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Abstract

We consider the stochastic heat equation ∂su = 1
2�u + (βV (s, y) − λ)u,

with a smooth space-time-stationary Gaussian random field V (s, y), in dimensions
d ≥ 3, with an initial condition u(0, x) = u0(εx) and a suitably chosen λ ∈ R.
It is known that, for β small enough, the diffusively rescaled solution uε(t, x) =
u(ε−2t, ε−1x) converges weakly to a scalar multiple of the solution ū(t, x) of
the heat equation with an effective diffusivity a, and that fluctuations converge,
also in a weak sense, to the solution of the Edwards-Wilkinson equation with an
effective noise strength ν and the same effective diffusivity. In this paper,we derive a
pointwise approximationwε(t, x) = ū(t, x)�ε(t, x)+εuε

1(t, x),where�ε(t, x) =
�(t/ε2, x/ε), � is a solution of the SHE with constant initial conditions, and uε

1
is an explicit corrector. We show that �(t, x) converges to a stationary process
�̃(t, x) as t →∞, that E|uε(t, x)−wε(t, x)|2 converges pointwise to 0 as ε → 0,
and that ε−d/2+1(uε − wε) converges weakly to 0 for fixed t . As a consequence,
we derive new representations of the diffusivity a and effective noise strength ν.
Our approach uses a Markov chain in the space of trajectories introduced in [17],
as well as tools from homogenization theory. The corrector uε

1(t, x) is constructed
using a seemingly new approximation scheme on a mesoscopic time scale.

1. Introduction

We consider the long-time and large-space behavior of the solutions u(s, y) of
the random heat equation with slowly varying initial conditions

∂su = 1

2
�u + (βV (s, y)− λ)u, (1.1)

u(0, y) = u0(εy), (1.2)
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with y ∈ R
d , d ≥ 3. Here, u0 is a smooth, compactly-supported initial condition,

and the potential V (s, y) is a smooth, isotropic, space-time-homogeneous, mean-
zero Gaussian random field with a finite correlation length. These assumptions are
stronger than we truly need, but we make them to avoid distracting from the focus
of the paper. We assume that V (s, y) has the form

V (s, y) =
ˆ
Rd+1

μ(s − s′)ν(y − y′) dW (s′, y′),

where μ and ν are deterministic nonnegative functions of compact support, such
that ν is isotropic,

suppμ ⊂ [0, 1], supp ν ⊂ {y ∈ R
d | |y| ≤ 1/2},

and dW is a space-time white noise. From this, we see that the covariance function
is

R(s, y) := EV (s + s′, y + y′)V (s′, y′) =
ˆ
R

μ(s + t)μ(t) dt
ˆ
Rd

ν(y + z)ν(z) dz.

(1.3)

The constant λ in (1.1) will be chosen – see Theorem 1.1 and (2.7)–(2.8) below
– so that Eu(t, x) does not grow exponentially as t → ∞. The small parameter
ε 	 1 measures the ratio of the typical length scale of the initial condition to the
correlation length of the random potential. As we are interested in the long-time
behavior of u, we consider its macroscopic rescaling

uε(t, x) = u(ε−2t, ε−1x),

which satisfies the rescaled problem

∂t u
ε = 1

2
�uε + 1

ε2

(
βV (ε−2t, ε−1x)− λ

)
uε (1.4)

uε(0, x) = u0(x). (1.5)

Here and throughout the paper, we use s, y for the “microscopic” variables and
t = ε2s, x = ε1y for the rescaled “macroscopic” variables. It was shown in [17,20],
and also in [22] at the level of the expectation, that there exists a β0 > 0 so that,
if 0 < β < β0, then there exists λ, depending on β,μ, ν, and a, c > 0 so that, for
any t > 0,

vε(t, ·) = cuε(t, ·) (1.6)

converges in probability and weakly in space as ε → 0 to the solution u to the
homogenized problem

∂t u = 1

2
a�u (1.7)

u(0, x) = u0(x), (1.8)
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with an effective diffusivity a 
= 1. It may come as a surprise that c 
= 1 in general;
see Remark 1.4 below. It was also shown that the fluctuations

1

εd/2−1

(
vε(t, ·)− Evε(t, ·)) (1.9)

converge in law and weakly in space as ε → 0 to the solution U of the Edwards–
Wilkinson equation

∂tU = 1

2
a�U + βνudW (1.10)

U (0, x) ≡ 0, (1.11)

with an effective noise strength ν > 0.
The results of [17,20] concern weak convergence, after integration against a

macroscopic test function.Wenote that the restriction to dimension d ≥ 3 is crucial:
for d = 2 the behavior is different, as discussed in [4] and [5]. In this work, we seek
to understand the microscopic behavior of the solutions, in the spirit of the classical
random homogenization theory, and explain how the microscopic behavior leads
to the macroscopic results of [17,20]. We are also interested in a more explicit
interpretation of the macroscopic parameters: the renormalization constant λ, the
effective diffusivity a in (1.7), the renormalization constant c, and the effective
noise strength ν in (1.10). In particular, we would like to connect these parameters
to the classical objects of stochastic homogenization.

As is standard in PDE homogenization theory, we introduce fast variables and
consider a formal asymptotic expansion for the solutions uε to (1.4)–(1.5) in the
form

uε(t, x) = u(0)(t, x, ε−2t, ε−1x)+ εu(1)(t, x, ε−2t, ε−1x)

+ε2u(2)(t, x, ε−2t, ε−1x)+ · · · . (1.12)

Two issues commonly arise in such expansions. First, it may be hard to prove, or
even false, that the correctors exist as stationary random fields. Second, the corre-
lations of the higher-order correctors may decay more slowly (in space) than those
of lower-order correctors. Thus, after integration against a test function, all terms in
the expansion may actually be of the same order, so including more correctors may
not improve the expansion from the perspective of the weak approximation. We
refer to [10,16] for a discussion of random fluctuations in elliptic homogenization,
and [11,15] for a proof that stationary higher-order correctors exist in sufficiently
high dimensions.

In the present case, it is easy to see that the leading order term in (1.12) should
have the form

u(0)(t, x, ε−2t, ε−1x) = u(t, x)�(ε−2t, ε−1x), (1.13)

where � is a solution to (1.1) and does not depend on the initial condition u0 in
(1.2), and u is deterministic but depends on the initial condition u0. We will see
later that u = u with u taken to be the solution of the homogenized problem (1.7)–
(1.8). In the context of the usual homogenization theory, one would like to think of
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� as being statistically stationary in space and time. In the context of the Cauchy
problem (1.1)–(1.2), it turns out that better error bounds are achieved by letting �

solve the Cauchy problem with constant initial condition

∂s� = 1

2
�� + (βV − λ)�

�(0, ·) ≡ 1.
(1.14)

However, the intuition of a space-time-stationary � is still justified, as we will see
in Theorem 1.1 below that � in fact converges to a space-time-stationary solution
�̃ to (1.1).

As this paper was being written, we learned of the very interesting recent paper
[6] (see also the subsequent [7]), which considers (in our notation) the pointwise
error (�(s, y) − �̃(s, y))/�(s, y) in the case where the random potential V is
white in time, and shows that it is asymptotically Gaussian. This result is related
but orthogonal to ours, and the proof techniques are quite different.

Existence of a Stationary Solution and the Leading-Order Term in the Expan-
sion

The renormalization constant λ was understood in [17] as the unique value that
keeps bounded the expectation of the solution to (1.1). Our first result refines this
explanation by showing that, with this choice of λ, �(s, ·) in fact approaches a
space-time-stationary solution, which we call �̃, as s → ∞. As remarked above,
this shows that it is reasonable to take�ε(t, x) = �(ε−2t, ε−1x) as a proxy for the
stationary solution in the leading-order term for the asymptotic expansion (1.12).
Note that neither � nor its stationary limit �̃ depends on the initial condition u0,
so both are “universal” objects.

Theorem 1.1. There is a β0 > 0 so that for all 0 ≤ β < β0, there exists a
λ = λ(β) > 0 and a space-time-stationary random function �̃ = �̃(s, y) > 0
that solves

∂s�̃(s, y) = 1

2
��̃(s, y)+ (βV (s, y)− λ)�̃(s, y), s ∈ R, y ∈ R

d ,

(1.15)

and there is a constant C < ∞ so that for any y ∈ R
d and s > 0, we have

E|�(s, y)− �̃(s, y)|2 ≤ Cs−d/2+1. (1.16)

Throughout the paper, we will always assume that λ = λ(β) is chosen as in the
statement of Theorem 1.1. Theorem 1.1 can also be seen as an extension of [23,
Theorem 2.1] to the colored-noise setting, even though that result was formulated
in different terms. Some other relevant results in the literature are [8,25], which
show the existence of stationary solutions and convergence along subsequences in
weighted L2 spaces, also in the white-noise setting.

The proof of Theorem 1.1 is similar in spirit to that of [23, Theorem 2.1], but
uses the framework of [17] to deal with the necessary renormalization parameter
λ. For the case of elliptic operators in divergence form, the existence of stationary
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correctors in high dimensions was studied in [1,12,14], and we refer the reader to
the recent monograph [2] for a more complete list of references.

As an application of the existence of the stationary solution, we will show
in Sect. 4 that the effective noise strength ν in (1.10), which has a complicated
expression given in [17, (5.6)], has a more intuitive expression in terms of the
stationary solution. Let

Ga(t, x) = (2πat)−d/2 exp
{
−|x |2/(2at)

}
(1.17)

be the heat kernel with diffusivity a, and note that there exists a constant c so that
ˆ ∞

0

ˆ
Rd

Ga(r, z)Ga(r, z + x) dz dr = c

a|x |d−2 . (1.18)

Theorem 1.2. For 0 ≤ β < β0, with λ taken as in Theorem 1.1, the effective noise
strength ν in (1.10) has the expression

ν2 =
a lim

ε→0

´ ´
g(x)g(x̃)ε−(d−2) Cov

(
�̃(0, ε−1x), �̃(0, ε−1 x̃)

)
dx dx̃

cβ2e2α∞
´ ´

g(x)g(x̃)|x − x̃ |−(d−2) dx dx̃
(1.19)

for any test function g ∈ C∞c (Rd). The deterministic constant α∞ is defined in (2.8)
below.

Theorem 1.2 should be read as a weak formulation of the asymptotics

Cov(�̃(0, 0), �̃(0, y)) ∼ cβ2ν2e2α∞

a|y|d−2 , |y| 
 1.

In this sense, the effective noise strength in the Edwards–Wilkinson equation (1.10)
is directly related to the decay of the covariance of the stationary solution. On the
other hand, in Corollary 3.2, we provide an expression for the covariance term in
(1.19) in terms of the Markov chain introduced in [17] and reviewed in Sect. 2
below.

Returning to the expansion (1.12), the leading order term in (1.13) is justified
by the following microscopic convergence result:

Theorem 1.3. For 0 ≤ β < β0, with λ taken as in Theorem 1.1, set �ε(t, x) =
�(ε−2t, ε−1x). If u0 ∈ C∞c (Rd), then for all t ≥ 0 and x ∈ Rd we have

lim
ε→0

E|uε(t, x)− u(t, x)�ε(t, x)|2 = 0. (1.20)

Remark 1.4. We can now explain the non-divergent renormalization constant c in
(1.6). The function �(s, ·) approaches a stationary solution �̃ as s → ∞, that is,
on a “microscopically large” time scale. However, even though �(0, ·) ≡ 1, it is
not necessarily the case that E�̃(s, ·) ≡ 1. (This would be the case by the property
of the Itô integral if V were white in time.) Thus we need to divide by the factor
of c = E�̃(s, ·) to see convergence to the effective diffusion problem (1.7)–(1.8)
with initial condition u0 rather than cu0.
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A Higher-Order Approximation

In order to obtain higher-order corrections in the asymptotic expansion, if we
plug (1.12) into (1.4) and group terms by powers of ε, we obtain the following
equations for u1 and u2:

∂su1(t, x, s, y) = 1

2
�yu1(t, x, s, y)+ (βV (s, y)− λ)u1(t, x, s, y)

+∇y�(s, y) · ∇xu(t, x), (1.21)

and

∂su2(t, x, s, y) = 1

2
�yu2(t, x, s, y)+ (βV (s, y)− λ)u2(t, x, s, y)

+∇y · ∇xu1(t, x, s, y)

+ 1

2
(1− a)�(s, y)�xu(t, x).

(1.22)

As we will show in Sect. 5, the effective diffusivity a can be recovered from a
formal solvability condition for (1.22) to have a solution u2 that is stationary in
the fast variables s and y, which is a rather standard situation in homogenization
theory. However, here, as stationary correctors are not expected to exist in low
dimensions, justifying this expression requires a construction of approximate cor-
rectors and passage to a large-time limit, similar to the “large box” limit in elliptic
homogenization theory. In particular, Theorem 5.1 below shows how to evaluate the
effective diffusivity in terms of objects familiar from the theory of homogenization.

Our last result concerns the connection between the local expansion (1.12)
and the weak approximation of the solution. As we have mentioned, typically, the
leading-order terms in such expansions in stochastic homogenization only provide
local approximations, while a control of the weak error (after integration against
a test function) requires extra terms. This is partly because the higher the order
of the corrector, the slower the decay of its covariance function, leading to the
accumulation of errors from terms of all orders. We circumvent this issue in a way
reminiscent of the “straight-line” approximation of trajectories on a mesoscopic
time scale that is “long but not too long”, such as is used for models of particles in
random velocity fields or subject to random forces in [18,19].

