1(|ξ |2 − 3)
√

μP1 g̃ dξ, ∂x c

)
= 0, (5.18)

where we have used the cancellation(
∂xc,

∫ x

0
d12 dy

)
+ (d12, c) = 0,

and we also recall that (·, ·) denotes the inner product on L2(Tx ). On the other
hand, using the second equation of (5.5) and Lemma 6.6, we have

−
(
b1,

αe−βt

6

∫ x

0
∂t d12 dy

)



The Boltzmann Equation for Uniform Shear Flow 1991

= 2α

9
(b1, b2) + α

6
(b1, 〈ξ1A12,P1g̃〉) + βαe−βt

3

(
b1,

∫ x

0
d12 dy

)

+ α2e−βt

6

(
b1,

∫ x

0
(a + 2c) dy

)
+ α2e−βt

6

(
b1,

∫ x

0
〈A22,P1g̃〉 dy

)

+ αb0e−βt

3

(
b1,

∫ x

0
d12 dy

)
− αe−βt

6

(
b1,

∫ x

0
〈F̃ , A12〉 dy

)
. (5.19)

As a consequence, (5.18), (5.19) and (5.17) lead us to

d

dt

{
‖c‖2 +

(
b1,

αe−βt

3

∫ x

0
d12 dy

)}
+ 2β‖c‖2

� η0‖〈B1,P1g̃〉‖2 + Cα‖〈ξ1A12,P1g̃〉‖2
+ α‖d22‖2 + α‖d11‖2 + α‖d12‖2

+ C

η0
e2βt‖∂x [a,b, c]‖2 + Cα‖〈F̃ , A12〉‖2

� (η0 + α)(‖P1g2‖2 + ‖wl g1‖2L∞)

+ C

η0
e2βt‖∂x [a,b, c]‖2 + Cα2‖〈F̃ , A12〉‖2, (5.20)

where η0 > 0 is an arbitrary constant and we also have used the Poincaré inequality
‖u − ∫

T
udx‖ � C‖∂xu‖.

We next compute carefully the last term on the right hand side of (5.20). First
of all, recalling the definition for F̃ , one has

‖〈F̃ , A12〉‖2 �
∫
T

(∫
R3

|Q(μ
1
2 g2, μ

1
2 g2)||ξ1ξ2| dξ

)2

dx

+
∫
T

(∫
R3

|Q(g1, g1)||ξ1ξ2| dξ
)2

dx

+
∫
T

(∫
R3

|Q(g1, μ
1
2 g2)||ξ1ξ2| dξ

)2

dx

+
∫
T

(∫
R3

|Q(μ
1
2 g2, g1)||ξ1ξ2| dξ

)2

dx

+ α2
∫
T

(∫
R3

Q(g1, μ
1
2 (G1 + GR) + Q(μ

1
2 (G1 + GR), g1)ξ1ξ2 dξ

)2

dx

+ α2
∫
T

(∫
R3

Q(μ
1
2 g2, μ

1
2 (G1 + GR) + Q(μ

1
2 (G1 + GR), μ

1
2 g2)ξ1ξ2 dξ

)2

dx

def=
6∑

i=1

Hi . (5.21)

We then compute Hi (1 � i � 6) term by term. For H1, thanks to Lemma 6.4 and
the a priori assumption (5.8), it follows that

H1 � ‖wl Q(μ
1
2 g2, μ

1
2 g2)‖2L∞

∫
T

(∫
R3

w−l(ξ)|ξ1ξ2| dξ
)2

dx

� ‖wlμ
1
2 g2‖4L∞ � α2‖wl g2‖2L∞ ,
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where we have let l > 3 such that the integral
∫
R3 w−l(ξ)|ξ1ξ2| dξ is convergent.

