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Abstract

In this paper, curved fronts are constructed for spatially periodic bistable reaction-
diffusion equations under the a priori assumption that there exist pulsating fronts in
every direction. Some sufficient and some necessary conditions of the existence of
curved fronts are given. Furthermore, the curved front is proved to be unique and
stable. Finally, a curved front with varying interfaces is also constructed. Despite
the effect of the spatial heterogeneity, the result shows the existence of curved fronts
for spatially periodic bistable reaction-diffusion equations which is known for the
homogeneous case.

1. Introduction

In this paper, we consider spatially periodic reaction-diffusion equations of the
type

ut − �u = f (x, y, u), (t, x, y) ∈ R × R
2, (1.1)

where ut = ∂u
∂t and� = ∂xx +∂yy denotes the Laplace operator with respect to the

space variables (x, y) ∈ R
2. The reaction term f (x, y, u) is assumed to be periodic

in (x, y) and bistable in u. More precisely, we assume throughout this paper that

Guo and Liu are partially supported by by NSF Grant 1826801. Guo is also partially
supported by the fundamental research funds for the central universities and the National
Natural Science Foundation of China under Grant 12101456. Li is supported by the Na-
tional Natural Science Foundation of China under Grants 11731005 and 11671180. Wang
is supported by the National Natural Science Foundation of China under Grant 12071193.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-021-01711-x&domain=pdf
http://orcid.org/0000-0001-8217-5573


1572 Hongjun Guo et al.

(F1) f (x, y, u) is continuous, of class Cα in (x, y) uniformly in u ∈ [0, 1] with
α ∈ (0, 1), of class C2 in u uniformly in (x, y) ∈ R

2 with fu(x, y, u) and
fuu(x, y, u) being Lipschitz continuous in u ∈ R;

(F2) f (x, y, u) is L-periodic with respect to (x, y) where L = (L1, L2) ∈ R
2,

that is, f (x + k1L1, y + k2L2, u) = f (x, y, u) for any k1, k2 ∈ Z;
(F3) for every (x, y) ∈ R

2, 0 and 1 are stable zeroes of f (x, y, ·), that is,
f (x, y, 0) = f (x, y, 1) = 0,

and there exist λ > 0 and σ ∈ (0, 1/2) such that

− fu(x, y, u) ≥ λ for all

(x, y, u) ∈ R
2 × [0, σ ] and (x, y, u) ∈ R

2 × [1 − σ, 1].
A typical example of f (x, y, u) is the cubic nonlinearity

f (x, y, u) = u(1 − u)(u − θx,y),

where θx,y ∈ (0, 1) is a L-periodic function. TheEq. (1.1) is a special generalization
of the famous Allen–Cahn equation [1]. For mathematical convenience, we extend
f (x, y, u) out of the interval u ∈ [0, 1] such that

− fu(x, y, u) ≥ λ for all (x, y, u) ∈ R
2 × (−∞, σ ] and (x, y, u) ∈ R

2 × [1 − σ, +∞).

(1.2)
Then, f (x, y, u) is globally Lipschitz continuous in u ∈ R.

Before proceeding further, we first recall some well-known results in the ho-
mogeneous case, that is,

ut − �u = f (u), (t, x) ∈ R × R
N , (1.3)

where f is of bistable type, that is, f (0) = f (1) = f (θ), f < 0 on (0, θ) and
f > 0 on (θ, 1), for some θ ∈ (0, 1). For one-dimensional space, it follows from
celebrated results due to Fife and McLeod [13] that (1.3) admits a unique (up to
shifts) traveling front φ(x − c f t) satisfying

0 < φ < 1, φ(−∞) = 1 and φ(+∞) = 0.

Moreover, the speed c f has the sign of
∫ 1
0 f (u)du and the front is globally and

exponentially stable. A trivial extension of the traveling front to higher dimensional
spaces is the planar front φ(x · e − c f t) where e ∈ S

N−1 denotes the propagation
direction. Notice that every level set of a planar front is a plane. In addition to
planar fronts, more types of fronts are also known to exist in high dimensional
spaces, such as V -shaped fronts, conical shaped fronts and pyramidal fronts, see
Hamel et. al. [19], Ninomiya and Taniguchi [21] and Taniguchi [24,25]. All these
fronts are transition fronts connecting 0 and 1 defined by Berestycki and Hamel [3].
The notions of transition fronts generalize the standard notions of traveling fronts.
Roughly speaking, transition fronts connecting 0 and 1 are those entire solutions
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u(t, x) for which there is a set 	t (which is called interface and can be picked as a
level set of entire solutions) splitting the space into two parts 
±

t satisfying
{

u(t, x) → 1 as d(x, 	t ) → +∞ for x ∈ 
+
t uniformly in t ∈ R,

u(t, x) → 0 as d(x, 	t ) → +∞ for x ∈ 
−
t uniformly in t ∈ R,

(1.4)

For more conditions on	t and
±
t , we refer to [3]. For above fronts, their interfaces

between 0 and 1 can be given by their level sets and different shapes of interfaces
actually show some structures of the solutions. One can roughly imagine a global
appearance of such solutions in the framework of transition fronts by noticing that
the solutions are approaching to 1 and 0 on one side and the other of the interfaces,
respectively.

As far as a spatially periodic bistable reaction-diffusion equation considered,
the situation is more complicated than the homogenous case. Because of the effect
of hetereogeneities, there may even not exist transition fronts connecting states 0
and 1, see Zlatoš [33]. However, what we are concerned with in this paper is the
existence of curved fronts when there exist some fronts in every direction, that is,
pulsating fronts. We now introduce the notion of pulsating front by referring to
[2,23,28–30].

Definition 1.1. Denote a periodic cell by T
2 = [0, L1] × [0, L2]. A pair (Ue, ce)

with Ue : R × T
2 → R and ce ∈ R is said to be a pulsating front of (1.1) with

effective speed ce in the direction e ∈ S connecting 0 and 1 if the two following
conditions are satisfied:

(i) For every ξ ∈ R, the profile Ue(ξ, x, y) is L-periodic in (x, y) and satisfies

lim
ξ→+∞Ue(ξ, x, y) = 0, lim

ξ→−∞Ue(ξ, x, y) = 1, uniformly for (x, y) ∈ T
2.

(ii) The map u(t, x, y) := Ue((x, y) · e− cet, x, y) is an entire (classical) solution
of the parabolic Eq. (1.1).

Wenow recall some existence results of pulsating fronts for the general reaction-
diffusion equation in spatially periodic media

ut =
∑

i

(a(x)uxi )xi +
∑

i

bi (x)uxi + f (x, u), t ∈ R, x ∈ R
N . (1.5)

For one dimensional case of (1.5) when f (x, u) = g(x) f (u), Nolen and Ryzhik
[22] proved the existence of pulsating fronts with nonzero speed by provided with
some restrictions for g and f . Moreover, Ducrot, Giletti and Matano [9] also got
some existence results of pulsating fronts with a positive speed, if the solutions
of (1.5) with some compactly supported initial conditions can converge locally
uniformly to 1 as t → +∞. Still for one-dimensional case, Ding, Hamel and
Zhao [7] applied the implicit function theorem and abstract results of Fang and
Zhao [12] to get the existence of pulsating fronts for small period and large period.
For higher dimensions, when the diffusivity matrix a is close to identity and f
is independent of x , the existence of pulsating fronts is obtained by Xin [28–30]
through refined perturbation arguments. Ducrot [8] also got some existence results
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of fronts connecting 0 and 1 in every direction for slowly varying medium and
rapidly varying medium (that is, d << 1 and d >> 1 respectively when the
reaction term is f (dx, u)), in which the fronts are either moving pulsating waves
or standing transition waves. Although such existence results are known, there may
not exist pulsating fronts in general. Zlatoš [33] constructed a periodic pure bistable
reaction such that there is no pulsating fronts of (1.1). We also refer to [7,31,32]
for some nonexistence results.

In this work, we aim to construct curved fronts by using some pulsating fronts
with nonzero speeds. Therefore, we need to assume a priori that

(H1)
∫
T2×[0,1] f (x, y, u)dxdydu �= 0,

(H2) for every unit vector e ∈ R
2, the Eq. (1.1) admits a pulsating frontUe((x, y)·

e − cet, x, y) with ce �= 0.

From the results of Ducrot [8] and Guo [15], one knows that if (H1), (H2) hold,
the propagation speed ce of the pulsating front in every direction has the sign of∫
T2×[0,1] f (x, y, u)dxdydu. We assume, without loss of generality, that

∫

T2×[0,1]
f (x, y, u)dxdydu > 0, (1.6)

which implies ce > 0 for all e ∈ S. Otherwise, one can replace u, f , Ue(ξ, x, y)
by ũ = 1− u, g(x, y, u) = − f (x, y, 1− u), Ũe(ξ, x, y) = 1−Ue(−ξ, x, y) and
consider the new pulsating front Ũe with speed −ce. From [3] and [15], the speed
ce and the profile Ue of the pulsating front are unique up to shifts in time for any
direction e. We fix the pulsating front in every direction e by

Ue(0, 0, 0) = 1

2
.

From [15], we also know that ∂ξUe < 0, the family {ce}e∈S is uniformly bounded
with respect to e and the minimum and maximum of ce can be reached with the
following inequality:

0 < min
e∈S ce ≤ max

e∈S ce < +∞.

In the whole paper, we always assume that (F1)–(F3), (H1)–(H2) and (1.6) hold
and we do not repeat it in the sequel. We now focus on construction of curved fronts
by some pulsating fronts. To the best of our knowledge, few results of the existence
of curved fronts are known for bistable reaction-diffusion in spatially periodic
media. However, one can refer to [10,11] for the existence of curved fronts of
monostable and combustion reaction-diffusion equations with a periodic shear flow
and refer to [4] for a space-time periodic monostable reaction-advection-diffusion
equation. Although the pulsating frontUe((x, y)·e−cet, x, y) is not exactly planar,
every level set is still bounded with a plane. Thus, the pulsating front is also called
almost-planar in the framework of transition fronts (see [17]). We try to apply the
ideas of Ninomiya and Taniguchi [21] which they used for homogeneous bistable
case, to construct the curved fronts. But, since the profiles Ue and speeds ce of
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pulsating fronts are different in general with respect to the direction e, we have to
update their ideas.

We then claim our results. Let α ∈ (0, π). Then, by Assumption (H2), there
exists a pulsating front in the direction (cosα, sin α), that is,

Uα(x cosα + y sin α − cαt, x, y).

For any α, β ∈ (0, π), define

U−
αβ(t, x, y)

:= max{Uα(x cosα + y sin α − cαt, x, y),Uβ(x cosβ + y sin β − cβ t, x, y)},
(1.7)

which is a subsolution of (1.1). Our first result shows the existence of a curved front
which converges to pulsating fronts along its asymptotic lines under some condi-
tions on angles α and β. The curved front is actually a transition front connecting
0 and 1 whose interfaces can be chosen as a V-shaped curve.

Theorem 1.2. For any θ ∈ (0, π), let g(θ) = cθ / sin θ . For any 0 < α < β < π

such that

cα

sin α
= cβ

sin β
:= cαβ >

cθ

sin θ
for any θ ∈ (α, β), g′(α) < 0 and g′(β) > 0,

(1.8)
there exists an entire solution V (t, x, y) of (1.1) such that Vt (t, x, y) > 0 for all
(t, x, y) ∈ R × R

2 and

lim
R→+∞ sup

x2+(y−cαβ t)2>R2

∣
∣
∣V (t, x, y) −U−

αβ(t, x, y)
∣
∣
∣ = 0. (1.9)

Remark 1.3. In [15], Guo has shown that ce is differentiable with respect to e ∈ S

and hence cθ = c(cos θ,sin θ) is differentiable with respect to θ . Obviously, g(θ)

is then differentiable with respect to θ ∈ (0, π). Recently, Ding and Giletti [6]
have shown that the set of admissible speeds ce is rather large and it is conjectured
that ce could be any continuous sign-unchanging function. It means that conditions
g′(α) < 0 and g′(β) > 0 could be easily satisfied.Wewill also show that conditions
g′(α) < 0 and g′(β) > 0 are not empty later. It seems that in Theorem 1.2,
conditions g′(α) < 0 and g′(β) > 0 can not be removed by our methods. These
conditions are actually true for homogeneous unbalanced bistable case with the
reaction term having positive integration from 0 to 1 (α has to be smaller than π/2
in this case by symmetry and β = π − α), but false for homogeneous balanced
bistable case. Moreover, the V-shaped front exists in homogeneous unbalanced
bistable case, but does not exist in homogeneous balanced bistable case, see [18].
Nevertheless, for the balanced case, there exist some fronts whose level sets have
an exponential shape for 2-dimensional space and a paraboloidal shape for N -
dimensional space with N ≥ 3, see [5,26,27].
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Remark 1.4. One can easily check that the curved front V (t, x, y) in Theorem 1.2
is a transition front connecting 0 and 1 (see [17] for the definition) with sets

	t := {x ≤ 0, y ∈ R; x cosα + y sin α − cαt}
∪{x > 0, y ∈ R; x cosβ + y sin β − cβ t},

+

t := {x ≤ 0, y ∈ R; x cosα + y sin α − cαt < 0}
∪{x > 0, y ∈ R; x cosβ + y sin β − cβ t < 0},

and


−
t := {x ≤ 0, y ∈ R; x cosα + y sin α − cαt > 0}
∪{x > 0, y ∈ R; x cosβ + y sin β − cβ t > 0}.

Notice that for any fixed t , 	t is a connected polyline since cα/ sin α = cβ/ sin β

and the shape of 	t is invariant with respect to t . Moreover, by the definition of the
global mean speed [17], the curved front V (t, x, y) has a global mean speed equal
to min{cα, cβ}, in the sense that

d(	t , 	s)

|t − s| → min{cα, cβ}, as |t − s| → +∞.

Here, the distance d(A, B) between two subsets A and B of R2, is defined by the
smallest geodesic distance between pairs of points in A and B. Another definition
of the distance d̃ like

d̃(A, B) = min
(
sup{d(x, B); x ∈ A}, sup{d(y, A); y ∈ B}

)
,

could be used. Then, there holds that d(A, B) ≤ d̃(A, B) and the global mean
speed is equal to max{cα, cβ}, in the sense that

d̃(	t , 	s)

|t − s| → max{cα, cβ}, as |t − s| → +∞.

This is different with the homogeneous case, in which the global mean speeds under
these two definitions are the same, see [17] and see [16] for the underlying domains
being exterior domains and domains with multiple branches.

We then show that the condition (1.8) is not empty, that is, it is satisfied when
α close to 0 and β close to π , see Fig. 2.25.

Corollary 1.5. There exist 0 < α1 < β1 < π such that for any α ∈ (0, α1), there
is β ∈ (β1, π) such that (1.8) holds for such α, β and there exists an entire solution
V (t, x, y) of (1.1) satisfying (1.9).

Indeed, one can rotate the coordinate such that y-axis points to any direction.
Although the periodicity is not preserved by rotation, the same proofs of Theo-
rem 1.2 and Corollary 1.5 can be applied. Therefore, Corollary 1.5 implies that for
any two pulsating fronts whose propagation directions are close to reversed with
each other, one can use them to construct a curved front.
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Fig. 1. An example of α and β satisfying (1.8)

Corollary 1.6. There exist 0 < ρ < 1 such that for any directions e1, e2 with
−1 < e1 · e2 < −1 + ρ, there exist a direction e0 such that

ce1
e1 · e0 = ce2

e2 · e0 := ce1e2 (1.10)

and there is an entire solution V (t, x, y) of (1.1) satisfying

lim
R→+∞ sup

((x,y)−ce1e2 te0)
2>R2

∣
∣
∣V (t, x, y) −U−

e1e2(t, x, y)
∣
∣
∣ = 0, (1.11)

where

U−
e1e2(t, x, y) := max{Ue1((x, y) · e1 − ce1 t, x, y),Ue2((x, y) · e2 − ce2 t, x, y)}.
By Theorem 1.2, one knows that (1.8) is a sufficient condition for the existence

of V (t, x, y) satisfying (1.9). However, we cannot show that (1.8) is necessary, but
can show that (1.8) without g′(α) < 0 and g′(β) > 0 is necessary.

Theorem 1.7. If there are two angles α and β of (0, π) and a constant cαβ > 0
such that there exists an entire solution V (t, x, y) of (1.1) satisfying (1.9), then it
holds that

cαβ = cα

sin α
= cβ

sin β
>

cθ

sin θ
for any θ ∈ (α, β).

Now, we show the uniqueness and the stability of the curved front V (t, x, y).

Theorem 1.8. For any fixed 0 < α < β < π satisfying

cα

sin α
= cβ

sin β
:= cαβ,

the entire solution V (t, x, y) of (1.1) satisfying (1.9) is unique; that is, if there is
an entire solution V ∗(t, x, y) satisfying (1.9), then V ∗(t, x, y) ≡ V (t, x, y).
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Theorem 1.9. Let α and β be fixed angles satisfying (1.8) and V (t, x, y) be the
entire solution of (1.1) satisfying (1.9). Let 0 ≤ u0(x, y) ≤ 1 be an initial value
satisfying

lim
R→+∞ sup

x2+y2>R2

∣
∣
∣u0(x, y) −U−

αβ(0, x, y)
∣
∣
∣ = 0. (1.12)

Then, the solution u(t, x, y) of (1.1) for t > 0 with u(0, x, y) = u0(x, y) satisfies

lim
t→+∞ ‖u(t, x, y) − V (t, x, y)‖L∞(R2) = 0.

Next, we construct a transition front connecting 0 and 1 with varying interfaces.
Such a kind of transition front is known in homogeneous case by [17], in which
the solution is orthogonal symmetric with respect to y-axis and behaves as three
planar fronts as t → −∞. However, in our case, this transition front can not be
symmetric in general.

Theorem 1.10. Let α and β be fixed angles satisfying (1.8) and let Vαβ(t, x, y) be
the entire solution of (1.1) satisfying (1.9). Denote eα = (cosα, sin α) and eβ =
(cosβ, sin β). Assume that there exist another angle θ ∈ (α, β) and a direction
eθ = (cos θ, sin θ) such that

(i) for eα and eθ , there is a direction eαθ such that (1.10) holds for e1 = eα ,
e2 = eθ and e0 = eαθ , it holds h′(α) < 0 where h(s) = cs/(eαθ · (cos s, sin s))
for 0 < s < θ and there is an entire solution Vαθ (t, x, y) satisfying (1.11).

(ii) for eβ and eθ , there is a direction eβθ such that (1.10) holds for e1 = eβ ,
e2 = eθ and e0 = eβθ , it holds h′(β) > 0 where h(s) = cs/(eβθ · (cos s, sin s))
for θ < s < π and e0 = eαθ and there is an entire solution Vβθ (t, x, y)
satisfying (1.11).