Ifwe look at (1.21) for eachmacroscopic t > 0 and x ∈ R
d fixed, as an evolution

problem in s, we would have a “complete separation of scales” factorization

u1(t, x, s, y) =
d∑

k=1

ζ (k)(s, y)
∂u(t, x)

∂xk
, (1.23)

where ζ (k) solves the microscopic problem

∂sζ
(k) = 1

2
�ζ(k) + (βV (s, y)− λ)ζ (k) + ∂�

∂yk
. (1.24)
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Instead of using (1.24) directly, we consider mesoscopic time intervals in s of size
ε−γ , with γ ∈ (0, 2). To be precise, for each j ≥ 1, let θ(k)

j = θ
(k)
j (s, y), 1 ≤ k ≤ d,

be the solution to

∂sθ
(k)
j = 1

2
�yθ

(k)
j + (βV − λ)θ

(k)
j + ∂�

∂yk
, s > ε−γ ( j − 1),

θ
(k)
j (ε−γ ( j − 1), ·) = 0.

(1.25)

Then, define u1; j = u1; j (s, y) to be the solution to

∂su1; j = 1

2
�u1; j + (βV − λ)u1; j , s > ε−γ j

u1; j (ε−γ j, y) =
d∑

k=1

θ
(k)
j (ε−γ j, y)

∂u

∂xk
(ε2−γ j, εy),

(1.26)

and finally put

uε
1(t, x) =

�εγ−2t�∑
j=1

u1; j (ε−2t, ε−1x)+ θ�εγ−2t�+1(ε
−2t, ε−1x) · ∇u(t, x).

(1.27)

This is similar to putting s = ε−2t , y = ε−1x in the formal PDE (1.21), except
that rather than multiplying the forcing by the “current” value of ∇u, we multiply
it by an “out-of-date” value of ∇u that is only updated to the correct current value
of ∇u at times of the form ε−γ j , j ∈ N. With this definition of uε

1, we have a weak
convergence theorem for the fluctuations. Recall that �ε(t, x) = �(ε−2t, ε−1x)
with � solving (1.14).

Theorem 1.5. Suppose that 0 ≤ β < β0 and take λ as in Theorem 1.1. Let g ∈
C∞c (Rd). Let γ ∈ (0, 2) and define uε

1 as in (1.27). For any ζ < (1−γ /2)∨(γ −1)
and any t > 0, there exists a C > 0 (also depending on ‖u0‖C3(Rd )) so that

E
(

ε−d/2+1
ˆ

g(x)[uε(t, x)−�ε(t, x)u(t, x)− εuε
1(t, x)] dx

)2

≤ Cε2ζ .

(1.28)

The optimal bound in Theorem 1.5 is achieved when γ = 4/3, in which case
ζ is required to be less than 1/3.

We note that it would be hopeless to get a convergence-of-fluctuations result
like Theorem 1.5, even with an error of size εd/2−1 as in (1.9), using only the first
term of the expansion (1.12) as in Theorem 1.3. This is because at that scale, [17]
gives different central limit theorem statements for u and for �u: the rescaled and
renormalized fluctuations of u converge to a solution of the SPDE

∂tU = 1

2
a�U + βνuẆ , (1.29)
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while the rescaled and renormalized fluctuations of � converge to a solution of the
SPDE

∂tψ = 1

2
a�ψ + βνẆ , (1.30)

and so the rescaled and renormalized fluctuations of �u converge to a solution of
the SPDE

∂t (ψu) = 1

2
au�ψ + βνuẆ + 1

2
aψ�u

= 1

2
a�(ψu)− a∇ψ · ∇u + βνuẆ . (1.31)

The limiting SPDEs (1.29) and (1.31) are not the same, so an extra correction,
besides the first term �ε(t, x)u of the homogenization expansion, is needed. This
phenomenon is not new in the study of random fluctuations in homogenization, and
has been discussed e.g. in [10,16].

The definitions (1.25)–(1.26) sit midway between two natural ways of inter-
preting the formal problem (1.21). On one hand, (1.21), for fixed x and t , can
be solved as in (1.23)–(1.24). However, defining the corrector u1 by (1.23), with
initial condition 0, and then evaluating at time s = ε−2t does not seem to yield
a good convergence result, because ∇xu(τ, x) is not constant on the time scale
from τ = 0 to τ = ε2s = t . On the other hand, (1.21) could also be solved by
plugging t = ε2s, x = εy into (1.21), yielding the PDE

∂su1(s, y) = 1

2
�yu1(s, y)+ (βV (s, y)− λ)u1(s, y)

+∇y�(s, y) · ∇xu(ε2s, εy). (1.32)

However, using a solution to (1.32) with initial condition 0 also fails to yield a
result along the lines of Theorem 1.5. This is because the Feynman–Kac formula
that arises from the solution to (1.32) involves the behavior of the Markov chain of
[17] on microscopically short time scales, while the limits appear to arise from the
averaged behavior of theMarkov chain on long time scales. The delay inmultiplying
by ∇xu introduced by only updating its value at mesoscopic intervals allows the
short-time fluctuations to be averaged out, leaving only the averaged behavior of
the Markov chain, which allows us to deduce the limiting behavior.

Proof Strategies and the Organization of the Paper

Although our study is in part motivated by the goal of understanding results in
the vein of [17] from the perspective of PDE theory and stochastic homogenization,
our proofs remain probabilistic, relying entirely on the Feynman–Kac formula. In
particular, we extensively use a certainMarkov chain, introduced in [17], represent-
ing the tilting of the measure on Brownian paths induced by the time-correlations
of the random potential V . Because this Markov chain is somewhat technical, we
start the paper by explaining how it appears via the Feynman-Kac representation of
the solution, and provide the definition and properties of the Markov chain in Sect.
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2, including a few properties which were not needed in [17], and then complete the
proof of Theorem 1.1 in Sect. 3.

The next two sections of the paper are devoted to the parametersa and ν obtained
in [17]. In Sect. 4, we prove Theorem 1.2 regarding the effective noise strength ν,
showing that it is directly related to the spatial decay of correlations of the stationary
solution. In Sect. 5, we first show how the effective diffusivity can be recovered
from the formal asymptotic expansion (1.12); see expression (5.7) below. However,
as the correctors that appear in the asymptotic expansion may not be stationary
(especially in lower dimensions), this formula does not necessarily make sense
directly. Instead, we devise an approximation procedure via a sequence of problems
on long but finite time intervals and then pass to the limit. This is the content of
Theorem 5.1. Finally, in the last two sections we establish our convergence results
for the formal asymptotic expansion: the strong convergence (Theorem 1.3) in Sect.
6, and the weak convergence (Theorem 1.5) in Sect. 7.

As we have emphasized above, theMarkov chain introduced in [17] plays a key
technical role in the analysis throughout the paper. However, the key observation
of [17] is that on microscopically long time scales, the Markov chain mixes expo-
nentially fast so that its partial sum essentially behaves like a Brownian motion.
Our results still hold when the noise V is taken to be white rather than colored
in time. In that case the Brownian motion is not tilted by the environment, and
the Markov chain is just its i.i.d. Gaussian increments, even on microscopically
short time scales. Thus, the reader may find it helpful on first reading to ignore the
time correlations and pretend that the Markov chain is in fact a sequence of i.i.d.
Gaussian random increments, which eliminates the need for most of the technical-
ities introduced in Sect. 2. The analysis of [17] constructing the Markov chain is
orthogonal to the new applications of this chain in the present paper.

2. The Tilted Brownian Motion and the Markov Chain

All of the proofs in this paper rely heavily on aMarkov chain introduced in [17]
representing a tilted Wiener measure arising in the Feynman–Kac representation
of solutions to the stochastic heat equation. In order to recall this Feynman–Kac
representation, we first introduce some notation. By E

y
B we denote expectation

with respect to the probability measure in which B = (B1, . . . , Bd) is a standard
d-dimensional Brownian motion with B0 = y, which we will always assume to
be two-sided (i.e. running both forward and backward from time 0) since this will
be convenient in some formulas. We use E for expectation with respect to the
randomness in V , and use E, with various adornments, for expectation with respect
to auxiliary Brownianmotions orMarkov chains used in someway in the Feynman-
Kac formula. Also, whenever we denote an expectation with a letter “E,” we will
use the letter “P” with the same font and adornments to represent the corresponding
probability measure. For any s ∈ R and A ⊂ R, we set

Vs;A[B] =
ˆ
A
V (s − τ, Bτ ) dτ. (2.1)
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We will often use the shorthand Vs = Vs;[0,s]. Thus, for example, the solution to
(1.14) can be expressed in the Feynman–Kac representation

�(s, y) = E
y
B exp{βVs[B] − λs}. (2.2)

There are, of course, also Feynman–Kac formulas for solutions to the other equa-
tions in the introduction, which we will write as they are needed.

2.1. The Tilted Brownian Motion

In computing moments of�(s, y), due to the Gaussianity of VA[B], it becomes
necessary to evaluate the covariances of the latter. Recall the definition (1.3) of the
covariance kernel R of the noise. We define, for any pair of sets A, Ã ⊂ R, the
quantity

RA,Ã[B, B̃] = E
(
Vs;A[B]Vs;Ã[B̃]

)
=
ˆ
Ã

ˆ
Ã
R(τ − τ̃ , Bτ − B̃τ̃ ) dτ dτ̃ ,

(2.3)

which is independent of the choice of s due to the stationarity of V , and use the
abbreviations

Rs,s̃ = R[0,s],[0,s̃], RA = RA,A, Rs = Rs,s .

We will also abbreviate R•[B] = R•[B, B], where the • can be replaced by any
allowable subscript for R, so that, for example,

Rs,s̃[B] = Rs,s̃[B, B] = R[0,s],[0,s̃][B, B].

As an example of the use of this notation, we have by Fubini’s theorem and the
formula for the expectation of the integral of a Gaussian that

E�(s, y) = E
y
BE exp{βVs[B] − λs} = E

y
B exp

{
β2

2
Rs[B] − λs

}
. (2.4)

Similarly, we can compute

E�(s, y)�(s̃, ỹ) = E
y
BE

ỹ

B̃
E exp

{
βVs[B] + βV

ỹ
s̃ [B̃] − λ(s + s̃)

}

= E
y
BE

ỹ

B̃
exp

{(
β2

2
Rs[B] − λs

)
+ β2Rs,s̃[B, B̃]

+
(

β2

2
Rs̃[B̃] − λs̃

)}
. (2.5)

We recognize the first and third terms in the last exponential from the exponen-
tial in (2.4). This motivates the definition of the tilted path measure P̂y

B;• by
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Ê
y
B;•F [B] = 1

Z•
E
y
B

[
F [B] exp

{
1

2
β2R•[B]

}]
,

Z• = E
y
B exp

{
1

2
β2R•[B]

}
(2.6)

for any measurable functionalF on the space C([0,∞);Rd), where • can be taken
to be any of the allowable subscripts forR. We also define P̂y,ỹ

B,B̃;• = P̂
y
B;• ⊗ P̂

ỹ
B̃;•

and denote by Ê
y,ỹ
B,B̃;• the corresponding expectation. Finally, we define

αs = log Zs − λs, (2.7)

and note that, according to [17, Lemma A.1] and its proof, there exists a unique
λ = λ(β) so that

|αs − α∞| ≤ Ce−cs (2.8)

for some α∞ ∈ (0,∞), c > 0, and C < ∞. This is where the constant λ comes
from, andwe fix it for the rest of the paper. This definition of λ should be interpreted
in terms of (2.4): λ is chosen so that E�(s, y) remains of order O(1) as s →+∞.
Equivalently, it is the exponential rate of growth of the unrenormalized, that is, with
λ = 0, multiplicative stochastic heat equation with noise strength β. We note that
a consequence of Theorem 1.1 is that eα∞ = E�̃(s, y) = c, where c is as in (1.6).
Another consequence is that

λ = βE�̃(t, x)V (t, x)

E�̃(t, x)
. (2.9)

This allows λ to be recovered directly from the law of the stationary solution.
The problem (1.15) already depends on λ, so we cannot use this expression as a
definition of λ. However, if as in (1.16) we approximate �̃ by � evaluated at a
large time, then the right side of the resulting version of (2.9) does not depend on
the choice of λ in (1.1). Thus we could define

λ =
lim
t→∞βE�(t, x)V (t, x)

lim
t→∞E�(t, x)

. (2.10)

An example of the utility of this tilted measure is that it lets us rewrite (2.5) by

E�(s, y)�(s̃, ỹ) = eαs+αs̃ Ê
y,ỹ
B,B̃;s,s̃ exp

{
β2Rs,s̃[B, B̃]

}
. (2.11)

In light of (2.8), the factor eαs+αs̃ should be thought of, for (“microscopically”) large
s, s̃, as essentially a constant. This expression is analogous to the computation in
[23, Lemma 3.1], to which it indeed reduces if V is taken to be white in time
rather than colored as it is in our setting. Indeed, in the white-in-time case, the
kernel R(s, y) becomes a delta mass in s at s = 0, and thus the quantity Rs[B]
becomes the constant λs (the Itô–Stratonovich correction), not depending on B,
so also α∞ = 0. In particular, in the white-in-time case the tilting (2.6) becomes
trivial: we use the tilting to account for the time-correlations of the noise. Then
from (3.2) we recover exactly the first display in the proof of [23, Lemma 3.1].
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2.2. The Markov chain

A key point of [17] is that a Brownian motion tilted according to (2.6) can be
approximately represented by a Markov chain. Since R(s, y) is supported on times
s ∈ [−1, 1], the functional R•[B] that appears in (2.6) only involves interactions
between the values of B at times of distance at most 2 from each other. Thus, if
we “chunk” the Brownian motion into segments of length 1, the tilting only takes
into account the interactions between each segment and the immediate preceding
and succeeding segments. One can then represent the tilted Brownian motion as a
Markov chain on the chunks, with the caveat that another, ultimately small, tilting
is needed to account for the edge effects at time T .

It is shown in [17] that the Markov chain satisfies theDoeblin condition, which
is to say that the transition measures uniformly majorize a (small) multiple of the
stationary measure. This condition is an elementary tool in the theory of Markov
chains; see e.g. [21] for an introduction. Therefore, at every step of the chain
corresponding to a length-1 chunk of the Brownian motion, there is a probability
bounded away from zero that the next step of the chain can be considered to be
sampled from the stationary distribution. Conditional on this event occurring at a
particular step, the chain is then at its stationary distribution. Therefore, the chain
converges to its stationary distribution exponentially quickly.

