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Abstract

In this paper, curved fronts are constructed for spatially periodic bistable reaction-
diffusion equations under the a priori assumption that there exist pulsating fronts in
every direction. Some sufficient and some necessary conditions of the existence of
curved fronts are given. Furthermore, the curved front is proved to be unique and
stable. Finally, a curved front with varying interfaces is also constructed. Despite
the effect of the spatial heterogeneity, the result shows the existence of curved fronts
for spatially periodic bistable reaction-diffusion equations which is known for the
homogeneous case.

1. Introduction

In this paper, we consider spatially periodic reaction-diffusion equations of the
type

ur— Au= f(x,y,u), (,x,y) ERXR2, (1.1)

where u; = %—’; and A = 0y, + dyy denotes the Laplace operator with respect to the

space variables (x, y) € R2. The reaction term f(x,y,u)is assumed to be periodic
in (x, y) and bistable in u. More precisely, we assume throughout this paper that
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(F1) f(x,y,u) is continuous, of class C% in (x, y) uniformly in u € [0, 1] with
a € (0, 1), of class C? in u uniformly in (x, y) € R? with f,(x, y, u) and
Juu(x, v, u) being Lipschitz continuous in # € R;

(F2) f(x,y,u) is L-periodic with respect to (x, y) where L = (L1, L») € R?,
thatis, f(x +k1L1,y +koLo,u) = f(x,y,u) forany ki, kr € Z;

(F3) forevery (x,y) € R2, 0 and 1 are stable zeroes of f(x,y,), thatis,

S, y,0) = f(x,y,1) =0,
and there exist A > 0 and o € (0, 1/2) such that

—fu(x, y,u) > A for all
(x,y,u) € R* x [0, 0] and (x, y,u) € R* x [1 — o, 1].

A typical example of f(x, y, u) is the cubic nonlinearity

f(xv Y, I/t) = I/l(l - I/l)(l/l - Gx,y)’

where 6y, € (0, 1) isa L-periodic function. The Eq. (1.1) is a special generalization
of the famous Allen—Cahn equation [1]. For mathematical convenience, we extend
f(x,y,u) out of the interval u € [0, 1] such that

—fu(x,y,u) > rforall (x,y,u) € R2 x (—o0,0]and (x, y,u) € R2 x [1 -0, +00).
(1.2)
Then, f(x, y, u) is globally Lipschitz continuous in u# € R.
Before proceeding further, we first recall some well-known results in the ho-
mogeneous case, that is,

uy —Au= fQu), (t,x) e R x RV, (1.3)

where f is of bistable type, that is, f(0) = f(1) = f(9), f < 0on (0,6) and
f > 0on (8, 1), for some 6 € (0, 1). For one-dimensional space, it follows from
celebrated results due to Fife and McLeod [13] that (1.3) admits a unique (up to
shifts) traveling front ¢ (x — ¢ rt) satisfying

0<¢ <1, ¢p(—00) =1and ¢p(4+00) =0.

Moreover, the speed cy has the sign of fol f(u)du and the front is globally and
exponentially stable. A trivial extension of the traveling front to higher dimensional
spaces is the planar front ¢ (x - e — ct) where e € SN=1 denotes the propagation
direction. Notice that every level set of a planar front is a plane. In addition to
planar fronts, more types of fronts are also known to exist in high dimensional
spaces, such as V-shaped fronts, conical shaped fronts and pyramidal fronts, see
Hamel et. al. [19], Ninomiya and Taniguchi [21] and Taniguchi [24,25]. All these
fronts are transition fronts connecting 0 and 1 defined by Berestycki and Hamel [3].
The notions of transition fronts generalize the standard notions of traveling fronts.
Roughly speaking, transition fronts connecting 0 and 1 are those entire solutions
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u(t, x) for which there is a set I'; (which is called interface and can be picked as a
level set of entire solutions) splitting the space into two parts Qf satisfying

{ u(t,x) > 1 asd(x,I'y) - +ooforx € S'Z,+ uniformly in ¢z € R, (1.4)

u(t,x) — 0 asd(x,T'y) = 4oo for x € ; uniformly in¢ € R,

For more conditions on I'; and Qf, we refer to [3]. For above fronts, their interfaces
between 0 and 1 can be given by their level sets and different shapes of interfaces
actually show some structures of the solutions. One can roughly imagine a global
appearance of such solutions in the framework of transition fronts by noticing that
the solutions are approaching to 1 and 0 on one side and the other of the interfaces,
respectively.

As far as a spatially periodic bistable reaction-diffusion equation considered,
the situation is more complicated than the homogenous case. Because of the effect
of hetereogeneities, there may even not exist transition fronts connecting states 0
and 1, see Zlato$ [33]. However, what we are concerned with in this paper is the
existence of curved fronts when there exist some fronts in every direction, that is,
pulsating fronts. We now introduce the notion of pulsating front by referring to
[2,23,28-30].

Definition 1.1. Denote a periodic cell by T2 = [0, L{] x [0, Ls]. A pair (Ue, c¢)
with U, : R x T> — R and ¢, € R is said to be a pulsating front of (1.1) with
effective speed c, in the direction e € S connecting O and 1 if the two following
conditions are satisfied:

(i) For every & € R, the profile U, (&, x, y) is L-periodic in (x, y) and satisfies

lim U,(&,x,y)=0, lim U.(&,x,y)=1, uniformly for (x,y) € 2.
&—+o0 E——00

(i1) The map u(t, x, y) := U.((x, y) - e — cot, x, y) is an entire (classical) solution
of the parabolic Eq. (1.1).

‘We now recall some existence results of pulsating fronts for the general reaction-
diffusion equation in spatially periodic media

1

uy = @Wux)s + bWy, + fxou), t €R, x € RV, (1.5)

For one dimensional case of (1.5) when f(x,u) = g(x) f(u), Nolen and Ryzhik
[22] proved the existence of pulsating fronts with nonzero speed by provided with
some restrictions for g and f. Moreover, Ducrot, Giletti and Matano [9] also got
some existence results of pulsating fronts with a positive speed, if the solutions
of (1.5) with some compactly supported initial conditions can converge locally
uniformly to 1 as + — +oo. Still for one-dimensional case, Ding, Hamel and
Zhao [7] applied the implicit function theorem and abstract results of Fang and
Zhao [12] to get the existence of pulsating fronts for small period and large period.
For higher dimensions, when the diffusivity matrix a is close to identity and f
is independent of x, the existence of pulsating fronts is obtained by Xin [28-30]
through refined perturbation arguments. Ducrot [8] also got some existence results
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of fronts connecting 0 and 1 in every direction for slowly varying medium and
rapidly varying medium (that is, d << 1 and d >> 1 respectively when the
reaction term is f(dx, u)), in which the fronts are either moving pulsating waves
or standing transition waves. Although such existence results are known, there may
not exist pulsating fronts in general. Zlatos [33] constructed a periodic pure bistable
reaction such that there is no pulsating fronts of (1.1). We also refer to [7,31,32]
for some nonexistence results.

In this work, we aim to construct curved fronts by using some pulsating fronts
with nonzero speeds. Therefore, we need to assume a priori that

(H) szx[O,l] [, y,u)ydxdydu # 0,
(H2) forevery unit vector e € R?, the Eq. (1.1) admits a pulsating front U, ((x, y)-
e — cet, x,y) with ¢, # 0.

From the results of Ducrot [8] and Guo [15], one knows that if (H1), (H2) hold,
the propagation speed c, of the pulsating front in every direction has the sign of
szx[O 1 f(x,y,u)dxdydu. We assume, without loss of generality, that

f f(x,y,uw)dxdydu > 0, (1.6)
T2x[0,1]

which implies ¢, > 0 for all e € S. Otherwisq, one can replace u, f, U.(§,x,y)
byﬁ =1 —u, g(x7 y9u) = _f(x:y’ 1 _u)7 Ue(%-vxv }’) =1- Ue(_éwx’y) and
consider the new pulsating front U, with speed —c,. From [3] and [15], the speed
¢, and the profile U, of the pulsating front are unique up to shifts in time for any
direction e. We fix the pulsating front in every direction e by

1
U,0,0,0) = 5

From [15], we also know that d: U, < 0, the family {c,}es is uniformly bounded
with respect to e and the minimum and maximum of ¢, can be reached with the
following inequality:

0 < minc, < maxc, < +00.
e€sS eeS

In the whole paper, we always assume that (F1)-(F3), (H1)-(H2) and (1.6) hold
and we do not repeat it in the sequel. We now focus on construction of curved fronts
by some pulsating fronts. To the best of our knowledge, few results of the existence
of curved fronts are known for bistable reaction-diffusion in spatially periodic
media. However, one can refer to [10,11] for the existence of curved fronts of
monostable and combustion reaction-diffusion equations with a periodic shear flow
and refer to [4] for a space-time periodic monostable reaction-advection-diffusion
equation. Although the pulsating front U, ((x, ¥)-e—c.t, x, ) is not exactly planar,
every level set is still bounded with a plane. Thus, the pulsating front is also called
almost-planar in the framework of transition fronts (see [17]). We try to apply the
ideas of Ninomiya and Taniguchi [21] which they used for homogeneous bistable
case, to construct the curved fronts. But, since the profiles U, and speeds c, of
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pulsating fronts are different in general with respect to the direction e, we have to
update their ideas.

We then claim our results. Let « € (0, ). Then, by Assumption (H2), there
exists a pulsating front in the direction (cos «, sin @), that is,

Uy(xcosa + ysina — cqt, X, y).
For any «, B € (0, ), define

U(;ﬁ(t,x,y)
:=max{Uy(x cosa + ysina — cqt, x,y), Ug(x cos B + ysin B — cgt, x, y)},
(1.7)

which is a subsolution of (1.1). Our first result shows the existence of a curved front
which converges to pulsating fronts along its asymptotic lines under some condi-
tions on angles « and B. The curved front is actually a transition front connecting
0 and 1 whose interfaces can be chosen as a V-shaped curve.

Theorem 1.2. For any 0 € (0, ), let g(0) = cp/sinb. Forany0 <a < B < m
such that
Cy cB

= —— = Cop > _c—efor any 0 € (a, B), g (o) <0and g (B) > 0,
sina  sin sin 0
(1.8)

there exists an entire solution V (t, x,y) of (1.1) such that V;(t, x,y) > 0 for all
(t,x,y) e Rx R? and

lim sup V(t,x,y) = Ugs(t, x, y)| = 0. (1.9)
R=+00 124 (y—capt)?>R2

Remark 1.3. In [15], Guo has shown that c, is differentiable with respectto e € S
and hence co = c(cosa,sing) 1s differentiable with respect to 6. Obviously, g(0)
is then differentiable with respect to 6 € (0, 7). Recently, Ding and Giletti [6]
have shown that the set of admissible speeds c, is rather large and it is conjectured
that ¢, could be any continuous sign-unchanging function. It means that conditions
g'(a) < 0and g’(B) > 0could be easily satisfied. We will also show that conditions
g'(@) < 0 and g'(B) > 0 are not empty later. It seems that in Theorem 1.2,
conditions g’(a) < 0 and g’(8) > 0 can not be removed by our methods. These
conditions are actually true for homogeneous unbalanced bistable case with the
reaction term having positive integration from O to 1 (« has to be smaller than /2
in this case by symmetry and 8 = 7 — «), but false for homogeneous balanced
bistable case. Moreover, the V-shaped front exists in homogeneous unbalanced
bistable case, but does not exist in homogeneous balanced bistable case, see [18].
Nevertheless, for the balanced case, there exist some fronts whose level sets have
an exponential shape for 2-dimensional space and a paraboloidal shape for N-
dimensional space with N > 3, see [5,26,27].
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Remark 1.4. One can easily check that the curved front V (¢, x, y) in Theorem 1.2
is a transition front connecting 0 and 1 (see [17] for the definition) with sets

If:={x<0,yeR;xcosa + ysina — cyt}

Ufx >0,y €e Ry xcos B + ysin B — cpt},

Qf ={x <0,yeR;xcosa + ysina — ¢yt < 0}
Ul{x >0,y e Ryxcos B+ ysin — cgt < 0},

and

Q ={x<0,yeR;xcosa+ ysina — cot > 0}
U{x >0,y e Ry xcos B+ ysin B — cgt > 0}.

Notice that for any fixed ¢, I'; is a connected polyline since ¢,/ sina = cg/ sin B
and the shape of I'; is invariant with respect to ¢. Moreover, by the definition of the
global mean speed [17], the curved front V (¢, x, ¥) has a global mean speed equal
to min{cy, cg}, in the sense that

d(I';, Ts)

T | — min{cy, cg}, as [t —s| — +o00.
—s

Here, the distance d(A, B) between two subsets A and B of R2, is defined by the
smallest geodesic distance between pairs of points in A and B. Another definition
of the distance d like

d(A, B) = min (sup{d(x, B);x € A}, supld(y, A); y € B}),

could be used. Then, there holds that d(A, B) < d (A, B) and the global mean
speed is equal to max{cy, cg}, in the sense that

d(Ty, Ty)

T | — max{cq, cg}, as |t —s| — +o0.
—s

This is different with the homogeneous case, in which the global mean speeds under
these two definitions are the same, see [17] and see [16] for the underlying domains
being exterior domains and domains with multiple branches.

We then show that the condition (1.8) is not empty, that is, it is satisfied when
a close to 0 and B close to 7, see Fig. 2.25.

Corollary 1.5. There exist 0 < oy < B < 7 such that for any « € (0, ay), there
is B € (B1, ) such that (1.8) holds for such o, B and there exists an entire solution
V(t, x,y) of (1.1) satisfying (1.9).

Indeed, one can rotate the coordinate such that y-axis points to any direction.
Although the periodicity is not preserved by rotation, the same proofs of Theo-
rem 1.2 and Corollary 1.5 can be applied. Therefore, Corollary 1.5 implies that for
any two pulsating fronts whose propagation directions are close to reversed with
each other, one can use them to construct a curved front.
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NE Bm

Fig. 1. An example of « and B satisfying (1.8)

Corollary 1.6. There exist 0 < p < 1 such that for any directions ey, ey with
—1 < ey -ex < —1+ p, there exist a direction eqy such that

C C
A= 2=, (1.10)
€] € €2 €

and there is an entire solution V (t, x, y) of (1.1) satisfying

lim sup V(t,x,y)—U;lez(t,x,y) =0, (1.11)

R=400 (x,3)~ceyeyten)?> R2
where

Ue_lez(t, x,y) :=max{U, ((x,y) -e1 —ce t, x,y), U, (X, y) - €2 — Ceyt, X, )}

By Theorem 1.2, one knows that (1.8) is a sufficient condition for the existence
of V (¢, x, y) satisfying (1.9). However, we cannot show that (1.8) is necessary, but
can show that (1.8) without g’(@) < 0 and g’(8) > 0 is necessary.

Theorem 1.7. If there are two angles o and B of (0, w) and a constant cqg > 0
such that there exists an entire solution V (t, x, y) of (1.1) satisfying (1.9), then it
holds that

Co cp

o
= = 0 e (a, B).
Cap sinae  sinf g sin 0 for any (@ B)

Now, we show the uniqueness and the stability of the curved front V (¢, x, y).

Theorem 1.8. For any fixed 0 < o < < 7 satisfying

Cy [&]

— = —— =y
sine sinp b

the entire solution V (t, x, y) of (1.1) satisfying (1.9) is unique; that is, if there is
an entire solution V*(t, x, y) satisfying (1.9), then V*(t, x, y) = V (¢, x, y).
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Theorem 1.9. Let o and B be fixed angles satisfying (1.8) and V (¢, x,y) be the
entire solution of (1.1) satisfying (1.9). Let 0 < ug(x, y) < 1 be an initial value
satisfying
lim sup  |up(x,y) — Ua_ﬂ(O, x,y)| =0. (1.12)
R—>+400 2, 2. g2

Then, the solution u(t, x, y) of (1.1) fort > Owithu(0, x, y) = uo(x, y) satisfies
t_lgrfoo lut, x, y) = V(t, x, ) poog2) = 0.

