Arch. Rational Mech. Anal. 242 (2021) 1947-2002
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-021-01717-5

l‘)

Check for
updates

The Boltzmann Equation for Uniform Shear
Flow

RENJUN DUuAN® & SHUANGQIAN Liu

Communicated by J. BEDROSSIAN

Abstract

The uniform shear flow for rarefied gas is governed by the time-dependent
spatially homogeneous Boltzmann equation with a linear shear force. The main
feature of such flow is that the temperature may increase in time due to the shear-
ing motion that induces viscous heat, and the system strays far from equilibrium.
For Maxwell molecules, we establish the unique existence, regularity, shear-rate-
dependent structure and non-negativity of self-similar profiles for any small shear
rate. The non-negativity is justified through the large time asymptotic stability even
in spatially inhomogeneous perturbation framework, and the exponential rates of
convergence are also obtained with the size proportional to the second order shear
rate. This analysis supports the numerical result that the self-similar profile admits
an algebraic high-velocity tail that is the key difficulty to overcome in the proof.
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1. Intoduction

1.1. Brief Background

In this paper we are concerned with the uniform shear flow (USF for short)
described by the Boltzmann equation in the specific case of Maxwell molecules
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for which particles interacts via the exact inverse power law repulsive potential
U(r) = r—* (cf. [15]). For the USF of the rarefied gas, the flow velocity behaves
as uth = (ax3,0,0) in space, namely, the velocity component in x;-direction
is linear along the xp-direction for a constant shear rate « > 0. The shearing
motion and the induced viscous heating drive the system to depart from equilibrium.
Thus, the energy and hence the temperature monotonically increase in time. It then
becomes interesting to determine the global existence of such USF as well as its
large time behavior. It turns out that for the Maxwell molecules, the existence can
be transferred to look for self-similar profiles by taking into account the growth of
temperature. Moreover, the self-similar profile is determined by non-Maxwellian
solutions of a stationary problem on the Boltzmann equation with the shear force
and the velocity relaxation term whose balance leads to the conservation of energy.
The shear strength affects how far the self-similar profile is from the Maxwellian
equilibrium and a perturbation approach in « is expected to give the existence of
solutions for any small shear rate. In general, the self-similar profile is anisotropic
in velocity variables due to shearing motion. The main feature of the self-similar
profile verified numerically by Monte Carlo simulations (cf. [22]) is that it has the
polynomial large-velocity tail that will induce the key difficulty in studying the
topic.

We remark that the solutions to the Boltzmann equation for the USF are also
called homoenergetic solutions; these were introduced by Galkin [21] and Truesdell
[36]. Moreover, as pointed out by Truesdell and Muncaster [37], due to no boundary
confinement, the USF is different from the planar Couette flow for a rarefied gas
between two parallel infinite plates moving relative to each other with opposite
velocities, cf. [22, Chapter 5], [31, Chapter 4] and [35, Chapter 4], for instance. We
will study the latter topic accounting for boundary effects in another work.

1.2. Boltzmann Equation for USF

Mathematically, the USF is governed by the spatially homogeneous Boltzmann
equation

& F — avydy, F = Q(F, F). (1.1)

Here the unknown F = F(¢, v) = 0 stands for the velocity distribution function
of gas particles with velocity v = (vy, v2, v3) € R3 at time ¢ = 0, and the constant
a > 0denotes the shear rate as mentioned before. The Boltzmann collision operator
Q(-, -) is bilinear taking the non-symmetric form of

O(F1, F)(v) = /R 3 /S Bo(cosO)Fi (W) Fa(v) — Fi(u) Fa ()] dandu, (1)

where the velocity pairs (v, v) and (v}, v) satisfy the relation
v, = v — [(vx — V) - 0]o, vV =v+[(vx— ) wlo, (1.3)

denoting the w-representation according to conservations of momentum and energy
of two particles before and after the collision

Ve v =0l 40, o+ =L+ )R
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Through this paper, we assume that the collision kernel By(cos#) with cosf =
(v — vy) - ®/|v — vy| is independent of the relative speed |v — v.| for the Maxwell
molecule model and satisfies the Grad’s angular cutoff assumption

0 < By(cos0) < C|cosb| (1.4)

for a generic constant C > 0.

1.3. Moment Equations and Self-similar Formulation

Provided that F' (¢, v) decays in large velocity fast enough, we multiply (1.1) by
the Boltzmann collision invariants and take integration in velocity so as to obtain

d
— Fdv=0,
dr R3

d

— vlev—f—a/ v Fdv=0,

dr R3 R3

d (1.5)
— viFdv=0, i=2,3,
dr R3

— —|v|"Fdv+«
dt Jrs 2 R

viFdv =0
3

for any r = 0. In light of this, without loss of generality, we may assume that the
solution F' (¢, v) to (1.1) satisfies

fF(t,v)dv:l, /viF(t,v)dv=0,i=1,2,3, Vi=0. (16)
R3 R3

The last identity of (1.5) implies that the macroscopic energy of F (¢, v) can change
in time due to the appearance of shear force. Physically the shearing motion should
induce the viscous heat into the system so that the energy indeed increases in time.
Moreover, it will be justified later that the heat flux f viva F dv turns out to be
strictly negative in large time for any small o > 0.

From [22, Chapter 2] as well as [28, Section 5.1], for the Maxwell molecule
model, a specific solution F (¢, v) can be self-similar of the form

Ft.v) = e PG (%) 1.7)

for a suitable constant 8, where the self-similar stationary profile G = G (v) satis-
fies

— BVy - (vVG) — av20,,G = Q(G, G). (1.8)

To find a solution to (1.8), it is natural to require that G (v) also satisfies the same
conservation laws (1.6) as for F' (¢, v) and in addition G has a fixed positive energy,
namely, without loss of generality,

/ [v]2G(v) dv = 3. (1.9)
R3
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Therefore, from the solvability of the stationary equation (1.8)
/ (1,0, [P H{—BV, - (1G) — avdy, G} dv = O,
R3

the condition energy law (1.9) is equivalent to require that

viv2G dv
ﬁ:—aM:—g/ V102G dv. (1.10)
fR3 |U| Gdv 3 R3
Plugging this back to (1.8) gives
1 1
—/ vivuGdvV, - (VG) — 120, G = —0(G, G). (1.11)
3 R3 o

The above equation is a crucial formulation for studying the existence of G (v) via
the Hilbert’s perturbation approach in the small parameter o > 0. In particular, 8
is no longer regarded as an unknown constant, but replaced by a nonlocal integral
term. Note that « > 0 plays the same role as the Knudsen number. We would
emphasize that the current work is only focused on the small shear rate regime with
unit Knudsen number, but it is still possible to make use of (1.11) to discuss the
situation of the large shear rate for small Knudsen number in the hydrodynamic
regime.

1.4. Main Results

With the preparations above, we are ready to state the main results of the paper
regarding the existence and dynamical stability of the self-similar profile G (v). It
should be pointed out that the existence (obtained also in [28]) and the unique-
ness, non-negativity and stability (as well as the analysis of the moments and the
exponential rate of convergence) of self-similar profiles for the USF Boltzmann
equation have been proved in [11] in the class of measures, for small values of the
shear parameter. In particular, the approach used in [28] is based on the fixed point
argument on the integral form of the problem over a set of non-negative Radon
measures, while [11] gives a different proof by means of the Fourier transform
method taking the full advantage of the Bobylev formula in the case of Maxwell
molecules. Instead, in this paper, we consider the smooth solutions via the pertur-
bative approach in @ and obtain the C* regularity and dependence on « up to the
second order.

Specifically, our first result of the paper is concerned with the existence of
smooth self-similar profiles for the stationary Boltzmann problem (1.11) under the
assumption on smallness of shear rate @ > 0. To this end, we define the global
Maxwellian

1= Q2m)exp(—[v|*/2). (1.12)

and introduce the velocity weight function w; = w;(v) := (1 + |v|2)l with [ € R.
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Theorem 1.1. There is Iy > 0 such that for any | 2 1y, there is ay = ag(l) > 0
depending on | such that for any o € (0, o), the stationary Boltzmann equation
(1.11) admits a unique smooth solution G = G(v)e C*® (R?) satisfying

/ [1, v, |v|2]G(v) dv=11,0,3], (1.13)
R3

w,VF| G — 1—ivv
[ Vy ZbOIZM

Sforany integer k = 0, where Cy. ; is a constant independent of «, and by is a positive
constant defined by

and

< Cp e (1.14)
LOO

1
by = 37rf Bo(2)z2(1 — 72) dz. (1.15)
—1

Remark 1.1. Here are a few remarks in order on Theorem 1.1.

(a) The estimate (1.14) implies thatas @« — 0, the self-similar profile G (v) behaves
as

o
GW) =p— 5 —vivzp+ 0@, (1.16)
2bg
where p is uniquely determined by conservation laws (1.13), and correspond-
ingly by (1.10), as @« — 0, the constant 8 behaves as

=—40 . 1.17

B=c b + O0(”) (1.17)
Thus, Theorem 1.1 not only gives the existence of smooth solutions G (v), but
also provides the a-dependent structure of G. Note that beyond the expansion
(1.16) up to the first order, it is possible to further obtain the coefficient velocity
functions of the second and third orders of « by iteration, see [22, (2.126) and
(2.127), page 88]. Moreover, (1.17) implies that 8 is strictly positive and hence
by (1.9), the energy of the self-similar solution (1.7), given by

/ [v|?F(t, v) dv = 3e*P",
R3

indeed tends to infinity exponentially in time.

(b) In general, from (1.14), G(v) has to be anisotropic in v due to the shearing
motion, and any [/-th order velocity moments of G (v) are finite as long as the
shearrate « > 01is small enough. Due to the dependence of g on/, in particular,
one can choose ag(l) ~ % for any / > 0 large enough from the later proof,
it is impossible to obtain a positive shear rate «p such that (1.14) holds true
uniformly in any [ > 0, particularly allowing [ — oo. In fact, as discussed in
[22, Chapter 2.1, page 57], for any value of the shear rate «, all the velocity
moments of order k with k 2> k.(«) are divergent. As « increases, the threshold
order k. (o) decreases but it always holds that k. () > 2. This property exactly
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features that G (v) may admit the polynomial large-velocity tail as confirmed
numerically by Monte Carlo simulations. It is also left open to obtain a sharp
estimate on k.(«) as well as the existence of G (v) whenever o« > 0 becomes
larger and larger.

(c) The constant by > 0, describing the magnitude of collisions, is obviously
finite under the angular cutoff assumption (1.4), and it has been assumed to be
independent of @ > 0, meaning that the shear rate need to be small enough
compared to the strength of collisions. It is interesting to further study the
property of self-similar profiles in case when collisions are strong or weak
enough corresponding to the hydrodynamic limit or the free molecule limit,
respectively. Furthermore, since by can be well-defined even in the case of the
angular non-cutoff by (1.15), it is also interesting to extend the current result
to the non-cutoff situation that is certainly more challenging than the current
consideration due to the necessary L estimates on solutions.

Moreover, we are concerned with the global existence and large time behavior
of solutions to the original USF equation (1.1) supplemented with a suitable initial
data, namely, in terms of the self-similar reformulation (1.7) with the value of 8
obtained from Theorem 1.1, it is natural to further study whether or not it is holds
true that

EPE @, P ) - G(v) (1.18)

in a certain sense as time goes to infinity whenever they are close to each other
initially, where G (v) is the self-similar profile obtained in Theorem 1.1 and the
constant 8 is defined by (1.10) in terms of G(v). As a byproduct, a direct conse-
quence of such large time asymptotic stability is the non-negativity of G (v).

To treat the issue, instead of directly starting with the spatially homogeneous
Boltzmann equation (1.1) for the USF, we turn to the spatially inhomogeneous
setting for a more general purpose. In fact, let the rarefied gas flow be contained
in an infinite channel Ty, x R, and uniform in x3-direction, then the governing
Boltzmann equation takes the form of

O F + widg, F 4+ wydy, F = Q(F, F) (1.19)

for the spatially inhomogeneous velocity distribution function F = F(t,x1,x, w)
witht > 0,x; € T, x, € Rand w = (w;, wa, w3) € R3. We remark that when
the Knudsen number is involved, under suitable scalings, the formal fluid limit of
(1.19) gives the incompressible Euler or Navier-Stokes equations in the 2D domain
Ty, xRy,. As mentioned at the end of Section 1.5 later on, for those fluid equations,
there have been extensive studies of asymptotic stability of the planar Couette flow
(ax2, 0) with an arbitrary o > 0. Thus, it would be interesting to explore the large
time behavior of solutions to (1.19) in connection with the uniform shear flow in
the self-similar framework. We will leave the study of such 2D problem with shear
flows for the future.
Instead, to obtain the non-negativity of G (v), we simply look for a one-dimensional

solution of the specific form F = F (¢, x1, w1 — axy, wa, w3) to the 2D problem
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(1.19). Then, one can see that F satisfies the following Boltzmann equation in a
one-dimensional periodic box:

O F 4+ 010, F —avydy, F = Q(F,F), t>0,xeT,veR? (1.20)
supplemented with initial data
F(0,x,v) = Fo(x,v), x €T, v e R, (1.21)

Here for brevity of presentation we have used x to denote the first component of
space variables. The second result of the paper is related to the large time asymp-
totics of solutions to the spatially inhomogeneous problem (1.20) and (1.21).