We state these ideas precisely in the following theorem, which summarizes
several results and discussions in [17]. We let �T = {ω ∈ C([0, T ]) | ω(0) = 0},
and, given Wi ∈ �Ti , we define [W1, . . . ,Wk] ∈ �∑

i Ti
by concatenating the

increments, as in [17, (4.2)].

Theorem 2.1. ( [17]) Let T > 1 and N = �T � − 1. There is a Markov chain
w0, w1, . . . , wN , wN+1, with w0 ∈ �T−[T ] and w j ∈ �1 for 1 ≤ j ≤ N + 1,
which has the following properties.

1. (Time-homogeneity.) The transition probability measure

π̂(w j , ·) = Law(w j+1 | w j )

does not depend on j for j = 1, . . . , N − 1.
2. (Relationshipwith the tiltedBrownianmotion.) There is a bounded,measurable,

even functional G : �1 → R such that,if we put W = [w0, . . . , wN+1] ∈ �T ,
and let ẼW denote expectation with respect to the measure in which W is
obtained from the Markov chain, then we have, for any bounded continuous
function F on �T , that

ÊB;TF [B] = ẼW [F [W ]G [wN ]]. (2.12)

3. (Doeblin condition.) There is a sequence of i.i.d. Bernoulli random variables
ηW
j , j = 1, 2, . . ., with success probability not depending on T , so that

Law(w j | ηW
j = 1, {wi : i < j}) = π,

where π is the invariant measure of π̂ .
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Theorem 2.1 summarizes several results of [17]. The Markov chain (wk) is
constructed in [17, Sect. 4.1]. Equation (2.12) is [17, (4.25)], where we use the
notation G instead of Gε because the functional in fact does not depend on the ε of
[17] (which is the same as the ε in the present paper, but is playing no role in the
present discussion). The functional G represents the additional tilting to account
for edge effects at time T . This additional tilting should be thought of as an error
term and in our arguments we will always strive to show that it does not play an
important role; the reader who pretends that G ≡ 1 will not miss the thrust of the
arguments in the paper. The Doeblin condition is established in [17, (4.18)], as
explained in the discussion surrounding [17, (4.27)].

Wenote again that Theorem2.1 is trivial in the casewhenV iswhite in time: then
the Markov chain is simply given by the independent increments of the Brownian
motion, and is always at its stationary distribution.

We will use the notation

Ẽ
y
WF [W ] = ẼWF [y +W ]. (2.13)

Define the stopping times σW
0 = 0, σW

n = min{t ≥ σW
n−1 | ηW

t = 1} and put, for
n ≥ 0,

WW
n = WσW

n+1
−WσW

n
. (2.14)

This is the construction in [17, (4.27)]. The following lemma summarizes some
results of [17] about these stopping times:

Lemma 2.2. The family {WW
n }n≥0 is a collectionof independent, statistically isotropic

random variables with exponential tails. Moreover, the elements of {WW
n }n≥1 are

identically distributed.

Proof. The fact that {WW
n }n≥0 is independent, and that the elements of {WW

n }n≥1
are identically distributed, is an immediate consequence of the Doeblin condition
and the time-homogeneity of the Markov chain. Isotropy follows from the isotropy
of the construction. Exponential tails were established in [17, Lemma A.2]. ��
The construction leading to (2.14) can be applied to pairs of paths as well, as
explained at the end of [17, Sect. 4.1]. Given two independent copies W, W̃ of the
Markov chain, define

η
W,W̃
j = ηW

j ηW̃
j ,

and the stopping times

σW,W̃
n =

{
0 n = 0;
min{t ≥ σn−1 : η

W,W̃
t = 1} n ≥ 1.

(2.15)

Then put

WW,W̃
n = W

σ
W,W̃
n+1

−W
σ
W,W̃
n

, W̃W,W̃
n = W̃

σ
W,W̃
n+1

− W̃
σ
W,W̃
n

.

Analogously to (2.13), we use the notation P̃
y,ỹ
W,W̃

= P̃
y
W ⊗ P̃

ỹ
W̃
. We have the

following corollary of Lemma 2.2:
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Corollary 2.3. The family {WW,W̃
n }n≥0 ∪ {W̃W,W̃

n }n≥0 is a collection of indepen-
dent isotropic random variables with exponential tails.1 Moreover, the elements of

{WW,W̃
n }n≥1 ∪ {W̃W,W̃

n }n≥1 are identically distributed.
Now let us set

κ1 = P(ηW
j = 1), κ2 = P(η

W,W̃
j = 1) = κ2

1 . (2.16)

The next proposition gives an expression for the effective diffusivity a in (1.7) in
terms of the Markov chain.

Proposition 2.4. ( [17, Proposition 4.1]) There is a diagonal d × d matrix

a = aId×d = κ1ẼW [Ww
n (WW

n )t ] (2.17)

so that for any t > 0, as ε → 0, the process {εWε2τ }0≤τ≤t (under the measure P̃W )
converges in distribution in C([0, t]) to a Brownian motion with covariance matrix
a.

Two Brownian motions in d ≥ 3 will almost surely spend at most a finite
amount of time within distance 1 of each other. The fact that this is also true for
the Markov chains W, W̃ is expressed in the next two propositions, and will play a
crucial role in the sequel.

Proposition 2.5. ( [17, Corollary 4.4]) There is a β0 > 0 and a deterministic
constant C < ∞ so that if 0 ≤ β < β0 then for any s ≥ 0, y, ỹ ∈ R

d , we have

Ẽ
y,ỹ
W,W̃

[
exp

{
β2R[s,∞)[W, W̃ ]

}
|Fs] ≤ C

with probability 1, where Fs is the σ -algebra generated by the paths W, W̃ on the
time interval [0, s].

We will require a slightly stronger version of Proposition 2.5, which can be
proved similarly.

Proposition 2.6. There is a β0 > 0 and a deterministic constant C < ∞ so that if
0 ≤ β < β0 then for all r, r̃ > 0, we have

Ẽ
y,ỹ
W,W̃

[
exp

{
β2R∞[W, W̃ ]

} ∣∣Fr,r̃
] ≤ C

with probability 1, where Fr,r̃ is the σ -algebra generated by the path W on [0, r ]
and the path W̃ on [0, r̃ ].

We also need some estimates from [17] on various error terms.

Lemma 2.7. ( [17, (4.30)]) There is a constant C so that

ẼW |εWε−2t2 − εWε−2t1 |2 ≤ C(t2 − t1). (2.18)

1 We use the standard terminology that a random variable X has exponential tails if there
are constants C, c > 0 such that P(|X | > x) ≤ Ce−cx for all x > 0.
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Lemma 2.8. ( [17, LemmaA.3]) For any χ > 0, there are constants 0 < c,C < ∞
so that if, for each T ,FT : �T → R is a bounded functional on�T , and {Sn}, {Tn}
are sequences of real numbers such that Sn, Tn, Sn − Tn →+∞, then

∣∣ẼWFTn [W |[0,Tn ]] − ẼWFTn [W |[0,Tn ]]G (wSn )
∣∣

≤ C
(
ẼW

(
FTn [W |[0,Tn ]]

)χ )1/χ exp {−c(Tn ∧ (Sn − Tn))} .
Here, G is as in Theorem 2.1. The rate of convergence is not stated explicitly

in [17, Lemma A.3], but it comes from the proof there.

Lemma 2.9. ( [17, Lemma A.2]) We have constants 0 < c,C < ∞ so that

P̃
x,x̃
W,W̃

[
max

r,r̃∈[σn ,σn+2]

(∣∣∣Wr −W
σ
W,W̃
n

∣∣∣+
∣∣∣W̃r̃ − W̃

σ
W,W̃
n

∣∣∣
)

> a

]
≤ Ce−ca .

2.3. Estimates on Path Intersections

These preliminaries having been completed, we now prove a fact that will be
essential for us: that two independent copies of theMarkov chain, started at distance
of order ε−1 from each other, pass within distance 1 of each other with probability
εd−2. This is the same situation as for the standard Brownian motion. Explicitly,
we prove the following (which does not in fact require the assumption that β is
small):

Proposition 2.10. There is a constant C so that

P̃
x,x̃
W,W̃

⎡
⎣ inf

r,r̃>0
|r−r̃ |≤1

|Wr − W̃r̃ | ≤ 1

⎤
⎦ ≤ C

|x − x̃ |d−2 .

In order to prove Proposition 2.10, we first prove it just at regeneration times.

For the rest of this section, to economize on notation we put σn :=σ
W,W̃
n (defined

in (2.15)).

Lemma 2.11. For all A > 0, we have

P̃
x,x̃
W,W̃

[
inf
n≥0

∣∣Wσn − W̃σn

∣∣ ≤ A

]
≤ Ad−2

|x − x̃ |d−2 .

Proof. Let

Xn = Wσn − W̃σn ,

let Hn be the σ -algebra generated by X1, . . . , Xn , and set

q(z) = 1

(|z| ∨ A)d−2 .
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For any z ∈ R
d with |z| ≥ A and M > 0, if we let dS denote the surface measure

on {|z̃ − z| = M}, then we have
 
|z̃−z|=M

q(z̃) dS(z̃) ≤
 
|z̃−z|=M

1

|z̃|d−2 dS(z̃) ≤ 1

|z|d−2 = q(z) (2.19)

by the mean value inequality for superharmonic functions, as z �→ |z|−d+2 is
superharmonic. Here, the notation

ffl
means that we normalize the surface measure

to have total mass 1. Let ω be the smallest n so that |Xn| ≤ A, or∞ if |Xn| > A
for all n. Note that ω is a stopping time with respect to the filtration {Hn}. Also,
the distribution of Xn − Xn−1 is isotropic and independent ofHn−1 for each n ≥ 1
by Corollary 2.3. Therefore, we have, whenever n − 1 < ω,

ẼW,W̃ [q(Xn) | Hn−1] =
ˆ
Rd

q(z) dP̃W,W̃ (Xn = z | Hn−1)

=
ˆ
R

 
|z−Xn−1|=M

q(z) dS(z) dP̃W,W̃ (|Xn − Xn−1| = M)

≤
ˆ
R

q(Xn−1) dP̃W,W̃ (|Xn − Xn−1| = M) = q(Xn−1),

where the last inequality is by (2.19). Thus, the sequence (q(Xn∧ω))n is a super-
martingale. By the optional stopping theorem, for any n we have

1

|x − x̃ |d−2 = q(X0) ≥ ẼW,W̃ q(Xn∧ω) ≥ 1

Ad−2 P̃W,W̃ (ω ≤ n).

Therefore, we have

P̃W,W̃ (ω < ∞) ≤ Ad−2

|x − x̃ |d−2

by Fatou’s lemma. ��
Proof of Proposition 2.10. Let

Bn = max
r,r̃∈[σn ,σn+2]

(∣∣∣Wr −W
σ
W,W̃
n

∣∣∣+
∣∣∣W̃r̃ − W̃

σ
W,W̃
n

∣∣∣
)

and

ωM = inf
{
n ≥ 0 : |Wσn − W̃σn | ≤ 2M

}

We have
{

inf
|r−r̃ |≤1

|Wr − W̃r̃ | ≤ 1

}

⊆
∞⋃

M=0

∞⋃
n=0

({
|Wσn − W̃σn | ≤ 2M

}
∩
{
Bn ≥ 2M−1 − 1

})
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⊆
∞⋃

M=0

[
{ωM < ∞} ∩

( ∞⋃
n=ωM

({
|Wσn − W̃σn | ≤ 2M ∩

{
Bn ≥ 2M−1 − 1

}}))]
.

(2.20)

Therefore, we can estimate, abbreviating P = P̃
x,x̃
W,W̃

and letting the constant C
change from line to line,

P

[
inf

|r−r̃ |≤1
|Wr − W̃r̃ | ≤ 1

]

≤
∞∑

M,�=0

P(ωM = �)

∞∑
n=�

P

[
|Wσn − W̃σn | ≤ 2M |ωM = �]P

[
Bn ≥ 2M−1 − 1

]

≤ C
∞∑

M=0

e−c(2M−1−1)
∞∑

�=0

P(ωM = �)

∞∑
n=�

2Md

(n − �+ 1)d/2

= C
∞∑

M=0

e−c(2M−1−1)+CMd
P(ωM < ∞)

≤ C
∞∑

M=0

e−c(2M−1−1)+CMd · 2(d−2)M

|x − x̃ |d−2 ≤
C

|x − x̃ |d−2 ,

where the first inequality is by (2.20), the second is by Lemma 2.9 and a local
central limit theorem ( [24] as applied in [17, (4.36)]) and the third is by Lemma
2.11. ��
We also need a slightly different version of the bound in Proposition 2.10:

Proposition 2.12. There is a constant C so that

P̃
x,x̃
W,W̃

⎡
⎣ inf

r,r̃>s
|r−r̃ |≤1

|Wr − W̃r̃ | ≤ 1

⎤
⎦ ≤ Cs−d/2+1.

Proof. Recall the definition (2.16) of κ2 and put n0 = s
2κ2

. Again we abbreviate

P = P̃
x,x̃
W,W̃

and let constants change from line to line. We can estimate

P

⎡
⎣ inf

r,r̃>s
|r−r̃ |≤1

|Wr − W̃r̃ | ≤ 1

⎤
⎦ ≤ P

⎡
⎢⎣ inf
r,r̃>σn0|r−r̃ |≤1

|Wr − W̃r̃ | ≤ 1

⎤
⎥⎦+ P(σn0 ≥ s).

