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Abstract

Many-body perturbation theory (MBPT) is widely used in quantum physics,
chemistry, and materials science. At the heart of MBPT is the Feynman diagram-
matic expansion, which is, simply speaking, an elegant way of organizing the
combinatorially growing number of terms of a certain Taylor expansion. In par-
ticular, the construction of the ‘bold Feynman diagrammatic expansion’ involves
the partial resummation to infinite order of possibly divergent series of diagrams.
This procedure demands investigation from both the combinatorial (perturbative)
and the analytical (non-perturbative) viewpoints. In this paper, we approach the
analytical investigation of the bold diagrammatic expansion in the simplified set-
ting of Gibbs measures (known as the Euclidean lattice field theory in the physics
literature). Using non-perturbative methods, we rigorously construct the Luttinger–
Ward formalism for the first time, and we prove that the bold diagrammatic series
can be obtained directly via an asymptotic expansion of the Luttinger–Ward func-
tional, circumventing the partial resummation technique. Moreover we prove that
the Dyson equation can be derived as the Euler–Lagrange equation associated with
a variational problem involving the Luttinger–Ward functional. We also establish a
number of key facts about the Luttinger–Ward functional, such as its transformation
rule, its form in the setting of the impurity problem, and its continuous extension
to the boundary of the domain of physical Green’s functions.

1. Introduction

The bold Feynman diagrammatic expansion of many-body perturbation theory
(MBPT), along with the many practically used methods in quantum chemistry and
condensed matter physics that derive from it, can be formally derived from the
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Luttinger–Ward (LW)1 formalism [19]. Since its original proposal in 1960, the
LW formalism has found widespread applicability [5,8,13,24]. However, the LW
formalism and the LW functional are defined only formally, and this shortcoming
poses serious questions both in theory and in practice. Indeed, the very existence
of the LW functional in the setting of fermionic systems is under debate, with
numerical evidence to the contrary appearing in the past few years [9,11,15,28] in
the physics community.

This paper expands on the work in [18], as well as an accompanying paper.
In the accompanying paper, we provided a self-contained explanation of MBPT in
the setting of the Gibbs model (alternatively known as the ‘Euclidean lattice field
theory’ in the physics literature). In this setting one is interested in the evaluation
of the moments of certain Gibbs measures. While the exact computation of such
possibly high-dimensional integrals is intractable in general, important exceptions
are the Gaussian integrals, that is, integrals for the moments of a Gaussian measure,
which can be evaluated exactly. Perturbing about a reference system given by a
Gaussian measure, one can evaluate quantities of interest by a series expansion of
Feynman diagrams, which correspond to certain moments of Gaussian measures.
For a specific form of quartic interaction that we refer to as the generalized Coulomb
interaction, such a perturbation theory enjoys a correspondence with the Feynman
diagrammatic expansion for the quantum many-body problem with a two-body
interaction [1,2,22]. The generalized Coulomb interaction is also of interest in
its own right and includes, for example, the (lattice) ϕ4 interaction [2,29], as a
special case. The combinatorial study of its perturbation theory was the goal of
the accompanying paper. Nonetheless, the techniques of the accompanying paper,
and MBPT more broadly, are more generally applicable to various types of field
theories and interactions.

The culmination of the developments of the accompanying paper is the bold
diagrammatic expansion, which is obtained formally via a partial resummation
technique which sums possibly divergent series of diagrams to infinite order. In-
deed, the main technical contribution of the accompanying paper was to place the
combinatorial side of this procedure on firm footing. One motivation for this paper
is to interpret the bold diagrams analytically, which we accomplish by first con-
structing the LW formalism. In fact this construction is non-perturbative and valid
for rather general forms of interaction. Below we focus on the contributions and
organization of this paper only.

1.1. Contributions

The main contribution of this paper is to establish the LW formalism rigorously
for the first time, in the context of Gibbs measures. In this setting, the role of the
Green’s function is assumed by the two-point correlator.

The construction of the LW functional proceeds via concave duality, in a spirit
similar to that of the Levy-Lieb construction in density functional theory [16,17] at

1 The Luttinger–Ward formalism is also known as the Kadanoff-Baym formalism [4]
depending on the context. In this paper we always use the former.
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zero temperature and theMermin functional [21] at finite temperature, as well as the
density matrix functional theory developed in [3,7,27]. With careful interpretation,
this duality gives rise to a one-to-one correspondence between non-interacting and
interacting Green’s functions. The LW formalism yields a variational interpretation
of the Dyson equation; to wit, the free energy can be expressed variationally as a
minimum over all physical Green’s functions, and the self-consistent solution of
the Dyson equation yields its unique global minimizer. We also prove a number
of useful properties of the LW functional, such as the transformation rule, the
projection rule, and the continuous extension of the LW functional to the boundary
of its domain, which can be interpreted as the domain of physical Green’s functions.
In particular, this last property suggests a novel interpretation of the LW functional
as the non-divergent part of the concave dual of the free energy. These results
allow us to interpret the appropriate analogs of quantum impurity problems in our
simplified setting. In particular, we prove that the self-energy is always a sparse
matrix for impurity problems, with nonzero entries appearing only in the block
corresponding to the impurity sites. Such a result is at the foundation of numerical
approaches such as the dynamical mean field theory (DMFT) [10,14].

We prove that the bold diagrams for the generalized Coulomb interaction can
be obtained as asymptotic series expansions of the LW and self-energy functionals,
circumventing the formal strategy of performing resummation to infinite order. The
proof of this fact proceeds by proving the existence of such series non-constructively
and then employing the combinatorial results of the accompanying paper to ensure
that the terms of these series are in fact given by the bold diagrams.

Although the bold diagrammatic expansion (evaluated in termsof the interacting
Green’s function, which is always defined) appears to be applicable in cases where
the non-interacting Green’s function is ill-defined, we demonstrate that caution
should be exercised in practice in such cases. Using a one-dimensional example,
we demonstrate that the approximate Dyson equation obtained via a truncated
bold diagrammatic expansion may yield solutions with large error in the regime of
vanishing interaction strength or fail to admit solutions at all.

1.2. Outline

In Section 2 we review preliminary material and definitions needed to under-
stand the results of this paper.

Section 3 concerns the construction of the LW formalism, beginning with a
discussion of the the variational formulation of the free energy and the relevant
concave duality (Section 3.1). This is followed by the introduction of the LW
functional and the Dyson equation (Section 3.2). Then we introduce several key
properties of theLWfunctional: the transformation rule (Section 3.3); the projection
rule, accompanied by a discussion of impurity problems (Section 3.4); and the
continuous extension property (Section 3.5). The proof of the continuous extension
property, which is the most technically demanding part of the paper, is postponed
to Section 5, which has its own outline.

Section 4 concerns the bold diagrammatic expansion. In Section 4.1 we prove
the existence of asymptotic series for the LW functional and the self-energy, and in
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Section 4.2we relate the coefficients of the former to the latter. Then for the rigorous
development of the bold diagrammatic expansion, it only remains at this point to
prove that the asymptotic series for the self-energy matches the bold diagrammatic
expansion of the accompanying paper. This is the most involved task of Section 4.
In Section 4.3, we review the results that we need from the accompanying paper in a
‘diagram-free’ way that should be understandable to the reader who has not read the
accompanying paper, and in Section 4.4, we establish the claimed correspondence.
Finally, in Section 4.5we illustrate the aforementionedwarning about the truncation
of the bold diagrammatic series in cases where the non-interacting Green’s function
is ill-defined.

Relevant background material on convex analysis and the weak convergence of
measures is collected in “Appendices A and B”, respectively. The proofs of many
lemmas are provided in “Appendix C”, as noted in the text.

2. Preliminaries

In this section we discuss some preliminary definitions and notations.

2.1. Notation and Quantities of Interest

Throughout we shall let SN , SN+ , and SN++ denote respectively the sets of
symmetric, symmetric positive semidefinite, and symmetric positive definite N ×
N real matrices. For simplicity we restrict our attention to real matrices, though
analogous results can be obtained in the complex Hermitian case.

In this paper we will consider Gibbs measures defined by Hamiltonians h :
R

N → R ∪ {+∞} of the form

h(x) = 1

2
xT Ax +U (x),

where A ∈ SN . The first term represents the quadratic or ‘non-interacting’ part of
the Hamiltonian, while the second term, U , represents the interaction. We define
the partition function accordingly as

Z [A, U ] =
∫
RN

e−
1
2 xT Ax−U (x) dx . (2.1)

For fixed interaction U , we may think of the partition function of A alone, that is,
as Z : SN → R sending A �→ Z [A]. In fact we adopt this perspective exclusively
for the time being.

The free energy is then defined as a mapping � : SN → R ∪ {−∞} via

�[A] := − log Z [A] = − log
∫
RN

e−
1
2 xT Ax−U (x) dx, (2.2)

We denote the domain of � by

dom� := {A ∈ SN : �[A] > −∞},
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and the interior of the domain by int dom�. As we will see, � is concave in A,
and this notion of domain is the usual notion from convex analysis (see “Appendix
A”), and it is simply the set of A such that the integral in Eq. (2.2) is convergent.

For A ∈ int dom�, in fact the integrand in Eq. (2.2) must decay exponentially,
hence we can define the two-point correlator (which we call the Green’s function
by analogy with the quantum many-body literature) in terms of A via

Gi j [A] := 1

Z [A]
∫
RN

xi x j e−
1
2 xT Ax−U (x) dx,

and the integral on the right-hand side is convergent. More compactly, we have a
mapping G : int dom�→ SN++ defined by

G[A] := 1

Z [A]
∫
RN

xxT e−
1
2 xT Ax−U (x) dx . (2.3)

It is important to note that G[A] ∈ SN++ for all A. As we shall see in Section 3, this
constraint defines the domain of ‘physical’ Green’s functions, in a certain sense. In
the discussion below, G is also called the interacting Green’s function.

In the case of the ‘non-interacting’ Gibbs measure, where U ≡ 0, all quantities
of interest can be computed exactly by straightforward multivariate integration. In
particular, letting G0[A] := G[A; 0], we have for A ∈ dom� = SN++ that

G0[A] = A−1. (2.4)

The neatness of this relation is that it motivates the factor of one half included in the
quadratic part of the Hamiltonian.We refer to G0[A] as the non-interacting Green’s
function associated to A, whenever A ∈ SN++. Note that for a general interaction
U , int dom� may contain elements not in SN++. For such A there is an associated
(interacting) Green’s function but not a non-interacting Green’s function.

In general G can be viewed as the gradient of �, for a suitably defined notion
of gradient for functions of symmetric matrices, which we now define:

Definition 2.1. For i, j = 1, . . . , N , let E (i j) ∈ SN be defined by E (i j)
kl = δikδ jl +

δilδ jk . For a differentiable function f : SN → R, define the gradient ∇ f : SN →
SN by

∇i j f = (∇ f )i j := lim
δ→0

f (A + δ · E (i j))− f (A)

δ
.

If f is obtained by restriction from a function f : RN×N → R, then equivalently
∇i j f = ∂ f

∂ Xi j
+ ∂ f

∂ X ji
.

Then on dom� the gradient map ∇� is given by

∇i j�[A] = 1

Z [A]
∫

xi x j e−
1
2 xT Ax−U (x) dx, (2.5)

that is, G = ∇�, as claimed. The notion of gradient of Definition 2.1 is natural
for our setting in that it yields this relation. However, it may seem a bit awkward
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when applied to specific computations. Indeed, consider a function X �→ f (X) on
SN that is specified by a formula that can be applied to all N × N matrices and in
which the roles of Xkl and Xlk are the same for all l, k. For instance, such a formula
is given by f (X) = ∑i j X2

i j . Then the usual matrix derivative of f , considered

as a function on N × N matrices, is given by ∂ f
∂ Xi j

(X) = 2Xi j , whereas, viewing

f as a function on SN and with notation as specified in Definition 2.1, we have
∇i j f (X) = 4Xi j . More generally in this situation we have ∇i j = 2 ∂

∂ Xi j
. Since

formulas like this arise from the bold diagrammatic expansion (as discussed in the
accompanying paper), it is convenient then to estabilish.

Definition 2.2. For a differentiable function f : SN → R, define thematrix deriva-
tive ∂ f

∂ X : SN → SN by

∂ f

∂ Xi j
= 1

2
∇i j f.

Moreover, this notion of derivative will yield the relation

�[G] = ∂�

∂G
,

where � is the self-energy and � is the LW functional, as was foreshadowed in the
accompanying paper.

2.2. Interaction Growth Conditions

Note that dom� depends on the shape ofU (x). For example, ifU (x) = 0, then
dom� = SN++. If U (x) =∑N

i=1 x4i , then dom� = SN . Our most basic condition
on U is the following:

Definition 2.3. (Weak growth condition) A measurable function U : RN → R

satisfies the weak growth condition, if there exists a constant CU such that U (x)+
CU (1+ ‖x‖2) � 0 for all x ∈ R

N , and dom� is an open set.

The weak growth condition of Definition 2.3 specifies that U cannot decay to
−∞ faster than quadratically, which ensures in particular that dom� is non-empty.
The assumption that dom� is an open set (that is, dom� = int dom�) will be
used later to ensure that for fixed U there is a one-to-one correspondence between
A and G (hence also between non-interacting and interacting Green’s functions)
over suitable domains.

Note that the condition of Definition 2.3 is weaker than the condition

1

2
xT Ax +U (x)→+∞, ‖x‖ → +∞. (2.6)

For instance, if N = 2 and U (x) = x41 , then the weak growth condition is satisfied
with CU = 0, but Eq. (2.6) is not satisfied for all A ∈ SN . In fact, when U (x) only
depends on a subset of components of x ∈ R

N , we call the Gibbsmodel an impurity
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model or impurity problem, in analogy with the impurity models of quantummany-
body physics [20], and we call the subset of components on which U depends the
fragment. The flexibility of the weak growth condition will allow us to rigorously
establish the LW formalism for the impurity model. In the setting of the impurity
model, the ‘projection rule’ of Proposition 3.13 then allows us to understand the LW
formalism of the impurity model in terms of the lower-dimensional LW formalism
of the fragment and to prove a special sparsity pattern of the self-energy.

One of our main results (Theorem 3.18) is that the LW functional, which is
initially definedon the setSN++ of physicalGreen’s functions, can in fact be extended
continuously to the boundary of SN++, a fact which will not be apparent from the
definition of the LW functional. (In fact, this extension shall be specified by an
explicit formula involving lower-dimensional LW functionals.) However, in order
for this result to hold, we need to strengthen the weak growth condition to the
following:

Definition 2.4. (Strong growth condition) A measurable function U : RN → R

satisfies the strong growth condition if, for any α ∈ R, there exists a constant b ∈ R

such that U (x)+ b � α‖x‖2 for all x ∈ R
N .

Note that the strong growth condition ensures that dom� = SN and is hence
an open set. If U is a polynomial function of x and satisfies the strong growth
condition, then Eq. (2.6) will also be satisfied.

In Section 5 we will discuss the precise statement and proof of the afore-
mentioned continuous extension property. In addition, a counterexample will be
provided in the case where the weak growth condition holds but the strong growth
condition does not. In fact, the continuous extension property is also valid for im-
purity models (which do not satisfy the strong growth condition) via the projection
rule (Proposition 3.13), provided that the interaction satisfies the strong growth
condition when restricted to the fragment.

For the generalizedCoulomb interaction considered in the accompanying paper,
that is,

U (x) = 1

8

N∑
i, j=1

vi j x2i x2j , (2.7)

there is a natural condition on the matrix v that ensures that U satisfies the strong
growth condition, namely that the matrix v is positive definite. We will simply
assume that this holds whenever we refer to the generalized Coulomb interaction.
To see that this assumption implies the strong growth condition, first note that v 
 0
guarantees in particular that U is a nonnegative polynomial, strictly positive away
from x = 0. SinceU is homogeneous quartic, it follows thatU � C−1|x |4 for some
constant C sufficiently large, which evidently implies the strong growth condition.
Another sufficient assumption is that the entries of v are nonnegative and moreover
that the diagonal entries are strictly positive.