Similarly, it holds that

H2 � ‖wl Q(g1, g1)‖2L∞

∫
T

(∫
R3

w−l |ξ1ξ2| dξ
)2

dx � ‖wl g1‖4L∞ � α4‖wl g1‖2L∞ ,

and

H3,H4 �
(
‖wl Q

(
g1, μ

1
2 g2

)
‖2L∞ + ‖wl Q(μ

1
2 g2, g1)‖2L∞

) ∫
T

(∫
R3

w−l |ξ1ξ2| dξ
)2

dx

� ‖wl g1‖2L∞‖wl g2‖2L∞ � α2‖wl g1‖2L∞ .

Next, applying Lemma 6.4 and Theorem 1.1, one directly has

H5,H6 � α2‖wl g1‖2L∞ + α2‖wl g2‖2L∞ .

Putting now the above estimates for Hi (1 � i � 6) into (5.20), one has

d

dt

{
‖c‖2 + (b1,

αe−βt

3

∫ x

0
d12 dy)

}
+ 2β‖c‖2

� C(η0 + α2)‖P1g2‖2 + Cα4‖wl g2‖2L∞

+ C(α2 + η0)‖wl g1‖2L∞ + C

η0
e2βt‖∂x [a,b, c]‖2, (5.22)

where the Poincaré inequality has been also used. Thus (5.22) further implies that
for 0 < λ � 1

4 ,

sup
0�s�t

e2λβs‖c(s)‖2

� ‖c(0)‖2 + α‖[b1, d12](0)‖2 + α sup
0�s�t

e2λβs‖[b1, d12]‖2

+ C(η0 + α2)e2λβt
∫ t

0
e−2β(t−s)e−2λβse2λβs‖P1g2‖2(s) ds

+ C(α2 + η0)e
2λβt

∫ t

0
e−2β(t−s)e−2λβse2λβs‖wl g1‖2L∞ ds

+ C(α4 + α2)e2λβt
∫ t

0
e−2β(t−s)e−2λβse2λβs‖wl g2‖2L∞ ds

+ C

η0
e2λβt

∫ t

0
e−2β(t−s)e4βse−2λse2λs‖∂x [a,b, c]‖2 ds

� ‖c(0)‖2 + α‖[b1, d12](0)‖2 + α sup
0�s�t

e2λβs‖[b1, d12]‖2

+ C(α2 + η0)

β
sup

0�s�t
e2λβs‖P1g2(s)‖2

+ C(α2 + η0)

β
sup

0�s�t
e2λβs‖wl g1(s)‖2L∞
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+ Cα4

β
sup

0�s�t
e2λβs‖wl g2(s)‖2L∞ + C

η0
sup

0�s�t
e2λs‖∂x [a,b, c]‖2.

Here we have used the following estimate

e2λβt
∫ t

0
e−2β(t−s)e4βse−2λse−2λs‖∂x [a,b, c]‖2 ds

� sup
0�s�t

e2λs‖∂x [a,b, c]‖2
∫ t

0
e−2β(t−s)e2λβt e4βse−2λs ds

� C sup
0�s�t

e2λs‖∂x [a,b, c]‖2, (5.23)

due to the fact that 0 < β ∼ α2 � 1. Consequently, it follows that

α sup
0�s�t

eλβs‖c(s)‖

� α‖c(0)‖2 + α
3
2 ‖[b1, d12](0)‖ + α

3
2 sup
0�s�t

eλβs‖[b1, d12]‖

+ C(α2 + η0)
1
2 sup
0�s�t

eλβs‖P1g2(s)‖ + C(α2 + η0)
1
2 sup
0�s�t

eλβs‖wl g1(s)‖L∞

+ Cα2 sup
0�s�t

eλβs‖wl g2(s)‖L∞ + Cα√
η0

sup
0�s�t

eλs‖∂x [a,b, c]‖. (5.24)

On the other hand, taking the inner product of the first equation of (4.4) and
P1g2 with respect to (x, v) over T × R