A simple large-deviations estimate for geometric random variables yields

P(σn0 ≥ s) ≤ Ce−cn0 ≤ Cs1−d/2,

so it suffices to show that

P

⎡
⎢⎣ inf
r,r̃>σn0|r−r̃ |≤1

|Wr − W̃r̃ | ≤ 1

⎤
⎥⎦ ≤ Cn1−d/2

0 .



844 Alexander Dunlap et al.

Define

Bk = max
r,r̃∈[σk ,σk+2]

(|Wr −Wσk | + |W̃r̃ − W̃σk |
)
,

so we have

P

⎡
⎢⎣ inf
r,r̃>σn0|r−r̃ |≤1

|Wr − W̃r̃ | ≤ 1

⎤
⎥⎦ ≤

∞∑
M=0

∞∑
k=n0

P

[
|Wσk − W̃σk | ≤ 2M

]

·P[Bk ≥ 2M−1 − 1]
≤ C

∞∑
M=0

e−c(2M−1−1)
∞∑

k=n0

2Md

kd/2=Cn1−d/2
0

∞∑
M=0

e−c(2M−1−1)+CMd ≤ Cn1−d/2
0 ,

where the second inequality again uses the local limit theorem of [24]. ��

3. The Stationary Solution

The strategy of the proof of Theorem 1.1 is typical for the construction of a
stationary solution to a PDE: we consider the Cauchy problem with initial data
given at time s = −S, and pass to the limit S →+∞. This lets us obtain a global-
in-time solution to the problem that satisfies appropriate uniform bounds, provided
that the Lyapunov exponent λ = λ(β) is chosen appropriately. Let �(s, y; S) be
the solution to

·∂s�(s, y; S) = 1

2
��(s, y; S)+ (βV (s, y)− λ)�(s, y; S), s > −S;

�(−S, y; S) = 1.
(3.1)

The heart of the proof of Theorem 1.1 is the following proposition:

Proposition 3.1. If β is sufficiently small, then there exists λ = λ(β) and a constant
C < ∞ so that, with this choice of λ in (3.1), for any 0 ≤ S1 ≤ S2, we have

E(�(0, y; S2)−�(0, y; S1))2 ≤ CS−d/2+1
1 .

Before we prove Proposition 3.1, we show how it implies Theorem 1.1.

Proof. (Proof of Theorem 1.1.) For a positive weight w ∈ L1(Rd), consider the
weighted space L2

w(Rd), with the inner product

〈 f, g〉L2
w(Rd ) =

ˆ
f (y)g(y)w(y) dy.

By Proposition 3.1 and the stationarity of V in time, we have
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E‖�(s, ·; S1)−�(s, ·; S2)‖2L2
w(Rd )

=
ˆ

E|�(0, y; s + S1)−�(0, y; s + S2)|2w(y) dy

≤ C(s + S1)
−d/2+1‖w‖L1(Rd ), (3.2)

and the right-hand side converges to 0 as S1, S2 → ∞, locally uniformly in s.
Hence, the family �(s, y; S) converges in L2(�; L2

w(Rd)), locally uniformly in s,
to a limit �̃. (Here � denotes the probability space on which V is defined.) The
stationarity of �̃ is standard. The convergence of� to �̃ locally in L2(�; L2

w(Rd))

implies that �̃ satisfies (1.15) in a weak sense almost surely, hence in a strong sense
almost surely by standard parabolic regularity.

To prove the convergence claimed in (1.16), we use an argument similar to the
above. In particular, we note that the solution �(s, y) to (1.14) is stationary in y,
as is �̃(s, y), so for any fixed y ∈ R

d we have

E|�(s, y)− �̃(s, y)|2
ˆ

w(y′) dy′ =
ˆ

E|�(s, y′)− �̃(s, y′)|2w(y′) dy′

=
ˆ

E|�(0, y′; s)− �̃(0, y′)|2w(y′) dy,

(3.3)

and the right-hand side is bounded by a constant times s−d/2+1 as s →∞ by the
definition of �̃. (In the second equality of (3.3), we used the time-stationarity of
(V, �̃).) ��

We also record the covariance kernel of the stationary solution.

Corollary 3.2. We have

E[�̃(s, y)�̃(s, ỹ)] = e2α∞ Ẽy,ỹ
W,W̃

exp
{
β2R∞[W, W̃ ]

}
.

In the remainder of this section, we set about proving Proposition 3.1. The proof
will rely on the Feynman–Kac formula. We recall the Feynman–Kac formula for
�(s, y; S), which comes from (2.2) by a simple time-change:

�(s, y; S) = E
y
B exp

{
βVs;s+S[B] − λ(s + S)

}
. (3.4)

We first note that spatial stationarity allow us to take y = 0, and then the same
computation that leads to (3.2) gives
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E(�(0, 0; S2)−�(0, 0; S1))2

= e2αS2 Ê
0,0
B,B̃;S2 exp

{
β2RS2 [B, B̃]

}

− 2eαS2+αS1 Ê
0,0
B,B̃;S2,S1 exp

{
β2RS2,S1 [B, B̃]

}

+ e2αS1 Ê
0,0
B,B̃;S2,S1 exp

{
β2RS1 [B, B̃]

}
. (3.5)

Let us now explain intuitively why the right-hand side of this expression should
be small. First, we recall that αs has a limit as s → ∞ by (2.8). Second, as we
have observed in Sect. 2.3, in dimension d ≥ 3 two Brownian motions will almost
surely spend at most a finite amount of time within distance 1 of each other. In
fact, the amount of time they spend within distance 1 of each other has (some but
not all) exponential moments. Only such times contribute toR•[B, B̃]. The thrust
of Sect. 2 above was that the tilted Brownian motion, on large scales, again looks
like a Brownian motion. This makes it plausible that, under the tilted measure, the
exponential moments of RS1[B, B̃], RS2,S1 [B, B̃], and RS2 [B, B̃] are all close to
each other, making the right-hand side of (3.5) small as S1, S2 →∞.

In the rest of this section, wemake this reasoning precise.We emphasize that the
computation that we will do still has content in the case when V is white in time; in
this case the tilting has no effect and B and B̃ are simply Brownian motions. In that
case, the approximations from Sect. 2 are unnecessary and the previous paragraph
is essentially a proof. Nonetheless, the reader may find it helpful on first reading to
pretend that B and B̃ are Brownian motions. (In this case the computation is very
similar to that of [23].)

Our first lemma is the workhorse of the argument. It makes the above intuition,
which is standard for the Brownian motion, precise for the case of the Markov
chain.

Lemma 3.3. There exists a constant C < ∞ so that for all β sufficiently small, the
following holds. If 1 ≤ s ≤ s′ ≤ s̃ ≤ s̃′, then

Ẽ
y,ỹ
W,W̃

∣∣∣exp
{
β2Rs̃,s̃′ [W, W̃ ]

}
− exp

{
β2Rs,s′ [W, W̃ ]

}∣∣∣ ≤ C(s − 1)1−d/2.

Proof. We have

Ẽ
y,ỹ
W,W̃

∣∣∣exp
{
β2Rs̃,s̃′ [W, W̃

}
− exp

{
β2Rs,s′ [W, W̃ ]

}∣∣∣
≤ Ẽ

y,ỹ
W,W̃

∣∣∣exp
{
β2R∞[W, W̃ ]

}
− exp

{
β2Rs[W, W̃ ]

}∣∣∣
≤ Ẽ

y,ỹ
W,W̃

exp
{
β2R∞[W, W̃ ]

}
1{R∞[W, W̃ ] 
= RS[W, W̃ ]}

≤ Ẽ
y,ỹ
W,W̃

exp
{
β2R∞[W, W̃ ]

}
1{(∃r, r̃ ≥ s − 1) |r − r̃ |

≤ 2 and |Wr − W̃r̃ | ≤ 1}.

On the event that {R∞[W, W̃ ] 
= Rs[W, W̃ ]}, let τ < τ̃ be the first pair of times
after s − 1 such that |τ − τ̃ | ≤ 2 and |Wτ − W̃τ̃ | ≤ 1. Then we have
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Ẽ
y,ỹ
W,W̃

∣∣∣exp
{
β2Rs̃,s̃′ [W, W̃

}
− exp

{
β2Rs,s′ [W, W̃ ]

}∣∣∣

≤
ˆ ∞

s−1

ˆ r+2

r
Ẽ
y,ỹ
W,W̃

[
exp

{
β2R∞[W, W̃ ]

}
| τ = r, τ̃ = r̃

]

· dP̃y,ỹ
W,W̃

(τ = r, τ̃ = r̃)

≤ CP̃
y,ỹ
W,W̃

(
(∃r, r̃ ≥ s − 1) |r − r̃ | ≤ 2 and |Wr − W̃r̃ | ≤ 1

)
≤ C(s − 1)1−d/2,

where the second inequality is by Proposition 2.6 and the last is by Proposition
2.12. ��
Now we can prove Proposition 3.1. The proof combines Lemma 3.3 with various
error bounds from Sect. 2.

Proof of Proposition 3.1. We first re-write (3.5) in terms of the Markov chain
using (2.12):

E(�(0, 0; S2)−�(0, 0; S1))2 = ẼW,W̃ e2αS2 exp
{
β2RS2 [W, W̃ ]

}
G [w�S2�−1]

G [w̃�S2�−1]
− 2eαS2+αS1 ẼW,W̃ exp

{
β2RS2,S1 [W, W̃ ]

}
G [w�S2�−1]G [w̃�S1�−1]

+ e2αS1+αS1 ẼW,W̃ exp
{
β2RS1 [W, W̃ ]

}
G [w�S1�−1]G [w̃�S1�−1]. (3.6)

For any S1 ≤ S2 we can decompose

ẼW,W̃ eαS2+αS1 exp
{
β2RS2,S1 [W, W̃ ]

}
G [w�S2�−1]G [w̃�S1�−1]

· = e2α∞ ẼW,W̃ exp
{
β2R 9

10 S2,
9
10 S1

[W, W̃ ]
}

+ e2α∞ ẼW,W̃ exp
{
β2R 9

10 S2,
9
10 S1

[W, W̃ ]
} (

G [w�S2�−1]G [w̃�S1�−1] − 1
)

+ e2α∞ ẼW,W̃

(
exp

{
β2RS2,S1 [W, W̃ ]

}
− exp

{
β2R 9

10 S2,
9
10 S1

[W, W̃ ]
})

· G [w�S2�−1]G [w̃�S1�−1]
+
(
eαS2+αS1 − e2α∞

)
ẼW,W̃ exp

{
β2RS2,S1 [W, W̃ ]

}

· G [w�S2�−1]G [w̃�S1�−1]. (3.7)

Now (2.8), Lemma 3.3, and Proposition 2.6 allow us to control the last term of
(3.7):

lim
S1,S2→∞ Sd/2−1

2

(
eαS2+αS1 − e2α∞

)
ẼW,W̃ exp

{
β2RS2,S1 [W, W̃ ]

}

·G [w�S2�−1]G [w̃�S1�−1] = 0.

Lemma 3.3 also allows us to bound the third term of (3.7):
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· S
d
2−1
1

∣∣∣ẼW,W̃

(
exp

{
β2RS2,S1 [W, W̃ ]

}
− exp

{
β2R 9

10 S2,
9
10 S1

[W, W̃ ]
})

·G [w�S2�−1]G [w̃�S1�−1]
∣∣

≤ ‖G ‖2∞(S1 ∧ S2)
d/2−1

ẼW,W̃

(
exp

{
β2RS2,S1 [W, W̃ ]

}

− exp
{
β2R 9

10 S2,
9
10 S1

[W, W̃ ]
})

≤ C,

for a constant C independent of S1 and S2. For the second term of (3.7), we can
use Lemma 2.8 to get

lim sup
S1,S2→∞

Sd/2−1
1 ẼW,W̃ exp

{
β2R 9

10 S2,
9
10 S1

[W, W̃ ]
} (

G [w�S2�−1]G [w̃�S1�−1] − 1
) = 0.

Finally, we have that

Sd/2−1
1 ẼW,W̃

[
exp

{
β2R 9

10 S2
[W, W̃ ]

}
− 2 exp

{
β2R 9

10 S2,
9
10 S1

[W, W̃ ]
}

+ exp
{
β2R 9

10 S1
[W, W̃ ]

}]

is bounded above independently of S1 and S2, also by Lemma 3.3. Substituting
(3.7) into (3.6), and then applying the last four bounds, we see that

E(�(0, y; S2)−�(0, y; S1))2 ≤ CS−d/2+1
1 ,

as claimed. ��

4. The Effective Noise Strength

In this section, we explain how the effective noise strength parameter ν in (1.10)
arises from the stationary solution �̃ and prove Theorem 1.2.

Lemma 4.1. If β is sufficiently small and g ∈ C∞c (Rd), then we have

lim
t→∞

∣∣∣∣Var
(

ε−d/2+1
ˆ

g(x)�(ε−2t, ε−1x) dx

)

−Var

(
ε−d/2+1

ˆ
g(x)�̃(0, ε−1x) dx

)∣∣∣∣ = 0,

uniformly in ε > 0.

Proof. We have
∣∣∣∣Var

(
ε−d/2+1

ˆ
g(x)�(ε−2t, ε−1x) dx

)
− Var

(
ε−d/2+1

ˆ
g(x)�̃(0, ε−1x) dx

)∣∣∣∣

≤ ε−d+2‖g‖L1(Rd )

ˆ
|g(x)|E ∣∣�(ε−2t, ε−1x)− �̃(ε−2t, ε−1x)

∣∣2 dx

≤ Cε−d+2‖g‖2L1(Rd )
(ε−2t)−d/2+1 ≤ C‖g‖2L1(Rd )

t−d/2+1,

where the first inequality is by the time-stationarity of �̃ and Jensen’s inequality
and the second is by (1.16). ��
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We recall from [17, Lemmas 3.1, 3.2 and 3.3] that

lim
ε→0

Var

(
e−αt/ε2

εd/2−1

ˆ
g(x)�(ε−2t, ε−1x) dx

)
= Var

(ˆ
g(x)ψ(t, x) dx

)
,

(4.1)

where ψ is the solution to the Edwards-Wilkinson stochastic partial differential
equation

∂tψ = 1

2
a�ψ + βνẆ , t > 0, x ∈ R

d;
ψ(0, x) = 0,

(4.2)

which is simply (1.10) with u ≡ 1.