Theorem 1.2. Let G (v) be the self-similar profile obtained in Theorem 1.1 and the
constant 3 be defined in (1.10). There are constants . > 0 and C > 0 such that if
Fo(x,v) = 0and

> Jwntr R v - 6wl | < (1.22)
0=y=2

and

/ f [Fo(x,v) — G]dvdx =0, / / vFy(x,v)dvdx =0, (1.23)
T JR3 T JR3

then the Cauchy problem (1.20) and (1.21) admits a unique solution F (¢, x,v) = 0
satisfying the following estimates:

H wy (v) [63’3’F(t, x, ePly) — G(v)] HLOO

<ce Y Jwp Tl (R v -Gl 24
0=y=2
and
3 ”wl(v)ew’aIOF(t,x,eﬁ’v)HLoc
1Sp=2
_ _1
<ce Y w@ptl R (1.25)
1Sp=2
foranyt = 0.

Remark 1.2. We give a few remarks on Theorem 1.2 as follows:

(a) Whenever F is spatially homogeneous, as a direct consequence of Theorem 1.2,
the large time asymptotics (1.18) for solutions to the USF (1.1) towards the
self-similar profile G is also justified in the velocity weighted L* setting. In
particular, from (1.24) one has

lwileP F(t, ') — Gll| e < Ce ™™ w2 (Fo — G) |1~ (1.26)

for any r = 0.



1954 R. DuaN & S. Liu

(b) Estimate (1.24) or (1.26) implies that the rate of convergence is exponential with
the size proportional to 8 ~ «2. Such property features the shearing motion
for small « > 0. In fact, when o = 0, the large time behavior of solutions to
(1.1) is the global Maxwellian equilibrium uniquely determined by initial data
Fy(v) through all the conservative fluid quantities, and the convergence rate is
exponential with the size given by the spectral gap of the linearized Boltzmann
operator.

For o > 0, it is not necessary to impose that Fjy has the same energy as G except
the mass and momentum conservation (1.23), because in the self-similar setting
the energy of the rescaled distribution function is dissipative with the magnitude
of dissipation rate proportional to 8 due to the linear relaxation effect arising from
the term —BV, - (vF). Precisely, let f(z, x, v) = e3P F (¢, x, eP'v), then it follows
from (1.20) that

i fos [0 fro< [t
= [ dx | =pP(f =Gy dv+ B8 | dx | WA(f - G)dv
dt Jp 2 T

+a/dx/v1v2(f—G)dv=O. (1.27)
T

This identity implies that the size of the exponential convergence rate in (1.24) or
(1.26) is optimal; we also will explain this point in more detail in Section 1.6 later.

(c) Estimate (1.25) implies that the convergence rate of the higher order spatial deriva-
tives is much faster than the one of the zero order, since the size of convergence
is independent of the shear rate «. This indicates that the collision of particles
dominates the long time asymptotics of the energy for the higher order spatial
derivatives.

(d) The smallness assumption (1.22) on initial data implies that the initial perturbation
has to admit an additional large velocity decay as !/, This restriction is essen-
tially due to the perturbation method of the proof. It is interesting to remove such
restriction using an alternative approach, for instance, in [23].

1.5. Literature

In what follows, we mention some known results on the self-similar solutions
to the Boltzmann equation in case of the Maxwell molecule model. When o = 0,
namely, there is no shear effect, the mathematical study of the problem was initiated
by Bobylev and Cercignani [7-9]. Since the energy remains conservative, the self-
similar profile exists only when it has infinite second order moments. The dynamical
stability of such infinite energy self-similar profile was proved by Morimoto, Yang
and Zhao [33] in the angular non-cutoff case; see also the previous investigation
Cannone and Karch [13,14] on this topic.

When o # 0, the global-in-time existence of solutions to the Boltzmann equa-
tion (1.1) for the USF was first established by Cercignani [16—18]. The group invari-
ant property in the higher dimensional case was discussed in Bobylev, Caraffini and
Spiga [10]. Recently, in series of significant progress by James, Nota and Veldzquez
[28-30], the existence of homoenergetic mild solutions as non-negative Radon mea-
sures was studied in a systematic way for a large class of initial data, where the



The Boltzmann Equation for Uniform Shear Flow 1955

admissible macroscopic shear velocity u*" = L(¢)x with L(t) := A(I +1A)~! for
aconstant matrix A is characterized and the asymptotics of homoenergetic solutions
that do not have self-similar profiles is also conjectured in certain situations. An
interesting work by Matthies and Theil [32] also showed that the self-similar profile
does not have the same exponential large-velocity tail as the global Maxwellian.
Applying the Fourier transform method that is a fundamental analysis tool in the
Boltzmann theory introduced by Bobylev [5,6], a recent progress Bobylev, Nota
and Veldzquez [11] proved the self-similar asymptotics of solutions in large time
for the Boltzmann equation with a general deformation of the form

&F — V, - (AvF) = Q(F, F)

under a smallness condition on the matrix A, and they also showed that the self-
similar profile can have the finite polynomial moments of higher order as long as
the norm of A is smaller. It seems that [11] is the only known result on the large
time asymptotics to the self-similar profile in weak topology.

In the end, we remark that there have been extensive studies of stability of
shear flow in an infinite channel domain T, x Ry, in the context of fluid dynamic
equations, cf. [34], in particular, we mention great contributions [2—4] recently
made by Bedrossian together with his collaborators. In fact, in comparison with
(1.20) under consideration, it would be more interesting to study the large time
behavior of solutions to the original Boltzmann equation (1.19) in the 2D domain
T x R in order to gain further understandings of the stability issue similar to those
aforementioned works on fluid equations by taking the limit of either small or large
Knudsen number.

1.6. Strategy of the Proof

The main ideas and techniques used in the paper are outlined as follows:

e First of all, in the framework of perturbation, there is a severe velocity-growth
term in the form of v; v G which is caused by the shearing motion. Specifically,
to solve (1.11), setting the perturbationas G = +oz,u1/2(G1 + G Rr) where G
as in (3.8) is used to remove the zero-order inhomogeneous term, the remainder
G r satisfies an equation of the form

o SUnGR+ LG =
see (3.9). Here, one can see that %v 1V2G g becomes a trouble term to control in
the basic energy estimate in term of the dissipation of the linearized self-adjoint
operator L.
To overcome the difficulty, we borrow the idea given by Caflisch [12], where the
solution is split into two parts: one includes the exponential weight while the other
does not, namely, we set

1 1
n2Gr =Gr1+u2Gpoa.
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The key point here is that we put the bad terms mentioned above into the one
without exponential weight, so as to eliminate the velocity growth. Roughly G ;
and G > satisfy the coupling equations of the form

o 1
coo—aupdy, Gr1 + §U1U2M2GR,2 +vGr = xuKGr1+ -+,

1
<= av20y Gro+ LGro = (1 — ) 2KGr1+-- -,

after ignoring the high order or nonlinear terms, where x,s is a velocity cutoff
function defined in (2.6), and other notations on K and so on are introduced in
Section 2. We may refer to (3.11) and (3.12) for the full coupling system.

We should point out that as confirmed by the numerical result, one may only expect
the first part G g, to decay polynomially in large velocity. To understand this issue
mathematically, we consider the equation of the form

—av20y,Gr,1 +VvoGRr1 =",

where vy > 0 is the constant collision frequency corresponding to p in case of the
Maxwell molecules. Multiplying the above equation with the polynomial weight
w; = (14 [v]?)! gives

vV
— a0y, (W GR,1) + (vo —i—2otl1 +1 |z|2> wiGR1=""". (1.28)

Therefore, given [ > 0 large, we need to require 0 < o < ap(l) ~ % that is small
enough such that

. v1V2 1
f 2al ==
in <vo+ o 1+|v|2) 2 2vo

holds true and hence w; G g, 1 can be shown to be bounded in all v in terms of (1.28).
Although the Caflisch’s decomposition provides us the great advantage above, it
also prevents us from deducing the L estimates of the solution, particularly for the
first part of the decomposition, due to the decay-loss of the operator /C as in (2.4).
To treat the difficulty, we resort to the L°°-L? method developed recently by Guo
[25]; see also [19,20,27]. One of the key points when applying this approach is
the decay of the operator K for large velocity. At the current stage, it is quite hard
to achieve any decay rates of K. Fortunately, motivated by Arkeryd, Esposito and
Pulvirenti [1], we justify the crucial estimates for such X with the algebraic velocity
weight. More precisely, we find out the following “decay” rate for the large power
of the velocity weight

C /
sup wi|VyKfIS = 3 oy flleee,
vizM 0<k' <k

withk =2 1land M ~ [ 2 where we refer to Proposition 2.1 for more details. Thus,
we can treat xy/CG g1 as a source term. We remark that such estimate holds true
for the Maxwell molecules only, as seen from the derivation of (2.13) in the proof
of Proposition 2.1 later on.
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e Based on the above observations, we treat the steady problem for the existence
of G(v) as follows. We design an approximation procedure (3.14) to obtain the
approximation solution sequence with conservation of mass. Moreover, motivated
by [19], we also introduce the o-parametrized problem (3.19) with a parameter
0 < o <1 to take care of the linear nonlocal terms KG; and KG,. The method
of characteristics can be directly applied to obtain the explicit solution in case of
o = 0 and then an iteration argument is employed to extend the solvability from
o = 0to o = 1. Once uniform estimates for the linear inhomogeneous problem
are obtained through Lemma 3.2, we can therefore apply them to construct the
approximation solutions. Passing the limit ¢ — 0, we then establish the existence
of G(v).

e Inaddition, the L? estimate for the second part of the decomposition is also difficult
to obtain due to the inhomogeneous structure of the splitting equation.

To deal with this difficulty, for the steady case, the conservation laws of solutions
are essentially used, so that both the first order correction and the remainder of the
steady solution are microscopic, then the L? estimate can be directly obtained by
the energy estimate.

As to the unsteady case, since the energy is no longer conserved, the argument
for the steady problem is invalid. In fact, in the time-dependent situation, the zero
order dissipation of the temperature is captured by exploring the structure of the
macroscopic equations which contains the weak damping generated by the shear
flow. More specifically, inspired by the Guo’s energy method, we have to turn to
the macro thirteen moments equations (5.3), (5.4), (5.5) and (5.6) to obtain the
dissipation of the macro components a, b and ¢, cf. (5.1), in terms of the micro
dissipation. Indeed, for the dissipation of the macro component ¢, we have found
the cancellation property

X
(dxc, / di2dy) + (d12,¢) =0,
0

so that one can derive from (5.3), (5.4) and (5.5) that

d 1 x
a {I|C|I2+(b1, Fxe ﬁt/ dlzdy)} +2Blcl* £ -
t 0

We may refer to (5.20) and the desired estimate (5.24) for more details. The above
energy estimate in perturbation framework is consistent with the energy identity
(1.27) mentioned in Remark 1.2. Furthermore, it is a usual way to derive from the
thirteen-moments equations the dissipation of derivatives of a, b and c, see (5.28),
and the zero-order dissipation of @ and b then follows from the Poincaré inequality.
The desired last estimate (5.7) is a consequence of the suitable combination of those
obtained dissipation estimates.

1.7. Organization of the Paper

The rest structure of this paper is arranged as follows. In Section 2 we give
a key estimate for the operator /U which shows smallness of y;w;/XC for large
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enough M and [. The existence of the self-similar stationary profile G (v) for (1.11)
is constructed in Section 3. In Section 4, we turn to the unsteady problem of the
spatially inhomogeneous Boltzmann equation (1.20) and (1.21) and establish the
local-in-time existence of solutions. In Section 5 we are devoted to showing the
global existence of solutions and large time asymptotic behavior for the Cauchy
problem (1.20) and (1.21). Finally, in the appendix Section 6, we list some known
basic estimates on the linearized operator L as well as the nonlinear operators I" and
0, and also present an explicit formula of L(v;v; /1,1/ 2) in the case of the Maxwell
molecule model.

1.8. Notations

We now list some notations used in the paper.

e Throughout this paper, C denotes some generic positive (generally large) con-
stant and A denotes some generic positive (generally small) constants, where
C and A may take different values in different places. D < E means that there
is a generic constant C > O such that D < CE. D ~ E means D < E and
E < D.

e Wedenote || - || the L2(T x R?)—norm or the L?(T)—norm or L*(R3)—norm.
Sometimes, we use || - ||z~ to denote either the L>°(T x R*)—norm or the
L% (R?)—norm. Moreover, (-, -) denotes the L2 inner product in T x R? with
the L2 norm || - || and (-) denotes the L? inner product in R%.