3, we also have by Lemma 6.1, (5.15) and
(5.16) that

d

dt
‖P1g2‖2 + δ0

2
‖P1g2‖2 �C‖wl g1‖2L∞ + Ce2βt‖∂xP0g2‖2 + Cα2‖P0g2‖2

�C‖wl g1‖2L∞ + Ce2βt‖∂xP0g2‖2 + Cα2‖c‖2,
which further yields

sup
0�s�t

eλβs‖P1g2(s)‖ � ‖P1g2(0)‖ + C sup
0�s�t

eλβs‖wl g1(s)‖L∞

+ C sup
0�s�t

eλs‖∂xP0g2‖

+ Cα sup
0�s�t

eλβs‖c(s)‖. (5.25)

Therefore, putting (5.24) and (5.25) together, we have that for α2 = η0,

α sup
0�s�t

eλβs‖c(s)‖ + α sup
0�s�t

eλβs‖P1g2(s)‖

� α‖c(0)‖2 + α
3
2 ‖[b1, d12](0)‖ + Cα‖P1 g̃0‖ + C(α + α2) sup

0�s�t
eλβs‖wl g1(s)‖L∞
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+ Cα2 sup
0�s�t

eλβs‖wl g2(s)‖L∞ + Cα sup
0�s�t

eλs‖wl∂x g1(s)‖L∞

+ C sup
0�s�t

eλs‖∂x [a,b, c]‖. (5.26)

Let us now turn to deduce the higher order energy estimate. For this, we claim
that

∑
1�γ0�2

sup
0�s�t

eλs‖∂γ0
x g2‖(s) �

∑
1�γ0�2

‖∂γ0
x g̃0‖ + C

∑
1�γ0�2

sup
0�s�t

eλs‖wl∂
γ0
x g1(s)‖L∞

+ Cα sup
0�s�t

eλs‖wl∂x g2(s)‖L∞ . (5.27)

Indeed, for some λ0 > 0, the inner products

(∂x (5.3)2, e
βt∂2x a), (∂x (5.6), e

βt∂2x c)and(∂x (5.5)i , e
βt∂2x bi )

together with (5.3) and (5.4) give rise to

d

dt
Eint + λ0

∑
1�γ0�2

e2βt‖∂γ0
x [a,b, c]‖2 �

∑
1�γ0�2

e2βt‖〈ςi , ∂γ0
x P1g̃〉‖2

+ ‖〈L∂x g̃, ςi 〉‖2 + ‖〈∂x F̃, ςi 〉‖2,
(5.28)

where we have set

Eint =
3∑

i=1

(∂x 〈A1i ,P1g̃〉, eβt∂2x bi ) + (∂x 〈B1,P1g̃〉, eβt∂2x c) + κ1(∂xb1, e
βt∂2x a),

and the velocity moments ςi in those inner products on the right-hand side of

(5.28) denote all Ai j , Bi , ξ21 ξ2μ
1
2 and so on appearing in (5.3), (5.4), (5.5) and

(5.6). Moreover, the Poincaré inequality

‖∂x [a,b, c]‖ � C‖∂2x [a,b, c]‖
has been used here. Furthermore, performing similar calculations to those used to
estimate ‖〈F̃ , A12〉‖2 in (5.21) before, one has

‖〈∂x F̃ , ςi 〉‖2 �α2
(
‖wl∂x g2‖2L∞ + ‖wl∂x g1‖2L∞

)
. (5.29)

Lemma 6.3 and Lemma 6.4 with l > 3 imply that

‖〈L∂x g̃, ςi 〉‖ � ‖wl∂x g1‖L∞ + ‖∂xP1g2‖. (5.30)

Consequently, plugging (5.29) and (5.30) into (5.28) and employing (5.17), we
arrive at

e−2βt d

dt
Eint + λ0

∑
1�γ0�2

‖∂γ0
x [a,b, c]‖2
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� C
∑

1�γ0�2

‖∂γ0
x P1g2‖2 + C

∑
1�γ0�2

‖wl∂
γ0
x g1‖2L∞

+ Cα2‖wl∂x g2‖2L∞ . (5.31)

