Arch. Rational Mech. Anal. 242 (2021) 527-579
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-021-01691-y

l‘)

Check for
updates

Bold Feynman Diagrams and the
Luttinger—Ward Formalism Via Gibbs
Measures: Non-perturbative Analysis

LIN LIN & MICHAEL LINDSEY

Communicated by G. FRIESECKE

Abstract

Many-body perturbation theory (MBPT) is widely used in quantum physics,
chemistry, and materials science. At the heart of MBPT is the Feynman diagram-
matic expansion, which is, simply speaking, an elegant way of organizing the
combinatorially growing number of terms of a certain Taylor expansion. In par-
ticular, the construction of the ‘bold Feynman diagrammatic expansion’ involves
the partial resummation to infinite order of possibly divergent series of diagrams.
This procedure demands investigation from both the combinatorial (perturbative)
and the analytical (non-perturbative) viewpoints. In this paper, we approach the
analytical investigation of the bold diagrammatic expansion in the simplified set-
ting of Gibbs measures (known as the Euclidean lattice field theory in the physics
literature). Using non-perturbative methods, we rigorously construct the Luttinger—
Ward formalism for the first time, and we prove that the bold diagrammatic series
can be obtained directly via an asymptotic expansion of the Luttinger—Ward func-
tional, circumventing the partial resummation technique. Moreover we prove that
the Dyson equation can be derived as the Euler—Lagrange equation associated with
a variational problem involving the Luttinger—Ward functional. We also establish a
number of key facts about the Luttinger—Ward functional, such as its transformation
rule, its form in the setting of the impurity problem, and its continuous extension
to the boundary of the domain of physical Green’s functions.

1. Introduction

The bold Feynman diagrammatic expansion of many-body perturbation theory
(MBPT), along with the many practically used methods in quantum chemistry and
condensed matter physics that derive from it, can be formally derived from the
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Luttinger—Ward (LW)' formalism [19]. Since its original proposal in 1960, the
LW formalism has found widespread applicability [5,8,13,24]. However, the LW
formalism and the LW functional are defined only formally, and this shortcoming
poses serious questions both in theory and in practice. Indeed, the very existence
of the LW functional in the setting of fermionic systems is under debate, with
numerical evidence to the contrary appearing in the past few years [9,11,15,28] in
the physics community.

This paper expands on the work in [18], as well as an accompanying paper.
In the accompanying paper, we provided a self-contained explanation of MBPT in
the setting of the Gibbs model (alternatively known as the ‘Euclidean lattice field
theory’ in the physics literature). In this setting one is interested in the evaluation
of the moments of certain Gibbs measures. While the exact computation of such
possibly high-dimensional integrals is intractable in general, important exceptions
are the Gaussian integrals, that is, integrals for the moments of a Gaussian measure,
which can be evaluated exactly. Perturbing about a reference system given by a
Gaussian measure, one can evaluate quantities of interest by a series expansion of
Feynman diagrams, which correspond to certain moments of Gaussian measures.
For a specific form of quartic interaction that we refer to as the generalized Coulomb
interaction, such a perturbation theory enjoys a correspondence with the Feynman
diagrammatic expansion for the quantum many-body problem with a two-body
interaction [1,2,22]. The generalized Coulomb interaction is also of interest in
its own right and includes, for example, the (lattice) g04 interaction [2,29], as a
special case. The combinatorial study of its perturbation theory was the goal of
the accompanying paper. Nonetheless, the techniques of the accompanying paper,
and MBPT more broadly, are more generally applicable to various types of field
theories and interactions.

The culmination of the developments of the accompanying paper is the bold
diagrammatic expansion, which is obtained formally via a partial resummation
technique which sums possibly divergent series of diagrams to infinite order. In-
deed, the main technical contribution of the accompanying paper was to place the
combinatorial side of this procedure on firm footing. One motivation for this paper
is to interpret the bold diagrams analytically, which we accomplish by first con-
structing the LW formalism. In fact this construction is non-perturbative and valid
for rather general forms of interaction. Below we focus on the contributions and
organization of this paper only.

1.1. Contributions

The main contribution of this paper is to establish the LW formalism rigorously
for the first time, in the context of Gibbs measures. In this setting, the role of the
Green’s function is assumed by the two-point correlator.

The construction of the LW functional proceeds via concave duality, in a spirit
similar to that of the Levy-Lieb construction in density functional theory [16,17] at

' The Luttinger—Ward formalism is also known as the Kadanoff-Baym formalism [4]
depending on the context. In this paper we always use the former.
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zero temperature and the Mermin functional [21] at finite temperature, as well as the
density matrix functional theory developed in [3,7,27]. With careful interpretation,
this duality gives rise to a one-to-one correspondence between non-interacting and
interacting Green’s functions. The LW formalism yields a variational interpretation
of the Dyson equation; to wit, the free energy can be expressed variationally as a
minimum over all physical Green’s functions, and the self-consistent solution of
the Dyson equation yields its unique global minimizer. We also prove a number
of useful properties of the LW functional, such as the transformation rule, the
projection rule, and the continuous extension of the LW functional to the boundary
of its domain, which can be interpreted as the domain of physical Green’s functions.
In particular, this last property suggests a novel interpretation of the LW functional
as the non-divergent part of the concave dual of the free energy. These results
allow us to interpret the appropriate analogs of quantum impurity problems in our
simplified setting. In particular, we prove that the self-energy is always a sparse
matrix for impurity problems, with nonzero entries appearing only in the block
corresponding to the impurity sites. Such a result is at the foundation of numerical
approaches such as the dynamical mean field theory (DMFT) [10, 14].

We prove that the bold diagrams for the generalized Coulomb interaction can
be obtained as asymptotic series expansions of the LW and self-energy functionals,
circumventing the formal strategy of performing resummation to infinite order. The
proof of this fact proceeds by proving the existence of such series non-constructively
and then employing the combinatorial results of the accompanying paper to ensure
that the terms of these series are in fact given by the bold diagrams.

Although the bold diagrammatic expansion (evaluated in terms of the interacting
Green’s function, which is always defined) appears to be applicable in cases where
the non-interacting Green’s function is ill-defined, we demonstrate that caution
should be exercised in practice in such cases. Using a one-dimensional example,
we demonstrate that the approximate Dyson equation obtained via a truncated
bold diagrammatic expansion may yield solutions with large error in the regime of
vanishing interaction strength or fail to admit solutions at all.

1.2. Outline

In Section 2 we review preliminary material and definitions needed to under-
stand the results of this paper.

Section 3 concerns the construction of the LW formalism, beginning with a
discussion of the the variational formulation of the free energy and the relevant
concave duality (Section 3.1). This is followed by the introduction of the LW
functional and the Dyson equation (Section 3.2). Then we introduce several key
properties of the LW functional: the transformation rule (Section 3.3); the projection
rule, accompanied by a discussion of impurity problems (Section 3.4); and the
continuous extension property (Section 3.5). The proof of the continuous extension
property, which is the most technically demanding part of the paper, is postponed
to Section 5, which has its own outline.

Section 4 concerns the bold diagrammatic expansion. In Section 4.1 we prove
the existence of asymptotic series for the LW functional and the self-energy, and in
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Section 4.2 we relate the coefficients of the former to the latter. Then for the rigorous
development of the bold diagrammatic expansion, it only remains at this point to
prove that the asymptotic series for the self-energy matches the bold diagrammatic
expansion of the accompanying paper. This is the most involved task of Section 4.
In Section 4.3, we review the results that we need from the accompanying paper in a
‘diagram-free’ way that should be understandable to the reader who has not read the
accompanying paper, and in Section 4.4, we establish the claimed correspondence.
Finally, in Section 4.5 we illustrate the aforementioned warning about the truncation
of the bold diagrammatic series in cases where the non-interacting Green’s function
is ill-defined.

Relevant background material on convex analysis and the weak convergence of
measures is collected in “Appendices A and B”, respectively. The proofs of many
lemmas are provided in “Appendix C”, as noted in the text.

2. Preliminaries

In this section we discuss some preliminary definitions and notations.

2.1. Notation and Quantities of Interest

Throughout we shall let SV, S¥, and Sf . denote respectively the sets of
symmetric, symmetric positive semidefinite, and symmetric positive definite N x
N real matrices. For simplicity we restrict our attention to real matrices, though
analogous results can be obtained in the complex Hermitian case.

In this paper we will consider Gibbs measures defined by Hamiltonians 4 :
RN — R U {400} of the form

1 T
hix) = Ex Ax + U (x),

where A € SV. The first term represents the quadratic or ‘non-interacting” part of
the Hamiltonian, while the second term, U, represents the interaction. We define
the partition function accordingly as

Z[A, U] = / e~ X AU gy 2.1
RN

For fixed interaction U, we may think of the partition function of A alone, that is,
as Z : S — R sending A — Z[A]. In fact we adopt this perspective exclusively
for the time being.

The free energy is then defined as a mapping Q : S — R U {—o0} via

Q[A] ;== —log Z[A] = —log/N ¢~ AU ) dx, (2.2)
R

We denote the domain of Q2 by
domQ:={A € SV : Q[A] > —o0},
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and the interior of the domain by int dom 2. As we will see, 2 is concave in A,
and this notion of domain is the usual notion from convex analysis (see “Appendix
A”), and it is simply the set of A such that the integral in Eq. (2.2) is convergent.

For A € intdom €2, in fact the integrand in Eq. (2.2) must decay exponentially,
hence we can define the two-point correlator (which we call the Green’s function
by analogy with the quantum many-body literature) in terms of A via

1

and the integral on the right-hand side is convergent. More compactly, we have a
mapping G : intdom Q2 — Siv . defined by

GlAl = —— [ xaT e BT Ax-UG) gy 2.3)
Z[A] Jry

It is important to note that G[A] € S ’+V . forall A. As we shall see in Section 3, this
constraint defines the domain of ‘physical” Green’s functions, in a certain sense. In
the discussion below, G is also called the interacting Green’s function.

In the case of the ‘non-interacting’ Gibbs measure, where U = 0, all quantities
of interest can be computed exactly by straightforward multivariate integration. In
particular, letting GY[A] := G[A; 0], we have for A € domQ = SL that

GlAl=A"". (2.4)

The neatness of this relation is that it motivates the factor of one half included in the
quadratic part of the Hamiltonian. We refer to GY[A] as the non-interacting Green’s
function associated to A, whenever A € S iv - Note that for a general interaction
U, intdom 2 may contain elements not in S iv 4. For such A there is an associated
(interacting) Green’s function but not a non-interacting Green’s function.

In general G can be viewed as the gradient of 2, for a suitably defined notion
of gradient for functions of symmetric matrices, which we now define:

Definition 2.1. Fori, j =1,..., N, let EW) ¢ SN be defined by E,Sj) = 0ikdj1 +
8,16 jk. For a differentiable function f : S N R, define the gradient V f : SV —
SN by

FA+8-EWD)— f(A)
; .