2. Large Velocity Decay of 1C

Let us first give some notations to be used through the paper. The linearized
collision operator L and nonlinear collision operator I" are respecively defined by

Lg=—u"" {0, Vi) + Q(Jikg, )} 2.1)

and
L(f.8) =u 2O/t Jitg)
- / / Bo 2wl f ()8 () — f(v.)g ()] deodu.
]R3 Sz
Note that Lf = vf — K f with
v = f [ Bo(cos 0) i (vy) dodvy, = vg,
R3 J§?

Kf =t { QW £.1) + Quain(p. 17 1) . 22)

where Qg,in denotes the positive part of Q in (1.2). The kernel of L, denoted as
ker L, is a five-dimensional space spanned by {1, v, |[v|> — 3N/ o= {¢i}?:1. We
further define a projection from L? to ker(L) by

Pog = {ag Hby v+ (o - 3)cg} Nm
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for g € L?, and correspondingly denote the operator P; by P1g = g — Pyg, which
is orthogonal to Py.
It is also convenient to define

Lf=—-{0(f,w)+ 0, NY=vf—-Kf,

with
/
vf=wf, Kf =0 )+ Quinln, f)=/ukK <ﬁ> (2.3)
according to (2.2). Note that we have

7 = [ [ Boteoso)(fin’ = fuu+ s dot. (2.4)
R3 JS2

The main goal of this section is to present a crucial estimate on /C meaning that
the weighted velocity derivatives of K are small for large velocities as long as the
power of the polynomial velocity weight is large enough. Such a property plays a
vital role in the proof of the next sections.

Proposition 2.1. Let KC be given by (2.4), then for any positive integer k 2 1, there
is C > 0 such that for any arbitrarily large | > 0, there is M = M(l) > 0 such
that it holds that

C /
sup wilVyKfIS = 3 oy flleee. 2.5)
vizM 0<k/<k

In particular, one can choose M = 12,

Proof. Fix anintegerk = 1,and take/ > 0 that can be arbitrarily large. Let M > 0
be large to be suitably chosen in terms of / in the later proof. We define ys(v) to
be a non-negative smooth cutoff function such that

L wlzM41,

In light of (2.4), we have
k def
wl)(MVUICf =11 +1,
with

7= —witn [ [ Bof @Vt dodu,
R3 JS?

and

T =wixm Y C’k‘l{/% f§2 BoVE f () VEF u(v') dwdw,
R

ki <k
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+f / Bovflf(v/)vf—klu(v;)dwdv*}.
R3 SZ

We now compute 71 and Z,. For 71, one directly has
k —1 M
Ty £ CwixmVyn()|lwy fliLs f} w, dv = Ce™ 16 lw; flire,  (2.7)
R;

thanks to the assumption that M > 1 and [ > %, for instance.
For 7,, we first rewrite it as

T =wixu ) Cf' / f ByVy f )V M (v dendu,

<k

where By = %(Bo(cos 0)+ Bo(sinh)). Asitis shownin [1, (3.2), pp.397], we now
resort to the Carleman’s representation, i.e.

/R3 /sz ByVk VAR (0] deodu,

Vo M ) L
= | L= vk £ () B dTTydv.,
A% v — U*|2 E(v,v}) Y 0 ' *

where
E@,v) ={|0—-v)-w-v)=0, [v—v]=|v—10}]} CR?,

and IT,, is the Lebesgue measure on the hyperplane E (v, v}). Next, we define

Lo J5l <17,
X =x) = {0, 0therw1se
and xo = 1 — x1. We then decompose 7 into
o[V @) ol N /
Iy =wixu Y Cy' / iiehias VA £ () xo(0") B dTTdv),
3 |v -/ |2 E(v,v.)
klgk R * v,V
k —kq
v, v
+wixm Y G f i )X;( ) VAL £ xo(v') B dTTdu),
f=k R3 lv — vl E(.v})
k—ky / /
\% v v
+wim Y C,’j'/ v M *?XZO( ) VE £ ()1 (v) B dTydv),
ok R3 [v — v E(v.v))

L
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Note that the term simultaneously involving @ x1 and f x; has vanished due to the
fact that [v/|?> + [v,]> = |v|*> + |v«|>. We now turn to estimate 7, ,(1 < n < 3)
term by term. First of all, a direct computation gives

_ 1 1 _ M2
Vi) £ Cp )), wixpzuit W) xo@,) £ Ce™ . (2.8)

Moreover, standard calculation yields

Lo
/ Lv)d / _C( ) (2.9)
R

3 v —vL?

By using (2.8) and (2.9), one sees that, for / > %,

T, T3 £ Ce 02 Y w98 s [ weihamy
ki1 <k
<cC Z lwi Ve £l os. (2.10)
k1 <k

It remains now to estimate the delicate term 7, » where the smallness is hard to be
obtained. As [1, Proposition 3.1, pp.397], we introduce the two cutoff functions

1, V.| <8y L, |vg] < nlv]
N s * ’ — ’ * ’
X0 = {0, otherwise, %" =0, otherwise,

where 0 < 6 < n < 1. Then we spilt 7 5 as

yk—ki
W) x1 (A — xs(v)))
IZ,ZZU)ZXME Cllfl/3 v H *|l)}(1_5|2 S
k1§k

/ VAL F () xo(v') B dTTydu),
E(v,v})

k—ki , )
\%
+ wixm E C,’(‘]/3 v () xa(vy) xs (v,)
R

v—v|?
=k | il

/ VELF ) x0 () 3y (v4) B dTT,dv,
E(v,v})

k

—ki
+ Wi Z C};(q/ v () xa (vl xs (V)

2
3 vV—U
=k R | il

X / Vi F @) xo @) (1 = xy(v2)) B dTTydv,
E(v,v})

def ZIS 5.
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Performing similar calculations as to those for obtaining (2.10), one has

_82m?
T3, < Ce T 3wV £l / w0 dITY’
k|<k

< Cem 5 Y g Vh £ @.11)
k1 <k
Forl'zzqz, we first have that if |v,| < §|v| and |v«| < n|v], then
W —vl = o — v S+ W=+ vl = T2 (=)
which further implies that the measure of E (v, v,) is bounded as
|E, v)| < 7+ 8)*v|* < 4mn?|v)?,
and it holds true that
A+P'PH7=a+a=-HpPH ' =d+pAH'a-"

Consequently, applying (2.8) and (2.9) again, we obtain

/u(v )
o< Con 30 [ 9l @ o amd

v — ] | E(v,v

ki <k v

< Cwr)xm(v) "> Y NlwrVE fllen® ol (4 + o)~ (1 = 637!

k1 <k
SCP( =807 Y lwVE flie. (2.12)

k1 <k

We are now in a position to compute the last term I; 5. Since for the case of IS 2
we have |v,| < 8|v| and |v,| = n|v], then it follows that

WP =l 4 [oel? = [ 2 [0 + 0Pl = 87 v = (1 + 0 — 87|,
which implies
K oo r
5 < Cop v Ekuwzv fnLoo/lvlmmdr

1
-1

—I+1
< C Y WV fllsoon ) 2w (14 (1 + 07 = 8D)l?)

<k

C
7 2wy e, (2.13)

ki <k

A

where the last inequality holds due to the fact that 1 + %> — 8% > 1 and [ > 1.
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Therefore, putting (2.11), (2.12) and (2.13) together, we arrive at

s2m? 1
L, <C {en +n*(1 -8+ 7} D lwiVE flipes. (2.14)
k1 <k

Furthermore, if one chooses § = %, n= % and M =2 > 1, then

(1=8)"<e, e <e 3, (2.15)
As a consequence, (2.14) and (2.15) give rise to
Lo < | L 2L S b e (2.16)
=AM O = v ' '
1=

Finally, the desired estimate (2.5) follows from (2.7), (2.10) and (2.16). This ends
the proof of Proposition 2.1. O

3. Steady Problem

This section is devoted to studying the steady problem
— BV, - (VG) — a2y, G = Q(G, G) (3.1)

with

B = —9/ w1126 dv, 3.2)
3 R3

where the solution G (v) is required to satisfy

/de=1, /vide=0,i=1,2,3, f|v|2de=3, (3.3)
R3 R3 R3

which is equivalent to the fact that G has the same fluid quantities as w in (1.12)
for any o > 0. Note that through the paper we have omitted the dependence of G
on the parameter «.

Since one expects G — w as o — 0, to look for the solution, let us first set

G = p+ayi(Gi+Grl, (3.4)
with PgG| = 0 and PoG g = 0 such that (3.3) holds true, i.e.

/ Gl\/ﬁdv:/ Gra/wdv =0,

R3 R3

/leiﬂdv=/ Grvi/mdv =0, i =1,2,3, (3.5)
R3 R3

/Gllvlzdﬁdv=/ Grlv*/dv =0,

R3 R3
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where G accounts for the first order correction and G g denotes the higher order
remainder. We now turn to determine G| and derive the equation for the remainder
G . In fact, plugging (3.4) into (3.2) gives

2
o o
p=-3 A@ vinGdy = —— /W vivpu!?(G| + Gg)dv, (3.6)

which implies that g is at least the second order of «. Therefore, substituting (3.4)
into (3.1), one can write

_ gﬁvv () — BRIV, - (vt (G + Gr))

1 1 1
+ v —ap T 2v0y, (n2 (G + GR))
4+ LG, + LGk =al'(Gy,Gy)
4+ a{l'(GRr, G1) + T'(G1,Gr)} + al'(Gg, Gg). 3.7

To remove the zero order term from (3.7), we set
_ 1
Gi1=—L"'(vivau?),

where we have noticed that vlvzu% e (ker L)1 so that G, is well-defined and
G € (ker L) is purely microscopic, satisfying (3.5). Moreover, it follows from
Lemma 6.6 that

1 1
Gl=—— 2 3.8
1 Zbovlvz,M (3.3)

with the constant by > 0 defined in (1.15). Then, (3.7) is further reduced to
BTIV, - (vuZGr) — ap Tvady, (2 Gr) + LGg
= Dutey o+ BV rE G+ an iy (116G
+al'(G1, G1) + {I'(GRg, G1) + T'(G1, Gr)} + al'(Gr, Gr), (3.9)
and in light of (3.8), 8 in (3.6) is given as

a2
p=p"- 3 fg vivou!2Gg do, (3.10)
R\

where for later use we have denoted

2

2
0o__% 12 -«
B = 3 A;Svlvz,u Gldv—6bo>0.

To solve (3.9) on G, it is necessary to use the decomposition

JIUGRr=GRr1+ /1tGRr2,

where G g 1 and G > are supposed to satisty

B 1
— BV, - (vGRr1) — av2dy, Gr1 + 5|v|2uz Gro
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VIV 1
+ a%/ﬂGR,z +v9Gr — xuKGr,1

1 1 1 1
= gvv (o) + BVy - (2 G1) + av2dy, (k2 G1) + @ Q(n2 Gy, n2Gy)

+alQuIGr. n2Gy) + QG u2GR)} +aQ(u?Gr. u2Gp).
(3.11)

and
1
—BVy - (WGR2) —av20y,Gr2+ LGro— (1 — xp)n 2KGR,1 =0, (3.12)

respectively. Here, we recall that vy and C are defined in (2.3). Moreover, in order
for G to satisfy (3.5), we require that

/ GR,1dv+/ \/[_LGR,szZO,

R3 R3

/ U,'GRyldU—i-/ Ui\/ﬁGR’sz =0,i=1,2,3, (3.13)
R3 R3

/R3 [v[>Gg.1 dv +/R3 lv|*/1EG g 2 dv = 0.

The existence of (3.11) and (3.12) under conditions (3.13) will be established
through the approximation solution sequence by iteratively solving the equations
eGRN = BV - WGRT — avpdy, G + 0GR — xu KGR
2

R Viv2 14 pr! - gTo
+ 7|v| w2Gy, +0‘T/“GR,2 - Tvv < (vp)
1 o 1
=p"Vy - (vu2Gy) + 6_b()vv (o) + av2dy, (12G)

\ \ (3.14)
+aQ(n2Gy, n2Gy)

1 1 1 1 1 1
+af{Q(u2Gh, u2G1) + Q(u2G1, n2GR)} +aQ(n2G, n2Gh),
SGII?EI - ﬂnvv . (UG};QJ,FZI) - av28v1G111€4:2] + LG’IETZI

— (1= ) TKGRH =0,
for a small parameter ¢ > 0, where we have denoted
HIGK =G +niGh,,
n 0 Ol2 n L n
B"=8 _? o3 UIUZ(GR,1+,U~2GR,2)dU, n =0, (3.15)
the constant B° is defined in (3.10), and initially for n = 0 we set
G(l)e,l = G(I)?,Z =0.

Indeed, whenever [G';e, s G’}?,Z] is given, one has to solve the linear inhomogeneous
system (3.14) for [G’}é“ll, G’;{zl] as 8" and G are also given. Thus, the approxima-
tion solution sequence {[G% |, G ,1};2; would be expected to be well-defined.
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For brevity we have omitted the explicit dependence of {[G" R1> G’;e L1 one.