Then, there exists an entire solution u(t, x, y) of (1.1) such that

u(t, x, y) →
{

Vαθ (t, x, y), uniformly in the half plane {(x, y) ∈ R
2; x < 0},

Vβθ (t, x, y)}, uniformly in the half plane {(x, y) ∈ R
2; x > 0}, as t → −∞.

(1.13)

and
u(t, x) → Vαβ(t, x, y), as t → +∞ uniformly in R

2. (1.14)

The convergence in above theorem is in the sense of L∞ norm.

Remark 1.11. From the proof of Theorem 1.10, one can easily check that the entire
solution u(t, x, y) is a transition front connecting 0 and 1 with the interfaces

	t :=
{
x ≤ cα sin θ − cθ sin α

sin(θ − α)
t, y ∈ R; x cosα + y sin α − cαt = 0

}

∪
{cα sin θ − cθ sin α

sin(θ − α)
t < x

≤ cβ sin θ − cθ sin β

sin(θ − β)
t, y ∈ R; x cos θ + y sin θ − cθ t = 0

}
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Fig. 2. Left: interface when t << −1; Right: interface when t >> 1

∪
{
x >

cβ sin θ − cθ sin β

sin(θ − β)
t, y ∈ R;

x cosβ + y sin β − cβ t = 0
}
, for t ≤ 0,

and

	t := {x ≤ 0, y ∈ R; x cosα + y sin α − cαt = 0}
∪{x > 0, y ∈ R; x cosβ + y sin β − cβ t = 0}, for t > 0,

see Fig. 2.

Finally, we give an example showing that Theorem 1.10 is not empty.

Corollary 1.12. Assume that e∗ is the direction such that the family of speeds
{ce}e∈S reaches its minimum, that is, ce∗ = mine∈S{ce}. Then, there exist e1 and
e2 close to e∗ such that (1.10) holds for e0 = e∗ and there is an entire solution
Ve1e2(t, x, y) of (1.1) satisfying (1.11). Moreover, there exist a direction e3 close
to −e∗ and a direction e∗∗ such that there is an entire solution u(t, x, y) of (1.1)
such that

u(t, x, y) →
{
Ve1e2 (t, x, y), uniformly in the half plane {(x, y) ∈ R

2; (x, y) · e∗∗ < 0},
Ve2e3 (t, x, y)}, uniformly in the half plane {(x, y) ∈ R

2; (x, y) · e∗∗ > 0},
as t → −∞ and

u(t, x) → Ve1e3(t, x, y), as t → +∞ uniformly in R
2.

rest of this paper as organized as follows: in Section 2, we first prove the existence
of the curved front, that is, Theorem 1.2. Then, we give some examples showing that
Theorem 1.2 is not empty. We also show a necessary condition for the existence of
the curved front in this section. Section 3 is devoted to the proof of the uniqueness
and stability of the curved front in Theorem 1.2. In Section 4, we construct a curved
front with varying interfaces and give an example.

2. Existence of Curved Fronts

This section is devoted to the construction of a curved front satisfying Theo-
rem 1.2. We will need some properties of the pulsating front, especially the differ-
entiability of the profile Ue and the speed ce with respect to the direction e.
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2.1. Preliminaries

We will use the hyperbolic function sech(x) frequently in the sequel. Thus, we
recall some known properties of it which can be checked easily.

Lemma 2.1. It holds that

| sech′(x)|, | sech′′(x)| ≤ sech(x), for x ∈ R,

and there is a positive constant p such that

sech′(x) > 0 for x ≤ −p, sech′(x) < 0 for

x ≥ p and sech′′(x) > 0 for |x | ≥ p.

Then, we need a smooth V-shaped curve with y = −x cot α and y = −x cot β
being its asymptotic lines.

Lemma 2.2. For any 0 < α < β < π , there is a smooth function ψ(x) for x ∈ R

with y = −x cot α and y = −x cot β being its asymptotic lines and there are
positive constants k1, k2 and K1 such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψ ′′(x) > 0, for all x ∈ R

− cot α < ψ ′(x) < − cot β, for all x ∈ R

k1 sech(x) ≤ ψ ′(x) + cot α ≤ K1 sech(x), for x < 0,
k2 sech(x) ≤ − cot β − ψ ′(x) ≤ K1 sech(x), for x ≥ 0,
max(|ψ ′′(x)|, |ψ ′′′(x)|) ≤ K1 sech(x), for all x ∈ R.

(2.1)

Proof. Let 0 < α < β < π . Since α < β, there are two positive constants a, b
and a smooth function ϕ(x) such that

ϕ(x) =
{−x cot α, x ≤ −a

−x cot β, x ≥ b.
and ϕ′′(x) > 0 for − a < x < b.

An example of such a function is that one can take an incircle of the straight lines
y = −x cot α and y = −x cot β with tangent points (−a, a cot α) and (b,−b cot β)

and ϕ(x) is made of the line y = −x cot α for x ≤ −a, the arc of the incircle
between −a and b, and the line y = −x cot β for x ≥ b. One can mollify ϕ(x)
at (−a, a cot α) and (b,−b cot β) such that ϕ(x) ∈ C∞(R), see Fig. 3. Define a
smooth function ψ(x) as follows:

ψ(x) := ϕ(x) + ρsech(x).

Here ρ > 0 is a constant. Since sech′′(x) is bounded and by Lemma 2.1, one can
make ρ small enough and a, b sufficiently large such that

ψ ′′(x) > 0 for all x ∈ R.

Moreover, one can easily check that ψ(x) satisfies all properties in (2.1). This
completes the proof.
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Fig. 3. The function ϕ(x)

We now recall some properties of the pulsating front Ue((x, y) · e − cet, x, y).
One can substitute the form Ue((x, y) · e − cet, x, y) into (1.1) and get that
(Ue(ξ, x, y), ce) satisfies the semi-linear elliptic degenerate equation

ce∂ξUe + ∂ξξUe + 2∇x,y∂ξUe · e + �x,yUe

+ f (x, y,Ue) = 0, for all (ξ, x, y) ∈ R × T
2. (2.2)

From [15, Lemma 2.1], we have

Lemma 2.3. For any pulsating front (Ue(ξ, x, y), ce)with ce > 0, there existμ1 >

0, μ2 > 0, C1 > 0 and C2 > 0 independent of e such that

0 < Ue(ξ, x, y) ≤ C1e
−μ1ξ for ξ > 0, (x, y) ∈ T

2

0 < 1 −Ue(ξ, x, y) ≤ C2e
μ2ξ for ξ ≤ 0, (x, y) ∈ T

2.

Then, by standard parabolic estimates applied to u(t, x, y) = Ue((x, y) · e −
cet, x, y), one can get that |∇x,yut |, |utt |, |ut | ≤ Cu(t+1, x, y) for some constant
C > 0 and (t, x, y) ∈ R × R

2. Notice that ut (t, x, y) = −ce∂ξUe((x, y) · e −
cet, x, y) with ce > 0. Then, by Lemma 2.3, we have the following lemma:

Lemma 2.4. For any pulsating front (Ue(ξ, x, y), ce)with ce > 0, there existμ3 >

0 and C3 > 0 independent of e such that

|∂ξUe(ξ, x, y)|, |∂ξξUe(ξ, x, y)|, |∇x,y∂ξUe(ξ, x, y)|
≤ C3e

−μ3|ξ | for ξ ∈ R, (x, y) ∈ T
2.

We also need the following properties:

Lemma 2.5. For any C > 0, there is 0 < δ < 1/2 independent of e such that

δ ≤ Ue(ξ, x, y) ≤ 1 − δ, for − C ≤ ξ ≤ C and (x, y) ∈ T
2, (2.3)

and there is r > 0 independent of e such that

−∂ξUe(ξ, x, y) ≥ r for for − C ≤ ξ ≤ C and (x, y) ∈ T
2. (2.4)
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Proof. Let u(t, x, y) = Ue((x, y) · e − cet, x, y). One can easily check that
u(t, x, y) is a transition front connecting 0 and 1with set {(t, x, y) ∈ R×R

2; (x, y)·
e − cet = 0} being its interfaces. Then, by [3, Theorem 1.2], one immediately has
that there is 0 < δ < 1/2 such that

δ ≤ u(t, x, y) ≤ 1 − δ, for − C ≤ (x, y) · e − cet ≤ C.

By continuity of Ue with respect to e (see [15]), one has that δ can be independent
of e.

The following proof for (2.4) can be simplified for the pulsating front Ue.
However, we do it in a general way in purpose that such idea can be used to prove
that the curved front which we construct later has similar properties. Notice that
ut (t, x, y) > 0 satisfies

(ut )t − �ut − fu(x, y, u)ut = 0, for (t, x, y) ∈ R × R
2.

Assume that there is a sequence {(tn, xn, yn)}n∈N of R × R
2 such that −C ≤

(xn, yn) · e − cetn ≤ C and ut (tn, xn, yn) → 0 as n → +∞. Since f (x, y, u)

is periodic in (x, y), there is (x ′, y′) ∈ R
2 such that f (x + xn, y + yn, u) →

f (x + x ′, y + y′, u) as n → +∞. Let un(t, x, y) = u(t + tn, x + xn, y + yn) and
vn(t, x, y) = ut (t+tn, x+xn, y+ yn). By standard parabolic estimates, un(t, x, y)
converges to a solution u∞(t, x, y) of

ut − �u − f (x + x ′, y + y′, u∞) = 0, for (t, x, y) ∈ R × R
2,

and vn(t, x, y) converges to a solution v∞(t, x, y) of

vt − �v − fu(x + x ′, y + y′, u∞)v = 0, for (t, x, y) ∈ R × R
2.

Moreover, v∞(t, x, y) satisfies v∞(t, x, y) ≥ 0 and v∞(0, 0, 0) = 0. By the max-
imum principle, v∞(t, x, y) ≡ 0. Since Ue(ξ, x, y) → 1 as ξ → −∞, there is
R > 0 large enough such that

u(t, x, y) ≥ 1 − σ for (t, x, y) ∈ R × R
2 such that (x, y) · e − cet ≤ −R,

where σ is defined in (F3). Take (x∗, y∗) ∈ R
2 such that (x∗, y∗) · e < −R − C .

Then, v∞(t, x, y) ≡ 0 implies that ut (t + tn, x + x∗ + xn, y + y∗ + yn) → 0
as n → +∞ locally uniformly in R × R

2. Notice that (x∗ + xn, y∗ + yn) · e −
cetn ≤ −R and hence, u(tn, x∗ + xn, y∗ + yn) ≥ 1 − σ . Also notice that 1 is the
only equilibrium of (1.1) over 1 − σ from (F3) and (1.2). It further implies that
u(t+ tn, x+ x∗ + xn, y+ y∗ + yn) → 1 locally uniformly inR×R

2. Since (x∗, y∗)
is fixed and −C ≤ (xn, yn) · e − cetn ≤ C , it reaches a contradiction with (2.3).
This completes the proof.

It follows from [15, Theorem 1.5] thatUe and ce are differentiable with respect
to e. Remember thatUe are normalized byUe(0, 0, 0) = 1/2 for all e ∈ S. For any
b ∈ R

2 \ {0}, define
Ub = U b

|b|
and cb = c b

|b|
. (2.5)
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Define Banach spaces as follows:

L2(R × T
2) = {u ∈ L2

loc(R × R
2); u(ξ, x + k1L1, y + k2L2)

= u(ξ, x, y) a.e. in R × R
2

for any k1, k2 ∈ Z, and u ∈ L2(R × K )

for any bounded set K ⊂ R
2},

H1(R × T
2) = {u ∈ H1

loc(R × R
2); u(ξ, x + k1L1, y + k2L2)

= u(ξ, x, y) a.e. in R × R
2,

for any k1, k2 ∈ Z, and u ∈ H1(R × K )

for any bounded set K ⊂ R
2},

and

H2(R × T
2) = {u ∈ H2

loc(R × R
2); u(ξ, x + k1L1, y + k2L2)

= u(ξ, x, y) a.e. in R × R
2,

for any k1, k2 ∈ Z, and u ∈ H2(R × K )

for any bounded set K ⊂ R
2},

and define their norms as

‖u‖L2(R×T2) =
(∫

R

∫

T2
|u|2dxdydξ

)1/2

,

‖u‖H1(R×T2) = ‖u‖L2(R×T2) + ‖∂ξu‖L2(R×T2)

+‖∂xu‖L2(R×T2) + ‖∂yu‖L2(R×T2),

and

‖u‖H2(R×T2) =‖u‖H1(R×T2) + ‖∂ξξu‖L2(R×T2)

+ ‖∂ξ ∂xu‖L2(R×T2) + ‖∂ξ ∂yu‖L2(R×T2)

+ ‖∂xxu‖L2(R×T2) + ‖∂x∂yu‖L2(R×T2) + ‖∂yyu‖L2(R×T2).

Lemma 2.6. Let Ub and cb be defined in (2.5). Then, Ub and cb are doubly continu-
ously Fréchet differentiable at any b ∈ R

N \{0}, that is, there exist linear operators
(U ′

b, c
′
b) : R2 → L2(R × T

2) × R and (U ′′
b , c′′

b) : R2 × R
2 → L2(R × T

2) × R

such that for any h, ρ ∈ R
2, (Ub+h, cb+h) − (Ub, cb) = (U ′

b, c
′
b) · h + o(|h|),

(U ′
b+ρ · h, c′

b+ρ · h)− (U ′
b · h, c′

b · h) = (U ′′
b · h, c′′

b · h) ·ρ + o(|ρ|) as |h|, |ρ| → 0.

Let us denote the Fréchet derivatives up to second order of Ue and ce with
respect to e by U ′

e, U
′′
e , c

′
e and c′′

e . The Fréchet derivatives are all bounded in the
sense that

‖U ′
e‖ = sup

h∈RN

‖U ′
e · h‖L∞(R×TN )

|h| < +∞,
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‖U ′′
e ‖ = sup

(h,ρ)∈RN×RN

‖(U ′′
e · h) · ρ‖L∞(R×TN )

|h||ρ| < +∞,

and

‖c′
e‖ = sup

h∈RN

|c′
e · h|
|h| < +∞, ‖c′′

e‖ = sup
(h,ρ)∈RN×RN

|(c′′
e · h) · ρ|
|h||ρ| < +∞.

The boundedness of c′
e and c′′

e can be easily followed. Let h ∈ R
N with |h| = 1.

One can also easily get that ‖U ′
e ·h‖L2(R×T2) is uniformly bounded for any h ∈ R

N

with |h| = 1. By differentiating (2.2), it follows that

c′
e · h∂ξUe + ce∂ξU

′
e · h + ∂ξξU

′
e · h + 2∇x,y∂Ue · (h − (h · e)e)

+2∇x,y∂ξU
′
e · h + �x,yU

′
e · h + fu(x, y,Ue)U

′
e · h = 0. (2.6)

By rewriting (2.6) in its weak form in the variables (t, x, y) (namely ξ = (x, y)·e−
cet), it follows from parabolic regularity theory and bootstrap arguments thatU ′

e ·h
is a bounded classical solution of (2.6) and the L∞ bound of U ′

e · h is uniform for
h ∈ R

N with |h| = 1. Thus, U ′
e is bounded in the above sense. Similar arguments

can be applied to U ′′
e . We also know from [15] that for any h ∈ R

2, ρ ∈ R
2, U ′

e · h
and (U ′′

e · h) · ρ are differentiable with respect to ξ , x and y up to second order and
these derivatives are bounded too. We then need the following properties of U ′

e:

Lemma 2.7. For any e ∈ S, there exist μ4 > 0 and C4 > 0 independent of e such
that

|(U ′
e · h)(ξ, x, y)|, |(∂ξU

′
e · h)(ξ, x, y)|

≤ C4e
−μ4|ξ ||h|, for any h ∈ R

2, ξ ∈ R and (x, y) ∈ T
2.

Proof. Take a smooth nonincreasing function p(ξ) such that

p(ξ) = 1 for ξ ≤ 0 and p(ξ) = e−rξ for ξ ≥ b

for some positive constants r and b. Here, one can make r and b to be small and
large enough respectively such that

r < min{μ1, μ2, μ3}, (2.7)

and

ce

∣
∣
∣
∣
p′(ξ)

p(ξ)

∣
∣
∣
∣ +

∣
∣
∣
∣
p′′(ξ)

p(ξ)

∣
∣
∣
∣ ≤ λ

2
for all ξ ∈ R and e ∈ S, (2.8)

where λ > 0 is defined in (F3).
For every direction e, we define a function Ve(ξ, x, y) by

Ve(ξ, x, y) := p−1(ξ)Ue(ξ, x, y), for ξ ∈ R and (x, y) ∈ T
2.

By Lemmas 2.3, 2.4 and (2.7), one has

Ve(−∞, x, y) = 1 and Ve(+∞, x, y) = 0, uniformly for (x, y) ∈ T
2 and e ∈ S,
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Ve(ξ, x, y) ∈ L2(R+ ×T
2), 1− Ve(ξ, x, y) ∈ L2(R− ×T

2) and all derivatives of
Ve up to second order are in L2(R×T

2). Since Ue(ξ, x, y) satisfies (2.2), one can
get that Ve(ξ, x, y) satisfies

ce∂ξVe + ∂ξξVe + 2∇x,y∂ξVe · e + �x,yVe + 2p′

p
∂ξVe + 2p′

p
∇x,yVe · e

+ 1

p
f (x, y, pVe) +

(
ce

p′

p
+ p′′

p

)
Ve = 0, for (ξ, x, y) ∈ R × T

2.

From (F3) and (2.8), there is C > 0 such that
⎧
⎨

⎩

1
p f (x, y, pVe) +

(
ce

p′
p + p′′

p

)
Ve ≤ − λ

2 Ve, for (x, y) ∈ T
2 and ξ ≥ C,

1
p f (x, y, pVe) +

(
ce

p′
p + p′′

p

)
Ve ≥ λ

2 (1 − Ve), for (x, y) ∈ T
2 and ξ ≤ −C.

(2.9)

For any e ∈ S, define a linear operator

Me(v) := ce∂ξ v + ∂ξξ v + 2∇x,y∂ξ v · e + �x,yv + 2p′

p
∂ξ v + 2p′

p
∇x,yv · e − βv,

where β > 0 is a fixed real number and

v ∈ D := {v ∈ H1(R × T
N ); ∂ξξ v + 2∇y∂ξ v · e + �yv ∈ L2(R × T

N )}.
The space D is endowed with the norm ‖v‖D = ‖v‖H1(R×TN ) +‖∂ξξ v + 2∇y∂ξ v ·
e + �yv‖L2(R×TN ). Then, by the similar proofs of Lemma 3.1, Lemma 3.2 and
Lemma 3.3 in [7] (one can trivially extend the proofs to the high dimensional
space), one knows that Me satisfies all the properties in Lemma 2.7 of [15], such
as invertibility and boundedness. For any e ∈ S, we then define

He(v) := ce∂ξ v + ∂ξξ v + 2∇x,y∂ξ v · e + �x,yv + 2p′

p
∂ξ v + 2p′

p
∇x,yv · e

+ fu(y, pVe)v +
(
ce

p′

p
+ p′′

p

)
v, v ∈ D.