Vijf = (Vf)ij = lim

If fis obtamed bgf restriction from a function f : RV*Y — R, then equivalently
Vi I = g9x; t o

Then on dom €2 the gradient map V2 is given by
1 T A=
Vi Q[A] = m/xixje ¥ AU gy (2.5)

that is, G = V, as claimed. The notion of gradient of Definition 2.1 is natural
for our setting in that it yields this relation. However, it may seem a bit awkward
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when applied to specific computations. Indeed, consider a function X +— f(X) on
SN that is specified by a formula that can be applied to all N x N matrices and in
which the roles of X;; and X are the same for all /, k. For instance, such a formula
is given by f(X) = ), ;X 12, Then the usual matrix derivative of f, considered

as a function on N x N matrices, is given by %(X ) = 2X;j, whereas, viewing
L

f as a function on SN and with notation as specified in Definition 2.1, we have
Vij f(X) = 4X;;. More generally in this situation we have V;; = 2% Since
formulas like this arise from the bold diagrammatic expansion (as discussed in the
accompanying paper), it is convenient then to estabilish.

Definition 2.2. For a differentiable function f : SV — R, define the matrix deriva-
. of
tive a—f( : SV — SN by
af 1

= _V:: f.
X 2 i

Moreover, this notion of derivative will yield the relation

0P
X[G]l=—,
G
where X is the self-energy and @ is the LW functional, as was foreshadowed in the

accompanying paper.

2.2. Interaction Growth Conditions

Note that dom €2 depends on the shape of U (x). For example, if U (x) = 0, then
dom 2 = Sferr. IfUx) = vazl x;‘, then dom © = SV. Our most basic condition
on U is the following:

Definition 2.3. (Weak growth condition) A measurable function U : RY — R
satisfies the weak growth condition, if there exists a constant Cyy such that U (x) +
Cy(1+ |x]>) = 0forall x € RY, and dom  is an open set.

The weak growth condition of Definition 2.3 specifies that U cannot decay to
—oo faster than quadratically, which ensures in particular that dom €2 is non-empty.
The assumption that dom €2 is an open set (that is, dom = int dom €2) will be
used later to ensure that for fixed U there is a one-to-one correspondence between
A and G (hence also between non-interacting and interacting Green’s functions)
over suitable domains.

Note that the condition of Definition 2.3 is weaker than the condition

1
ExTAx +U(x) » +00, x| — +oo. (2.6)

For instance, if N = 2 and U (x) = xi‘, then the weak growth condition is satisfied
with Cy = 0, but Eq. (2.6) is not satisfied for all A € SN In fact, when U (x) only
depends on a subset of components of x € RV, we call the Gibbs model an impurity
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model or impurity problem, in analogy with the impurity models of quantum many-
body physics [20], and we call the subset of components on which U depends the
Jfragment. The flexibility of the weak growth condition will allow us to rigorously
establish the LW formalism for the impurity model. In the setting of the impurity
model, the ‘projection rule’ of Proposition 3.13 then allows us to understand the LW
formalism of the impurity model in terms of the lower-dimensional LW formalism
of the fragment and to prove a special sparsity pattern of the self-energy.

One of our main results (Theorem 3.18) is that the LW functional, which is
initially defined on the set S f . of physical Green’s functions, canin fact be extended
continuously to the boundary of S _ﬁ’ +» a fact which will not be apparent from the
definition of the LW functional. (In fact, this extension shall be specified by an
explicit formula involving lower-dimensional LW functionals.) However, in order
for this result to hold, we need to strengthen the weak growth condition to the
following:

Definition 2.4. (Strong growth condition) A measurable function U : RV — R
satisfies the strong growth condition if, for any « € RR, there exists a constant b € R
such that U (x) + b = «||x||? for all x € RV,

Note that the strong growth condition ensures that dom = SV and is hence
an open set. If U is a polynomial function of x and satisfies the strong growth
condition, then Eq. (2.6) will also be satisfied.

In Section 5 we will discuss the precise statement and proof of the afore-
mentioned continuous extension property. In addition, a counterexample will be
provided in the case where the weak growth condition holds but the strong growth
condition does not. In fact, the continuous extension property is also valid for im-
purity models (which do not satisfy the strong growth condition) via the projection
rule (Proposition 3.13), provided that the interaction satisfies the strong growth
condition when restricted to the fragment.

For the generalized Coulomb interaction considered in the accompanying paper,
that is,

N
1 2.2
U(x) = g i]z—:l VX X7, (2.7)

there is a natural condition on the matrix v that ensures that U satisfies the strong
growth condition, namely that the matrix v is positive definite. We will simply
assume that this holds whenever we refer to the generalized Coulomb interaction.
To see that this assumption implies the strong growth condition, first note thatv > 0
guarantees in particular that U is a nonnegative polynomial, strictly positive away
from x = 0. Since U is homogeneous quartic, it follows that U > C~!|x|* for some
constant C sufficiently large, which evidently implies the strong growth condition.
Another sufficient assumption is that the entries of v are nonnegative and moreover
that the diagonal entries are strictly positive.

Our interest in diagrammatic expansions leads us to adopt a further condition on
the interaction. Too see why this is necessary, recall from the accompanying paper
that the perturbation about a non-interacting theory (U = 0) involves integrals such
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as
/ U(x) e ax" Ax dx,

which is clearly undefined if, for example, U (x) = e, In most applications of
interest, U (x) is only of polynomial growth, but it is sufficient to assume growth
that is at most exponential in the sense of Assumption 2.5, which is actually only
needed in Section 4 for our consideration of the bold diagrammatic expansion.

Assumption 2.5. (At-most-exponential growth) In this section, we assume that
there exist constants B, C > 0 such that |U (x)| < Be€I*ll for all x € RV.

Further technical reasons for this assumption will become clear in Section 4.

2.3. Measures and Entropy: Notation and Facts

Let M be the space of probability measures on R" (equipped with the Borel
o-algebra), let My C M be the subset of probability measures with moments up
to second order, and let A denote the Lebesgue measure on RY . For notational con-
venience we define a mapping that takes the second-order moments of a probability
measure:

Definition 2.6. Define G : M, — S¥ by G(u) = [xxT dp. Writing G = (G;)),
we equivalently have G;; (1) = [ xjx; du.

Therefore if w is defined via a density

1
du = p(x)dx, where p(x) = mg—%xTAX—U(X)’
then G(u) = G[A].

We also denote by

cov = [ au—([ran) ([ an)’

the covariance matrix of j.
For u € M, let H denote the (differential) entropy

—flog% du, n <A

. (2.8)
00, otherwise

H(M)Z{

where % denotes the Radon-Nikodym derivative (that is, the probability density
function of w with respect to the Lebesgue measure A) whenever u < A (that is,
whenever u is absolutely continuous with respect to the Lebesgue measure). We
will often refer to the differential entropy as the entropy for convenience.

For u, v € M, define the relative entropy H, (i) via

d
— [log g dp, p<v 2.9

00, otherwise.

Hy,(pn) = {
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Note carefully the sign convention.? The integral in (2.9) is well-defined with values
in RU {—oo} for all u, v € M.
We now record some useful properties of the relative entropy.

Fact 2.7. For fixed v € M, H, is non-positive and strictly concave on M, and
H,(nw) = 0 if and only if © = v. Moreover H, is upper semi-continuous with
respect to the topology of weak convergence; that is, if the sequence uy € M
converges weakly to . € M, then lim sup;_, o Hy () < Hy ().

Proof. For proofs see [23].

By contrast to the relative entropy, the differential entropy suffers from two
analytical nuisances.

First, in the definition of the entropy in (2.8), the entropy may actually fail to be
defined for some measures (which simultaneously concentrate too much in some
area and fail to decay fast enough at infinity, so the negative and positive parts of the
integral are —oo and 400, respectively, and the Lebesgue integral is ill-defined).
However, Lemma 2.8 states that when we restrict to M>, the integral cannot have
an infinite positive part and is well-defined.

Lemma 2.8. For u € My, if u <K A, then the integral in (2.8) exists (in particular,
the positive part of the integrand has finite integral) and moreover

H(p) < %log ((27re)N detCov(,u)) < %log ((Zne)N detg(u)> ,

with possibly H (1) = —oo. The first inequality is satisfied with equality if and only
if w is a Gaussian measure with a positive definite covariance matrix. The second
inequality is satisfied with equality if and only if i has mean zero.

Note that Lemma 2.8 also entails a useful bound on the entropy in terms of
the second moments, as well as the classical fact that Gaussian measures are the
measures of maximal entropy subject to second-order moment constraints.

The second analytical nuisance of the differential entropy is that we do not
have the same semi-continuity guarantee as we have for the relative entropy in Fact
2.7. However, control on second moments allows a semi-continuity result that will
suffice for our purposes.

Lemma 2.9. Assume that j1; € My weakly converge to u € M, and that there
exists a constant C such that G(j ;) < C - Iy forall j. Thenlim Sup;_, oo H () <
H(w).

Remark 2.10. In other words, the entropy is upper semi-continuous with respect
to the topology of weak convergence on any subset of probability measures with
uniformly bounded second moments. The subtle difference between the statements
in Fact 2.7 and Lemma 2.9 is due to the fact that the Lebesgue measure A ¢ M.

2 QOur relative entropy is then the negative of the Kullback-Leibler divergence, that is,
Hy(n) = —Dxr(u[v).
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The proofs of Lemmas 2.8 and 2.9 are given in “Appendix C”.

Finally we record the classical fact that subject to marginal constraints, the
entropy is maximized by a product measure. In the statement and throughout the
paper, ‘#” denotes the pushforward operation on measures.

Fact 2.11. Suppose p < N and let t; : RN — RP and 5 : RN — RN=P 10 be
the projections onto the first p and last N — p components, respectively. Then for
pne Mo, H(pw) < H(mi#p) + H(mo#p).

Remark 2.12. Note that m1#u and m#u are the marginal distributions of p with
respect to the product structure RY = R? x RVN=7,

See “Appendix C” for a short proof.

3. Luttinger—Ward Formalism

This section is organized as follows. In Section 3.1, we provide a variational
expression for the free energy via the classical Gibbs variational principle. For fixed
U, this allows us to identify the Legendre dual of Q[A], denoted by F[G], and to es-
tablish a bijection between A and the interacting Green’s function G. In Section 3.2,
we define the Luttinger—Ward functional and show that the Dyson equation can be
naturally derived by considering the first-order optimality condition associated to
the minimization problem in the variational expression for the free energy. Then
we prove that the LW functional satisfies a number of desirable properties. First, in
Section 3.3 we prove the transformation rule, which relates a change of the coordi-
nates of the interaction with an appropriate transformation of the Green’s function.
The transformation rule leads to the projection rule in Section 3.4, which implies
the sparsity pattern of the self-energy for the impurity problem. Up until this point
we assume only that U satisfy the weak growth condition. Then in Section 3.5
we motivate and state our result that the LW functional is continuous up to the
boundary of Si’ 4, for which we need the assumption that U satisfies the strong
growth condition. The proof (as well as a counterexample demonstrating that weak
growth is not sufficient) is deferred to Section 5. Throughout we defer the proofs
of some technical lemmas to “Appendix C”. Moreover we will invoke the language
of convex analysis following Rockafellar [25] and Rockafellar and Wets [26]. See
“Appendix A” for further background and details.