Next, we construct a transition front connecting 0 and 1 with varying interfaces.
Such a kind of transition front is known in homogeneous case by [17], in which
the solution is orthogonal symmetric with respect to y-axis and behaves as three
planar fronts as t — —oo. However, in our case, this transition front can not be
symmetric in general.

Theorem 1.10. Let o and B be fixed angles satisfying (1.8) and let Vo (t, x, y) be
the entire solution of (1.1) satisfying (1.9). Denote e, = (cosa, sina) and eg =
(cos B, sin B). Assume that there exist another angle 6 € (a, B) and a direction
eg = (cos 0, sin 0) such that

(i) for eq and ey, there is a direction eqyg such that (1.10) holds for e; = ey,
er = ey and eq = ey, it holds h' (o) < O where h(s) = c;/(eqp - (cOS s, sin s))
for 0 < s < 0 and there is an entire solution Vyy(t, x, y) satisfying (1.11).

(ii) for eg and eg, there is a direction egg such that (1.10) holds for ey = eg,
er = eg and eq = epy, it holds h'(B) > 0 where h(s) = cs/(egg - (cos s, sins))
for 0 < s < mand ey = ey and there is an entire solution Vgy(t, x,y)
satisfying (1.11).

Then, there exists an entire solution u(t, x, y) of (1.1) such that

Vo (t, x, y), uniformly in the half plane {(x,y) € R%:x < 0},
u(t, x,y) - ) as t — —oo.
Vo (t, x, )}, uniformly in the half plane {(x,y) € R%; x > 0},

(1.13)

and
u(t,x) = Vop(t,x,y), as t — 400 uniformly in R2. (1.14)

The convergence in above theorem is in the sense of L°° norm.

Remark 1.11. From the proof of Theorem 1.10, one can easily check that the entire
solution u (¢, x, y) is a transition front connecting 0 and 1 with the interfaces

Ft:=x§

Cy SINO — ¢y sina .
{ - t,yeR;xcosa+ys1na—cat=0}
sin(f — )

Cq SINO — ¢ sina
r<x

sin(f — «)
cpgsin® — cysin B

sin(@ — B)

t,yeR;xcos@—l—ysin@—cet:O}
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Fig. 2. Left: interface when << —1; Right: interface when r >> 1

cgsinf — ¢y sin
U[ p 0 'Bt,yeR;

sin(@ — B)
xcosf + ysinf — cgt =0}, for <0,

and

I' i={x <0,y e R;xcosa + ysina — cqt = 0}
U{x >0,y e Ryxcos B+ ysin —cgt =0}, for ¢t >0,

see Fig. 2.
Finally, we give an example showing that Theorem 1.10 is not empty.

Corollary 1.12. Assume that e, is the direction such that the family of speeds
{celees reaches its minimum, that is, c,, = minyes{c.}. Then, there exist e; and
ey close to ey such that (1.10) holds for e) = ey and there is an entire solution
Veier (t, x,y) of (1.1) satisfying (1.11). Moreover, there exist a direction e3 close
to —ey and a direction e such that there is an entire solution u(t, x, y) of (1.1)
such that

Veie, (t, x,y),  uniformly in the half plane {(x,y) € RZ; (x, y) - €4s < O},

ult, x,y) — { Veres (t, X, ¥)},  uniformly in the half plane {(x,y) € RZ; (x, y) - €4y > 0},

ast — —oo and
u(t,x) = Vees(t,x,y), as t — 400 uniformly in R2.

rest of this paper as organized as follows: in Section 2, we first prove the existence
of the curved front, that is, Theorem 1.2. Then, we give some examples showing that
Theorem 1.2 is not empty. We also show a necessary condition for the existence of
the curved front in this section. Section 3 is devoted to the proof of the uniqueness
and stability of the curved front in Theorem 1.2. In Section 4, we construct a curved
front with varying interfaces and give an example.

2. Existence of Curved Fronts
This section is devoted to the construction of a curved front satisfying Theo-

rem 1.2. We will need some properties of the pulsating front, especially the differ-
entiability of the profile U, and the speed c, with respect to the direction e.
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2.1. Preliminaries

We will use the hyperbolic function sech(x) frequently in the sequel. Thus, we
recall some known properties of it which can be checked easily.

Lemma 2.1. It holds that
| sech'(x)|, | sech” (x)| < sech(x), for x € R,
and there is a positive constant p such that

sech’'(x) > 0 for x < —p, sech'(x) <0 for

x>p and sech’(x) > 0for |x|> p.

Then, we need a smooth V-shaped curve with y = —x cot and y = —x cot 8
being its asymptotic lines.

Lemma 2.2. For any 0 < a < B < m, there is a smooth function ¥ (x) for x € R
with y = —xcota and y = —x cot B being its asymptotic lines and there are
positive constants k1, ko and K1 such that

¥(x) > 0, forall x eR

—cota < ¥/ (x) < —cot B, forall x eR

ki sech(x) < ¥’'(x) + cota < K| sech(x), for x <0, 2.1)
ky sech(x) < —cot B — Y’ (x) < K| sech(x), for x >0,

max(|y” ()|, [v"(x)]) < K| sech(x), forall x € R.

Proof. Let0 < o < B < m. Since @ < B, there are two positive constants a, b
and a smooth function ¢(x) such that

—xcota, x < —a

” _
—xcotfB, x >b. and ¢" (x) > O for a<x<b.

p(x) = {
An example of such a function is that one can take an incircle of the straight lines
y = —xcota and y = —x cot 8 with tangent points (—a, a cot «) and (b, —b cot )
and ¢(x) is made of the line y = —x cota for x < —a, the arc of the incircle
between —a and b, and the line y = —x cot 8 for x > b. One can mollify ¢(x)
at (—a, acota) and (b, —b cot B) such that ¢(x) € C*(R), see Fig. 3. Define a
smooth function ¥ (x) as follows:

¥ (x) 1= @(x) + psech(x).

Here p > 0 is a constant. Since sech” (x) is bounded and by Lemma 2.1, one can
make p small enough and a, b sufficiently large such that

Y (x) > Oforall x e R.

Moreover, one can easily check that v (x) satisfies all properties in (2.1). This
completes the proof.
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Fig. 3. The function ¢(x)

We now recall some properties of the pulsating front U, ((x, y) - € — cet, x, y).
One can substitute the form U,((x,y) - e — cot, x,y) into (1.1) and get that
(Ue(&, x,y), co) satisfies the semi-linear elliptic degenerate equation

Ce0sUe + 05 Up + 2V 0t U, - e + Ay yUe
+ f(x,y,U,) =0, forall (& x,y)eRxT>. (2.2)
From [15, Lemma 2.1], we have

Lemma 2.3. For any pulsating front (U, (&, x, ), c.) withc, > 0, there exist jt] >
0, up > 0, C1 > 0 and Cy > 0 independent of e such that

0 < Uc(&,x,y) < Cre ™5 for € >0, (x,y) € T?
0 <1—Ud&, x,y) < Cae'? for £ <0, (x,y) € T2

Then, by standard parabolic estimates applied to u(t, x, y) = U((x,y) - e —
Cet, x,y),onecan getthat |Vy yu,l, lugyl, lu;] < Cu(t+1, x, y) for some constant
C >0and (#,x,y) € R x R2. Notice that u, (7, x, V) = —ce0:Uc((x,y) - e —
Cet, x,y) with ¢, > 0. Then, by Lemma 2.3, we have the following lemma:

Lemma 2.4. For any pulsating front (U, (&, x, ), c.) withc, > 0, there exist 13 >
0 and C3 > 0 independent of e such that

[0: U (&, x, Y|, 1056 Ue(§, x, Y)I, Vi y0sUe(§, x, y)
< Cze 38l for £ €R, (x,y) € T2,

We also need the following properties:
Lemma 2.5. For any C > 0, there is 0 < § < 1/2 independent of e such that
8§ < Uy, x,y)<1-8,for —C<g<Cand (x,y)eT?  (23)
and there is r > 0 independent of e such that

—0:U (&, x,y) =rforfor —C<&E<C and (x,y) € T2, 2.4)
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Proof. Let u(t,x,y) = U.((x,y) - e — cet, x,y). One can easily check that
u(t, x, y)is atransition front connecting 0 and 1 with set {(¢, x, y) € RxRZ; (x,y)-
e — c.t = 0} being its interfaces. Then, by [3, Theorem 1.2], one immediately has
that there is 0 < § < 1/2 such that

S<u(t,x,y)<1—-6,for —C<(x,y)-e—cet <C.

By continuity of U, with respect to e (see [15]), one has that § can be independent
of e.

The following proof for (2.4) can be simplified for the pulsating front U,.
However, we do it in a general way in purpose that such idea can be used to prove
that the curved front which we construct later has similar properties. Notice that
uy(t, x,y) > 0 satisfies

(ur); — Auy — fu(x, y, uyu; =0, for (r,x,y) € R x R%.

Assume that there is a sequence {(t,, Xn, Yn)}nen of R X R2 such that —C <
(XnsYn) - e — cety < C and u;(ty, Xu, yo) — 0 asn — 4oo. Since f(x,y,u)
is periodic in (x, y), there is (x/,y") € R? such that f(x + x,, y + yp, u) —
fx+x',y+y,u)asn — +oo. Letu,(t, x, y) = u(t +t,, x + x,, y + yu) and
v (t, x,y) = us(t+1t,, x+x,, y+yn). By standard parabolic estimates, u, (¢, x, y)
converges to a solution u. (¢, x, y) of

wp— Au— fx+x,y+y. o) =0, for (,x,y) €RxR?,
and v, (¢, x, y) converges to a solution vs,(#, x, y) of
v — Av— fu(x +x", y+ Y us)v =0, for (r,x,y) € R x R,

Moreover, v (2, X, y) satisfies veo (7, x, ¥) > 0 and v (0, 0, 0) = 0. By the max-
imum principle, v (f, x, y) = 0. Since U, (&, x,y) — 1 as & — —oo, there is
R > 0 large enough such that

u(t,x,y)>1—ofor (t,x,y) e Rx R? such that (x,y)-e—cet <—R,

where o is defined in (F3). Take (x4, y,) € R? such that (xy, y¢)-e < —R—C.
Then, v (¢, x, y) = 0 implies that u,(t + #;,, x + x4 + X5, Yy + Y« + ) — O
as n — o0 locally uniformly in R x R2. Notice that (s + X, Vs + V) - € —
Cetn < —R and hence, u(t,, x4 + Xn, ¥« + Yn) = 1 — 0. Also notice that 1 is the
only equilibrium of (1.1) over 1 — o from (F3) and (1.2). It further implies that
u(t+ty, X +xx+xn, y+y«+yn) — 1locally uniformly in R x R2. Since (x,, Vi)
is fixed and —C < (x;, yn) - € — cet;, < C, it reaches a contradiction with (2.3).
This completes the proof.

It follows from [15, Theorem 1.5] that U, and c, are differentiable with respect
to e. Remember that U, are normalized by U, (0, 0,0) = 1/2 for all e € S. For any
b € R?\ {0}, define

Up=Uyp andcp =c» .

2.5)
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Define Banach spaces as follows:

L*(R x T?) = {u € L}, (R x R?); u(&,x +kiL1,y+kaLo)
=u(,x,y) ae.in R x R?
forany ki,ko €Z, and u € L2(R x K)
for any bounded set K C ]Rz},
H'R x T% = {u € H. (R x R?); u(&, x +kiL1,y+kaLy)
=u(,x,y) ae. inR x R?,
forany ki,kr € Z, and u € Hl(]R x K)
for any bounded set K C R2},

and

H*(R x T?) = {u € H: (R x R?); u(&,x +kiLi,y+koLo)
=u(&,x,y) ae.in R x R?,
forany ki,ky € Z, andu € HZ(R X K)
for any bounded set K C R?},

and define their norms as

1/2
||”||L2(Rx1r2)=<// |u|2dxdyd$) ,
R JT2

||”||H1(R><T2) = ||u||L2(R><T2) + ||8EM||L2(Rx11‘2)
Hl0xull p2rxr2y + 10yull 2R xT2)

and

lull 2 <12y =l g1 wxr2) + 10251l L2 R 5T2)
+ [10g Oxull L2(r 2y + 1108 0yull L2 (R T2)

+ 10xxullp2®xr2y + 10x Oyull p2mxr2y + 10yyutll 2R 5T2)-

Lemma 2.6. Let U, and cp be defined in (2.5). Then, Uy, and cp are doubly continu-
ously Fréchet differentiable at any b € RN \ {0}, that is, there exist linear operators
(U}, ;) : R? - L*(R x T?) x Rand (U}, c})) : R* x R? - L>(R x T?) x R
such that for any h, p € R2, (Upyn, co4n) — Up, cp) = (U, c;) - h + o(|hl),
U,y hochyy 1) = (U) hoch-h) = (UL -h.c)-h) - p+o(pl) as |hl. |p] — O.

Let us denote the Fréchet derivatives up to second order of U, and c, with
respect to e by U,, U/, ¢, and ¢/]. The Fréchet derivatives are all bounded in the
sense that

/
il = sup e tlimma
O hery || ’
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U, - h) - ,0||L0<>(Rx1r1\’)

||Ué/|| = sup < 400,
(h,p)€RN xRN |7l o]
and
c - h c’h)-
lell = sup e hl_ 4o, I/l = sup lee-m el _ o
nery 1] (h.p)erN xrN 1ol

The boundedness of ¢} and ¢/ can be easily followed. Let i € RN with |h| = 1.
One can also easily get that || U, - h[| ;2 (g 72y is uniformly bounded for any / € RV
with |h] = 1. By differentiating (2.2), it follows that

¢! hdeU, + co0eU. - h+ e UL - h 42V, ,0U, - (h — (h - €)e)
2V, 0: UL -+ Ay UL b+ fu(x, y, UU.L - h = 0. (2.6)

By rewriting (2.6) in its weak form in the variables (¢, x, y) (namely & = (x, y)-e—
cet), it follows from parabolic regularity theory and bootstrap arguments that U} - i
is a bounded classical solution of (2.6) and the L*° bound of U}, - & is uniform for
h € RN with |4 = 1. Thus, U, is bounded in the above sense. Similar arguments
can be applied to U.'. We also know from [15] that for any h € R?, p € R2, U, - h
and (U] - h) - p are differentiable with respect to &, x and y up to second order and
these derivatives are bounded too. We then need the following properties of U):

Lemma 2.7. For any e € S, there exist pg > 0 and C4 > 0 independent of e such
that

(U, - h)(&, x, )|, 13U, - h)(E, x, )]
< Cye Ml py, forany h e R2,E €R and (x,y) € T2.