Notice that He(v) = H̃e(pv)/p with 0 < p(ξ) ≤ 1, where

H̃e(v) := ce∂ξ v + ∂ξξ v + 2∇y∂ξ v · e + �yv + fu(y,Ue)v, v ∈ D.

By Lemma 4.1 in [7], one knows that the operator H̃e and its adjoint operator H̃∗
e

have algebraically simple eigenvalue 0 and the kernel of H̃e is generated by ∂ξUe.
Therefore, the operator He and its adjoint operator H∗

e also have algebraically
simple eigenvalue 0 and the kernel of He is generated by p−1∂ξUe. Moreover, the
property that the range of He is closed in L2(R) × T

2 can be proved in the same
line of the proof of [7, Lemma 4.1] by using (2.9).

Now, for any e ∈ S, v ∈ H2(R × T
2), ϑ ∈ R and η ∈ R

2, define

Ke(v, ϑ, η) = ϑ∂ξ (Ve + v) + 2∇y∂ξ (Ve + v) · η + 2p′

p
∇x,y(Ve + v) · η

+ 1

p
f (y, p(Ve + v)) − 1

p
f (y, Ve) +

(
ce

p′

p
+ p′′

p
+ β

)
v,
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and

Ge(v, ϑ, η) :=
(

v + M−1
e (Ke(v, ϑ, η)),

∫

R+×TN

[
(Ve(ξ, y) + v(ξ, y))2 −U 2

e (ξ, y)
]
dydξ

)

.

By following the proof of [15, Lemma 2.10], one can get that for every e ∈ S,
the function Ge : H2(R × T

N ) × R × R
N → D × R is continuous and it is

continuously Fréchet differentiable with respect to (v, ϑ) and doubly continuously
Fréchet differentiable with respect to η. For any e ∈ S

N−1 and (ṽ, ϑ̃) ∈ D × R,
define

Qe(ṽ, ϑ̃)

=
(

ṽ + M−1
e (ϑ̃∂ξVe + fu(y,Ue)ṽ +

(
ce

p′

p
+ p′′

p
+ β

)
ṽ), 2

∫

R+×TN
Ve(ξ, y)ṽ(ξ, y)dydξ

)

,

which has the same form as ∂(v,ϑ)Ge(0, 0, 0). By the properties of He and the same
line of the proofs of [7, Lemma 3.3] and [15, Lemma 2.11], one can get that Qe

satisfies all properties in [15, Lemma 2.11], such as invertibility and boundedness.
As soon as we have all these properties of these operators, we can follow the

same proof of [15, Theorem 1.5] to get that Vb(ξ, x, y) = p−1(ξ)Ub(ξ, x, y) is
doubly Fréchet differentiable at any b ∈ R

2 \ {0}. Moreover, ‖V ′
e‖ is bounded for

any e ∈ S.
Thus, by the definition of Fréchet differentiation, we have

(U ′
e · h)(·, ·, ·) = p(ξ)(V ′

e · h)(·, ·, ·), for any e ∈ S and h ∈ R
2.

Therefore, there exists a positive constant C4 such that

|(U ′
e·h)(ξ, x, y)| ≤ p(ξ)‖V ′

e‖|h| ≤ C4e
−rξ |h| for ξ ≥ 0, (x, y) ∈ T

2 and h ∈ R
2.

(2.10)
By applying similar arguments to the other side, that is, ξ < 0, one can also get
that there are positive constants C5 and μ5 such that

|(U ′
e · h)(ξ, x, y)| ≤ C5e

μ5ξ |h| for ξ < 0, (x, y) ∈ T
2 and h ∈ R

2. (2.11)

Lastly, we differentiate (2.2) at e on h ∈ R
2 and get that

(c′
e · h)∂ξUe + ce∂ξ (U

′
e · h) + ∂ξξ (U

′
e · h) + 2∇y∂ξUe · (h − (e · h)e)

+ 2∇x,y∂ξ (U
′
e · h) · e + �x,y(U

′
e · h) + fu(x, y,Ue)(U

′
e · h) = 0.

By changing variables ξ = (x, y) · e− cet , one has that u(t, x) := (U ′
e · h)((x, y) ·

e − cet, x, y) satisfies a parabolic equation

ut − �u = fu(x, y,Ue)u + (c′
e · h)∂ξUe + 2∇x,y∂ξUe · (h − (e · h)e).

By parabolic estimates, Lemma 2.4 and (2.10)-(2.11), one can get that there are
positive constants C6 and μ6 such that

|ut (t, x, y)| ≤ C6e
−μ6|(x,y)·e−cet ||h|,

that is,

|(∂ξU
′
e · h)(ξ, x, y)| ≤ C6e

−μ6|ξ ||h| for any h ∈ R
2, ξ ∈ R and (x, y) ∈ T

2.

This completes the proof.
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2.2. Proof of Theorem 1.2

Take any two angles α, β of (0, π) such that (1.8) holds. Let ψ(x) be a smooth
function satisfying Lemma 2.2 for α and β. Take a constant � to be determined
later. For every point (x, y) on the curve y = ψ(�x)/�, there is a unit normal

e(x) = (e1(x), e2(x)) =
(

− ψ ′(�x)
√

ψ ′2(�x) + 1
,

1
√

ψ ′2(�x) + 1

)
. (2.12)

By Lemma 2.2, every component of e(x) is differentiable with respect to x and

e(x) → (cosα, sin α) as x → −∞ and e(x) → (cosβ, sin β) as x → +∞;
its derivatives can be denoted by

e′(x) = (e′
1(x), e

′
2(x)) =

(
− �ψ ′′(�x)

(ψ ′2(�x) + 1)
3
2

,−�ψ ′(�x)ψ ′′(�x)
(ψ ′2(�x) + 1)

3
2

)
,

and

e′′(x) = (e′′
1(x), e

′′
2(x)) =

(
− �2ψ ′′′(�x)

(ψ ′2(�x) + 1)
3
2

+ 3�2ψ ′(�x)ψ ′′2(�x)
(ψ ′2(�x) + 1)

5
2

,

− �2ψ ′′2(�x)
(ψ ′2(�x) + 1)

3
2

− �2ψ ′(�x)ψ ′′′(�x)
(ψ ′2(�x) + 1)

3
2

+ 3�2ψ ′2(�x)ψ ′′2(�x)
(ψ ′2(�x) + 1)

5
2

)
.

Therefore, by Lemma 2.2, there exist K2 > 0 and K3 > 0 such that

|e′(x)| ≤ �K2sech(�x) and |e′′(x)| ≤ �2K3sech(�x) for all x ∈ R. (2.13)

Remember that U−
αβ(t, x, y) defined by (2.8) is a subsolution of (1.1). Now,

take a positive constant ε and we define

U+(t, x, y) = Ue(x)(ξ(t, x, y), x, y) + εsech(�x), (2.14)

where

ξ(t, x, y) = y − cαβ t − ψ(�x)/�
√

ψ ′2(�x) + 1
, (2.15)

and cαβ is defined by (1.8). We prove that U+(t, x, y) is a supersolution of (1.1)
for small ε and �.

Lemma 2.8. There exist ε0 > 0 and �(ε0) > 0 such that for any 0 < ε ≤ ε0 and
0 < � ≤ �(ε0), the function U+(t, x, y) is a supersolution of (1.1) with U+

t > 0.
Moreover, this satisfies

lim
R→+∞ sup

x2+(y−cα,β t)2>R2

∣
∣
∣U+(t, x, y) −U−

αβ(t, x, y)
∣
∣
∣ ≤ 2ε, (2.16)

and

U+(t, x, y) ≥ U−
αβ(t, x, y), for all t ∈ R and (x, y) ∈ R

2. (2.17)
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Proof. We divide the proof into three steps.
Step1:U+ is a supersolution.Wewill pick ε0 > 0 and�(ε) such thatLemma2.8

holds. Assume that

ε0 ≤ σ

2
,

where σ > 0 is defined in (F3). More restrictions on ε0 will be given later. One can
compute that

LU+ :=U+
t − �x,yU

+ − f (x, y,U+)

= ∂ξUe(x)ξt − ∂ξξUe(x)(ξ
2
x + ξ2y ) − 2∇x,y∂ξUe(x) · (ξx , ξy)

− �x,yUe(x) − ∂ξUe(x)ξxx

−U ′′
e(x) · e′(x) · e′(x) −U ′

e(x) · e′′(x) − 2∂ξU
′
e(x) · e′(x)ξx

− 2∂xU
′
e(x) · e′(x)

− ε�2sech′′(�x) − f (x, y,U+),

where ∂ξUe(x), ∂ξξUe(x),∇x,y∂ξUe(x),�x,yUe(x),U ′′
e(x) · e′(x) · e′(x),U ′

e(x) · e′′(x),
∂ξU ′(e(x)) · e′(x), ∂xU ′

e(x) · e′(x) are taking values at (ξ(t, x, y), x, y) andU+, ξt ,
ξx , ξy are taking values at (t, x, y). By (2.15), it follows from a direct computation
that

ξt = − cαβ√
ψ ′2(�x) + 1

,

ξx = −�ψ ′(�x)ψ ′′(�x)
ψ ′2(�x) + 1

ξ − ψ ′(�x)
√

ψ ′2(�x) + 1
,

ξy = 1
√

ψ ′2(�x) + 1
,

ξxx = −�2ψ ′(�x)ψ ′′′(�x)
ψ ′2(�x) + 1

ξ + �2ψ ′′2(�x)(2ψ ′2(�x) − 1)

(ψ ′2(�x) + 1)2
ξ

+ �(ψ ′2(�x) − 1)ψ ′′(�x)
(ψ ′2(�x) + 1)

3
2

,

ξ2x + ξ2y − 1 =
(�ψ ′(�x)ψ ′′(�x)

ψ ′2(�x) + 1

)2
ξ2 + 2

�ψ ′2(�x)ψ ′′(�x)
(ψ ′2(�x) + 1)

3
2

ξ.

(2.18)

By noticing that ξy = e2(x) and by (2.2), one has

LU+ = (ce(x) + ξt )∂ξUe(x) − ∂ξξUe(x)(ξ
2
x + ξ2y − 1)

− 2∂x∂ξUe(x)(ξx − e1(x)) − ∂ξUe(x)ξxx

−U ′′
e(x) · e′(x) · e′(x) −U ′

e(x) · e′′(x) − 2∂ξU
′
e(x) · e′(x)ξx

− 2∂xU
′
e(x) · e′(x)

− ε�2sech′′(�x) + f (x, y,Ue(x)) − f (x, y,U+),

(2.19)
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where ∂ξUe(x), ∂ξξUe(x), ∂x∂ξUe(x),U ′′
e(x) · e′(x) · e′(x),U ′

e(x) · e′′(x), ∂ξU ′(e(x)) ·
e′(x), ∂xU ′

e(x) · e′(x),Ue(x) are taking values at (ξ(t, x, y), x, y) andU+, ξt , ξx , ξy
are taking values at (t, x, y). By Lemma 2.4, one has that |∂ξξUe(x)ξ

2|, |∂ξξUe(x)ξ |,
|∂x∂ξUe(x)ξ | and |∂ξUe(x)ξ | are uniformly bounded for ξ ∈ R, (x, y) ∈ R

2. Then,
by Lemmas 2.2 and (2.18), there is C5 > 0 such that

|∂ξξUe(x)(ξ
2
x +ξ2y −1)|+2|∂x∂ξUe(x)(ξx −e1(x))|+|∂ξUe(x)ξxx | ≤ C5�sech(�x).

(2.20)
Since ‖U ′

e‖, ‖U ′′
e ‖, ‖∂ξU ′

e‖, ‖∂xU ′
e‖ are bounded and by Lemma 2.7, (2.13), there

is C6 > 0 such that

|U ′′
e(x) · e′(x) · e′(x)| + |U ′

e(x) · e′′(x)| + 2|∂ξU
′
e(x) · e′(x)ξx |

+2|∂xU ′
e(x) · e′(x)| ≤ C6�sech(�x). (2.21)

We make the following claim:

Claim 2.9. There is C7 > 0 such that

−ξt − ce(x) = cαβ√
ψ ′2(�x) + 1

− ce(x) ≥ C7sech(�x) > 0. (2.22)

We postpone the proof of this claim after the proof of this lemma.
Then, it follows from (2.19), (2.20), (2.21), (2.22), Lemma 2.1 and ∂ξUe < 0

that

LU+ ≥ − ∂ξUe(x)C7sech(�x) − (C5 + C6)�sech(�x) − 2ε�2sech(�x)

+ f (x, y,Ue(x)) − f (x, y,U+).
(2.23)

By Lemma 2.3, there is C > 0 such that

0 < Ue(ξ, x, y) ≤ σ

2
for ξ ≥ C and 0 < 1 −Ue(ξ, x, y) ≤ σ

2
for ξ ≤ −C,

(2.24)
uniformly for (x, y) ∈ T

2 and e ∈ S. Then, for (t, x, y) ∈ R × R
2 such that

ξ(t, x, y) ≥ C and ξ(t, x, y) ≤ −C respectively, one has that U+(t, x, y) ≤
σ/2 + ε ≤ σ and U+(t, x, y) ≥ 1 − σ/2 respectively since ε ≤ ε0 ≤ σ/2 and
hence, it follows from (1.2) that

f (x, y,Ue(x)) − f (x, y,U+) ≥ λεsech(�x). (2.25)

Since ∂ξUe < 0 and by (2.23), (2.25), one has that

LU+ ≥
(

− (C5 + C6)� − 2ε�2 + λε
)
sech(�x) ≥ 0,

by taking 0 < � ≤ �(ε) where �(ε) > 0 is small enough such that

−(C5 + C6)� − 2ε�2 + λε > 0, for all 0 < � ≤ �(ε). (2.26)

Finally, for (t, x, y) ∈ R × R
2 such that −C ≤ ξ(t, x, y) ≤ C , it follows from

Lemma 2.5 that there is k > 0 such that

−∂ξUe(ξ, x, y) ≥ k for all e ∈ S. (2.27)
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Notice that
f (x, y,Ue(x)) − f (x, y,U+) ≥ −Mεsech(�x), (2.28)

where M := max(x,y,u)∈T2×R | fu(x, y, u)|. Thus, it follows from (2.23), (2.26),
(2.27) and (2.28) that

LU+ ≥
(
kC7 − (C5 + C6)� − 2ε�2 − Mε

)

sech(�x) ≥
(
kC7 − (λ + M)ε

)
sech(�x) ≥ 0,

by taking ε0 = min{σ/2, kC7/(λ + M)} and 0 < ε ≤ ε0.
Therefore, LU+ ≥ 0 for all t ∈ R and (x, y) ∈ R

2. By the comparison
principle, U+(t, x, y) is a supersolution of (1.1). The property U+

t > 0 comes
from ∂ξUe < 0 and cαβ > 0.

Step 2: the proof of (2.16). Since e(x) → (cosα, sin α) as x → −∞ and by
the definition of U ′

e, there is R1 > 0 such that

|Ue(x)(ξ(t, x, y), x, y) −Uα(ξ(t, x, y), x, y)|
≤ ‖U ′

α‖|e(x) − (cosα, sin α)| + o(|e(x) − (cosα, sin α)|)
≤ ε

4
, for x ≤ −R1 and t ∈ R, y ∈ R. (2.29)

Notice that 1/
√

ψ ′2(�x) + 1 → sin α as x → −∞ and cαβ sin α = cα . Then, by
Lemma 2.2, one has that

ξ(t, x, y) → x cosα + y sin α − cαt, as x → −∞ for any t ∈ R and y ∈ R.

Thus, there is R2 > 0 such that

|Uα(ξ(t, x, y), x, y) −Uα(x cosα + y sin α − cαt, x, y)|
≤ ε

4
, for x ≤ −R2 and t ∈ R, y ∈ R.

By the definition of U+(t, x, y) and together with (2.29), it follows that

|U+(t, x, y) −Uα(x cosα + y sin α − cαt, x, y)|
≤ 3

2
ε, for x ≤ −max{R1, R2} and t ∈ R, y ∈ R. (2.30)

Similarly, one can prove that there is R3 > 0 such that

|U+(t, x, y) −Uβ(x cosβ + y sin β − cβ t, x, y)|
≤ 3

2
ε, for x ≥ R3 and t ∈ R, y ∈ R. (2.31)

Now, for −max{R1, R2} ≤ x ≤ R3, we know that ψ(�x) and ψ ′(�x) are
bounded. Then, as y − cαβ t → +∞, one has that

ξ(t, x, y) → +∞ and x cosα + y sin α − cαt → +∞,

for − max{R1, R2} ≤ x ≤ R3.
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Thus, there is R4 > 0 such that

0 < Ue(x)(ξ(t, x, y), x, y) ≤ ε

2
,

and

0 < Uα(x cosα + y sin α − cαt, x, y), Uβ(x cosβ + y sin β − cβ t, x, y) ≤ ε

2
,

for −max{R1, R2} ≤ x ≤ R3 and y − cαβ t ≥ R4. Hence,

|U+(t, x, y) −U−
αβ(t, x, y)| ≤ 2ε, (2.32)

for−max{R1, R2} ≤ x ≤ R3 and y−cαβ t ≥ R4. Similarly, sinceUe(x)(−∞, x, y) =
Uα(−∞, x, y) = 1 uniformly for (x, y) ∈ T

2, there is R5 such that

|U+(t, x, y) −U−
αβ(t, x, y)| ≤ 2ε, (2.33)

for −max{R1, R2} ≤ x ≤ R3 and y − cαβ t ≤ −R5.
On the other hand, since Ue(−∞, x, y) = 1 and Ue(+∞, x, y) = 0 for any

(x, y) ∈ T
2 and e ∈ S, it follows that there is Cε > 0 such that

0 < Ue(ξ, x, y) ≤ ε/4 for ξ ≥ Cε and(x, y) ∈ T
2,

and

1 − ε/4 ≤ Ue(ξ, x, y) < 1 for ξ ≤ −Cε and (x, y) ∈ T
2.

This then means that

Uα(x cosα + y sin α − cαt, x, y)

≥ Uβ(x cosβ + y sin β − cβ t, x, y), for (t, x, y) ∈ R × R
2

such that x cosα + y sin α − cαt ≤ −Cε

and x cosβ + y sin β − cβ t ≥ Cε.