3.1. Variational Formulation of the Free Energy
The main result in this subsection is given by Theorem 3.1.

Theorem 3.1. (Variational structure) For U satisfying the weak growth condition,
the free energy can be expressed variationally via the constrained minimization
problem

Q[A] = inf (lTr[AG] — .7:[G]> s 3.1)
GeSﬁ 2
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where

FIG] == sup |:H(,u) — / U duj| (3.2)

neg=1(G)

is the concave conjugate of QA] with respect to the inner product (A, G) =
%Tr[AG]. (Note that by convention F[G] = —oo whenever Gg-! (G) is empty, that
is, whenever G € SN\S frv .) Moreover Q2 and F are smooth and strictly concave
on their respective domains dom 2 and ‘Sil+' The mapping G[A] := VQ[A] is a
bijection dom Q — Si;, with inverse given by A[G] := VF[G].

We first record some technical properties of €2 in Lemma 3.2.

Lemma 3.2. Q2 is an upper semi-continuous, proper (hence closed) concave func-
tion. Moreover, Q is strictly concave and C*°-smooth on dom Q.

Remark 3.3. Recall that a function f on a metric space X is upper semi-continuous
if for any sequence x; € X converging to x, we have lim sup,_, o f(xx) < f(x).

‘We now turn to exploring the concave (or Legendre-Fenchel) duality associated
to Q2. The following lemma, a version of the classical Gibbs variational principle [23]
(alternatively known as the Donsker-Varadhan variational principle [12]), is the first
step toward identifying the dual of 2.

Lemma 3.4. Forany A € SV,

1
Q[A] = inf |:/ (—xTAx + U(x)) du(x) — H(u)] . (3.3)
LLE./V[z 2
If A € dom 2, the infimum is uniquely attained at dju(x) = ﬁe_%xTAx_U(") dx.

Remark 3.5. One might wonder whether the infimum in (3.3) can be taken over
all of M. Note that if © does not have a second moment, it is possible to have
both H(n) = +oo and [ (337 Ax + U(x)) du(x) = +00, so the expression in
brackets is of the indeterminate form oo — oco. The restriction to u© € M, takes
care of this problem because Lemma 2.8 guarantees that H (1) < 400, and by the
weak growth condition, the other term in the infimum must be either finite or +oo0.
Moreover, M is still large enough to contain the minimizer, and restricting our
attention to measures with finite second-order moments will be convenient in later
developments.

From the previous lemma we can split up the infimum in (3.3) and obtain

Q[A] = inf  inf |:/ (%xTAx + U(x)) du(x) — H(u)] .

GeSY ueG=1(G)

Since [ xT Ax dp = Tr[G (i) Al it follows that

Q[A] = inf (%Tr[AG] 4+ inf |:/ Udu— H(y,):|> .

GeSY neg=1(G)

This proves Eq. (3.1) of Theorem 3.1 using the definition of F[G] in Eq. (3.2).
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Remark 3.6. For the perspective of the large deviations theory, we comment that
the construction of F from the entropy may be recognizable by analogy to the con-
traction principle [23]. Indeed, the expression f U du — H () is equal (modulo a
constant offset) to —H,,, (11), where vy is the measure with density proportional to
e~ U Tf one considers i.i.d. sampling from the probability measure vy, by Sanov’s
theorem — H,,,, is the corresponding large deviations rate function for the empirical
measure. The rate function for the second-order moment matrix (that is, —F, mod-
ulo constant offset) is obtained via the contraction principle applied to the mapping
w — G(w). This is analogous to the procedure by which one obtains Cramér’s the-
orem from Sanov’s theorem via application of the contraction principle to a map
that maps u to its mean [23].

Now we record some technical facts about F in Lemma 3.7, which demonstrates
in particular that F diverges (at least) logarithmically at the boundary 9S. 1+V =

N\ oN
SIS
Lemma 3.7. F is finite on Siv 4 and —oo elsewhere. Moreover,

FIG] < %log [(Zne)N det G] +Cy(1+TrG)

forall G € Sferr.
Define

Ylu] := H(M)—fU du,

so F[G] = sup,eg-1(G) YInl By the concavity of the entropy, W is concave on
M. Thus, given G, we can in principle solve a concave maximization problem
over i € M to find F[G], with the linear constraint u € g1 (G). Moreover, this
variational representation of F in terms of the concave function W is enough to
establish the concavity of F by abstract considerations. This and other properties
of F are collected in the following.

Lemma 3.8. F is an upper semi-continuous, proper (hence closed) concave func-
tion on SV.

Now Eq. (3.1) states precisely that €2 is the concave conjugate of F with respect
to the inner product (A, G) = %Tr[AG], and accordingly we write Q = F*. Since
F is concave and closed, we have by Theorem A.14 that 7 = F** = Q¥ that
is, F and Q are concave duals of one another. Thus we expect that V.F and VQ
are inverses of one another, but to make sense of this claim we need to establish
the differentiability of F. We collect this and other desirable properties of F in the
following:

Lemma 3.9. F is C°°-smooth and strictly concave on Sf .

Then Theorem A.15 guarantees that V<2 is a bijection from dom Q2 — Si’ T
with its inverse given by V.F. This completes the proof of Theorem 3.1.

Finally, following Lemma 3.4, together with the splitting of (3.3) and the A <>
G correspondence of Theorem 3.1, we observe that the supremum in (3.2) is attained

. _1 _
uniquely at the measure du := Z[AI[G]]e 3T AIG=U () gy
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3.2. The Luttinger—Ward Functional and the Dyson Equation

According to Lemma 3.7, F should blow up at least logarithmically as G
approaches the boundary of S iv - Remarkably, we can explicitly separate the part
that accounts for the blowup of F at the boundary. In fact, subtracting away this
part is how we define the Luttinger—Ward (LW) functional for the Gibbs model.
We will see in this subsection that the definition of the Luttinger—Ward functional
can also be motivated by the stipulation that its gradient (the self-energy) should
satisfy the Dyson equation.

Consider for a moment the case in which U = 0, so

FIGI=  sup [H(M) -[u du] = s H.
1eG=1(G) 1neg=1(G)
The random variable X achieving the maximum entropy subjectto E[X; X ;] = G;;
follows a Gaussian distribution, that is, X ~ N (0, G). It follows that
1 N 1 N
FIG] = 5 log ((Zne) det G) = STrllog(G)] + 5 log(2re).

This motivates, for general U, the consideration of the Luttinger—Ward func-
tional

P[G] :=2F[G] — Tr[log(G)] — N log(2me). (3.4)
For non-interacting systems, ®[G] = 0 by construction.
Now we turn to establishing the Dyson equation. Theorem 3.1 shows that for
A € dom €2, the minimizer G* in (3.1) satisfies A = VF[G*] = A[G*], so the
minimizer is G* = G[A]. Recall that
1 1 1
FIG] = ETr[log(G)] + E<I>[G] + EN log(2me).
Taking gradients and plugging into A = VF[G*] yields

0=A—(GH "= %VCD[G*].

Define the self-energy ¥ as a functional of G by X[G] := %VCD[G] = %[G].
Then we have established that for G = G[A],
G '=A-3[G] (3.5)

Moreover, by the strict concavity of 7, G = G[A] is the unique G solving (3.5).

Eq. (3.5) is in fact the Dyson equation as in Section 3.8 of the accompanying
paper. To see this, recall from Eq. (2.4) that the non-interacting Green’s function
GV is given by G = A~!, so we have

G '=@GYH ! - xz[G].

Left- and right-multiplying by G and G, respectively, and then rearranging, we
obtain

G =G"+G"2[G1G6.
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However, Eq. (2.4) requires G to be well defined, that is, A € Si’ - On the other
hand, the Dyson equation (3.5) derived from the LW functional does not rely on
this assumption and makes sense for all A € dom 2. Nonetheless, if for fixed A one
seeks to approximately solve the Dyson equation for G by inserting an ansatz for
the self-energy obtained from many-body perturbation theory, one must be wary in
the case that A ¢ S_IXJF; see Section 4.5.

3.3. Transformation Rule for the LW Functional

Though the dependence of the Luttinger—Ward functional on the interaction
U was only implicit in the previous section, we now explicitly consider this de-
pendence, including it in our notation as ®[G, U]. The same convention will be
followed for other functionals without comment. Proposition 3.10 relates a trans-
formation of the interaction with a corresponding transformation of the Green’s
function.

Proposition 3.10. (Transformation rule)Let G € S i\' o, U be an interaction satis-
fying the weak growth condition. Let T denote an invertible matrix in RN*N  as
well as the corresponding linear transformation RN — RN . Then

OITGT*, U] = ®[G,UoT].

Proof. ForG € S i’ ., note that the supremum in (3.2) can be restricted to the set of
w € G1(G) that have densities with respect to the Lebesgue measure. (Indeed, for
any u € Mj that does not have a density, H () — f U du = —o0.) Then observe

®[G,U] = —Nlog(2me) —logdet G +2  sup [H(u) - / U du]

neG=1(G)

—N log(2me) — logdet G — 2 inf |:/ (logp+U) p dx]
{p:p dxeG~1(G)}

—Nlog(2me) — 2 inf [/ (log[(det G)'2p] + U) p dx] :
{p:p dxeG~1(G)}

Going forward we will denote C := —N log(2me).
Then for T invertible, we have

O[TGT*, U] =C —2 inf [/ (log[(det G)'/? - |det T| - p] + U) p dx] .
p dxeG—U(TGT*)

Now observe by changing variables that
{p:pdxeg ' (TGTH} ={ldetT|™" - poT™": pdx e G (G)}.
Therefore
Q[TGT*, U]

=C-2 inf [| det 7|~ / (log[(det G)'/? - po T~ ]+ U) poT™! dx:|
p dxeG=1(G)
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=C-2 inf [/ (log[(det G)!/? - p] + U oT) p dx]
p dxeG=1(G)

=®[G,UoT],
as was to be shown.

Remark 3.11. Since 7 is real, the Hermite conjugation 7* is the same as the matrix
transpose, and this is used simply to avoid the notation T'7 .

From the transformation rule we have the following corollary:

Corollary 3.12. Let G € Sﬁ/ 1, and consider an interaction U which is a homoge-
neous polynomial of degree 4 satisfying the weak growth condition. For A > 0, we
have

®[LG, U] = ®[G, X2U].

3.4. Impurity Problems and the Projection Rule

For the impurity problem, the interaction only depends on a subset of the
variables x1, ..., xy, namely the fragment. In such a case, the Luttinger—Ward
functional can be related to a lower-dimensional Luttinger—Ward functional cor-
responding to the fragment. This relation, called the projection rule, is given in
Proposition 3.13 below. In the notation, we will now explicitly indicate the di-
mension d of the state space associated with the Luttinger—Ward functional via
subscript as in ®4[G, U], since we will be considering functionals for state spaces
of different dimensions. We will follow the same convention for other functionals
without comment.

Before we state the projection rule, we record some remarks on the domain
of © and growth conditions in the context of impurity problems. Suppose that the
interaction U depends only on x1, ..., x,, where p < N, so U can alternatively
be considered as a function on R”. Notice that even if U satisfies the strong growth
condition as a function on R, it is of course not true that dom (Qn[-, U]) = SV.
As mentioned above, this provides a natural reason to consider interactions that
do not grow fast in all directions and motivates the generality of our previous
considerations.

In fact, for

Al A
A= ,
( Asz A >
one can show by Fubini’s theorem, integrating out the last N — p variables in (2.2),
that A € dom (2] -, U]) if and only if both

Ay € SN " and Ajy — ApAy) AL, € dom (2,1, UJ).
Moreover, one can show that for such A,

1
QvlA, Ul =9, [A“ — ApAz AT, U] + 5 log(2m)" N det Ano).
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Therefore, if dom (Qp[ LU, O)]) is open, then so is dom (2] -, U]). It follows
that if U satisfies the weak growth condition as a function on R”, then U also
satisfies the weak growth condition as a function on RY .