Proof. Take a smooth nonincreasing function p(£€) such that
pE)=1for £€<0 and p(§)=e S for £€>b

for some positive constants r and b. Here, one can make r and b to be small and
large enough respectively such that

r < min{uy, pn2, 43}, 2.7
and , B
co i’) ((5)) ‘I; ((;)) < %for all & cRandecs, 2.8)

where A > 0 is defined in (F3).
For every direction e, we define a function V, (€, x, y) by

Ve(€.x,y) = p ' (§)Uc(§.x.y), for &€R and (x,y) €T
By Lemmas 2.3, 2.4 and (2.7), one has

Ve(—00, x,y) = 1 and V,(+00, x, y) = 0, uniformly for (x,y) € T?and e €S,
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Vo(&,x,y) € LR x T?), 1 — V. (&, x, y) € L>(R™ x T?) and all derivatives of
V. up to second order are in L%(R x T?). Since U, (&, x, y) satisfies (2.2), one can
get that V, (&, x, y) satisfies

2 2
L oaeve+ Ly, V. e
P P

CeO Ve + 0g£ Ve + 2Vx,y3§ Ve-e+ Axy Ve +

l p/ p//
+—f(X,y’PVe)+<Ce— —)Ve=0, for (£,x,y) € R x T2
p p p

From (F3) and (2.8), there is C > 0 such that

Lrey pVo+ (e + Z)Ve s =4Ve,  for (r,y) eT2and§ = C,

Lre V)+<c”—’+ﬂ>v>&(1—V) for (x )eﬂr2andg<—c(2'9)
P » Vs PVe ep » =) e)s >y = .

For any e € S, define a linear operator
2p 2p
M, (V) := Ce0sv + 0gv + 2V y0sv - e + Ay yu + 7851) + 7Vx,yv -e — P,

where 8 > 0 is a fixed real number and
veD:={veH'RxTV); dgcv42Vydsv-e+ Ayv € L*(R x TV)}.

The space D is endowed with the norm [[v[lp = [[vll g1 (rxTn) + 19560 +2Vy 0 v -
e + Ayvll 2«1y Then, by the similar proofs of Lemma 3.1, Lemma 3.2 and
Lemma 3.3 in [7] (one can trivially extend the proofs to the high dimensional
space), one knows that M, satisfies all the properties in Lemma 2.7 of [15], such
as invertibility and boundedness. For any e € S, we then define

2p 2p’
pagv-l- P

H,(v) := Ce05vV + 0ggv + 2V y0sv - e + Ay yv + » »

Viyv-e

p/ p//
+ fu(y, pVe)v + <Ce; + 7)0, veD.

Notice that H,(v) = ﬁe(pv)/p with 0 < p(&) < 1, where
ﬁe(v) = Ce0gV + 05V + 2Vy0:v - e + Ayv + fiu (v, Uy, v e D.

By Lemma 4.1 in [7], one knows that the operator H, and its adjoint operator ﬁe*
have algebraically simple eigenvalue O and the kernel of H, is generated by 0 U,.
Therefore, the operator H, and its adjoint operator H; also have algebraically
simple eigenvalue 0 and the kernel of H, is generated by p~! 0: U,. Moreover, the
property that the range of H, is closed in L?(R) x T2 can be proved in the same
line of the proof of [7, Lemma 4.1] by using (2.9).

Now, forany e € S, v € H2(R x ']I‘z), P eRandn € R2, define

/

2p
) Vx,y(ve +v)-n

K.(v,9,n) =00 (Ve +v) + 2V, 06 (Ve +v) - n +

1 1 / "
+—f 0 pVet ) = —f O Vo) + (e 2+ B 1 ),
p p p p
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and
Ge(v, 0, 1) := (v + M7 (Ko (v, 9, 1), /R . [(VeE, y) +v(E, ) = UZE )] dyds) .

By following the proof of [15, Lemma 2.10], one can get that for every e € S,
the function G, : HZ(R x TV) x R x R¥ — D x R is continuous and it is
continuously Fréchet differentiable with respect to (v, ) and doubly continuously
Fréchet differentiable with respect to 5. For any ¢ € SV~ and (3, 9) € D x R,
define
0.(1.9)
- (6 FMI GOV, iU+ (2w D p)D2 [ Ve i y)dyds) :
p P R+ xTV

which has the same form as 9(,,9)G. (0, 0, 0). By the properties of H, and the same
line of the proofs of [7, Lemma 3.3] and [15, Lemma 2.11], one can get that Q,
satisfies all properties in [15, Lemma 2.11], such as invertibility and boundedness.

As soon as we have all these properties of these operators, we can follow the
same proof of [15, Theorem 1.5] to get that V, (£, x,y) = p~ L (&)Up(&, x, y) is
doubly Fréchet differentiable at any b € R? \ {0}. Moreover, || V/|| is bounded for
any e € S.

Thus, by the definition of Fréchet differentiation, we have

(UL -h)(-, ) = pE)V,-h)(,-,-), forany ecS and he R
Therefore, there exists a positive constant C4 such that

(U x, 01 < pEIVLIIAL < Cae™ " |h| for § =0, (x,y) € T? and h € R?.

(2.10)
By applying similar arguments to the other side, that is, £ < 0, one can also get
that there are positive constants Cs and ps such that

(U, - h) (&, x,y)| < Cse™S|h| for & <0, (x,y) e T>and heR% (2.11)
Lastly, we differentiate (2.2) at ¢ on & € R? and get that
(¢, h)0gUe + o (U, - h) + 35 (U, - h) + 2V,3: U, - (h — (e - h)e)
+ 2V 0 (U, - h) e+ Ay (U, - h) + fu(x,y, U)(U, - h) =0.

By changing variables § = (x, y) - e — c,t, one has that u(z, x) := (U, - h)((x, y) -
e — cot, x, y) satisfies a parabolic equation

ur — Au = f,(x,y, Udu + (¢, - h)dgUp 4+ 2V y0: U, - (h — (e - h)e).

By parabolic estimates, Lemma 2.4 and (2.10)-(2.11), one can get that there are
positive constants Ce and pg such that

lus (t, x, y)| < CoeHolteyre=cellipy,
that is,
|0 U, - h) (£, x, )| < Coe *8l|h| forany h € R?, & € Rand (x, y) € T%.

This completes the proof.
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2.2. Proof of Theorem 1.2

Take any two angles «, B of (0, 7) such that (1.8) holds. Let 1/ (x) be a smooth
function satisfying Lemma 2.2 for o and S. Take a constant o to be determined
later. For every point (x, y) on the curve y = v (ox)/0, there is a unit normal

(2.12)

) 1 )
V2(ox) +17 V2 (ox) + 1

By Lemma 2.2, every component of e(x) is differentiable with respect to x and

o) = (e1(0), e200)) =

e(x) — (cosa,sinaw)as x — —oo ande(x) — (cos B,sinB) as x — +00;

its derivatives can be denoted by

¢ (x) = (€} (x), b(x)) = (_ oy (0x) 3,_91# ey (Qx3)>,
WY2ex)+ D2 (Y%(ex) +1)2

and
o*¥" (ox) N 302y (0x)¥" (0x)

W20+ 1T W2x)+ 1)}

__@Ven) o enven) | Ssz’z(gxw’Q(ax))
W2x)+ 12 (Y2x)+ 1)} (W2 (ox) + 1)}

Therefore, by Lemma 2.2, there exist K» > 0 and K3 > 0 such that

¢ (x) = (€] (1), 5 () =( —

le'(x)| < oKasech(ox) and |¢”(x)| < 0*K3sech(px) forall x € R.  (2.13)

Remember that Ua_ﬂ (t, x, y) defined by (2.8) is a subsolution of (1.1). Now,
take a positive constant ¢ and we define

UT(t,x,y) = Ue) (61, X, y), x, y) + esech(ox), (2.14)

where
— cqpt — Y(ox)/0

VU ex) + 1

and cqg is defined by (1.8). We prove that U™ (t, x, y) is a supersolution of (1.1)
for small ¢ and p.

§(t,x,y) = Y (2.15)

Lemma 2.8. There exist eg > 0 and o(g9) > 0 such that for any 0 < ¢ < g9 and
0 < 0 < 0(&), the function Ut (¢, x, y) is a supersolution of (1.1) with U,+ > 0.
Moreover, this satisfies

lim sup Ut x,y) — Ugp(t, %, Y)| < 2, (2.16)
R—+o00 x2+(y—ca,ﬂt)2>R2

and

Ut (t,x,y) = Upy(t, x, ), forall t€R and (x,y) € R2. (2.17)
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Proof. We divide the proof into three steps.
Step 1: U™ is a supersolution. We will pick &g > 0and o (&) such that Lemma 2.8
holds. Assume that

&0 =

3

[NSYS]

where o > 0 is defined in (F3). More restrictions on &g will be given later. One can
compute that

LU :=U = AU = flx,y, UY)
=0 Uo(ry€r — O£ Uo() (67 + &) — 2V e Uer) - (x. &)
— Ay yUe(x) — 95 Ue(x)éxx
— Ul - €(x) - €' (x) = Uy, - €' (x) = 20: U, - €/ (x)Ex
—20,U - €' (%)
— go?sech”(ox) — f(x,y, U),

where 8.5 Ue(x), aSS Ue(x)a Vx,yaé Ue(x)’ A)c,yUe(,\f)v e:(x) e'(x)-e'(x), U,(x) e’ (x),
9: U (e(x)) - €' (x), 0, U e(x) -€/(x) are taking values at (£(¢, x, y), x, y)and U™, &,
&y, &y are taking values at (¢, x, y). By (2.15), it follows from a direct computation
that

_ Cap
T e 1
SZ_QW(QX)I//'(QX) A C)
X Iﬁ/z(Qx) +1 /w/z(QX)T_ 1,

1
fy = ————,
Y o) + 1
o _ @V e, ¥ 0y en -, Y
” Y2 (ox) + 1 (Y2 (0x) + 1)

@(W(@x) — Dy (0x)
(W2(ox) + 1)2
17 2 Vi

2, g2 (V)Y ex)\2, oY ey (er)
St ( Y2 (0x) + 1 ) i (1/f’2(Qx)+1)%E

By noticing that &, = e>(x) and by (2.2), one has

Ut = (Cer) +£)0Ue(r) — Iz Ue (7 + & — 1)
—20x 05 Ue(x)(x — €1(x)) — 35Ue(x)§xx
= Uy €' () - €' () = Uy - €' (x) = 206Uy, - € (06 (2.19)
- 28er(x) e (x)
— e0”sech”(0x) + f (x, ¥, Uex)) — [ (x, 3, UT),
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where aE Ue(x)a aEé Ue(x)’ Oy aS Ue(x)v Ué/(x) e'(x)- e (x), Uci(x) e’ (x), 35 U'(e(x)) -
e'(x), Oy Ue’(x) - €' (x), Ue(y) are taking values at (§(7, x, y), x, y) and U™, &, &, &,
are taking values at (¢, x, y). By Lemma 2.4, one has that |9z U ()&, |0z Ue(x)&|»
[0x0g Ue(x)&| and |0g Ue(x)& | are uniformly bounded for & € R, (x, y) € RZ2. Then,
by Lemmas 2.2 and (2.18), there is Cs5 > 0 such that

105 Ue(e) (57 &7 — 1)1 421050 Ue(x) (6x — €1 (0))| +10 Ue(r) Exx | < Csesech(ox).
(2.20)
Since [|U.l, 1U/1I, 18 U, 118x U, || are bounded and by Lemma 2.7, (2.13), there
is Cg > 0 such that
|Ué'(x) el (x) e’ ()] + |Ué(x) e’ ()| + 2|3§Ué(x) -e (0)& |
42|09y Ué(x) -€'(x)| < Cgosech(px). (2.21)
We make the following claim:

Claim 2.9. There is C7 > 0 such that
Cap

—& — Cox) = W

We postpone the proof of this claim after the proof of this lemma.
Then, it follows from (2.19), (2.20), (2.21), (2.22), Lemma 2.1 and 9: U, < 0
that

— Ce(x) = Cysech(ox) > 0. (2.22)

LUT > — 0g Ue(x)C7sech(ox) — (Cs + Cg)osech(ox) — 2sgzsech(gx)
+ f(x’ ya Ue(x)) - f(x5 y5 U+)‘
By Lemma 2.3, there is C > 0 such that

(2.23)

0<Ue($,x,y)§%for £ > Cand 0<1—Ue(§,x,y)§%for £ <—C,

(2.24)
uniformly for (x,y) € T2 and e € S. Then, for (¢,x,y) € R x R? such that
E(t,x,y) > C and &£(t,x,y) < —C respectively, one has that UT (¢, x,y) <
0/2+¢e <oand UT(t,x,y) > 1 — /2 respectively since ¢ < g9 < o/2 and
hence, it follows from (1.2) that

Fx, v, Uer)) — fx,y,U") > resech(ox). (2.25)
Since 0¢ U, < 0 and by (2.23), (2.25), one has that
LUY > ( — (Cs + Co)o — 2¢0> + As)sech(gx) > 0,
by taking 0 < ¢ < o(¢) where o(¢) > 0 is small enough such that
—(Cs 4 Cg)o — 280> + re > 0, forall 0 < o < o(¢). (2.26)

Finally, for (¢, x,y) € R x R2 such that —C < E(t,x,y) < C, it follows from
Lemma 2.5 that there is £ > 0 such that

—0eUc(§,x,y) > kforall eeS. (2.27)
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Notice that

F, v, Uey) — fx, y,U") = —Mesech(ox), (2.28)

where M := max, , »er2xR |fu(x, y, u)|. Thus, it follows from (2.23), (2.26),
(2.27) and (2.28) that

LUt > (kC7 —(Cs + Co)o — 260° — Ms)
sech(ox) > (kc7 — O+ M)s)sech(gx) >0,

by taking ¢g = min{o /2, kC7/(A + M)} and 0 < ¢ < g&.

Therefore, LUT > 0 for all # € R and (x,y) € R? By the comparison
principle, U (¢, x, y) is a supersolution of (1.1). The property U;” > 0 comes
from 0s U, < 0 and ¢y > 0.

Step 2: the proof of (2.16). Since e(x) — (cosa, sinw) as x — —oo and by
the definition of U e’, there is R; > 0 such that

|U€(X)(s(t9xs )’)7)59 )’) - Ud(é(th? )’)v)ﬁ y)l
< ||U(;|||e(x) — (cosa, sina)| + o(Je(x) — (cosa, sina)|)

< ¢ for x <—R; and reR,yeR. (2.29)

= )

Notice that 1/y/¥?(0x) + 1 — sina as x — —o0 and ¢ep sina = cq. Then, by
Lemma 2.2, one has that

E(t,x,y) > xcosa + ysina — cyt, a8 x — —oo foranyr € Rand y € R.
Thus, there is R» > 0 such that
|Ug(E(t, x,y),x,y) — Uy(xcosa + ysina — cut, X, y)|
< 2 for x < —Ryandt e R,y e R.
By the definition of U T(t, x,y) and together with (2.29), it follows that
|U+(t, x,y) — Uyg(xcosa + ysina — cqt, x, y)|
< %8, for x < —max{R;, Ry} and t e R,y eR. (2.30)
Similarly, one can prove that there is R3 > 0 such that
|U*(t,x,y) — Ug(xcos B+ ysin B — cpt, x, y)|

3
< 58’ for x> R3; andteR,yeR. (2.31)

Now, for —max{R;, R,} < x < R3, we know that ¥ (ox) and v/ (ox) are
bounded. Then, as y — cqgt — 400, one has that

&E(t,x,y) - +ooand xcosa + ysina — ¢yt — +00,
for — max{Rj, R2} <x < Rj3.
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Thus, there is R4 > 0 such that

&
O < Ue(x)(é(tsxa )’), x5 y) S Ea
and

0 < Uy(xcosa+ ysina —cqt, x,y), Ug(xcos B+ ysinf —cgt,x,y) <

| ™

for —max{R;, Ry} < x < Rz and y — ¢yt > R4. Hence,
Ut (t, x,y) — Upp(t, x, )| < 2, (2.32)

for —max{Ry, Ry} < x < Rzand y—cygt > Ry4.Similarly, since U,(y)(—00, x, y) =
Uy (—00, x, y) = 1 uniformly for (x, y) € T2, there is Rs such that

U (1, x,9) = Upgg (1, x, y)| < 26, (2.33)

for —max{Ry, Ry} <x < R3and y — cqpt < —Rs.
On the other hand, since U,(—o0, x, y) = 1 and U.(+00, x, y) = 0 for any
(x,y) € T2 and e €S, it follows that there is C; > 0 such that

0 < Ud(&,x,y) <e/dfor &€>C, and(x,y) e T?,
and
1—¢/4<U.(&,x,y) <lfor € <—C, and (x,y) e T
This then means that
Uy(xcosa + ysina — cqt, X, y)

> Ug(xcos B+ ysinB —cpt, x,y), for (¢,x,y) € Rx R2

. (2.34)
such that xcosa + ysina — cot < —C¢

and xcosB+ysinfB —cgt > C,.