Lemma 4.2. We have

lim
t→∞Var

(ˆ
g(x)ψ(t, x) dx

)
= β2ν2

ˆ ∞

0

ˆ
|g(r, x)|2 dx dr, (4.3)

where g is the solution of

∂t g(t, x) = 1

2
a�g(t, x), t > 0, x ∈ R

d ;
·g(0, x) = g(x).

Proof. As in [17, (3.16)], we have

Var

(ˆ
g(x)ψ(t, x) dx

)
= β2ν2

ˆ t

0

ˆ
|g(t − r, x)|2 dx dr = β2ν2

·
ˆ t

0

ˆ
|g(r, x)|2 dx dr,

and then the result follows by taking t →∞. ��
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Fix δ > 0. By Lemmas 4.1 and 4.2, we can choose t large
enough, independently of ε, so that

∣∣∣∣Var
(ˆ

g(x)ψ(t, x) dx

)
− β2ν2

ˆ ∞

0

ˆ
|g(r, x)|2 dx dr

∣∣∣∣ < δ/3

and
∣∣∣∣Var

(
ε−d/2+1

ˆ
g(x)�(ε−2t, ε−1x) dx

)

−Var

(
ε−d/2+1

ˆ
g(x)�̃(ε−2t, ε−1x) dx

)∣∣∣∣ < δ/3.
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Then by (4.1) we can choose ε so small that

∣∣∣∣Var
(

ε
−αt/ε2 ε−d/2+1

ˆ
g(x)�(ε−2t, ε−1x) dx

)
− Var

(ˆ
g(x)ψ(t, x) dx

)∣∣∣∣ < δ/3.

Using the triangle inequality on the last three expressions, and recalling (2.8), we
obtain

lim
ε→0

Var

(
ε−d/2+1

ˆ
g(x)�̃(0, ε−1x) dx

)
= e2α∞β2ν2

ˆ ∞

0

ˆ
|g(r, x)|2 dx dr.

(4.4)

The left-hand side of (4.4) is equal to

lim
ε→0

ˆ ˆ
g(x)g(x̃)ε−d+2 Cov

(
�̃(0, ε−1x), �̃(0, ε−1 x̃)

)
dx dx̃,

while the right-hand side of (4.4) is equal to

e2α∞β2ν2
ˆ ˆ (ˆ ∞

0

ˆ
Ga(r, z − x)Ga(r, z − x̃) dz dr

)
g(x)g(x̃) dx dx̃

= e2α∞β2ν2ca−1
ˆ ˆ

|x − x̃ |−d+2g(x)g(x̃) dx dx̃,

where Ga and c are defined as in (1.17)–(1.18). Therefore, we have

ν2 =
a lim

ε→0

´ ´
g(x)g(x̃)ε−d+2 Cov

(
�̃(0, ε−1x), �̃(0, ε−1 x̃)

)
dx dx̃

ce2α∞β2
´ ´

g(x)g(x̃)|x − x̃ |−d+2 dx dx̃
,

which is (1.19). ��

5. The Effective Diffusivity

In this section we explain how to relate the effective diffusivity a to the asymp-
totic expansion (1.12).

5.1. The Solvability Condition

We first explain how the effective diffusivity a can be recovered formally from
the homogenization correctors for (1.12). We define these correctors now, and for
themoment we disregard the question of their existence.We start with the equations
(1.21)–(1.22) for the terms u1 and u2 in the formal asymptotic expansion (1.12) for
uε. We will replace � on the right-hand side of these equations by the stationary
solution �̃, so our formal starting point is

∂su1(t, x, s, y) = 1

2
�yu1(t, x, s, y)+ (βV (s, y)− λ)u1(t, x, s, y)

+∇y�̃(s, y) · ∇xu(t, x) (5.1)
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and

∂su2(t, x, s, y) = 1

2
�yu2(t, x, s, y)+ (βV (s, y)− λ)u2(t, x, s, y)

+∇y · ∇xu1(t, x, s, y)

+ 1

2
(1− a)�̃(s, y)�xu(t, x).

(5.2)

We can now formally decompose the solution to (5.1) as

u1(t, x, s, y) = ω̃(s, y) · ∇xu(t, x), (5.3)

where ω̃(s, y) = (ω̃(1)(s, y), . . . , ω̃(d)(s, y)) is a space-time-stationary solution to

∂sω̃
(k) = 1

2
�yω̃

(k) + (βV − λ)ω̃(k) + ∂�̃

∂yk
. (5.4)

We note that, unlike the random heat equation (1.15), the forced equation (5.4) may
not have stationary solutions in all d ≥ 3.Nevertheless, the formal computationwill
give us an idea of how the effective diffusivity can be approximated. By Theorem
1.1, applied with time reversed (or equivalently to the random heat equation with
potential V (−s, y)), we also have a stationary solution �̃ to the equation

− ∂s�̃ = 1

2
��̃+ (βV − λ)�̃. (5.5)

Multiplying (5.2) by � and using (5.3) and (5.5) gives

∂s(�̃(s, y)u2(t, x, s, y)) = 1

2
�̃(s, y)�yu2(t, x, s, y)− 1

2
u2(t, x, s, y)��̃(s, y)

+ �̃(s, y) tr(∇yω̃(s, y) · Hess u(t, x))

+ 1

2
(1− a)�̃(s, y)�̃(s, y)�xu(t, x).

(5.6)

The assumed stationarity of u2 in s and the stationarity of �̃ in s imply that the
expectation of the left-hand side is 0. Stationarity of u2 in y, on the other hand,
implies that

E
[
�̃(s, y)�yu2(t, x, s, y)− u2(t, x, s, y)��̃(s, y)

] = 0.

Therefore, taking the expectation of (5.6) yields

E�̃(s, y)

[
tr(∇yω̃(s, y) · Hess u(t, x))+ 1

2
(1− a)�̃(s, y)�xu(t, x)

]
= 0.

Due to the assumption of isotropy, we have

E�̃∇yω̃ = 1

d
tr
(
E�̃∇yω̃

)
Id×d = 1

d
E�̃(∇y · ω̃)Id×d ,

and thus
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0 = E�̃(s, y)

[
tr(∇yω̃(s, y) · Hess u(t, x))+ 1

2
(1− a)�̃(s, y)�xu(t, x)

]

= E�̃(s, y)

[
1

d
∇y · ω̃(s, y)+ 1

2
(1− a)�̃(s, y)

]
�xu(t, x),

leading to

a = 1+ 2

d

E[�̃(s, y)∇y · ω̃(s, y)]
E[�̃(s, y)�̃(s, y)] . (5.7)

As we have not proved that a stationary corrector ω̃ actually exists, the expression
(5.7) is purely formal. In the next section, we will explain how we can use an
approximate version of ω̃ to write a rigorous version of the computation leading to
(5.7).

5.2. An Approximation of the Effective Diffusivity

In this section, we will show how approximate correctors can be used in the
right-hand side of (5.7) to provide a good approximation of the effective diffusivity.
Instead of trying to build a stationary solution to the corrector equation (5.4), we
take S > 0 and consider the the solution ω(s, y; S) of the Cauchy problem for
(5.4), with �̃(s, y) replaced by �(s, y; S) (defined in (3.1)):

∂sω
(k)(s, y) = 1

2
�yω

(k)(s, y)+ (βV (s, y)− λ)ω(k)(s, y)+ ∂�(s, y; S)

∂yk
,

s > −S, k = 1, . . . , d;
ω(−S, ·; S) ≡ 0.

The solution is given by the Feynman–Kac formula

ω(s, y; S) = E
y
B

[ˆ s+S

0
exp

{
βVs;[0,r ][B] − λr

}∇�(s − r, Br ; S) dr

]
.

(5.8)

We also define, similarly to the definition (3.1)/(3.4) of �(s, y; S), the

�(s, y; T ) = E
y
B exp

{
βVs;[s−T,0][B] − λ(T − s)

}
, s < T, (5.9)

which solves (5.5) with terminal condition

�(T, y; T ) = 1.

Recall that V was defined in (2.1), so, in particular, we have

Vs;[0,r ][B] =
ˆ r

0
V (s − τ, Bτ ) dτ ;

Vs;[s−T,0] =
ˆ 0

s−T
V (s − τ, Bτ ) dτ.
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Note that in the second expressionweare evaluating B at negative times, interpreting
it as a two-sided Brownianmotion. Nowwe define an approximate version of (5.7).

aS,T (s, y) = 1+ 2

d

E[�(s, y; T )∇y · ω(s, y; S)]
E[�(s, y; T )�(s, y; S)] . (5.10)

The next theorem, which is the main result of this section, shows that the “large
S, T ” limit of (5.10) agrees with the effective diffusivity from (2.17) (established
in [17]).

Theorem 5.1. Let a be the effective diffusivity defined by (2.17). Then we have, for
each s ∈ R and y ∈ R

d ,

lim
S→∞
T→∞

aS,T (s, y) = a.

We note that if a stationary ω̃ given by

ω̃(s, y) = lim
S→∞ω(s, y; S)

exists, then Theorem 5.1 verifies the formal expression (5.7). Such large-scale
approximations of the effective diffusivity have been used in the different context
of elliptic homogenization theory; see [13].

Without loss of generality, we will take s = 0 and y = 0 in the proof of
Theorem 5.1. In the course of the proof, we will denote by H(x) the standard
Heaviside function H(x) = 1{x ≥ 0} and also use its regularization

Hγ (x) =

⎧⎪⎨
⎪⎩

0 x ≤ 0;
γ−1x 0 ≤ x ≤ γ ;
1 x ≥ γ,

as well as J (x) = xH(x). While several of the following lemmas are written using
this regularization, the statement of Theorem 5.1 does not depend on the regular-
ization. (Ultimately we take γ → 0.) We begin with a Feynman–Kac formula for
the numerator on the right-hand side of Theorem 5.1.

Lemma 5.2. We have

E
[
�(0, 0; T )(∇y · ω)(0, 0; S)

]

= ∇η|η=0 · ∇ξ |ξ=0EE0
B exp

{
β

ˆ S

−T
V (−τ, Bτ + H(τ )η + J (τ )ξ) dτ

−λ(T + S)

}

= ∇η|η=0 · ∇ξ |ξ=0E
0
B exp

{
1

2
β2R[−T,S][B + Hη + Jξ ] − λ(T + S)

}
.

(5.11)
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Proof. From (5.8) and (3.4), we have

ω(0, y; S) = E
y
B

ˆ S

0
exp

{
β

ˆ r

0
V (−τ, Bτ ) dτ − λr

}
∇�(−r, Br ; S) dr

= ∇ξ |ξ=0E
y
B

ˆ S

0
exp

{
β

ˆ S

0
V (−τ, Bτ + H(τ − r)ξ) dτ − λS

}
dr.

(5.12)

One can check by explicit differentiation of both expressions that the right-hand
side of (5.12) can be re-written as

ω(0, y; S) = ∇ξ |ξ=0E
y
B exp

{
β

ˆ S

0
V (−τ, Bτ + τξ) dτ − λS

}
. (5.13)

Taking the divergence and setting y = 0, we can write

(∇y · ω)(0, 0; S) = ∇η|η=0 · ∇ξ |ξ=0E
0
B exp

{
β

ˆ S

0
V (−τ, Bτ + η + τξ) dτ − λS

}
.

Multiplying by (5.9) gives

�(0, 0; T )(∇y · ω)(0, 0; S)

= ∇η|η=0 · ∇ξ |ξ=0E
0
B exp

{
β

ˆ S

−T
V (−τ, Bτ + H(τ )η

+J (τ )ξ) dτ − λ(T + S)

}
.

(Now we are evaluating B at both positive and negative times.) Taking the expec-
tation yields the first equality in (5.11). The second inequality then arises from
evaluating the expectation. ��
It will be useful to write a regularized version of (5.11), which will later allow us
to use the Girsanov formula.

Corollary 5.3. We have

E
[
�(0, 0; T )(∇y · ω)(0, 0; S)

]

= lim
γ↓0∇η|η=0 · ∇ξ |ξ=0EE0

B exp

{ˆ S

−T
V (−τ, Bτ + Hγ (τ )η + J (τ )ξ)

dτ − λ(T + S)}
= ∇η|η=0 · ∇ξ |ξ=0E

0
B exp

{
1

2
β2R[−T,S][B + Hγ η + Jξ ] − λ(T + S)

}
.

(5.14)

Proof. Similarly to (5.11), the second equality of (5.14) is a simple computation,
so it suffices to prove that the first expression is equal to the third. We write out all
of the gradients in the third expression. Define δ f (τ, τ̃ ) = f (τ ) − f (τ̃ ). For all
γ ≥ 0 we have

∇η|η=0 · ∇ξ |ξ=0e
−λ(T+S)

E
y
B exp

{
β2R[−T,S][B + Hγ η + Jξ ]

}
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= β2e−λ(T+S)
E
y
B(g1;γ [B] + g2;γ [B] · g3;γ [B])

· exp
{
β2R[−T,S][B]

}
, (5.15)

where we define

g1;γ [B] =
¨
[−2,2]2

δHγ (τ, τ̃ )δ J (τ, τ̃ )�R(τ − τ̃ , δB(τ, τ̃ )) dτ dτ̃ ,

g2;γ [B] =
¨
[−S,−T ]2

δ J (τ, τ̃ )∇R(τ − τ̃ , δB(τ, τ̃ )) dτ dτ̃ ,

g3;γ [B] =
¨
[−2,2]2

δHγ (τ, τ̃ )∇R(τ − τ̃ , δB(τ, τ̃ )) dτ dτ̃ .