(2.34)

For any fixed r ∈ R and any point (t, x, y) ∈ R×R
2 such that x cosα + y sin α −

cαt = r , one has that

x cosβ + y sin β − cβ t = x
sin(α − β)

sin α
+ sin β

sin α
r → +∞,

as x → −∞ uniformly for r ≥ −Cε,

since −π < α − β < 0 and cα/ sin α = cβ/ sin β. It implies that Uβ(x cosβ +
y sin β − cβ t, x, y) → 0 as x → −∞ uniformly for (t, x, y) ∈ R × R

2 such that
x cosα + y sin α − cαt = r ≥ −Cε. While, by Lemma 2.5, there is ε′ > 0 such
that Uα(r, x, y) ≥ ε′ for −Cε ≤ r ≤ Cε. Thus, there is R6 > 0 such that

Uα(x cosα + y sin α − cαt, x, y)

≥ Uβ(x cosβ + y sin β − cβ t, x, y), for (t, x, y) ∈ R × R
2

such that x ≤ −R6 and − Cε

≤ x cosα + y sin α − cαt ≤ Cε.

(2.35)
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and

Uβ(x cosβ + y sin β − cβ t, x, y) ≤ ε

4
, for (t, x, y) ∈ R × R

2 such that x ≤ −R6

and x cosα + y sin α − cα t ≥ Cε.

It follows that

U−
αβ(t, x, y)

= max{Uα(x cosα + y sin α − cα t, x, y),Uβ(x cosβ + y sin β − cβ t, x, y)} ≤ ε

4
,

for (t, x, y) ∈ R × R
2 such that x ≤ −R6 andx cosα + y sin α − cα t ≥ Cε.

(2.36)
For any point (t, x, y) ∈ R × R

2 such that x cosβ + y sin β − cβ t = r , one has
that

cosα + y sin α − cαt = x
sin(β − α)

sin β
+ sin α

sin β
r → −∞,

as x → −∞ uniformly for r ≤ Cε.

This implies that Uα(x cosα + y sin α − cαt, x, y) → 1 as x → −∞ uniformly
for (t, x, y) ∈ R × R

2 such that x cosβ + y sin β − cβ t = r ≤ Cε. While, by
Lemma 2.5, there is ε′′ > 0 such that Uβ(r, x, y) ≤ 1 − ε′′ for −Cε ≤ r ≤ Cε.
Thus, even if it means increasing R6, one can get that

Uα(x cosα + y sin α − cαt, x, y)

≥ Uβ(x cosβ + y sin β − cβ t, x, y), for (t, x, y) ∈ R × R
2

such that x ≤ −R6 and − Cε ≤ x cosβ + y sin β − cβ t ≤ Cε.

(2.37)

and

Uα(x cosα + y sin α − cα t, x, y) ≥ 1 − ε

4
, for (t, x, y) ∈ R × R

2such that x ≤ −R6

and x cosβ + y sin β − cβ t ≤ −Cε.

It follows that

U−
αβ(t, x, y) ≥ 1 − ε

4
, for (t, x, y) ∈ R × R

2

such that x ≤ −R6 and x cosβ + y sin β − cβ t ≤ −Cε. (2.38)

By (2.34)-(2.38), one gets that

U−
αβ(t, x, y) =Uα(x cosα + y sin α − cαt, x, y), for

(t, x, y) ∈ R × R
2 such that x ≤ −R6,

x cosα + y sin α − cαt ≤ Cε and x cosβ + y sin β − cβ t ≥ −Cε.

and

|U−
αβ(t, x, y) −Uα(x cosα + y sin α − cαt, x, y)| ≤ ε

4
,
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for (t, x, y) ∈ R × R
2 such that x ≤ −R6, x cosα + y sin α − cαt ≥ Cε and

(t, x, y) ∈ R × R
2 such that x ≤ −R6, x cosβ + y sin β − cβ t ≥ −Cε. Above

arguments also imply that

U−
αβ(t, x, y) −Uα(x cosα + y sin α − cαt, x, y) → 0,

as x → −∞ uniformly fort ∈ R and y ∈ R.

Similar proof can deduce that

U−
αβ(t, x, y) −Uβ(x cosβ + y sin β − cβ t, x, y) → 0, as x →
+∞ uniformly for t ∈ R and y ∈ R.

Combined with (2.30), it follows that

|U+(t, x, y) −U−
αβ(t, x, y)| ≤ 2ε, for

x ≤ −max{R1, R2, R6} and t ∈ R, y ∈ R. (2.39)

Similarly, there is R7 > 0 such that

|U+(t, x, y) −U−
αβ(t, x, y)| ≤ 2ε, for x ≥ max{R3, R7} andt ∈ R, y ∈ R.

(2.40)
By (2.32), (2.33), (2.39) and (2.40), we have our conclusion (2.16).

Step3: theproof of (2.17).Weonlyhave toprove thatU+(t, x, y) ≥ Uα(x cosα+
y sin α − cαt) and U+(t, x, y) ≥ Uβ(x cosβ + y sin β − cβ t) for all t ∈ R and
(x, y) ∈ R

2.
Since Ue(−∞, x, y) = 1 and Ue(+∞, x, y) = 0 for any (x, y) ∈ T

2 and
e ∈ S, there is C > 0 such that

0 < Ue(ξ, x, y) ≤ σ for ξ ≥ C and (x, y) ∈ T
2,

and

1 − σ ≤ Ue(ξ, x, y) < 1 for ξ ≤ −C and(x, y) ∈ T
2,

where σ is defined in (F3). By (2.16) and letting ε ≤ σ/4, there is R > 0 such that

U+(t, x, y) ≤ σ, for (t, x, y) ∈ 
+
R

and U+(t, x, y) ≥ 1 − σ, for (t, x, y) ∈ 
−
R ,

where


+
R := {(t, x, y) ∈ R × R

2; x ≤ 0 and x cosα + y sin α − cα t ≥ cαR} ∪ {(t, x, y) ∈ R × R
2;

x > 0 and x cosβ + y sin β − cβ t ≥ cβ R},
and


−
R := {(t, x, y) ∈ R × R

2; x ≤ 0 and x cosα + y sin α − cαt

≤ −cαR} ∪ {(t, x, y) ∈ R × R
2;

x > 0 and x cosβ + y sin β − cβ t ≤ −cβ R}.
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Notice that for any t , the boundaries of 
+
t and 
−

t are connected polylines since
cα/ sin α = cβ/ sin β. By Lemma 2.5 and the definition of U+(t, x, y), there is
0 < σ ′ ≤ σ such that

σ ′ ≤ U+(t, x, y) ≤ 1 − σ ′, for (t, x, y) ∈ R × R
2 \ (
+

R ∪ 
−
R ),

and

σ ′ ≤ Ue(ξ, x, y) ≤ 1 − σ ′ for − C ≤ ξ ≤ C, (x, y) ∈ T
2 and any e ∈ S.

For any τ ∈ R, let uτ (t, x, y) = Uα(x cosα + y sin α − cαt + τ). Let

ω+
τ := {(t, x, y) ∈ R × R

2; x cosα + y sin α − cαt + τ ≥ C},
and

ω−
τ := {(t, x, y) ∈ R × R

2; x cosα + y sin α − cαt + τ ≤ −C}.
Notice that since α < β, one has that

{(t, x, y) ∈ R × R
2; x cosα + y sin α − cαt ≤ −cαR} ⊂ 
−

R ,

and


+
R ⊂ {(t, x, y) ∈ R × R

2; x cosα + y sin α − cαt ≥ cαR}.
Thus,

R × R
2 \ (ω+

τ ∪ ω−
τ ) ⊂ 
−

(τ−C)/cα
and R × R

2 \ (
+
R ∪ 
−

R ) ⊂ ω+
C+cαR

.

Then, by (2.16),Ue(−∞, x, y) = 1 andUe(+∞, x, y) = 0, there is τ1 ≥ cαR+C
large enough such that for any τ ≥ τ1,

U+(t, x, y) ≥ 1 − σ ′ ≥ uτ (t, x, y), for all (t, x, y) ∈ R × R
2 \ (ω+

τ ∪ ω−
τ ),

and

uτ (t, x, y) ≤ σ ′ ≤ U+(t, x, y), for all (t, x, y) ∈ R × R
2 \ (
+

R ∪ 
−
R ).

Moreover, since τ ≥ τ1 ≥ cαR + C , one has that

U+(t, x, y) ≥ 1 − σ ≥ σ ≥ uτ (t, x, y), for all (t, x, y) ∈ ω+
τ ∩ 
−

R .

Thus, it follows that

uτ (t, x, y) ≤ U+(t, x, y), for any τ ≥ τ1

and all (t, x, y) ∈ R × R
2 \ (ω−

τ ∪ 
+
R ). (2.41)

Also notice that

uτ (t, x, y), U+(t, x, y) ≥ 1 − σ in ω−
τ and uτ (t, x, y), U+(t, x, y) ≤ σ in 
+

R ,

and f (x, y, u) is nonincreasing in u ∈ (−∞, σ ] and u ∈ [1 − σ,+∞) for any
(x, y) ∈ T

2 by (1.2). By following similar proof as the proof of [3, Lemma 4.2]
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which mainly applied the sliding method and the linear parabolic estimates, one
can get that

U+(t, x, y) ≥ uτ (t, x, y), in ω−
τ and 
+

R .

Combined with (2.41), one has that

U+(t, x, y) ≥ uτ (t, x, y), for any τ ≥ τ1 and all (t, x, y) ∈ R × R
2.

Now, we decrease τ . Define

τ∗ = inf{τ ∈ R;U+(t, x, y) ≥ uτ (t, x, y) for all (t, x, y) ∈ R × R
2}.

From above arguments, one knows that τ∗ < +∞. Since U+(t, x, y) → Uα

(x cosα + y sin α − cαt, x, y) as x → −∞, Uα(ξ, x, y) is decreasing in ξ and by
the definition of uτ (t, x, y), one also knows that τ∗ ≥ 0. Assume that τ∗ > 0. If

inf{U+(t, x, y) − uτ∗(t, x, y); (t, x, y) ∈ R × R
2 \ (ω−

τ∗ ∪ 
+
R )} > 0,

then there is η > 0 such that

U+(t, x, y) ≥ uτ∗−η(t, x, y), for (t, x, y) ∈ R × R
2 \ (ω−

τ∗−η ∪ 
+
R ).

Then, one can apply the above arguments again and get that U+(t, x, y) ≥
uτ∗−η(t, x, y) for all (t, x, y) ∈ R × R

2 which contradicts the definition of τ∗.
Thus,

inf{U+(t, x, y) − uτ∗(t, x, y); (t, x, y) ∈ R × R
2 \ (ω−

τ∗ ∪ 
+
R )} = 0.

Since α < β, there is a sequence {(tn, xn, yn)}n∈N in R × R
2 \ (ω−

τ∗ ∪ 
+
R ) such

that

−C − τ∗ ≤ xn cosα + yn sin α − cαtn ≤ cαR,

and

U+(tn, xn, yn) − uτ∗(tn, xn, yn) → 0, as n → +∞.

Then, there is ξ∗ ∈ R such that xn cosα+ yn sin α−cαtn → ξ∗ as n → +∞. Since
U+(t, x, y) → Uα(x cosα + y sin α − cαt, x, y) as x → −∞, U+(t, x, y) →
Uβ(x cosβ + y sin β − cβ t, x, y) as x → +∞ with α < β and τ∗ > 0, one has
that xn is bounded and there is x∗ ∈ R such that xn → x∗ as n → +∞. Again by
U+(t, x, y) → Uα(x cosα + y sin α − cαt, x, y) as x → −∞ and by (2.30), there
is R′ > 0 such that

|U+(t, x, y) −Uα(x cosα + y sin α − cαt, x, y)|
≤ ε for x ≤ −R′ and t ∈ R, y ∈ R. (2.42)

Let v(t, x, y) = U+(t, x, y) − uτ∗(t, x, y). Then, v(t, x, y) ≥ 0 and

v(t, x, y) > 0 for any (t, x, y) ∈ R × R
2

such that x ≤ −R, x cosα + y sin α − cαt = ξ∗, (2.43)
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by (2.42), τ∗ > 0 and taking ε sufficiently small. Since U+(t, x, y) is a supersolu-
tion and uτ∗(t, x, y) is a solution of (1.1), we have that v(t, x, y) satisfies

vt − �v ≥ −b(x, y)v, for (t, x, y) ∈ R × R
2,

where b(x, y) is bounded. Since v(tn, xn, yn) → 0 and by the linear parabolic
estimates and xn is bounded, one gets that

v(tn − 1, xn − R′, yn + R′ cosα − cα

sin α
) → 0 as n → +∞,

which contradicts (2.43). Thus, τ∗ = 0 and U+(t, x, y) ≥ Uα(x cosα + y sin α −
cαt, x, y) for all (t, x, y) ∈ R × R

2.
Similarly one can prove thatU+(t, x, y) ≥ Uβ(x cosβ+y sin β−cβ t, x, y) for

all (t, x, y) ∈ R×R
2. In conclusion,U+(t, x, y) ≥ U−

αβ(t, x, y) for all (t, x, y) ∈
R × R

2.

Proof of Claim 2.9. Notice that

− ψ ′(ρx)
√

ψ ′2(�x) + 1
= e1(x) and

1
√

ψ ′2(�x) + 1
= e2(x).

Let θ̂ (x) = arccos e1(x). By Lemma 2.2, one can get that α < θ̂(x) < β for all
x ∈ R and θ̂ (−∞) = α, θ̂ (+∞) = β. Then, e(x) = (cos θ̂ , sin θ̂ ) and

ce(x)
e2(x)

= c
θ̂

sin θ̂
.

Thus,

cαβ√
ψ ′2(�x) + 1

− ce(x) = sin θ̂

(

cαβ − c
θ̂

sin θ̂

)

.

Since cαβ > cθ / sin θ for any θ ∈ (α, β) and 0 < min{sin α, sin β} ≤ sin θ̂ ≤ 1,
one only has to prove that

cαβ − c
θ̂

sin θ̂

≥ C7sech(�x), for some positive constant C7 and when |x | is large. (2.44)

We only consider when x < 0 and similar arguments can be applied for x > 0.
Define

g(θ) = cθ

sin θ
, for θ ∈ (0, π).

Obviously, g(θ) is a C2 function since ce is doubly differentiable with respect to
e. By (1.8), one has that g′(α) < 0. Since θ̂ (x) → α as x → −∞, it then follows
that

cα

sin α
− c

θ̂

sin θ̂
= g′(α)(α−θ̂ (x))+o(|α−θ̂ (x)|), for x negative enough. (2.45)



Curved Fronts of Bistable Reaction-Diffusion 1597

Moreover, by (2.1), one has that

θ̂ (x) − α =
∫ x

−∞
θ̂ ′(s)ds = −

∫ x

−∞
e′
1(s)√

1 − e21(s)
ds =

∫ x

∞
�ψ ′′(�s)

ψ ′2(�s) + 1
ds

≥ 1

|ψ ′|2L∞ + 1
(ψ ′(�x) + cot α) ≥ k1

|ψ ′|2L∞ + 1
sech(�x).

One then can conclude (2.44) from (2.45) for x negative enough.

Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let un(t, x) be the solution of (1.1) for t ≥ −n with initial
data

un(−n, x, y) = U−
αβ(−n, x, y).

By Lemma 2.8, one can get from the comparison principle that

U−
αβ(t, x, y) ≤ un(t, x, y) ≤ U+(t, x, y), for t ≥ −n and (x, y) ∈ R

2.

(2.46)
Since U−

αβ(t, x, y) is a subsolution, the sequence un(t, x, y) is increasing in n.
Letting n → +∞ and by parabolic estimates, the sequence un(t, x, y) converges
to an entire solution V (t, x, y) of (1.1). By (2.46), one has that

U−
αβ(t, x, y) ≤ V (t, x, y) ≤ U+(t, x, y), for t ∈ R and (x, y) ∈ R

2.

Then, it follows from Lemma 2.8 that (1.9) holds.
By U−

αβ(t, x, y) is increasing in t and the maximum principle, one has that

(un)t (t, x, y) > 0 for all t ∈ (−n,+∞) and (x, y) ∈ R
2. By letting n → +∞ and

the strong maximum principle, one concludes that ut (t, x, y) > 0 for all t ∈ R and
(x, y) ∈ R

2. This completes the proof.

2.3. Proofs of Corollaries 1.5, 1.6 and Theorem 1.7

We then give some examples to show that Theorem 1.2 is not empty, that is,
Corollaries 1.5, 1.6.

Proof of Corollary 1.5. Notice that cθ and c′
θ are uniformly bounded for θ ∈ [0, π ].

Let g(θ) := cθ / sin θ . Then,

g′(θ) = c′
θ · (− sin θ, cos θ)

sin θ
− cθ cos θ

sin2 θ
.

Obviously, there are constants 0 < α1 < β1 < π such that g′(θ) < 0 for θ ∈ (0, α1)

and g′(θ) > 0 θ ∈ (β1, π) since c′
e is bounded for any e ∈ S and sin θ → 0 as

θ → 0 or π . One can also notice that g(θ) → +∞ as θ → 0 or θ → π .
By continuity, one can take any α ∈ (0, α1) and there is β ∈ (β1, π) such that
g(α) = g(β) and g(θ) < g(α) = g(β) for all θ ∈ (α, β).

Then, the conclusion of Corollary 1.5 follows from Theorem 1.2.
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Proof of Corollary 1.6. Take two directions e1 = (cos θ1, sin θ1) and e2 =
(cos θ2, sin θ2) where θ1, θ2 ∈ (0, 2π). Assume without loss of generality that
θ2 > θ1. Rotate the coordinate by changing variables as

{
X = x cos θ + y sin θ,

Y = −x sin θ + y cos θ,

where θ varies from θ2 − π/2 to θ1 + π/2. Assume without loss of generality
that θ2 − θ1 < π . Otherwise, if θ2 − θ1 > π , we can take θ varying from θ2 to
2π + θ1. Then, under the new coordinate, directions e1 and e2 become (cos(θ1 +
π/2 − θ), sin(θ1 + π/2 − θ)) and (cos(θ2 + π/2 − θ), sin(θ2 + π/2 − θ)) where
0 < θ1 + π/2 − θ < θ2 + π/2 − θ < π . Since sin θ is increasing in [0, π/2] and
decreasing in [π/2, π ], one has that

ce1
sin(θ1 + π/2 − θ)

is increasing from
ce1

sin(θ1 − θ2 + π)
to

+∞ asθ varies from θ2 − π/2 toθ1 + π/2,

and
ce2

sin(θ2 + π/2 − θ)
is decreasing from

+∞ to
ce2

sin(θ2 − θ1)
as θ varies from θ2 − π/2 to θ1 + π/2.

By continuity and for any 0 < θ2 − θ1 < π , there is θ∗ ∈ (θ2 − π/2, θ1 + π/2)
such that

ce1
sin(θ1 + π/2 − θ∗)

= ce2
sin(θ2 + π/2 − θ∗)

.

On the other hand, by the proof of Corollary 1.5, there is 0 < α1 < π small enough
such that for 0 < π − (θ2 − θ1) < α1, it holds

ce1
sin(θ1 + π/2 − θ∗)

= ce2
sin(θ2 + π/2 − θ∗)

>
cθ

sin(θ − θ∗)
for θ1 + π/2 < θ < θ2 + π/2.