For any fixed € R and any point (¢, x, y) € R x R? such that x cos & 4 y sina —
cyt = r, one has that

sinfw — B) sinp
: + —=—r
sin o sin o
as x — —oo uniformly for r > —Cs,

xcosB+ysinf —cgt =x — +00,

since —r < o — B < 0 and ¢y/sina = cg/sin B. It implies that Ug(x cos B +
ysin B —cgt, x,y) — 0asx — —oo uniformly for (¢, x, y) € R x R? such that
xcosa + ysina — ¢yt = r > —C,. While, by Lemma 2.5, there is ¢’ > 0 such
that Uy (r, x, y) > &’ for —C,; < r < C,. Thus, there is Rg > 0 such that

Uy(xcosa + ysina — cyt, X, y)

> Ug(xcos B+ ysin B —cpt, x,y), for (¢,x,y) e Rx R2

(2.35)
suchthat x < —Rgand — C;

<xcosa + ysina — cqt < Cs.
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and
Ug(xcosB+ ysinB —cpgt,x,y) < %, for (t,x,y) € R x R* suchthat x < —Rs
and xcosa + ysina — cqt > Cs.
It follows that
Ua_ﬂ(t,x,y)

)

5o

= max{Uy(x cosa + ysina — cqt, x,y), Ug(xcos B+ ysin f — cgt, x, y)} <

for (¢,x,y) e Rx R?  such that x < —R¢ andxcoswo + ysina — cyt > Cq.
(2.36)
For any point (¢, x, y) € R x R? such that x cos 8 + ysin § — cgt = r, one has
that
. sin(B —«a) sina
cosa + ysimno —cyt =x - + — r —> —0Q,
sin 8 sin 8

as x — —oo uniformly for r < C,.

This implies that Uy, (x cosa + ysina — cqt, x,y) — 1 as x — —oo uniformly
for (¢,x,y) € R x R2 such that xcosB + ysinB — cgt = r < Ce. While, by
Lemma 2.5, there is ¢” > 0 such that Ug(r, x,y) < 1 —¢” for =C, <r < C,.
Thus, even if it means increasing Rg, one can get that

Uy(xcosa + ysina — cqt, x, y)
> Ug(xcos B+ ysinB —cpt, x,y), for (¢,x,y) € Rx R2 2.37)
suchthat x < —Rg¢ and — C¢ <xcosf+ ysinf —cgt < Cs.

and

£
Uy(xcosa + ysina —cyt, x,y) > 1— T for (¢t,x,y) € Rx R%such that x < —Rg

and x cos B + ysin f — cpt < —C,.
It follows that

Ua_ﬂ(t,X,y) >1-— Z for (t,x,y) € R x R2
such that x < —R¢ and xcosB +ysinf —cgt < —C.. (2.38)

By (2.34)-(2.38), one gets that

Ua_ﬂ(t, x,y) =Uy(xcosa + ysina — cyt, x, y), for
(t,x,y) € R x R*> suchthat x < —Rs,

xcosa +ysina —cqt < Cg and xcosfB+ ysinf —cgt > —Ce.
and

£
|Ua_ﬁ(t,x, y) — Ug(xcosa + ysina — cyt, x, y)| < vk
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for (t,x,y) € R x R? such that x < —Rg, xcosa + ysina — ¢4t > Cg and
(t,x,y) € R x R2 such that x < —Rg, xcos B + ysin B — cgt > —C.. Above
arguments also imply that

Ua_ﬁ(t,x, y) — Uy(xcosa + ysina — cqt, x,y) — 0,
as x — —oo uniformly forr e R and y e R.

Similar proof can deduce that

Ua_ﬂ(t,x, y) —Ug(xcos B+ ysinf —cgt,x,y) = 0, as x —
400 uniformly for rt € R and y e R.

Combined with (2.30), it follows that

U™ (¢, x, y) — U;ﬂ(t,x, y)| < 2e, for
x < —max{R, R>, R¢g} and r e R,y eR. (2.39)

Similarly, there is R7 > 0 such that

Ut x,y) — Ugp(t, x, y)| < 2¢, for x > max{R3, R7} andr € R,y € R.
(2.40)
By (2.32), (2.33), (2.39) and (2.40), we have our conclusion (2.16).

Step 3: the proofof (2.17). We only have to prove that Ut (¢, x, y) > Uy (x cos a+
ysina — ¢yt) and Ut (2, x,y) > Ug(xcos B + ysin B — cpt) forall t € R and
(x,y) € R2.

Since U,(—00,x,y) = 1 and U,(4o00,x,y) = 0 for any (x,y) € T2 and
e € S, there is C > 0 such that

0<Ud&,x,y)<ofor £€>C and (x,y)eT?,
and
l—0 <U,&,x,y) <1for £ <—C and(x,y) € T?,
where o is defined in (F3). By (2.16) and letting ¢ < o/4, there is R > 0 such that

Ut(t, x,y) <o, for (t,x,y) € Qf
and Ut (t,x,y) > 1 —o, for (t,x,y) € Qp,

where

Q; ={(,x,y) €eR ><]R2;x <0Oandxcosa + ysina — cyt > cqR}U{(t,x,y) € R x R2;
x > 0andxcospB + ysin B — cgt > cgR},

and

Qp={x,y) e Rx R x < Oand x cosa + ysina — ¢yt

< —cgRYU{(t, x,y) € R x R?;
x > 0and xcos B+ ysin B — cgt < —cgR}.



1594 HoNGIJUN GUO ET AL.

Notice that for any ¢, the boundaries of Q;" and 2, are connected polylines since
¢q/sina = cg/sin . By Lemma 2.5 and the definition of U™(t, x, y), there is
0 < ¢’ < o such that

o UM (t,x,y) <1—0/, for (t,x,y) e R x R*\ (Q} UQy).
and
o' <U/ & x,y)<1—c'for —C<&<C,(x,y)eT? andany e €S.
Forany t € R, letu, (¢, x,y) = Uy(xcosa + ysina — cqt + 7). Let
ol ={(t,x,y) e Rx R} xcosa + ysina — cqt + 17 > C},
and
w; ={,x,y) e Rx RZ; xcosa + ysina —cyt + 7 < —C}.
Notice that since « < $, one has that
{(t,x,y) e R x R?; x cosa + ysina — cqt < —cqR} C Q7,
and
QJIQ Cc{(,x,y) e Rx R%; x cosa + ysina — cqt > cq R}.
Thus,
R x R?\ (0f Uo;) C Qe and R x R\ (QF URQy) C ol ¢

Then, by (2.16), U.(—00, x, y) = land U, (+00, x, y) = 0, thereis 7y > ¢, R+C
large enough such that for any t > 71,

Ut x,y) =1 —0" >ug(t,x,y), forall (t,x,y) € R x R*\ (0 Uw:),
and
ur(t,x,y) <o’ <UT(t,x,y), forall (r,x,y) € R x R*\ (2} UQp).
Moreover, since T > 11 > ¢, R + C, one has that
Utt,x,y) > 1—0 >0 >u;(t, x,y), forall (t,x,y) € o NQp.
Thus, it follows that

u(t,x,y) < U+(t,x, y), forany 1> 19
andall (1, x,y) € R x R*\ (0] UQ}). (2.41)

Also notice that
ur(t,x,y), UT(t,x,y) = 1 —o inw;and u.(t, x,y), UT(t,x,y) <o in Q},

and f(x,y,u) is nonincreasing in u € (—oo,c] and u € [1 — o, +00) for any
(x,y) € T? by (1.2). By following similar proof as the proof of [3, Lemma 4.2]
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which mainly applied the sliding method and the linear parabolic estimates, one
can get that

UT(t,x,y) > uc(t,x,y), in o] and QF.

T
Combined with (2.41), one has that
Ut(t,x,y) > uc(t,x,y), forany 7>17 andall (z,x,y) € R xR
Now, we decrease 7. Define
T, =inf{r e R; UT(t, x, y) = ur(z, x,y) forall (z,x,y) € R x R?}.

From above arguments, one knows that 7, < -+oo. Since Ut (t,x,y) — U,
(xcosa + ysina — cqt, x, y) as x — —o0, Uy (&, x, y) is decreasing in £ and by
the definition of u (¢, x, y), one also knows that 7, > 0. Assume that 7, > 0. If

inf{U (1, x,y) —ur, (1, x,y): (£, x,y) € R x R?\ (0, UQH)} >0,
then there is > 0 such that

Ut (t,x,y) = tgy—y(t,x,y), for (t,x,y) e Rx R\ (0, _, UQ}).

Ts—1
Then, one can apply the above arguments again and get that U™ (¢, x,y) >

Ug,—n(t,x,y) forall (r,x,y) € R x R2 which contradicts the definition of 7.
Thus,

inf{U (1, x,y) —ur, (£, %, y): (1, x,y) € R x R?\ (0, UQ})}=0.

Since o < B, there is a sequence {(t,, X,, ¥n)}nen in R X R? \ (w7, U Q‘,g) such
that

—C — 1 < xpc080 + y, Sina — coty < cyR,
and
U™t (tn, Xn, Yn) — tg, (tns Xn, yn) — 0, as n — +00.

Then, there is &, € R such that x,, cos @ + y, sina —cyt;, — & asn — +o00. Since
Ut(t,x,y) — Uy(xcosa + ysina — cqut, x,y) as x — —oo, UT(t,x,y) —
Ug(xcosB + ysinB — cgt, x,y) asx — +oo witha < B and 7, > 0, one has
that x,, is bounded and there is x, € R such that x, — x4 as n — +00. Again by
Ut(t,x,y) = Uy(xcosa+ysina — cyt, x, y) as x — —oo and by (2.30), there
is R’ > 0 such that

Ut (t,x,y) — Uy(xcosa + ysina — cyt, X, y)|
<efor x<—R and reR,yecR. (2.42)

Letv(t,x,y) = Ut (t,x,y) —ug,(t, x,y). Then, v(t, x, y) > 0 and

v(t,x,y) >0forany (f,x,y) € Rx R?
suchthat x < —R,xcosa + ysina — ¢yt = &, (2.43)
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by (2.42), 7, > 0 and taking & sufficiently small. Since U™ (¢, x, y) is a supersolu-
tion and u, (¢, x, y) is a solution of (1.1), we have that v(z, x, y) satisfies

vy — Av > —b(x, y)v, for (¢,x,y) € R x Rz,

where b(x, y) is bounded. Since v(¢,, x,,, y») — 0 and by the linear parabolic
estimates and x,, is bounded, one gets that

R cosa —

c
U(l‘n—l,xn—R/,yn+ a)—)Oas n— +o0o,

sin o

which contradicts (2.43). Thus, 7, = 0and Ut (¢, x, y) > Uy(x cosa + ysina —
Cot,x,y) forall (7, x, y) € R x R2.

Similarly one can prove that Ut(t,x,y) > Ug(x cos B+ysin B—cgt, x, y) for
all (1, x, y) € R x R2. In conclusion, U (¢, x, y) > Ugp(t,x, y) forall (t,x, y) €
R x R2.

Proof of Claim 2.9. Notice that

V' (px) 1 B
S0 1 NozIrr s B

Let é(x) = arccos e1(x). By Lemma 2.2, one can get thaE o <Aé(x) < B for all
x € Rand 6(—00) = «, 6(400) = B. Then, e(x) = (cos 6, sinH) and

= e1(x) and

Ce) _ S
e2(x)  sinf

Thus,
. cs
Ca—ﬂ—ce(x):sin9<caﬂ— .0A>.
VU2 (ox) + 1 sin @

Since cqp > cp/sin6 for any 6 € (o, B) and 0 < min{sina, sin B} < sinf < 1,
one only has to prove that

CA

Caf — —=
sin 6
> Cysech(px), for some positive constant C7 and when |x]| is large. (2.44)

We only consider when x < 0 and similar arguments can be applied for x > 0.
Define

2@ = for 6€0,m).
sin 6

Obviously, g(#) is a C? function since ¢, is doubly differentiable with respect to
e. By (1.8), one has that g’(«) < 0. Since 6(x) — a as x — —00, it then follows
that
c; N N
,Ca -0 = g (@)(@—0(x))+o(la—6(x)]), for x negative enough. (2.45)
SIn@  sin @




Curved Fronts of Bistable Reaction-Diffusion 1597

Moreover, by (2.1), one has that

0(x) — fo 0'(s)ds = — / a0 ey’ (es)

—0o0 /1—6%(.9) wz(QS)‘i‘l

ki
>——(Y'(ox) + coter) > —————sech(ox).
Vi 1(1// (ox) ) e 1 (0x)

One then can conclude (2.44) from (2.45) for x negative enough.
Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let u,(t, x) be the solution of (1.1) for t > —n with initial
data

Up(—n,x,y) = Ua_ﬁ(—n, X, y).
By Lemma 2.8, one can get from the comparison principle that

Ugp(t,x,9) S up(t,x,y) U, x,y), for > —n and (x,y) € R?.
(2.46)
Since UOZS (t,x,y) is a subsolution, the sequence u, (¢, x, y) is increasing in n.
Letting n — 400 and by parabolic estimates, the sequence u, (¢, x, y) converges
to an entire solution V (¢, x, y) of (1.1). By (2.46), one has that

Upyg(t,x,9) < V(t,x,y) UT(t,x,y), for 1 €R and (x,y) € R,

Then, it follows from Lemma 2.8 that (1.9) holds.
By Uyp(t, x, y) is increasing in ¢ and the maximum principle, one has that

(up)t(t,x,y) > O0forallt € (—n, +0o0) and (x, y) € R2. By letting n — 400 and
the strong maximum principle, one concludes that u; (¢, x, y) > O forall r € R and
(x, y) € R%. This completes the proof.

2.3. Proofs of Corollaries 1.5, 1.6 and Theorem 1.7

We then give some examples to show that Theorem 1.2 is not empty, that is,
Corollaries 1.5, 1.6.

Proof of Corollary 1.5. Notice that ¢y and C/e are uniformly bounded for 0 € [0, 7].
Let g(0) := cp/ sin 6. Then,

cy - (—sinf, cos ) _ cgeost
sin 0 sin?@

g =

Obviously, there are constants 0 < a; < 81 < 7 suchthat g’(9) < Oforf € (0, ay)
and g'(0) > 06 € (B1, m) since ¢, is bounded for any e € S and sind — 0 as
6 — 0 or m. One can also notice that g(d) — +ooas @ — Oorf — m.
By continuity, one can take any o € (0, @) and there is B € (B, ) such that
g(a) = g(B) and g(0) < g(a) = g(B) forall 6 € (a, B).