Note that we put the penalty terms esG”Jrl (i = 1, 2) on the left hand side of (3.14)
S0 as to guarantee the mass conservatlon in (3.5). In addition, since it holds that

o 1 1
— VY, - (v) + 002y, (12 G1), [Pz ) =0,
6bg

and
ﬁn+l _ % .
<T°Vv (V) + ovpdy, G’I‘Jll, |v|2> + {ovp0y, G’;{zl, |v|2,u7) =0,

one sees that
(Gl v PD) 4+ (Gl v Py = 0, i = 1,23, (3.16)

for any ¢ > 0.
We first show that in an appropriate function space there exists a solution
[GR,1, GR,2] satisfying

(Grot (1, vi V1) + (G [1, v, [021uZ) =0, i = 1,2,3 (3.17)

to the coupled linear inhomogeneous system corresponding to (3.14). To do so, in
terms of (3.14), let us first define the following linear operator parameterized by
o € [0, 1] (cf. [19]):

Z5[G1. Go) = [.Z, . LG, G2l
where
Z31G1. G = £G1 — B'Vy - (vG1) — av2dy, G1 + 1051 — 0 xuKG)
+ B s + a2 g, - 29y,
LHG1. Gl =Gy — 'Yy - (vG) — 0“1231;192
+ 1002 — 0KGs — o (1 — a2 KG1.

1U2

(o),

Here K is defined as (2.2), g’ is a given constant satisfying g ~ «?, and

2
o 1
B"(G) = -3 f3 v1v2(G1 + ©n2G) du. (3.18)
R
Then we consider the solvability of the general coupled linear system

{»2”;[91, Gl = Fu,
L2[G1, Gl = Fo,

where F| and J; are given sources satisfying

(3.19)

(Fi L v, oD + (P (Lo, oPIu?) =0, i = L2330,
lwi Vi Fillzee + llwi Vi Fallze < +o0, for any k = 0.
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In what follows, we look for solutions to the system (3.19) in the Banach space

Xom = {[gl, Gale Wm’OO(R?,)| Z lwVEIG1, Galll Lo < +o0,
0<k<m

(G111, vi. [0[21) + (Ga. [1, vi, [oPlu?) = 0, i = 1,2,3},

associated with the norm

191 Glxn = Y {I0rVEGu L + I ViGallim |

0<k<m
Let us now deduce the a priori estimate for the parameterized linear system (3.19).

Lemma 3.1. (a priori estimate) Let [Gy, G2] € Xg.m with > 0 and m = 0 be
a solution to (3.19) with ¢ > 0 suitably small, o € [0, 1] and [F, F2] satisfying
(3.20). There is ly > 0 such that for any | = ly arbitrarily large, there are ag =
ao(l) > 0 and large M = M (l) > 0 such that for any 0 < o < g, the solution
[G1, Go] = .,fa_l [F1, Fa] satisfies the following estimate

1161, Gallx,, = 125 F1, Follxe

<Cy Y [lwVERs + lwViRI~), G2
0<k<m

where fgl denotes the solution operator for the problem (3.19) and the constant
C oy > 0is independent of o, € and «.

Proof. The proof is divided into two steps.
Step 1. L estimates. Taking 0 < k < m and /, we set H ; = w[ijQl and
Hy i = wIV{jgz. Then, Hy = [Hj x, H> k] satisfies the following equations:

v|?
eHix — B'Vy - (VH k) +21ﬂ/1 n |U|2H1,k — avy0y, Hy
+ 20— Hi 4+ voH
o= V
T 1.k +voH1 k
H
H B (L)
— o xmwik (i‘) —w—= ViV, - (up)
wy o

= 121w/ CY Yy - (37 00) 7Y G1) + Lyy—0.1.0¢CY widy, 97V Gy
18/ ’ ’ 7 1 ! o [ —!
- S ; CLol (WPu)d! ™ G — - ; wiCY ) (vivay/1t) 3777 G
'Sy 'Sy

+o Y €Y@l o) (077G ) + wi ViR, (322)
0<y'Sy
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and
sHyy — B'Vy - (VHr ) + 218 v |2 2k — av20y Hy k + 2l ——— Ho &
' ’ 1+ v |2 1 + | |2
H
+voHyx —ow K < 2k)
wy
=11 wiB'CY Vy - (37 0] 7' Go) + 1yy—0,1,0)0CY widy, 37 Ga
+ow Yy €@K (37 G)
0<y'Sy
/ / 1 !
+o Y CLwd) (= ou O (07 G ) v wVER, (323)
y'Sy

where Hy = [H,, H>] = [Hi,0, H2,0]l = wi[G1, G2]. The method of characteristics
will be employed to construct the existence of solutions to (3.22) and (3.23) in L™
space (cf. [20]). To do so, we first introduce a uniform parameter ¢, and regard
H; r(v) = H; (¢, v)(i = 1, 2), then define the characteristic line [s, V (s; ¢, v)] for
both the equations (3.22) and (3.23) going through (s, v) such that

jd\/l = —B'Vi(s; t,v) —aVa(s; t,v),
V:—,BV(stv) i=2,3, (3.24)
Vit t,v) =,
which is equivalent to
Vitss 1, v) = e 179 (v + ava(r — ),
Vi(s:t,v) = Py =23,

Integrating along the backward trajectory (3.24), one can write the solutions of
(3.22) and (3.23) as the mild form of

Hig = e oA VO gy v o))
' — [T A% (2, V (1))de H k
+o e Js ’ xmw [ —= ) (V(s))ds
0 wy

‘ - "
_/ eLA(r,V(r)>dr{ i a’”’ vk -(UM)}(V(S))ds

0
! 1 pe ’ ’ ’
+f e (T’V(T))dr{ly’lzlwlﬂ/c)): Vy - (070377 Gr)
0
+ ly/z(o’]’o)(xc)):/wlavl 83,’_”,91 }(V(S)) dS

1 e ﬂ/ , , | .
—[0 e fw““’”’”df{ng > CLaY (wPr)d] 7 Gy

y'<y
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+ % Z wICJ’/’/E)l’,’/ (viva/ie) ag‘y’gz}(v(s)) ds

S%

t
+0/ o [i A @V (@)dr
0

Lz > L@ o) (a777'1) | (V) ds

0<y’Sy
t " !
+/ o= L A @V (@)de (wlvff}-1> (V(s))ds = ZL, (3.25)
0 i=1
and
Hyp = e~ b A @Vt g (v (o))
' . H
n U/ e_fslA (z,V(r))dz |:le <ﬂ>:| (V(s))ds
0 Wi
t t ge / ’ ’
+/ o I A (r,V(T))dr{lly,lzlwl’B’C;’ - (008777 Gy)
0
+ ly/z(o’l’o)otc)),/wlav] 8]7)/_y/g2}(V(S)) ds
o /’ o LA @V ()
0
Lz Y /@K (777'6) F (vish ds
0<y'Sy
t
+ 0/ e~ Ji AT @V (@)de
0
T 1 /
w32 €8 (= a0 (37701 | (V) ds
y'Sy
C 13
+f o= [T A @V (@)de <w1V§Fz> (V(s))ds = ZL, (3.26)
0 i=8
where

2
V@l 21 L2OVI@) v0/2.

A@ V@) =wte =3+ 28—y g H2empos 2
(3.27)

provided that e > 0, B’ ~ &2, 1B’ ~ la?, and [« is suitably small. In what follows,
we will estimate Z; (1 < i < 13) term by term.
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Since the parameter ¢ here is arbitrary, we may take ¢ sufficiently large such
that

e Jo A @VEdr < X <

9

0| =

from which one sees that

1
Iy £ Hixllre, Ig < §||H2,k||L°°-

0| =—

Next, Proposition 2.1 and (3.27) give that
I < %”H],k”LOO /0[ e 39 g < %”Hl,k”LOO-
In view of (3.18), it follows that for [ > 5/2,
2 ca [ @+ utgnia [ g

—1 L1
§C“||wlgl||me3|U1U2w1 |dv+Ca||w1gz||Loo/3mzw, |dv
R R

< CallHiollz= + CallHa ol 1o

2

For Z4, noticing that 8’ ~ a*, we have

! Vf
Iy = CBwiVy - (37 03}~ gl)”m/ P9 g
0

t Y
+ Ca”wlavl 83)/_7/ Gillzee f 9_700_” ds
0
< Ca ) |HiwllLe.
k' <k

Similarly, it holds that

Ts, Tig < Ca Y || Hppoll .
K<k

For Zg, we first rewrite 83/(XMIC)(8,),/_V/91) as

Y (k@Y7' Gh)
= > L xmdl K@Y G
Y <y
= Y ol e war 7 an + 0@y G 0w}
)/”g]/,

Then one sees that

t M )
Totyoy < € JuntQ@ w0760+ 0@ 7 Grar wil] [ e Has
- 0
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<CY | Hiwl,
k' <k
according to Lemma 6.4. And likewise, we also have
T £C Y | Hiwl.
K <k

Next, by using Lemma 6.3, one gets
Tz £ C {|wilean@” (Vi 0] 70|
t Y
+|wir@r g0 (|, }f =3 gy
> Jo

<CY | HywlL.
k' <k

For 77 and 73, one directly has
I; £ ClwiVEF e, Ti3 £ Clw VEFs | 1.

Finally, for the delicate term Zy, we divide our computations into the following
three cases.
Case 1. |V| 2 M with M suitably large. From Lemma 6.2, it follows that

C C

ky(V,v)dv, £ —— < —.
/’”( v = Yy =

Using this, it follows that

C
Iy < sup / Ky (V, vi) dvg| | Ho g lloe = — | Ha gl oo (3.28)
0<s<t JR3 M

Case 2. |V| £ M and |v,| = 2M. In this situation, we have |V — v,| = M, then

elV—vs|?

eM?
ky (V, vy) g Ce 5 ky(V,ve)e 3

£ —Usx 2
By virtue of Lemma 6.2, one sees that f ky(V,vy)e e duy is still bounded. At

this stage, we have by a similar argument as for obtaining (3.28) that

_eM?
Tg < Ce™ 3 |[HallLe.

To obtain the final bound for Zg, we are now in a position to handle the last case.
Case 3. |V| £ M, |vi| £ 2M. In this case, our strategy is to convert the bound in
L*®-norm to the one in L2-norm which will be established later on. To do so, for
any large M > 0, we choose a number p = p(M) to define

Ky, p(V,vy) = l\V—v*\Z%},lv*\gpkw(v’ Vs), (3.29)
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such that sup [g3 [Ku, »(V, v) — ki (V, v)] dvy < ﬁ One then has
1%

1
Ty < Csup / Ky (V, 0)[VEGa (02)|dvs + || Ho | 1
v, <2M M

N

1
< C(p)sup |VEGH + ALUEE
S

according to Holder’s inequality and the fact that ng ki, p(V, vy )dv, < o0.
Therefore, it follows that for any large M > 0,

2

_eM? 1 "
Ig=Cle 8 + W | H2 i llLe + C sup |V, G|l (3.30)
N

Combining all the estimates above together, we now conclude to have

l

+Ca Y NHypllee + L C Y I Hiwllie + CluiViFi i,
kK <k k' <k

1 C
I Hi gl = <§ + -+ CO!) I Hikllze + CallHyollzee

1 C
1l oo < <§ v Ca> 1okl + 1> C > [ HopellLoe
k' <k
+C Y | Hpllee + CIVEG + Cllw VEFal| L.
K<k

(3.31)

It should be pointed out that the constant C in (3.31) is independent of o and ¢.
Step 2. L? estimates. We now deduce the L2 estimate on G, which is necessary due
to (3.31). Let us start from the macroscopic part of (G, G2). Recalling the definition
of Py, at this stage, we may write

PoGr = (az + b - v + ca([v]* = 3) /It

and define the projection l_’o, from L? to ker(L), as

PoG1 = (a1 +bi - v+ (]’ =3,
and because [G1, G2] € X m, it also follows that
ar+ar =0, by +by=0, ¢ +c» =0. (3.32)
The following significant observation will be used in the later deductions:
vwf—oKf=(0—-0o)vwf+oLf, vof —cKf=0—-0o)vf+oLlf (3.33)

By applying (3.33) and (3.32), for any k = 0, we get from (V,’jPl(3.19)2, V§P1g2>
and Lemma 6.1 that

.
5 minfvo. 80} IVEP1Ga |l — C1y > [P1Ga|
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1 1
< C|(VEPILA = a2 KG1, VEPIGo) |
+ C|VER | + Callar, by, 1]l (3.34)

and using Lemma 6.4, one also has

‘<Vfl’1[(1 - XM)M_%’CQI]» V§P192>

1 2
< BIVERIGI + €, | VEPITA = a2 Gy
< k 2 k -1 2
< HIVIPGI + €y [ VAL = i P KG |

1 2
+Cy | VEROL( = a2 K |

S HIVERPIGAIP + Cy Y wiVE Gl e (3.35)
K<k
Forl > 5/2, it follows that
[la1, by, c1]] = Cllw Gy L. (3.36)
Now, (3.34), (3.35) and (3.36) give rise to
> IVEPIGl +llan b el SC Y wVE G
0<k<m 0<k' <k

+C Y MwVERls. (337
0<k<m
forl > 5/2, where C > 0 is independent of €.