Now, under the new coordinate (X,Y ) = (x cos θ∗ + y sin θ∗,−x sin θ∗ +
y cos θ∗), one can construct a curve Y = ψ(X) with x cos θ1 + y sin θ1 = 0 and
x cos θ2 + y sin θ2 = 0 (the half parts such that Y ≥ 0) being its asymptotic lines
and define normals e(X) for the curve Y = ψ(�X)/�. Then, define a function

U+(t, X,Y ) = Ue(X)

(Y − ce1e2 t − ψ(�X)/�
√

ψ ′2(�X) + 1
, x, y

)
+ ε sech(�X).

By following similar arguments of Lemma 2.8, Theorem 1.2 and Corollary 1.5,
one can prove that U+(t, X,Y ) is a supersolution and there is an entire solution
V (t, x, y) of (1.1) satisfying (1.11) for all α1 small enough. By taking ρ = cos(π −
α1) − 1 and e0 = (cos θ∗, sin θ∗), the conclusion of Corollary 1.6 immediately
follows.
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Now, we show that condition (1.8) without g′(α) < 0 and g′(β) > 0 is neces-
sary for the existence of the curved front in Theorem 1.2.

Proof of Theorem1.7. We first prove that

cα

sin α
= cβ

sin β
. (2.47)

Assume by contradiction that cα/ sin α �= cβ/ sin β. Take a sequence {tn}n∈N such
that tn → +∞. Then, for the sequence

(xn, yn) =
( (cα sin β − cβ sin α)tn

sin(β − α)
,
(cα cosβ − cβ cosα)tn

sin(α − β)

)
,

one has that x2n + (yn − cαβ tn)2 → +∞ as n → +∞ for any cαβ ∈ R since
cα/ sin α �= cβ/ sin β. Notice that for any n, there are k1n , k

2
n ∈ Z and x ′

n , y
′
n ∈

[0, L2) such that xn = k1n L1 + x ′
n and yn = k2n L2 + y′

n . Moreover, up to extract
subsequences of xn and yn , there are x ′∗ ∈ [0, L1] and y′∗ ∈ [0, L2] such that
x ′
n → x ′∗ and y′

n → y′∗ as n → +∞. Since f (x, y, ·) is L-periodic in (x, y), one
has f (x + xn, y + yn, ·) → f (x + x ′∗, y + y′∗, ·) as n → +∞. Let vn(t, x, y) =
V (t+ tn, x+ xn, y+ yn). By standard parabolic estimates, vn(t, x, y), up to extract
of a subsequence, converges to a solution v∞(t, x, y) of

vt − �v = f (x + x ′∗, y + y′∗, v), for t ∈ R and (x, y) ∈ R
2. (2.48)

By definitions of xn and yn , one can also have that

U−
αβ(t + tn, x + xn, y + yn) → Û−

αβ(t, x, y), as n →
+∞ uniformly in R × R

2,

where

Û−
αβ(t, x, y) := max{Uα(x cosα + y sin α − cαt, x + x ′∗, y + y′∗),
Uβ(x cosβ + y sin β − cβ t, x + x ′∗, y + y′∗)}.

Moreover, by (1.9) and x2n + (yn − cαβ tn)2 → +∞ as n → +∞, one gets that

vn(t, x, y) → Û−
αβ(t, x, y) as n → +∞ locally uniformly inR × R

2.

It implies that v∞(t, x, y) = Û−
αβ(t, x, y) which is impossible since Û−

αβ(t, x, y)
is not a solution of (2.48). Therefore, (2.47) holds.

Then, we prove that

cαβ = cα

sin α
= cβ

sin β
. (2.49)

Assume by contradiction that cαβ �= cα/ sin α. Take a sequence (tn)n∈N such that
tn = L2n sin α/cα → +∞ and consider the sequence

(xn, yn) = (0,
cα

sin α
tn).
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Notice that x2n + (yn − cαβ tn)2 → +∞ as n → +∞ since cαβ �= cα/ sin α,
tncα/ sin α = nL2 and U

−
αβ(t + tn, x + xn, y + yn) = U−

αβ(t, x, y). Then, one can
make the similar arguments as above to get a contradiction. Thus, (2.49) holds.

At last, we prove that

cθ

sin θ
< cαβ = cα

sin α
= cβ

sin β
for any θ ∈ (α, β).

Assume by contradiction that there is θ ∈ (α, β) such that cθ / sin θ ≥ cαβ . Then,
two cases may occur: (i) cθ / sin θ > cαβ ; (ii) cθ / sin θ = cαβ .

For case (i), take t = 0 and by (1.9), for any ε > 0, there is Rε > 0 such that

sup
|(x,y)|>Rε

∣
∣
∣V (0, x, y) −U−

αβ(0, x, y)
∣
∣
∣ ≤ ε. (2.50)

We claim that

Claim 2.10. There exist constants τ ∈ R and δ > 0 such that

V (t, x, y) ≥ Uθ (x cos θ + y sin θ − cθ t + τ, x, y) − δe−δt , for t ≥ 0 andx ∈ R
2.

In order to not lengthen the proof, we postpone the proof of this claim after the
proof of Theorem 1.7. Take a sequences (tn)n∈N such that tn → +∞ as n → +∞
and yn = cαβ tn + R where R is a constant. Then, since Ue(+∞, x, y) = 0 for all
e ∈ S and (x, y) ∈ T

2, one can take R large enough such that

U−
αβ(tn, 0, yn) =max{Uα(yn sin α − cαtn, 0, yn),Uβ(yn sin β − cβ tn, 0, yn)}

=max{Uα(R sin α, 0, yn),Uβ(R sin β, 0, yn)} ≤ 1

4
.

By (1.9) and even if it means increasing R, one has that

V (tn, 0, yn) ≤ U−
αβ(tn, 0, yn) + 1

4
≤ 1

2
for all n. (2.51)

However, since cθ / sin θ > cαβ and hence,

yn sin θ − cθ tn = (cαβ sin θ − cθ )tn + R sin θ → −∞, as n → +∞,

it follows from Claim 2.10 that

V (tn, 0, yn) ≥ Uθ (yn sin θ − cθ tn + τ, 0, yn) − δe−δtn → 1 as n → +∞,

which contradicts (2.51). Case (i) is ruled out.
Now we consider case (ii). Since Ue(−∞, x, y) = 1 and Ue(+∞, x, y) = 0

for any (x, y) ∈ T
2 and e ∈ S, there is C > 0 such that

0 < Ue(ξ, x, y) ≤ σ for ξ ≥ C and(x, y) ∈ T
2,

and

1 − σ ≤ Ue(ξ, x, y) < 1 for ξ ≤ −C and(x, y) ∈ T
2,
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where σ is defined in (F3). By (1.9), there is R > 0 such that

V (t, x, y) ≤ σ, for (t, x, y) ∈ 
+
R

and V (t, x, y) ≥ 1 − σ, for (t, x, y) ∈ 
−
R ,

where


+
R := {(t, x, y) ∈ R × R

2; x ≤ 0 and x cosα + y sin α − cαt ≥ cαR}
∪ {(t, x, y) ∈ R × R

2;
x > 0 and x cosβ + y sin β − cβ t ≥ cβ R},

and


−
R := {(t, x, y) ∈ R × R

2; x ≤ 0 and x cosα + y sin α − cαt ≤ −cαR}
∪ {(t, x, y) ∈ R × R

2;
x > 0 and x cosβ + y sin β − cβ t ≤ −cβ R}.

By a similar proof as of Lemma 2.5, there is 0 < σ ′ ≤ σ such that

σ ′ ≤ V (t, x, y) ≤ 1 − σ ′, for (t, x, y) ∈ R × R
2 \ (
+

R ∪ 
−
R ),

and

σ ′ ≤ Ue(ξ, x, y) ≤ 1 − σ ′ for − C ≤ ξ ≤ C, (x, y) ∈ T
2 and any e ∈ S.

For any τ ∈ R, let uτ (t, x, y) = Uθ (x cos θ + y sin θ − cθ t + τ, x, y). Let

ω+
τ := {(t, x, y) ∈ R × R

2; x cos θ + y sin θ − cθ t + τ ≥ C},
and

ω−
τ := {(t, x, y) ∈ R × R

2; x cos θ + y sin θ − cθ t + τ ≤ −C}.
Since α < θ < β and cθ / sin θ = cα/ sin α = cβ/ sin β, one can easily check that

R × R
2 \ (ω+

τ ∪ ω−
τ ) ⊂ 
−

(C−τ)/cα
and R × R

2 \ (
+
R ∪ 
−

R ) ⊂ ω+
C+cαR

.

Then, by (1.9),Ue(−∞, x, y) = 1 and Ue(+∞, x, y) = 0, there is τ1 ≥ cαR +C
large enough such that for any τ ≥ τ1,

V (t, x, y) ≥ 1 − σ ′ ≥ uτ (t, x, y), for all (t, x, y) ∈ R × R
2 \ (ω+

τ ∪ ω−
τ ),

and

uτ (t, x, y) ≤ σ ′ ≤ V (t, x, y), for all (t, x, y) ∈ R × R
2 \ (
+

R ∪ 
−
R ).

Moreover, since τ ≥ τ1 ≥ cαR + C , one has that

V (t, x, y) ≥ 1 − σ ≥ σ ≥ uτ (t, x, y), for all (t, x, y) ∈ ω+
τ ∩ 
−

R .
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Thus, it follows that

uτ (t, x, y) ≤ V (t, x, y), for any τ ≥ τ1 and all (t, x, y) ∈ R×R
2\(ω−

τ ∪
+
R ).

(2.52)
Also notice that

uτ (t, x, y), V (t, x, y) ≥ 1 − σ in ω−
τ and uτ (t, x, y), V (t, x, y) ≤ σ in 
+

R ,

and f (x, y, u) is nonincreasing in u ∈ (−∞, σ ] and u ∈ [1 − σ,+∞) for any
(x, y) ∈ T

2 by (1.2). By following similar proof as the proof of [3, Lemma 4.2]
which mainly applied the sliding method and the linear parabolic estimates, one
can get that

V (t, x, y) ≥ uτ (t, x, y), in ω−
τ and 
+

R .

Combined with (2.52), one has that

V (t, x, y) ≥ uτ (t, x, y), for any τ ≥ τ1 and all (t, x, y) ∈ R × R
2.

Let

τ∗ = inf{τ ∈ R; uτ (t, x, y) ≤ V (t, x, y) for all (t, x, y) ∈ R × R
2}.

By above arguments, one knows that τ∗ < +∞. On the other hand, for any fixed
(t, x, y), uτ (t, x, y) = Uθ (x cos θ + y sin θ − cθ t + τ, x, y) → 1 as τ → −∞
and V (t, x, y) < 1 by the maximum principle. By the definition of τ∗, one also has
that τ∗ > −∞. Thus, |τ∗| is bounded. If

inf{V (t, x, y) − uτ∗; (t, x, y) ∈ R × R
2 \ (ω−

τ∗ ∪ 
+
R )} > 0,

there is η > 0 such that

V (t, x, y) ≥ uτ∗−η(t, x, y), for (t, x, y) ∈ R × R
2 \ (ω−

τ∗ ∪ 
+
R ).

Then, one can follow the above arguments again to get that

uτ∗−η(t, x, y) ≤ V (t, x, y), for (t, x, y) ∈ R × R
2,

which contradicts the definition of τ∗. Thus,

inf{V (t, x, y) − uτ∗; (t, x, y) ∈ R × R
2 \ (ω−

τ∗ ∪ 
+
R )} = 0.

Since V (t, x, y) ≥ σ ′ in R × R
2 \ (ω−

τ∗ ∪ 
+
R ) and uτ∗(t, x, y) = Uθ (x cos θ +

y sin θ − cθ t + τ∗, x, y) → 0 as x cos θ + y sin θ − cθ t → +∞, there is R1 > 0
and there is a sequence {(tn, xn, yn)}n∈N in R × R

2 \ (ω−
τ∗ ∪ 
+

R ) such that

−C − τ∗ ≤ xn cos θ + yn sin θ − cθ tn ≤ R1 (2.53)

and

V (tn, xn, yn) −Uθ (xn cos θ + yn sin θ − cθ tn + τ∗, xn, yn) → 0, as n → +∞.

(2.54)
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Notice that xn is bounded. Otherwise, if xn → −∞ as n → +∞, then it follows
from (2.53) and θ > α that

xn cosα + yn sin α − cαtn = xn cosα + sin α
(
yn − cα

sin α
tn

)

= xn cosα + sin α
(
yn − cθ

sin θ
tn

)

=
(
cosα − sin α cos θ

sin θ

)
xn

+ sin α

sin θ

(
cos θxn + sin θyn − cθ tn

)

→ −∞, as n → +∞,

and x2n + (yn − cαβ tn)2 → +∞ as n → +∞. It implies that V (tn, xn, yn) →
U−

αβ(tn, xn, yn) → 1 as n → +∞ which contradicts uτ∗(t, x, y) ≤ 1 − σ ′ in
R×R

2 \ ω−
τ∗ and (2.54). Similarly, it is not possible that xn → +∞ as n → +∞.

Thus, there is x∗ ∈ R such that xn → x∗ asn → +∞. Letw(t, x, y) = V (t, x, y)−
uτ∗(t, x, y). Then, by (2.54), w(tn, xn, yn) → 0 as n → +∞. Consider the point
(tn − 1, xn − R′, yn − cθ / sin θ + R′ cos θ/ sin θ) for some constant R′. Notice that
by (2.53),

(xn − R′) cos θ + (yn − cθ / sin θ + R′ cos θ/ sin θ) sin θ

−cθ (tn − 1) ∈ [−C − τ∗, R1], for any n,

and

(xn − R′) cosα + (yn − cθ / sin θ + R′ cos θ/ sin θ) sin α

−cα(tn − 1) → −∞, as R′ → +∞,

for any n. By taking R′ large enough, one can let

V (tn − 1, xn − R′, yn − cθ + R′ cos θ/ sin θ) ≥ 1 − σ ′

2
, for any n.

Then, by noticing that (tn − 1, xn − R, yn − cθ + R cos θ/ sin θ) satisfies (2.53)
and hence uτ∗(tn − 1, xn − R, yn − cθ + R cos θ/ sin θ) ≤ 1 − σ ′, one has that

w(tn − 1, xn − R, yn − cθ + R cos θ/ sin θ) ≥ σ ′

2
> 0. (2.55)

However, since V (t, x, y) and uτ∗(t, x, y) are solutions of (1.1), we have that
w(t, x, y) satisfies

wt − �w ≥ −b(x, y)w, for (t, x, y) ∈ R × R
2,

where b(x, y) is bounded. By the linear parabolic estimates, one can get that

w(tn − 1, xn − R, yn − cθ + R cos θ/ sin θ) → 0, as n → +∞,

which contradicts (2.55). Therefore, case (ii) is ruled out.
In conclusion, cθ / sin θ < cαβ for any θ ∈ (α, β).
We finish this section by proving Claim 2.10.
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Proof of Claim 2.10. Take δ > 0 such that

δ ≤ min
{σ

2
, λ

}
,

whereσ andλ are defined in (F3). SinceUθ (−∞, x, y) = 1 andUθ (+∞, x, y) = 0
for (x, y) ∈ T

2, there is C > 0 such that
{
0 < Uθ (ξ, x, y) ≤ δ, for ξ ≥ C and (x, y) ∈ T

2

1 − δ ≤ Uθ (ξ, x, y) < 1, for ξ ≤ −C and(x, y) ∈ T
2.

From Lemma 2.5, there is k > 0 such that −∂ξUθ (ξ, x, y) ≥ k for −C ≤ ξ ≤ C
and (x, y) ∈ T

2. Take ω > 0 such that

kω ≥ δ + M, (2.56)

whereM = max(x,y,u)∈T2×R | fu(x, y, u)|. It follows from (2.50) and the definition
of U−

αβ that there is Rδ > 0 such that

V (0, x, y) ≥ 1 − δ, for (x, y) ∈ 


where


 := {x ≤ 0, y ∈ R; x cosα + y sin α ≤ −Rδ}
∪{x ≥ 0, y ∈ R; x cosβ + y sin β ≤ −Rδ}.

Define

v−(t, x, y) = Uθ (ξ
−(t, x, y), x, y) − δe−δt ,

where

ξ−(t, x, y) = x cos θ + y sin θ − cθ t − ωe−δt + ω + R̂δ + C,

and R̂δ = Rδ sin θ max{1/ sin α, 1/ sin β}. We prove that v−(t, x, y) is a subsolu-
tion of the problem satisfied by V (t, x, y) for t ≥ 0 and (x, y) ∈ R

2.
Firstly, we check the initial data. Since α < θ < β, one has that

{(x, y) ∈ R
2; ξ−(0, x, y) ≤ C} ⊂ 
.

Then,

v−(0, x, y) ≤ 1 − δ ≤ V (0, x, y), for (x, y) ∈ R
2 such that ξ−(0, x, y) ≤ C.

For (x, y) ∈ R
2 such that ξ(0, x, y) ≥ C , one has that

v−(0, x, y) ≤ δ − δ = 0 ≤ V (0, x, y).

Thus, v−(0, x, y) ≤ V (0, x, y) for all (x, y) ∈ R
2.

We then check that

Nv := v−
t − �v− − f (x, y, v−) ≤ 0, for t ≥ 0 and(x, y) ∈ R

2.
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By some computation and (2.2), one has that

Nv = ωδe−δt∂ξUθ + δ2e−δt + f (x, y,Uθ ) − f (x, y, v−). (2.57)

For t ≥ 0 and (x, y) ∈ R
2 such that ξ(t, x, y) ≥ C , one has that 0 < Uθ

(ξ(t, x, y), x, y) ≤ δ and hence v−(t, x, y) ≤ 2δ ≤ σ . Thus, by (1.2), it follows
that

f (x, y,Uθ ) − f (x, y, v−) ≤ −λδe−δt . (2.58)

Since ∂ξUθ < 0, it follows from (2.57) and (2.58) that

Nv ≤ δ2e−δt − λδe−δt ≤ 0.

Similarly, one can prove that Nv ≤ 0 for t ≥ 0 and (x, y) ∈ R
2 such that

ξ(t, x, y) ≤ −C . Finally, for t ≥ 0 and (x, y) ∈ R
2 such that−C ≤ ξ(t, x, y) ≤ C ,

one has that −∂ξUθ (ξ(t, x, y), x, y) ≥ k and

f (x, y,Uθ ) − f (x, y, v−) ≤ Mδe−δt , (2.59)

where M = max(x,y,u)∈T2×R | fu(x, y, u)|. Then, it follows from (2.56), (2.57) and
(2.59) that

Nv ≤ −kωδe−δt + δ2e−δt + Mδe−δt ≤ 0.

By the comparison principle, one gets that

V (t, x, y) ≥ v−(t, x, y), for t ≥ 0 and x ∈ R
2.