Then, the conclusion of Corollary 1.5 follows from Theorem 1.2.
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Proof of Corollary 1.6. Take two directions e; = (cosbq,sinf) and ey =
(cos B, siny) where 61, 6 € (0,2m). Assume without loss of generality that
0> > 6;. Rotate the coordinate by changing variables as

X =xcosf + ysin6,
Y = —xsin6 + ycosé6,

where 6 varies from 6, — /2 to 61 + /2. Assume without loss of generality
that 6, — 61 < m. Otherwise, if 6, — 67 > m, we can take 8 varying from 6, to
27 + 61. Then, under the new coordinate, directions ¢; and e, become (cos(6; +
/2 —6),sin(0) + /2 —0)) and (cos(0 + /2 — ), sin(0, + /2 — H)) where
0<014+7m/2—-60 <6+ 7m/2—6 < . Since sin @ is increasing in [0, 7 /2] and
decreasing in [ /2, 7], one has that

. Cer is increasing from #
sin(0; + /2 —0) sin(6) — 6, + )

400 asf varies from 6 —mw/2 tof) + m/2,

and
. oo is decreasing from
sin(0y + /2 — 0)
400 to L as 0 varies from 6, —m/2 to 61+ m/2.
sin(f, — 67)

By continuity and for any 0 < 6, — 6; < 7, there is 6* € (6, — /2,61 + 7 /2)
such that
Ce, Ces

sin(f) + /2 — 0%)  sin(0r + /2 — %)

On the other hand, by the proof of Corollary 1.5, there is 0 < o1 < 7 small enough
such that for0 < 7 — (68, — 61) < «ay, it holds

Cel — Cez
sin(@) + /2 —0*)  sin(6r + /2 — 6%)
co

Now, under the new coordinate (X, Y) = (xcosf0* + ysinf*, —x sinf* +
y cos 6*), one can construct a curve ¥ = 1 (X) with x cosf; + ysin6; = 0 and
X cos 6y + ysinf, = 0 (the half parts such that Y > 0) being its asymptotic lines
and define normals e(X) for the curve Y = ¥/ (0X)/0. Then, define a function

Y — Celezt - w(QX)/Q

VI eX) +1

By following similar arguments of Lemma 2.8, Theorem 1.2 and Corollary 1.5,
one can prove that U T, X,Y)isa supersolution and there is an entire solution
V (¢, x, y) of (1.1) satisfying (1.11) for all o} small enough. By taking p = cos(mr —
a1) — 1 and eg = (cos 6™, sin6*), the conclusion of Corollary 1.6 immediately
follows.

Ut X, Y):Ue(x)( ,x,y)—i—esech(gX).
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Now, we show that condition (1.8) without g’(a) < 0 and g’(8) > 0 is neces-
sary for the existence of the curved front in Theorem 1.2.

Proof of Theorem1.7. We first prove that

fa _ (2.47)
sina  sinf

Assume by contradiction that ¢,/ sina # cg/ sin . Take a sequence {#; },,en such
that #, — +o0. Then, for the sequence

(ce sin B —cgsina)t, (cycosB — cpcos a)tn>

Goneom) = ( sn(B—a) | sin(@—fB)

one has that x,% + (yn — cmgtn)2 — +o0 as n — +oo for any cog € R since
ca/sina # cg/sin B. Notice that for any n, there are k!, k2 € Z and x/,, y) €
[0, L) such that x,, = k,llLl +x), and y, = k,%Lz + y,,. Moreover, up to extract
subsequences of x, and y,, there are x, € [0, L1] and y, € [0, L2] such that
x;, = x, and y, — y, asn — 4o0. Since f(x,y, ) is L-periodic in (x, y), one
has f(x +xp, ¥y + yn, ) = fx +x,,y+y.,-)asn — +oo. Let v, (t, x,y) =
V(t+t,, x+x,, y+yn). By standard parabolic estimates, v, (¢, x, y), up to extract
of a subsequence, converges to a solution v (¢, x, y) of

v —Av=f(x+xL,y+y.v), for teR and (x,y) e R®  (248)
By definitions of x, and y,, one can also have that

UO;S(t +t, x + x5, Y+ yn) = ﬁa_ﬁ(t,x, y), as n —

400 uniformlyin R x Rz,
where
lA];ﬂ(t, x,y) = max{Uy(x cosa + ysina — cut, x + X, y + yi.),
Ug(xcos B+ ysin B —cpt, x + x5, y + yi)}.
Moreover, by (1.9) and x,% + (yp — co,,gtn)2 — 400 asn — 400, one gets that

vy (t, x,y) —> l}a_ﬁ (t,x,y)as n — +oo locally uniformly inR x RZ.

It implies that veo (7, X, ¥) = 00(_ (t, x, y) which is impossible since Ija_ﬁ (t,x,y)
is not a solution of (2.48). Therefore, (2.47) holds.

Then, we prove that

Cy cp
= = . 2.49
Cap sinae  sin ( )

Assume by contradiction that cyg # ¢/ sin . Take a sequence (#;),eN such that
t, = Lonsina/cy — +00 and consider the sequence

C
(X, yn) = (0, —— = tn).
Sin o
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Notice that x,% + (yn — cmgtn)2 — 400 as n — +00 since cug # Co/sina,
thCq/ Sina = nL; and Ua_ﬂ(t F it X+ X0, Y+ ) = Ua_ﬁ(t, X, y). Then, one can
make the similar arguments as above to get a contradiction. Thus, (2.49) holds.
At last, we prove that
Co Cy CB

—— < Cop =
sin & b

- - forany 0 € («, B).
sine  sinf

Assume by contradiction that there is 6 € (a, ) such that cg/sin6 > cqpg. Then,
two cases may occur: (i) cg/ sinf > cqp; (ii) co/ Sinf = cqp.
For case (i), take # = 0 and by (1.9), for any ¢ > 0, there is R, > 0 such that

sup V(Ov-x» y)_UC(_ﬁ(Oa-xv y) <e. (250)
[(x,»)>Re

We claim that
Claim 2.10. There exist constants T € R and § > 0 such that
V(t,x,y) > Up(xcos6 + ysin6 —cot +7,x,y) — zSe_‘”, for t >0 andx € R?.

In order to not lengthen the proof, we postpone the proof of this claim after the
proof of Theorem 1.7. Take a sequences (#,),eN such that ¢, — 400 asn — +o00
and y, = cqpty + R where R is a constant. Then, since U, (+00, x, y) = 0 for all
e € Sand (x, y) € T?, one can take R large enough such that

Ua_ﬂ(t,,, 0, y») =max{Uy(yn sina — caty, 0, y), Ug(yy sin B — cgty, 0, yu)}
1
ZmaX{Ua(R SinO{, Ov yn)v Uﬂ(R Sinﬁ» 01 yl’l)} S Z
By (1.9) and even if it means increasing R, one has that

<

1
1= for all n. (2.51)

R —

V(. 0. y0) < Uggg(ta. 0. y) +
However, since cg/sinf > ¢4 and hence,
YuSinf — coty, = (cop Sin€ — co)t, + Rsinf — —o0, as n — 400,
it follows from Claim 2.10 that
V(tn, 0, yp) = Ug(yn sin® — coty + 7,0, yu) — e %" — 1as n — oo,

which contradicts (2.51). Case (i) is ruled out.
Now we consider case (ii). Since U,(—o0, x, y) = 1 and U,(+00, x,y) =0
for any (x, y) € T2 and e € S, there is C > 0 such that

0 < Uy(§,x,y) <o for &>C and(x,y) € T?,
and

1 —0 < Ul x,y) < 1for £ <—C and(x,y) € T?,
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where o is defined in (F3). By (1.9), there is R > 0 such that

V(t,x,y) <o, for (t,x,y) €}
and V(t,x,y)>1—o, for (¢,x,y) € Qp,

where

Q}F ={(,x,y) eRsz;x <0and xcoso + ysina — ¢yt > cy R}
U{(t, x,y) € R x R%;
x > 0and xcos B+ ysin B — cgt > cgR},

and

Qp :={(t,x,y) e Rx Rz;x <0and xcosa + ysina — cut < —cq R}
U{(t,x,y) e R x R2;
x> 0and xcos B+ ysinB — cgt < —cgR}.

By a similar proof as of Lemma 2.5, there is 0 < o’ < o such that
o <V(t,x,y) <1—0o/, for (1,x,y) e Rx R*\ (Q}F UQp),
and
o' <Udé,x,y)<1—c'for —C<&<C,(x,y)eT? andany e€S.
Forany t € R, letu, (¢, x, y) = Ug(x cosO + ysin@ — cgt + 1, x, y). Let
ol = {(t,x,y) € R x R} xcos6 + ysind — cgt + 1 > C},
and
w; ={,x,y) e Rx R2; xcosf + ysinf —cot +1v < —C}.
Since o < 6 < B and ¢y/sinf = ¢,/ sina = cg/ sin B, one can easily check that

R x R\ (0f Uwy) C Qe_p,e, and R x R\ (QF UQR) C ol g

7)/ca

Then, by (1.9), U,(—o0, x, y) = 1 and U,(+00, x, y) = 0, thereis 71 > ¢, R+ C
large enough such that for any t > 17,

V(t,x,y) =1 —0" > us(t,x,y), forall (t,x,y) € R x R*\ (0 Uw,),
and
ur(t,x,y) <o’ < V(t,x,y), forall (t,x,y) € R x R*\ (2} UQy).
Moreover, since T > 71 > ¢y R + C, one has that

Vit,x,y) >1—0 >0 >u(t,x,y), forall (¢,x,y) € w;“ NQg.
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Thus, it follows that

ur(t,x,y) < V(t,x,y), forany 7>1 andall (z,x,y) € RxR*\(w; UQ}).
(2.52)
Also notice that

u(t,x,y), Vt,x,y)>1—-oin w; andu.(t,x,y), V(t,x,y) <oin Q+,

and f(x,y,u) is nonincreasing in u € (—oo,o0] and u € [1 — o, +00) for any
(x,y) € T? by (1.2). By following similar proof as the proof of [3, Lemma 4.2]
which mainly applied the sliding method and the linear parabolic estimates, one
can get that

V(t,x,y) > uc(t,x,y), in o; and Qj.
Combined with (2.52), one has that
V(t,x,y) >u(t,x,y), forany v > 17 andall (¢,x,y) € R x R?.
Let
T, = inf{r € Ry u,(r,x,y) < V(t,x,y) forall (r,x,y) € R x R?}.

By above arguments, one knows that 7, < +4-00. On the other hand, for any fixed
(t,x,y), uc(t,x,y) = Ug(xcosO + ysinf —cpt +17,x,y) - last - —o0
and V (¢, x, y) < 1 by the maximum principle. By the definition of 7., one also has
that 7, > —o0. Thus, |7,| is bounded. If

inf{V(, x,y) —ug; (t x,y) e Rx R? \ (wt_* U Q;)} > 0,
there is > 0O such that
V(t,x,y) > ug,_y(t,x,y), for (t,x,y) e Rx R? \ (a); U Q‘Ig).
Then, one can follow the above arguments again to get that
Ur,—y(t,x,y) < V(t,x,y), for (f,x,y) e Rx R?,
which contradicts the definition of t,. Thus,
inf{V(t,x,y) —ug; (t x,y) e Rx R? \ (a),: U Q;)} =0.

Since V(t,x,y) > o/ in R x R?\ (w7, U Q'}‘f) and u (t,x,y) = Ug(xcos6 +
ysinf® — cogt + T4, x,y) = 0as xcosf + ysinf — cyt — +00, there is Ry > 0
and there is a sequence {(#,;, X;;, Yn)}nen in R X R2 \ (w7, U Q;) such that

—C — 1 < xpc0860 4 y,sinf — cpt, < Ry (2.53)
and

V(ty, xn, yn) — Up(x,, cos 0 + y, sSin@ — coty, + T, Xn, yn) — 0, as n — +o00.
(2.54)
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Notice that x;, is bounded. Otherwise, if x,, — —o0 as n — 400, then it follows
from (2.53) and 6 > « that

. . Ca
Xp COSQ + Yy SINO — Cyly = X COSO + smoe(yn - — tn)
sin o

. Co
= Xx,cosa + smoz(y,, — — t,,)
sin @
sin o cos 6
= (cosa - —) n
sin 6
sin .
7 (cos@xn + sin 0y, — cetn)

sin
— —00, as n — +o0o,
and x2 4+ (yu — Captn)? — +00 as n — +oo. It implies that V (t,,, Xu, yu) —
U;ﬁ(tn,xn,yn) — 1 asn — 4oo which contradicts u, (,x,y) < 1 — o’ in
R x R?2 \ @z and (2.54). Similarly, it is not possible that x, — 400 asn — +o0.
Thus, thereis x, € Rsuchthatx, — x,asn — +oo.Letw(t, x,y) = V(¢, x, y)—
ur, (t, x,y). Then, by (2.54), w(t,, xn, y») — 0 as n — 4-o00. Consider the point
(ty —1,x, — R, y, —cg/sin@ + R’ cos 0/ sin @) for some constant R’. Notice that
by (2.53),
(xn — R)cos® + (y, — cy/sin® + R’ cos O/ sinf) sin
—co(ty — 1) € [-C — 14, Ry], forany n,
and
(x, — R)cosa + (y, — co/sinf + R’ cos 6/ sin ) sina
—cqty — 1) > —00, as R — +oo,

for any n. By taking R’ large enough, one can let

/

V(ty—1,x, — R, y, —co + R cosf/sinf) > 1 — %, forany n.

Then, by noticing that (f, — 1, x, — R, y, — cg + Rcos8/sin#) satisfies (2.53)
and hence ur, (t, — 1,x, — R, y» — cg + Rcos8/sinf) < 1 — o’, one has that

/

Wty — 1, Xy — R, yn — o + Rcos 6/ sin0) > % > 0. (2.55)

However, since V (¢, x, y) and u,, (¢, x, y) are solutions of (1.1), we have that
w(t, x, y) satisfies

wy — Aw > —b(x, y)w, for (¢,x,y) € R x R?,
where b(x, y) is bounded. By the linear parabolic estimates, one can get that
w(ty, —1,x, — R, yp —cp + Rcos6/sinf) — 0, as n — 400,

which contradicts (2.55). Therefore, case (ii) is ruled out.
In conclusion, ¢y /sin@ < cqp for any 6 € (a, B).
We finish this section by proving Claim 2.10.
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Proof of Claim 2.10. Take § > 0 such that
(O
§ < min [—, k] ,
2
where o and A are defined in (F3). Since Uy (—o0, x, y) = land Ug (400, x, y) =0
for (x, y) € T?, there is C > 0 such that

0 < Up(g, x,y) <86, for £ >C and (x,y) € T?
1 -8 <Up, x,y) <1, for € <—C and(x,y) e T

From Lemma 2.5, there is k > 0 such that —0: Uy (&, x,y) > kfor -C <& < C
and (x, y) € T2. Take w > 0 such that

ko > 8+ M, (2.56)

where M = max y ,)eT2 xR | fu(x, y, u)l. It follows from (2.50) and the definition
of U a_ﬂ that there is Rs > 0 such that

V@O,x,y) > 1-34, for (x,y) €

where
Q:={x<0,yeR;xcosa + ysina < —Rg}
U{x >0,y e R; xcos B+ ysin 8 < —Rs}.
Define
vt x, y) = Up(E (1, x, y), x,y) — 8¢,
where

E7(t,x,y) = xcosO + ysind — cot —we ™ +w+ Rs + C,

and ﬁg = Rs sin @ max{l/sinc, 1/sin B}. We prove that v~ (¢, x, y) is a subsolu-
tion of the problem satisfied by V (¢, x, y) for t > 0 and (x, y) € R%.
Firstly, we check the initial data. Since & < 6 < B, one has that

{(x,y) eR*E7(0,x,y) <C}C Q.
Then,
v (0,x,y) <1 =8 <V(0,x,y), for (x,y) € R* suchthat £ (0,x,y) <C.
For (x, y) € R? such that £(0, x, y) > C, one has that

v (0,x,y) <6-86§=0=<V(O,x,y).