Here we have used the fact that R(s, y) = 0 whenever s 
= [−1, 1]. Then the
bounded convergence theorem implies the right-hand side of (5.15) is continuous
in γ , so

∇η|η=0 · ∇ξ |ξ=0 lim
γ↓0 e

−λ(T+S)
E
y
B exp

{
β2R[−T,S][B + Hγ η + Jξ ]

}

= ∇η|η=0 · ∇ξ |ξ=0e
−λ(T+S)

E
y
B exp

{
β2R[−T,S][B + Hη + Jξ ]

}
,

and the result follows from Lemma 5.11. ��
Lemma 5.4. We have

aS,T (0, 0) = 1+ 2 lim
γ↓0 Ê

0
B;[−T,S]

(
1

γ d
BS · Bγ − 1

)
. (5.16)

Proof. To address the numerator of (5.10), continue from (5.14) and use the Gir-
sanov formula, writing

∇η|η=0·∇ξ |ξ=0E
0
B exp

{
β

ˆ S

−T
V (−τ, Bτ + Hγ (τ )η + J (τ )ξ) dτ − λ(T + S)

}

= ∇η|η=0 · ∇ξ |ξ=0E
0
B exp

{
β

ˆ S

−T
V (−τ, Bτ ) dτ−

−λ(T + S)+ 1

γ
Bγ · η − 1

2γ
|η|2 − ξ · η + BS · ξ − 1

2
|ξ |2S

}

= E
0
B

(
1

γ
BS · Bγ − d

)
exp

{
β

ˆ S

−T
V (−τ, Bτ ) dτ − λ(T + S)

}
.

Passing to the limit as γ ↓ 0 and taking expectations shows that

E[�(0, 0; T )(∇ · ω)(0, 0; S)] = e−λ(T+S) lim
γ↓0E

0
B

(
γ−1BS · Bγ − d

)

· exp
{
β2R[−T,S][B]

}
. (5.17)

For the denominator of (5.10), we write

�(0, 0; T )�(0, 0; S) = E
0
B exp

{
βV0;[−T,S][B] − λ(T + S)

}
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(where again we use the interpretation of B as a two-sided Brownian motion), so

E�(0, 0; T )�(0, 0; S) = e−λ(T+S)
E
0
B exp

{
β2R[−T,S][B]

}
. (5.18)

Dividing (5.17) by (5.18) yields (5.16). ��
Lemma 5.5. We have

lim
γ↓0

1

γ d
Ê
0
B;[−T,S]|Bγ |2 = 1,

uniformly in S and T .

Proof. We have

Ê
0
B;[−T,S]|Bγ |2 − E

0
B |Bγ |2 = E

0
B |Bγ |2

(
1

Z[−T,S]
exp

{
1

2
β2R[−T,S][B]

}
− 1

)

= 1

Z[−T,S]
E
0
B |Bγ |2

(
exp

{
1

2
β2R[−T,S][B]

}

− exp

{
1

2
β2R[−T,S][B̃]

})
,

where B̃ is a Brownianmotionwhose increments on [−T, 0] and [γ, S] are identical
to those of B and whose increments on [0, γ ] are independent of those of B. (Thus
the second equality is becauseR[−T,S][B̃] is independent of Bγ .) This means that

∣∣∣Ê0
B;[−T,S]|Bγ |2 − E

0
B |Bγ |2

∣∣∣ = 1

Z[−T,S]
E
0
B

(
exp

{
β2R[−T,0][B]

}
+ exp

{
β2R[γ,S][B]

})

×E
0
B |Bγ |2

∣∣∣∣exp
{
2β2

ˆ γ

−1

ˆ 1

τ∨0
R(τ − τ̃ , Bτ − Bτ̃ ) dτ̃ dτ

}

− exp

{
2β2

ˆ γ

−1

ˆ 1

τ∨0
R(τ − τ̃ , B̃τ − B̃τ̃ ) dτ̃ dτ

}∣∣∣∣
≤ C(E0

B |Bγ |4)1/2(E0
B(exp{4β2 max

0≤s≤γ
|Bs−B̃s |}−1)2)1/2≤Cγ 2,

where C is a constant that may depend on β and R. Since E
0
B |Bγ |2 = γ d, this

proves the lemma. ��
Corollary 5.6. We have

aS,T (0, 0) = lim
γ↓0 aS,T ;γ ,

where

aS,T ;γ = 1+ 2

dγ
Ê
0
B;[−T,S](BS − Bγ ) · Bγ . (5.19)

Proof. This is a simple consequence of Lemma 5.4 and Lemma 5.5. ��
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Lemma 5.7. The limit

lim
T→∞
S→∞

aS,T (0, 0) (5.20)

exists.

Proof. We have, for any τ1 < τ2 < τ3 < τ4 ≤ τ5,

ÊB;τ5(Bτ4 − Bτ3) · (Bτ2 − Bτ1) = ÊW (Wτ4 −Wτ5) · (Wτ2 −Wτ1)G (w�τ5�−1)

= ÊW (Wτ4∧σ −Wτ3∧σ ) · (Wτ2 −Wτ1), (5.21)

whereσ is the first regeneration time after τ4 and the second equality comes from the
fact that G is even and the increments of W after a regeneration time are isotropic.
This makes it clear that there are constants 0 < c,C < ∞ so that

ÊB;τ5(Bτ4 − Bτ3) · (Bτ2 − Bτ1) ≤ Ce−c(τ3−τ2), (5.22)

since the increments of W have exponential tails and, conditional on there being a
regeneration time in (τ2, τ3), the expectation of the right-hand side of (5.21) is 0.
Then it follows from Corollary 5.6 that aS,T is Cauchy in S and also in T , and thus
the limit (5.20) exists. ��
Now we prove Theorem 5.1.

Proof of Theorem 5.1. We have, using (2.17), (5.22), and Lemma 2.8, that

a = lim
U→∞

1

dU
ẼW (W3U −W0) · (W2U −WU )

= lim
U→∞

1

dU
Ê
0
B;3U (B3U − B0) · (B2U − BU ). (5.23)

Define

τ
(γ )

j = (U + jγ ) ∧ 2U

and note that

B2U − BU =
!U/γ "−1∑

j=1

(B
τ

(γ )
j+1

− B
τ

(γ )
j

).

Substituting this into (5.23) yields

a = lim
U→∞

1

dU
lim
γ↓0 Ê

0
B;3U (B3U − B0) ·

!U/γ "−1∑
j=0

(B
τ

(γ )
j+1

− B
τ

(γ )
j

)

= lim
U→∞

1

dU
lim
γ↓0

!U/γ "−1∑
j=0

Ê
0
B;3U

(
(B3U − B

τ
(γ )
j+1

)

+(B
τ

(γ )
j+1

− B
τ

(γ )
j

)+ (B
τ

(γ )
j
− B0)

)
· (B

τ
(γ )
j+1

− B
τ

(γ )
j

).



858 Alexander Dunlap et al.

Now by Lemma 5.5, we have

lim
U→∞

1

dU
lim
γ↓0

!U/γ "−1∑
j=0

Ê
0
B;3U (B

τ
(γ )
j+1

− B
τ

(γ )
j

) · (B
τ

(γ )
j+1

− B
τ

(γ )
j

) = 1.

Moreover, we have by (5.19) that

Ê
0
B;3U (B3U − B

τ
(γ )
j+1

) · (B
τ

(γ )
j+1

− B
τ

(γ )
j

) = γ d

2
(a

3U−τ
(γ )
j ,τ

(γ )
j ;τ (γ )

j+1−τ
(γ )
j
− 1);

Ê
0
B;3U (B

τ
(γ )
j
− B0) · (Bτ

(γ )
j+1

− B
τ

(γ )
j

) = γ d

2
(a

τ
(γ )
j+1,3U−τ

(γ )
j+1;τ (γ )

j+1−τ
(γ )
j
− 1).

Therefore,

a = 1+ lim
U→∞

1

dU
lim
γ↓0

!U/γ "−1∑
j=0

(
γ d

2
(a

3U−τ
(γ )
j ,τ

(γ )
j ;τ (γ )

j+1−τ
(γ )
j
− 1)

+γ d

2
(a

τ
(γ )
j+1,3U−τ

(γ )
j+1;τ (γ )

j+1−τ
(γ )
j
− 1)

)

= lim
U→∞

1

U
lim
γ↓0

γ

2

!U/γ "−1∑
j=0

(a
3U−τ

(γ )
j ,τ

(γ )
j ;τ (γ )

j+1−τ
(γ )
j
+ a

τ
(γ )
j+1,3U−τ

(γ )
j+1;τ (γ )

j+1−τ
(γ )
j

)

= lim
T→∞
S→∞

aS,T (0, 0),

where the last equality is by Lemma 5.7. ��

6. Strong Convergence of the Leading Term

In this section, we prove Theorem 1.3: convergence of the leading term in the
homogenization expansion (1.12). We begin by deriving an expression for the error
in (1.20) using the Feynman–Kac formula. We will use the Fourier transform for
the initial condition u0 ∈ C∞c (Rd), which we normalize as

û0(ω) =
ˆ

e−iω·xu0(x)
dx

(2π)d
, u0(x) =

ˆ
eiω·x û0(ω) dω.

In this section ω and ω̃ denote Fourier variables; the function ω from the previous
section makes no appearance.

Proposition 6.1. We have that

E|uε(t, x)−�ε(t, x)u(t, x)|2 = e2αε−2 t

ˆ ˆ
ei(ω+ω̃)·x û0(ω)û0(ω̃)

·ÊB,B̃;ε−2tA
ε
t;ω,ω̃[B, B̃] dω dω̃, (6.1)

where

A ε
t;ω,ω̃[B, B̃] = exp

{
β2Rε−2t [B, B̃]

}
E ε
t,ω[B]E ε

t,ω̃[B̃]; (6.2)

E ε
t,ω[B] = eiω·ε(Bε−2 t−B0) − e−

1
2 at |ω|2 . (6.3)
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Proof. We start with the Feynman–Kac formula for (1.4)–(1.5):

uε(t, x) = E
ε−1x
B exp

{
βVε−2t [B] − λε−2t

}
u0(εBε−2t ), (6.4)

and note that

u0(εBε−2t ) =
ˆ

eiω·εBε−2 t û0(ω) dω, u(t, x) =
ˆ

eiω·x−
1
2 at |ω|2 û0(ω) dω,

so, if B0 = ε−1x , then

u0(εBε−2t )− u(t, x) =
ˆ

eiω·xE ε
t,ω[B]û0(ω) dω. (6.5)

The Feynman–Kac formula also shows that

�ε(t, x) = E
ε−1x
B exp

{
βVε−2t [B] − λε−2t

}
. (6.6)

This is simply (6.4) with initial condition u0 ≡ 1; we also saw the unrescaled
version before in (2.2). Combining (6.4), (6.5), and (6.6) yields

uε(t, x)−�ε(t, x)u(t, x) = E
ε−1x
B exp

{
βVε−2t [B] − λε−2t

}
ˆ

eiω·xE ε
t,ω[B]û0(ω) dω.

We finish the proof of the lemma by simply computing the second moment:

E(uε(t, x)−�ε(t, x)u(t, x))2 = E
(
E

ε−1x
B exp

{
βVε−2t [B] − λε−2t

}

·
ˆ

eiω·xE ε
t,ω[B]û0(ω) dω

)2

=
ˆ ˆ

ei(ω+ω̃)·x û0(ω)û0(ω̃)E
ε−1x,ε−1x
B,B̃

E exp
{
Vε−2t [B] + Vε−2t [B̃] − 2λε−2t

}

· E ε
t,ω[B]E ε

t,ω̃[B̃] dω dω̃

= e2αε−2 t

ˆ ˆ
ei(ω+ω̃)·x û0(ω)û0(ω)ÊB,B̃;ε−2tA

ε
t;ω,ω̃[B, B̃] dω dω̃.

��
To prove Theorem 1.3, we will bound the expression on the right-hand side of (6.1)
using the techniques of [17] recalled in Sect. 2. On first reading, the reader may
again wish to consider the case when V is white in time, so the tilting of theMarkov
chain can be ignored and B and B̃ are simply Brownian motions. The key idea is
that with high probability, the only contributions to exp

{
β2Rε−2t [B, B̃]} come

from times close to 0, so the expectation of (6.2) “almost” splits into a product
of the expectations of E ε

t,ω[B] and E ε
t,ω[B̃]. Since the Markov chain has effective

diffusivitya, each of the latter expectations is approximately 0. (In thewhite-in-time
case, a = 1, and each of the latter expectations is exactly 0.)

Our first lemma is that the correction G appearing in (2.12) does not matter.
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Lemma 6.2. We have

lim
ε→0

∣∣∣ÊB,B̃;ε−2tA
ε
t;ω,ω̃[B, B̃] − ẼW,W̃A ε

t;ω,ω̃[W, W̃ ]
∣∣∣ = 0.