Consequently, taking the linear combination of (3.31) and (3.37) for0 < k < m
and adjusting constants, we arrive at

S I ke + I apllie} S C Y0 lw VELFL Falllee.
0=k<m 0<k<m

This shows the desired estimate (3.21) and ends the proof of Lemma 3.1. O

With Lemma 3.1 in hand, we now turn to prove the existence of solutions
to (3.19) in L framework by the contraction mapping method. We employ the
continuity technique in the parameter o developed in [19].

Lemma 3.2. Under the same assumption of Lemma 3.1, there exists a unique so-
lution [G1, G2] € Xqg.m to (3.19) with o = 1 satisfying

> {1l ViGis + e ViGa ) |
0<k<m

<c Y (IR + ViRl (3.38)
0<k<m
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Proof. AsinLemma3.1, wedenote f;l to be the solution operator for the problem
(3.19) and (3.20). Recalling Hy = [H1.0, H2,0] = wi[G1, G2],if 0 = 0, then (3.22)
and (3.23) with £k = 0 can be reduced to

v]? V2]

¢eH; — B8'V, - (WH 218 —— H| — 0p H Q00 ————H H

1—BVy- (vH)) + ﬂ1+|v|2 1 — o0y Hy + TP 1+ voH,

B 5 viv2 ! 3_?)

+E|v| ﬁH2+aTﬁH2—wl " Vo - (vp) = wiF,
and

Hy - 89, - wH) + 28— 3y Hy + 20 —221 Hy + voH
eHy) — BV, - (vH2) + 'BTIUIZ 2 — avdy, Hy + T+ P 2+ vl

=wFp,

respectively. Then, in this case of o = 0, the existence of L*-solutions can be
easily proved by the characteristic method and the contraction mapping theorem,
since there is no trouble term involving K or K. That is, one can directly show that

1%y (1. ol S C2 P Pl (3.39)
We now define an operator
TolG1, Gl = 2 [0 xuKG1 + Fi, o(1 = o™ 2KGy + 0K G + Fa .
Moreover, since [G1, G2] € Xq.m, one also has
(KG1, [1, vi, 2D + (KGa, [1, vy, [P Ip) =0, 1 < i €3,
according to (3.33), which further implies
1
(15161, G21, [¢, pu2]) = 0,
for any ¢ > 0, where ¢ denotes 1, v; (i = 1,2, 3), and |v|2. Then (3.39) yields
175(G1. G21 — 151G, gé]llxa,m
= | %5 [onuk (1 = 1) .o (1 = xayunn™K (61 - G1)
/
+owK (G2 — G5) ] HXa,m
1 !
= o| 25 [k (G = G1) . (1 = xawin 3K (61 - G))
+ w K (G2 — gé)]

Xo,m

1
S aCe2llG - G1, % — Gillx,,, = E”[gl - G1.G = Gllx,,.. ((3.40)

provided that o € [0, 0] with 0 < 0, < min{5¢—}.
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Thus, we obtain a unique fixed point [G1, G2] in X, such that

15161, G21 = [G1, G2,

which is equivalent to
L6, 621 = o xuKG1 + Fi.o (1 = xu)u” 2KGy + 0K G + T2
Therefore [G1, Go] is a unique solution to the system
25101, G2l = [F1, Fal, o €10, 04l

Next, we define
1
Toto = 5. o xuKG + Fi.o (1 = o) T KG1 + 0K Gy + F2 |

Since the constant C ¢ in (3.21) is uniform in o € [0, 1], one can further verify that
Ts,+0 With o € [0, 0,] is also a contraction mapping on X, ,, by using a similar
argument as for obtaining (3.40). Namely, we have shown the existence of .,2”2;1
on Xy, and (3.21) holds true for o = 20,. Hence, step by step, one can see that
.,2”1_1 exists in case o = 1 and (3.38) also follows simultaneously. This completes
the proof of Lemma 3.2. O

Once Lemma 3.2 has been obtained, we can now turn to complete the

Proof of Theorem 1.1. We prove the existence of W”> solution to the coupled
system (3.11) and (3.12) under the condition (3.17).

According to Lemma 3.2, there indeed exists a unique solution [G’};’ll, G’I‘;le]
to the system (3.14) satisfying (3.16), provided that [G’}“, G’;e,z] € Xg.m for any
m = 0. We now show that the solution sequence {[G'I'“, Gr;e,z]}?lio is a Cauchy
sequence in Xy ,—1 with m = 1, hence it is convergent and the limit is the unique
solution of the following system

B
eGRr1— BVy- (vGr1) — av2dy, Gr1 + 5|v|2¢ﬁGR,z

V12
+ O‘T\/EGR,Z +vGr1— xuKGr 1

B 1 1 1 1
= EVU () + BVy - (vu2Gr) +av2dy, (2Gr) +aQ(u2Gr, n2Gy)

+a{QuUIGR, 12Gy) + Q(u2Gy, 12 GR)} +aQ(u2Gr, n2Gp),
(341

and

1
eGra— BVy - (WGR2) —av20y,Gr2+ LGro— (1 — xp)” 2KGR,1 = 0.
(3.42)

To do this, we first denote

2
Bt =gt — g = —% / vivau! 2GR dv,
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with " given by (3.15), and set
M]/QG'}L{+1 _ Grlze:kll _i_ul/zér;ezl’
with
[érlleirll’ érlleTZI] = [Grll;,rl1 - ';e,l’ Grzl;,rzl - G’}e,z]-
Then G’;&] and G'}{zl satisfy the equations

~n+1 ~n+1 ~n+1 ~n+1 ~n+1
eGR| — BV, - (vGR) — vy Gy + G — xuKGRY

Bn—H

o mag +ot md - Ee no

= B"V, - (vG'y ) + BV, - (02 G1)

+a{Q(M%G;§,M%G1) + Q(M%Gl,/ﬁéﬁ)} (3.43)
o {Q(M%érfe’ M%G”) + Q(;ﬁé’,’?, M%Gr}lg) + Q(M%G’;e’ M%G';e)}

= M(G%, G,

Antl S+l S+l
(EG'I’{’2 — BV, - (vG'I’m) — v 0y, Gr;e,z

+ LGRS — (1= xan TKGH =0,
with
(Gl [L v, 1021 + (Gl o [ vi, 0P 1n?) =0, i = 1,2,3.
Our goal next is to prove
G G Xy S CallG 1. G o X (3.44)
under the condition that
I[G% 1+ Gk )X < Caim: (3.45)

where the constant C,_, is finite independent of . In fact, on the one hand, thanks
to Lemma 3.1, it follows that

IR G NN SC€ 30 I ViM(Gh Gl
0<k<m—1

where M(G", é’}e) is given in (3.43). On the other hand, we get from Lemma 6.4
that

> I VEMGh Gileo £ Ca Y {1 VEGR (I3 + NurVEGT 13 |
0<k<m—1 0<k<m—1

k k
+Ca Y wVEGRILs Y lwiVEGRIIL,
0<k<m—1 0<k<m
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which is further bounded by

k k
ca > I VEGH il + I VEGR i
0Sk<m—1

due to (3.45). Thus, (3.44) is valid, in other words, {[G'}M, Gl;e,z]}zozo is a Cauchy
sequence in Xy ,,—1 for & > 0 suitably small. Hence,

n n £ &
[GR,1: G2l = [GR 1 Gkl

strongly in Xy ;,—1 as n — +00, and

o> a?

B" — B = o 3 e viva(Gy | + 1G5 ) dv. (3.46)

And the limit [G‘;J, Gﬁm] is a unique solution to (3.41) and (3.42). Furthermore,
it can be directly shown that [G% |, G% ,] enjoys the estimate

1[G 1. G )l < Car. (3.47)

Furthermore, taking the limit ¢ — 0, we may repeat the same procedure as for
letting n — oo, so that the limit function [Gg 1, Gr2] € Xq.m is the unique

solution of (3.11) and (3.12) and enjoys the same bound as (3.47).
Moreover, for any ¢ > 0, it follows that

£(Gy 1 1) + 6(Go . n?) =0,

(6 + BENGE 1, v1) + (6 + B)Gy 5o vin?) + (G 1, v2)
+a(G% 5, vau?) =0,

(6 + BEGE 1, vi) + (6 + B GG oo vin?) =0, i = 2,3,

and
(6 + B G 1, 0P + (6 + BN (G o, 0]P1?) =0,
consequently,
(G L vis [0+ (Gl [L v, WP In?) =0, i = 1,2,3,  (3.48)

since B¢ > 0 due to (3.47) and (3.46) and « can be suitably small. Taking ¢ — 0
in (3.48) gives rise to (3.3). This finishes the proof of Theorem 1.1. O
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4. Local Existence

In the previous section, via the perturbation approach we have proved the ex-
istence of the self-similar profile G(v) governed by the steady problem (1.11)
whenever the shear rate « is suitably small. However, the non-negativity of G(v)
is still unknown. Thus, we will study the time-dependent problem and obtain the
time-asymptotic stability of G (v) under initial small perturbations, which in turn
can give the non-negativity of G (v). To be more general, we reformulate the prob-
lem in the spatially inhomogeneous setting where the one-dimensional transport
only along the v;-direction is allowed. We remark that the justification of dynamical
stability in the 2D framework as for the original problem (1.19) should be more
challenging and is hence left for the future study.

The goal of this section is to first establish the existence of the unique local-
in-time solution to the Cauchy problem (1.20) and (1.21) in the one-dimensional
spatially inhomogeneous setting. The proof of the global existence as well as the
large time behavior of solutions will be given in the next section. In light of (1.7),
we let

v ef
F(t’xvv):e_3ﬂtf(tsx’ W)ge 3ﬂtf(t7x7$)’
e

then the Cauchy problem (1.20) and (1.21) is converted to

Uf+eP 10, f — BVe - (Ef) —ak2de f = O(f. ). t >0, x €T, & € H%i’l)

FO,x,8) = Fox,§), x €T, § € R, '
We notice that as mentioned in (1.18), F(¢, x,v) is expected to behave like
e3P G(ePv) in large time and hence f(z, x, &) should tend asymptotically to-
wards the self-similar profile G (§), where the self-similar profile G is determined

in Theorem 1.1. I\jow, ~setting ft,x,&) = f(t,x,&) — G(&) as the perturbation,
one can see that f = f(z, x, §) satisfies

o f + P10 f — BVe - (6F) — k2l f
=0/, H+0(/.6)+ QG [), 1>0,xeT, & R,
fO0,x,6 =Fx,6)—GE), xeT, § R’
Defining next f(t, x,&) = /pg and recalling G = u + /u{aGy + aGRr}, we
have
U+ 18108 — BV - €D + L 160F — b B+ SE16E + LE
=T(2, 8 + T aG) +aGr) + (@G +aGg,8), >0, xeT, & €R?,

_ o, 8 - GE)

,xeT, £eR.
NG

§0.x.8) = g
4.2)

To solve (4.2), since there is a strong growth term 5&1£,¢ in (4.2), it is more
convenient to consider the decomposition /g = g1 + ./itg2, where g1 and g>
satisfy
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dg1 + P E1dc g — BVe - (Eg1) — abrde, g1 + vogi

B, o 1 o 1
= vy ko — = gy — —pu2
xmKg Zlélugz S H £16282 43)
+ H(gl,g), t>0, xeT, & R’

210, x,6)=0, x T, &€ € R,
and

dg2 + ePE18cgr — BVe - (E82) — ab2ds 82 + Lo
=u 21 = xy)Kg1, t >0, x €T, £ € R,
F ) - G ef ~
gz(o’xa S) = M d=f go(x7§)’ X € Ta é € R?’v

VI

4.4)

respectively. Here

- 1 1 1 1
H(g1,82) = Q(g1 + 1282, 81+ 1282) + Qg1 + 1282, n2 (@G1 +aGp)
1 1
+ Q(n2 (@G +aGRr), g1 + 12g).

We shall look for solutions of (4.3) and (4.4) in the following function space

Yor = {101, G2l € L¥0. T3 WEoLE)|

sup {widL°Gr(0) [l + alwdl’ Ga ()|l L=} < +o0,
yOSZOétéT

1
(G 1L wil) + (G2 11, wilu?) =0, i =1,2,3],
supplemented with the norm

G, Galllg,, = 3. sup {Ilwdl’Gi() e +alwd*Ga(r) >} -

<<
n<2 0stsT

Theorem 4.1. (Local existence) Under the conditions listed in Theorem 1.2, there
exits Ty, > 0 which may depend on a such that the coupling systems (4.3) and (4.4)
admit a unique local in time solution [g1(t, x, §), g2(t, x, £)] satisfying

g1, &21lY, 7, = 20

Proof. Our proof is based on the Duhamel’s principle and contraction mapping
method. We first consider the following approximation equations

dg1 +ePE1dcg1 — BVe - (Eg1) — ab2ds g1 + vogi

= xuKg) — glélzlﬁgé
o
2
21(0,x,6) =0, x €T, £ e R,

4.5)
WiEiEgh + H (). g). t>0, xeT, & R,
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and
dgo + P 810,80 — BV - (Eg) — aE2dg, 82 + 1082

1
:Kg§+u‘i(1—XM)ng{, t>0, xeT, $GR3, (4.6)

&mw£w=@3%%¥&2£@uﬁxxemseR?