Then, the conclusion of Claim 2.10 follows immediately.

3. Uniqueness and Stability of the Curved Front

This section is devoted to the proofs of uniqueness and stability of the curved
front in Theorem 1.2, that is, Theorems 1.8 and 1.9.

3.1. Proof of Theorem 1.8

The idea of the proof of the uniqueness is inspired by Berestycki and Hamel [3]
who proved that for any two almost-planar fronts u1(t, x, y) and u2(t, x, y), there is
T ∈ R such that eitheru1(t+T, x, y) > u2(t, x, y)oru1(t+T, x, y) = u2(t, x, y).

Proof of Theorem 1.8. Assume that there is another curved front V ∗(t, x, y) satis-
fying (1.9). By (1.9), there is R > 0 large enough such that

V (t, x, y), V ∗(t, x, y) ≤ σ for (t, x, y) ∈ ω+
t

and V (t, x, y), V ∗(t, x, y) ≥ 1 − σ for (t, x, y) ∈ ω−
t ,

where σ is defined in (F3),

ω+
t := {(t, x, y) ∈ R × R

2; x ≤ 0 and
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x cosα + y sin α − cαt ≥ cαR} ∪ {(t, x, y) ∈ R × R
2;

x > 0 and x cosβ + y sin β − cβ t ≥ cβ R},
and

ω−
t := {(t, x, y) ∈ R × R

2; x ≤ 0 and

x cosα + y sin α − cαt ≤ −cαR} ∪ {(t, x, y) ∈ R × R
2;

x > 0 and x cosβ + y sin β − cβ t ≤ −cβ R}.
Since cα/ sin α = cβ/ sin β, one knows thatω+

t andω−
t are connected. By a similar

proof as of Lemma 2.5, there is 0 < σ ′ ≤ σ such that

σ ′ ≤ V (t, x, y), V ∗(t, x, y) ≤ 1 − σ ′, in R × R
2 \ (ω+

t ∪ ω−
t ).

Then, by taking τ large enough, one has

V ∗(t − τ, x, y) ≤ σ ′ ≤ V (t, x, y), for (t, x, y) ∈ R × R
2 \ (ω+

t ∪ ω−
t ),

and

V (t, x, y) ≥ 1 − σ ′ ≥ V ∗(t − τ, x, y), for (t, x, y) ∈ R × R
2 \ (ω+

t−τ ∪ ω−
t−τ ).

Since

V (t, x, y) ≥ 1 − σ ≥ σ ≥ V ∗(t, x, y), for (t, x, y) ∈ ω+
t−τ ∩ ω−

t ,

This means that

V ∗(t − τ, x, y) ≤ V (t, x, y), in R × R
2 \ (ω+

t ∪ ω−
t−τ ).

Since f (x, y, u) is nonincreasing in u ∈ (−∞, σ ] and u ∈ [1 − σ,+∞) for
(x, y) ∈ T

2 and by the same line of the proof of [3, Lemma 4.2], one can get that

V ∗(t − τ, x, y) ≤ V (t, x, y), for all (t, x, y) ∈ ω−
t−τ and (t, x, y) ∈ ω+

t .

and hence,

V ∗(t − τ, x, y) ≤ V (t, x, y), for all (t, x, y) ∈ R × R
2 and τ large enough.

Now, we decrease τ and let

τ∗ = inf{τ ∈ R; V ∗(t − τ, x, y) ≤ V (t, x, y), for (t, x, y) ∈ R × R
2}.

Since both V (t, x, y) and V ∗(t, x, y) satisfy (1.9), one knows that τ∗ ≥ 0. Assume
that τ∗ > 0. If

inf{V (t, x, y) − V ∗(t − τ∗, x, y); (t, x, y) ∈ R × R
2 \ (ω+

t ∪ ω−
t−τ∗)} > 0,

then there is η > 0 such that

V ∗(t − (τ∗ − η), x, y) ≤ V (t, x, y), for (t, x, y) ∈ R × R
2 \ (ω+

t ∪ ω−
t−τ∗).
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By applying above arguments again, one can get that

V ∗(t − (τ∗ − η), x, y) ≤ V (t, x, y), for (t, x, y) ∈ R × R
2,

which contradicts the definition of τ∗. Thus,

inf{V (t, x, y) − V ∗(t − τ∗, x, y); (t, x, y) ∈ R × R
2 \ (ω+

t ∪ ω−
t−τ∗)} = 0,

and there is a sequence {(tn, xn, yn)}n∈N such that

V (tn, xn, yn) − V ∗(tn − τ∗, xn, yn) → 0, as n → +∞.

Then, by following similar arguments as Step 3 of the proof of Lemma 2.8, one can
get a contradiction. Thus, τ∗ = 0.

Therefore,

V (t, x, y) ≥ V ∗(t, x, y), for all (t, x, y) ∈ R × R
2.

The same arguments can be applied by changing positions of V (t, x, y) and V ∗
(t, x, y), and then, we can get that

V ∗(t, x, y) ≥ V (t, x, y), for all (t, x, y) ∈ R × R
2.

In conclusion, V ∗(t, x, y) ≡ V (t, x, y).

3.2. Stability of the Curved Front

Take any 0 < α < β < π such that Theorem 1.2 holds. Since g′(α) < 0, one
can take α1 ∈ (0, α) such that

cθ

sin θ
>

cα

sin α
, for θ ∈ [α1, α].

Similar as Lemma 2.2, there is a smooth function ϕ1(x) with y = −x cot α and
y = −x cot α1 being its asymptotic lines and there are positive constant k3, k4 and
K4 such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ′′
1 (x) < 0, for all x ∈ R,

− cot α > ϕ′
1(x) > − cot α1, for all x ∈ R,

k1sech(x) ≤ − cot α − ϕ′
1(x) ≤ K4sech(x), for x < 0,

k2sech(x) ≤ ϕ′
1(x) + cot α1 ≤ K4sech(x), for x ≥ 0,

max(|ϕ′′
1 (x)|, |ϕ′′′

1 (x)|) ≤ K4sech(x), for all x ∈ R.

(3.1)

Take a constant � which will be determined later. For every point (x, y) on the
curve y = ϕ1(�x)/�, there is a unit normal

e(x) = (e1(x), e2(x)) =
(

− ϕ′
1(�x)√

ϕ′2
1 (�x) + 1

,
1

√
ϕ′2
1 (�x) + 1

)
.

For (x, y) ∈ R
2 and t ∈ R, take a constant ε and we define

U−
1 (t, x, y) = Ue(x)(ξ(t, x, y), x, y) − εsech(�x), (3.2)
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where

ξ(t, x, y) = y − cαβ t − ϕ1(�x)/�√
ϕ′2
1 (�x) + 1

.

Lemma 3.1. There exist ε0 and �(ε0) such that for any 0 < ε ≤ ε0 and 0 < � ≤
�(ε0), the function U

−
1 (t, x, y) is a subsolution of (1.1). Moreover, this satisfies

lim
R→+∞ sup

x<−R

∣
∣
∣U−

1 (t, x, y) −Uα(x cosα + y sin α − cαt, x, y)
∣
∣
∣ ≤ 2ε, (3.3)

and

U−
1 (t, x, y) ≤ Uα(x cosα+y sin α−cαt, x, y), for all t ∈ R and (x, y) ∈ R

2.

(3.4)

Proof. Assume that

ε0 ≤ σ

2
,

where σ > 0 is defined in (F3).More restrictions on ε0 will be given later. It follows
from similar computation as Step 1 of the proof of Lemma 2.8 that

NU−
1 :=(U−

1 )t − �x,yU
−
1 − f (x, y,U−

1 )

=∂ξUe(x)ξ t
− ∂ξξUe(x)(ξ

2
x

+ ξ2
y
) − 2∇x,y∂ξUe(x) · (ξ

x
, ξ

y
)

− �x,yUe(x) − ∂ξUe(x)ξ xx

−U ′′
e(x) · e′(x) · e′(x) −U ′

e(x) · e′′(x) − 2∂ξU
′
e(x) · e′(x)ξ

x

− 2∂xU
′
e(x) · e′(x) − ε�2sech′′(�x) − f (x, y,U−

1 )

=(ce(x) + ξ
t
)∂ξUe(x) − ∂ξξUe(x)(ξ

2
x

+ ξ2
y
− 1)

− 2∂x∂ξUe(x)(ξ x
− e1(x)) − ∂ξUe(x)ξ xx

−U ′′
e(x) · e′(x) · e′(x) −U ′

e(x) · e′′(x)
− 2∂ξU

′
e(x) · e′(x)ξ

x
− 2∂xU

′
e(x) · e′(x)

− ε�2sech′′(�x) + f (x, y,Ue(x)) − f (x, y,U−
1 ),

whereUe(x), ∂ξUe(x), ∂ξξUe(x), ∇x,y∂ξUe(x), �x,yUe(x),U ′′
e(x) · e′(x) · e′(x),U ′

e(x) ·
e′′(x), ∂ξU ′(e(x)) · e′(x), ∂xU ′

e(x) · e′(x) are taking values at (ξ(t, x, y), x, y) and

U−
1 , ξ

t
, ξ

x
, ξ

y
are taking values at (t, x, y). Similar as (2.20), (2.21) in the proof

of Lemma 2.8, there are C5 > 0 and C6 > 0 such that

|∂ξξUe(x)(ξ
2
x
+ξ2

y
−1)|+2|∂x∂ξUe(x)(ξ x

−e1(x))|+|∂ξUe(x)ξ xx
| ≤ C5�sech(�x),

(3.5)
and

|U ′′
e(x) · e′(x) · e′(x)| + |U ′

e(x) · e′′(x)| + 2|∂ξU
′
e(x) · e′(x)ξ

x
|
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+2|∂xU ′
e(x) · e′(x)| ≤ C6�sech(�x). (3.6)

By a similar proof as of Claim 2.9, we can easily get that

ce(x) + ξ
t
> 0, for x ∈ R.

and there is C7 > 0 such that

ce(x) + ξ
t
= ce(x) − cαβ√

ϕ′2
1 (�x) + 1

≥ C7sech(�x) > 0,

for x being negative enough.

Sinceϕ′
1(x)(�x) → − cot α1, e(x) → (cosα1, sin α1) as x → +∞ and cα1/ sin α1 >

cα/ sin α, there is a constant c > 0 such that

ce(x) + ξ
t
= ce(x) − cαβ√

ϕ′2
1 (�x) + 1

≥ c > 0, for all x ≥ 0. (3.7)

For x < 0, one can make similar arguments as in the proof of Lemma 2.8 to get
that NU−

1 ≤ 0. For x ≥ 0, one can get from (3.5), (3.6), (3.7) and Lemma 2.1 that

NU−
1 ≤ c∂ξUe(x) + (C5 + C6)�sech(�x)

+ 2ε�2sech(�x) + f (x, y,Ue(x)) − f (x, y,U−
1 ). (3.8)

For (t, x, y) ∈ R × R
2 such that ξ(t, x, y) ≥ C and ξ(t, x, y) ≤ −C where C is

defined by (2.24), it follows from (F3) and ε ≤ ε0 ≤ σ/2 that

f (x, y,Ue(x)) − f (x, y,U−
1 ) ≤ −λεsech(�x).

Since ∂ξUe < 0, one has that

NU−
1 ≤

(
(C5 + C6)� + 2ε�2 − λε

)
sech(�x) ≤ 0,

by taking �(ε) > 0 small enough such that

(C5 + C6)� + 2ε�2 − λε < 0, (3.9)

and 0 < � ≤ �(ε). Finally, for (t, x, y) ∈ R×R
2 such that −C ≤ ξ(t, x, y) ≤ C ,

there is k > 0 such that

−∂ξUe(ξ , x, y) ≥ k for all e ∈ S.

Notice that

f (x, y,Ue(x)) − f (x, y,U−
1 ) ≤ Mεsech(�x),

where M := max(x,y,u)∈T2×R | fu(x, y, u)|. Thus, it follows from (3.8) and (3.9)
that

NU−
1 ≤ −kc +

(
(C5 + C6)� + 2ε�2 + Mε

)
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sech(�x) ≤ −kc + (λ + M)εsech(�x) ≤ 0,

by taking ε0 = min{σ/2, kc/(λ + M)} and 0 < ε ≤ ε0.
By similar arguments as to those in Step 2 of the proof of Lemma 2.8, one gets

that (3.3) holds. The inequality (3.4) can be gotten by comparing U−
1 (t, x, y) with

Uα(x cosα + y sin α − cαt, x, y) through similar arguments as in Step 3 of the
proof of Lemma 2.8. This completes the proof.

Similarly, since g′(β) > 0, one can take β1 ∈ (β, π) such that

cβ

sin β
<

cθ

sin θ
, for all θ ∈ (β, β1].

Similarly to as Lemma 2.2, there is a smooth function ϕ2(x) with y = −x cot β
and y = −x cot β1 being its asymptotic lines and there are positive constant k5, k6
and K5 such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ′′
2 (x) < 0, for all x ∈ R,

− cot β1 > ψ ′
2(x) > − cot β, for all x ∈ R,

k5sech(x) ≤ − cot β1 − ϕ′
2(x) ≤ K5sech(x), for x < 0,

k6sech(x) ≤ ϕ′
2(x) + cot β ≤ K5sech(x), for x ≥ 0,

max(|ϕ′′
2 (x)|, |ϕ′′′

2 (x)|) ≤ K5sech(x), for all x ∈ R.

(3.10)

Take a constant � which will be determined later. For every point (x, y) on the
curve y = ϕ2(�x)/�, there is a unit normal

e(x) = (e1(x), e2(x)) =
(

− ϕ′
2(�x)√

ϕ′2
2 (�x) + 1

,
1

√
ϕ′2
2 (�x) + 1

)
.

For (x, y) ∈ R
2 and t ∈ R, take a constant ε and we define

U−
2 (t, x, y) = Ue(x)(ξ(t, x, y), x, y) − εsech(�x), (3.11)

where

ξ(t, x, y) = y − cαβ t − ϕ2(�x)/�√
ϕ′2
2 (�x) + 1

.

Similarly to Lemma 3.1, we can prove the following lemma:

Lemma 3.2. There exist ε0 and �(ε0) such that for any 0 < ε ≤ ε0 and 0 < � ≤
�(ε0), the function U

−
2 (t, x, y) is a subsolution of (1.1). Moreover, this satisfies

lim
R→+∞ sup

x>R

∣
∣
∣U−

2 (t, x, y) −Uβ(x cosβ + y sin β − cβ t, x, y)
∣
∣
∣ ≤ 2ε,

and

U−
2 (t, x, y) ≤ Uβ(x cosβ + y sin β − cβ t, x, y), for all t ∈ R and (x, y) ∈ R

2.
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Then, we need the following sub and supersolutions for the Cauchy problems
of (1.1):

Lemma 3.3. For any function u(t, x, y) ∈ C1,2(R × R
2), if it is a subsolution of

(1.1) for (t, x, y) ∈ R × R
2 with ut > 0 and for any 0 < σ1 < 1/2 there is a

positive constant k such that

ut ≥ k, for (t, x, y) ∈ R × R
2 such that σ1 ≤ u(t, x, y) ≤ 1 − σ1, (3.12)

then for any 0 < δ < σ/2 where σ is defined in (F3), there exist positive constants
ω and λ such that

u(t, x, y) = u(t + ωδe−λt − ωδ, x, y) − δe−λt ,

is a subsolution of (1.1) for t ≥ 0 and (x, y) ∈ R
2. Similarly, if u(t, x, y) is a

smooth supersolution satisfying (3.12), then for any 0 < δ < σ/2, there exist
positive constants ω and λ such that

u(t, x, y) = u(t − ωδe−λt + ωδ, x, y) + δe−λt

is a supersolution of (1.1) for t ≥ 0 and (x, y) ∈ R
2.

Proof. We only prove for the subsolution. Similar arguments can be applied for
the supersolution. Take any 0 < δ < σ/2 where σ is defined in (F3). Let k > 0
such that ut ≥ k for (t, x, y) ∈ R×R

2 such that σ/2 ≤ u ≤ 1− σ/2. Take ω > 0
such that

kω ≥ λ + M

λ
,

where λ is defined in (F3) and M := max(x,y,u)∈T2×R | fu(x, y, u)|.
We then check that

Nu := ut − �x,yu − f (x, y, u) ≤ 0, for t > 0 and (x, y) ∈ R
2.

By computation, one can get that

Nu = −ωδλe−λt ut + δλe−λt + f (x, y, u(t + ωδe−λt − ωδ, x, y)) − f (x, y, u).

For t > 0 and (x, y) ∈ R
2 such that 1− σ/2 ≤ u(t + ωδe−λt − ωδ, x, y) ≤ 1 and

0 ≤ u(t + ωδe−λt − ωδ, x, y) ≤ σ/2 respectively, one has that u(t, x, y) ≥ 1− σ

and u(t, x, y) ≤ σ respectively. Then, by (1.2), it follows that

f (x, y, u(t + ωδe−λt − ωδ, x, y)) − f (x, y, u) ≤ −λδe−λt .

Thus, by ut > 0, we have

Nu ≤ δλe−λt − λδe−λt ≤ 0.

For t > 0 and (x, y) ∈ R
2 such that δ/2 ≤ u(t + ωδe−λt , x, y) ≤ 1 − σ/2, one

has that

Nu ≤ −kωδλe−λt + δλe−λt + Mδe−λt ≤ 0,

by the definition of ω.
This completes the proof.
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Now, we are ready to prove the stability of the curved front of Theorem 1.2.

Proof of Theorem 1.9. Take any δ ∈ (0, σ/2]. Take ε0 ≤ δ/4 and �(ε0) such
that Lemmas 2.8, 3.1 and 3.2 hold for any ε ∈ (0, ε0] and � ∈ (0, �(ε0)]. Pick any
ε ∈ (0, ε0]. LetU+(t, x, y),U−

1 (t, x, y) andU−
2 (t, x, y) be defined by (2.14), (3.2)

and (3.11) respectively. Let U−
12(t, x, y) = max{U−

1 (t, x, y),U−
2 (t, x, y)}. Then,

by Lemmas 3.1, 3.2 and similar arguments as Step 2 of the proof of Lemma 2.8,
one can get that

U−
12(t, x, y) ≤ U−

αβ(t, x, y) for all t ∈ R and (x, y) ∈ R
2, (3.13)

and
lim

R→+∞ sup
x2+(y−cα,β t)2>R2

∣
∣
∣U−

12(t, x, y) −U−
αβ(t, x, y)

∣
∣
∣ ≤ 2ε. (3.14)

By (1.12), there is Rδ > 0 such that

U−
αβ(0, x, y) − δ

2
≤ u0(x, y) ≤ U−

αβ(0, x, y) + δ

2
, for (x, y) ∈ R

2

such that x2 + y2 > R2
δ .