As this lemma is a technical point, we defer its proof to the end of this section.
Now we note that, for r, r̃ ≥ 0, we have

∂2

∂r∂ r̃
exp

{
β2Rr,r̃ [W, W̃ ]

}
= ∂

∂r

[(
β2

ˆ r

0
R(τ − r̃ ,Wτ − W̃r̃ ) dτ

)

· exp
{
β2Rr,r̃ [W, W̃ ]

}]

= Qr,r̃ [W, W̃ ] exp
{
β2Rr,r̃ [W, W̃ ]

}
, (6.7)

where

Qr,r̃ [W, W̃ ] = β2R(r − r̃ ,Wr − W̃r̃ )

+β4
ˆ
[r̃−2,r ]

R(τ − r̃ ,Wτ − W̃r̃ ) dτ
ˆ
[r−2,r̃ ]

R(r − τ̃ ,Wr − W̃τ̃ ) dτ̃ .(6.8)

We note that, for each r, r̃ ,

Qr,r̃ [W, W̃ ] ≥ 0 (6.9)

almost surely, since R was assumed nonnegative. Now if we define the shorthand

E ε
t;ω,ω̃[W, W̃ ] = E ε

t,ω[W ]E ε
t,ω̃[W̃ ],

then we can write

ẼW,W̃A ε
t;ω,ω̃[W, W̃ ] = ẼW,W̃E ε

t;ω,ω̃[W, W̃ ] exp
{
β2Rε−2t [W, W̃ ]

}

=
ˆ ε−2t

0

ˆ ε−2t

0
ẼW,W̃E ε

t;ω,ω̃[W, W̃ ]Qr,r̃ [W, W̃ ]

· exp
{
β2Rr,r̃ [W, W̃ ]

}
dr dr̃ . (6.10)

The next lemma gives an estimate for the contribution to the integral (6.10)
from each r, r̃ . The key point is that, if B is a Brownian motion with diffusivity
σ 2, then exp

{
iω · Bt + 1

2 tσ
2|ω|2} is a martingale. Since W is converging to a

Brownian motion with diffusivity a, the contribution to the integrand in (6.10)
from E ε

t;ω,ω̃
[W, W̃ ] should be small except for the contribution from time interval

[0, r ∨ r̃ ], on which the term exp
{
β2Rr,r̃ [W, W̃ ]} could have an effect. But for

fixed r, r̃ , this time interval is microscopic, and thus does not contribute in the limit.

Lemma 6.3. For fixed r, r̃ ≥ 0, we have

lim
ε→0

ẼW,W̃E ε
t;ω,ω̃[W, W̃ ]Qr,r̃ [W, W̃ ] exp

{
β2Rr,r̃ [W, W̃ ]

}
= 0.
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Proof. In this proof we will treat r and r̃ as fixed, and suppress them from the

notation of the objects we define. We abbreviate σ j = σ
W,W̃
j from (2.15) and recall

the definition (2.16) of κ2. Let j0 ∈ { j ≥ 0 | σ j ≥ r ∨ r̃} and let the σ -algebra F j0
be generated by the collection of random variables

{ηW,W̃
n | n < σ j0} ∪ {wn | n < σ j0} ∪ {w̃n | n < σ j0},

with notation as in Theorem 2.1. We note that the random variable

Qr,r̃ [W, W̃ ] exp
{
β2Rr,r̃ [W, W̃ ]

}

is F j0 -measurable. Therefore, we have

ẼW,W̃E ε
t;ω,ω̃[W, W̃ ]Qr,r̃ [W, W̃ ] exp

{
β2Rr,r̃ [W, W̃ ]

}

= ẼW,W̃

(
ẼW,W̃

[
E ε
t;ω,ω̃[W, W̃ ] ∣∣F j0

]
exp

{
β2Rr,r̃ [W, W̃ ]

}
Qr,r̃ [W, W̃ ]

)

= ẼW,W̃

(
eiω·εWj0 ẼW

[
eiω·ε(Wε−2 t−Wj0 )

∣∣F j0

]− e−
1
2 at |ω|2

)
·

·
(
eiω̃·εW̃ j0 ẼW

[
eiω̃·ε(W̃ε−2 t−W̃ j0 )

∣∣F j0

]− e−
1
2 at |ω̃|2

)
Qr,r̃ [W, W̃ ]

· exp
{
β2Rr,r̃ [W, W̃ ]

}
. (6.11)

Observe that

ẼW

[
eiω·ε(Wε−2 t−Wj0 )

∣∣F j0

] = ẼW

[
eiω·ε(Wε−2 t−Wj0 ) | j0]→ e−

1
2 at |ω|2

almost surely as ε → 0byProposition2.4, and similarly for ẼW̃

[
e
iω̃·ε(W̃

ε−2 t
−W̃ j0

)
∣∣∣F j0

]
.

In addition, we have

eiω̃·εW̃ j0 → 1

almost surely as ε → 0. The statement of the lemma then follows from the bounded
convergence theorem applied to (6.11). ��
Now we upgrade the pointwise convergence to convergence of the integral.

Lemma 6.4. We have

lim
ε→0

ẼW,W̃A ε
t;ω,ω̃[W, W̃ ] = 0.

Proof. Using (6.9), we have
∣∣∣ẼW,W̃E ε

t,ω,ω̃[W, W̃ ]Qr,r̃ [W, W̃ ] exp
{
β2Rr,r̃ [W, W̃ ]

}∣∣∣ ≤ 4ẼW,W̃Qr,r̃ [W, W̃ ]
exp

{
β2Rr,r̃ [W, W̃ ]

}
.

Using (6.7), we have that
ˆ q̃

0

ˆ q

0
ẼW,W̃Qr,r̃ [W, W̃ ] exp

{
β2Rr,r̃ [W, W̃ ]

}
dr dr̃



862 Alexander Dunlap et al.

= ẼW,W̃ exp
{
β2Rq,q̃ [W, W̃ ]

}
≤ ẼW,W̃ exp

{
β2R∞[W, W̃ ]

}
< ∞,

where the last equality is by Proposition 2.5. The dominated convergence theorem
applied to the integral (6.10), in light of the pointwise convergence established in
Lemma 6.3, then implies the result. ��

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Combining Lemmas 6.2 and Lemma 6.4, we see that the
integrand in (6.1) converges pointwise to 0 as ε → 0. On the other hand, by
Proposition 2.5, as long as β < β0, there is a constant C so that

∣∣∣ÊB,B̃;ε−2tA
ε
t;ω,ω̃[B, B̃]

∣∣∣ ≤ C

independently of ε, ω, ω̃. As u0 ∈ C∞c (Rd), the dominated convergence theorem
and (2.8) imply that

E|uε(t, x)−�ε(t, x)u(t, x)|2 → 0

as ε → 0. ��

It remains to prove Lemma 6.2.

Proof of Lemma 6.2. We have

ÊB,B̃;ε−2tA
ε
t;ω,ω̃[B, B̃] = ÊB,B̃;ε−2tE

ε
t;ω,ω̃[B, B̃] exp

{
β2Rε−2t [B, B̃]

}

= ẼW,W̃G [w�ε−2t�−1]G [w̃�ε−2t�−1]E ε
t;ω,ω̃[W, W̃ ]

· exp
{
β2Rε−2t [W, W̃ ]

}
. (6.12)

Let γ ∈ (0, 2) be arbitrary. Then

ẼW,W̃

∣∣∣E ε
t;ω,ω̃[W, W̃ ] exp

{
β2Rε−2t [W, W̃ ]

}
− E ε

t−εγ ;ω,ω̃[W, W̃ ]
· exp

{
β2Rε−2(t−εγ )[W, W̃ ]

}∣∣∣
≤ ẼW,W̃

∣∣∣E ε
t;ω,ω̃[W, W̃ ] − E ε

t−εγ ;ω,ω̃[W, W̃ ]
∣∣∣ exp

{
β2Rε−2t [W, W̃ ]

}
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+ ẼW,W̃

∣∣∣E ε
t−εγ ;ω,ω̃[W, W̃ ]

∣∣∣
∣∣∣exp

{
β2Rε−2t [W, W̃ ]

}

− exp
{
β2Rε−2(t−εγ )

}∣∣∣ . (6.13)

We begin by addressing the first term of (6.13). By (2.18), we have

ẼW
∣∣εWε−2t − εWε−2(t−εγ )

∣∣2 ≤ Cεγ ,

which in particular means that

lim
ε→0

∣∣εWε−2t − εWε−2(t−εγ )

∣∣ = 0 (6.14)

in probability. The same statement of course holds for W̃ . We then have, using
Hölder’s inequality, that for δ > 0 sufficiently small there is a constant Cδ so that

lim
ε→0

ẼW,W̃

∣∣∣E ε
t;ω,ω̃[W, W̃ ] − E ε

t−εγ ;ω,ω̃[W, W̃ ]
∣∣∣ exp

{
β2Rε−2t [W, W̃ ]

}

≤ Cδ lim
ε→0

(
ẼW,W̃

∣∣∣E ε
t;ω,ω̃[W, W̃ ] − E ε

t−εγ ;ω,ω̃[W, W̃ ]
∣∣∣
1/δ+1

)
= 0

(6.15)

by Proposition 2.5 and the bounded convergence theorem in light of (6.14).
Finally, we consider the second term of (6.13), which is easier. Here, we have

lim
ε→0

ẼW,W̃

∣∣∣E ε
t−εγ ;ω,ω̃[W, W̃ ]

∣∣∣
∣∣∣exp

{
β2Rε−2t [W, W̃ ]

}

− exp
{
β2Rε−2(t−εγ )[W, W̃ ]

}∣∣∣
≤ 4 lim

ε→0
ẼW,W̃

∣∣∣exp
{
β2Rε−2t [W, W̃ ]

}
− exp

{
β2Rε−2(t−εγ )[W, W̃ ]

}∣∣∣ = 0

(6.16)

by the dominated convergence theorem, again in light of (2.18). Applying (6.15)
and (6.16) to (6.13) implies that

lim
ε→0

ÊW,W̃

∣∣∣E ε
t;ω,ω̃[W, W̃ ] exp

{
β2Rε−2t [W, W̃ ]

}
− E ε

t−εγ ;ω,ω̃[W, W̃ ]

· exp
{
β2Rε−2(t−εγ )[W, W̃ ]

}∣∣∣ = 0. (6.17)

Combining (6.12), (6.17), and Lemma 2.8, and recalling that G is bounded from
above and away from zero, completes the proof of the lemma. ��
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7. The Second Term of the Expansion

In this section we will prove Theorem 1.5. We first introduce some notation.
Fix γ ∈ (1, 2) and t > 0; all constants in this section will depend on γ and t . We
define a discrete set of times

rk =
{
0 k = 0;
t − ε−γ (�εγ t� − (k − 1)) k > 0,

(7.1)

and set

I ε
t [B] =

K ε
t∑

k=0

(εBrk+1 − εBrk ) · ∇u(t − ε2rk, εBrk ), (7.2)

with

K ε
t = �εγ−2t�. (7.3)

The next lemma gives a Feynman–Kac formula for the corrector uε
1 defined in

(1.27).

Lemma 7.1. We have

uε
1(t, x) =

1

ε
E

ε−1x
B exp

{
Vε−2t [B] − λε−2t

}
I ε

t [B]. (7.4)

Proof. The Feynman–Kac formula applied to (1.25), in the same way as (5.13),
gives the following expression for the solution θ j (s, y) to that equation:

θ j (s, y) = E
y
B

ˆ s−ε−γ ( j−1)

0
exp

{ˆ r

0
[βV (s − τ, Bτ )− λ] dτ

}
∇�(s − r, Br ) dr

= E
y
B∇ξ |ξ=0

ˆ s−ε−γ ( j−1)

0
exp

{ˆ s

0
[βV (s − τ, Bτ + H(τ − r)ξ)− λ] dτ

}
dr

= ∇ξ |ξ=0E
y
B exp

{ˆ s

0
[βV (s − τ, Bτ + (τ ∧ (s − ε−γ ( j − 1)))ξ)− λ] dτ

}
,

where H is the Heaviside function. The Girsanov formula then yields

θ j (s, y) = ∇ξ |ξ=0E
y
B exp

{
Vs[B] − λs + (Bs−ε−γ ( j−1) − y) · ξ

− s − ε−γ ( j − 1)

2
|ξ |2

}

= E
y
B(Bs−ε−γ ( j−1) − y) exp {Vs[B] − λs} .

Given this expression for θ j , we can then write the Feynman–Kac formula for
(1.26):
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u1; j (s, y) = E
y
B exp

{ˆ s−ε−γ j

0
[βV (s − τ, Bτ )− λ] dτ

}
θ j (ε

−γ j, Bs−ε−γ j )·

· ∇u(ε2−γ j, εBs−ε−γ j )

= E
y
B(Bs−ε−γ ( j−1) − Bs−ε−γ j ) · ∇u(ε2−γ j, εBs−ε−γ j )

· exp{Vs[B] − λs}.
Finally, by (1.27) we have

uε
1(t, x) = u1(ε

−2t, ε−1x),

where

u1(s, y) =
�εγ s�∑
j=1

E
y
B(Bs−ε−γ ( j−1) − Bs−ε−γ j ) · ∇u(ε2−γ j, εBs−ε−γ j )

· exp{Vs[B] − λs}
+ E

y
B(Bs−ε−γ �εγ s� − y) exp{Vs[B] − λs} · ∇u(ε2s, εy)

= E
y
B exp {Vs[B] − λs}

�εγ s�∑
k=0

(Brk+1 − Brk ) · ∇u(ε2(s − rk), εBrk ),

with rk defined in (7.1); this yields (7.4). ��
Next we consider the error term

qε(t, x) = uε(t, x)−�ε(t, x)u(t, x)− εuε
1(t, x).

Combining (6.4), (6.6), and (7.4) gives the expression

qε(t, x) = E
ε−1x
B

[
u0(εBε−2t )− u(t, x)−I ε

t [B]
]
exp

{
Vε−2t [B] − λε−2t

}
,

with expectation

Eqε(t, x) = eα
ε−2 t Ê

ε−1x
B;ε−2t [u0(εBε−2t )− u(t, x)−I ε

t [B]].
Taking covariances, we obtain

Eqε(t, x)qε(t, x̃)− Eqε(t, x)Eqε(t, x̃)

= e2αε−2 t Ê
ε−1x,ε−1x
B,B̃;ε−2t

(u0(εBε−2t )

− u(t, x)−I ε
t [B])(u0(ε B̃ε−2t )− u(t, x̃)−I ε

t [B̃])·
·
(
exp

{
β2Rε−2t [B, B̃]

}
− 1

)

= e2αε−2 t Ẽ
ε−1x,ε−1 x̃
W,W̃

(u0(εWε−2t )

− u(t, x)−I ε
t [W ])(u0(εW̃ε−2t )− u(t, x)−I ε

t [W̃ ])·
·
(
exp

{
β2Rε−2t [W, W̃ ]

}
− 1

)
G [w�ε−2t�−1]G [w̃�ε−2t�−1]. (7.5)
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In the last equality of (7.5) we used Theorem 2.1.
In line with the framework of Sect. 2, we will proceed to approximate the times

rk by nearby regeneration times of the Markov chain. Thus, we define

σW (k) = (ε−2t) ∧min{r ≥ rk | ηW
r = 1}, (7.6)

where ηW
r is as in Theorem 2.1. Before we begin our argument in earnest, we record

bounds on the relevant error terms. Put

Y = max
0≤k≤K ε

t

(σW (k)− rk), F(τ ) = max
r∈[0,ε−2t−τ ]

|Wr+τ −Wr |,

Z = εγ/2F(ε−γ + Y ).