Our interest in diagrammatic expansions leads us to adopt a further condition on
the interaction. Too see why this is necessary, recall from the accompanying paper
that the perturbation about a non-interacting theory (U ≡ 0) involves integrals such
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as ∫
U (x) e−

1
2 xT Ax dx,

which is clearly undefined if, for example, U (x) = ex4 . In most applications of
interest, U (x) is only of polynomial growth, but it is sufficient to assume growth
that is at most exponential in the sense of Assumption 2.5, which is actually only
needed in Section 4 for our consideration of the bold diagrammatic expansion.

Assumption 2.5. (At-most-exponential growth) In this section, we assume that
there exist constants B, C > 0 such that |U (x)| � BeC‖x‖ for all x ∈ R

N .

Further technical reasons for this assumption will become clear in Section 4.

2.3. Measures and Entropy: Notation and Facts

Let M be the space of probability measures on R
N (equipped with the Borel

σ -algebra), let M2 ⊂M be the subset of probability measures with moments up
to second order, and let λ denote the Lebesgue measure onRN . For notational con-
venience we define a mapping that takes the second-order moments of a probability
measure:

Definition 2.6. Define G :M2 → SN+ by G(μ) = ∫ xxT dμ. Writing G = (Gi j ),
we equivalently have Gi j (μ) = ∫ xi x j dμ.

Therefore if μ is defined via a density

dμ = ρ(x) dx, where ρ(x) = 1

Z [A]e
− 1

2 xT Ax−U (x),

then G(μ) = G[A].
We also denote by

Cov(μ) =
∫

xxT dμ−
(∫

x dμ

)(∫
x dμ

)T

the covariance matrix of μ.
For μ ∈M, let H denote the (differential) entropy

H(μ) =
{
− ∫ log dμ

dλ dμ, μ� λ

−∞, otherwise
(2.8)

where dμ
dλ denotes the Radon-Nikodym derivative (that is, the probability density

function of μ with respect to the Lebesgue measure λ) whenever μ � λ (that is,
whenever μ is absolutely continuous with respect to the Lebesgue measure). We
will often refer to the differential entropy as the entropy for convenience.

For μ, ν ∈M, define the relative entropy Hν(μ) via

Hν(μ) =
{
− ∫ log dμ

dν dμ, μ� ν

−∞, otherwise.
(2.9)
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Note carefully the sign convention.2 The integral in (2.9) is well-definedwith values
in R ∪ {−∞} for all μ, ν ∈M.

We now record some useful properties of the relative entropy.

Fact 2.7. For fixed ν ∈ M, Hν is non-positive and strictly concave on M, and
Hν(μ) = 0 if and only if μ = ν. Moreover Hν is upper semi-continuous with
respect to the topology of weak convergence; that is, if the sequence μk ∈ M
converges weakly to μ ∈M, then lim supk→∞ Hν(μk) � Hν(μ).

Proof. For proofs see [23].

By contrast to the relative entropy, the differential entropy suffers from two
analytical nuisances.

First, in the definition of the entropy in (2.8), the entropy may actually fail to be
defined for some measures (which simultaneously concentrate too much in some
area and fail to decay fast enough at infinity, so the negative and positive parts of the
integral are −∞ and +∞, respectively, and the Lebesgue integral is ill-defined).
However, Lemma 2.8 states that when we restrict to M2, the integral cannot have
an infinite positive part and is well-defined.

Lemma 2.8. For μ ∈M2, if μ� λ, then the integral in (2.8) exists (in particular,
the positive part of the integrand has finite integral) and moreover

H(μ) � 1

2
log
(
(2πe)N det Cov(μ)

)
� 1

2
log
(
(2πe)N det G(μ)

)
,

with possibly H(μ) = −∞. The first inequality is satisfied with equality if and only
if μ is a Gaussian measure with a positive definite covariance matrix. The second
inequality is satisfied with equality if and only if μ has mean zero.

Note that Lemma 2.8 also entails a useful bound on the entropy in terms of
the second moments, as well as the classical fact that Gaussian measures are the
measures of maximal entropy subject to second-order moment constraints.

The second analytical nuisance of the differential entropy is that we do not
have the same semi-continuity guarantee as we have for the relative entropy in Fact
2.7. However, control on second moments allows a semi-continuity result that will
suffice for our purposes.

Lemma 2.9. Assume that μ j ∈ M2 weakly converge to μ ∈ M, and that there
exists a constant C such that G(μ j ) 
 C · IN for all j . Then lim sup j→∞ H(μ j ) �
H(μ).

Remark 2.10. In other words, the entropy is upper semi-continuous with respect
to the topology of weak convergence on any subset of probability measures with
uniformly bounded second moments. The subtle difference between the statements
in Fact 2.7 and Lemma 2.9 is due to the fact that the Lebesgue measure λ /∈M.

2 Our relative entropy is then the negative of the Kullback-Leibler divergence, that is,
Hν(μ) = −DKL(μ‖ν).
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The proofs of Lemmas 2.8 and 2.9 are given in “Appendix C”.
Finally we record the classical fact that subject to marginal constraints, the

entropy is maximized by a product measure. In the statement and throughout the
paper, ‘#’ denotes the pushforward operation on measures.

Fact 2.11. Suppose p < N and let π1 : RN → R
p and π2 : RN → R

N−p to be
the projections onto the first p and last N − p components, respectively. Then for
μ ∈M2, H(μ) � H(π1#μ)+ H(π2#μ).

Remark 2.12. Note that π1#μ and π2#μ are the marginal distributions of μ with
respect to the product structure RN = R

p × R
N−p.

See “Appendix C” for a short proof.

3. Luttinger–Ward Formalism

This section is organized as follows. In Section 3.1, we provide a variational
expression for the free energy via the classical Gibbs variational principle. For fixed
U , this allows us to identify the Legendre dual of�[A], denoted byF[G], and to es-
tablish a bijection between A and the interactingGreen’s function G. In Section 3.2,
we define the Luttinger–Ward functional and show that the Dyson equation can be
naturally derived by considering the first-order optimality condition associated to
the minimization problem in the variational expression for the free energy. Then
we prove that the LW functional satisfies a number of desirable properties. First, in
Section 3.3 we prove the transformation rule, which relates a change of the coordi-
nates of the interaction with an appropriate transformation of the Green’s function.
The transformation rule leads to the projection rule in Section 3.4, which implies
the sparsity pattern of the self-energy for the impurity problem. Up until this point
we assume only that U satisfy the weak growth condition. Then in Section 3.5
we motivate and state our result that the LW functional is continuous up to the
boundary of SN++, for which we need the assumption that U satisfies the strong
growth condition. The proof (as well as a counterexample demonstrating that weak
growth is not sufficient) is deferred to Section 5. Throughout we defer the proofs
of some technical lemmas to “Appendix C”. Moreover we will invoke the language
of convex analysis following Rockafellar [25] and Rockafellar and Wets [26]. See
“Appendix A” for further background and details.

3.1. Variational Formulation of the Free Energy

The main result in this subsection is given by Theorem 3.1.

Theorem 3.1. (Variational structure) For U satisfying the weak growth condition,
the free energy can be expressed variationally via the constrained minimization
problem

�[A] = inf
G∈SN+

(
1

2
Tr[AG] − F[G]

)
, (3.1)
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where

F[G] := sup
μ∈G−1(G)

[
H(μ)−

∫
U dμ

]
(3.2)

is the concave conjugate of �[A] with respect to the inner product 〈A, G〉 =
1
2Tr[AG]. (Note that by convention F[G] = −∞ whenever G−1(G) is empty, that
is, whenever G ∈ SN\SN+ .) Moreover � and F are smooth and strictly concave
on their respective domains dom� and SN++. The mapping G[A] := ∇�[A] is a
bijection dom�→ SN++, with inverse given by A[G] := ∇F[G].

We first record some technical properties of � in Lemma 3.2.

Lemma 3.2. � is an upper semi-continuous, proper (hence closed) concave func-
tion. Moreover, � is strictly concave and C∞-smooth on dom�.

Remark 3.3. Recall that a function f on ametric space X is upper semi-continuous
if for any sequence xk ∈ X converging to x , we have lim supk→∞ f (xk) � f (x).

We now turn to exploring the concave (or Legendre-Fenchel) duality associated
to�. The following lemma, a versionof the classicalGibbs variational principle [23]
(alternatively known as theDonsker-Varadhan variational principle [12]), is the first
step toward identifying the dual of �.

Lemma 3.4. For any A ∈ SN ,

�[A] = inf
μ∈M2

[∫ (
1

2
xT Ax +U (x)

)
dμ(x)− H(μ)

]
. (3.3)

If A ∈ dom�, the infimum is uniquely attained at dμ(x) = 1
Z [A]e

− 1
2 xT Ax−U (x) dx.

Remark 3.5. One might wonder whether the infimum in (3.3) can be taken over
all of M. Note that if μ does not have a second moment, it is possible to have
both H(μ) = +∞ and

∫ ( 1
2 xT Ax +U (x)

)
dμ(x) = +∞, so the expression in

brackets is of the indeterminate form ∞−∞. The restriction to μ ∈ M2 takes
care of this problem because Lemma 2.8 guarantees that H(μ) < +∞, and by the
weak growth condition, the other term in the infimum must be either finite or+∞.
Moreover, M2 is still large enough to contain the minimizer, and restricting our
attention to measures with finite second-order moments will be convenient in later
developments.

From the previous lemma we can split up the infimum in (3.3) and obtain

�[A] = inf
G∈SN+

inf
μ∈G−1(G)

[∫ (
1

2
xT Ax +U (x)

)
dμ(x)− H(μ)

]
.

Since
∫

xT Ax dμ = Tr[G(μ)A], it follows that

�[A] = inf
G∈SN+

(
1

2
Tr[AG] + inf

μ∈G−1(G)

[∫
U dμ− H(μ)

])
.

This proves Eq. (3.1) of Theorem 3.1 using the definition of F[G] in Eq. (3.2).
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Remark 3.6. For the perspective of the large deviations theory, we comment that
the construction ofF from the entropy may be recognizable by analogy to the con-
traction principle [23]. Indeed, the expression

∫
U dμ− H(μ) is equal (modulo a

constant offset) to−HνU (μ), where νU is the measure with density proportional to
e−U . If one considers i.i.d. sampling from the probability measure νU , by Sanov’s
theorem−HνU is the corresponding large deviations rate function for the empirical
measure. The rate function for the second-order moment matrix (that is,−F , mod-
ulo constant offset) is obtained via the contraction principle applied to the mapping
μ �→ G(μ). This is analogous to the procedure by which one obtains Cramér’s the-
orem from Sanov’s theorem via application of the contraction principle to a map
that maps μ to its mean [23].

Nowwe record some technical facts aboutF in Lemma3.7,which demonstrates
in particular that F diverges (at least) logarithmically at the boundary ∂SN+ =
SN+ \SN++.

Lemma 3.7. F is finite on SN++ and −∞ elsewhere. Moreover,

F[G] � 1

2
log
[
(2πe)N det G

]
+ CU (1+ Tr G)

for all G ∈ SN++.

Define

�[μ] := H(μ)−
∫

U dμ,

so F[G] = supμ∈G−1(G) �[μ]. By the concavity of the entropy, � is concave on
M2. Thus, given G, we can in principle solve a concave maximization problem
over μ ∈M to find F[G], with the linear constraint μ ∈ G−1(G). Moreover, this
variational representation of F in terms of the concave function � is enough to
establish the concavity of F by abstract considerations. This and other properties
of F are collected in the following.

Lemma 3.8. F is an upper semi-continuous, proper (hence closed) concave func-
tion on SN .

NowEq. (3.1) states precisely that� is the concave conjugate ofF with respect
to the inner product 〈A, G〉 = 1

2Tr[AG], and accordingly we write � = F∗. Since
F is concave and closed, we have by Theorem A.14 that F = F∗∗ = �∗, that
is, F and � are concave duals of one another. Thus we expect that ∇F and ∇�

are inverses of one another, but to make sense of this claim we need to establish
the differentiability of F . We collect this and other desirable properties of F in the
following:

Lemma 3.9. F is C∞-smooth and strictly concave on SN++.

Then Theorem A.15 guarantees that ∇� is a bijection from dom� → SN++
with its inverse given by ∇F . This completes the proof of Theorem 3.1.

Finally, following Lemma 3.4, together with the splitting of (3.3) and the A↔
G correspondence ofTheorem3.1,weobserve that the supremum in (3.2) is attained

uniquely at the measure dμ := 1
Z [A[G]]e

− 1
2 xT A[G]x−U (x) dx .
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3.2. The Luttinger–Ward Functional and the Dyson Equation

According to Lemma 3.7, F should blow up at least logarithmically as G
approaches the boundary of SN++. Remarkably, we can explicitly separate the part
that accounts for the blowup of F at the boundary. In fact, subtracting away this
part is how we define the Luttinger–Ward (LW) functional for the Gibbs model.
We will see in this subsection that the definition of the Luttinger–Ward functional
can also be motivated by the stipulation that its gradient (the self-energy) should
satisfy the Dyson equation.

Consider for a moment the case in which U ≡ 0, so

F[G] = sup
μ∈G−1(G)

[
H(μ)−

∫
U dμ

]
= sup

μ∈G−1(G)

H(μ).

The random variable X achieving the maximum entropy subject toE[Xi X j ] = Gi j

follows a Gaussian distribution, that is, X ∼ N (0, G). It follows that

F[G] = 1

2
log
(
(2πe)N det G

)
= 1

2
Tr[log(G)] + N

2
log(2πe).

This motivates, for general U , the consideration of the Luttinger–Ward func-
tional

�[G] := 2F[G] − Tr[log(G)] − N log(2πe). (3.4)

For non-interacting systems, �[G] ≡ 0 by construction.
Now we turn to establishing the Dyson equation. Theorem 3.1 shows that for

A ∈ dom�, the minimizer G∗ in (3.1) satisfies A = ∇F[G∗] = A[G∗], so the
minimizer is G∗ = G[A]. Recall that

F[G] = 1

2
Tr[log(G)] + 1

2
�[G] + 1

2
N log(2πe).

Taking gradients and plugging into A = ∇F[G∗] yields

0 = A − (G∗)−1 − 1

2
∇�[G∗].

Define the self-energy � as a functional of G by �[G] := 1
2∇�[G] = ∂�

∂G [G].
Then we have established that for G = G[A],

G−1 = A −�[G]. (3.5)

Moreover, by the strict concavity of F , G = G[A] is the unique G solving (3.5).
Eq. (3.5) is in fact the Dyson equation as in Section 3.8 of the accompanying

paper. To see this, recall from Eq. (2.4) that the non-interacting Green’s function
G0 is given by G0 = A−1, so we have

G−1 = (G0)−1 −�[G].
Left- and right-multiplying by G0 and G, respectively, and then rearranging, we
obtain

G = G0 + G0�[G]G.
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However, Eq. (2.4) requires G0 to be well defined, that is, A ∈ SN++. On the other
hand, the Dyson equation (3.5) derived from the LW functional does not rely on
this assumption andmakes sense for all A ∈ dom�. Nonetheless, if for fixed A one
seeks to approximately solve the Dyson equation for G by inserting an ansatz for
the self-energy obtained from many-body perturbation theory, one must be wary in
the case that A /∈ SN++; see Section 4.5.

3.3. Transformation Rule for the LW Functional

Though the dependence of the Luttinger–Ward functional on the interaction
U was only implicit in the previous section, we now explicitly consider this de-
pendence, including it in our notation as �[G, U ]. The same convention will be
followed for other functionals without comment. Proposition 3.10 relates a trans-
formation of the interaction with a corresponding transformation of the Green’s
function.