On the other hand, energy estimate on (4.4) leads us to

d

dt
‖∂γ0

x g2‖2 + λ‖∂γ0
x P1g2‖2 � Cη1‖∂γ0

x g1‖2 + (Cα2 + η1)‖∂γ0
x P0g2‖2, (5.32)

for γ0 = 1, 2, where η1 is positive and suitably small.
Combing (5.31) and (5.32) together, one has that for κ2 > 0 and suitably small,

d

dt

{ ∑
1�γ0�2

‖∂γ0
x g2‖2 + κ2e

−2βtEint
} +

∑
1�γ0�2

λ0
{‖∂γ0

x P1g2‖2 + ‖∂γ0
x [a,b, c]‖2}

� C
∑

1�γ0�2

‖wl∂
γ0
x g1‖2L∞ + Cα2‖wl∂x g2‖2L∞ .

From the above energy inequality, we further obtain that for 0 < λ � λ0
4 ,

sup
0�s�t

e2λs
∑

1�γ0�2

‖∂γ0
x g2(s)‖2

�
∑

1�γ0�2

‖∂γ0
x g2(0)‖2 + C

∑
1�γ0�2

e2λt
∫ t

0
e−λ0(t−s)‖wl∂

γ0
x g1(s)‖2L∞ ds

+ Cα2e2λt
∫ t

0
e−λ0(t−s)‖wl∂x g2(s)‖2L∞ds. (5.33)

Therefore (5.27) follows from (5.33) and an estimate similar to that for (5.23).
Step 3. Combination. We are now in position to obtain our final estimates (5.7). To
do so, for γ0 = 0, we get from the summation of (5.13), α × (5.14) and (5.26) that

eλβt |wl g1| + αeλβt |wl g2| � Cα‖wl g̃0‖L∞ + α‖[c, d12](0)‖ + α‖P1 g̃0‖
+ C sup

0�s�t
eλs‖wl∂x g1(s)‖L∞ + C sup

0�s�t
eλs‖∂x [a,b, c]‖.

(5.34)

As to γ0 = 1, 2, we set κ3 > 0 sufficiently small, take the summation of (5.13) and
κ3 × (5.14), and plug (5.27) into the resultant inequality, so as to obtain

∑
1�γ0�2

eλt {|wl∂
γ0
x g1| + |wl∂

γ0
x g2|

}
�C

∑
1�γ0�2

{‖∂γ0
x g̃0‖ + ‖wl∂

γ0
x g̃0‖L∞

}
.

(5.35)

On the other hand, it follows that

‖P1g2‖ � C‖wl g2‖L∞ , for l >
3

2
, (5.36)
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and for l > 5
2 , one has

‖∂x [a,b, c]‖ � C‖∂xP0 g̃‖ � C‖∂x g2‖ + C‖wl∂x g1‖L∞

� C‖wl∂x g2‖L∞ + C‖wl∂x g1‖L∞ , (5.37)

and

‖[c, b1, d12](0)‖ � C‖wl g2‖L∞ + C‖wl g1(0)‖L∞ � C‖wl g2‖L∞ . (5.38)

Finally, putting (5.34), (5.35), (5.36), (5.37) and (5.38) together and adjusting con-
stants, we have

∑
γ0�2

eλβγ0 t
{|wl∂

γ0
x g1| + αγ0 |wl∂

γ0
x g2|

}
� C

∑
γ0�2

αγ0‖wl∂
γ0
x g̃0‖L∞ .