Lemma 7.2. We have constants 0 < c,C < ∞ so that, for all ξ ≥ 0, we have

P̃W (Y ≥ C | log ε| + ξ) ≤ Ce−cξ , (7.7)

P̃W (F(Y ) ≥ C | log ε| + ξ) ≤ Ce−cξ , (7.8)

and

P̃W (Z ≥ C | log ε| + ξ) ≤ Ce−cξ . (7.9)

These bounds are simple consequences of the regeneration structure of the
Markov chain described in Sect. 2 and of [17, Lemma A.1]. We begin our approx-
imation procedure by replacing the deterministic times rk in the definition (7.2) of
I ε

t,x by the regeneration time approximations.

Lemma 7.3. Let

Ĩ ε
t [W ] =

K ε
t∑

k=0

(εWσW (k+1) − εWσW (k)) · ∇u(t − ε2σW (k), εWσW (k)).

(7.10)

For any 1 ≤ p < ∞ and any ζ < γ − 1 there exists a constant C = C(p, ζ, t, ‖u0
‖C2(Rd )) < ∞ so that

(
Ẽ
x
W |I ε

t [W ] − Ĩ ε
t [W ]|p)1/p ≤ Cεζ . (7.11)

Proof. We have

I ε
t [W ] − Ĩ ε

t [W ] =
K ε
t∑

k=0

[
(εWrk+1 − εWrk ) · ∇u(t − ε2rk, εWrk )

−(εWσW (k+1) − εWσW (k)) · ∇u(t − ε2σW (k), εWσW (k))
]
,

hence
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|I ε
t [W ] − Ĩ ε

t [W ]| ≤
K ε
t∑

k=0

|(εWrk+1 − εWrk )− (εWσW (k+1) − εWσW (k))| ·

·|∇u(t − ε2rk, εWrk )|

+
K ε
t∑

k=0

|εWσW (k+1) − εWσW (k)| · |∇u(t − ε2rk, εWrk )

−∇u(t − ε2σW (k), εWσW (k))|. (7.12)

We bound above the first term on the right-hand side by

|(εWrk+1 − εWrk )− (εWσW (k+1) − εWσW (k))| · |∇u(t − ε2rk)|
≤ 2F(Y )ε‖u‖C1(Rd ), (7.13)

and the second by

|εWσW (k+1) − εWσW (k)| · |∇u(t − ε2rk , εWrk )−∇u(t − ε2σW (k), εWσW (k))|
≤ εF(Y + ε−γ )‖u‖C2(Rd )(ε

2Y + εF(Y )) = ε1−γ /2Z‖u‖C2(Rd )(ε
2Y + εF(Y )).

(7.14)

Combining (7.12), (7.13), and (7.14), and recalling the definition (7.3) of K ε
t , gives

us

|I ε
t [W ] − Ĩ ε

t [W ]| ≤ εγ−2t
[
2F(Y )ε‖u‖C1(Rd ) + ε1−γ /2Z‖u‖C2(Rd )(ε

2Y

+εF(Y ))] ,

which, in light of Lemma 7.2, implies (7.11). ��
Lemma 7.4. Foranypower1 ≤ p < ∞, there exists aC = C(p, t, ζ, ‖u0‖C3(Rd )) <

∞ so that
(
Ẽ

ε−1x
W

∣∣u0(εWε−2t )− u(t, x)− Ĩ ε
t [W ]∣∣p

)1/p ≤ Cεζ (7.15)

for any ζ < 1− γ /2.

Proof. To ease the notation, in this proof we will abbreviate σ = σW . (Recall the
definition (7.6).) We write the Taylor expansion

u(t − ε2σ(k + 1), εWσ(k+1))− u(t − ε2σ(k), εWσ(k))

= −ε2(σ (k + 1)− σ(k))∂t u(t − ε2σ(k), εWσ(k))+ ε(Wσ(k+1) −Wσ(k))·
· ∇u(t − ε2σ(k), εWσ(k))

+ 1

2
ε2Qu(t − ε2σ(k), εWσ(k))(Wσ(k+1) −Wσ(k))+ Yk[W ],

(7.16)

where Qu(t, x) is the quadratic form associated to the Hessian of u at (t, x) (so
Qu(t, x)(V ) = Hess u(t, x)(V, V )) and Yk[W ] is the remainder term. By Taylor’s
theorem, we have
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|Yk[W ]| ≤ C‖u‖C3(Rd )

(
ε4|σ(k + 1)− σ(k)|2 + ε3|Wσ(k+1) −Wσ(k)|3

)
.

(7.17)

Note that the second term of the second line of (7.16) appears in the definition
(7.10) of Ĩ ε

t . Thus, we can telescope the left side of (7.16) to obtain

Ĩ ε
t [W ] = u0(εWε−2t )− u(t − ε2σ(0), εWσ(0))+

K ε
t∑

k=0

(
ε2Xk[W ] + Yk[W ]

)
,

(7.18)

where

Xk[W ] = (σ (k + 1)− σ(k))∂t u(t − ε2σ(k), εWσ(k))

−1

2
Qu(t − ε2σ(k), εWσ(k))(Wσ(k+1) −Wσ(k))

= (σ (k + 1)− σ(k))
1

2
a�u(t − ε2σ(k), εWσ(k))

−1

2
Qu(t − ε2σ(k), εWσ(k))(Wσ(k+1) −Wσ(k)).

We now deal with each piece of this expression in term.
The drift terms. We first define

X̃k = (σ̃ (k + 1)− σ̃ (k))
1

2
a�u(t − ε2σ(k), εWσ(k))

−1

2
Qu(t − ε2σ(k), εWσ(k))(Wσ̃ (k+1) −Wσ̃ (k)),

where σ̃ (k) = min{r ≥ rk | ηW
r = 1} differs from σ(k) by not being restricted to

be less than ε−2t . Using the relation (2.17) between the effective diffusivity a and
the variance of the increments WσW

n+1
−WσW

n
, as well as the isotropy of W , we see

that

ẼW X̃k[W ] = 0 (7.19)

for each k. We also note the simple bound

|X̃k[W ]| ≤ a‖u‖C2(Rd )(ε
−γ + Y )+ ‖u‖C2(Rd )(F(ε−γ + Y ))2

≤ a‖u‖C2(Rd )(ε
−γ + Y )+ ‖u‖C2(Rd )ε

−γ Z2.

Therefore, by Lemma 7.2, we have

ẼW |X̃k[W ]|p ≤ Cε−pξ (7.20)

for any ξ > γ . We further define

M� =
�∑

k=0

X̃k[W ].
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For each � ≥ 0, define G� to be the σ -algebra generated by {Wt | t ≤ σ(�)}∪{ηW
t |

t ≤ σ(�)}. Then, according to (7.19), {M�} is a martingale with respect to the
filtration {G�}. An L p-version of the Burkholder–Gundy inequality as in [9] (see
also [3, Theorem 9]) implies that

(
ẼW |ε2MK ε

t
|p
)1/p ≤ Cε2

⎡
⎣(K ε

t + 1)p/2−1
K ε
t∑

k=0

ẼW |X̃k[W ]|p
⎤
⎦
1/p

≤ Cεζ

(7.21)

for any ζ < 1− γ /2, where in the second inequality we used (7.3) and (7.20).
On the other hand, we note that Xk[W ] − X̃k[W ] can be nonzero for at most

one k, so we have
∣∣∣∣∣∣

K ε
t∑

k=0

(Xk[W ] − X̃k[W ])
∣∣∣∣∣∣
= K ε

t
max
k=0

∣∣Xk[W ] − X̃k[W ]∣∣ ≤ C‖u‖C2(Rd )ε
−γ /2Z ,

so
⎛
⎝ẼW

∣∣∣∣∣∣
ε2

K ε
t∑

k=0

(Xk[W ] − X̃k[W ])
∣∣∣∣∣∣

p⎞
⎠

1/p

≤ Cεζ (7.22)

for any ζ < 2− γ /2.
The error term. By (7.17), we have a constant C so that

∣∣∣∣∣∣

K ε
t∑

k=0

Y ε
j [W ]

∣∣∣∣∣∣
≤ C‖u‖C3(Rd )

K ε
t∑

j≥0

(
ε4|σ(k + 1)− σ( j)|2

+|εWσ(k+1) − εWσ(k)|3
)

≤ C‖u‖C3(Rd )K
ε
t

(
ε4(ε−γ + Y )2 + |εF(ε−γ + Y )|3

)

≤ C‖u‖C3(Rd )

(
ε2−γ (1+ εγ Y )2 + ε1−γ /2Z3

)
,

so by Lemma 7.2 we have

⎛
⎝ẼW

∣∣∣∣∣∣

K ε
t∑

k=0

Y ε
j [W ]

∣∣∣∣∣∣

p⎞
⎠

1/p

≤ Cεζ (7.23)

for any ζ < 1− γ /2.
The initial term. Finally, we observe that

(
ẼW

∣∣∣u(t − ε2σ(0), εWσ(0))− u(t, x)
∣∣∣
p)1/p ≤ ‖u‖C1(Rd )

(
ẼW (ε2σ(0)+ ε|Wσ(0)|)p

)1/p ≤ Cεζ (7.24)
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for any ζ < 1− γ /2.
Applying the bounds (7.21), (7.22), (7.23), and (7.24) to (7.18) gives us (7.15).

��
Corollary 7.5. For any 1 ≤ p < ∞ and ζ < (γ − 1) ∧ (1 − γ /2) there exists
C = C(p, t, ζ, ‖u0‖C3(Rd )) so that

(
Ẽ

ε−1x
W |u0(εWε−2t )− u(t, x)−I ε

t [W ]|p
)1/p ≤ Cεζ .

Proof. This is a simple consequence of the L p triangle inequality applied to the
results of the last two lemmas. ��
We will also need the following auxiliary lemma:

Lemma 7.6. There is a β0 > 0 so that if χ > 1, β > 0 are such that χβ2 < β2
0 ,

then there is a constant C = C(χ, β) < ∞ so that for any ε > 0 and x, x̃ ∈ R
2

we have

Ẽ
ε−1x,ε−1 x̃
W,W̃

(
exp

{
β2Rε−2t [W, W̃ ]

}
− 1

)χ ≤ C

(
ε

|x − x̃ | ∧ 1

)d−2

.

Proof. Since Rt [W, W̃ ] ≥ 0, we have

Ẽ
ε−1x,ε−1 x̃
W,W̃

(
exp

{
β2Rε−2t [W, W̃ ]

}
− 1

)χ

≤ P̃
ε−1x,ε−1 x̃
W,W̃

(
Rε−2t [W, W̃ ] > 0

)

× sup
r>0,W |[0,r ],W̃ |[0,r ]

Ẽ
ε−1x,ε−1 x̃
W,W̃

[
exp

{
χβ2R[r,ε−2t][W, W̃ ]

}

∣∣W |[0,r ], W̃ |[0,r ]
]

≤ C

(
ε

|x − x̃ | ∧ 1

)d−2

by Proposition 2.10 and Proposition 2.5, as long as χβ2 is sufficiently small. ��
Proposition 7.7. For all χ > 1, ζ < (1− γ /2) ∧ (γ − 1), and t > 0, there exists
a constant C = C(χ, ζ, t, ‖u‖C3(Rd )) so that

∣∣Eqε(t, x)qε(t, x̃)− Eqε(t, x)Eqε(t, x̃)
∣∣ ≤ C |x − x̃ |− d−2

χ ε
2ζ+ d−2

χ .

Proof. Take p ≥ 1 so that 1/χ+2/p = 1. We go back to (7.5) and apply Hölder’s
inequality, as well as Corollary 7.5 and Lemma 7.6, to get the bound

∣∣Eqε(t, x)qε(t, x̃)− Eqε(t, x)Eqε(t, x̃)
∣∣

≤ ‖G ‖2∞
(
sup
x∈Rd

Ẽ
ε−1x
W |u0(εWε−2t )− u(t, x)−I ε

t [W ]|p
)2/p
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×
(
Ẽ

ε−1x,ε−1 x̃
W,W̃

(
exp

{
β2Rε−2t [W, W̃ ]

}
− 1

)χ)1/χ

≤ Cε2ζ
(

ε

|x − x̃ |
) d−2

χ

.

��
We are finally ready to prove Theorem 1.5.

Proof of Theorem 1.5. By Proposition 7.7, we have, for any ζ < (1 − γ /2) ∧
(γ − 1) and any χ > 1, that

ε−(d−2)E
(ˆ

g(x)qε(t, x) dx − E
ˆ

g(x)qε(t, x) dx

)2

= ε−(d−2)
ˆ ˆ

g(x)g(x̃)
[
Eqε(t, x)qε(t, x̃)− Eqε(t, x)Eqε(t, x̃)

]
dx dx̃

≤ Cε(d−2)(1/χ−1)+2ζ
ˆ ˆ

g(x)g(x̃)|x − x̃ |− d−2
χ dx dx̃ .

The integral in the last line is finite because g is smooth and compactly supported.
Now by taking χ sufficiently close to 1 and reducing ζ slightly, we achieve (1.28).
��
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