Proposition 3.10. (Transformation rule)Let G ∈ SN++, U be an interaction satis-
fying the weak growth condition. Let T denote an invertible matrix in R

N×N , as
well as the corresponding linear transformation R

N → R
N . Then

�[T GT ∗, U ] = �[G, U ◦ T ].
Proof. For G ∈ SN++, note that the supremum in (3.2) can be restricted to the set of
μ ∈ G−1(G) that have densities with respect to the Lebesgue measure. (Indeed, for
any μ ∈M2 that does not have a density, H(μ)− ∫ U dμ = −∞.) Then observe

�[G, U ] = −N log(2πe)− log det G + 2 sup
μ∈G−1(G)

[
H(μ)−

∫
U dμ

]

= −N log(2πe)− log det G − 2 inf
{ρ : ρ dx∈G−1(G)}

[∫
(log ρ +U ) ρ dx

]

= −N log(2πe)− 2 inf
{ρ : ρ dx∈G−1(G)}

[∫ (
log
[
(det G)1/2ρ

]+U
)

ρ dx

]
.

Going forward we will denote C := −N log(2πe).
Then for T invertible, we have

�[T GT ∗, U ] = C − 2 inf
ρ dx∈G−1(T GT ∗)

[∫ (
log
[
(det G)1/2 · | det T | · ρ]+U

)
ρ dx

]
.

Now observe by changing variables that

{
ρ : ρ dx ∈ G−1(T GT ∗)

} = {| det T |−1 · ρ ◦ T−1 : ρ dx ∈ G−1(G)
}
.

Therefore

�[T GT ∗, U ]
= C − 2 inf

ρ dx∈G−1(G)

[
| det T |−1

∫ (
log
[
(det G)1/2 · ρ ◦ T−1

]+U
)

ρ ◦ T−1 dx

]
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= C − 2 inf
ρ dx∈G−1(G)

[∫ (
log
[
(det G)1/2 · ρ]+U ◦ T

)
ρ dx

]

= �[G, U ◦ T ],
as was to be shown.

Remark 3.11. Since T is real, the Hermite conjugation T ∗ is the same as thematrix
transpose, and this is used simply to avoid the notation T T .

From the transformation rule we have the following corollary:

Corollary 3.12. Let G ∈ SN++, and consider an interaction U which is a homoge-
neous polynomial of degree 4 satisfying the weak growth condition. For λ > 0, we
have

�[λG, U ] = �[G, λ2U ].

3.4. Impurity Problems and the Projection Rule

For the impurity problem, the interaction only depends on a subset of the
variables x1, . . . , xN , namely the fragment. In such a case, the Luttinger–Ward
functional can be related to a lower-dimensional Luttinger–Ward functional cor-
responding to the fragment. This relation, called the projection rule, is given in
Proposition 3.13 below. In the notation, we will now explicitly indicate the di-
mension d of the state space associated with the Luttinger–Ward functional via
subscript as in �d [G, U ], since we will be considering functionals for state spaces
of different dimensions. We will follow the same convention for other functionals
without comment.

Before we state the projection rule, we record some remarks on the domain
of � and growth conditions in the context of impurity problems. Suppose that the
interaction U depends only on x1, . . . , x p, where p � N , so U can alternatively
be considered as a function onRp. Notice that even if U satisfies the strong growth
condition as a function on Rp, it is of course not true that dom (�N [ · , U ]) = SN .
As mentioned above, this provides a natural reason to consider interactions that
do not grow fast in all directions and motivates the generality of our previous
considerations.

In fact, for

A =
(

A11 A12

AT
12 A22

)
,

one can show by Fubini’s theorem, integrating out the last N − p variables in (2.2),
that A ∈ dom (�N [ · , U ]) if and only if both

A22 ∈ SN−p
++ and A11 − A12A−122 AT

12 ∈ dom
(
�p[ · , U ]) .

Moreover, one can show that for such A,

�N [A, U ] = �p

[
A11 − A12A−122 AT

12, U
]
+ 1

2
log((2π)p−N det A22).
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Therefore, if dom
(
�p[ · , U ( · , 0)]) is open, then so is dom (�N [ · , U ]). It follows

that if U satisfies the weak growth condition as a function on R p, then U also
satisfies the weak growth condition as a function on R

N .

Proposition 3.13. (Projection rule) Let p � N. Suppose that U depends only on
x1, . . . , x p and satisfies the weak growth condition. Hence we can think of U as a
function on both R

N and R
p. Then for G ∈ SN++,

�N [G, U ] = �p [G11, U ] ,

where G11 is the upper-left p × p block of G.

Remark 3.14. If U can be made to depend only on p � N variables by lin-
early changing variables, then we can use the projection rule in combination with
the transformation rule (Proposition 3.10) to reveal the relationship with a lower-
dimensional Luttinger–Ward functional, though we do not make this explicit here
with a formula.

Corollary 3.15. Let p � N, and P be the orthogonal projection onto the subspace

span {e(N )
1 , . . . , e(N )

p }. Suppose that U ( · , 0) satisfies the weak growth condition.
Then for G ∈ SN++,

�N [G, U ◦ P] = �p [G11, U ( · , 0)] ,
where G11 is the upper-left p × p block of G.

Proof of Proposition 3.13. First we observe that we can assume that G is block-
diagonal. To see this, let G ∈ SN++, and write

G =
(

G11 G12

GT
12 G22

)
.

Then block Gaussian elimination reveals that

G =
(

I 0
GT

12G−111 I

)(
G11 0
0 G22 − GT

12G−111 G12

)(
I G−111 G12
0 I

)
.

Define

T :=
(

I 0
GT

12G−111 I

)
, G̃ :=

(
G11 0
0 G22 − GT

12G−111 G12

)
,

so G = T G̃T ∗. Then by the transformation rule, we have

�N [G, U ] = �N [G̃, U ◦ T ] = �N [G̃, U ],
where the last equality uses the fact that U depends only on the first p arguments,
which are unchanged by the transformation T .

Since G̃ is block-diagonal with the same upper-left block as G, we have reduced
to the block-diagonal case, as claimed, so now assume that G ∈ SN++ with

G =
(

G11 0
0 G22

)
.
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Recall the following expression for FN :

FN [G, U ] = sup
μ∈G−1N (G)

[
H(μ)−

∫
U dμ

]
.

Next define π1 : RN → R
p and π2 : RN → R

N−p to be the projections
onto the first p and last N − p components, respectively. Then with ‘#’ denoting
the pushforward operation on measures, π1#μ and π2#μ are the marginals of μ

with respect to the product structure R
N = R

p × R
N−p. Now recall Fact 2.11,

in particular the inequality H(μ) � H(π1#μ) + H(π2#μ). Also note that if μ ∈
G−1N (G), then π1#μ ∈ G−1p (G11) and π2#μ ∈ G−1N−p(G22). Finally observe that
since U depends only on the first p arguments,

∫
U dμ = ∫ U d(π1#μ) for any

μ. Therefore,

FN [G, U ] � sup
μ∈G−1N (G)

[
H(π1#μ)+ H(π2#μ)−

∫
U d(π1#μ)

]

� sup
μ1∈G−1p (G11)

[
H(μ1)−

∫
U dμ1

]
+ sup

μ2∈G−1N−p(G22)

[H(μ2)]

= Fp[G11, U ] + 1

2
log((2πe)N−p det G22).

Since det G = det G11 det G22, it follows that

�N [G, U ] � �p[G11, U ].
For the reverse inequality, let μ1 be arbitrary in G−1p (G11), and consider μ :=

μ1×μ2,whereμ2 is given by the normal distributionwithmean zero and covariance
G22. Then

FN [G, U ] � H(μ)−
∫

U dμ = H(μ1)−
∫

U dμ1 + 1

2
log((2πe)N−p det G22).

Since μ1 is arbitrary in G−1p (G11), it follows by taking the supremum over μ1 that

FN [G, U ] � Fp[G11, U ] + 1

2
log((2πe)N−p det G22),

which implies

�N [G, U ] � �p[G11, U ].
Remark 3.16. The proof suggests that for U depending only on the first p argu-
ments and G block-diagonal, the supremum in the definition of F is attained by a
product measure, which is perhaps not surprising. The proof also suggests, how-
ever, that for such U and general G, the supremum is attained by taking a product
measure and then ‘correlating’ it via the transformation T .

For the impurity problem, Proposition 3.13 immediately implies that the self-
energy has a particular sparsity pattern, and thus we have
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Corollary 3.17. Let p � N and suppose that U (satisfying the weak growth con-
dition) depends only on x1, . . . , x p. Then

�N [G, U ] =
(

�p[G11, U ] 0
0 0

)
.

For example, consider U (x) = 1
8

∑
i jkl vi j x2i x2j . Here the stipulation that U

depend only on the first p arguments corresponds to the stipulation that vi j = 0
unless i, j � p. For such an interaction, in the bold diagrammatic expansion for �

and �, any term in which Gi j appears will be zero unless i, j � p. This is a non-
rigorous perturbative explanation of the fact that � depends only on the upper-left
block of G, which in turn explains the sparsity structure of�, as well as the fact that
� also depends only on the upper-left block of G. However, the developments of
this section apply to interactions U of far greater generality and which may indeed
be non-polynomial, hence not admitting of a bold diagrammatic expansion.

3.5. Continuous Extension of the LW Functional to the Boundary

Thediscussion in this subsection is only heuristic, and the proofs of the theorems
stated here are deferred to Section 5.

Now in Section 3.1 we saw that the functional F[G] diverges at the boundary
∂SN+ = SN+ \SN++. On the other hand, the projection rule together with the trans-
formation rule, motivates the formula by which we can extend � continuously up
to the boundary ∂SN+ .

Indeed, suppose that T ( j) → P , where T ( j) is invertible and P is the orthogonal
projection onto the first p components, as in Corollary 3.15. Then for G ∈ SN++,

�N [T ( j)G(T ( j))∗, U ] = �N [G, U ◦ T ( j)].
By naively taking limits of both sides, we expect that

�N [PG P, U ] = �N [G, U ◦ P],
where G11 is the upper-left p× p block of G. Then by the projection rule we expect

�N

[(
G11 0
0 0

)
, U

]
= �p[G11, U ( · , 0)],

where G11 is the upper-left p× p block of G. After possibly changing coordinates
via the transformation rule, this formula provides a general recipe for evaluating
the LW functional on the boundary ∂SN+ , which is the content of Theorem 3.18
below.

Unfortunately, there are nontrivial analytic difficulties that are hidden by this
heuristic derivation. In fact there exists an interactionU satisfying the weak growth
condition for which the continuous extension property fails. Since the discussion
of this counterexample is somewhat involved, it is postponed to Section 5.5. How-
ever, the continuous extension property is true for U satisfying the strong growth
condition of Definition 2.4.
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Before stating the continuous extension property in Theorem 3.18, we provide
a more careful discussion of the structure of the boundary ∂SN+ . Consider a q-
dimensional subspace K of RN , and let p = N − q. Then the set

SK :=
{

G ∈ SN+ : ker G = K
}

forms a ‘stratum’ of the boundary of S+, which is itself isomorphic to the set of
p × p positive definite matrices. In turn, one can consider boundary strata (of
smaller dimension) nested inside of SK .

We will show that the restriction of the Luttinger–Ward function to such a
stratum is precisely the Luttinger–Ward function for a lower-dimensional system.
To this end, fix a subspace K and choose any orthonormal basis v1, . . . , vp for K⊥.
(The choice of basis is not canonical but can be made for the purpose of writing
down results explicitly.) Define Vp := [v1, . . . , vp].We use this notation to indicate
both the matrix and the corresponding linear map.

Theorem 3.18. (Continuous extension, I) Suppose that U is continuous and sat-
isfies the strong growth condition. With notation as in the preceding discussion,
�N [ · , U ] extends continuously to SK via the rule

�N [G, U ] = �p

[
V ∗p GVp, U ◦ Vp

]

for G ∈ SK . Consequently, �N [ · , U ] extends continuously to all of SN+ .

Remark 3.19. We interpret the extension rule as to set �N [0, U ] = �0[U ] :=
−2 · U (0). Moreover, it will become clear in the proof that even for continuous
interactions U that do not satisfy the strong growth condition, the extension is still
lower semi-continuous on SN+ and continuous on SN++ ∪ {0}.

Changing coordinates via Proposition 3.10,we see that Theorem3.18 is actually
equivalent to the following:

Theorem 3.20. (Continuous extension, II) Suppose that U is continuous and satis-
fies the strong growth condition. For G ∈ S p

++, �[ · , U ] extends continuously via
the rule

�N

[(
G 0
0 0

)
, U

]
= �p [G, U (·, 0)] .

Once again we comment that proof is deferred to Section 5.

4. Bold Diagram Expansion for the Generalized Coulomb Interaction

Using the Luttinger–Ward formalism, in this section we prove that the bold
diagrammatic expansions from the accompanying paper of the self-energy and
the LW functional [for the generalized Coulomb interaction (4.1)] can indeed be
interpreted as asymptotic series expansions in the interaction strength at fixed G.
This provides a rigorous interpretation of the bold expansions that is not merely
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combinatorial. Recall that when each G in the bold diagrammatic expansion of the
self-energy is further expanded using G0 and U , the resulting expansion should
be formally the same as the bare diagrammatic expansion of the self energy. The
combinatorial argument in Section 4 of the accompanying paper guaranteeing this
fact does not need to be repeated in this setting, and we will be able to directly use
Theorem 4.12 from the accompanying paper. The remaining hurdles are analytical,
not combinatorial.

We summarize the results of this section as follows:

Theorem 4.1. For any continuous interaction U : RN → R satisfying the weak
growth condition and any G ∈ SN++, the LW functional and the self-energy have
asymptotic series expansions as

�[G, εU ] =
∞∑

k=1
�(k)[G, U ]εk, �[G, εU ] =

∞∑
k=1

�(k)[G, U ]εk . (4.1)

Moreover, for U a homogeneous quartic polynomial, the coefficients of the asymp-
totic series satisfy

�(k)[G, U ] = 1

2k
Tr
[
G�(k)[G, U ]

]
. (4.2)

If U is moreover a generalized Coulomb interaction (2.7), we have (borrowing the
language of the accompanying paper) that

�
(k)
i j [G, U ] =

∑
�s∈F2PI

2 , order k

F�s(i, j)

S�s

, (4.3)

that is, �(k) is given the sum over bold skeleton diagrams of order k with bold
propagator G and interaction vi jδikδ jl .

Remark 4.2. For a series as in Eq. (4.1) to be asymptotic means that the error of
the M-th partial sum is O(εM+1) as ε→ 0.

Since U is fixed, for simplicity in the ensuing discussion we will omit the
dependence on U from the notation via the definitions �G(ε) := �[G, εU ],
�G(ε) = �[G, εU ], and AG(ε) := A[G, εU ]. We will also denote the series
coefficients via �

(k)
G := �(k)[G, U ] and �

(k)
G := �(k)[G, U ]. In this notation, our

asymptotic series take the form

�G(ε) =
∞∑

k=1
�

(k)
G εk, �G(ε) =

∞∑
k=1

�
(k)
G εk . (4.4)

Notation 4.3. Note carefully that in this section the superscript (k) is merely a
notation and does not indicate the k-th derivative. Such derivatives will be written
out as dk

dεk .
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Now we outline the remainder of this section. In Section 4.1 we prove that the
LW functional and the self-energy do indeed admit asymptotic series expansions.
In Section 4.2 we prove the relation between the LW and self-energy expansions for
quartic interactions, namely Eq. (4.2). Interestingly, this relation—which is well-
known formally based on diagrammatic observations—was originally assumed to
be true to obtain a formal derivation of the LW functional [19,20]. Our proof
here does not rely on any diagrammatic manipulation, only making use of the
transformation rule and the quartic nature of the interactionU . Similar relations for
homogeneous polynomial interactions of different order could easily be obtained.
Next, in Section 4.3, we summarize and expand on the necessary results from the
accompanying paper in diagram-free language; this both reduces the prerequisite
knowledge needed for the remainder of the section and clarifies the arguments
that follow. Finally, in Section 4.4 we prove that when U is a generalized Coulomb
interaction, the series for the self-energy is in fact the bold diagrammatic expansion
of Section 4 of the accompanying paper.

4.1. Existence of Asymptotic Series

In this section we assume that U is continuous and satisfies the weak growth
condition. We first prove the following pair of lemmas.

Lemma 4.4. For any G ∈ SN++, AG(ε)→ G−1 as ε→ 0+.