Proposition 3.13. (Projection rule) Let p < N. Suppose that U depends only on
X1, ..., Xp and satisfies the weak growth condition. Hence we can think of U as a
function on both RN and RP. Then for G € S iv .

Oy [G, U]l =D, [G1, U],
where G 11 is the upper-left p x p block of G.

Remark 3.14. If U can be made to depend only on p < N variables by lin-
early changing variables, then we can use the projection rule in combination with
the transformation rule (Proposition 3.10) to reveal the relationship with a lower-
dimensional Luttinger—Ward functional, though we do not make this explicit here
with a formula.

Corollary 3.15. Let p £ N, and P be the orthogonal projection onto the subspace
(N) (N)
1

span{e,"’,...,ep '}. Suppose that U(-,0) satisfies the weak growth condition.
Then for G € SV,

ON[G,UoPl=®,[G11,U(-,0)],
where G is the upper-left p x p block of G.

Proof of Proposition 3.13. First we observe that we can assume that G is block-
diagonal. To see this, let G € S ﬁrv 1> and write

Gi1 G2
G = .
(Gsz Gzz)

Then block Gaussian elimination reveals that

G=< 1 0><G11 0 )([ G1_11G12>
GLG' 1)\ 0 Gn-GLG G )J\o 1 ‘

Define
1 0 ~ G 0 )
T .= _ , G:= _ ,
(G1T2G111 I) < 0 Gn-— G1T2G111G12

s0 G = TGT*. Then by the transformation rule, we have
®y[G, U]l = ®y[G,U o T] = dyI[G, U],

where the last equality uses the fact that U depends only on the first p arguments,
which are unchanged by the transformation 7'.

Since G is block-diagonal with the same upper-left block as G, we have reduced
to the block-diagonal case, as claimed, so now assume that G € S i\f 4 with

(G O
G_(O Gzz).
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Recall the following expression for Fy:

FnIG,Ul= sup [H(u)—/U du]
1egy'(G)

Next define 71 : RY — R? and 7, : RNV — RM~P to be the projections
onto the first p and last N — p components, respectively. Then with ‘#’ denoting
the pushforward operation on measures, ;#u and mo#u are the marginals of w
with respect to the product structure RY = R” x R¥~7. Now recall Fact 2.11,
in particular the inequality H (u) < H (m#u) + H (mo#u). Also note that if u €
Q;l(G), then m#u € Q;l(Gn) and m#u € Q;,l_p(Gzz). Finally observe that
since U depends only on the first p arguments, [ U du = [ U d(1#u) for any
. Therefore,

FnIG,UT S sup [H(m#M)JrH(nz#u)—/Ud(m#u)}
negy'(G)

A

sup [H(Ml) —/U dm} + sup [H (112)]
€6y (G Mzeg;,l_,,(Gzz)

1
= FplGn, Ul + 3 log((2me)N =P det Gay).
Since det G = det G det G2y, it follows that
ON[G, U] = @,[G11, U]

For the reverse inequality, let ©1 be arbitrary in Q;l (G11), and consider pu :=
U1 X 12, where p» is given by the normal distribution with mean zero and covariance
G2>. Then

1
FNIG, U2 H(w) — f Udp=H(uy) — f U dpus + 5 log((2me)" ™" det o).
Since w1 is arbitrary in g;l (G11), it follows by taking the supremum over | that

1
FNnIG, U1 Z FplG1y, Ul + 3 log((2me)N =7 det G2y),
which implies
ON[G, U] 2 @,[G11, Ul

Remark 3.16. The proof suggests that for U depending only on the first p argu-
ments and G block-diagonal, the supremum in the definition of F is attained by a
product measure, which is perhaps not surprising. The proof also suggests, how-
ever, that for such U and general G, the supremum is attained by taking a product
measure and then ‘correlating’ it via the transformation 7.

For the impurity problem, Proposition 3.13 immediately implies that the self-
energy has a particular sparsity pattern, and thus we have
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Corollary 3.17. Let p < N and suppose that U (satisfying the weak growth con-
dition) depends only on x1, ..., x,. Then

waan=(457%)

For example, consider U (x) = é D ijkl Vi jxl.zsz.. Here the stipulation that U
depend only on the first p arguments corresponds to the stipulation that v;; = 0
unless i, j < p. For such an interaction, in the bold diagrammatic expansion for ®
and X, any term in which G;; appears will be zero unless i, j < p. This is a non-
rigorous perturbative explanation of the fact that ® depends only on the upper-left
block of G, which in turn explains the sparsity structure of X, as well as the fact that
¥ also depends only on the upper-left block of G. However, the developments of
this section apply to interactions U of far greater generality and which may indeed
be non-polynomial, hence not admitting of a bold diagrammatic expansion.

3.5. Continuous Extension of the LW Functional to the Boundary

The discussion in this subsection is only heuristic, and the proofs of the theorems
stated here are deferred to Section 5.

Now in Section 3.1 we saw that the functional F[G] diverges at the boundary
885:' =S frv \Sfrv - On the other hand, the projection rule together with the trans-
formation rule, motivates the formula by which we can extend ® continuously up
to the boundary 05 iv .

Indeed, suppose that /) — P, where T/’ is invertible and P is the orthogonal
projection onto the first p components, as in Corollary 3.15. Then for G € S i’ 1

ON[TVGTYN*, Ul = ON[G, U o TV,
By naively taking limits of both sides, we expect that
dy[PGP,U] = dy[G,U o P,

where G is the upper-left p x p block of G. Then by the projection rule we expect

ov[(%0) v] = een.uc.on

where G is the upper-left p x p block of G. After possibly changing coordinates
via the transformation rule, this formula provides a general recipe for evaluating
the LW functional on the boundary 9SY . which is the content of Theorem 3.18
below.

Unfortunately, there are nontrivial analytic difficulties that are hidden by this
heuristic derivation. In fact there exists an interaction U satisfying the weak growth
condition for which the continuous extension property fails. Since the discussion
of this counterexample is somewhat involved, it is postponed to Section 5.5. How-
ever, the continuous extension property is true for U satisfying the strong growth
condition of Definition 2.4.
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Before stating the continuous extension property in Theorem 3.18, we provide
a more careful discussion of the structure of the boundary 9S frv . Consider a g-
dimensional subspace K of RY, and let p = N — g. Then the set

Ski={GesY i kerG =K|

forms a ‘stratum’ of the boundary of S, which is itself isomorphic to the set of
p X p positive definite matrices. In turn, one can consider boundary strata (of
smaller dimension) nested inside of Sk .

We will show that the restriction of the Luttinger—Ward function to such a
stratum is precisely the Luttinger—Ward function for a lower-dimensional system.
To this end, fix a subspace K and choose any orthonormal basis vy, ..., v, for K 1
(The choice of basis is not canonical but can be made for the purpose of writing
down results explicitly.) Define V), := [v1, ..., v,]. We use this notation to indicate
both the matrix and the corresponding linear map.

Theorem 3.18. (Continuous extension, 1) Suppose that U is continuous and sat-
isfies the strong growth condition. With notation as in the preceding discussion,
Oy[ -, U] extends continuously to Sk via the rule

ONIG. Ul =, [ViGV,. UoV,]

for G € Sk. Consequently, ®y| -, U] extends continuously to all of Siv .

Remark 3.19. We interpret the extension rule as to set ®y[0, U] = Pp[U] =
—2 - U(0). Moreover, it will become clear in the proof that even for continuous
interactions U that do not satisfy the strong growth condition, the extension is still
lower semi-continuous on S _"Y and continuous on Si/ L U{0}.

Changing coordinates via Proposition 3.10, we see that Theorem 3.18 is actually
equivalent to the following:

Theorem 3.20. (Continuous extension, II) Suppose that U is continuous and satis-
fies the strong growth condition. For G € S_l; 1> @[+, U] extends continuously via

the rule
GO

Once again we comment that proof is deferred to Section 5.

4. Bold Diagram Expansion for the Generalized Coulomb Interaction

Using the Luttinger—Ward formalism, in this section we prove that the bold
diagrammatic expansions from the accompanying paper of the self-energy and
the LW functional [for the generalized Coulomb interaction (4.1)] can indeed be
interpreted as asymptotic series expansions in the interaction strength at fixed G.
This provides a rigorous interpretation of the bold expansions that is not merely
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combinatorial. Recall that when each G in the bold diagrammatic expansion of the
self-energy is further expanded using G° and U, the resulting expansion should
be formally the same as the bare diagrammatic expansion of the self energy. The
combinatorial argument in Section 4 of the accompanying paper guaranteeing this
fact does not need to be repeated in this setting, and we will be able to directly use
Theorem 4.12 from the accompanying paper. The remaining hurdles are analytical,
not combinatorial.
We summarize the results of this section as follows:

Theorem 4.1. For any continuous interaction U : RN — R satisfying the weak
growth condition and any G € S i\f 1, the LW functional and the self-energy have
asymptotic series expansions as

o0 o0
DG, U] = Z@“‘)[G, Ulek, X[G, U] = Z »®[G, U]k, 4.1)
k=1 k=1

Moreover, for U a homogeneous quartic polynomial, the coefficients of the asymp-
totic series satisfy

d0[G, U] = ﬁTr [GE(")[G, U]] . (4.2)

If U is moreover a generalized Coulomb interaction (2.7), we have (borrowing the
language of the accompanying paper) that

Fr,@, j)
®1G. U] = Fr . /)
G U= )y S (4.3)
FSES%PI, order k
that is, =% is given the sum over bold skeleton diagrams of order k with bold
propagator G and interaction v;;8;;d .

Remark 4.2. For a series as in Eq. (4.1) to be asymptotic means that the error of
the M-th partial sum is O(e”*1) as ¢ — 0.

Since U is fixed, for simplicity in the ensuing discussion we will omit the
dependence on U from the notation via the definitions ®g(e) = P[G, eU],
Yg(e) = Z[G,eU], and Ag(e) := A[G, eU]. We will also denote the series
coefficients via CDE];{) = ®W[G, U] and Eg) := S®[G, U]. In this notation, our
asymptotic series take the form

(e.¢] o
k k
Dgle) =Y dFek. Bale) =) ng ek (4.4)
k=1 k=1

Notation 4.3. Note carefully that in this section the superscript (k) is merely a

notation kand does not indicate the k-th derivative. Such derivatives will be written

d
out as 4.
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Now we outline the remainder of this section. In Section 4.1 we prove that the
LW functional and the self-energy do indeed admit asymptotic series expansions.
In Section 4.2 we prove the relation between the LW and self-energy expansions for
quartic interactions, namely Eq. (4.2). Interestingly, this relation—which is well-
known formally based on diagrammatic observations—was originally assumed to
be true to obtain a formal derivation of the LW functional [19,20]. Our proof
here does not rely on any diagrammatic manipulation, only making use of the
transformation rule and the quartic nature of the interaction U . Similar relations for
homogeneous polynomial interactions of different order could easily be obtained.
Next, in Section 4.3, we summarize and expand on the necessary results from the
accompanying paper in diagram-free language; this both reduces the prerequisite
knowledge needed for the remainder of the section and clarifies the arguments
that follow. Finally, in Section 4.4 we prove that when U is a generalized Coulomb
interaction, the series for the self-energy is in fact the bold diagrammatic expansion
of Section 4 of the accompanying paper.