Let [g1, g2] be a solution of the pair of (4.5) and (4.6) with [g], g5] being given.
Then the nonlinear operator N is formally defined as

N(g), &) = [g1, g2)-

Our aim is to prove that there exists a sufficiently small T}, > 0 such that N'[g}, g5]
has a unique fixed point in some Banach space by adopting the contraction mapping
method. In fact, since

> il goll < @,
<2

we can define the Banach space
Yor ={G1.Ge L¥O. T WEeLY)|

sup {[widl° G0z + al|widl’ G0l =} < 20,
V0§20§1§T

G1(0) =0, G2(0) = Zo .
associated with the norm

G, Gallv,r = D sup {{lwidl*Gi(®)llz + e |widl°Ga(0)| L} -

<<
y0<20_t_T
We now show that
N: iOt,T > iOt,Ty

is well-defined and A is a contraction mapping for some T > 0.
Let us denote 1 = w;8)°g and hy = w;8.°g> with y9 < 2, then [hy, ho]
satisfies

&
drhy +eﬁf§:18xh1 — ﬂvf - (&Ehy) —(){52351/’11 +21ﬂ—1 f|§_|2h1
&&
21 h h
+ a1+|§|2 1+ vohi
W 5 1 o (4.7)
— K1) = Z1gPurhh — —pn2& 6k
XMWy (w1> ZISIM 2 S &1620,

+wdl H(g), gy, t>0,xeT, & R,
h10,x,8) =0, x €T, £ € R3,
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and
91y + P! [
thy + e &10xhy — BVe - (Eh) — adr0g hy + ZIﬂwhz
&8 (%)
+ 2l hy +vohy —w K | —=
T g2 2 T Ly, 4.8)

/

h
=wn (1 = K (—1> >0, xeT, € e R,
wi

h(0, x, &) = wdl’go(x, ), x € T, & € R,

where i} = w0 g/ (i = 1, 2).
Next, we define the characteristic line [s, X (s; f, x, &), V (s; , x, £)] for equa-

tions (4.7) and (4.8) passing through (¢, x, &) such that

% =ePVi(sit, x,8),

d(% =—BVi(s;t,x,8) —aVa(s; 1, x, £),
Wi o _BVi(sit.x. &), i = 2.3,

;S(l; 1,x,8)=x, V(t;1,x,§) =§,
which is equivalent to
X(s; t,x, ) =l (x —(t =)k - %a(t - S)zfz),
Vitsit.x.8) = P06 + aga(t —5)), (4.9)
Vi(sit,x, &) =P i =2,3.
Using this, as (3.25) and (3.26), we can write the solution of (4.7) as
[h1, hal = Q(g1. g5) = [Q1(g], 85), Da(g]. &)1,

with
t [.A h/
Qi(g), g5) = /0 e s ("V(f))df{xszlC (jl)}(vm)ds
t t
+§ /O e~ Iy ACVEDE Y ()2 SV () (V (5)) ds
! t
+a/0 e s A(I‘V(f))dtw\/ﬁ(V(s))h/z(V(s))ds

t y -
n f o JLA@ V@) e (le) (V(s)) ds. (4.10)
0

and
Qy(g}. gb) = e~ Jo ATV Ty 51050 (X (0), V(0))

t . i
+/ o= JLA@ V(@) de {(1 — o wK (h_l)} (V(s))ds
0 .
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t . 4
+ / e_ff A(r,V (1)) dr |:le (@)} (V(s))ds, “4.11)
0 Wi

where A = A4° —¢.
Let [g], 851 € Yo 7,. In light of (3.27), taking L>° estimates of Q[g/, g5] and
applying Lemmas 6.2, 6.4 and 2.1, one directly has

C
sup [[Qilg}. g4l < (7 + Ca) .Y sup [l

yoézoétér* yoéz()élgT*
o
+CaTy Y sup [yllie S 5. (412)
y0§20§t§T*
and
sup o] Qalg], g5l
VOS20§I§T*
3
<a+CTa )y { sup ||h}llze + sup ||h/2||Loo} S5, @1y
yo<2 LOSIST 0<i<T,

provided that 7, > 0 is suitably small. And similarly, for [g], g5] € Y. 7, and
(g}, &1 € Yq.r,, it follows that

sup ||Qilgl, 851 — Qilgl. g5l
<2 0<t<T,

C
< <— + Ca) T, > sup A} —h{|r~
l o OSIST,

+CaT, > sup by —hY|re
w<2 0SI=T

=

FN

Z{ sup [[A) — h{llp +a sup |lhb — an}, (4.14)
<2 0<t<T, 0<t<T,

and

Y a sup [1Qalgl. 81— Qalgl. g31llLx

n<2 0<t<T,

<CLa ) | sup [l —h{l=+ sup [hy—h5Le
oo losi=r. 0<I<T,

1
SZZ{ sup K} — Wi~ +a sup ||h’2—h5||mc}, @15
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for T, > 0 small enough. Here, the following type of estimates have been also
used:

r, 1, Ly 1y
lwi[Q(n2gr, n2g5) — O(2g5, m2gy)]llLe
< %/_// %/_// %/_// %//
S lwiQ(n2(gy —82) n2(8r — &N llLe + lwr Q(2(gy — 83), 12g) |l
1 1
+ lw Q(r2gy, n2(gy — go))liL=
=C {Ilwz[gé — &1 0 + 2llwigh Il oo lwilgh —gé’]llLoo}-

Consequently, (4.14) and (4.15) lead to
1
10lg1, g1 — QlgY. 85 lllvur, = Ell[gi, 8ol — g1, &5 Iar, -
This together with (4.12) and (4.13) imply that there exists 7 > 0 such that A" is a

contraction mapping on Y, 7,. Hence, there exists a unique [g1, g2] € Yq,7, such
that

(g1, &21 = N(g1, g2).

This completes the proof of Theorem 4.1. O

5. Convergence to the Steady State

Following the previous section regarding the local existence, the goal of this
section is to establish the global existence of the Cauchy problem (1.20) and (1.21).
More precisely, we shall construct a unique global-in-time solution around the
self-similar profile, and also prove its large time asymptotic behavior with the
exponential rate of convergence.

As in the previous sections, we denote the macroscopic part of g by

Pog = {a+b-&+c(E]* = 3)V/R. (5.1)

By taking the velocity moments
1 11 2 1 5,']' 5 1 1 5 1
lﬂ,éj/ﬂ,g(lfl —3uz, A= Eiéj—?|$| u2, B = E(IEI —5)&in?

with 1 < i, j < 3 for the equation

. - - B - .o . .
98 +ePE0, g — BV - (£8) + 5|s|2g — bl & + SEi16ag + Lg
=T, 8 +I@E, oG +aGr) + ' (@G +aGg, 2),

F (5.2)

t>0,xeT,§eR3,

g(O,x,é)zgozw,xeT,EeR3,

VI
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one sees that the coefficient functions [a, b, ¢] = [a, b, c](z, x) satisfy the fluid-
type system

da—+ P ocb =0,
ab1 + Bby + P10, (a + 2¢) + aby + P10, /3 g2 /P g de =0, (5.3)
R

abi + Bb; + P10, <A1,~,P1g> =0,i=23,

Ll
dic+ pa+2pc+ — 8xb1+ / E1(E1° — 3) /P13 d&

o .
+§(A12,P18) =0, 5.4
~ 4eﬂt ﬂt ~ ~
(A1, P1g) + Taxbl + e 0y (81411, P1g) +2B(A11, P1g)

4o - - ~
+ ?(AIZ,PI@ +(Lg, A1) = (F, A1),

% (A12. P18) + P ocby + P13 (E1 A1, P1§) +2B(A12. P1g)  (5.5)
+a(a+20) +a(An, Pig) + (Lg, An) = (F, Ana),

9 (A13, P1g) + P acbs + P10, (81 A13. P13) + 2B(A13. P1§)
+a(Ax, P1g) + (LE, A13) = (F, A13),

and

3 (B1,P18) +eP dcc+eP o (5B, P13) + 'Bbl + P ((Iél - 3& /1, Pig)

o o 2 ~ ~ ~
+ gbz +3 ], £ 6 /nP1ZdE + a(By, P1g) + (LE, B1) = (F, B1), (5.6)
R

respectively. Here and in the sequel, we have denoted [b1, b2, b3] = b. From (5.3)
and the initial condition (1.23), it follows that

/adx:/b,-dx:O, 1<5i 3.
T T

We are now in a position to complete the

Proof of Theorem 1.2. The global existence of (5.2) follows from the standard
continuation argument based on the local existence which has been established in
Section 4 and the a priori estimate. In what follows, we intend to obtain the a priori
estimate

sup e’ 1w, 81 g1 ()l 1o + oty 1wy 8°g2(1) | 1< }
0<t<T

<C D ayllwdlgolle, vo <2, (5.7)
n=2
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under the a priori assumption that [g1, g2]is aunique solution to the coupled system
(4.3) and (4.4) and satisfies

sup P! {[|w;0]° g1 (1) | oo + oty [widY° g2(D) Lo} < cweryy, y0 2. (5.8)
0<St<T

Here,
1
0<A< 1 min{1, Ao} 5.9)

with Ag being determined as (5.28). Moreover, a,,, and B, are defined as

o, = o, VOZO, ’3 _ ﬁ7 VOZO,
L o w=12 "L pw=1,2.

Step 1. L®° estimates. Recalling (4.10) and (4.11), one has

3 6
Pl ihy| < Z Ml £, (5.10)

i=4

with
t t
Ji = Pl / e s AV @) de {)(Mwl’C <ﬂ>} (V(s))ds,
0 wi
t t
T = §eww’ f e~ ATVENET y ()2 /() ha (V (5)) ds
0
+aexﬂyot/ o[ AG, V(r))drwf(v(s))h2(V(s))ds
0
t . ~
Ty =t [ BACYO (i) (v s,
0
Ty = Ml o ATVO T () 57050y (X (0), V (0)),
! t
js — e)‘ﬂy()tf e_fx A,V () dr {(1 — XM)/J«_%w[K (ﬂ>} (V(S)) ds7
0 Wi
and

1 i
Jo = ekﬁyot/‘ e~ Js A V@) de |:w K (h >:| (V(s))ds.
o w

In what follows, we will compute each J;, 1 < i < 6, separately. Since 8 > 0
is sufficiently small and X satisfies (5.9), in view of (3.27), (5.8), Lemma 6.4 and
Proposition 2.1, one directly has

t Y
D S T A L
l 0
0Ss<t

T

A

[IA

C
= 2 ),

0<s<t
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Jo £ Ca Y et hnGs) I,
0Ss<t

J3 < Ca D Mt (I )l + [ha(s) L) .
0<Ss<t

Myt — 21 ~ 5
Ja < Mol =20 w9l goll e < lwidl* goll oo,

Js SC Y &P hi(s)ll.

0Ss<t

For the delicate term 75, we first split it as

t—e t
To = &P’ {f +/ }ds o~ L AV (@)de
0 t—e

h def
[WIK <—2>] V() = Te1 + Ts.2
w;

where ¢ > 0 is small enough. Then, for Js 2, by applying (3.27) and Lemma 6.3,
one has

t Yy
|JToal £C Y &Pt hy(s)l| o / Pt e=3 U= g M g
r—e
0<s<t

<Cse Z P’ |y (s)| oo
0<Ss<t

However, J¢ 1 needs more attentions. We rewrite Jg 1 as

t—e
Jo,1 = ewmt/ ds e~ LAYy, (v (5))

0
f K(V(5), £) 1208 X8 g
i 0

Then as for obtaining (3.30), we divide the computations in the following three
cases.