Lemma 4.5. For G ∈ SN++, all derivatives of the functions �G : (0,∞)→ R and
�G : (0,∞)→ R

N×N extend continuously to [0,∞).

We will convey the continuous extension of the derivatives of �G to the origin
by the notation �

(k)
G := �

(k)
G (0), and similarly for the self-energy �

(k)
G := �

(k)
G (0).

From the preceding it will follow that the series (4.4) are indeed asymptotic series
in the following sense:

Proposition 4.6. For any nonnegative integer M,�G(ε)−∑M
k=1 �

(k)
G εk = O(εM+1)

and �G(ε)−∑M
k=1 �

(k)
G εk = O(εM+1) as ε→ 0+.

Proof. Consider any function f : [0,∞) → R with all derivatives extending
continuously up to the boundary (and so defined at 0). Let δ > 0, so for ε ∈ (δ, 1]
we know by the Lagrange error bound that

∣∣∣∣∣ f (ε)−
M∑

k=0
f (k)(δ)(ε − δ)k

∣∣∣∣∣ � C(ε − δ)M+1 � CεM+1,

where C is a constant that depends only on a uniform bound on
( d
dε

)k+1
f over

[0, 1] (the existence of which is guaranteed by the continuous extension property).
Simply taking the limit of our inequality as δ → 0+, and again employing the

continuous extension property, yields that
∣∣∣ f (ε)−∑M

k=0 f (k)(0)εk
∣∣∣ � CεM+1.

This fact together with Lemma 4.5 proves the proposition.
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4.2. Relating the LW and Self-energy Expansions

The bold diagrams for the Luttinger–Ward functional are pinned down in terms
of the bold diagrams for the self-energy via the following:

Proposition 4.7. If U is a homogeneous quartic polynomial, then for all k,

�
(k)
G =

1

2k
Tr[G�

(k)
G ].

Proof. Observe that by the transformation rule that for any G ∈ SN++, ε, t > 0.

�[tG, εU ] = �[G, εU ◦ (t1/2 I )]
Taking the gradient in G of both sides, we have

t�[tG, εU ] = �[G, εU ◦ (t1/2 I )].
Since U is homogeneous quartic, in fact, we have

�[tG, εU ] = 1

t
�[G, t2εU ].

Then, using this relation, we compute

�[G, εU ] =
∫ 1

0

d

dt
�[tG, εU ] dt

=
∫ 1

0
Tr[G�[tG, εU ]] dt

=
∫ 1

0

1

t
Tr[G�[G, t2εU ]] dt

=
∫ 1

0

1

t

[
M∑

k=1
Tr
[
G�

(k)
G

]
t2kεk + O

(
t2(M+1)εM+1)

]
dt

=
∫ 1

0

[
M∑

k=1
Tr
[
G�

(k)
G

]
t2k−1εk + O

(
t2M+1εM+1)

]
dt.

Now since t ranges from 0 to 1 in the integrand, we have that t2N+1εN+1 � εN+1,
and therefore

�[G, εU ] =
∫ 1

0

[
M∑

k=1
Tr
[
G�

(k)
G

]
t2k−1εk

]
dt + O(εM+1)

=
M∑

k=1

1

2k
Tr
[
G�

(k)
G

]
εk + O(εM+1).

This establishes the proposition.
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4.3. Diagram-free Discussion of Results from the Accompanying Paper

For U satisfying the weak growth condition and A ∈ dom�[ · , U ], define

σ [A, U ] := A − (G[A, U ])−1.

Here we use the lowercase σ to emphasize that the self-energy here is being con-
sidered as a functional of A (not G), together with the interaction.

Now we set the notation of U to indicated a fixed generalized Coulomb inter-
action (2.7). Further define

G A(ε) := G[A, εU ], σA(ε) := σ [A, εU ]. (4.5)

The following lemma concerns the bare diagrammatic expansion of the Green’s
function and the self-energy, that is, the asymptotic series for G A and σA:

Lemma 4.8. For fixed A ∈ SN++, all derivatives dn G A
dεn : (0,∞)→ SN++ and dnσA

dεn :
(0,∞) → SN extend continuously to [0,∞). In fact, interpreted as functions of
both A and ε, dn G A

dεn (ε)and dnσA
dεn (ε) extend continuously toSN++×[0,∞). Moreover,

we have asymptotic series expansions

G A(ε) =
∞∑

k=0
g(k)

A εk, σA(ε) =
∞∑

k=1
σ

(k)
A εk,

where the coefficient functions g(k)
A and σ

(k)
A are polynomials in A−1. More pre-

cisely, g(k)
A and σ

(k)
A are homogeneous polynomials of degrees 2k + 1 and 2k − 1,

respectively. (Note that the zeroth-order term σ
(0)
A is implicitly zero.)

Finally, let G(≤M)
A (ε) and σ

(≤M)
A (ε) denote the M-th partial sums of the above

asymptotic series for G A(ε) and σA(ε), respectively. For every A ∈ SN++, there
exists a neighborhood N of A in SN++ on which the truncation errors can actually
be bounded

∣∣∣G A(ε)− G(≤M)
A (ε)

∣∣∣ � CεM+1,
∣∣∣σA(ε)− σ

(≤M)
A (ε)

∣∣∣ � CεM+1

for all ε ∈ [0, τ ], with C, τ independent of A ∈ N .

Proof. The asymptotic series expansions for G A and �A are established in The-
orems 3.15 and 3.17 of the accompanying paper. The continuous extension of the
derivatives of G A and σA to [0,∞) follows from differentiation under the integral
and simple dominated convergence arguments.

The uniform error bound follows from a Lagrange error bound argument as in
Proposition 4.6, together with the continuity of dn G A

dεn (ε) and dnσA
dεn (ε) on SN++ ×

[0,∞).
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Inspired by Eq. (4.3), let

S(k)
G =

∑
�s∈F2PI

2 , order k

F�s

S�s

.

In fact S(k)
G is polynomial in G, homogeneous of degree 2k − 1. At this point we

do not yet know that S(k)
G coincides with �

(k)
G , and indeed this is what we want to

show. For any G, also define the partial sum

S
(�M)

G (ε) :=
M∑

k=1
S(k)

G εk .

Then the main result (Theorem 4.12) of the accompanying paper can be phrased as
follows:

Theorem 4.9. For any fixed A ∈ SN++, the expressions

S(≤M)

G(≤M)
A (ε)

(ε) =
M∑

k=1
S(k)

G(≤M)
A (ε)

εk, σ
(≤M)
A (ε) =

M∑
k=1

σ
(k)
A εk

agree as polynomials in ε up to order M, and hence they agree as joint polynomials
in (A−1, ε) after neglecting all terms in which ε appears degree at least M + 1.

4.4. Derivation of Self-energy Bold Diagrams

We have already shown that there exist asymptotic series for the LW functional
and the self-energy. The remainder of Theorem 4.1 then consists of identifying
that the self-energy coefficients �

(k)
G are indeed given by the bold diagrammatic

expansion, that is, that �(k)
G = S(k)

G . Equivalently, we want to show that the partial

sums S
(�M)

G (ε) and �
(�M)

G (ε), which are polynomials of degree M in ε, are equal.
We will think of G ∈ SN++ as fixed throughout the following discussion, and we
omit dependence on G from some of the notation below to avoid excess clutter.
We will also think of M as a fixed positive integer and ε > 0 as variable (and
sufficiently small).

Since our series expansion is only valid in the asymptotic sense, for any finite
M we consider the truncation

�
(≤M)
G (ε) :=

M∑
k=1

�
(k)
G εk .

Then we have �G(ε)−�
(≤M)
G (ε) = O(εM+1). For the purpose of this discussion,

O(εM+1) will be thought of as negligibly small, and ‘≈’ will be used to denote
equality up to error O(εM+1). Meanwhile ‘∼’ will be used to denote error that is
O(εM+1−p) for all p ∈ (0, 1), equivalently O(εM+δ) for all δ ∈ (0, 1). We remark
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that the difference between the relations ‘≈’ and ‘∼’ is due to technical reasons to
be detailed later, and may be neglected on first reading.

Note that it actually suffices to show that �
(�M)

G (ε) ∼ S
(�M)

G (ε). Indeed, both
sides are polynomials of degree M in ε. Thus their difference is a polynomial
of degree � M . If the degree-n part of the difference is nonzero for some n =
1, . . . , M , then the difference is not O(εn+δ) for any δ > 0. But if �

(�M)

G (ε) ∼
S

(�M)

G (ε), then the difference is O(εn+δ) for all n = 1, . . . , M , δ ∈ (0, 1). Thus
in this case the difference is zero. With this reduction in mind, we now make a
simple yet critical observation, namely that�(≤M)

G (ε) can be identified as the exact
self-energy yielded by a modified interaction term. This will allow us to identify
a quadratic form A(M)(ε), for which dependence on G has been suppressed from
the notation, which generates (up to negligible error) the Green’s function G under
the interaction εU .

Lemma 4.10. With notation as in the preceding discussion, �
(≤M)
G (ε) is the self-

energy induced by the interactionU (M)
ε (x) := εU (x)+ 1

2 xT
[
�G(ε)−�

(≤M)
G (ε)

]
x,

that is,

�
(≤M)
G (ε) = �[G, U (M)

ε ],
and moreover

A(M)(ε) := A
[
G, U (M)

ε

]
= G−1 +�

(≤M)
G (ε).

Thus we may identify

G = G[A(M)(ε), U (M)
ε ], �

(≤M)
G (ε) = σ [A(M)(ε), U (M)

ε ].
Proof. Recalling that AG(ε) = A[G, εU ] and �G(ε) = �[G, εU ], write

1

2
xT AG(ε)x +U (x) = 1

2
xT
(

AG(ε)−�G(ε)+�
(≤M)
G (ε)

)
x +U (M)

ε (x)

= 1

2
xT
(

G−1 +�
(≤M)
G (ε)

)
x +U (M)

ε (x).

It follows that under the interaction U (M)
ε , the quadratic form G−1 + �

(≤M)
G (ε)

corresponds to the (interacting) Green’s function G. This establishes the second
statement of the lemma, that is, that

A[G, U (M)
ε ] = G−1 +�

(≤M)
G (ε).

Moreover, by the Dyson equation we have that

�[G, U (M)
ε ] = A[G, U (M)

ε ] − G−1 = �
(≤M)
G (ε),

which is the first statement of the lemma. The last statement then follows from the
second, together with the definitions of G[ · , · ] and σ [ · , · ].
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Σ(≤M)
G (ε) S(≤M)

G (ε)

A(M)(ε) = G−1 + Σ(≤M)
G (ε)

σA(M)(ε)(ε) σ
(≤M)
A(M)(ε)(ε)

Lemma 4.13

To prove

Lemma 4.17

Lemma 4.14

Fig. 1. Schematic diagram for proving the bold diagrammatic expansion. Dashed lines in-
dicate ‘∼’, and solid lines indicate ‘≈’

Remark 4.11. Note carefully that Lemma 4.10 is a non-perturbative fact and is
valid for all ε > 0, though we shall apply it in a perturbative context.

At this point we have defined the terms needed to present a schematic diagram
(Fig. 1) of our proof that �

(≤M)
G (ε) ∼ S(≤M)

G (ε). Although the motivation for this
schematic may not be fully clear at this point, the reader should refer back to it as
needed for perspective.

Now recalling the definitions (4.5), we can write

G A(M)(ε)(ε) = G[A(M)(ε), εU ], σA(M)(ε)(ε) := σ [A(M)(ε), εU ]. (4.6)

Meanwhile, following Lemma 4.10 we have the identities

G = G[A(M)(ε), U (M)
ε ], �

(≤M)
G (ε) = σ [A(M)(ε), U (M)

ε ]. (4.7)

Note that pointwise, εU and U (M)
ε differ negligibly, but the form of εU is simpler

and easier to work with going forward.
Based on Eqs. (4.6) and (4.7), one then hopes that G A(M)(ε)(ε) is close to G and

σA(M)(ε)(ε) is close to �
(�M)

G (ε). This is the content of the next two lemmas.

Lemma 4.12. G A(M)(ε)(ε) ∼ G.

Proof. See “Appendix C.11”.

Lemma 4.13. σA(M)(ε)(ε) ∼ �
(≤M)
G (ε).

Proof. Based on Eqs. (4.6) and (4.7), we want to show that σ [A(M)(ε), U (M)
ε ] ∼

σ [A(M)(ε), εU ]. We have already shown that G = G[A(M)(ε), U (M)
ε ] ∼ G[A(M)

(ε), εU ], from which it follows that

A(M)(ε)− (G[A(M)(ε), U (M)
ε ])−1 ∼ A(M)(ε)− (G[A(M)(ε), εU ])−1,

which is exactly what we want to show.

Then we can use σA(M)(ε)(ε) as a stepping stone to relate �
(�M)

G (ε) with the
bare diagrammatic expansion for the self-energy via the following:
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Lemma 4.14. σA(M)(ε)(ε) ≈ σ
(�M)

A(M)(ε)
(ε)

Proof. Since A(M)(ε) = G−1 + O(ε), the result follows from Lemma 4.8 (in
particular, the locally uniform bound on truncation error of the bare self-energy
series).

We can prove a similar fact (which will be useful later on) regarding the bare
series for the interacting Green’s function:

Lemma 4.15. G A(M)(ε)(ε) ≈ G
(�M)

A(M)(ε)
(ε).

Proof. Since A(M)(ε) = G−1 + O(ε), the result follows from Lemma 4.8 (in
particular, the locally uniform bound on truncation error of the bare series for the
interacting Green’s function).

From Lemmas 4.12 and 4.15 we immediately obtain

Lemma 4.16. G
(�M)

A(M)(ε)
(ε) ∼ G.

Finally, we are ready to state and prove the last leg of the schematic diagram
(Fig. 1).

Lemma 4.17. S(≤M)
G ∼ σ

(�M)

A(M)(ε)
(ε).

Proof. Consider S(≤M)

G(≤M)
A

as a polynomial in (A−1, ε), and let P(A−1, ε) be the

contribution of terms in which ε appears with degree at least M + 1. By Theorem
4.9 we have the equality

S(≤M)

G(≤M)
A (ε)

(ε)− P(A−1, ε) = σ
(�M)

A (ε)

of polynomials in (A−1, ε). Then substituting A← A(M)(ε), we obtain

S(≤M)

G(≤M)

A(M)(ε)
(ε)

(ε)− P([A(M)(ε)]−1, ε) = σ
(�M)

A(M)(ε)
(ε). (4.8)

Although the first term on the left-hand side of Eq. (4.8) looks quite intimidating,

we can recognize it as S
(�M)

G(ε) (ε), where

G(ε) := G(≤M)

A(M)(ε)
(ε) ∼ G

is the expression from Lemma 4.16. Since S
(�M)

[ · ] (ε) = ∑M
k=1 S

(k)
[ · ]εk , where each

S(k)
[ · ] is a polynomial (homogeneous of positive degree) in the subscript slot, it

follows that

S
(�M)

G(ε) (ε) ∼ S
(�M)

G (ε).
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Then from Eq. (4.8) we obtain

S(≤M)
G (ε)− P([A(M)(ε)]−1, ε) ∼ σ

(�M)

A(M)(ε)
(ε),

but since [A(M)(ε)]−1 = G + O(ε) and since P only includes terms of degree
at least M + 1 in the second slot, it follows that P([A(M)(ε)]−1, ε) ≈ 0, and the
desired result follows.

Taken together (as indicated in Fig. 1), Lemmas 4.13, 4.14, and 4.17 imply that
�

(≤M)
G (ε) ∼ S(≤M)

G (ε) as desired, and the proof of Theorem 4.1 is complete.

4.5. Caveat Concerning Truncation of the Bold Diagrammatic Expansion

Although the LW and self-energy functionals are defined even for G such that
the corresponding quadratic form A = A[G] is indefinite (and hence there is
no physical bare non-interacting Green’s function), Green’s function methods (as
discussed in Section 4.7 of the accompanying paper) based on truncation of the
bold diagrammatic expansion can fail dramatically in the case of indefinite A. One
can encounter divergent behavior as the interaction becomes small, or the Green’s
function method may fail to admit a solution. Both failure modes can demonstrated
by simple one-dimensional examples. The relevance of these to the solution of the
quantum many-body problem is at this point unclear.