Thus (5.7) is valid.
Step 4. Non-negativity. We now turn to prove that the unique global solution con-

structed above is non-negative, i.e. e3βt F(t, x, eβtξ) = G(ξ) + f̃ (t, x, ξ) � 0
under the condition that F0(x, ξ) = G + f̃ (0, x, ξ) � 0, which also indicates the
non-negativity of the self-similar solution G(v) obtained in Theorem 1.1 due to
the large time asymptotic behavior (1.24). To do so, let us start from the following
linearized equation of (4.1) in Section 4

⎧⎪⎨
⎪⎩

∂t f + eβtξ1∂x f − β∇ξ · (ξ f ) − αξ2∂ξ1 f + f V( f ′)
= Q+( f ′, f ′), t > 0, x ∈ T, ξ ∈ R

3,

f (0, x, ξ) = F0(x, ξ), x ∈ T, ξ ∈ R
3,

(5.39)

where

V( f ′) =
∫
R3

∫
S2

B0(cos θ) f ′(ξ∗) dωdξ∗.

One can see that if F0(x, ξ) � 0 and f ′(t, x, ξ) � 0, then any solution of (5.39)
should be non-negative. Denote f = G + f̃ and f ′ = G + f̃ ′, and decompose f̃
and f̃ ′ as

f̃ = f1 + √
μ f2, f̃ ′ = f ′

1 + √
μ f ′

2.

We now verify that there exists a unique solution in the form of G + f1 + √
μ f2

to (5.39) under the condition that [ f ′
1, f ′

2] belongs to the function space

Wα,T =
{
(G1,G2) ∈ L∞(0, T ; L∞(T × R

3))

∣∣∣∣
sup

0�t�T
{‖wlG1(t)‖L∞ + α‖wlG2(t)‖L∞} � 2α,

G1(0) = 0, G2(0) = g̃0, G + G1 + μ
1
2G2 � 0

}
.
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We now consider the coupled equations for f1 and f2
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t f1 + eβtξ1∂x f1 − β∇ξ · (ξ f1) − αξ2∂ξ1 f1 + β

2
|ξ |2μ 1

2 f2

+ α

2
μ

1
2 ξ1ξ2 f2 + ν0 f1

+ ( f1 + μ
1
2 f2)V(μ

1
2 (αG1 + αGR)) + ( f1 + μ

1
2 f2)V( f ′

1 + μ
1
2 f ′

2)

= χMK f ′
1 + F3( f

′
1, f ′

2)︸ ︷︷ ︸
F4

, t > 0, x ∈ T, ξ ∈ R
3,

f1(0, x, ξ) = 0, x ∈ T, ξ ∈ R
3,

(5.40)

and
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂t f2 + eβtξ1∂x f2 − β∇ξ · (ξ f2) − αξ2∂ξ1 f2 + ν0 f2

= K f ′
2 + μ−1/2(1 − χM )K f ′

1︸ ︷︷ ︸
F5

, t > 0, x ∈ T, ξ ∈ R
3,

f2(0, x, ξ) = F0(x, ξ) − G(ξ)√
μ

def= g̃0(x, ξ), x ∈ T, ξ ∈ R
3,

(5.41)

where

F3( f
′
1, f ′

2) = −μ
1
2 (αG1 + αGR)V( f ′

1 + μ
1
2 f ′

2) + Q+( f ′
1 + μ

1
2 f ′

2, f ′
1 + μ

1
2 f ′

2).

Let [ f1, f2] be a solution of the pair of (5.40) and (5.41) with [ f ′
1, f ′

2] ∈ Wα,T .
Then the nonlinear operator W is formally defined as

W([ f ′
1, f ′

2]) = [W1,W2]([ f ′
1, f ′

2]) = [ f1, f2].
We next show that W is a contraction mapping on Wα,T . To do this, let us first
rewrite the solution of (5.40) and (5.41) as

wl [ f1, α f2] = e− ∫ t
0 M(τ,V (τ )) dτ [0, αwl g̃0(X (0), V (0))]

+
∫ t

0
e− ∫ t

s M(τ,V (τ )) dτwl [F4, αF5] ds, (5.42)

where M is a 2 × 2 matrix given by
[
M11 M12
0 αM22

]
,

with

M11 = ν0 − 3β + 2lβ
|V (τ )|2

1 + |V (τ )|2 + 2lα
V2(τ )V1(τ )