Case 1. |V (s)| 2 M with M suitably large. In view of Lemma 6.2, it follows that
C C
ky(V,68)dé £ ——— < —|

[ratvieode < s <

which implies

1—¢ )
For S Y M)l [ ds e
0<s<t 0

/ K (V(s), &) d&,
R3

C t—¢ "
S5 X ol [ e F s

0<s<t
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C !
< D M)l (5.11)
0Ss<t

Case 2. |V (s)| £ M and |&,| = 2M. In this situation one has |V (s) — &| = M, so
it holds that

elV =t |2

st
ky (V, &) § Ce 10 Kky(V,ve)e 1

e|V—E&x 2
where one sees that the integral f ky (V,&e i dé&, is further bounded accord-

ing to Lemma 6.2. Thus as for obtaining (5.11), one has

_eM?
Jo1 £ Ce 16 3P0 ho(s) o
0<s<t

Case 3. |V| £ M, |&,| < 2M. In this bad case, one possible way is to convert the
bound in L*°-norm to the one in L>-norm by an iteration approach. As in the proof
of Lemma 3.1 (Case 3), we compute Je 1 as

1—&
Jo1 = ewVO’/ ds e— Ji A V(@) dr
0

/s <opy K (V) 825, X6, £0)1 6

1
IS (MO
0Ss<t

where ky, , is given by (3.29). Next, by plugging the above estimates for J4, J5
and Js into the second inequality of (5.10), one has

Pl |ha| < Clwidl* GollLe +C Y ™o wph () L
0<s<t

1—¢&
+ CeMbut f ds 1|V(3)|<Me—f; A V()T =By, s
0 s

) / Ku,p(V(5), v)e* 0% [y (s, X (5), )| d&,.
l&:1=2M
Substituting it again, we get

t—e )
ewmz|h2| < Cekﬁyotf ds I\V\SME_ N A@.V(@)de ,~1Byys
0 =
/ Ky, p(V(s), 5*)€mms
&1 S2M
s—¢& s
. / dsi 1|V(s1)|sM€_f” AV M =1
0 s

« / K p (Ev. ED)EP0 (51, X (s1), £1)] dEsdE!
|EL1S2M
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(5.12)

+ Clwidlgoll e + C sup e |lwyhy(s)]|zoe.
0<s<t

On the other hand, thanks to (4.9), it follows that
X(s1) = X (5158, X(5), &)
1
= Pl (X(s; £ E) = (s = sDEa — als = s1)25*2>

= Pl <eﬂ<H> (x = -98 - %oc(t - 9%8)
1 2
—(8 =518 — SJals — 1) &2) )

and
ViGs1) = Visi; s, X (5), &) = P70 (g + akn(t — 5)),

Vis1) = Vi(s1ss, X (), &) = ePO™0g, i =2,3.

Therefore, for s — s1 = ¢, one has

‘ 85*1
dX (s1)

e~ Bls—s1) < g lo=Bls—sD)

S — 51

Let y = X (s1), then it holds that
1
PETVX (551, x,8) — Eaeﬁ(s_‘”)(s — 5160 — y

S POV 16| S 2MePETV s — ),

where we have used the fact that || < 2M in order to further estimate the integral
term on the right hand side of (5.12). Consequently, if yp = 0, we can bound the

integral term on the right hand side of (5.12) as

t §S—& v v
Cewt/ ds/ a’sle770(’73)6770(st')efws1
0 0

y f / / 1 (51, . ED)PdE,,
|EL1S2M J £ |23 ]2 S4M? & |S2M

e—%(s—sn)

t S—& v v
< Cew’/ ds/ dsje™ 3 (=9 = (s=s1) ;=ABs1 :
0 0 (s —s1)2

1

2
X/ (/ Iew‘”gz(S1,y,§;)|2dy> de;
gi<am \Jer
o= 56—

t s—e ; ;
< Ce)“ﬂ’/ ds/ dsl6770“73')6770(57“)67)“’3“ ;
0 0 (s —s1)2
i

B 2
x (M%ef(“_‘“)ls —sl7 1) (/ / e g5 (st v, EDI? dydé;)
R’} JT

l—

dé,, dé,, d&;
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<C sup M

0<s<t

g2l
where we have denoted

-

While for yy = 1, 2, because ‘
term on the right hand side of (5.12) as

a [ e Y0 (r—s) — 0 (s—s51) A
Ce ds dspe 2 U7 em2 WS g7
0 0
1

2
/|5,<2M (fs - |€“‘h2(81,y,§;)|2d§*1> dg!
*l= *1 1=

-
<c / ds/ dsje= 209 = F s =hn & 27 eVoﬂ(t s1)
(s —s1)2

As1 400 N2 % /
X/ </ [e*10y" g2(s1, ¥, &) dy) dg§,
lE1S2m \J

t s—¢& . N 7ﬁ(s7s )
Ce)‘t'/ ds/ dsi 6770(1‘75)6770(5*“)6*)»31 e’ 11 eV0BI=s1)
0 0 (s —s1)2

P 0X (558, %, ) — zaeﬁ“ V(s — 51’6 — y| S 2MeP0 S”|s—s1|}

9X(51) | — oP=51) we can also bound the integral

A

1

B / :
X (M%ef(s_sl)b‘ — Sllé + 1) (/ / |e)LSla)}7/Og2(Slﬂ y, E*)|2 dydé>1<>
R3 JT

<C sup M),
0<s<t

where we notice that 0 <  ~ a? < .
By plugging the above estimates into (5.10), we then conclude

olln| < Ca 3 e wiha(s)]le, (5.13)
0Ss<t

and

P |hy| < Cllwid}* golle +C Y Pt lwih ()| o
0<s§t
+ C sup P89 (5)]. (5.14)
0<Ss<t

Step 2. L? estimates. Recall JIg = g1+ /itg2. We now denote

~ _1 =
dij = (Aij, P18) = (Aijn~2,Pi1g1) + (Aij, Pig2),
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and we also use the notations
P1g =Pig1 +Piga. Pog =Pogi + Pogo.
with
Pigi = g1 — Pogi, and Pogi = (a1 +by - & +c1(5° = 3)n(®).

We now clarify the relation for Pogz, P1g2, Pog and P g. Noticing /g = g1 +
J/1tg2, one sees that

~ 81
Pogo =Pog — Py (—) .
Vi

Therefore it holds that

IPogall = IPogll + ‘

P (%)H < [PoZ]l + Cllwigill, forl > % (5.15)
and in particular,
a2, b21ll = llla — a1, b — b1l = l|9x[a, b1l + CllwigillLe,
lleall = llell + Cllwigillzoe, forl > % (5.16)
Likewise, one obtains that
1{P1g. 1€ 1)l < IPigall + Cllwigi iz, forl > 3. (5.17)

ae P

We multiply (5.3) by = f(;‘ dip dy and (5.4) by c, respectively, add them together
and then take integration of the resulting equationin x € T.Further using integration
by parts, one has

d ae Pt x ae Pt x ae Pt x
— by, —— dipdy ) — | by, —— 0rdind by, dipd
d[(l 6 /0 12y) (1 3 /0 i d12 y>+,3(1 3 /0 12}’)
O{eiﬁt X o x Ol2 X
+ B (bl, / dip dy) + - (8)(61,/ dip dy) + — (bz,/ dip dy)
6 0 6 0 6 0

a . 1d P!
- = / ELVIPIgdE dip ) + = — el + Bla. o) + 2Blicll* — — (b, dxc)
6 g 2 dr 3

Bt
- % (/R% 161 — 3) /P g dé, 3XC> =0, (5.18)

where we have used the cancellation

X
<3xc,/ diz dy) + (di2,¢) =0,
0

and we also recall that (-, -) denotes the inner product on L*(T,). On the other
hand, using the second equation of (5.5) and Lemma 6.6, we have

—pt X

oe

— (bl, / ord12 dy)
6 Jo
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2a o . Bae P! x
= ?(bl, by) + g(bl» (61A12,P1g) + 3 by, | dipdy
0

a2e—f5t X a2e_ﬂ’ X _
+ bl,f (a+20)dy) + bl,f (As, P13) dy
6 0 6 0
abge P! x ae P rol
+ (bl, / dlzdy)— (bl, f <f,Au>dy>. (5.19)
3 0 6 0

As a consequence, (5.18), (5.19) and (5.17) lead us to

d {n ||2+<b ae 1 fxd a >}+2ﬂll 12
- c 1s 124y Cc
dr 3 0

< nol(B1, P1@)|I> + Call (&1 A12, P1§)II?
+alldn | + alldi > + alldi|?

C -
+ %ezf”uax[a, b, clll* + Call[(F, A2)|I?

< (o + ) (IP1g2ll* + lwigi 113 )

C ~
+ o laxla. b el + Co®INF, Ara)lI” (5.20)
where 9 > 01is an arbitrary constant and we also have used the Poincaré inequality
lu — Jpudx] < Cllaull.

We next compute carefully the last term on the right hand side of (5.20). First
of all, recalling the definition for F, one has

2
n<ﬁ,Alz>u25/ (/ |Q<u%gz,u%gz)na&\ds) dx
T R3

2
+/ (f \Q(gl,gonslszms) dx
T R3
2
+f (f \Q(gl,u%gznmsﬂds) dx
T R3
2
+/ (/ \Qw%gz,gnnslsﬂds) dx
T R3

2
+a2/]r(/R} Q(glvll«%(Gl+GR)+Q(M%(G1+GR)’g])%~]§.2d$> dx
2
+a2/T(/W O(n2g, w2 (G1+ Ggr) + Q(n2(Gy +GR),M7g2)§1§2dE> dx

H;. (5.21)

g
-

i=1

We then compute H; (1 < i £ 6) term by term. For |, thanks to Lemma 6.4 and
the a priori assumption (5.8), it follows that

2
Hlg||le(u5gz,u5gz>||ioofT(/R3 w—1(§)|$1€2|d§> dx

L4 2 2
Sllwin2glie S allwigallie,
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where we have let [ > 3 such that the integral ng w_;(£)|€1&2| A€ is convergent.
Similarly, it holds that

2
o < Qe g0t [ ([ woeieiae) ax <l S ethure i,

and

2
1 1
HaHs 5 (110 (1 Fg2) e + 101 QG g2, )1 ) | (/ w16 dS) dx
T R3
S lwigilisllwigzllie < o llwigillie.
Next, applying Lemma 6.4 and Theorem 1.1, one directly has
Hs. He S o lwigi 7o + o lwigall7 o

Putting now the above estimates for H; (1 < i < 6) into (5.20), one has

—ﬂt

. / dlzdw} 1 28]cl?
0

< Clno +a?)IPigal> + Catllwigall

ae

d 2
el b1,
a {IICII + (b

C
+C@ +no)llwigi = + %ezf"nax [a, b, I, (5.22)
where the Poincaré inequality has been also used. Thus (5.22) further implies that
for0 < A < alT’

2 2
sup e*5e(s)]|
0<Ss5<t

< lecO)* + elllbr, di2]O) I + o« sup eP*|[by, dio]II?
0<s<t

t
+ C(’?O + a2)e2kﬂt / e—Z/S(t—s)e—ZkﬁseZAﬁs ||P1g2||2(s) ds
0

t
@+ no)ezmz/ o 2B 285 285 |y 01 12 ds
0
t
+ C(O{4 + a2)e2kﬂt / e—2ﬂ(t—v)e—2)nﬂs62)nﬁs”w[gzuioo dS
0

C t
+ _ez)nﬂt / e—Zﬂ(t—s)e4ﬂs€—2)\s62)m ”ax [a’ b, C]||2 ds
no 0

< e * + elltbr, di2]O)I* +a sup e*P*|[[by, di2]II?
0<s<t

C (e + no)
+———— sup e PPig ()|
B 0<s<1
C 2
+ (a” + no) sup
B 0<s<t

ePS lwig1 ()13 o0
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4
o C
+—— sup P wiga(s) i + — sup 2||dx[a. b, ]|
0<s<t M0 0<s<s

Here we have used the following estimate
t
ez)»ﬁl / e*2ﬁ(f*&)e4ﬂ3672)\“§'672)~s ” 8)( [Cl, b, C] ”2 ds
0

t
é Sup eZ)LS ||8x [a’ b, C]||2/ e—Zﬁ(t—s)eZ)LﬁteAﬂse—Z)\s dS
0Ss<t 0

< C sup e™||d[a, b, c]|l?, (5.23)
0<s<t

due to the fact that 0 < 8 ~ a? < 1. Consequently, it follows that

a sup eFe(s)]|
0<s<t

3 3
< allc(O)1? + a2 ||[b1, di2](0)|| + @2 sup e**|[by, dia]|
0<s<t

1 1
+C@*+m0)? sup e5|P1ga(s)| + Cla® +n0)2 sup e |lwygi(s)ll
0<Ss<t 0<s<t
2 ABs Ca s
sup €S |wiga(s) e + —— sup €**[|dy[a, b, c]]. (5.24)
0<s<t M0 0<s<t

+ Ca

On the other hand, taking the inner product of the first equation of (4.4) and
P g> with respect to (x, v) over T x R3, we also have by Lemma 6.1, (5.15) and
(5.16) that

d )
anPlgznz + 3||P1gz||2 SCllwigi |7 + Ce*1 [0, Pogall* + Ca? |Poga |
SCllwigi i + Ce*' (8, Pogall* + Ca?lc)?,
which further yields

sup e |P1ga(s)l| < IP1g2(0)]| 4+ C sup e |Jwigi ()]l
0<s<t 0Ss<t

+C sup ™3, Pogll
0<s<t

+Ca sup | c(s)]. (5.25)
0<Ss<t

Therefore, putting (5.24) and (5.25) together, we have that for o’ = 10,

a sup ()| +a sup e Piga(s)]l
0<s<t 0<s<t

< . 2 3 5 2 ABs
S alleO)I” + a2 [|[b1, di2](0) || + Ca|[P18oll + C(a +a”) sup ™ [lwig1(s)l Lo
0<s<t
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+Ca? sup ™ |wiga(s)llze + Co sup e [|wydygi(s)ll Lo
0<s<t 0Ss<t
+C sup ¢*|dc[a,b,c]|. (5.26)
0<s<t