Consider the one-dimensional example of

Z =
∫
R

e
1
2 x2− 1

8λx4 dx, (4.9)

where a = −1. The corresponding non-interacting Green’s function is G0 = −1 <

0 and hence is not even a physical Green’s function.
Nonetheless with λ > 0 the true Green’s function is still well-defined via

G = 1

Z

∫
R

x2e
1
2 x2− 1

8λx4 dx .

We now compute G via the Hartree-Fock method (cf. Section 4.7 of the accom-
panying paper), that is, we approximate the self-energy as

�(1) = −1

2
λG − λG = −3

2
λG.

Hence the self-consistent solution G(1) of the Dyson equation solves

1

G(1)
= −1+ 3

2
λG(1).

There is only one positive (physical) solution to this equation, namely

G(1) = 1+√1+ 6λ

3λ
.



Bold Feynman Diagrams and the Luttinger–Ward Formalism 555

In the spirit of perturbation theory, one might hope that G(1) is a good approxi-
mation to G at least when λ→ 0. However we see just the opposite. This is perhaps
not surprising because the exact Green’s function G itself blows up in this limit.

The failure of the method as λ → 0 can be understood more precisely as
follows. Rewrite the Hamiltonian from (4.9) as

1

8
λ

(
x2 − 2

λ

)2

− 1

2λ
.

The corresponding Gibbs measure (which is unaffected by the additive constant)

then concentrates about two peaks at x = ±
√

2
λ
as λ→ 0. Hence we expect

G ∼ 2λ−1.

We note that, in contrast with the statement of Lemma 4.8, the limit limλ→0+ G(λ)

does not exist. According to Eq. (4.10),

G(1) ∼ 2

3
λ−1.

We find that as λ→ 0+, G and its first order approximation G(1) do not agree.
If we include the second-order terms of the bold diagrammatic expansion

�(2) = 1

2
λ2G3 + λ2G3 = 3

2
λ2G3. (4.10)

Then the self-consistent solution G(2) of the Dyson equation solves

1

G(2)
= −1+ 3

2
λG(2) − 3

2
λ2
(

G(2)
)3

.

This yields a quartic equation in the scalar G(2), which in fact has no solution for
physical G(2), that is, G(2) > 0.

To see this, first ease the notation by substituting x ← G(2), so we are interested
in the solutions x > 0 of

3

2

[
(λ1/2x)4 − (λ1/2x)2

]
+ x + 1 = 0.

However, y4 − y2 � − 1
4 for all y, so the first term is at least − 3

8 , which evidently
implies that no solutions exist for x > 0.
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5. Proof of the Continuous Extension of the LW Functional

In Section 3.5wemotivated the continuous extension of theLWfunctional to the
boundary of SN++ and stated this result in two equivalent forms (Theorems 3.18 and
3.20). In this sectionwe prove the continuous extension property (for interactions of
stronggrowth).Wealso develop the counterexample promised earlier, an interaction
of weak but not strong growth for which the continuous extension property fails.

The section is outlined as follows. In Section 5.1, we describe some preliminary
reductions in the proof of the continuous extension property, after which the proof
can be divided into two parts: lower-bounding the limit inferior of the LW functional
as the argument approaches the boundary and upper-bounding the limit supremum.
In Section 5.2, we prove the lower bound, and in Section 5.3 we prove the upper
bound. In Section 5.4 we provide an alternate view on the continuous extension
property from the Legendre dual side, and in Section 5.5 we use this perspective to
exhibit the aforementioned counterexample to the continuous extension property,
which satisfies the weak growth condition but not the strong one.

5.1. Proof Setup

We are going to prove Theorem 3.20, which as we have remarked suffices to
prove Theorem 3.18 by changing coordinates via Proposition 3.10.

Suppose G ∈ SN+ is of the form

G =
(

G p 0
0 0

)
,

where G p ∈ S p
++, and suppose that G( j) ∈ SN++ with G( j) → G as j →∞. For

each j , diagonalize G( j) =∑N
i=1 λ

( j)
i v

( j)
i

(
v

( j)
i

)T
, where the v

( j)
i are orthonormal,

λ
( j)
i > 0 for i = 1, . . . , N .
We want to show that

�n[G( j), U ] → �p[G p, U ( · , 0)].
It suffices to show that every subsequence has a convergent subsequence with
its limit being �p[G p, U ( · , 0)]. The G( j) are convergent, hence bounded (in the

‖·‖2 norm), so the λ
( j)
i are bounded. Moreover, the v

( j)
i are all of unit length, hence

bounded, so by passing to a subsequence if necessary we can assume that, for each
i , there exist λi , vi such that λ

( j)
i → λi and v

( j)
i → vi as j → ∞. It follows

that the vi are orthonormal and that G can be diagonalized as G =∑N
i=1 λiviv

T
i .

Since G p is positive definite, we must have λi > 0 for i = 1, . . . , p, and moreover
λi = 0 for i = p+1, . . . , N . Evidently, the eigenvectors of G with strictly positive
eigenvaluesmust be precisely the eigenvectors ofG p , concatenatedwith N− p zero
entries, that is, for i = 1, . . . , p, vi must be of the form (∗, 0). By orthogonality,
for i = p + 1, . . . , n, vi must be of the form (0, ∗).
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For convenience we also establish the following notation:

VG := span{v1, . . . , vp}, VG( j) := span{v( j)
1 , . . . , v

( j)
p }.

Now the proof consists of proving two bounds: a lower bound

lim inf
j→∞ �N [G( j), U ] � �p[G p, U (·, 0)]

and an upper bound

lim sup
j→∞

�N [G( j), U ] � �p[G p, U (·, 0)].

These bounds will be proved in the next two sections, that is, Sections 5.2 and 5.3,
respectively.

5.2. Lower Bound

We want to establish a lower bound on �N [G j , U ] via our expression for FN

as a supremum:

FN [G( j), U ] = sup
μ∈G−1N (G( j))

[
H(μ)−

∫
U dμ

]
. (5.1)

This strategy requires us to construct measures μ( j) ∈ G−1N (G( j)). Intuitively,
what one hopes to do (though this strategy will require some modification) is the
following: consider themeasureα onRp that attains the supremum in the analogous
expression forFp[G p, U ( · , 0)], identify thismeasurewith ameasure onVG � R

p,
rotate and scale appropriately to obtain a measure α( j) supported on VG( j) with the
correct second-order moments with respect to this subspace, and finally take the
direct sum with an appropriate Gaussian measure β( j) on V⊥

G( j) . Unfortunately,
due to difficulties of analysis, it is not clear how to then prove the desired limit as
j →∞.

However, the analysis of this limit would be feasible if the μ( j) had compact
support (which they evidently do not). Then our approach is to carry out a construc-
tion that preserves the spirit of the ‘ideal’ construction just described but instead
works with μ( j) of (uniform) compact support.

For convenience we let Mc ⊂M2 denote the subset of measures of compact
support. The acceptability of working with measures of compact support can be
motivated by the following lemma, which will be used below. (In the statement we
temporarily suppress dependence on the interaction and the dimension from the
notation.)

Lemma 5.1. For all G ∈ SN ,

F[G] = sup
μ∈G−1(G)∩Mc

[
H(μ)−

∫
U dμ

]
.
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Now we outline our actual construction of the μ( j). Consider an arbitrary
measure α ∈ G−1p (G p) with compact support on R

p � VG . (We abuse notation
slightly by considering α as a measure on both R

p and VG .) The idea now is to
construct a measure in μ( j) ∈ G−1N (G( j)) by rotating α and scaling appropriately
to obtain a measure α( j) supported on VG( j) and then taking the direct sum with a
compactly supported measure β( j) on V⊥

G( j) (the details of which will be discussed
later). In fact the supremum in (5.1) will be approximately attained by a measure
of this form as j →∞, that is, our lower bound will be tight as j →∞.

Accordingly, for the construction of α( j), let O( j) be the orthogonal linear
transformation sending vi �→ v

( j)
i , and let D( j) be the linear transformation with

matrix (in the v
( j)
i basis) given by

diag

(√
λ

( j)
1 /λ1, . . . ,

√
λ

( j)
p /λp, 1, . . . , 1

)
.

Then define T ( j) := D( j)O( j) and α( j) := T ( j)#α. Note that T ( j) → In as
j →∞. Moreover, observe that α( j) is a measure supported on VG( j) with second-

order moment matrix given by diag(λ( j)
1 , . . . , λ

( j)
p ) with respect to the coordinates

on VG( j) induced by the orthonormal basis v
( j)
1 , . . . , v

( j)
p .

Now we turn to the construction of β( j). Let R > 1 and let γ be a measure
supported on [−R, R] with ∫ x2 dγ = 1. The parameter R will control the size of
the support of β( j) and will be sent to+∞ at the very end of the proof of the lower
bound (after the limit in j has been taken). Then define

�( j) := diag

(√
λ

( j)
p+1, . . . ,

√
λ

( j)
N

)
,

and define a measure β( j) on R
N−p by β( j) := �( j)#(γ × · · · × γ ). Note that

�( j) → 0 as j → ∞. Abusing notation slightly, we will also identify β( j) with
a measure supported on V⊥

G( j) � R
N−p via the identification of the orthonormal

basis v
( j)
p+1, . . . , v

( j)
N for V⊥

G( j) with the standard basis of RN−p.

Finally, define the product measure μ( j) := α( j) × β( j) with respect to the
product structure R

N = VG( j) × V⊥
G( j) , and note that μ( j) ∈ G−1N (G( j)), so by

(5.1),

FN [G( j), U ] � H(α( j) × β( j))−
∫

U dμ( j)

= H(α( j))+ H(β( j))−
∫

U dμ( j)

= H(α)−
∫

U dμ( j) + 1

2

N∑
i=p+1

log λ
( j)
i + (N − p)H(γ ),

where H(α( j)) and H(β( j)) are the entropies of α( j) and β( j) on the probability
spaces VG( j) and V⊥

G( j) , respectively.
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Notice that there is a compact set on which all of the measures μ( j) are sup-
ported. It is then not difficult to see that μ( j) converges weakly to the measure
α × δ0, where the product is with respect to the product structure RN = VG × V⊥G
and δ0 is the Dirac delta measure localized at the origin. By the continuity of U and
the uniform boundedness of the supports of μ( j), this is enough to guarantee that

∫
U dμ( j) →

∫
U d(α × δ0) =

∫
U (·, 0) dα

as j →∞.
Next we write the Luttinger–Ward functional in terms of FN :

1

2
�N [G( j), U ] = FN [G( j), U ] − 1

2
Tr[log(G( j))] − N

2
log(2πe)

= FN [G( j), U ] − 1

2

N∑
i=1

log λ
( j)
i −

N

2
log(2πe).

Then combining the preceding observations yields

lim inf
j→∞

1

2
�N [G( j), U ] � lim inf

j→∞

[
H(α)−

∫
U dμ( j) − 1

2

p∑
i=1

log λ
( j)
i

−N

2
log(2πe)+ (N − p)H(γ )

]

= H(α)−
∫

U (·, 0) dα − 1

2

p∑
i=1

log λi

−N

2
log(2πe)+ (N − p)H(γ )

= H(α)−
∫

U (·, 0) dα − 1

2
Tr
[
log(G p)

]

−N

2
log(2πe)+ (N − p)H(γ ).

Now for any ε > 0, we can choose R sufficiently large and γ supported on
[−R, R] such that H(γ ) � 1

2 log(2πe)− ε. Indeed, note that 1
2 log(2πe) is the en-

tropy of the standard normal distribution, that is, themaximal entropy overmeasures
of unit variance. By restricting the normal distribution to [−R, R] for R sufficiently
large, we can become arbitrarily close to saturating this bound. Therefore we have
that

lim inf
j→∞

1

2
�N [G( j), U ] � H(α)−

∫
U (·, 0) dα − 1

2
Tr
[
log(G p)

]− p

2
log(2πe).

Since α was arbitrary in G−1p (G p)∩Mc, this establishes the desired upper bound

1

2
lim inf

j→∞ �N [G( j), U ] � sup
α∈G−1p (G p)∩Mc

[
H(α)−

∫
U (·, 0) dα

]
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−1

2
Tr
[
log(G p)

]− p

2
log(2πe)

= 1

2
�p[G p, U (·, 0)],

where we have used Lemma 5.1, which allows us to look at the supremum over
compactly supported measures.

Observe that the proof of the lower bound did not require the strong growth
assumption, hence the semi-continuity claim of Remark 3.19.

5.3. Upper Bound

Next we turn to establishing an upper bound. The basic strategy is to select
measures μ( j) that (approximately) attain the supremum in (5.1) and take a limit
as j →∞.

Before proceeding, let ε > 0. Moreover, define π1 to be the orthogonal projec-
tionontoVG � R

p, anddefineπ2 to be theorthogonal projectionontoV⊥G � R
N−p.

Now for every j , as suggested above choose μ( j) ∈ G−1N (G( j)) such that

FN [G( j), U ] � H(μ( j))−
∫

U dμ( j) + ε.

Therefore

�N [G( j), U ] � H(μ( j))−
∫

U dμ( j) − 1

2

N∑
i=1

log(2πeλ( j)
i )

︸ ︷︷ ︸
=:a j

+ ε. (5.2)

Then choose a subsequence jk such that limk→∞ a jk = lim sup j→∞ a j .

Now the μ( j) have uniformly bounded second moments, so by Markov’s in-
equality, the sequence μ( j) is tight. Then by Prokhorov’s theorem (Theorem A.4),
we can assume, by extracting a further subsequence if necessary, that μ( jk ) con-
verges weakly to some measure μ.

We claim that GN (μ) 
 G (so in particular, μ ∈M2). Indeed, for any z ∈ R
N ,

by the Portmanteau theorem for weak convergence of measures (Theorem A.1) we
have ∫

(zT x)2 dμ � lim inf
k→∞

∫
(zT x)2 dμ( jk )

= lim inf
k→∞

∫
zT xxT z dμ( jk ) = lim inf

k→∞ zT G( jk )z = zT Gz.

It follows thatμ ∈M2 and moreover zTGn(μ)z � zT Gz for all z, that is, Gn(μ) 

G. In particular, μ is supported on VG .

Define T ( j) to be the orthogonal transformation that sends v
( j)
i �→ vi , so

T ( j) → In as j →∞. Define ν( j) := T ( j)#μ( j). Again by Prokhorov’s theorem,
we can assume that ν( jk ) converges weakly to some measure ν. In fact, we must
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have ν = μ. To see this, note that for any continuous compactly supported function
φ on R

N , we have that φ ◦ T ( j) → φ uniformly as j →∞. Therefore

lim
j→∞

∫ ∣∣∣φ − φ ◦ T ( j)
∣∣∣ dμ( j) → 0.

Consequently
∫

φ dμ = lim
k→∞

∫
φ dμ( jk ) = lim

k→∞

∫
φ ◦ T ( jk ) dμ( jk ) = lim

k→∞

∫
φ dν( jk ) =

∫
φ dν.

5 Since μ and ν agree on all continuous compactly supported functions, they must
be equal (Riesz representation theorem), and ν( jk ) → μ weakly.

Define μ
( j)
i := πi#ν( j) = (πi ◦ T ( j)

)
#μ( j) and μi := πi#μ for i = 1, 2. It

follows that μ( jk )
i → μi weakly. Notice (using Fact 2.11) that

H(μ( j)) = H(ν( j)) � H(μ
( j)
1 )+ H(μ

( j)
2 ) � H(μ

( j)
1 )+ 1

2

N∑
i=p+1

log(2πeλ( j)
i ).

Therefore, using Lemma 2.9 with the weak convergence μ
( jk )
1 → μ1, we obtain

lim
k→∞ a jk = lim

k→∞

[
H(μ( jk ))−

∫
U dμ( jk ) − 1

2

N∑
i=1

log(2πeλ( jk)
i )

]

� lim sup
k→∞

[
H(μ

( jk )
1 )− 1

2

p∑
i=1

log(2πeλ( j)
i )

]
− lim inf

k→∞

[∫
U dμ( jk )

]

� H(μ1)− lim inf
k→∞

[∫
U dμ( jk )

]
− 1

2
log((2πe)p det G p).