4.1. Existence of Asymptotic Series

In this section we assume that U is continuous and satisfies the weak growth
condition. We first prove the following pair of lemmas.

Lemma 4.4. Forany G € SY,, Ag(e) > G lase — 0.

Lemma 4.5. For G € SL_, all derivatives of the functions ®¢ : (0, 00) — R and
¥6 : (0, 00) — RYN*N extend continuously to [0, 00).

We will convey the continuous extension of the derivatives of ®¢ to the origin
by the notation @g) = @g) (0), and similarly for the self-energy Eg ) = Zg ) 0).
From the preceding it will follow that the series (4.4) are indeed asymptotic series
in the following sense:

Proposition 4.6. For any nonnegative integer M, ® ¢ (¢) —Z;{VIII @g)sk = 0(eM+1)

and G (e) — Y1, =PVek = 0(eMH1) as e — 0T

Proof. Consider any function f : [0, 00) — R with all derivatives extending
continuously up to the boundary (and so defined at 0). Let § > 0, so for ¢ € (§, 1]
we know by the Lagrange error bound that

M
fe) — Zf(k)(a)(e 5| < Cle — s)MTT < ceMHT,

k=0

. . k+1
where C is a constant that depends only on a uniform bound on (d%) f over

[0, 1] (the existence of which is guaranteed by the continuous extension property).
Simply taking the limit of our inequality as § — 07, and again employing the
continuous extension property, yields that ’ f(e) — Z,I{VI:O F® 0)ek ‘ < CeMHL
This fact together with Lemma 4.5 proves the proposition.
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4.2. Relating the LW and Self-energy Expansions

The bold diagrams for the Luttinger—Ward functional are pinned down in terms
of the bold diagrams for the self-energy via the following:

Proposition 4.7. If U is a homogeneous quartic polynomial, then for all k,
% = 2_1kTr[ng<>]_
Proof. Observe that by the transformation rule that for any G € S iv . &1>0.
®[tG, eU] = ®[G, U o (t'/21)]
Taking the gradient in G of both sides, we have
t2[tG, eUl = Z[G, U o (t'21)].
Since U is homogeneous quartic, in fact, we have
2[tG,eU] = %E[G, t?eU].

Then, using this relation, we compute
Ld
<I>[G,8U]=/ —®[tG, U] dr
o dr
1
=/ Tr[GX[tG, eU]]dt
0

1
1
=/ ;Tr[GE[G,tzeU]]dt
0
1 1 M
:/ - [ZTr [GEg)]t2k8k+ 0 (t2(M+1)8M+1):| d
0 k=1

1 M
- / [ T [GEd ]k 1 0 (t2M+18M+1):| dr.
0 Lk=1

Now since ¢ ranges from O to 1 in the integrand, we have that 2V t1gN+1 < gN+1
and therefore

1 M
®[G, £U] :/ |:ZTr [GEg‘)]tzklek] dr + 0(MH)
0

k=1

Tr [ng")]a" T O(MH,

R~

k=1

This establishes the proposition.
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4.3. Diagram-free Discussion of Results from the Accompanying Paper
For U satisfying the weak growth condition and A € dom [ -, U], define
o[A,U]:= A — (G[A, UD) .

Here we use the lowercase o to emphasize that the self-energy here is being con-
sidered as a functional of A (not G), together with the interaction.

Now we set the notation of U to indicated a fixed generalized Coulomb inter-
action (2.7). Further define

Ga(e) :=G[A,eU], oale):=0[A,ceU]. 4.5)

The following lemma concerns the bare diagrammatic expansion of the Green’s
function and the self-energy, that is, the asymptotic series for G4 and o 4:

Lemma 4.8. For fixed A € Sﬁr, all derivatives dd 4 (0, 00) — 8 Yy and =g ¢ do g

(0, 00) — SN extend contmuously to [0, 00). In fact, mterpreted as functions of
both A and e, L84 (e)and d "A (&) extend continuously to S ¥, x[0, 0o0). Moreover,
we have asymptonc series expansmns

o
Gale) = Zg()k oale) =Yy ofek,

where the coefficient functions g(k) and o(k)

cisely, g( and afx ) are homogeneous polynomials of degrees 2k + 1 and 2k — 1,

respectively. (Note that the zeroth-order term af(‘ )

are polynomials in A~'. More pre-

is implicitly zero.)

Finally, let GﬁfM) (e) and o/(fM)(S) denote the M-th partial sums of the above
asymptotic series for G o(€) and o4(€), respectively. For every A € Siv 4, there

exists a neighborhood N of A in Sj\_/ 4 on which the truncation errors can actually
be bounded

Ga(e) =G (o) £ CeM!, oa(e) — o M(e)| < CeMH!

forall € € [0, t], with C, T independent of A € N.

Proof. The asymptotic series expansions for G4 and X4 are established in The-
orems 3.15 and 3.17 of the accompanying paper. The continuous extension of the
derivatives of G 4 and o4 to [0, co) follows from differentiation under the integral
and simple dominated convergence arguments.

The uniform error bound follows from a Lagrange error bound argument as in
Proposition 4.6, together with the continuity of & GA (¢) and dg;ﬁ (¢)on S iv L X
[0, 00).
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Inspired by Eq. (4.3), let

F
S = > o

.
FSES%PI, order k s

In fact Sg‘) is polynomial in G, homogeneous of degree 2k — 1. At this point we

do not yet know that Sg() coincides with Egc ), and indeed this is what we want to
show. For any G, also define the partial sum

M
(EM) k
S5 (e) :=E S(G)ak.
k=1

Then the main result (Theorem 4.12) of the accompanying paper can be phrased as
follows:

Theorem 4.9. For any fixed A € S i\f 1, the expressions

M

M
(=M) _ (k) k (=M) _ (k) _k
SGEM)(s)(e) = 2 SGfM)(a)g , Oy () = ;aA &

agree as polynomials in € up to order M, and hence they agree as joint polynomials
in (A™', ) after neglecting all terms in which & appears degree at least M + 1.

4.4. Derivation of Self-energy Bold Diagrams

We have already shown that there exist asymptotic series for the LW functional
and the self-energy. The remainder of Theorem 4.1 then consists of identifying

that the self-energy coefficients Eg ) are indeed given by the bold diagrammatic
expansion, that is, that X g ) = Sg). Equivalently, we want to show that the partial

(=M (£m) . . .

sums S5 "(¢) and X5~ (&), which are polynomials of degree M in ¢, are equal.
We will think of G € S 1+V . as fixed throughout the following discussion, and we
omit dependence on G from some of the notation below to avoid excess clutter.
We will also think of M as a fixed positive integer and ¢ > 0 as variable (and
sufficiently small).

Since our series expansion is only valid in the asymptotic sense, for any finite
M we consider the truncation

M
M k
Eg )(8) = E Eé)sk.
k=1

Then we have X (g) — E(GSM) (&) = 0(eM+1), For the purpose of this discussion,
0 (eM+1) will be thought of as negligibly small, and ‘~" will be used to denote
equality up to error O (eM+1). Meanwhile ‘~ will be used to denote error that is
O (eM*1=P) forall p € (0, 1), equivalently O (¢M+?) forall § € (0, 1). We remark
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that the difference between the relations ‘X’ and ‘~’ is due to technical reasons to

be detailed later, and may be neglected on first reading.

. (EM) (M)
Note that it actually suffices to show that X5~ "(¢) ~ S5 " (¢). Indeed, both

sides are polynomials of degree M in ¢. Thus their difference is a polynomial
of degree < M. If the degree-n part of the difference is nonzero for some n =

. . nts (M)
1, ..., M, then the difference is not O(¢"™°) for any § > 0. Butif ;" "(¢) ~

S(GéM)(e), then the difference is O (¢"*%) foralln = 1,..., M, § € (0, 1). Thus
in this case the difference is zero. With this reduction in mind, we now make a
simple yet critical observation, namely that E((;SM) (&) can be identified as the exact
self-energy yielded by a modified interaction term. This will allow us to identify
a quadratic form A (g), for which dependence on G has been suppressed from
the notation, which generates (up to negligible error) the Green’s function G under
the interaction eU.

Lemma 4.10. With notation as in the preceding discussion, ZE;SM) (&) is the self-
energy induced by the interaction UE(M) (x) := 8U()C)+%XT [Eg(s) — E(GSM) (8)] X,
that is,

25" () = 2[G, UM,
and moreover
AD (g) .= A [G, U§M>] =G+ 35 ().
Thus we may identify
G =GIAM (), UM, 5™ (6) = 6[AM (), UM,

Proof. Recalling that Ag(¢) = A[G, eU] and Zg(¢) = Z[G, eU], write

%xT (AG(g) —Se(e) + E(Gfm(e)) x4+ UM (x)

1
5’ (67" + 25" @) x + UM ).

1 7
X Ag(e)x + U(x)

It follows that under the interaction US(M), the quadratic form G+ E(GSM) (&)
corresponds to the (interacting) Green’s function G. This establishes the second
statement of the lemma, that is, that

AIG, UMY = G714+ 55 @),
Moreover, by the Dyson equation we have that
SIG, UM = A[G, UM — 671 = 55Me),

which is the first statement of the lemma. The last statement then follows from the
second, together with the definitions of G[ -, -]Jand o[-, -].
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To prove

<M <M
SEM () s > SEM ()
Lemma 4.13 3 AM) (&) =G~ 4 EE;SM) () ' Lemma 4.17
v |
Lemma 4.14 <M
T A (¢) (e) 0—54_(1V1))(5) (e)

Fig. 1. Schematic diagram for proving the bold diagrammatic expansion. Dashed lines in-
dicate ‘~’, and solid lines indicate ‘~’

Remark 4.11. Note carefully that Lemma 4.10 is a non-perturbative fact and is
valid for all ¢ > 0, though we shall apply it in a perturbative context.

At this point we have defined the terms needed to present a schematic diagram
(Fig. 1) of our proof that ZE;SM) (e) ~ SE;SM)(S). Although the motivation for this
schematic may not be fully clear at this point, the reader should refer back to it as
needed for perspective.

Now recalling the definitions (4.5), we can write

G yom o) (8) = GIAM (8), eU1, 04000y (e) :=0[AM(e), UL, (4.6)
Meanwhile, following Lemma 4.10 we have the identities

G =GIAM (e), UM, 5" (e) = a[AM(e), UM 4.7)

Note that pointwise, eU and Ug(M) differ negligibly, but the form of eU is simpler
and easier to work with going forward.
Based on Egs. (4.6) and (4.7), one then hopes that G 4, (€) is close to G and

<
040 () (€) 1s close to E(G:M) (¢). This is the content of the next two lemmas.
Lemma 4.12. G 401 () (¢) ~ G.
Proof. See “Appendix C.11”.

Lemma 4.13. 0 401) ) (8) ~ EE;SM) (e).

Proof. Based on Egs. (4.6) and (4.7), we want to show that o[AM) (¢), U;M)] ~
o[AM)(g), eU. We have already shown that G = G[AM) (), UM ~ G[AM)
(¢), eU], from which it follows that

AM (e) — (GIAM) (&), UMY ~ AM (e) — (GIAM)(e), eUD !,

which is exactly what we want to show.