1 + |V (τ )|2
+ V(μ

1
2 (αG1 + αGR)) + V( f ′

1 + μ
1
2 f ′

2) � ν0/2, (5.43)
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M12 = β|V (τ )|2
2

μ
1
2 + α

2
μ

1
2 V2(τ )V1(τ ) + μ

1
2V(μ

1
2 (αG1 + αGR))

+ μ
1
2V( f ′

1 + μ
1
2 f ′

2),

M22 = ν0 − 3β + 2lβ
|V (τ )|2

1 + |V (τ )|2 + 2lα
V2(τ )V1(τ )

1 + |V (τ )|2 � ν0/2, (5.44)

and moreover, X (s) and V (s) is defined as (4.9).
Given [ f ′

1, f ′
2] ∈ Wα,T , we show that also [ f1, f2] ∈ Wα,T . Since [ f ′

1, f ′
2] ∈

Wα,T , one sees that |M12| � C . With this, (5.43) and (5.44), we have by utilizing
Lemma 6.4 that

|wl [ f1, α f2]| � eCT α + T eCT ‖wl [F4, αF5]‖L∞

� eCT α + T eCT {‖wl f
′
1‖L∞ + ‖wl f

′
1‖2L∞ + α‖wl f

′
2‖L∞ + ‖wl f

′
2‖2L∞

}
,

which is further bounded by 2α, provided that 0 < T � T∗∗ with T∗∗ sufficiently

small. Thus W([ f ′
1, f ′

2]) ∈ Wα,T∗∗ . Note that G + f1 + μ
1
2 f2 � 0 follows from

(5.39) and f ′ � 0. It remains now to verify that W is a contraction. In fact, given
[ f ′

1, f ′
2], [ f ′′

1 , f ′′
2 ] ∈ Wα,T∗∗ , from (5.42), it follows that

|wlW1([ f ′
1, f ′

2]) − wlW1([ f ′′
1 , f ′′

2 ])| + α|wlW2([ f ′
1, f ′

2]) − wlW2([ f ′′
1 , f ′′

2 ])|
�

∫ t

0
e− ∫ t

s M(τ,V (τ ))dτwl
∣∣[F4, αF5]( f ′

1, f ′
2) − [F4, αF5]( f ′′

1 f ′′
2 )

∣∣ ds
� T∗∗eCT∗∗

{
‖wl( f

′
1 − f ′′

1 )‖L∞ + α‖wl( f
′
2 − f ′′

2 )‖L∞ + ‖wl( f
′
2 − f ′′

2 )‖2L∞
}

� 1

2

{‖wl( f
′
1 − f ′′

1 )‖L∞ + α‖wl( f
′
2 − f ′′

2 )‖L∞
}
,

provided that T∗∗ > 0 is sufficiently small. Therefore, there exists a unique function
[ f1, f2] ∈ Wα,T∗∗ such that [ f1, f2] = W([ f1, f2]), namely (4.1) admits a unique

non-negative solution f = G+ f1+μ
1
2 f2 with [ f1, f2] ∈ Wα,T∗∗ for T∗∗ > 0 small

enough. Finally, since we have obtained the uniform bound (5.7) in the previous
steps of this section, one can extend the existing time interval of the above non-
negative solution to an arbitrary time t > 0. Thus, the proof of Theorem 1.2 is
completed. ��
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6. Appendix

In this section, we collect some known basic estimates which have been used in
the previous sections. The following lemma can be found in [24, Lemmas 3.2, 3.3,
pp.638-639], where the more general hard sphere case is proved:

Lemma 6.1. In the Maxwell molecular case, there is a constant δ0 > 0 such that

〈L f, f 〉 = 〈LP1 f,P1 f 〉 � δ0‖P1 f ‖2.
Moreover, for γ > 0 and l � 0,

〈w2
l ∂

γ
v L f, ∂γ

v f 〉 � δ0‖wl∂
γ
v f ‖2 − C‖ f ‖2.