Now for any α ∈ R, define Uα(x) = U (x)− α‖x‖2. Then
∫

U dμ( j) =
∫

Uα dμ( j) + αTr[G( j)].

The utility of this manipulation will be made clear later. By the strong growth
condition, Uα is bounded below. Therefore, by the Portmanteau theorem for weak
convergence of measures,

lim inf
k→∞

[∫
U dμ( jk )

]
= αTr[G] + lim inf

k→∞

[∫
Uα dμ( jk )

]
� αTr[G p] +

∫
Uα dμ.

Since μ is supported on VG , in fact we have∫
Uα dμ =

∫
Uα( · , 0) dμ1 =

∫
U ( · , 0) dμ1 − αTr[Gp(μ1)],

and therefore,

lim
k→∞ a jk � H(μ1)−

∫
U ( · , 0) dμ1 − 1

2
log((2πe)p det G p)+ αTr[Gp(μ1)− G p]
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� Fp[Gp(μ1), U ( · , 0)] − 1

2
log((2πe)p det G p)+ αTr[Gp(μ1)− G p].

Recall from (5.2) that

lim sup
j→∞

�[G( j), U ] � lim
k→∞ a jk + ε.

Since ε > 0 was arbitrary, this means that

lim sup
j→∞

�[G( j), U ] � Fp[Gp(μ1), U ( · , 0)]

−1

2
log((2πe)p det G p)+ αTr[Gp(μ1)− G p].

If we had GN (μ) = G, that is, Gp(μ1) = G p, then we would be done. We have
Gp(μ1) 
 G p, so it will suffice to show that Tr[Gp(μ1) − G p] = 0. Suppose
for contradiction that Tr[Gp(μ1) − G1] < 0. But then, by taking α arbitrarily
large we see that lim sup j→∞�[G( j), U ] = −∞, which is impossible because we
already have a lower bound on lim inf j→∞�[G( j), U ]. Therefore Gp(μ1) = G p,
as desired, and we have

lim sup
j→∞

�[G( j), U ] � �p[G p, U ( · , 0)],

which completes the proof.
Notice the strong growth assumption was only used in this part of the proof

(that is, the proof of the upper bound). In particular, it was only used to ensure that
the measure μ( j) of maximum entropy relative to νU (as in Remark 3.6) subject
to the moment constraint G(μ( j)) = G( j) cannot weakly converge to a measure μ

with G(μ) �= G = lim j→∞ G( j).

5.4. Dual Perspective on Continuous Extension

We now outline how Theorem 3.18 can be reinterpreted via the transformation
rule. This perspective provides another way of understanding Theorem 3.18 and
allows us to present a counterexample that illustrates the necessity of the strong
growth condition of Definition 2.4.

Suppose that Tj are linear transformations such that Tj → P , where P =
Ip ⊕ 0N−p is the orthogonal projection onto span{e(n)

1 , . . . , e(n)
p }. Let G ∈ SN++

with upper-left block given by G p. Then, using the transformation rule, Theorem
3.18, and the projection rule, we obtain

�N [G, U ◦ Tj ] = �N [Tj GT ∗j , U ] → �p[G p, U ( · , 0)] = �N [G, U ◦ P].
This manipulation suggests that Theorem 3.18 is equivalent to the pointwise

convergence
�N [ · , U ◦ Tj ] → �N [ · , U ◦ P] (5.3)

for all Tj → P . To see the equivalence, consider an arbitrary sequence G( j) ∈ SN++
converging, as before, to the block-diagonal matrix G = G p ⊕ 0N−p ∈ SN+ ,



Bold Feynman Diagrams and the Luttinger–Ward Formalism 563

where G p ∈ S p
++. Then we want to show, using Eq. (5.3), that �N [G( j), U ] →

�p[G p, U ( · , 0)].
To this end, let Tj = [G( j)]1/2[G p⊕ IN−p]−1/2, so G( j) = Tj (G p⊕ IN−p)T ∗j ,

and Tj → P . Then (5.3) implies that �N [G p ⊕ IN−p, U ◦ Tj ] → �N [G p ⊕
IN−p, U ◦ P], and combining with the transformation and projection rules yields
Theorem 3.18.

Note that (5.3) is equivalent to the pointwise convergence of concave functions
FN [ · , U ◦ Tj ] → FN [ · , U ◦ P] as Tj → P . Since the domains of these concave
functions are open (namely, SN++), by Theorem A.22 this is actually equivalent to
uniform convergence on all compact subsets ofSN++. Furthermore, sinceFN [ · , U ◦
Tj ] andFN [ · , U ◦P] are both uniformly−∞ onSN\SN++, this is in turn equivalent
to uniform convergence on all compact subsets ofSN that do not contain a boundary
point of SN++, which by Theorem A.20 is equivalent to the hypo-convergence (see

Definition A.19) FN [ · , U ◦ Tj ] h→ FN [ · , U ◦ P]. (Note that the role of epi-
convergence for convex functions is assumed by hypo-convergence for concave
functions.) But then hypo-convergence is equivalent to hypo-convergence of the
concave conjugates (Theorem A.21), that is, of �[ · , U ◦ Tj ] to �[ · , U ◦ P] as
j →∞.

In summary, the continuous extension property is equivalent to the hypo-
convergence �[ · , U ◦ Tj ] e→ �[ · , U ◦ P].

5.5. Counterexample of Weak but Not Strong Growth

Here we give a counter example to show that the weak growth condition is
insufficient for guaranteeing the continuous extension property. By the discussion
of Section 5.4, we need only findU satisfying the weak growth condition for which
�[ · , U ◦ Tj ] fails to hypo-converge to �[ · , U ◦ P].

For example, consider N = 2 and

U (x1, x2) =
{
|x1|4 |x1| � |x2|−1
|x2|−4 |x1| � |x2|−1. .

If x2 = 0, then the first case holds for all x1. This interaction is nonnegative, and
hence satisfies the first part of the weak growth condition of Definition 2.3 with
CU = 0. To see that U satisfies the weak growth condition, we need only show
that dom� is open. Clearly dom� ⊃ SN++. Moreover, the restriction of U to any
line except the x1-axis is bounded, and it follows that in fact dom� = SN++, hence
dom� is open, as desired.

Now let

Tj :=
(
1 0
0 j−1

)
→ P :=

(
1 0
0 0

)
.

Since �[ · , U ◦ P] has an open domain, namely,

dom (�[ · , U ◦ P]) =
{

A = (ai j ) ∈ S2 : a22 > 0
}

,
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the hypo-convergence of �[ · , U ◦ Tj ] to �[ · , U ◦ P] is equivalent to pointwise
convergence (by Theorems A.20 and A.22), which is the same as the pointwise
convergence Z [ · , U ◦ Tj ] → Z [ · , U ◦ P].

Set A = (ai j ) via a11 = a12 = 0, a22 = 1, so A is in the domain of�[ · , U ◦P],
that is, Z [A, U ◦ P] < +∞. However,

Z [A, U ◦ Tj ] =
∫

e−
1
2 |x2|2−U (x1, j−1x2) dx1 dx2

= j ·
∫

e− j2 1
2 |x2|2−U (x1,x2) dx1 dx2.

Now the restriction of the last integrand to any line of constant x2 �= 0 is asymp-
totically equal to e− j2|x2|2−|x2|−4 > 0, so the integral along any such line is +∞,
and by Fubini’s theorem, Z [A, U ◦ Tj ] = +∞. Thus convergence fails at A, and
we have a counterexample as claimed.
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A. Definitions and Results from Convex Analysis

In this section we review some definitions and results from convex analysis. In
this paper many results are stated for concave functions, that is, functions f such
that− f are convex. The standard results of convex analysis can always be applied
by considering negations. We state results below for convex functions to maintain
consistency with the literature. Many results are stated in somewhat more gener-
ality than is needed for the purposes of this paper (for example, we do not simply
conflate proper and non-proper convex functions). This is done to make sure that
the reader can refer to the cited references. The discussion follows developments
from Rockafellar [25] and Rockafellar and Wets [26].

A.1. Convex Sets and Functions

We begin with the definition of convex sets and functions.

Definition A.1. A set C ⊂ R
n is convex if (1 − t)x + t y ∈ C for every x, y ∈ C

and all t ∈ [0, 1].
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Definition A.2. An extended real-valued function f on a convex set C , that is, a
function f : C → [−∞,∞] = R ∪ {−∞,+∞}, is convex if

f ((1− t)x + t y) � (1− t) f (x)+ t f (y)

for all x, y ∈ C and all t ∈ (0, 1), where we interpret∞−∞ = +∞ if necessary.
We say that f is strictly convex on the convex set C if this inequality holds strictly
whenever x �= y.

Definition A.3. The (effective) domainof a convex function f on S, denoted dom f ,
is the set dom f = {x ∈ S : f (x) < +∞}.
The following is an immediate consequence of the preceding definitions:

Lemma A.4. Let f be convex on S ⊂ R
n. Then dom f is convex.

We note that when f ∈ C2(C), our definition of convexity coincides with the
definition from multivariate calculus:

Theorem A.5. Let f ∈ C2(C), where C ⊂ R
n is open and convex. Then f is

convex on C if and only if the Hessian matrix ∇2 f (x) is positive semi-definite for
all x ∈ C.

Proof. See Theorem 4.5 of Rockafellar [25].

Notice that for f convex on a convex set C ⊂ R
n , we can extend to f̃ defined on

R
n by taking f̃ |Rn\C ≡ +∞. It is immediate that f̃ is convex on R

n . Thus one
loses no generality by considering only functions that are convex on R

n .
The following definitions are helpful for ruling out pathologies:

Definition A.6. A convex function f is called proper if dom f �= ∅ and f (x) >

−∞ for all x .

We will only ever need to consider proper convex functions.

Definition A.7. If f is a proper convex function, then f is called closed if it is
also lower semi-continuous. (If f is a non-proper convex function, then f is called
closed if it is either f ≡ +∞ or f ≡ −∞.)

Remark A.8. For the fact that this can be taken as the definition, see Theorem 7.1
of [25].

The convexity of a function guarantees its continuity in a certain sense:

Theorem A.9. A convex function f on R
n is continuous relative to any relatively

open convex set in dom f . In particular, f is continuous on int dom f . In fact, it
holds that a proper convex function f is locally Lipschitz on int dom f .

Proof. See Theorems 10.1 and 10.4 of Rockafellar [25].
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A.2. First-order Properties of Convex Functions

There is an extension of the notion of differentiability that is fundamental to the
analysis of convex functions.

Definition A.10. Let f be a convex function onRn . y ∈ R
n is called a subgradient

of f at x ∈ dom f if f (z) � f (x)+ 〈y, z − x〉 for all z ∈ R
n . The subdifferential

of f at x ∈ dom f , denoted ∂ f (x), is the set of all subgradients of f at x . By
convention ∂ f (x) = ∅ for x /∈ dom f .

Theorem A.11. Let f be a proper convex function. ∂ f (x) is a non-empty bounded
set if and only if x ∈ int dom f .

Proof. See Theorem 23.4 of Rockafellar [25].

It is perhaps no surprise that the derivative and the subdifferential of a convex
function coincide wherever it is differentiable.

Theorem A.12. Let f be a convex function, and let x ∈ R
n such that f (x) is

finite. If f is differentiable at x, then ∇ f (x) is the unique subgradient of f at x,
where ∇ is the gradient defined with respect to the inner product used to define the
subgradient. Conversely, if f has a unique subgradient at x, then f is differentiable
at x.

Proof. See Theorem 25.1 of Rockafellar [25].

A.3. The Convex Conjugate

A fundamental notion of convex analysis is convex conjugation, which extends the
older notion of Legendre transformation.

Definition A.13. Let f be a function R
n → [−∞,+∞]. Then the convex conju-

gate (or, Legendre-Fenchel transform) f ∗ : Rn → [−∞,+∞] with respect to an
inner product 〈 · , · 〉 on R

n is defined by

f ∗(y) = sup
x
{〈x, y〉 − f (x)} = − inf

x
{ f (x)− 〈x, y〉} .

Theorem A.14. Let f be a convex function. Then f ∗ is a closed convex function,
proper if and only if f is proper. Furthermore, if f is closed, then f ∗∗ = f.

Proof. See Theorem 12.2 of Rockafellar [25].

It is an important fact that the subgradients of f and f ∗ are, in a sense, inverse
mappings.

Theorem A.15. If f is a closed proper convex function, then x ∈ ∂ f ∗(y) if and
only if y ∈ ∂ f (x).

Proof. See Corollary 23.5.1 of Rockafellar [25].
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Roughly speaking, differentiability of a convex function corresponds to the strict
convexity of its conjugate. Indeed:

Theorem A.16. If f is a closed proper convex function, then the following are
equivalent:

1. int dom f is nonempty, f is differentiable on int dom f , and ∂ f (x) = ∅ for all
x ∈ dom f \ int dom f .

2. f ∗ is strictly convex on all convex subsets of dom ∂ f ∗ := {y : ∂ f ∗(y) �= ∅}.
Proof. See Theorem 11.13 of [26].

Note that for proper convex f , if dom f ∗ is open, then dom ∂ f ∗ = dom f ∗ by
Theorem A.11, and under the additional assumption that dom f is open, Theorem
A.16 simplifies to the following:

Theorem A.17. Let f is a lower semi-continuous, proper convex function, and
suppose that dom f and dom f ∗ are open. Then the following are equivalent:

1. f is differentiable on dom f .
2. f ∗ is strictly convex on dom f ∗.

A.4. Sequences of Convex Functions

Pointwise convergence of convex functions entails a kind of convergence of their
subgradients.

Theorem A.18. Let f be a convex function on R
n, and let C be an open convex set

on which f is finite. Let f1, f2, . . . be a sequence of convex functions finite on C
and converging pointwise to f on C. Let x ∈ C, and let x1, x2, . . . be a sequence
of points in C converging to x. Then for any ε > 0, there exists N such that

∂ fi (xi ) ⊂ ∂ f (x)+ Bε(0)

for all i � N.

Proof. See Theorem 24.5 of Rockafellar [25].

Besides pointwise convergence, there is in fact another nature of convergence for
convex functions. This is the notion of epi-convergence, which is defined (even for
non-convex functions) as follows:

Definition A.19. Let fi , f be extended-real-valued functions on R
n . Then we say

that the sequence { fi } epi-converges to f , written as f = e limi→∞ fi or fi
e→ f

as i →∞, if for all x ∈ R
n , the following two conditions are satisfied:

lim inf
i

fi (xi ) � f (x) for every sequence xi → x

lim sup
i

fi (xi ) � f (x) for some sequence xi → x .

We say that the sequence { fi } hypo-converges to f , written as f = h limi→∞ fi

or fi
h→ f as i →∞, if {− fi } epi-converges to − f .
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The notion of epi-convergence is particularly natural in the theory of convex func-
tions; accordingly hypo-convergence is more relevant to concave functions. Note
also that epi-convergence is neither stronger nor weaker than pointwise conver-
gence. However, there is a useful theorem that relates the pointwise convergence
and epi-convergence of convex functions.

Theorem A.20. Let fi be a sequence of convex functions on R
n, and let f be

a lower semi-continuous convex function on R
n such that dom f has non-empty

interior. Then f = e limi→∞ fi if and only if the fi converge uniformly to f on
every compact set C that does not contain a boundary point of dom f .

Proof. See Theorem 7.17 of Rockafellar and Wets [26].

Under certain mild conditions, the epi-convergence of a sequence of convex func-
tions is equivalent to the epi-convergence of the corresponding sequence of conju-
gate functions. Indeed, the following theorem is a naturalmotivation for considering
epi-convergence as opposed to pointwise convergence.

Theorem A.21. Let fi and f be lower semi-continuous, proper convex functions
on R

n. Then the fi epi-converge to f if and only if the f ∗i epi-converge to f ∗.