Thus, v=(0,x,y) < V(0, x, y) forall (x,y) € R2.
We then check that

Nv:=v —Av™ — f(x,y,v7) <0, for r>0 and(x,y) € R%.
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By some computation and (2.2), one has that
Nv = wde ¥ 8:Up + 82" + f(x,y,Up) — f(x,y,v7). (2.57)

Fort > 0 and (x,y) € R? such that &E(t,x,y) = C, one has that 0 < Uy
(&(t,x,y),x,y) <& and hence v™(t, x,y) <28 < o. Thus, by (1.2), it follows
that

Fe v, Up) = f(x,y,07) < —rde™™ (2.58)

Since 0 Uy < 0, it follows from (2.57) and (2.58) that
Nv < 8% —x8¢7% < 0.

Similarly, one can prove that Nv < O for r > 0 and (x,y) € R? such that
&(t,x,y) < —C.Finally,fort > Oand (x, y) € RZ suchthat —C < E(t,x,y) <C,
one has that —d: Up (§ (¢, x, y), x, y) > k and

Fx, v, Up) — f(x,y,v7) < Me™, (2.59)

where M = MAaX(; )T xR | fu(x, y, u)|. Then, it follows from (2.56), (2.57) and
(2.59) that

Nv < —kwSe % + 8270 4+ Mse™ <0.
By the comparison principle, one gets that
V(t,x,y) > v (t,x,y), for t>0 and x € R’

Then, the conclusion of Claim 2.10 follows immediately.

3. Uniqueness and Stability of the Curved Front

This section is devoted to the proofs of uniqueness and stability of the curved
front in Theorem 1.2, that is, Theorems 1.8 and 1.9.

3.1. Proof of Theorem 1.8

The idea of the proof of the uniqueness is inspired by Berestycki and Hamel [3]
who proved that for any two almost-planar fronts u (¢, x, y) and u» (¢, x, y), there is
T € Rsuchthateitheru;(t+T7, x, y) > ux(t, x, y)oru(t+7, x, y) = ua(t, x, y).

Proof of Theorem 1.8. Assume that there is another curved front V*(z, x, y) satis-
fying (1.9). By (1.9), there is R > 0 large enough such that

V(t,x,y), V¥t,x,y) <ofor (t,x,y) € o
and V(t,x,y), V*(t,x,y) > 1—ofor (t,x,y) € o,

where o is defined in (F3),

o = {(t,x,y) e RxR* x <0and
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xcosa + ysina — cqt > cq R} U{(t,x,y) € R x Rz;
x > 0and xcos B + ysin B — cgt > cgR},

and

w, = {(,x, e R x ;x < 0an

. =1{(t, x,y) eRxR*x <0and
xcosa—l—ysina—catf—caR}U{(t,x,y)eRsz;
x > 0and xcos B + ysin B — cgt < —cgR}.

Since ¢y / sina = cg/ sin B, one knows that a),+ and @, are connected. By a similar
proof as of Lemma 2.5, there is 0 < o’ < o such that

o <V, x,y), V¥, x,y) <1—0o', in RxR>\ (0 Uw)).

Then, by taking t large enough, one has
Vit —t,x,y) <o’ < V(t,x,y), for (,x,y) € R xR\ (0 Uw,),

and
Vi, x,y) 2 1—0' >Vt —1,x,y), for (t,x,y) € RxR*\ (0], Uo,_,).
Since

Vt,x,y) > 1—0 >0 >V*t,x,y), for (t,x,y) €w, Nw, ,
This means that

Vit —1,x,y) < V(t,x,y), in RxR*\ (o Uw,_,).

Since f(x,y,u) is nonincreasing in u € (—oo,0] and u € [l — o, 400) for
(x,y) € T2 and by the same line of the proof of [3, Lemma 4.2], one can get that

V¥t —1,x,y) < V(t,x,y), forall (t,x,y) €w,_, and (t,x,y) € 0.
and hence,
V¥t —1,x,y) < V(t,x,y), forall (t,x,y) € R x R? and t large enough.
Now, we decrease T and let
T, =inf{t e R, V*(t — 7, x,y) < V(¢,x,y), for (¢,x,y) € Rx R2}.

Since both V (¢, x, y) and V*(¢, x, y) satisfy (1.9), one knows that 7, > 0. Assume
that 7, > 0. If

inf{V(t,x,y) = V*(t — 16, x,y); (£, x,y) € R X R? \ (a)t+ Uw,_, )} >0,
then there is n > 0 such that

VAt — (te — 1), x, ) < V(t,x,y), for (t,x,y) € Rx R*\ (0 Uw,_, ).
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By applying above arguments again, one can get that
VAt — (e — ). x, ) < V(t,x,y), for (t,x,y) e R x R?,
which contradicts the definition of 7. Thus,
inf{V(t,x,y) =Vt — 14, x,¥); (£, x,y) € R x R? \ (a)t+ Uw,_, )} =0,
and there is a sequence {(#,, X», Yn)}nen such that
V(ty, Xn, yn) — V(s — T, Xp, yu) — 0, as n — +oo.

Then, by following similar arguments as Step 3 of the proof of Lemma 2.8, one can
get a contradiction. Thus, 7, = 0.
Therefore,

V(t,x,y) > V¥, x,y), forall (r,x,y) € R x R>.

The same arguments can be applied by changing positions of V (¢, x, y) and V*
(t, x,y), and then, we can get that

V¥, x,y) > V(t, x,y), forall (r,x,y) € R x R>.

In conclusion, V*(t, x, y) = V(t, x, y).

3.2. Stability of the Curved Front
Take any 0 < « < B < 7 such that Theorem 1.2 holds. Since g’(@) < 0, one
can take o € (0, o) such that
[or2] Cq
: >
sin @ sin o

, for 6 € [ay, a].

Similar as Lemma 2.2, there is a smooth function ¢j(x) with y = —x cota and
y = —x cotay being its asymptotic lines and there are positive constant k3, k4 and
K4 such that

@/ (x) <0, forall x e R,

—cota > ¢} (x) > —cotay, forall x € R,
kisech(x) < —cota — ¢} (x) < Kysech(x), for x <0, 3.1)
kasech(x) < ¢](x) + cota; < Kygsech(x), for x >0,

max (|} (x)], l¢]"(x)]) < Kssech(x), forall x € R.

Take a constant o which will be determined later. For every point (x, y) on the
curve y = ¢1(ox)/o, there is a unit normal

¢ (0x) 1 )

e(x) = (e1(x), e2(x)) = (_ \/ﬁ(gx) +1 \/ ¢iox) + 1

For (x,y) € R? and r € R, take a constant ¢ and we define

U 't x,y) = Ug(x)(g(t, x,¥),x,y) — esech(ox), 3.2)
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where
y — capt — @1(0x)/0
Jertex) +1

Lemma 3.1. There exist g and o(&gy) such that for any 0 < ¢ < ggand 0 < ¢ <
o(go), the function U (t, x, y) is a subsolution of (1.1). Moreover, this satisfies

E(t.x,y) =

lim sup |U7(t.x,y) — Uy(xcosa + ysina — cot, x, y)) <2, (33)

R—>+00 R

and

U (t,x,y) < Uy(xcosa+ysina—cyt, x,y), forall te€R and (x,y) € R2.
(3.4)
Proof. Assume that

.0
&0 = 5,
2

where o > 01is defined in (F3). More restrictions on &y will be given later. It follows
from similar computation as Step 1 of the proof of Lemma 2.8 that

NU; :=(Uy ) — AxyUp — fx, ,Up)
=0¢Ue(n)§, — dseUern) (57 + §§) =2V y O Ue) - (6, € )
= AxyUe(x) = 9 Ue)§
— Ué’(x) el (x) - (x) — Ue’(x) e (x) — 285Ué(x) . e’(x)gx
—20,Uy, - € (x) — eg”sech”(ox) — f(x,y, U})
=(Cetw) + )0 Vo) = O Ueiny 62 + 62 = 1)
— 20,05 Uex)(§, — €1(x)) — 0:Ue(n)§
- U;/(x) ce(x) e (x) — Ué(x) e’ (x)
— 20 Ue/'(x) . e’(x)gx — 20, Ué(x) e/ (x)
— e0”sech”(0x) + f(x, v, Uew) — f(x, 3, UD),

where Ue(x), 0 Ue(x)» 0gg Ue(x)s Vi,y0sUe(x)s Ax yUe(x)s Ué/(x) el (x) €(x), Ue/(x) .
e’ (x), 9 U’ (e(x)) - €' (x), BxUé(X) - €' (x) are taking values at (£(z, x, y), x, y) and
U, gt, gx, gy are taking values at (¢, x, y). Similar as (2.20), (2.21) in the proof
of Lemma 2.8, there are C5 > 0 and C¢ > 0 such that

|5 Ueqy (62487 = DI +210:0 Ue() (€, —€1 ()| +18 Ve £ | < Csosech(ex).

3.5)
and

Uy - €' (X) - € ()] + Uy - € ()] + 200 Ugyy - €' (0)E |
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+2|8xULf(x) -€'(x)| < Cgosech(px). (3.6)
By a similar proof as of Claim 2.9, we can easily get that
Cery +§,>0, for x eR.
and there is C7 > 0 such that
Cap
Vorex) +1

for x being negative enough.

Cex) T &, = Ce(x) — > C7sech(px) > 0,

Sincegpi (x)(0ox) = —cotay,e(x) = (cosoy, sinay)asx — +ooandcy,/sinoy >
cq/ sin , there is a constant ¢ > 0 such that

Cap

Ce(x) +§t = Ce(x) — \//2:1
@1 (ox) +

For x < 0, one can make similar arguments as in the proof of Lemma 2.8 to get
that NU;” < 0. For x > 0, one can get from (3.5), (3.6), (3.7) and Lemma 2.1 that

>c¢ >0, forall x> 0. 3.7

NU; < c0:Ue(x) + (Cs + Co)osech(ox)
+ 28Q28e0h(gx) + f(-xv Y, Ue(x)) - f(x, Y, Uf) (38)

For (z,x,y) e R x R? such that g(t,x, y) > C and §(t,x, y) < —C where C is
defined by (2.24), it follows from (F3) and ¢ < ¢¢ < /2 that

Fx, v, Uexy) — f(x,y, Uy) < —hresech(ox).
Since 9g U, < 0, one has that
NU[ < ((Cs + Co)o + 28@2 — Aa)sech(gx) <0,
by taking o(¢) > 0 small enough such that
(Cs + Co)o + 260% — re < 0, (3.9)

and 0 < ¢ < o(¢). Finally, for (z, x, y) € R x R2 such that —C < §(t» x,y) <C,
there is k > O such that

—8;Ue(§,x, y) >k forall e€S.
Notice that
fx, ¥, Uer)) — fx,y,U;) < Mesech(ox),

where M := max, y e xR |fu(x, y, u)|. Thus, it follows from (3.8) and (3.9)
that

NU; < —ke + ((C5 + Co)o + 2e0* + Ms)
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sech(ox) < —kc 4+ (A + M)esech(pox) <0,

by taking ¢g = min{o /2, kc/(A + M)} and 0 < ¢ < &.

By similar arguments as to those in Step 2 of the proof of Lemma 2.8, one gets
that (3.3) holds. The inequality (3.4) can be gotten by comparing U, (¢, x, y) with
Uy(xcosa + ysina — cut, x, y) through similar arguments as in Step 3 of the
proof of Lemma 2.8. This completes the proof.

Similarly, since g’(8) > 0, one can take 81 € (B, ) such that

c C
P 2 forall 0 e (BBl
sinf  sinf
Similarly to as Lemma 2.2, there is a smooth function ¢ (x) with y = —x cot 8
and y = —x cot 81 being its asymptotic lines and there are positive constant ks, kg
and K5 such that

¥y (x) <0, forall x € R,

—cot 1 > Yj(x) > —cot B, forall x € R,
kssech(x) < —cot B1 — ¢5(x) < Kssech(x), for x <0, (3.10)
kesech(x) < ¢, (x) 4 cot B < Kssech(x), for x >0,

max(|¢5 (x)], |95 (x)]) < Kssech(x), forall x € R.

Take a constant o which will be determined later. For every point (x, y) on the
curve y = ¢2(0x)/0, there is a unit normal

@) (0x) 1 )

e(x) = (e1(x), 2(x)) = (_ JoRon) + a VR +1

For (x, y) € R2 and ¢ € R, take a constant ¢ and we define

Uy (t,x,y) = Upr) (§(2, x, ), x, y) — esech(ox), 3.11)
where

— capt — p2(0x)/0

JoZ(ex) +1

Similarly to Lemma 3.1, we can prove the following lemma:

Et,x,y) =2

Lemma 3.2. There exist g and o(&gy) such that for any 0 < ¢ < gypand 0 < o <
0(o), the function U, (t, x, y) is a subsolution of (1.1). Moreover, this satisfies

lim sup (U, (¢,x,y) — Ug(xcos B+ ysin B —cpgt, x, y)| < 2e,

R—+00 o R
and

Uy (t,x,y) <Ug(xcosB+ysinf —cpgt,x,y), forall t € R and (x,y) € R>.
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Then, we need the following sub and supersolutions for the Cauchy problems
of (1.1):

Lemma 3.3. For any function u(t, x, y) € CY2(R x R?), if it is a subsolution of
(1.1) for (t,x,y) € R x R with u; > 0 and for any 0 < o1 < 1/2 there is a
positive constant k such that

ur >k, for (t,x,y) € Rx RZ  such that o <u(t,x,y) <1—o0o1, ((3.12)

then for any 0 < 6 < o /2 where o is defined in (F3), there exist positive constants
w and A such that

t —At

u(t,x,y) = u(t +wde ™ — w8, x,y) — e,

is a subsolution of (1.1) fort > 0 and (x,y) € R2. Similarly, if u(t, x,y) is a
smooth supersolution satisfying (3.12), then for any 0 < § < o/2, there exist
positive constants w and A such that

u(t, x,y) = u(t —wde ™ + wd, x, y) + 8¢
is a supersolution of (1.1) fort > 0 and (x, y) € R?.

Proof. We only prove for the subsolution. Similar arguments can be applied for
the supersolution. Take any 0 < § < o/2 where o is defined in (F3). Let k > 0
such that u; > k for (¢, x,y) € R x R2 such that 0/2<u<l-o0/2.Takew >0
such that

A+M

A
where A is defined in (F3) and M := max, y ,yem2 xR | fu(x, y, w)l.
We then check that

kw >

)

Nu:=u, — Ay yu— f(x,y,u) <0, for t >0 and (x,y) € R2.
By computation, one can get that
Nu = —wdre Mu, +8re ™ + f(x,y, u(t + wse™ —ws, x,y)) — f(x,y,u).

Fort > 0and (x, y) € R2 such that 1 — o/2 <ult + wse ™ — w8, x, y) < land
0<u(t—+wse ™ —ws, x, y) < o/2 respectively, one has that u(¢,x,y) > 1 —o
and u(z, x, y) < o respectively. Then, by (1.2), it follows that

flx,y,ut+ wde™M — ws, x, V) — fx,y,u) < —A8e M,
Thus, by u; > 0, we have
Nu < Sre M —ase M <.

For ¢ > 0 and (x, y) € R? such that §/2 < u(t + wSe ™ ,x,y) < 1 —0/2, one
has that

Nu < —kwdre M + She M 4+ MSe ™M <0,

by the definition of w.
This completes the proof.
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Now, we are ready to prove the stability of the curved front of Theorem 1.2.

Proof of Theorem 1.9. Take any 6 € (0,0/2]. Take ¢9 < §/4 and o(go) such
that Lemmas 2.8, 3.1 and 3.2 hold for any ¢ € (0, 9] and ¢ € (0, o(&9)]. Pick any
g€ (0,e].LetUT (1, x, y), U, (t,x,y)and U, (¢, x, y) be defined by (2.14), (3.2)
and (3.11) respectively. Let U, (¢, x, y) = max{U, (¢, x, y), U, (¢, x, y)}. Then,
by Lemmas 3.1, 3.2 and similar arguments as Step 2 of the proof of Lemma 2.8,
one can get that

Upy(t,x,y) < Ugg(t, x, y) forall 1 €R and (x,y) € R?, (3.13)
and
R1—1>Too sup Ui, x,y) — Uaﬁ(t, x,y)| <2e. (3.14)

x2+(y—ca,pt)>>R?