By the definition of ψ(x) from Lemma 2.2, one has that

ξ(0, x, y) = y − ψ(�x)/�
√

ψ ′2(�x) + 1
→ −∞ as � → 0 for x2 + y2 ≤ R2

δ ,

which impliesUe(x)(ξ(0, x, y), x, y) → 1 as � → 0 for x2 + y2 ≤ R2
δ , where e(x)

is defined by (2.12). Then, take � ∈ (0, �(ε0)] small enough such that

u0(x, y) ≤ 1 ≤ U+(0, x, y) + δ for (x, y) ∈ R
2 such that x2 + y2 ≤ R2

δ .

(3.15)
Similarly, since ϕ1(0) < 0 and ϕ2(0) < 0, one can take a � ∈ (0, �(ε0)] such that

u0(x, y) ≥ 0 ≥ U−
1 (0, x, y) − δ and u0(x, y) ≥ 0 ≥ U−

2 (0, x, y) − δ, (3.16)

for (x, y) ∈ R
2 such that x2 + y2 ≤ R2

δ . Define

U (t, x, y) = max{U−
1 (t + ωδe−λt − ωδ, x, y)

−δe−λt ,U−
2 (t + ωδe−λt − ωδ, x, y) − δe−λt },

and

U (t, x, y) = U+(t − ωδe−λt + ωδ, x, y) + δe−λt ,

where ω, δ and λ are defined in Lemma 3.3. It follows from (2.17) and (3.13) that

U (0, x, y) ≤ u0(x, y) ≤ U (0, x, y), for (x, y) ∈ R
2 such that x2 + y2 > R2

δ .

Together with (3.15) and (3.16), one has that

U (0, x, y) ≤ u0(x, y) ≤ U (0, x, y), for all (x, y) ∈ R
2.
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On the other hand, by Lemma 2.5, one knows thatU−
1 (t, x, y),U−

2 (t, x, y) and
U+(t, x, y) satisfy (3.12). By Lemma 3.3 and the comparison principle, one can
get that

U (t, x, y) ≤ u(t, x, y) ≤ U (t, x, y), for t ≥ 0 and (x, y) ∈ R
2.

Take a sequence tn = L2n/cαβ where L2 is the period of y. Then, tn → +∞ as
n → +∞. By parabolic estimates, the sequence un(t, x, y) := u(t+tn, x, y+L2n)

converges, locally uniformly in R × R
2, to a solution u∞(t, x, y) of (1.1). Since

U−
1 (t + tn, x, y+ L2n) = U−

1 (t, x, y),U−
2 (t + tn, x, y+ L2n) = U−

2 (t, x, y) and
U+(t + tn, x, y + L2n) = U+(t, x, y), one has that

max{U−
1 (t + ωδe−λ(t+tn)−ωδ, x, y) − δe−λ(t+tn),

U−
2 (t + ωδe−λ(t+tn) − ωδ, x, y) − δe−λ(t+tn)}

≤ un(t, x, y) ≤ U+(t − ωδe−λ(t+tn)

+ ωδ, x, y) + δe−λ(t+tn),

(3.17)
and by passing to the limit n → +∞, u∞(t, x, y) satisfies

max{U−
1 (t − ωδ, x, y),U−

2 (t − ωδ, x, y)} ≤ u∞(t, x, y)

≤ U+(t + ωδ, x, y), for (t, x, y) ∈ R × R
2.

Let u(t + t0, x, y; u0(x, y)) denote the solution of the initial value problem
{
ut − �u = f (x, y, u), t > t0, (x, y) ∈ R

2,

u(t0, x, y) = u0(x, y), t > t0.
(3.18)

Then, by the comparison principle, one can get that

U−
αβ(t + t0 + ωδ, x, y) ≤ u(t + t0, x, y;U+(t0 + ωδ, x, y)) ≤ U+(t + t0 + ωδ, x, y),

for t ≥ t0 and (x, y) ∈ R
2. By uniqueness of the curved front, one can easily prove

that

u(t + t0, x, y;U+(t0 + ωδ, x, y)) − V (t + t0 + ωδ, x, y) → 0 as

t → +∞ for (x, y) ∈ R
2.

Similarly,

u(t + t0, x, y;U−
12(t0 − ωδ, x, y)) − V (t + t0 − ωδ, x, y) → 0 as

t → +∞ for (x, y) ∈ R
2.

Thus, for any fixed t and any t0 < t ,

u(t, x, y;U−
12(t0 − ωδ, x, y)) ≤ u∞(t, x, y)

≤ u(t, x, y;U+(t0 + ωδ, x, y)), for (x, y) ∈ R
2.
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By passing to the limit t0 → −∞, then one has that

V (t − ωδ, x, y) ≤ u∞(t, x, y) ≤ V (t + ωδ, x, y).

Since δ can be taken arbitrary small, we have that u∞(t, x, y) ≡ V (t, x, y). Thus,
for any η > 0, it follows from (1.9), (3.14), (3.17), Lemma 2.8 and taking δ small
enough that there is t0 > 0 large enough such that

|u(t0, x, y) − V (t0, x, y)| ≤ η, for all (x, y) ∈ R
2.

Then, by Vt > 0 and a similar proof as of Lemma 2.5, one knows that V (t, x, y)
satisfies (3.12). By Lemma 3.3 again and the comparison principle, one gets that

V (t0 + t + ωηe−λt − ωη, x, y) − ηe−λt ≤ u(t0 + t, x, y)

≤ V (t0 − ωηe−λt + ωη, x, y) + ηe−λt ,

for t ≥ 0 and (x, y) ∈ R
2. Then, since η can be arbitrary small, one finally has that

u(t, x, y) → V (t, x, y), as t → +∞uniformly in R × R
2.

This completes the proof.

4. A Curved Front with Varying Interfaces

In this section, we construct a curved front with varying interfaces. It behaves
as three pulsating fronts as t → −∞ and as two pulsating fronts as t → +∞. We
can not apply the idea of Hamel [17] by considering a Neumann boundary problem
in the half plane x < 0 since our problem is not orthogonal symmetric with respect
to y-axis in general.

Let α, β and θ satisfy Theorem 1.10. We will need the following properties:

Lemma 4.1. It holds that

cαθeαθ =
(
cα sin θ − cθ sin α

sin(θ − α)
,
cα cos θ − cθ cosα

sin(α − θ)

)

:= (c1, c2),

and

cβθeβθ =
(
cβ sin θ − cθ sin β

sin(θ − β)
,
cβ cos θ − cθ cosβ

sin(β − θ)

)

:= (ĉ1, ĉ2),

with c1 > 0 and ĉ1 < 0. Moreover,
cα

eαθ · (cosα, sin α)
= cθ

eαθ · (cos θ, sin θ)

= cαθ >
cθ1

eαθ · (cos θ1, sin θ1)
, for any θ1 ∈ (α, θ),

and
cβ

eβθ · (cosβ, sin β)
= cθ

eβθ · (cos θ, sin θ)

= cβθ >
cθ2

eβθ · (cos θ2, sin θ2)
, for any θ2 ∈ (θ, β).
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Proof. Assume by contradiction that cαθeαθ �= (c1, c2). Take a sequence {tn}n∈N
such that tn → +∞. Then, for the sequence

(xn, yn) = (c1, c2)tn,

one has that ((xn, yn) − cαθeαθ tn)2 → +∞ as n → +∞ since cαθeαθ �= (c1, c2).
Notice that for any n, there are k1n , k

2
n ∈ Z and x ′

n ∈ [0, L1], y′
n ∈ [0, L2) such that

xn = k1n L1 + x ′
n and yn = k2n L2 + y′

n . Moreover, up to extract subsequences of xn
and yn , there are x ′∗ ∈ [0, L1] and y′∗ ∈ [0, L2] such that x ′

n → x ′∗ and y′
n → y′∗ as

n → +∞. Since f (x, y, ·) is L-periodic in (x, y), one has f (x + xn, y+ yn, ·) →
f (x + x ′∗, y+ y′∗, ·) as n → +∞. Let vn(t, x, y) = Vαθ (t + tn, x + xn, y+ yn). By
standard parabolic estimates, vn(t, x, y), up to extract of a subsequence, converges
to a solution v∞(t, x, y) of

vt − �v = f (x + x ′∗, y + y′∗, v), for t ∈ R and (x, y) ∈ R
2. (4.1)

By definitions of xn , yn , c1 and c2, one can also have that

U−
αθ (t + tn, x + xn, y + yn) → Û−

αθ (t, x, y), as n → +∞ uniformly in R × R
2,

where

Û−
αθ (t, x, y) := max{Uα(x cosα + y sin α − cαt, x + x ′∗, y + y′∗),

Uθ (x cos θ + y sin θ − cθ t, x + x ′∗, y + y′∗)}.
Moreover, since Vαθ (t, x, y) satisfies

lim
R→+∞ sup

((x,y)−ce1e2 teαθ )2>R2

∣
∣
∣Vαθ (t, x, y) −U−

αθ (t, x, y)
∣
∣
∣ = 0,

one then gets that

vn(t, x, y) → Û−
αθ (t, x, y) as n → +∞ locally uniformly in R

2.

This implies that v∞(t, x, y) = Û−
αθ (t, x, y)which is impossible since Û−

αθ (t, x, y)
is not a solution of (4.1). Thus, cαθeαθ = (c1, c2). Similarly, one can prove that
cβθeβθ = (ĉ1, ĉ2).

The signs of c1 and ĉ1 can be easily gotten from the facts α < θ < β and
cα/ sin α = cβ/ sin β > cθ / sin θ .

Notice that the speed of the pulsating frontUθ1(x cos θ1 + y sin θ1 − cθ1 t, x, y)
in direction eαθ can be denoted by

cθ1

eαθ · (cos θ1, sin θ1)
.

By similar arguments as to those of Theorem 1.7, one has that

cα

eαθ · (cosα, sin α)
= cθ

eαθ · (cos θ, sin θ)

= cαθ and
cθ1

eαθ · (cos θ1, sin θ1)
< cαθ , for any θ1 ∈ (α, θ).

This completes the proof.
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Let ϕ1(x) be a smooth function such that there exist a1 < 0 < b1 such that

ϕ1(x) = −x cot α, for x ≤ a1, ϕ1(x) = −x cot θ,

for x ≥ b1 and ϕ′′
1 (x) > 0 for x ∈ (a1, b1).

Let ϕ2(x) be a smooth function such that there exist a2 < 0 < b2 such that

ϕ2(x) = −x cot θ, for x ≤ a2, ϕ2(x) = −x cot β, for x ≥ b2and ϕ′′
2 (x) > 0 for x ∈ (a2, b2).

Let

ψ1(t, x) = ϕ1(x − c1t) + ρsech(x − c1t) + ρsech(x − ĉ1t),

and

ψ2(t, x) = ϕ2(x − ĉ1t) + ρsech(x − c1t) + ρsech(x − ĉ1t).

By c1 > 0, ĉ1 < 0 and making |a1|, |a2|, b1, b2 large enough and ρ small enough,
one can let (ψ1)xx > 0 for t negative enough and x ≤ (c1+ ĉ1)t/2 and (ψ2)xx > 0
for t negative enough and x ≥ (c1 + ĉ1)t/2. Let

ψ(t, x) =
{

ψ1(t, x), for x ≤ (c1 + ĉ1)t/2,
ψ2(t, x), for x > (c1 + ĉ1)t/2.

(4.2)

Take a constant� to be determined. For every point on the curve y = ψ1(�t, �x),
there is a unit normal

e(t, x) = (e1(t, x), e2(t, x)) =
(

− (ψ1)x (�t, �x)√
(ψ1)2x (�t, �x) + 1

,
1

√
(ψ1)2x (�t, �x) + 1

)

.

For every point on the curve y = ψ2(�t, �x), there is a unit normal

η(t, x) =
(

− (ψ2)x (�t, �x)√
(ψ2)2x (�t, �x) + 1

,
1

√
(ψ2)2x (�t, �x) + 1

)

.

Take ε > 0 to be determined. For t ∈ R and (x, y) ∈ R
2, define

Ũ+(t, x, y) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ue(t,x) (ξ1(t, x, y), x, y) + εsech(�(x − c1t))

+εsech(�(x − ĉ1t)), for x ≤ c1 + ĉ1
2

t,

Uη(t,x) (ξ2(t, x, y), x, y) + εsech(�(x − c1t))

+εsech(�(x − ĉ1t)), for x >
c1 + ĉ1

2
t,

where

ξ1(t, x, y) := y − c2t − ψ1(�t, �x)/�√
(ψ1)2x (�t, �x) + 1

and ξ2(t, x, y) := y − ĉ2t − ψ2(�t, �x)/�√
(ψ2)2x (�t, �x) + 1

.



Curved Fronts of Bistable Reaction-Diffusion 1617

By the definition of ψ1, ψ2, c1, c2, ĉ1 and ĉ2, one can easily check that around
x = (c1 + ĉ1)t/2,

Ue(t,x) (ξ1(t, x, y), x, y) = Uθ (x cos θ + y sin θ − cθ t, x, y)

= Uη(t,x) (ξ2(t, x, y), x, y) ,

for t negative enough. Thus, Ũ+(t, x, y) is smooth for t negative enough and
(x, y) ∈ R

2.

Lemma 4.2. There exist ε0 and �(ε0) such that for any 0 < ε ≤ ε0 and 0 < � ≤
�(ε0), the function Ũ+(t, x, y) is a supersolution of (1.1) for t negative enough.
Moreover, this satisfies

lim
R→+∞ sup

x≤0,((x,y)−cαθ eαθ t)2>R2

∣
∣Ũ+(t, x, y) −U−

αθ (t, x, y)
∣
∣ ≤ 2ε, (4.3)

lim
R→+∞ sup

x>0,((x,y)−cβθ eβθ t)2>R2

∣
∣
∣Ũ+(t, x, y) −U−

θβ(t, x, y)
∣
∣
∣ ≤ 2ε, (4.4)

and
Ũ+(t, x, y) ≥ max{Uα(x cosα + y sin α − cαt, x, y),

Uθ (x cos θ + y sin θ − cθ t, x, y),

Uβ(x cosβ + y sin β − cβ t, x, y)},
for tnegative enough and(x, y) ∈ R

2.

(4.5)

Proof. We only prove for the part x ≤ (c1 + ĉ1)t/2. Take 0 < ε0 ≤ σ/2 and
more restrictions on ε0 will be given later. Change variables X = x − c1t and
Y = y − c2t . Then,

ψ1(t, X) := ϕ1(X) + ρsech(X) + ρsech(X + (c1 − ĉ1)t),

and

e(t, X) = (e1(t, X), e2(t, X)) =
⎛

⎝− (ψ1)X (�t, �X)
√

(ψ1)
2
X (�t, �X) + 1

,
1

√
(ψ1)

2
X (�t, �X) + 1

⎞

⎠ .

One can compute that

(ψ1)t (t, X) = (c1 − ĉ1)ρsech
′(X + (c1 − ĉ1)t),

(ψ1)X (t, X) =ϕ′
1(X) + ρsech′(X) + ρsech′(X + �(c1 − ĉ1)t),

(ψ1)t X (t, X) = (c1 − ĉ1)ρsech
′(X + (c1 − ĉ1)t),

(ψ1)XX (t, X) =ϕ′′
1 (X) + ρsech′′(X) + ρsech′′(X + (c1 − ĉ1)t),

(ψ1)XXX (t, X) =ϕ′′′
1 (X) + ρsech′′′(X) + ρsech′′′(X + (c1 − ĉ1)t).

This means that there exists a positive constant C such that the L∞ norms of above
derivatives of ψ1(t, X) are bounded by C(sech(X) + sech(X + (c1 − ĉ1)t)). One
can also compute that

et =
(

− �(ψ1)t X

((ψ1)
2
X + 1)3/2

,− �(ψ1)X (ψ1)t X

((ψ1)
2
X + 1)3/2

)

,
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eX =
(

− �(ψ1)XX

((ψ1)
2
X + 1)

3
2

,−�(ψ1)X (ψ1)XX

((ψ1)
2
X + 1)

3
2

)
,

and

eXX =
(

− �2(ψ1)XXX

((ψ1)
2
X + 1)

3
2

+ 3�2(ψ1)X (ψ1)
2
XX

((ψ1)
2
X + 1)

5
2

,− �2(ψ1)
2
XX

((ψ1)
2
X + 1)

3
2

− �2(ψ1)X (ψ1)XXX

((ψ1)
2
X + 1)

3
2

+ 3�2(ψ1)
2
X (ψ1)

2
XX

((ψ1)
2
X + 1)

5
2

)
,

where (ψ1)X , (ψ1)XX , (ψ1)XXX , (ψ1)t X are taking values at (�t, �X) in et , eX ,
eXX . Let

Ũ+(t, X, Y ) = Ue(t,X) (ξ1(t, X,Y ), X + c1t,Y + c2t) + εsech(�X)

+εsech(�X − �(c1 − ĉ1)t),

where

ξ1(t, X,Y ) = Y − ψ1(�t, �X)/�
√

(ψ1)2x (�t, �X) + 1
.