. <M .
Then we can use aA(M)(E)(e) as a stepping stone to relate Zé— )(e) with the
bare diagrammatic expansion for the self-energy via the following:
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~ - (EM)
Lemma 4.14. 0y () (6) ~ O 40 (e) (&)

Proof. Since AM () = G~! + O(e), the result follows from Lemma 4.8 (in
particular, the locally uniform bound on truncation error of the bare self-energy
series).

We can prove a similar fact (which will be useful later on) regarding the bare
series for the interacting Green’s function:

(EM)
Lemma 4.15. GA(M)(s) (8) ~ GA(M)(S) (8)

Proof. Since AM(g) = G~ 4+ O(¢), the result follows from Lemma 4.8 (in
particular, the locally uniform bound on truncation error of the bare series for the
interacting Green’s function).

From Lemmas 4.12 and 4.15 we immediately obtain

(=M)

Lemma 4.16. GAW)(e)

(e) ~G.
Finally, we are ready to state and prove the last leg of the schematic diagram
(Fig. 1).

<
Lemma 4.17. S(GSM) ~ af\(:Mﬁf()e) (e).

Proof. Consider Sf(g}) as a polynomial in (A1, ¢), and let P(A™!, &) be the
A

contribution of terms in which ¢ appears with degree at least M + 1. By Theorem
4.9 we have the equality

(=M)
04

(=M) _ -1 _
SGgEM)(g)(g) P(A™",¢)

(&)

of polynomials in (A~Y, ). Then substituting A <« AM) (g), we obtain
(=M)

(=M) _ (M) -1 —
St @ = PUA @I = i 0) 48)

Although the first term on the left-hand side of Eq. (4.8) looks quite intimidating,

.. £M)
we can recognize it as SG—(S) (&), where

G(e) = Gy, (&) ~ G

. . . <M

is the expression from Lemma 4.16. Since SE_*] )(8) = Z/i\l:l Sﬁsk, where each
Sﬁ is a polynomial (homogeneous of positive degree) in the subscript slot, it
follows that

<M <M
Seoy © ~ S5 (@),
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Then from Eq. (4.8) we obtain

B <M)
S () — PAAM @ ) ~ o5l @),

but since [AM) (e)]"! = G + O(e) and since P only includes terms of degree
at least M + 1 in the second slot, it follows that P([A™) (¢)]~!, &) ~ 0, and the
desired result follows.

Taken together (as indicated in Fig. 1), Lemmas 4.13, 4.14, and 4.17 imply that
E(GSM) () ~ S(GSM) (e) as desired, and the proof of Theorem 4.1 is complete.

4.5. Caveat Concerning Truncation of the Bold Diagrammatic Expansion

Although the LW and self-energy functionals are defined even for G such that
the corresponding quadratic form A = A[G] is indefinite (and hence there is
no physical bare non-interacting Green’s function), Green’s function methods (as
discussed in Section 4.7 of the accompanying paper) based on truncation of the
bold diagrammatic expansion can fail dramatically in the case of indefinite A. One
can encounter divergent behavior as the interaction becomes small, or the Green’s
function method may fail to admit a solution. Both failure modes can demonstrated
by simple one-dimensional examples. The relevance of these to the solution of the
quantum many-body problem is at this point unclear.

Consider the one-dimensional example of

Z= f o1 =5t gy (4.9)
R

where a = —1. The corresponding non-interacting Green’s functionis G = —1 <
0 and hence is not even a physical Green’s function.
Nonetheless with A > 0 the true Green’s function is still well-defined via

G = %/ )c2e%)‘2_%)“‘4 dx.
R

We now compute G via the Hartree-Fock method (cf. Section 4.7 of the accom-
panying paper), that is, we approximate the self-energy as

v = —le — G = —EAG.
2 2

Hence the self-consistent solution GV of the Dyson equation solves

B el
G 2 '

There is only one positive (physical) solution to this equation, namely

1+ 41464
. .

G =
3
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In the spirit of perturbation theory, one might hope that GV is a good approxi-
mation to G atleast when A — 0. However we see just the opposite. This is perhaps
not surprising because the exact Green’s function G itself blows up in this limit.

The failure of the method as A — 0 can be understood more precisely as
follows. Rewrite the Hamiltonian from (4.9) as

The corresponding Gibbs measure (which is unaffected by the additive constant)

then concentrates about two peaks at x = :i:\/g as A — 0. Hence we expect

G ~2271

We note that, in contrast with the statement of Lemma 4.8, the limit limy .o+ G(})
does not exist. According to Eq. (4.10),

2
G~ il
3

We find that as A — 0+, G and its first order approximation G’ do not agree.
If we include the second-order terms of the bold diagrammatic expansion

1 3
@ = §A2G3 + 212G = 5,\263. (4.10)
Then the self-consistent solution G of the Dyson equation solves

3 3 3
_ L3 e 30
s =1 5AGP = 2h (G ) .

This yields a quartic equation in the scalar G, which in fact has no solution for
physical G®@, thatis, G® > 0.

To see this, first ease the notation by substituting x <— G®, so we are interested
in the solutions x > 0 of

N W

However, y* — y2 > —‘—1‘ for all y, so the first term is at least —%, which evidently
implies that no solutions exist for x > 0.



556 LIN L1u & MICHAEL LINDSEY

5. Proof of the Continuous Extension of the LW Functional

In Section 3.5 we motivated the continuous extension of the LW functional to the
boundary of S f . and stated this result in two equivalent forms (Theorems 3.18 and
3.20). In this section we prove the continuous extension property (for interactions of
strong growth). We also develop the counterexample promised earlier, an interaction
of weak but not strong growth for which the continuous extension property fails.

The section is outlined as follows. In Section 5.1, we describe some preliminary
reductions in the proof of the continuous extension property, after which the proof
can be divided into two parts: lower-bounding the limit inferior of the LW functional
as the argument approaches the boundary and upper-bounding the limit supremum.
In Section 5.2, we prove the lower bound, and in Section 5.3 we prove the upper
bound. In Section 5.4 we provide an alternate view on the continuous extension
property from the Legendre dual side, and in Section 5.5 we use this perspective to
exhibit the aforementioned counterexample to the continuous extension property,
which satisfies the weak growth condition but not the strong one.

5.1. Proof Setup

We are going to prove Theorem 3.20, which as we have remarked suffices to
prove Theorem 3.18 by changing coordinates via Proposition 3.10.
Suppose G € Siv is of the form

— GPO
o=(V3)

where G, € S7, and suppose that GY) € SV, with GY) — G as j — oo. For
) L \NT .
each j, diagonalize G = ZlNzl )ij )vl.(" ) (vl.(" )) , where the vl.(] ) are orthonormal,

)\Ej) >0fori=1,...,N.
We want to show that

&[GV, U] — @,[G,, U(-,0)].

It suffices to show that every subsequence has a convergent subsequence with
its limit being ®,[G,, U(-, 0)]. The GY) are convergent, hence bounded (in the
I - [[2 norm), so the A;’ ) are bounded. Moreover, the vi(" ) are all of unit length, hence
bounded, so by passing to a subsequence if necessary we can assume that, for each
i, there exist A;, v; such that )LE]) — X; and vi(]) — v; as j — oo. It follows
that the v; are orthonormal and that G can be diagonalized as G = ZlN: L Al
Since G, is positive definite, we must have A; > Ofori =1, ..., p, and moreover
A =0fori = p+1, ..., N.Evidently, the eigenvectors of G with strictly positive
eigenvalues must be precisely the eigenvectors of G ,, concatenated with N — p zero
entries, that is, fori = 1, ..., p, v; must be of the form (%, 0). By orthogonality,

fori = p+1,...,n, v; mustbe of the form (0, *).
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For convenience we also establish the following notation:

VG :=span{vy, ..., vp}, Vg = span{vf’), . ..,v},”}.

Now the proof consists of proving two bounds: a lower bound

liminf ®y[GY), U] 2 ®,[G,, U(:, 0)]
J—>00

and an upper bound

limsup @y (G, U] < @,[G,, U(:, 0)].

J—>00

These bounds will be proved in the next two sections, that is, Sections 5.2 and 5.3,
respectively.

5.2. Lower Bound

We want to establish a lower bound on &[G, U] via our expression for Fy
as a supremum:

FnIGY, U= sup [H(/U—/U d/L] (5.1)
negy' (GW)

This strategy requires us to construct measures u'/) e QIT,](G(/' ). Intuitively,
what one hopes to do (though this strategy will require some modification) is the
following: consider the measure « on R? that attains the supremum in the analogous
expression for 7,[G ,, U( -, 0)], identify this measure with a measure on Vg ~ R”,
rotate and scale appropriately to obtain a measure /) supported on V() with the
correct second-order moments with respect to this subspace, and finally take the
direct sum with an appropriate Gaussian measure 8) on V(J;-( - Unfortunately,
due to difficulties of analysis, it is not clear how to then prove the desired limit as
Jj — oo.

However, the analysis of this limit would be feasible if the ;) had compact
support (which they evidently do not). Then our approach is to carry out a construc-
tion that preserves the spirit of the ‘ideal’ construction just described but instead
works with £ of (uniform) compact support.

For convenience we let M, C M3 denote the subset of measures of compact
support. The acceptability of working with measures of compact support can be
motivated by the following lemma, which will be used below. (In the statement we
temporarily suppress dependence on the interaction and the dimension from the
notation.)

Lemma 5.1. Forall G € SV,

FlG] = sup |:H(pc) - / U d/{| .
neG=HG)NM,
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Now we outline our actual construction of the u/). Consider an arbitrary
measure o € g,;l(G p) with compact support on R” >~ V. (We abuse notation
slightly by considering « as a measure on both R” and V.) The idea now is to
construct a measure in 1) € g;l (G'Y) by rotating « and scaling appropriately
to obtain a measure /) supported on V;(j, and then taking the direct sum with a
compactly supported measure 8/ on VGl( j (the details of which will be discussed
later). In fact the supremum in (5.1) will be approximately attained by a measure
of this form as j — oo, that is, our lower bound will be tight as j — oo.

Accordingly, for the construction of «/), let O/) be the orthogonal linear
)
1

matrix (in the vi(j ) basis) given by

diag(\/kﬁj)/kl,...,\/)\;,j)/)\ 11)

Then define 7V) ;= DWOW and o) := TW#qy. Note that TV) — I, as
Jj — 00. Moreover, observe that a'P is a measure supported on V() with second-

transformation sending v; — v;”’, and let D) be the linear transformation with

order moment matrix given by diag()»(j ), cee k;f )) with respect to the coordinates
on V() induced by the orthonormal basis vi’ ) vﬁ,f ).