Proof. See Theorem 11.34 of Rockafellar and Wets [26].

Finally, under certain circumstances one can upgrade mere pointwise convergence
of convex functions to uniform convergence on compact subsets:

Theorem A.22. Let fi and f be finite convex functions on an open convex set
O ⊂ R

n, and suppose that fi → f pointwise on O. Then fi converges uniformly
to f on every compact subset of O.

Proof. See Corollary 7.18 of Rockafellar and Wets [26].

B. Classical Results on Weak Convergence of Probability Measures

For completeness we recall here several classical results on the weak convergence
of measures. For reference, see, for example, Billingsley [6].
Let S be a metric space, and let P(S) denote the set of probability measures on S
(equipped with the Borel σ -algebra). We say that a sequence μk ∈ P(S) converges
weakly to μ ∈ P(S), denoted μk ⇒ μ, if

∫
f dμk →

∫
f dμ as k →∞ for all

bounded, continuous functions f : S → R. A number of equivalent characteri-
zations of weak convergence are given in the following result, often known as the
Portmanteau theorem:

Theorem A.1. (Portmanteau) Let S be a metric space, and let μk, μ ∈ P(S). The
following are all equivalent conditions for the weak convergence μk ⇒ μ:

1. limk→∞
∫

f dμk =
∫

f dμ for all bounded, continuous functions f : S → R.
2. lim infk→∞

∫
f dμk �

∫
f dμ for all lower semi-continuous functions f :

S→ R bounded from below.
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3. lim infk→∞ μk(U ) � μ(U ) for all open sets U ⊂ S.

Remark A.2. There are several other equivalent conditions often included in the
statement of this result.

A condition for extracting a weakly convergent subsequence, as guaranteed by
Prokhorov’s theorem below, is given by the following notion of tightness:

Definition A.3. Let S be a metric space equipped with the Borel σ -algebra. A set
C of measures on S is called tight if for any ε > 0, there exists a compact subset
K ⊂ S such that μ(K ) > 1 − ε for all μ ∈ C. A sequence of measures is called
tight if the set of terms in the sequence is tight.

Theorem A.4. (Prokhorov) Let S be a metric space equipped with the Borel σ -
algebra. Then any tight sequence inP(S) admits a weakly convergent subsequence.

C. Proof of Lemmas

C.1. Lemma 2.8

Proof. Suppose μ� λ is inM2 and write dμ = ρ dx where ρ is the probability
density. Since μ � λ, Cov(μ) must be positive definite. Let μG be the Gaussian
measure with the same mean and covariance as μ, and let ρG be the corresponding
probability density. Then one can compute that

∫
ρ log ρG dx = −1

2
log
(
(2πe)N det Cov(μ)

)

(and in particular this integral is absolutely convergent). Now

ρ log ρ = ρ log ρG + ρ log
ρ

ρG
.

The first term on the right-hand side of this equation is absolutely integrable, and
the integral of the second term exists (in particular, the integral of the negative part
of the second term is finite, and the value of the full integral is in fact −HμG (μ)).
Therefore the integral

∫
ρ log ρ dx ∈ (−∞,∞] exists. Moreover,

H(μ) = −
∫

ρ log ρ dx = 1

2
log
(
(2πe)N det Cov(μ)

)

+HμG (μ) � 1

2
log
(
(2πe)N det Cov(μ)

)

with equality if and only if μG = μ.
To prove the second inequality in the statement of the lemma, define μ := ∫ x dμ
to be the mean of μ. Then Cov(μ) = G(μ)−μ μT , so in particular det Cov(μ) �
det G(μ), with equality if and only if μ = 0.
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C.2. Lemma 2.9

Proof. Without loss of generality we can assume that μ j = ρ j dx for all j .
First, by the Portmanteau theorem for weak convergence of measures (Theorem
A.1) we have, for any z ∈ R

N , that

zTG(μ)z =
∫

(zT x)2 dμ � lim inf
j→∞

∫
(zT x)2 dμ( j)

= lim inf
j→∞

∫
zT xxT z dμ( j) = lim inf

j→∞ zTG(μ j )z � C‖z‖2.
It follows that μ ∈M2 (and moreover G(μ) 
 C · In).
Our goal is to put ourselves in a position to use the upper semi-continuity (note
our sign convention) of the relative entropy with respect to the topology of weak
convergence (see Fact 2.7). Let β > 0, and let Zβ =

∫
e−β‖x‖2 dx . Let γβ be the

Gaussian measure with density proportional to e−β‖x‖2 . Then

H(μ j ) = −
∫

ρ j log ρ j dx

= log(Zβ)−
∫

ρ j (x) log
ρ j (x)

1
Zβ

e−β‖x‖2 dx + β

∫
ρ j (x)‖x‖2 dx

= log(Zβ)+ Hγβ (μ j )+ βTr[G(μ j )].
Then by the upper semi-continuity of the relative entropy with respect to the topol-
ogy of weak convergence, we have

lim sup
j→∞

H(μ j ) � log(Zβ)+ Hγβ (μ)+ βC N = H(μ)+ β (C N − Tr[G(μ)]) .

Since this inequality holds for any β > 0, the lemma follows.

C.3. Fact 2.11

Proof. We can assume thatμ is absolutely continuous with respect to the Lebesgue
measure, that is, has a density ρ (otherwise H(μ) = −∞ and the inequality is
trivial). It follows that μi := πi#μ are absolutely continuous with respect to the
Lebesgue measure, that is, have densities ρi , for i = 1, 2. Let x = (x1, x2) denote
the splitting of x ∈ R

N according to the product structure R
N = R

p × R
N−p.

Then using the fact that μ1 × μ2 has density ρ1(x1)ρ2(x2), one directly computes
that

H(μ1)+ H(μ2)+ Hμ1×μ2 (μ)

=
∫

ρ1(x1) log ρ1(x1) dx1 +
∫

ρ2(x2) log ρ2(x2) dx2 +
∫

ρ(x) log
ρ(x)

ρ1(x1)ρ2(x2)
dx

=
∫

ρ(x) log ρ1(x1) dx +
∫

ρ(x) log ρ2(x2) dx +
∫

ρ(x) log
ρ(x)

ρ1(x1)ρ2(x2)
dx

=
∫

ρ(x) log ρ(x) dx

= H(μ),

but by Fact 2.7, the relative entropy term is non-negative.
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C.4. Lemma 3.2

Proof. Upper semi-continuity follows directly from Fatou’s lemma. � is proper
because its domain is nonempty and evidently � does not attain the value +∞.
Now let θ ∈ [0, 1] and A1, A2 ∈ dom�. Then

�[θ A1 + (1− θ)A2] = − log
∫
RN

(
e−

1
2 xT A1x−U (x)

)θ (
e−

1
2 xT A2x−U (x)

)1−θ

dx

� − log

[(∫
RN

e−
1
2 xT A1x−U (x) dx

)θ (∫
RN

e−
1
2 xT A2x−U (x) dx

)1−θ
]

= θ�[A1] + (1− θ)�[A2],

wherewe have usedHölder’s inequality in the second step. This establishes concav-
ity. Strict concavity on dom� follows from the following fact: Hölder’s inequality

holds with equality in this scenario if and only if e− 1
2 xT A1x−U (x) = e− 1

2 xT A2x−U (x)

for all x , that is, if and only if A1 = A2.
Lastly, observe that since dom� is an open set, for any A ∈ dom�,

∫
RN

eδx2e−
1
2 xT Ax−U (x) dx < +∞

for some δ > 0. Now, for any polynomial P , there exists a constant C such that for
all A′ in a sufficiently small neighborhood of A,

P(x)e−
1
2 xT A′x−U (x) � Ceδx2e−

1
2 xT Ax−U (x).

Since derivatives of all orders of the integrand in (2.2) are of the form

P(x)e−
1
2 xT Ax−U (x),

differentiation under the integral is justified, and the smoothness result follows.

C.5. Lemma 3.4

Proof. First assume A ∈ dom�, so Z [A] < +∞. Let μ ∈ M2 and define
f (x) := 1

2 xT Ax+U (x). For any f such that e− f is integrable, define ν f to be the
probability measure with density proportional to e− f . Then, provided that μ� λ,

∫
f dμ− H(μ) = �[A] −

∫
log

(
1

Z [A]e
− f
)

dμ− H(μ)

= �[A] +
∫

log

(
dμ

dλ

)
− log

(
dν f

dλ

)
dμ

= �[A] +
∫

log
dμ

dν f
dμ

= �[A] − Hν f (μ) � �[A].

(C.1)

Since μ ∈ M2, we have H(μ) < +∞ as discussed in Remark 3.5. Careful
observation reveals that manipulations are valid in the sense of the extended real
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numbers even when
∫

f dμ = +∞. Moreover, μ �� λ if and only if μ �� ν f , in
which case both sides of (C.1) are +∞. Therefore (C.1) holds for all μ ∈M2.
For A ∈ dom�, (C.1) establishes the ‘�’ direction of (3.3). For A /∈ dom�,
�[A] = −∞, so this direction is immediate.
Next suppose that A ∈ dom�. Since dom� is open, it follows that ν f ∈ M2.
From (C.1) and the inequality −Hν f (μ) � 0 (which holds with equality if and
only if μ = ν f ), it follows that (3.3) holds. Moreover, that the infimum in (3.3) is

uniquely attained at μ = ν f , that is, at dμ(x) = 1
Z [A]e

− 1
2 xT Ax−U (x) dx .

C.6. Lemma 3.7

Proof. By definitionF[G] = −∞whenever G ∈ SN\SN+ . Nowwe show that also
F[G] = −∞ for G on the boundary ∂SN+ . This follows from the fact that for such
G, anyμ ∈ G−1(G) is supported on a subspace ofRN of positive codimension, that
is, not absolutely continuous with respect to the Lebesgue measure, and therefore
H(μ) = −∞. Moreover, since such μ is in M2, we have (via the weak growth
condition) that

∫
U dμ ∈ (−∞,∞], so the expression within the supremum of

(3.2) is −∞ for all μ ∈ G−1(G).
Meanwhile, for G ∈ SN++, one can see that F[G] > −∞ by considering μ to
be mean-zero with a compactly supported smooth density, linearly transformed to
have the appropriate covariance G. For such μ, both terms in the supremum are
finite.
Moreover, for G ∈ SN++ we also have that F[G] < +∞. Indeed, for μ ∈ G−1(G),
by Lemma 2.8 we have H(μ) � 1

2 log
[
(2πe)n det G

]
. Since

∫
U dμ � −CU (1+

Tr G), we have a finite upper bound on the expression in the supremum in (3.2),
which finishes the proof.

C.7. Lemma 3.8

Proof. Let G1, G2 ∈ SN++, θ ∈ [0, 1], and ε > 0. Furthermore let μ1, μ2 ∈M2
such that μi ∈ G−1(Gi ) and �[μi ] � F[Gi ] − ε/2. Then, noting that θμ1+ (1−
θ)μ2 ∈ G−1 (θG1 + (1− θ)G2), we observe

F[θG1 + (1− θ)G2] = sup
μ∈G−1(θG1+(1−θ)G2)

�[μ]

� � [θμ1 + (1− θ)μ2]

� θ�[μ1] + (1− θ)�[μ2]
� θF[G1] + (1− θ)F[G2] − ε,

where the penultimate step employs convexity of�. Since ε was arbitrary, we have
established concavity.
The fact thatF is proper follows from Lemma 3.7. SinceF is concave, by Theorem
A.9 it is continuous on int domF , which is in fact all of domF by the weak growth
assumption. Thus we only need to check upper semi-continuity at points G outside
of domF . AtG /∈ domF = SN+ , upper semi-continuity is trivial becauseF ≡ −∞
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on a neighborhood of G. Therefore let G ∈ ∂SN++ and suppose that Gk ∈ SN++
such that Gk → G as k →∞. We need to show that lim supk→∞ F[Gk] = −∞.
Throwing out allGk /∈ SN++ from the sequence cannot increase the limit superior, so
we can just assume that Gk ∈ SN++ for all k. Since G ∈ ∂SN++, we have det G = 0,
and therefore det Gk → 0. By Lemma 3.7 we have

F[Gk] � 1

2
log
[
(2πe)n det Gk

]+ CU (1+ Tr Gk).

Since the right-hand side of this inequality goes to −∞ as k → ∞, the proof is
complete.

C.8. Lemma 3.9

Proof. Observe that (1)� andF are upper semi-continuous, proper concave func-
tions (by Lemmas 3.2 and 3.8), (2) F = �∗ and � = F∗, and (3) both dom� and
domF = SN++ are open. Then the strict concavity and differentiability of F on
domF = SN++ follow directly from Theorem A.17.
Now we turn to proving C∞-smoothness. Though infinite-order differentiability
is not typically discussed in convex analysis, it can be obtained from infinite-
order differentiability and strict convexity of the convex conjugate via the implicit
function theorem. Indeed, define the smooth function h : Sn++ × dom�→ Sn by

h(G, A) = ∇�[A] − G.

Then Dh = ( −ISn
∣∣ ∇2�

)
, and since � is smooth and strictly concave, the

right block is invertible for all A, G. Fix some G ′ ∈ Sn++, and let A′ = ∇F[G ′] ∈
dom�, so h(G ′, A′) = 0. Then the implicit function theorem gives the existence of
a smooth function φ on a neighborhood V ⊂ Sn++ of G ′ such that h(G, φ(G)) = 0
for all G ∈ V . But this means precisely that φ = ∇F , hence in particular ∇F is
smooth at G ′.

C.9. Lemma 4.4

Proof. Write

Z [A, εU ] =
∫

e−
1
2 xT Ax−εU (x) dx .

We want to show that as ε→ 0+, Z [ · , εU ] epi-converges (see Definition A.19) to
Z [ · , εU ]. If so, then−�[ · , εU ] epi-converges−�[ · , 0], and Theorems A.21 and
A.20 yield in particular that F[ · , εU ] → F[ · , 0] pointwise on SN++ as ε → 0+.
Then by Theorem A.18 we have the pointwise convergence of the gradients on
SN++, that is, A[G, εU ] → A[G, 0] = G−1 as ε→ 0+ for G ∈ SN++.
Thus it remains to show that Z [ · , εU ] epi-converges to Z [ · , εU ]. The first of the
conditions in Definition A.19 follows immediately from Fatou’s lemma, so we need
only show that for any A ∈ SN , there exists a sequence Aε → A such that

lim sup
ε→0+

Z [Aε, εU ] � Zε[A, 0]
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In particular, it suffices to show that

lim sup
ε→0+

Z [A, εU ] � Zε[A, 0]. (C.2)

For A /∈ SN++, the righthand side is +∞, so the inequality holds trivially.
Thus assume A ∈ SN++. By the weak growth condition, we can write U (x) =
Ũ (x)− λ− λ‖x‖2, where C > 0 and Ũ � 0. Then

Z [A, εU ] =
∫

eελe−
1
2 xT (A−ελ)x−εŨ (x) dx �

∫
eελe−

1
2 xT (A−ελ)x dx,

and evidently the righthand side converges to Z [A, 0] by dominated convergence.

C.10. Lemma 4.5

Proof. Let G ∈ SN++. Recall Eq. (C.2) from the proof of Lemma 4.4. From this
inequality, it follows that there exists τ > 0 and an open neighborhood N of G−1
in SN++ such that A ∈ dom�[ · , εU ] for all (ε, A) ∈ (0, τ )×N .
Now consider ε̂ > 0 sufficiently small so that ε̂ < τ and Â := AG(ε̂) ∈ N
(possible by Lemma 4.4). Define the smooth function h : (0, τ )×N → SN by

h(ε, A) = ∇A�[A, εU ] − G.