By (1.12), there is Rs > 0 such that
_ 3 _ ) )
Uap(0. %, ) = 5 = uolx, y) = Upg(0, x, y) + 7, for (x,y) €R

such that x* 4 y* > R3.

By the definition of ¢ (x) from Lemma 2.2, one has that

y—v(ex)/o
V2 (ex) +1

which implies U, (§(0, x, y), x,y) — lasgo — 0f0rx2~|—y2 < R2, where e(x)
is defined by (2.12). Then, take ¢ € (0, o(gp)] small enough such that

£0,x,y) = — —ocas o — 0 for x*>+y*><R?,

up(x,y) <1 <UT(0,x,y)+8for (x,y) € R* suchthat x>+ y? < RZ.
(3.15)
Similarly, since ¢1(0) < 0 and ¢»(0) < 0, one can take a o € (0, o(¢p)] such that

up(x,y) 20> U; (0,x,y) —dand up(x,y) >0> U, (0,x,y) =38, (3.16)
for (x,y) € R? such that x% + y2 < Rg. Define

U(t,x,y) =max{U, (t + wde M — ws, X, )
—Se_)‘t, U, (t + we ™M — ws, x,y) — Se_)‘t},

and

Ut,x,y) =UT(t —wde™ + w8, x,y) + e,
where w, § and A are defined in Lemma 3.3. It follows from (2.17) and (3.13) that
U0, x,y) <ug(x,y) <U(,x,y), for (x,y)e R? suchthat x%+ y2 > Rg.
Together with (3.15) and (3.16), one has that

U0, x,y) <uo(x,y) <UQ,x,y), forall (x,y)eR>
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On the other hand, by Lemma 2.5, one knows that U, (¢, x, y), U, (¢, x, y) and
U™ (¢, x, y) satisfy (3.12). By Lemma 3.3 and the comparison principle, one can
get that

U(t,x,y) <u(t,x,y) <U(t, x,y), for t>0 and (x,y) e R

Take a sequence #, = Lyn/cqp where L is the period of y. Then, 7, — +o00 as
n — —+o00. By parabolic estimates, the sequence u,, (¢, x, y) := u(t+t,, x, y+Lon)
converges, locally uniformly in R x R2, to a solution uso (¢, x, y) of (1.1). Since
U (t+ty,x,y+Lon) =U; (t,x,y),Uy (t+1ty,x,y+Lon) =U, (t,x,y) and
UT(t+1t,,x,y+ Lon) =UT(¢, x, y), one has that
max{U; (t + w8 MIHM) s x, y) — seMFI),
U, (t + wSe MH) _ 8. x, y) — 5€7M[+t")}
<un(t,x,y) < UV (t — wbe Hm)

+ w8, x, y) + se MIFM),
(3.17)
and by passing to the limit n — +00, u(t, x, y) satisfies

max{U, (t —wé, x,y), Uy (t —wd,x,y)} < uoco(t, x,y)
<UT(t+ws x,y), for (t,x,y) € R xR

Let u(t + 19, x, y; uo(x, y)) denote the solution of the initial value problem

B _ 2
{ut Au= f(x,y,u), t>1, (x,y) € R? (3.18)

u(to, x, y) = uo(x,y), t>to.
Then, by the comparison principle, one can get that

Ugp(t +10+ @8, x,y) < ult +10, %, y; Ut (tg + @8, x, ) < UT(t + 19 + 8, x, ),

fort > fo and (x, y) € R2. By uniqueness of the curved front, one can easily prove
that

u(t +to, x, y; U+(t0 +wd, x,y)—V(t+1to+ wd,x,y) > 0as
t > 4oo for (x,y)€ R2.

Similarly,

u(t +to,x,y; U,(to — w8, x,y)) = V(t+1t)—wd,x,y) > Oas
t > +oo for (x,y)e RZ.

Thus, for any fixed ¢ and any #y < ¢,

u(t,x,y; Up(to — @8, x,¥)) < ueo(t, x, y)
<u(t, x,y; Ut (to + 08, x, y)), for (x,y) € R
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By passing to the limit #) — —oo, then one has that
V(t—wd, x,y) Suoo(t,x,y) = V(I +wd, x,y).

Since § can be taken arbitrary small, we have that u (¢, x, y) = V (¢, x, y). Thus,
for any n > 0, it follows from (1.9), (3.14), (3.17), Lemma 2.8 and taking § small
enough that there is 79 > 0 large enough such that

lu(to, x, y) — V(to, x, y)| < n, forall (x,y) € R?.
Then, by V; > 0 and a similar proof as of Lemma 2.5, one knows that V (¢, x, y)
satisfies (3.12). By Lemma 3.3 again and the comparison principle, one gets that

Vitg+1t+one™™ —awn, x,y) —ne ™™ <uty+1,x,y)
< V(tg — wne ™ +wn, x,y) +ne ™,
fort > 0and (x, y) € R2. Then, since n can be arbitrary small, one finally has that
u(t,x,y) — V(t,x,y), as t — +oouniformly in R x RZ,

This completes the proof.

4. A Curved Front with Varying Interfaces

In this section, we construct a curved front with varying interfaces. It behaves
as three pulsating fronts as t — —oo and as two pulsating fronts as t — +00. We
can not apply the idea of Hamel [17] by considering a Neumann boundary problem
in the half plane x < 0 since our problem is not orthogonal symmetric with respect
to y-axis in general.

Let o, B and 6 satisfy Theorem 1.10. We will need the following properties:

Lemma 4.1. It holds that

Cy SINO — cpsina ¢y cosB — cp cos
Caf€at) =

) = (c1, ¢2),

sin@ —a) sin(o — )
and
cgsin® —cypsin B cpgcosé — cgcos f
CpoCpo = ( sin@ —B) | sin(B—0)

with ¢; > 0 and ¢; < 0. Moreover,

) = (1, 62),

Ca co

ean - (cosa, sine)  eqp - (cos O, sinH)
co
= Coqp > L , forany 6y € (a, 0),
eqp - (cos By, sinfy)

and
] _ [or2]
epp - (cos B, sin B) o epp - (cos 0, sin0)

o,
, 0, € (6, B).
epo - (cos 6, sinb) forany 6, € 6, B)

=cpo >
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Proof. Assume by contradiction that cypeqp 7# (c1, ¢2). Take a sequence {t,, },eN
such that t, — 4o0. Then, for the sequence

('x}’la yn) = (Cla CZ)tn’

one has that ((x,,, y,) — c(,tgeo[gt,,)2 — 400 asn — 400 since cypeqn = (1, C2).
Notice that for any n, there are k,l, k% € Zand x;, € [0, L1], y, € [0, L) such that
Xp =k} L1+ x), and y, = k2L, + y/,. Moreover, up to extract subsequences of x,,
and y,, there are x/, € [0, L] and y; € [0, L] such that x;, — x and y, — y;, as
n — 4o00. Since f(x, y, -) is L-periodic in (x, y), one has f(x +x,, ¥y + yu, -) —
fx+xl, y+y.,)asn — +oo.Letv, (t, x, ¥) = Vap(t +1,, x + X4, y+ yn). By
standard parabolic estimates, v, (¢, x, ¥), up to extract of a subsequence, converges
to a solution v (¢, x, y) of

v —Av=f(x+xl,y+y.v), for teR and (x,y) € R%. (4.1
By definitions of x,,, y,, c; and ¢3, one can also have that
Uyt +1tn, x +Xu, y + Yu) = lA]t;@(t,x, y), as n — +oo uniformlyin R x Rz,
where
Uy(t,x, y) := max{Uy(x cosa + ysina — cot, x + x5, y + yL),
Ug(xcos® + ysin® — cot, x + x,, y + yi)}.

Moreover, since Vyg(z, x, y) satisfies

lim sup Voo (t, x,y) = Uyp(t, x, y)| =0,

R= 400 (x.y) ey ey tean)?> R2
one then gets that
vp(t, x,y) = 0(;9(1" x,y)as n — +oo locally uniformly in R2.

This implies that veo (7, X, ¥) = U(;e(t, x, ¥) which is impossible since lA]t;e (t,x,y)
is not a solution of (4.1). Thus, cypeqp = (c1, ¢2). Similarly, one can prove that
cgoepe = (C1, C2).

The signs of ¢; and ¢; can be easily gotten from the facts « < 6 < B and
Cq/Sina = cg/sinf > cg/sinf.

Notice that the speed of the pulsating front Uy, (x cos 61 + y sin 6y —cg,t, X, y)
in direction ey can be denoted by

co,
eq0 - (cos By, sinf)’

By similar arguments as to those of Theorem 1.7, one has that

Ca Co

eqo - (cosa, sine)  eyp - (cosO, sinH)
Co,
eqp - (cos By, sinfy)

= cqp and < Cqp, forany 6 € (o, 0).

This completes the proof.
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Let ¢1 (x) be a smooth function such that there exist a; < 0 < by such that

¢1(x) = —xcota, for x <ay, p1(x) = —xcotH,

for x > by and ¢} (x) > 0for x € (aj, by).
Let ¢ (x) be a smooth function such that there exist ao < 0 < b; such that
@2(x) = —xcoth, for x < ay, ¢a(x) = —xcotB, for x > byand ¢} (x) > O for x € (ap, by).
Let
Y1 (t, x) = @1(x — c1t) + psech(x — c1t) + psech(x — ¢1t),
and
Yo (t, x) = @p(x — ¢11) + psech(x — ¢11) + psech(x — ¢11).

By c; > 0, ¢; < 0 and making |a;|, |az|, b1, by large enough and p small enough,
one can let (1), > O for ¢ negative enough and x < (c;+¢1)t/2 and (Y2)xx > 0
for ¢ negative enough and x > (cj + ¢1)t/2. Let

Yi(t, x), for x <(ci +¢t/2,

Vi, x) = {wz(t,x), for x > (c1 + é1)t/2. 4.2)

Take a constant p to be determined. For every pointon the curve y = ¥1 (ot, 0x),
there is a unit normal

e(t,x) = (er(t, x), ea(t, x)) = < (W) (ot, 0x) 1 ) |

/W2t on) + 1 Wn2(at. ox) + 1

For every point on the curve y = y»(ot, 0x), there is a unit normal

n(t, x) = (_ (Yr2)x (01, 0x) | ) |
) \/(WZ)%(QI, ox) + 1 ’ \/(VQ))ZC @ o0 1

Take ¢ > 0 to be determined. For 7 € R and (x, y) € R2, define

Ue(r,x) 61(t, x, y), x, y) + esech(o(x — c11))

~ +esech(o(x — ¢11)), for x < a ;Cl t,
Ut x,y) =
Upa.x) 628, x, y), x, y) + esech(o(x — ¢11))
+esech(o(x — ¢11)), for x > %t,
where

1 x,y) = 2 ct —yilet.ox)/e . bt x,y) = 2 éat — Yn(ot, 0x)/0

VWDt ox) + 1 VW)t ox) +1
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By the definition of V1, ¥, c1, ¢2, ¢1 and ¢;, one can easily check that around
x = (c1 +Cct/2,

Ue(r.x) (61(t, x, y), x,y) = Up(x cos€ + ysin6 — cot, x, y)

= Ur)(t,x) (EZ(L X, y)v X, )’) s
for ¢+ negative enough. Thus, Ut@,x, y) is smooth for ¢ negative enough and
(x,y) € R%.

Lemma 4.2. There exist €9 and 0(go) such that for any 0 < ¢ < g9 and 0 < ¢ <
o0(e0), the function U™ (t, x, y) is a supersolution of (1.1) for t negative enough.
Moreover, this satisfies

lim sup |I7+(t,x, Y) = Ug(t,x,y)| <26, (4.3)
R=>+400 1 <0, ((x,y) —capeast)?> R?

lim sup ﬁ+(t,x,y)—U9_ﬁ(t,x,y))§2€, (“4)
R—+o00

x>0,((x,y)—cpoepot)*>R?

and -
Ut (t,x,y) = max{Uy(x cosa + ysina — cqt, x, y),
Up(x cos@ + ysin0 — cot, x, y), 45
Ug(xcos B+ ysin B — cgt, x, y)}, )

for tnegative enough and(x, y) € R2.

Proof. We only prove for the part x < (c¢; + ¢1)t/2. Take 0 < &9 < 0/2 and
more restrictions on &g will be given later. Change variables X = x — ¢t and
Y =y — cpt. Then,

Y1 (t, X) := ¢1(X) + psech(X) + psech(X + (¢; — ¢1)1),

and

et, X) = (e1(t, X), ex(t, X)) = ( W)x (et eX) ! ) .

Jukrex) +1 Jwir.ex) +1

One can compute that

(Y1) (t, X) = (c1 — &) psech’ (X + (c1 — &),
W)x(t, X) =¢](X) + psech’(X) + psech’(X + o(c1 — ¢Ni),
(Y)ex (1, X) = (c1 — ¢1)psech’ (X + (c1 — &),
W) xx (1, X) =¢](X) + psech”(X) + psech” (X + (c1 — ¢,
(W) xxx (1, X) =] (X) + psech” (X) + psech” (X + (c1 — ¢n).
This means that there exists a positive constant C such that the L° norms of above

derivatives of ¥ (¢, X) are bounded by C (sech(X) + sech(X + (¢; — ¢1)t)). One
can also compute that

o(Wiix oW x(W)ix

‘T <_ D%+ D72 (0 + 1)3/2> ’
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3

ex :(_ o(W1)xx _Q(l/fl)x(lﬂl)xx)
(Y% + 1?2 (Y% + 1)%

and

_ ( PWxxx . 3*WDxWYy AWy
exx =\ — 7+ 5 0 3
(Y% +1)2 (Y% +1)2 (YD) +1)2
_@WIx@xxx SQZ(w1)§<w1)§X)
()% + 13 ()% + 1)3

where (V1) x, (Y1) xx, (W) xxx, (W1):x are taking values at (of, 0X) in ¢, ex,
exx. Let

Ut (t,X,Y) = Uer x) €11, X, Y), X + c11, ¥ + c21) + esech(0X)
+esech(oX — o(c1 — ¢1)t),

where

Y —i(ot,0X)/0
(1. X.Y) = .
: JWD2 (ot 0X) 1

We need to verify that
NUY =0 = AxyUt — U — U — f(X +c1t, Y + e, UF) >0,

for ¢ negative enough and (x, y) € R?. By (2.2) and after some computation, one
can get that

NUY =8cUer.x) ((E1)s — c1(EDx — c2(EDy + Cerx) + Ul x - €
= Ugyx) - ex ~ex — Ug x) - exx
—20:Ul, x, - ex(EDx — 20x Ul x) - €x
— O£ Uetr, 0 ()% + EDy — D)
= 20:0x Ue(r.x)((61)x — e1(7, X)) — 20 dy
Uet, x)(E1)y — e2(t, X)) — 0:Ue(r, x)6x x
— ¢y Ué(t,x) -ex — epsech” (0X)
— go%sech”(0X — o(ci — 1)) — creosech’(0X)
— creosech’(0X — o(e1 — é1)t)
b FXHat Y +ot, Upx) — fF(X+cit, Y +eat, U,

where 0s Ue (1, x), 055 Uer,x)> VXY 96 Uer, X)» Ué(,,x) - ey, Ué/(t,X) -ex - ex, Ue’(t‘x) .