Now we turn to the construction of ¢). Let R > 1 and let y be a measure
supported on [—R, R] with I x2dy = 1. The parameter R will control the size of
the support of 8 and will be sent to +oc at the very end of the proof of the lower

bound (after the limit in j has been taken). Then define

DIET ) ()
AU — diag <,/kp+1,...,\/)\N >,

and define a measure 80 on RV=7 by ) := AUW#(y x --- x y). Note that
AY) — 0as j — oo. Abusing notation slightly, we will also identify 8¢) with
a measure supported on Vé_(_/) ~ RN=P via the identification of the orthonormal
;’ll, o Uz(\{) for Vé(j) with the standard basis of RV 7,

Finally, define the product measure u/) = o) x B () with respect to the
product structure RN = Vo % V(J;-(j), and note that M(I) € g;,l(G(-’)), so by
(5.1,

basis v

FNIGD. U] = H@D x g0y — / U du

— H(Ot(j)) + H(,B(j)) —/Udu(j)
R ,
— H(o) - / Udu + 3 37 toga + NV = pH ),
i=p+1

where H (a'?) and H(BY)) are the entropies of /) and B) on the probability
spaces V() and Vé-( j)» respectively.
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Notice that there is a compact set on which all of the measures p/) are sup-
ported. It is then not difficult to see that /) converges weakly to the measure
a x 8, where the product is with respect to the product structure RY = Vg x Vé‘
and &y is the Dirac delta measure localized at the origin. By the continuity of U and
the uniform boundedness of the supports of /), this is enough to guarantee that

/U du —>fUd(a x 80) :/U(~,O)da

as j — oo.
Next we write the Luttinger—Ward functional in terms of Fy:
! ) () ! Gy N
ECDN[G DUl = FnIGY), U] — ETr[log(G N — 5 log(2me)

N
. 1 NN
= Fy[GD, Ul - 3 > loga!) — 5 log(2e).

i=1

Then combining the preceding observations yields

j—o00 Jj—o0

1 , o1& .
lim inf 5c1>N[G(~/>, U] = liminf |:H(a) - / U dp — 5 Y loga”

i=1

N
-5 log(2me) + (N — p)H(y)]
1 P
=H(a) — / U(,0)da — > log;
i=1

N
— log@me) + (N — p)H(y)
= H(a) — / U(-,0)da — %Tr [log(G )]
N
— logQme) + (N — p)H(y).

Now for any ¢ > 0, we can choose R sufficiently large and y supported on
[—R, R]such that H(y) = 1 log(2me) — ¢. Indeed, note that % log(2me) is the en-
tropy of the standard normal distribution, that is, the maximal entropy over measures
of unit variance. By restricting the normal distribution to [— R, R] for R sufficiently
large, we can become arbitrarily close to saturating this bound. Therefore we have
that

1 4 1
liminf ~®N[GY, U] = H(a) — f U(-,0)da — ETr [log(G )] — glog(Zne).

j—o0 2

Since o was arbitrary in g;l (Gp) N M_, this establishes the desired upper bound

1 .
—liminf ®y[GY), U] > sup [H(a)—/U(-,O) doe]
2 joes @eG, (G p)NM.
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1
—5Tr[log(Gp)] - glog@ﬂe)
1

= EQP[GP’ U(7 0)]7

where we have used Lemma 5.1, which allows us to look at the supremum over
compactly supported measures.

Observe that the proof of the lower bound did not require the strong growth
assumption, hence the semi-continuity claim of Remark 3.19.

5.3. Upper Bound

Next we turn to establishing an upper bound. The basic strategy is to select
measures /) that (approximately) attain the supremum in (5.1) and take a limit
as j — oo.

Before proceeding, let ¢ > 0. Moreover, define 7 to be the orthogonal projec-
tiononto Vg >~ R?, and define 5 to be the orthogonal projection onto Vé ~RN-P,

Now for every j, as suggested above choose /) € g;l (GY) such that
FNGD. U1 < B - [ U au .

Therefore

N
) . . 1 .
dNIGD, U< HuW) — f U dp) — 3 Y log@rer!”) +e. (52)

i=1

=a;

Then choose a subsequence ji such that limy_, o0 aj, = limsup;_,  a;.

Now the 1/) have uniformly bounded second moments, so by Markov’s in-
equality, the sequence /) is tight. Then by Prokhorov’s theorem (Theorem A.4),
we can assume, by extracting a further subsequence if necessary, that ;%) con-
verges weakly to some measure 4.

We claim that Gy () < G (so in particular, u € My). Indeed, for any z € RN,
by the Portmanteau theorem for weak convergence of measures (Theorem A.1) we
have

/(ZTX)2 du = likminf/(sz)2 dp o)
— 0

= lim inf/szxTz dp% = liminf 7 Gz = ;1 Gz.
k—o00 k— 00
It follows that © € M, and moreover g, (wz < I Gz forall z, that s, G, (n) <
G. In particular, u is supported on V.
Define TV to be the orthogonal transformation that sends vl.(j N Vi, SO
T — I, as j — oo. Define v/ := TW#,(). Again by Prokhorov’s theorem,
we can assume that vk converges weakly to some measure v. In fact, we must
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have v = . To see this, note that for any continuous compactly supported function
¢ on RN, we have that ¢ o T/) — ¢ uniformly as j — oo. Therefore

lim / ‘qb —o T(j)‘ du = 0.
j—00

Consequently

/4; dp = lim /¢> duU® = lim /(j)oT(jk) dpuU® = lim /¢dv<f'k> =/¢dv.
k— 00 k— o0 k—o00

5 Since p and v agree on all continuous compactly supported functions, they must
be equal (Riesz representation theorem), and vU¥) — 11 weakly.

Define y,gj) = mtv) = (m o T(j)) #u) and p; = mi#tp fori = 1,2. 1t
(k)

follows that u;”*" — u; weakly. Notice (using Fact 2.11) that

N
Hu) = HOU) £ Hui™) + Hug) S H@i?) + 5 37 logmen?).
i=p+1

Therefore, using Lemma 2.9 with the weak convergence /,LY 2N /L1, We obtain

N
, : ‘ o _ 1 (o)
klgr;oajk = klin;o |:H(/L(j")) — / U duUo — > Zlog(Zneki Ky

i=1

: 1< . .
< lim sup H(,ug"k)) - = Zlog(Zne)»l(/)) — lim inf |:/ U d,u(f"):|
k— 00 2 ] k—o00
. 1
< H(up) — likminf U U du(f")} -3 log((2re)? det G ).
— 00
Now for any o € R, define U, (x) = U (x) — a||x||2. Then

/U dﬂ(j) — / U, dM(j) —i—aTr[G(j)].
The utility of this manipulation will be made clear later. By the strong growth

condition, U, is bounded below. Therefore, by the Portmanteau theorem for weak
convergence of measures,

lim inf U U du(”)} = oTr[G] + lim inf [/ Uy d,u(jk)} > aTr[G,] + f Uy dit.
—00

k— 00

Since p is supported on Vg, in fact we have

[ v an= [ 0.0 a1 = [UC.0) dui - aTiG, a1
and therefore,

. 1
lim aj < Hu) —/U(«,O) du1 = 5 log((2me)? det G ) + @TrlGp (1) = Gy
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1
< FplGp(u1), U, 0)] - 5 log((2me)P det Gp,) + aTr[G, (1) — Gl
Recall from (5.2) that

limsup ®[GY), U] < lim aj, +e.
k—o00

j—o00
Since ¢ > 0 was arbitrary, this means that

limsup ®[GY), U] £ Fp[G,(11), U(-, 0)]

j—o00
1
—3 log((2me)? det G ) + aTr[G, (1) — G

If we had Gy (1) = G, thatis, G, (1) = G, then we would be done. We have
Gp(u1) <X G, so it will suffice to show that Tr[G,(u1) — G,] = 0. Suppose
for contradiction that Tr[G, (1) — G1] < 0. But then, by taking « arbitrarily
large we see that lim sup;; _, ., ®[GY), U] = —o0, which is impossible because we
already have a lower bound on liminf ;. &[G, U]. Therefore Gp(u1) = Gp,
as desired, and we have

limsup ®[GY), U] £ ®,[G,, U(-,0)],
J—>00
which completes the proof.

Notice the strong growth assumption was only used in this part of the proof
(that is, the proof of the upper bound). In particular, it was only used to ensure that
the measure /) of maximum entropy relative to vy (as in Remark 3.6) subject
to the moment constraint G(u/)) = GU) cannot weakly converge to a measure u
with G() # G =lim oo GV,

5.4. Dual Perspective on Continuous Extension

We now outline how Theorem 3.18 can be reinterpreted via the transformation
rule. This perspective provides another way of understanding Theorem 3.18 and
allows us to present a counterexample that illustrates the necessity of the strong
growth condition of Definition 2.4.

Suppose that T are linear transformations such that 7; — P, where P =
I, ® Oy_, is the orthogonal projection onto span{e\™, ..., %}, Let G € SV,
with upper-left block given by G ,. Then, using the transformation rule, Theorem
3.18, and the projection rule, we obtain

Oy[G. U o Tjl = n[T;GT}, Ul — ®,[G,. U(-,0)] = ®y[G. U o P].

This manipulation suggests that Theorem 3.18 is equivalent to the pointwise
convergence
Oy[-,UoT;] - ®y[-,Uo P] (5.3)

forall T; — P.To see the equivalence, consider an arbitrary sequence GV eS 1+v i
converging, as before, to the block-diagonal matrix G = G, ® Oy_, € SN,
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where G, € SV, . Then we want to show, using Eq. (5.3), that ®5[G), U] —
®,[G,, U(-,0)].

Tothisend, let 7; = [GV]V2[G , @ Iy_ 172,50 GY) = T;(G, eIv-p)T},
and T; — P. Then (5.3) implies that ®n[G, @ IN—p, U o T;] — OnN[G, ®
IN—p, U o P], and combining with the transformation and projection rules yields
Theorem 3.18.

Note that (5.3) is equivalent to the pointwise convergence of concave functions
Fnl-,UoTj]— Fnl-,Uo PlasT; — P.Since the domains of these concave
functions are open (namely, S iv 1), by Theorem A.22 this is actually equivalent to
uniform convergence on all compact subsets of S iv .. Furthermore, since Fy[ -, Uo
Tjland Fy| -, UoP]arebothuniformly —ocoonS N \S _’: ., thisis in turn equivalent
to uniform convergence on all compact subsets of SV that do not contain a boundary
point of S ﬁrv +» which by Theorem A.20 is equivalent to the hypo-convergence (see

Definition A.19) Zy[-,U o T;] - Fy[-,U o P]. (Note that the role of epi-
convergence for convex functions is assumed by hypo-convergence for concave
functions.) But then hypo-convergence is equivalent to hypo-convergence of the
concave conjugates (Theorem A.21), that is, of Q[-, U o Tj]to Q[-,U o P] as
Jj — oo.

In summary, the continuous extension property is equivalent to the hypo-
convergence [ -, U o T}] 5 Q[-,Uo P].

5.5. Counterexample of Weak but Not Strong Growth

Here we give a counter example to show that the weak growth condition is
insufficient for guaranteeing the continuous extension property. By the discussion
of Section 5.4, we need only find U satisfying the weak growth condition for which
Q[ -, U o T;] fails to hypo-converge to Q[ -, U o P].

For example, consider N = 2 and

xi* o fxi] S Jaal 7!
U(xy, x2) = 4 N -
2l ™ lxrl = ol

If x = 0, then the first case holds for all x;. This interaction is nonnegative, and
hence satisfies the first part of the weak growth condition of Definition 2.3 with
Cy = 0. To see that U satisfies the weak growth condition, we need only show
that dom €2 is open. Clearly dom Q2 > S ﬁrv - Moreover, the restriction of U to any
line except the x-axis is bounded, and it follows that in fact dom 2 = S _"Y ., hence
dom €2 is open, as desired.