Then Dh(ε, A) = ( ∗ ∣∣ ∇2
A�[A, εU ] ), and since �[ · , εU ] is smooth and strictly

concave, the right block is invertible for all ε, A. Moreover, we have h(ε̂, Â) = 0
by construction. Then the implicit function theorem gives the existence of a smooth
function φ on a neighborhood I of ε̂ such that h(ε, φ(ε)) = 0 for all ε ∈ I , but this
means precisely that φ = AG . The implicit function theorem then also says that

A′G(ε) = −(∇2
A�[AG(ε), εU ])−1 ∂h

∂ε
(ε, AG(ε)) (C.3)

for all ε ∈ I , where A′G denotes the ordinary derivative of the function AG of a
single variable. In particular Eq. (C.3) holds at ε = ε̂, but since ε̂ was arbitrary
(beyond being taken sufficiently small), it follows that Eq. (C.3) simply holds for
all ε > 0 sufficiently small.
We want to show that all derivatives of AG : (0,∞) → SN extend continuously
to [0,∞). Starting with A′G , we can examine these functions by taking further
derivatives on the righthand side of Eq. (C.3). The result will be an expression
involving integrals of the form

∫
P(x, U (x)) e−

1
2 xT AG (ε)x−εU (x) dx,

where P is some polynomial, and it suffices to show that such integrals converge
to their desired limits ∫

P(x, U (x)) e−
1
2 xT G−1x dx .
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The argument is by dominated convergence. First observe that from the at-most-
exponential growth assumption (Assumption 2.5), it follows that there exist a, b >

0 such that |P(x, U (x))| � aeb‖x‖ for all x . As in the proof of Lemma 4.4, write
U (x) = Ũ (x)− λ− λ‖x‖2, where C > 0 and Ũ � 0. Then

|P(x, U (x)) e−
1
2 xT AG (ε)x−εU (x)| � |P(x, U (x))| eελe−

1
2 xT (AG (ε)−ελ)x−εŨ (x)

� aeb‖x‖eελe−
1
2 xT (AG (ε)−ελ)x .

Then for all ε > 0 small enough such that ε < 1 and AG(ε)− ελ 
 1
2G−1, we see

that the absolute value of the integrand is bounded uniformly by

aeb‖x‖eλe−
1
4 xT G−1x ,

which is integrable. This completes the dominated convergence argument, and we
conclude that all derivatives of AG extend continuously to [0,∞).
Next we aim to use the preceding to show that all derivatives of �G and �G also
extend continuously to [0,∞).
To this end, recall the Dyson equation

�G = AG − G−1,

which requires that the desired extension property of �G is equivalent to that of
AG , which we have already proved.
Now for any ε > 0, we have

�G(ε) = 2F[G, εU ] − Tr logG − N log(2πe)

= Tr[AG(ε)G] − 2�[AG(ε), εU ] − Tr logG − N log(2πe)

by Legendre duality, from which it follows from our extension property for AG ,
together with the arguments used to establish it, that all derivatives of �G extend
continuously to [0,∞).

C.11. Lemma 4.12

Proof. Based on Eqs. (4.6) and (4.7), we want to show that G[A(M)(ε), U (M)
ε ] ∼

G[A(M)(ε), εU ]. As a first step, we aim to show that Z [A(M)(ε), U (M)
ε ] ∼ Z [A(M)

(ε), εU ]. Indeed, we can write

Z [A(M)(ε), εU ] − Z [A(M)(ε), U (M)
ε ]

=
∫

e−
1
2 xT A(M)(ε)x−εU (x)

⎛
⎝1− e

− 1
2 xT

[
�G (ε)−�

(�M)

G (ε)

]
x

⎞
⎠ dx .(C.4)

We can choose C such that

−CεM+1 
 �G(ε)−�
(�M)

G (ε) 
 CεM+1

for all ε > 0 sufficiently small.
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Now let R(ε) = ε−p/2 for p ∈ (0, 1). We split the integral in (C.4) into a part
over BR(ε)(0) and another part over the complement. The integrand is dominated

by e−δxT x for some δ uniform in ε, the integral of which over the complement of
BR(ε)(0) decays super-algebraically as ε→ 0, so we can neglect this contribution.
Meanwhile, for x ∈ BR(ε)(0), we have

∣∣∣xT
[
�G(ε)−�

(�M)

G (ε)
]

x
∣∣∣ � CεM+1−p,

hence there exists C ′ such that∣∣∣∣∣∣1− e
− 1

2 xT
[
�G (ε)−�

(�M)

G (ε)

]
x

∣∣∣∣∣∣ � C ′εM+1−p

for all x ∈ BR(ε)(0). Combining with (C.4) and dominated convergence, we have

established Z [A(M)(ε), U (M)
ε ] ∼ Z [A(M)(ε), εU ].

This result, together, together with analogous arguments applied to integrals of the
form

∫
xi x j e−

1
2 xT A(M)(ε)x−εU (x)

⎛
⎝1− e

− 1
2 xT

[
�G (ε)−�

(�M)

G (ε)

]
x

⎞
⎠ dx,

yields G[A(M)(ε), U (M)
ε ] ∼ G[A(M)(ε), εU ].

C.12. Lemma 5.1

Proof. For convenience, we define

Fc[G] := sup
μ∈G−1(G)∩Mc

[
H(μ)−

∫
U dμ

]
.

Evidently Fc � F and Fc[G] = −∞ if G /∈ SN++, so we can restrict attention to
G ∈ SN++.
Fix ε > 0. Let G ∈ SN++, so F[G] is finite, and let μ ∈M2 such that

H(μ)−
∫

U dμ � F[G] − ε/2.

In particular, H(μ) �= −∞, so dμ = ρ dx for some density ρ. Then consider
the measure μR ∈Mc(R) given by density ρR := Z−1R · ρ · χR , where χR is the
indicator function for BR(0) and Z R =

∫
BR(0) ρ dx . By monotone convergence,

Z R → 1.
Unfortunately we cannot expect G(μR) = G, but we do have G(μR) → G

(following from dominated convergence, together with the finite second moments
of μ). We then want to modify μR (keeping its support compact) to construct a
nearby measure with the correct second moments.
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To this end let G R = τR[G − G(μR)] + G(μR), where τR > 1 is chosen so that
τR →+∞ and the eigenvalues of G R remain uniformly bounded away from zero
and infinity (possible since G(μR)→ G). Note that we have G = τ−1R G R + (1−
τ−1R )G(μR).
Now let π ∈M2 be any compactly supported measure with a density and finite

entropy, and let πR = TR#π , where TR is a linear transformation chosen so that
G(πR) = G R . Since the eigenvalues of G R are uniformly bounded away from
zero and infinity, the TR can be chosen to have determinants uniformly bounded
away from zero and infinity (which guarantees that that the |H(πR)| are uniformly
bounded), and πR can be taken to have uniformly bounded support. Then finally
we can define a measure νR := τ−1R πR + (1 − τ−1R )μR , so G(νR) = G and νR is
compactly supported.
For the proof it suffices to show that

H(νR)−
∫

U dνR → H(μ)−
∫

U dμ (C.5)

as R →∞.
By the weak growth condition (Definition 2.3), we can choose a constant C such
that Ũ defined by Ũ (x) := C(1+ ‖x‖2)+U (x) satisfies Ũ (x) � ‖x‖2. Now

∫
(1+ ‖x‖2) dμR →

∫
(1+ ‖x‖2) dμ < +∞

by monotone convergence together with the fact that Z R → 1. Furthermore

τ−1R

∫
(1+ ‖x‖2) dπR → 0,

so in fact ∫
(1+ ‖x‖2) dνR →

∫
(1+ ‖x‖2) dμ < +∞

Therefore, without loss of generality, we can prove C.5 under the assumption
that U (x) � ‖x‖2. But then ∫ U dμR →

∫
U dμ by monotone convergence,

and τ−1R

∫
U dπR → 0 since the πR have uniformly bounded support, so in fact∫

U dνR →
∫

U dμ.
Then we need only show that H(νR) → H(μ). Here one verifies from the

construction that νR converges weakly to μ, and moreover the second moments of
νR, μ are uniformly bounded, so by Lemma 2.9, we have lim supR H(νR) � H(μ).
However, by the concavity of the entropy, we have H(νR) � τ−1R H(πR) + (1 −
τ−1R )H(μR).Nowrecall that the |H(πR)| are uniformlybounded in R, so τ−1R H(πR)→
0. Thus the statement lim inf R H(νR) � H(μ) (and hence also H(νR)→ H(μ))
will follow if we can establish H(μR)→ H(μ).
Now

H(μR) = log(Z R)− Z−1R

∫
BR(0)

ρ log ρ dx,
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but we know that Z R → 1, so we need only show that
∫

BR(0)
ρ log ρ dx →

∫
ρ log ρ dx .

From Lemma 2.8, the negative part of ρ log ρ is integrable. But then the fact that
H(μ) > −∞ precisely means that the positive part of ρ log ρ is integrable, that
is, ρ log ρ is absolutely integrable. Then the desired fact follows from dominated
convergence.

References

1. Altland, A.; Simons, B.D.: Condensed Matter Field Theory. Cambridge University
Press, Cambridge, 2010

2. Amit, D.J.;Martin-Mayor, V.:Field Theory, the Renormalization Group, and Critical
Phenomena: Graphs to Computers.World Scientific PublishingCo Inc, Singapore, 2005

3. Baerends, E.J.: Exact exchange-correlation treatment of dissociated H2 in density
functional theory. Phys. Rev. Lett. 87, 133004, 2001

4. Baym, G.; Kadanoff, L.P.: Conservation laws and correlation functions. Phys. Rev.
124, 287, 1961

5. Benlagra, A.; Kim, K.-S.; Pépin, C.: The Luttinger-Ward functional approach in the
Eliashberg framework: a systematic derivation of scaling for thermodynamics near the
quantum critical point. J. Phys. Condens. Matter 23, 145601, 2011

6. Billingsley, P.: Probability and Measure. Wiley, New York, 2012
7. Blöchl, P.E.; Pruschke, T.; Potthoff, M.: Density-matrix functionals from Green’s

functions. Phys. Rev. B 88, 205139, 2013
8. Dahlen, N.E.; Van Leeuwen, R.; Von Barth, U.: Variational energy functionals of

the green function tested on molecules. Int. J. Quantum Chem. 101, 512–519, 2005
9. Elder, R.: Comment on “Non-existence of the Luttinger-Ward functional and mis-

leading convergence of skeleton diagrammatic series for Hubbard-like models”.
arXiv:1407.6599, 2014

10. Georges, A.; Kotliar, G.; Krauth, W.; Rozenberg, M.J.: Dynamical mean-field
theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev.
Mod. Phys. 68, 13, 1996

11. Gunnarsson, O.; Rohringer, G.; Schäfer, T.; Sangiovanni, G.; Toschi, A.: Break-
down of traditional many-body theories for correlated electrons. Phys. Rev. Lett. 119,
056402, 2017

12. Hartmann, C.; Richter, L.; Schütte, C.; Zhang, W.: Variational characterization
of free energy: theory and algorithms. Entropy 19, 626, 2017

13. Ismail-Beigi, S.: Correlation energy functional within the GW-RPA: exact forms, ap-
proximate forms, and challenges. Phys. Rev. B 81, 1–21, 2010

14. Kotliar, G.; Savrasov, S.Y.; Haule, K.; Oudovenko, V.S.; Parcollet, O.; Mari-
anetti, C.A.: Electronic structure calculations with dynamical mean-field theory. Rev.
Mod. Phys. 78, 865, 2006

15. Kozik, E.; Ferrero, M.; Georges, A.: Nonexistence of the Luttinger–Ward Func-
tional andMisleading Convergence of Skeleton Diagrammatic Series for Hubbard-Like
Models. Phys. Rev. Lett. 114, 156402, 2015

16. Levy, M.: Universal variational functionals of electron densities, first-order density
matrices, and natural spin-orbitals and solution of the v-representability problem. Proc.
Natl. Acad. Sci. 76, 6062–6065, 1979

17. Lieb, E.H.: Density functional for Coulomb systems. Int J. Quantum Chem. 24, 243,
1983

http://arxiv.org/abs/1407.6599


Bold Feynman Diagrams and the Luttinger–Ward Formalism 579

18. Lin, L.; Lindsey, M.: Variational structure of Luttinger–Ward formalism and bold
diagrammatic expansion for Euclidean lattice field theory. Proc. Natl. Acad. Sci. 115,
2282, 2018

19. Luttinger, J.M.;Ward, J.C.: Ground-state energy of amany-fermion system. II.Phys.
Rev. 118, 1417, 1960

20. Martin, R.M.; Reining, L.; Ceperley, D.M.: Interacting Electrons. Cambridge Uni-
versity Press, Cambridge, 2016

21. Mermin, N.D.: Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137,
A1441, 1965

22. Negele, J.W.;Orland, H.:Quantum Many-Particle Systems. Westview, Boulder, 1988
23. Rassoul-Agha, F.; Seppäläinen, T.: A Course on Large Deviations with an Introduc-

tion to Gibbs Measures. American Mathematical Society, Providence, 2015
24. Rentrop, J.F.;Meden, V.; Jakobs, S.G.: Renormalization group flow of the Luttinger–

Ward functional: conserving approximations and application to the Anderson impurity
model. Phys. Rev. B 93, 195160, 2016

25. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, 1970
26. Rockafellar, R.T.;Wets, R.J.-B.: Variational Analysis. Springer, Berlin, 2009
27. Sharma, S.; Dewhurst, J.K.; Lathiotakis, N.N.; Gross, E.K.U.: Reduced density

matrix functional for many-electron systems. Phys. Rev. B 78, 201103, 2008
28. Tarantino, W.; Romaniello, P.; Berger, J.A.; Reining, L.: Self-consistent Dyson

equation and self-energy functionals: an analysis and illustration on the example of the
Hubbard atom. Phys. Rev. B 96, 045124, 2017

29. Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena. Clarendon Press,
Oxford, 2002

Lin Lin
Department of Mathematics,

University of California, Berkeley,
Berkeley

CA
94720 USA.

e-mail: linlin@math.berkeley.edu

and

Lin Lin
Computational Research Division,

Lawrence Berkeley National Laboratory,
Berkeley

CA
94720 USA.

and

Michael Lindsey
Courant Institute of Mathematical Sciences,

New York University,
New York

NY
10012 USA.

e-mail: michael.lindsey@cims.nyu.edu

(Received October 31, 2018 / Accepted June 29, 2021)
Published online July 21, 2021

© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE, part of Springer
Nature (2021)


	Bold Feynman Diagrams and the Luttinger–Ward Formalism Via Gibbs Measures: Non-perturbative Analysis
	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Outline
	2 Preliminaries
	2.1 Notation and Quantities of Interest
	2.2 Interaction Growth Conditions
	2.3 Measures and Entropy: Notation and Facts

	3 Luttinger–Ward Formalism
	3.1 Variational Formulation of the Free Energy
	3.2 The Luttinger–Ward Functional and the Dyson Equation
	3.3 Transformation Rule for the LW Functional
	3.4 Impurity Problems and the Projection Rule
	3.5 Continuous Extension of the LW Functional to the Boundary
	4 Bold Diagram Expansion for the Generalized Coulomb Interaction
	4.1 Existence of Asymptotic Series
	4.2 Relating the LW and Self-energy Expansions
	4.3 Diagram-free Discussion of Results from the Accompanying Paper
	4.4 Derivation of Self-energy Bold Diagrams
	4.5 Caveat Concerning Truncation of the Bold Diagrammatic Expansion

	5 Proof of the Continuous Extension of the LW Functional
	5.1 Proof Setup
	5.2 Lower Bound
	5.3 Upper Bound
	5.4 Dual Perspective on Continuous Extension
	5.5 Counterexample of Weak but Not Strong Growth

	Acknowledgements.
	A Definitions and Results from Convex Analysis
	A.1 Convex Sets and Functions
	A.2 First-order Properties of Convex Functions
	A.3 The Convex Conjugate
	A.4 Sequences of Convex Functions
	B Classical Results on Weak Convergence of Probability Measures
	C Proof of Lemmas
	C.1 Lemma 2.8
	C.2 Lemma 2.9
	C.3 Fact 2.11
	C.4 Lemma 3.2
	C.5 Lemma 3.4
	C.6 Lemma 3.7
	C.7 Lemma 3.8
	C.8 Lemma 3.9
	C.9 Lemma 4.4
	C.10 Lemma 4.5
	C.11 Lemma 4.12
	C.12 Lemma 5.1
	References