exx, 8;Ue’(tyx) - ey, BxUé([’X) - ex, Ue/(t,X) - ex, Ueq x) are taking values at
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(&1 (t, X, Y), X,Y)and U™, (&), (1)x. (§1)y are taking values at (7, X, ¥). Sim-
ilarly to the as those formulas of (2.18), one can also compute that

€D = _o(W)x(Wix £ — Y1)
N
EDy = _o(WDx(WDxx £ — (Y1)x
Wok+1 7 Jgng 4
1
EDy = —.
VW% +1 “.6)
2 2 2 2
"W x(W)xxx o“WxxCWx — D
= - +
(Ex G+l G+

N o((Y)% — 1)(1@)”’
(Y% +1)2

€k +@nj —1=(

Q(¢1>§(¢1)XX)2

. 2+2Q(1/f1)x(1ﬂ1)xx 1
Wy +1

1 5 3
((Yx + D2

where (V1) x, (W1)r (V1) xx, (¥1):x are taking values at (of, 0X). By Lemma 2.1,
Lemma 2.4, Lemma 2.7, boundedness of || U, ||, U} |l, 10¢ U, I, 135U, || and above
formulas, there are constants Cg > 0 and Co9 > 0 such that

19¢ Uetr, x) (ED% + (EDNF — DI+ 210x 9 Ueqr,x) (B x — e1(t, X))
+ 2[0y 0 Ue(r, x) ((51)y — ea(t, X))|
+ 8¢ Ue(r, x) (E1) x x| < Cso(sech(oX) + sech(oX — o(c1 — é1)1)),

and
|Ué(;,x) cer| + |Ué/(,,x) ~ex -ex|+ |Ué(t,x) cexx |+ 2|3§Ué(,,x) ~ex(&)x|
+ 2|0y Ue/(;,x) cex|
+ 11Uy x) - ex| < Coo(sech(eX) +sech(oX — o(c1 — ¢1)1)),
Therefore, it follows that
NU" 29U x)((E1)s — c1(EDx — 2(EDy + Cerx)) — (Cs + Co)a(sech(oX)
+ osech(oX + o(c; — ¢pr)) — (1 + 61)892(sech(QX)
+ osech(oX + o(c1 — ¢1)t))
+ f(X +ct, Y +crt, Upp,x)) — f(X +c1t, Y + cat, ﬁ+)

We claim that

Claim 4.3. There exist positive constants Cyg and C1y such that

c1EDx + 2y — (€1 — cer,x) = —Cro0( sech(X)
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+ sech(oX + o(c1 — c)n)é1]

— Cio0 sech(oX + o(c1 — ¢nt) + Cri( sech(oX)

+ sech(oX + o(c1 — €1)1)).
In order to not lengthen the proof, we postpone the proof of Claim 4.3 after the
proof of this lemma.

For &1(¢, X,Y) > C and &(¢, X, Y) < —C where C is defined by (2.24), it
follows from (1.2) that

FX +eit, Y + et Ueay) — f(X + 1t Y +c2t, UT)
> Le(sech(ox) + sech(ox + o(cy — ¢t)))
Then, by 9: U, < 0, Lemma 2.4 and Claim 4.3, it follows that
NU* > — BiCipo(sech(oX) + sech(oX + o(ci — &1)1))
— ByCposech(oX + o(c1 — ¢1)t))
— ((Cg + Co)o + (1 + c1)8Q2)(sech(QX) + osech(oX + o(c1 — ¢1)t))
+ Ae(sech(oX) + sech(oX + o(cy — ¢1))) = 0

where By = sup,s 110 U]l L and By = sup,cs 10g Ue |l L, by taking 0 < o <
o(&) where p(¢) is small enough such that

—BlCmQ—BszQ—((C3+C9)Q+(1+c1)8Q2>+A£ >0, forall 0 <o <o(e).

4.7)
For —C < &(t, x,y) < C,thereis k > O such that —3: U, x)(§1(t, x, y), x, y) >
k. Then, it follows from Claim 4.3 that

NU* >kCyj(sech(oX) + sech(oX + o(c1 — ¢1)1))
— B1Cipo(sech(oX) + sech(oX + o(c1 — ¢1)t))
— ByCiposech(oX + o(cr — ¢1)t))
- ((Cg + Co)o + (1 + C1)802>(sech(QX)
+ osech(pX + o(c1 — ¢1)t)) — Me(sech(pX)
+ sech(oX + o(c; —¢1))) =0

where M = mMax, y )eR? xR | fu(x, y,u)l|, by (4.7), taking 0 < ¢ < g9 and g9 =
max{c/2, kCi1/(A + M)}.

By the comparison principle, Ut@,x, y) is a supersolution of (1.1).

By the definition of ¥1 (x), Y2 (x) and Lemma 4.1, one has that

E1(t, X,Y) > Xcosa+ Ysina = xcosa + ysina — cqt as X — —o00,
and

E1(t,X,Y) > XcosO 4+ Ysind =xcosf + ysinf — cgt as X — +o00.
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Then, by similar arguments as in Step 2 of the proof of Lemma 2.8, one can get
(4.3) and (4.4). The inequality (4.5) can be gotten by comparing U™ (¢, x, y) with
Ug(xcosa+ysina —cqt, x,y), Ug(x cos B+ ysin B —cgt, x, y), Ug(x cos 0 +
ysiné@ — cgt, x, y) respectively for ¢ negative enough through similar arguments
as in Step 3 of the proof of Lemma 2.8. This completes the proof.

We then prove Claim 4.3.

Proof of Claim 4.3. From (4.6), one has that

oY) x (Y1) 1)
c1x + 2y — Er — cer.x) = — 1 Wél —c \/(w];?ﬁ
e
JWng +1
oY) x(P)ix £+ W) o)
- Ce(t, .
GOk +1 T Jgng

Then, by Lemma 2.1 and the definition of v, there is C1¢ > 0 such that
_ o eWxWxx e(Wx(Wix

+
W% +1 st W%+ 1 51‘
< Cipo(sech(oX) + sech(oX + o(c1 — ¢1)1)) &1, (4.8)
and
Wi | < ¢yppsechoX + oler — énn). 4.9)

J@k +1

Let 6(t, X) = arccos(e; (¢, X)). Then, e(t, X) = (cos (¢, X), sin6(¢, X)). By the
definition of v (¢, X), one has o < 0(¢, X) < 0. It follows from Lemma 4.1 that

e W)x
Jak +1

+ — Cer,x) =(c1, c2)(cos O(t, X), sin6(t, X)) — co.x)

c
Jank +1
=CyHCub (COSQ(t, X), sin (¢, X)) —Co(t,X) > 0.
(4.10)
Notice that ¢, > 0 for all ¢ € S. By Lemma 4.1, one has that

eqp - (cosO(t, X),sinf(t, X)) > 0, forall X e R.
Let

c
h(s) = ——————.
eqo - (Coss, sins)

Notice that h(x) = cqp. Also notice that ey (¢, X) — cosa as X — —oo and
0(t, X) > o as X — —oo for X being very negative. Then, one has that
capeqo(cosB(t, X), sin0(t, X)) — cou,x)
=eqp - (cosO(t, X), sinO(t, X)) (h(a) — h(0(t, X))) 4.11)
=eqp - (cosO(1, X), sin0(1, X)) (W' (@) (a — 0(t, X)) + o(Ja — 6(z, X)|))
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Remember that 4’ () < 0 by the assumptions of Theorem 1.10. Moreover, by the
formulas in the proof of Lemma 4.2, there is C1; > 0 such that

X X
o, X) —«o :/ Ox(t, s)ds = / Q(W;)XX(QI, 0s) s
o —0o (Y% (0t,05) +1

((Y1)x (o, 0X) + cota)

_ (4.12)
WD x N + 1
> Cyi(sech(oX) + sech(oX + o(c1 — é1))).

By (4.8)-(4.12), we have our conclusion.
Now, we turn to prove Theorem 1.10.

Proof of Theorem 1.10. Let u,(t, x, y) be the solution of (1.1) for ¢t > —n with
initial data
un(_naxv )’) = Ua_gﬂ(_nv-x7 y)’

where

Ua_gﬁ(t, x,y) = max{Uy(x cosa + ysina — cqt, X, y),
Up(x cosB + ysin0 — cot, x, y),
Ug(xcos B+ ysin B —cgt, x, y)}.

By Lemma 4.2, it follows from the comparison principle that

Upop(t.X.y) Sun(t,x,y) <UT(t.x.y), for —n <t <T and (x,y) € R,
(4.13)
wherer T is a negative constant such that Lemma 4.2 holds for —oco < t < T.
Since Ua_o/s (t, x, y) is a subsolution, the sequence u,(¢, x, y) is increasing in n.
Letting n — +00 and by parabolic estimates, the sequence u, (¢, x, y) converges
to an entire solution u(z, x, y) of (1.1).
By (4.13), u(z, x, y) satisfies

Upop(t: %, ¥) S ult,x,y) < Ut x,y), for + <T and (x,y) € R®. (4.14)

Moreover, by (4.3), (4.4) and since € can be arbitrary small, one can get that
u(t, x, y) satisfies

lim sup lu(t, x,y) — Ugy(t, x, y)| =0, (4.15)
R=400 v <0,((x,y)—capews?)?> R?
and
lim sup u(t, x. y) = Upy 1, %, y)‘ —0 (4.16)
R—+00

x>0, ((x,y)—cggelggt)2>R2

for ¢ negative enough. Now, we consider the half plane H := {(x, y) € RZ; x < 0}.
Take any sequence {#,},cn of R such that 7, - —oo as n — +00. Notice that for
anyn, therearek! k2 € Zandx, € [0, L1),y, € [0, Ly)suchthatcyt, = k)L +x]
and cpt, = k,Z,Lz + y;l. Moreover, up to extract subsequences of c1t, and cty,
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there are x, € [0, L] and y, € [0, Ly] such that x, — x] and y, — y, as
n — 4oo. Letv,(¢,x,y) = u(t + t,,x + city,y + c2ty) and H, = H — c1ty.
Then, H, — R?asn — +o0. Since f(x, y, -) is L-periodic in (x, y), one has that
fx+city, y+eaty, ) > f(x+xL, y+y,, -) By parabolic estimates, v, (7, x, y),
up to extract of a subsequence, converges to a solution v (¢, x, y) of

v—Av=fx+x,y+y.v), (t.x,y)€RxR% (4.17)
By the definitions of ¢ and c¢;, one can easily check that

Uoje(t—i—tn,x—i—x,,,y—i—yn) — UJG(I,x, y), a8 n — 400 uniformly in RXRZ,
(4.18)
where

Ua_e(tv x,y) = max{Uy(x cosa + ysina — cgt, x + X,y + y.),
Up(x cos® + ysin® — cot, x + x., vy + yi)}.

By (4.15), it follows that

lim sup
R= 400 ((x,y) ~capeant)?> R2

Voo (t, X, y) — Ijojg(t,x, y)‘ =0.

By the qniqueness of the curved front, one then has that v (¢, x, y) = \7,19 (t,x,y)
where Vg (¢, x, y) is the curved front of (4.17) satisfying

lim sup
R=>400 (¢, y)—capeant)?> R2

Vao (e, x, ) = Ugg (0., )| = 0. (4.19)

Thus, for any fixed ¢,
vt x,y) = Vag (t,x,y), as n — +oo locally uniformly in H,.

By (4.15), (4.18) and (4.19), the above convergence is uniform in H,. Thus, for
any fixed 7,

u(t +ty, x +city, y +caty) — Vag(t, X,y), as n — 400 uniformly in Fn,
which implies

u(t +ty,, x,y) —> Vae(t,x —Clty, y — C2ty), a8 n — 400 uniformly in H.
X (4.20)
By the above arguments applied to Vg (t — t,, + f9, x — c1t,, y — caty) for arbitrary
to € R, one can get that
Vao (t =ty + 10, X — Citn, y — C2tn) = Vap(t + 10, X, ¥),
as n — 4oo locally uniformly for ¢ e R
and uniformly for (x,y) € R?.

Since #; is arbitrary, the above convergence is also uniform for + € R. Thus, by
(4.20), one gets that

u(t,x,y) = Vyo(t, x,y), ast — —oo uniformly in H.
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Similarly, one can prove that u(z, x, y) — Vpg(t, x, y) as t — —oo uniformly in
R?\ H.

On the other hand, for fixed 7" < 0 such that Lemma 4.2 holds, one can easily
check that

lim su U .(T,x,y)—U_,(T,x, ‘:O,
R— 400 x2+y2p>R2 aé)ﬂ( y) ozﬂ( y)
and
lim sup l7+(T,x,y)—Uojﬁ(T,x,y)‘ < 2e.
R—>+400,24 2 g2

Since ¢ can be arbitrary small and by (4.14), one has that

lim sup
R—>+00 24 425 p2

u(T, %, ¥) = Upy(T, x, )| = 0.

By stability of the curved front, that is, Theorem 1.9, one has that
u(t,x,y) = Vup(t,x,y), as t — +oo uniformly in R2.
This completes the proof of Theorem 1.10.
Finally, we prove Corollary 1.12 which implies that Theorem 1.10 is not empty.

Proof of Corollary 1.12. Assume that e, = (0, 1). Since ¢, = min.es{c.} and ¢,
is bounded, there exist o € (0, 7/2) and B; € (7w /2, ) such that

20 lo—a =cy - (—sina,cosa) <0for o € [ai, E]’
and

dC9 , ) -

%‘Ozﬁ =cp - (—sinB,cosB) > 0for B e [E’ B11.

Let g(@) = cp/ sinB. Then,

£0) = ¢y - (—sinf, cos6) _ cocost

sin 0 sin?6

One can make o, B close to /2 such that
g () <Oforall «ela, %) andg’(B) > Oforall B e [%, Bil.

Thus, g(0) is decreasing from g(«) to g(;r/2) as 0 varying from o to 7 /2, and is
increasing from g(m/2) to g(B) as 6 varying from 7 /2 to 81. By continuity, one
can pick « € [o1, w/2) and B € (7r/2, B1] such that

g(@) =g(B), g'(@) <0andg'(B) > 0.

Let e; = (cosa, sinw) and e; = (cos B, sin B). By Theorem 1.2, there is a curved
front Ve, (¢, x, y) of (1.1) satisfying (1.11) with eg = e.
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By the same arguments of Corollary 1.6, one can rotate the coordinate such that
ex can be any direction and for eg, e close to e, enough, there is a curved front
Veiey (t, x, y) of (1.1) satisfying (1.11).

Assume that e, is denoted by (cos 0y, sin6,) where 6, € (0, 7/2) is small
enough. Take ey, e, close to e, such that there exists a curved front V, ., (¢, x, y)
of (1.1). Let e; and e; be denoted by (cos 61, sin 01) and cos 8;, sin 6, respectively,
where 01 and 6, are close to 6. By Corollary 1.5 and since 6, is small enough
which means that 6; is small enough, there is 63 € (7/2, =) such that

Co, Cos .
. = = Cp03>
sin 0 sin 63

and there is a curved front Vp,g, of (1.1) satisfying (1.9) with o = 6, B = 63
and cqg = cg,9;. On the other hand, since 6 is small enough, this implies that 63
is close to 7 enough. Then, since 6; is also small enough, one has that 63 — 6,
is close to w enough and hence, (cos 6;, sin6;) - (cos 63, sinf3) = cos(f3 — 6»)
is close to —1 enough. By Corollary 1.6, there is e, such that (1.10) holds for
e1 = (cosBy,sinbr), eo = (cosBs,sinb3), eg = ex and there is a curved front
Vo6, of (1.1) satisfying (1.11).

Then, by Theorem 1.10, there is an entire solution u(t, x, y) of (1.1) satisfying
(1.13) and (1.14) witha = 61,0 = 65, B = 65.
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