We need to verify that

NŨ+ := Ũ+
t − �X,Y Ũ

+ − c1Ũ
+
X − c2Ũ

+
Y − f (X + c1t,Y + c2t, Ũ

+) ≥ 0,

for t negative enough and (x, y) ∈ R
2. By (2.2) and after some computation, one

can get that

NŨ+ =∂ξUe(t,X)((ξ1)t − c1(ξ1)X − c2(ξ1)Y + ce(t,X)) +U ′
e(t,X) · et

−U ′′
e(t,X) · eX · eX −U ′

e(t,X) · eXX

− 2∂ξU
′
e(t,X) · eX (ξ1)X − 2∂XU

′
e(t,X) · eX

− ∂ξξUe(t,X)((ξ1)
2
X + (ξ1)

2
Y − 1)

− 2∂ξ ∂XUe(t,X)((ξ1)X − e1(t, X)) − 2∂ξ ∂Y

Ue(t,X)((ξ1)Y − e2(t, X)) − ∂ξUe(t,X)ξXX

− c1U
′
e(t,X) · eX − ε�2sech′′(�X)

− ε�2sech′′(�X − �(c1 − ĉ1)t) − c1ε�sech
′(�X)

− c1ε�sech
′(�X − �(c1 − ĉ1)t)

+ f (X + c1t,Y + c2t,Ue(t,X)) − f (X + c1t,Y + c2t, Ũ
+),

where ∂ξUe(t,X), ∂ξξUe(t,X), ∇X,Y ∂ξUe(t,X), U ′
e(t,X) · et , U ′′

e(t,X) · eX · eX , U ′
e(t,X) ·

eXX , ∂ξU ′
e(t,X) · eX , ∂XU ′

e(t,X) · eX , U ′
e(t,X) · eX , Ue(t,X) are taking values at
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(ξ1(t, X,Y ), X,Y ) and Ũ+, (ξ1)t , (ξ1)X , (ξ1)Y are taking values at (t, X,Y ). Sim-
ilarly to the as those formulas of (2.18), one can also compute that

(ξ1)t = −�(ψ1)X (ψ1)t X

(ψ1)
2
X + 1

ξ1 − (ψ1)t√
(ψ1)

2
X + 1

,

(ξ1)X = −�(ψ1)X (ψ1)XX

(ψ1)
2
X + 1

ξ1 − (ψ1)X√
(ψ1)

2
X + 1

,

(ξ1)Y = 1
√

(ψ1)
2
X + 1

,

(ξ1)XX = −�2(ψ1)X (ψ1)XXX

(ψ1)
2
X + 1

ξ1 + �2(ψ1)
2
XX (2(ψ1)

2
X − 1)

((ψ1)
2
X + 1)2

ξ1

+ �((ψ1)
2
X − 1)(ψ1)XX

((ψ1)
2
X + 1)

3
2

,

(ξ1)
2
X + (ξ1)

2
Y − 1 =

(�(ψ1)
2
X (ψ1)XX

(ψ1)
2
X + 1

)2
ξ21 + 2

�(ψ1)X (ψ1)XX

((ψ1)
2
X + 1)

3
2

ξ1,

(4.6)

where (ψ1)X , (ψ1)t (ψ1)XX , (ψ1)t X are taking values at (�t, �X). By Lemma 2.1,
Lemma 2.4, Lemma 2.7, boundedness of ‖U ′

e‖, ‖U ′′
e ‖, ‖∂ξU ′

e‖, ‖∂xU ′
e‖ and above

formulas, there are constants C8 > 0 and C9 > 0 such that

|∂ξξUe(t,X)((ξ1)
2
X + (ξ1)

2
Y − 1)| + 2|∂X∂ξUe(t,X)((ξ1)X − e1(t, X))|

+ 2|∂Y ∂ξUe(t,X)((ξ1)y − e2(t, X))|
+ |∂ξUe(t,X)(ξ1)XX | ≤ C8�(sech(�X) + sech(�X − �(c1 − ĉ1)t)),

and

|U ′
e(t,X) · et | + |U ′′

e(t,X) · eX · eX | + |U ′
e(t,X) · eXX | + 2|∂ξU

′
e(t,X) · eX (ξ1)X |

+ 2|∂xU ′
e(t,X) · eX |

+ c1|U ′
e(t,X) · eX | ≤ C9�(sech(�X) + sech(�X − �(c1 − ĉ1)t)),

Therefore, it follows that

NŨ+ ≥∂ξUe(t,X)((ξ1)t − c1(ξ1)X − c2(ξ1)Y + ce(t,X)) − (C8 + C9)�(sech(�X)

+ �sech(�X + �(c1 − ĉ1)t)) − (1 + c1)ε�
2(sech(�X)

+ �sech(�X + �(c1 − ĉ1)t))

+ f (X + c1t,Y + c2t,Ue(t,x)) − f (X + c1t,Y + c2t, Ũ
+)

We claim that

Claim 4.3. There exist positive constants C10 and C11 such that

c1(ξ1)X + c2(ξ1)Y − (ξ1)t − ce(t,X) ≥ −C10�( sech(�X)
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+ sech(�X + �(c1 − ĉ1)t))|ξ1|
− C10� sech(�X + �(c1 − ĉ1)t)) + C11( sech(�X)

+ sech(�X + �(c1 − ĉ1)t)).

In order to not lengthen the proof, we postpone the proof of Claim 4.3 after the
proof of this lemma.

For ξ1(t, X,Y ) ≥ C and ξ1(t, X,Y ) ≤ −C where C is defined by (2.24), it
follows from (1.2) that

f (X + c1t,Y + c2t,Ue(t,x)) − f (X + c1t,Y + c2t, Ũ
+)

≥ λε(sech(�x) + sech(�x + �(c1 − ĉt)))

Then, by ∂ξUe < 0, Lemma 2.4 and Claim 4.3, it follows that

NŨ+ ≥ − B1C10�(sech(�X) + sech(�X + �(c1 − ĉ1)t))

− B2C10�sech(�X + �(c1 − ĉ1)t))

−
(
(C8 + C9)� + (1 + c1)ε�

2
)
(sech(�X) + �sech(�X + �(c1 − ĉ1)t))

+ λε(sech(�X) + sech(�X + �(c1 − ĉt))) ≥ 0

where B1 = supe∈S ‖∂ξUeξ1‖L∞ and B2 = supe∈S ‖∂ξUe‖L∞ , by taking 0 < � ≤
�(ε) where �(ε) is small enough such that

−B1C10�−B2C10�−
(
(C8+C9)�+(1+c1)ε�

2
)
+λε > 0, for all 0 < � ≤ �(ε).

(4.7)
For −C ≤ ξ1(t, x, y) ≤ C , there is k > 0 such that −∂ξUe(t,x)(ξ1(t, x, y), x, y) ≥
k. Then, it follows from Claim 4.3 that

NŨ+ ≥kC11(sech(�X) + sech(�X + �(c1 − ĉ1)t))

− B1C10�(sech(�X) + sech(�X + �(c1 − ĉ1)t))

− B2C10�sech(�X + �(c1 − ĉ1)t))

−
(
(C8 + C9)� + (1 + c1)ε�

2
)
(sech(�X)

+ �sech(�X + �(c1 − ĉ1)t)) − Mε(sech(�X)

+ sech(�X + �(c1 − ĉt))) ≥ 0

where M = max(x,y,u)∈R2×R | fu(x, y, u)|, by (4.7), taking 0 < ε ≤ ε0 and ε0 =
max{σ/2, kC11/(λ + M)}.

By the comparison principle, Ũ+(t, x, y) is a supersolution of (1.1).
By the definition of ψ1(x), ψ2(x) and Lemma 4.1, one has that

ξ1(t, X,Y ) → X cosα + Y sin α = x cosα + y sin α − cαt as X → −∞,

and

ξ1(t, X,Y ) → X cos θ + Y sin θ = x cos θ + y sin θ − cθ t as X → +∞.
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Then, by similar arguments as in Step 2 of the proof of Lemma 2.8, one can get
(4.3) and (4.4). The inequality (4.5) can be gotten by comparing Ũ+(t, x, y) with
Uα(x cosα + y sin α − cαt, x, y),Uβ(x cosβ + y sin β − cβ t, x, y),Uθ (x cos θ +
y sin θ − cθ t, x, y) respectively for t negative enough through similar arguments
as in Step 3 of the proof of Lemma 2.8. This completes the proof.

We then prove Claim 4.3.

Proof of Claim 4.3. From (4.6), one has that

c1(ξ1)X + c2(ξ1)Y − (ξ1)t − ce(t,X) = − c1
�(ψ1)X (ψ1)XX

(ψ1)
2
X + 1

ξ1 − c1
(ψ1)X√

(ψ1)
2
X + 1

+ c2
1

√
(ψ1)

2
X + 1

+ �(ψ1)X (ψ1)t X

(ψ1)
2
X + 1

ξ1 + (ψ1)t√
(ψ1)

2
X + 1

− ce(t,X).

Then, by Lemma 2.1 and the definition of ψ1, there is C10 > 0 such that
∣
∣
∣ − c1

�(ψ1)X (ψ1)XX

(ψ1)
2
X + 1

ξ1 + �(ψ1)X (ψ1)t X

(ψ1)
2
X + 1

ξ1

∣
∣
∣

≤ C10�(sech(�X) + sech(�X + �(c1 − ĉ1)t))|ξ1|, (4.8)

and ∣
∣
∣
∣
∣
∣

(ψ1)t√
(ψ1)

2
X + 1

∣
∣
∣
∣
∣
∣
≤ C10�sech(�X + �(c1 − ĉ1)t). (4.9)

Let θ(t, X) = arccos(e1(t, X)). Then, e(t, X) = (cos θ(t, X), sin θ(t, X)). By the
definition of ψ1(t, X), one has α < θ(t, X) < θ . It follows from Lemma 4.1 that

−c1
(ψ1)X√

(ψ1)
2
X + 1

+ c2
1

√
(ψ1)

2
X + 1

− ce(t,X) =(c1, c2)(cos θ(t, X), sin θ(t, X)) − cθ(t,X)

=cαθ eαθ (cos θ(t, X), sin θ(t, X)) − cθ(t,X) > 0.
(4.10)

Notice that ce > 0 for all e ∈ S. By Lemma 4.1, one has that

eαθ · (cos θ(t, X), sin θ(t, X)) > 0, for all X ∈ R.

Let

h(s) = cs
eαθ · (cos s, sin s)

.

Notice that h(α) = cαθ . Also notice that e1(t, X) → cosα as X → −∞ and
θ(t, X) → α as X → −∞ for X being very negative. Then, one has that

cαθeαθ (cos θ(t, X), sin θ(t, X)) − cθ(t,X)

=eαθ · (cos θ(t, X), sin θ(t, X))(h(α) − h(θ(t, X)))

=eαθ · (cos θ(t, X), sin θ(t, X))(h′(α)(α − θ(t, X)) + o(|α − θ(t, X)|))
(4.11)
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Remember that h′(α) < 0 by the assumptions of Theorem 1.10. Moreover, by the
formulas in the proof of Lemma 4.2, there is C11 > 0 such that

θ(t, X) − α =
∫ X

−∞
θX (t, s)ds =

∫ X

−∞
�(ψ1)XX (�t, �s)

(ψ1)
2
X (�t, �s) + 1

ds

≥ 1

‖(ψ1)X‖2L∞ + 1
((ψ1)X (�t, �X) + cot α)

≥ C11(sech(�X) + sech(�X + �(c1 − ĉt))).

(4.12)

By (4.8)-(4.12), we have our conclusion.

Now, we turn to prove Theorem 1.10.

Proof of Theorem 1.10. Let un(t, x, y) be the solution of (1.1) for t ≥ −n with
initial data

un(−n, x, y) = U−
αθβ(−n, x, y),

where

U−
αθβ(t, x, y) = max{Uα(x cosα + y sin α − cαt, x, y),

Uθ (x cos θ + y sin θ − cθ t, x, y),

Uβ(x cosβ + y sin β − cβ t, x, y)}.
By Lemma 4.2, it follows from the comparison principle that

U−
αθβ(t, x, y) ≤ un(t, x, y) ≤ Ũ+(t, x, y), for −n ≤ t ≤ T and (x, y) ∈ R

2,

(4.13)
wherer T is a negative constant such that Lemma 4.2 holds for −∞ < t ≤ T .
Since U−

αθβ(t, x, y) is a subsolution, the sequence un(t, x, y) is increasing in n.
Letting n → +∞ and by parabolic estimates, the sequence un(t, x, y) converges
to an entire solution u(t, x, y) of (1.1).

By (4.13), u(t, x, y) satisfies

U−
αθβ(t, x, y) ≤ u(t, x, y) ≤ Ũ+(t, x, y), for t ≤ T and (x, y) ∈ R

2. (4.14)

Moreover, by (4.3), (4.4) and since ε can be arbitrary small, one can get that
u(t, x, y) satisfies

lim
R→+∞ sup

x≤0,((x,y)−cαθ eαθ t)2>R2

∣
∣u(t, x, y) −U−

αθ (t, x, y)
∣
∣ = 0, (4.15)

and
lim

R→+∞ sup
x>0,((x,y)−cβθ eβθ t)2>R2

∣
∣
∣u(t, x, y) −U−

βθ (t, x, y)
∣
∣
∣ = 0 (4.16)

for t negative enough. Now, we consider the half plane H := {(x, y) ∈ R
2; x < 0}.

Take any sequence {tn}n∈N of R such that tn → −∞ as n → +∞. Notice that for
anyn, there are k1n , k

2
n ∈ Z and x ′

n ∈ [0, L1), y′
n ∈ [0, L2) such that c1tn = k1n L1+x ′

n
and c2tn = k2n L2 + y′

n . Moreover, up to extract subsequences of c1tn and c2tn ,
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there are x ′∗ ∈ [0, L1] and y′∗ ∈ [0, L2] such that x ′
n → x ′∗ and y′

n → y′∗ as
n → +∞. Let vn(t, x, y) = u(t + tn, x + c1tn, y + c2tn) and Hn = H − c1tn .
Then, Hn → R

2 as n → +∞. Since f (x, y, ·) is L-periodic in (x, y), one has that
f (x +c1tn, y+c2tn, ·) → f (x + x ′∗, y+ y′∗, ·) By parabolic estimates, vn(t, x, y),
up to extract of a subsequence, converges to a solution v∞(t, x, y) of

vt − �v = f (x + x ′∗, y + y′∗, v), (t, x, y) ∈ R × R
2. (4.17)

By the definitions of c1 and c2, one can easily check that

U−
αθ (t+tn, x+xn, y+yn) → Û−

αθ (t, x, y), as n → +∞ uniformly in R×R
2,

(4.18)
where

Û−
αθ (t, x, y) := max{Uα(x cosα + y sin α − cαt, x + x ′∗, y + y′∗),

Uθ (x cos θ + y sin θ − cθ t, x + x ′∗, y + y′∗)}.
By (4.15), it follows that

lim
R→+∞ sup

((x,y)−cαθ eαθ t)2>R2

∣
∣
∣v∞(t, x, y) − Û−

αθ (t, x, y)
∣
∣
∣ = 0.

By the uniqueness of the curved front, one then has that v∞(t, x, y) ≡ V̂αθ (t, x, y)
where V̂αθ (t, x, y) is the curved front of (4.17) satisfying

lim
R→+∞ sup

((x,y)−cαθ eαθ t)2>R2

∣
∣
∣V̂αθ (t, x, y) − Û−

αθ (t, x, y)
∣
∣
∣ = 0. (4.19)

Thus, for any fixed t ,

vn(t, x, y) → V̂αθ (t, x, y), as n → +∞ locally uniformly in Hn .

By (4.15), (4.18) and (4.19), the above convergence is uniform in Hn . Thus, for
any fixed t ,

u(t + tn, x + c1tn, y + c2tn) → V̂αθ (t, x, y), as n → +∞ uniformly in Hn,

which implies

u(t + tn, x, y) → V̂αθ (t, x − c1tn, y − c2tn), as n → +∞ uniformly in H .

(4.20)
By the above arguments applied to V̂αθ (t − tn + t0, x − c1tn, y− c2tn) for arbitrary
t0 ∈ R, one can get that

V̂αθ (t − tn + t0, x − c1tn, y − c2tn) → Vαθ (t + t0, x, y),

as n → +∞ locally uniformly for t ∈ R

and uniformly for (x, y) ∈ R
2.

Since t0 is arbitrary, the above convergence is also uniform for t ∈ R. Thus, by
(4.20), one gets that

u(t, x, y) → Vαθ (t, x, y), as t → −∞ uniformly in H .
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Similarly, one can prove that u(t, x, y) → Vβθ (t, x, y) as t → −∞ uniformly in
R
2 \ H .
On the other hand, for fixed T < 0 such that Lemma 4.2 holds, one can easily

check that

lim
R→+∞ sup

x2+y2>R2

∣
∣
∣U−

αθβ(T, x, y) −U−
αβ(T, x, y)

∣
∣
∣ = 0,

and

lim
R→+∞ sup

x2+y2>R2

∣
∣
∣Ũ+(T, x, y) −U−

αβ(T, x, y)
∣
∣
∣ ≤ 2ε.

Since ε can be arbitrary small and by (4.14), one has that

lim
R→+∞ sup

x2+y2>R2

∣
∣
∣u(T, x, y) −U−

αβ(T, x, y)
∣
∣
∣ = 0.

By stability of the curved front, that is, Theorem 1.9, one has that

u(t, x, y) → Vαβ(t, x, y), as t → +∞ uniformly in R
2.

This completes the proof of Theorem 1.10.

Finally, we prove Corollary 1.12 which implies that Theorem 1.10 is not empty.

Proof of Corollary 1.12. Assume that e∗ = (0, 1). Since ce∗ = mine∈S{ce} and c′
e

is bounded, there exist α1 ∈ (0, π/2) and β1 ∈ (π/2, π) such that

dcθ

dθ

∣
∣
∣
θ=α

= c′
α · (− sin α, cosα) ≤ 0 for α ∈ [α1,

π

2
],

and

dcθ

dθ

∣
∣
∣
θ=β

= c′
β · (− sin β, cosβ) ≥ 0 for β ∈ [π

2
, β1].

Let g(θ) = cθ / sin θ . Then,

g′(θ) = c′
θ · (− sin θ, cos θ)

sin θ
− cθ cos θ

sin2 θ
.

One can make α1, β1 close to π/2 such that

g′(α) < 0 for all α ∈ [α1,
π

2
) andg′(β) > 0 for all β ∈ [π

2
, β1].

Thus, g(θ) is decreasing from g(α) to g(π/2) as θ varying from α1 to π/2, and is
increasing from g(π/2) to g(β) as θ varying from π/2 to β1. By continuity, one
can pick α ∈ [α1, π/2) and β ∈ (π/2, β1] such that

g(α) = g(β), g′(α) < 0 and g′(β) > 0.

Let e1 = (cosα, sin α) and e2 = (cosβ, sin β). By Theorem 1.2, there is a curved
front Ve1e2(t, x, y) of (1.1) satisfying (1.11) with e0 = e∗.
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By the same arguments of Corollary 1.6, one can rotate the coordinate such that
e∗ can be any direction and for e1, e2 close to e∗ enough, there is a curved front
Ve1e2(t, x, y) of (1.1) satisfying (1.11).

Assume that e∗ is denoted by (cos θ∗, sin θ∗) where θ∗ ∈ (0, π/2) is small
enough. Take e1, e2 close to e∗ such that there exists a curved front Ve1e2(t, x, y)
of (1.1). Let e1 and e2 be denoted by (cos θ1, sin θ1) and cos θ2, sin θ2 respectively,
where θ1 and θ2 are close to θ∗. By Corollary 1.5 and since θ∗ is small enough
which means that θ1 is small enough, there is θ3 ∈ (π/2, π) such that

cθ1

sin θ1
= cθ3

sin θ3
:= cθ1θ3 ,

and there is a curved front Vθ1θ3 of (1.1) satisfying (1.9) with α = θ1, β = θ3
and cαβ = cθ1θ3 . On the other hand, since θ1 is small enough, this implies that θ3
is close to π enough. Then, since θ2 is also small enough, one has that θ3 − θ2
is close to π enough and hence, (cos θ2, sin θ2) · (cos θ3, sin θ3) = cos(θ3 − θ2)

is close to −1 enough. By Corollary 1.6, there is e∗∗ such that (1.10) holds for
e1 = (cos θ2, sin θ2), e2 = (cos θ3, sin θ3), e0 = e∗∗ and there is a curved front
Vθ2θ3 of (1.1) satisfying (1.11).

Then, by Theorem 1.10, there is an entire solution u(t, x, y) of (1.1) satisfying
(1.13) and (1.14) with α = θ1, θ = θ2, β = θ3.
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