Let us now turn to deduce the higher order energy estimate. For this, we claim
that

Do sup Ml S Y Gl +C Y sup e wdlgi ()l

1Sy S2 05 1<90S2 1702 0S5
+ Ca sup ™ |widcga(s)llLoe. (5.27)
0<Ss<t

Indeed, for some Ao > 0, the inner products
(8x(5.3),, €P182a), (8,(5.6), e# 92c)and (3,(5.5);, eP'82b;)
together with (5.3) and (5.4) give rise to
Em+ho Y SPPlab P S Y e 0 P1g)
1S9 L2 1022

+ LA, sl + 1(8:F, s)lI,
(5.28)

where we have set

Eint = Z(ax (A1, P1g), ' 92bi) + (9. (B1, P1g), ' 97c) + 1 (31, €7 07a),
i=1

and the velocity moments ¢; in those inner products on the right-hand side of

(5.28) denote all A;j, B, Slzéz,ué and so on appearing in (5.3), (5.4), (5.5) and
(5.6). Moreover, the Poincaré inequality

l8;[a, b, clll £ C182[a, b, ]|

has been used here. Furthermore, performing similar calculations to those used to
estimate || (F, A12)||% in (5.21) before, one has

1@, P Se? (lwrdegalF + lwidgi ) - (5:29)
Lemma 6.3 and Lemma 6.4 with / > 3 imply that

I{L3x&, i)l S llwidxgillzee + 10xP1g2 ]l (5.30)

Consequently, plugging (5.29) and (5.30) into (5.28) and employing (5.17), we
arrive at

d
RS D D LA NET
1S9 =2
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SC D> PP+ C Y lwidd gl
1=p=2 1Sp=2

+ Ca?||wydy g2l oo (5.31)

On the other hand, energy estimate on (4.4) leads us to

d
anaﬁgzuz + Al187°P1 82112 < Cp 187081117 + (Ca® + n) 107 Pogall?, (5.32)

for yop = 1, 2, where n; is positive and suitably small.
Combing (5.31) and (5.32) together, one has that for k; > 0 and suitably small,

d _
—{ Y 10l + ke )+ Y 20 {I0Pigall® + 101 la, b, 1))

dt
1Sp=2 1Sp=2

SC Y wdl gl + Co?llwidegalfo
1Sy =2

From the above energy inequality, we further obtain that for 0 < A < )‘TO,

sup e " (101 ga(s)
0Ss<t

1SpS2
t
< D O +C Y e / e w0} g1 () |7 00 ds
1S90=2 1ps2 0
t
+ Ca?e? / e 70U |l 3, g2(5) |13 o dls. (5.33)
0

Therefore (5.27) follows from (5.33) and an estimate similar to that for (5.23).
Step 3. Combination. We are now in position to obtain our final estimates (5.7). To
do so, for yg = 0, we get from the summation of (5.13), o x (5.14) and (5.26) that

Plwigr] + ae lwiga| < Callwigolle + allle, dil(O)|| + a|Pi goll

+C sup €™ |widegi(s)lze +C sup €™ dy[a, b, c]ll.
0<Ss<t 0<s<t

(5.34)

Asto yp = 1, 2, we set k3 > 0 sufficiently small, take the summation of (5.13) and
k3 X (5.14), and plug (5.27) into the resultant inequality, so as to obtain

o M {lwal el + wiolel} <C > {1102 goll + lwidd goll o} -
1Sp=2 1S9 <2
(5.35)

On the other hand, it follows that

3
IP1g2ll = Cllwigallre, forl > 3 (5.36)
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and for [ > %, one has

0x[a, b, clll = CllacPogll < Cllocg2ll + CllwidxgillLe
< Cllwdxgallze + Cllwidygilizoe, (5.37)

and
Ilc, b1, di2](0)|| = CllwigallLe + Cllwig1(0)|lLe = Cllwigallze.  (5.38)

Finally, putting (5.34), (5.35), (5.36), (5.37) and (5.38) together and adjusting con-
stants, we have

)\ ~
> Pt {|wdlg1| + o [widl gal} £ C D e wid} Goll Lo
<2 <2

Thus (5.7) is valid.

Step 4. Non-negativity. We now turn to prove that the unique global solution con-
structed above is non-negative, i.e. > F(r, x,eP'€) = G(&) + f(t,x, &) = 0
under the condition that Fo(x, &) = G + f (0, x, &) = 0, which also indicates the
non-negativity of the self-similar solution G (v) obtained in Theorem 1.1 due to
the large time asymptotic behavior (1.24). To do so, let us start from the following
linearized equation of (4.1) in Section 4

O f +ePEd f — BVe - (Ef) — ab2ds, f + fV(f)
=Q0.(f,f), t>0 x€eT, £ €R’, (5.39)
0, x,8) = Fy(x,£), xeT, £ e R,

where

V(') = / / Bo(cos 8) f'(£,) dwd,
R3 SZ

One can see that if Fy(x, ) = 0 and f/(z, x, &) = 0, then any solution of (5.39)
should be non-negative. Denote f = G + f and f "= G + f’, and decompose f
and f’ as

f=h+Vih, f=H+Jrf

We now verify that there exists a unique solution in the form of G + f1 + /it f2
to (5.39) under the condition that [ f{, f;] belongs to the function space

We,r = {(gl, G2) € L=(0, T; L=(T x IR3))‘

sup {lwiG1 (D)L= + allwGa(t)||L>} = 2e,
0<t<T

G1(0) =0, G(0) = 0. G +G1 +uG> 2 0.
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We now consider the coupled equations for f1 and f>

O f1+ePTEDf1 — BVe - (Ef1) — ab2de fi + §|s|2u%f2
+ %M%&Ezfz +vo f1

(i uE V(P @G+ aGR) + (fi + 1f VL + b )
= xuKf]+F(f], f2), t >0, x €T, £ € R?,
Fu
10, x,6) =0, x €T, £ e R’,

(5.40)
and

O fr+ePE10 fr — BVe - (Ef2) — abrde, fo + 10 12

=Kfy+u V20— yu)Kf{, t >0, x €T, &€ € R?,
P (5.41)
F ) - G def ~
fZ(O,xvé) = M = gO('x’S)7 X € Tv S S R37
N

where

Fs(ffs f3) = =12 @G1 + aGRIV(f{ + 12 f3) + O (f] + 12 3, f + 122 f3).

Let [ f1, f>] be a solution of the pair of (5.40) and (5.41) with [fl’, fz/] e Wy r.
Then the nonlinear operator W is formally defined as

WAL, 1) = Wi, Wol(lLffs D = Lf1, f2].

We next show that WV is a contraction mapping on W, 7. To do this, let us first
rewrite the solution of (5.40) and (5.41) as

wilfi. afa] = e~ o MEVONT[0 4y 50X (0), V(0)]

t
n / e~ K MEV@Ty 17 6 F5]ds, (5.42)
0

where M is a2 x 2 matrix given by

My, M
0 aMy |’
with
IV ()? Va2 (1) Vi(t)
V@I, 20N
1+ |V ()2 14|V (D)2
F V(2 @Gy +aGr) + V(| + 2 ) = vo/2, (5.43)

M1 =vo—38+2I8
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= —ﬁ'vf)'zu% + SHIVIOVI(D) + 1 V(RF @G+ aGr)

+ LIV + ),

V(©)P OV
L+ |V L+ V()P
and moreover, X (s) and V (s) is defined as (4.9).

Given [f{, f;] € Wq 1, we show that also [f1, fo] € Wq, 7. Since [f{, f,] €

W,.r, one sees that |M2| < C. With this, (5.43) and (5.44), we have by utilizing
Lemma 6.4 that

M,

My =vy —3B+2IB 2 vo/2, (5.44)

lwil fi, el < eTa + TeCT |wi[Fy, aFs]l 1
ST+ TeCT {llwi flllee + lwi fill70e + allwy follee + lwi fill7eo}

which is further bounded by 2a, provided that 0 < T < Ty, with Ty, sufficiently

small. Thus W([ f{, f3]1) € Wq.r,,. Note that G + fi + ,u%fz 2 0 follows from
(5.39) and f’ = 0. It remains now to verify that JV is a contraction. In fact, given
Lfls B LA )1 € Wa,r,,,, from (5.42), it follows that

WL (LT, o)) = wVi L D1+ alwWa (LT o) — wiVa (L £ D
! 1
= /0 e S MEV Oy |[Fy, aF5IS], f3) = Fa aF5IC £ ds
T T {lwn (ff = Sl + allwn(f5 = f) e + T (ff = 13|

[IA

A

1
3 {lwi(f] = fDllLee +allwi(fy = )Nz},

provided that 7, > 0 is sufficiently small. Therefore, there exists a unique function
[f1, f2] € Wq 1, such that [ f1, f2] = W([ f1, f2]), namely (4.1) admits a unique

non-negative solution f = G+ fH—/ﬁ fawith[f1, f2]l € Wq 1, for Ty > Osmall
enough. Finally, since we have obtained the uniform bound (5.7) in the previous
steps of this section, one can extend the existing time interval of the above non-
negative solution to an arbitrary time ¢t > 0. Thus, the proof of Theorem 1.2 is
completed. O
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6. Appendix

In this section, we collect some known basic estimates which have been used in
the previous sections. The following lemma can be found in [24, Lemmas 3.2, 3.3,
pp-638-639], where the more general hard sphere case is proved:

Lemma 6.1. In the Maxwell molecular case, there is a constant §y > 0 such that
(L. f) = (LPLf.PLE) 2 ollP1f 1%
Moreover, for y > 0andl = 0,
(wid Lf. 8] f) = Sollwid] fI* = CIIf1I%.

The following lemma is concerned with the integral operator K given by (2.2), and
its proof in case of the hard sphere model has been given by [25, Lemma 3, pp.727].

Lemma 6.2. Let K be defined as (2.2), then it holds that

Kf() = /R3 K(v, vi) f(vs) dus

with

2
TR (e
BT w2

kv, v)| < C{1 + [v — vy| *Je

Moreover; let Ky, (v, vs) = w;(V)K(, v )w_;(vy) with 1 = 0, then it also holds
that

elv—vs |2
ky (v, 5 du, < ,
A;{z w(v, vy)e Uy S 5 0]

for e 2 0 small enough.

For the velocity weighted derivative estimates on the nonlinear operator I', one has

Lemma 6.3. In the Maxwell molecular case, it holds that

lw;d) T(f, Iy =C Z ||w133’1f||Lg||w133f_”g||L%, (6.1)
n<y
and
lwid) T(f, &)l = C Z lwd)t fllzeo llwid) " gllpe, (6.2)
nsy

for any multiple index y and any [ = 0.

Proof. The proof of (6.1) and (6.2) is similar as that of [26, Lemma 2.3, pp.1111]
and [25, Lemma 5, pp.730], respectively. Thus we omit the details for brevity. O
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The following Lemma on the velocity weighted derivative estimates for the original
Boltzmann equation Q can be verified by using the parallel argument as obtaining
[1, Proposition 3.1, pp.397] where the hard potential case and the case |y| = 0
were proved.

Lemma 6.4. In the Maxwell molecular case, for | > % and |y| 2 0, it holds that

lwidy Q(Fi. Pl < C Y Nlwyd} ™ Fy | |lwi ) Fall oo

n<y

We now give the following two useful results concerning the second momentum
invariant property of the linearized operator L in the case of Maxwell molecules.
The first one is due to [28, Proposition 4.10, pp.804].

Lemma 6.5. Let W;; (v) be quadratic functions in the form of W;;(v) = viv; (1 <
i, j < 3) and define

1
T;j = 3 /SZ dw Bo(cos 0) [W; j (V) + W, j(v)) — Wi j(v) — Wi j(v)],  (6.3)
where (v, vy) and (V', v},) satisfies (1.3). Then it holds that
8ij 2
Tij = —bg (v—v*)i(v—v*)j—?lv—v*l , (6.4

with by given in (1.15).
Based on the above nice lemma, we can obtain

Lemma 6.6. Let L be defined as (2.1), then it holds that for all 1 < i, j <3,
1/2 Sij a2\ 12
L(vjvju'*) = 2bg vivj—?|v| we. (6.5)
Proof. For f = u!/>W with a general function W = W (v), one has
Lf =—u'? f s dvg f dw By(cos O)[W' + W, — W — W,].
In particular, letting W = W;;(v) = v;v; and applying Lemma 6.5, we have
L' PWij) = —2u'? f 1 T;j duy, (6.6)

where T;; is given by (6.3). Plugging (6.4) into (6.6), one sees that (6.5) is valid.
This completes the proof of Lemma 6.6. O
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