The following lemma is concerned with the integral operator K given by (2.2), and
its proof in case of the hard sphere model has been given by [25, Lemma 3, pp.727].

Lemma 6.2. Let K be defined as (2.2), then it holds that

K f (v) =
∫
R3

k(v, v∗) f (v∗) dv∗

with

|k(v, v∗)| � C{1 + |v − v∗|−2}e− 1
8 |v−v∗|2− 1

8
||v|2−|v∗|2|2

|v−v∗|2 .

Moreover, let kw(v, v∗) = wl(v)k(v, v∗)w−l(v∗) with l � 0, then it also holds
that ∫

R3
kw(v, v∗)e

ε|v−v∗|2
8 dv∗ � C

1 + |v| ,

for ε � 0 small enough.

For the velocity weighted derivative estimates on the nonlinear operator �, one has

Lemma 6.3. In the Maxwell molecular case, it holds that

‖wl∂
γ
v �( f, g)‖L2

v
� C

∑
γ1�γ

‖wl∂
γ1
v f ‖L2

v
‖wl∂

γ−γ1
v g‖L2

v
, (6.1)

and

‖wl∂
γ
v �( f, g)‖L∞ � C

∑
γ1�γ

‖wl∂
γ1
v f ‖L∞‖wl∂

γ−γ1
v g‖L∞ , (6.2)

for any multiple index γ and any l � 0.

Proof. The proof of (6.1) and (6.2) is similar as that of [26, Lemma 2.3, pp.1111]
and [25, Lemma 5, pp.730], respectively. Thus we omit the details for brevity. ��
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The following Lemma on the velocity weighted derivative estimates for the original
Boltzmann equation Q can be verified by using the parallel argument as obtaining
[1, Proposition 3.1, pp.397] where the hard potential case and the case |γ | = 0
were proved.

Lemma 6.4. In the Maxwell molecular case, for l > 3
2 and |γ | � 0, it holds that

‖wl∂
γ
v Q(F1, F2)‖L∞ � C

∑
γ1�γ

‖wl∂
γ−γ1
v F1‖L∞‖wl∂

γ1
v F2‖L∞ .

We now give the following two useful results concerning the second momentum
invariant property of the linearized operator L in the case of Maxwell molecules.
The first one is due to [28, Proposition 4.10, pp.804].

Lemma 6.5. Let Wi j (v) be quadratic functions in the form of Wi j (v) = viv j (1 �
i, j � 3) and define

Ti j = 1

2

∫
S2
dω B0(cos θ)

[
Wi, j (v

′) + Wi, j (v
′∗) − Wi, j (v) − Wi, j (v∗)

]
, (6.3)

where (v, v∗) and (v′, v′∗) satisfies (1.3). Then it holds that

Ti j = −b0

[
(v − v∗)i (v − v∗) j − δi j

3
|v − v∗|2

]
, (6.4)

with b0 given in (1.15).

Based on the above nice lemma, we can obtain

Lemma 6.6. Let L be defined as (2.1), then it holds that for all 1 � i, j � 3,

L(viv jμ
1/2) = 2b0

(
viv j − δi j

3
|v|2

)
μ1/2. (6.5)

Proof. For f = μ1/2W with a general function W = W (v), one has

L f = −μ1/2
∫

μ∗ dv∗
∫

dω B0(cos θ)[W ′ + W ′∗ − W − W∗].

In particular, letting W = Wi j (v) = viv j and applying Lemma 6.5, we have

L(μ1/2Wi j ) = −2μ1/2
∫

μ∗Ti j dv∗, (6.6)

where Ti j is given by (6.3). Plugging (6.4) into (6.6), one sees that (6.5) is valid.
This completes the proof of Lemma 6.6. ��
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