Now let
1 0 10

Since Q[ -, U o P] has an open domain, namely,

dom (Q[-,UoP]):{A:(a,-j)eS2:a22>0},
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the hypo-convergence of Q[ -, U o Tj] to [ -, U o P] is equivalent to pointwise
convergence (by Theorems A.20 and A.22), which is the same as the pointwise
convergence Z[-,U o T;] — Z[-,U o P].

Set A = (a;;) viaaj; = aj2 = 0,a2 = 1,50 Aisinthe domainof Q[ -, Uo P],
that is, Z[A, U o P] < +o00. However,

Z[A, U o Ti1 = /e—%\xzﬁ_U(xl,j*lxz) dxy dxy

. _ 21 2_
=J-/€ PHRP-UGL) 44 du.

Now the restriction of the last integrand to any line of constant x # 0 is asymp-
totically equal to e~/ el =l S 0, so the integral along any such line is +oo,
and by Fubini’s theorem, Z[A, U o T;] = +oc. Thus convergence fails at A, and
we have a counterexample as claimed.
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A. Definitions and Results from Convex Analysis

In this section we review some definitions and results from convex analysis. In
this paper many results are stated for concave functions, that is, functions f such
that — f are convex. The standard results of convex analysis can always be applied
by considering negations. We state results below for convex functions to maintain
consistency with the literature. Many results are stated in somewhat more gener-
ality than is needed for the purposes of this paper (for example, we do not simply
conflate proper and non-proper convex functions). This is done to make sure that
the reader can refer to the cited references. The discussion follows developments
from Rockafellar [25] and Rockafellar and Wets [26].

A.l. Convex Sets and Functions
We begin with the definition of convex sets and functions.

Definition A.1. A set C C R" is convex if (1 —t)x +ty € C foreveryx,y € C
and all ¢ € [0, 1].
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Definition A.2. An extended real-valued function f on a convex set C, that is, a
function f : C — [—00, 00] = R U {—00, 400}, is convex if

fA=Dx+1y) s A=0)fx)+1f()

forall x, y € Candall ¢ € (0, 1), where we interpret co — co = 400 if necessary.
We say that f is strictly convex on the convex set C if this inequality holds strictly
whenever x # y.

Definition A.3. The (effective) domain of aconvex function f on S, denoted dom f,
isthesetdom f ={x € § : f(x) < +oo}.

The following is an immediate consequence of the preceding definitions:
Lemma A4. Let f be convex on S C R". Then dom f is convex.

We note that when f € CZ2(C), our definition of convexity coincides with the
definition from multivariate calculus:

Theorem A.5. Ler f € C>(C), where C C R" is open and convex. Then f is
convex on C if and only if the Hessian matrix V? f (x) is positive semi-definite for
allx € C.

Proof. See Theorem 4.5 of Rockafellar [25].

Notice that for f convex on a convex set C C R”, we can extend to f defined on
R” by taking f [rm\c = +oo. It is immediate that f is convex on R". Thus one
loses no generality by considering only functions that are convex on R”.

The following definitions are helpful for ruling out pathologies:

Definition A.6. A convex function f is called proper if dom f # ¥ and f(x) >
—oo for all x.

We will only ever need to consider proper convex functions.

Definition A.7. If f is a proper convex function, then f is called closed if it is
also lower semi-continuous. (If f is a non-proper convex function, then f is called
closed if it is either f = +ooor f = —00.)

Remark A.8. For the fact that this can be taken as the definition, see Theorem 7.1
of [25].

The convexity of a function guarantees its continuity in a certain sense:

Theorem A.9. A convex function f on R" is continuous relative to any relatively
open convex set in dom f. In particular, f is continuous on intdom f. In fact, it
holds that a proper convex function f is locally Lipschitz on int dom f.

Proof. See Theorems 10.1 and 10.4 of Rockafellar [25].
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A.2. First-order Properties of Convex Functions

There is an extension of the notion of differentiability that is fundamental to the
analysis of convex functions.

Definition A.10. Let f be a convex function on R”. y € R" is called a subgradient
of fatx € dom f if f(z) = f(x)+ (y,z — x) for all z € R". The subdifferential
of f at x € dom f, denoted df (x), is the set of all subgradients of f at x. By
convention df (x) = ¢ for x ¢ dom f.

Theorem A.11. Let f be a proper convex function. of (x) is a non-empty bounded
set if and only if x € intdom f.

Proof. See Theorem 23.4 of Rockafellar [25].

It is perhaps no surprise that the derivative and the subdifferential of a convex
function coincide wherever it is differentiable.

Theorem A.12. Let f be a convex function, and let x € R" such that f(x) is
finite. If f is differentiable at x, then V f (x) is the unique subgradient of f at x,
where V is the gradient defined with respect to the inner product used to define the
subgradient. Conversely, if f has a unique subgradient at x, then f is differentiable
at x.

Proof. See Theorem 25.1 of Rockafellar [25].

A.3. The Convex Conjugate

A fundamental notion of convex analysis is convex conjugation, which extends the
older notion of Legendre transformation.

Definition A.13. Let f be a function R" — [—o00, +00]. Then the convex conju-
gate (or, Legendre-Fenchel transform) f* : R" — [—o00, +00] with respect to an
inner product (-, -) on R” is defined by

FH) =sup{(x,y) — f(x)} = —inf {f(x) — (x, y)}.
X
Theorem A.14. Let f be a convex function. Then f* is a closed convex function,
proper if and only if f is proper. Furthermore, if f is closed, then f** = f.
Proof. See Theorem 12.2 of Rockafellar [25].

It is an important fact that the subgradients of f and f™* are, in a sense, inverse
mappings.

Theorem A.15. If f is a closed proper convex function, then x € df*(y) if and
only if y € 9f (x).

Proof. See Corollary 23.5.1 of Rockafellar [25].
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Roughly speaking, differentiability of a convex function corresponds to the strict
convexity of its conjugate. Indeed:

Theorem A.16. If f is a closed proper convex function, then the following are
equivalent:

1. intdom f is nonempty, f is differentiable on intdom f, and of (x) = ¥ for all
x € dom f \ intdom f.
2. f*is strictly convex on all convex subsets of dom df* :={y : df*(y) # ¥}

Proof. See Theorem 11.13 of [26].

Note that for proper convex f, if dom f* is open, then dom df* = dom f* by
Theorem A.11, and under the additional assumption that dom f is open, Theorem
A.16 simplifies to the following:

Theorem A.17. Let f is a lower semi-continuous, proper convex function, and
suppose that dom f and dom f* are open. Then the following are equivalent:

1. f is differentiable on dom f.
2. f*is strictly convex on dom f*.

A.4. Sequences of Convex Functions

Pointwise convergence of convex functions entails a kind of convergence of their
subgradients.

Theorem A.18. Let f be a convex function on R", and let C be an open convex set

on which f is finite. Let f1, fa, ... be a sequence of convex functions finite on C

and converging pointwise to f on C. Let x € C, and let x1, x2, ... be a sequence

of points in C converging to x. Then for any ¢ > 0, there exists N such that
afi(xi) C3f (x) + B:(0)

foralli = N.

Proof. See Theorem 24.5 of Rockafellar [25].

Besides pointwise convergence, there is in fact another nature of convergence for
convex functions. This is the notion of epi-convergence, which is defined (even for
non-convex functions) as follows:

Definition A.19. Let f;, f be extended-real-valued functions on R”. Then we say

that the sequence { f;} epi-converges to f, written as f = elim;_. f; Or f; 5 f
as i — oo, if for all x € R”, the following two conditions are satisfied:

liminf f;(x;) 2 f(x) forevery sequence x; — x
L

limsup f;(x;) £ f(x) for some sequence x; —> Xx.
i

We say that the sequence { f;} hypo-converges to f, written as f = hlim;_,  f;

or f LY f asi — oo, if {— f;} epi-converges to — f.
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The notion of epi-convergence is particularly natural in the theory of convex func-
tions; accordingly hypo-convergence is more relevant to concave functions. Note
also that epi-convergence is neither stronger nor weaker than pointwise conver-
gence. However, there is a useful theorem that relates the pointwise convergence
and epi-convergence of convex functions.

Theorem A.20. Let f; be a sequence of convex functions on R", and let f be
a lower semi-continuous convex function on R" such that dom f has non-empty
interior. Then f = elim;_ ~ f; if and only if the f; converge uniformly to f on
every compact set C that does not contain a boundary point of dom f.

Proof. See Theorem 7.17 of Rockafellar and Wets [26].

Under certain mild conditions, the epi-convergence of a sequence of convex func-
tions is equivalent to the epi-convergence of the corresponding sequence of conju-
gate functions. Indeed, the following theorem is a natural motivation for considering
epi-convergence as opposed to pointwise convergence.

Theorem A.21. Let f; and f be lower semi-continuous, proper convex functions
on R". Then the f; epi-converge to f if and only if the f* epi-converge to f*.

Proof. See Theorem 11.34 of Rockafellar and Wets [26].

Finally, under certain circumstances one can upgrade mere pointwise convergence
of convex functions to uniform convergence on compact subsets:

Theorem A.22. Let f; and f be finite convex functions on an open convex set
O C R", and suppose that f; — f pointwise on O. Then f; converges uniformly
to f on every compact subset of O.

Proof. See Corollary 7.18 of Rockafellar and Wets [26].

B. Classical Results on Weak Convergence of Probability Measures

For completeness we recall here several classical results on the weak convergence
of measures. For reference, see, for example, Billingsley [6].

Let S be a metric space, and let P(S) denote the set of probability measures on S
(equipped with the Borel o -algebra). We say that a sequence i € P(S) converges
weakly to 1 € P(S), denoted px = p, if [ f dux — [ f du as k — oo for all
bounded, continuous functions f : § — R. A number of equivalent characteri-
zations of weak convergence are given in the following result, often known as the
Portmanteau theorem:

Theorem A.l. (Portmanteau) Let S be a metric space, and let iy, i € P(S). The
following are all equivalent conditions for the weak convergence jux = |L:

1. limg_, o0 [ f dux = [ f duforall bounded, continuous functions f : S — R.
2. lim infk_,ooff dug = ff du for all lower semi-continuous functions f :
S — R bounded from below.
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3. liminfy_ oo uk (U) 2 w(U) for all open sets U C S.

Remark A.2. There are several other equivalent conditions often included in the
statement of this result.

A condition for extracting a weakly convergent subsequence, as guaranteed by
Prokhorov’s theorem below, is given by the following notion of tightness:

Definition A.3. Let S be a metric space equipped with the Borel o -algebra. A set
C of measures on S is called tight if for any ¢ > 0, there exists a compact subset
K C S such that u(K) > 1 — ¢ for all u € C. A sequence of measures is called
tight if the set of terms in the sequence is tight.

Theorem A.4. (Prokhorov) Let S be a metric space equipped with the Borel o -
algebra. Then any tight sequence in P(S) admits a weakly convergent subsequence.

C. Proof of Lemmas

C.1. Lemma 2.8

Proof. Suppose u < A isin My and write du = p dx where p is the probability
density. Since u < A, Cov(u) must be positive definite. Let ;g be the Gaussian
measure with the same mean and covariance as i, and let pg be the corresponding
probability density. Then one can compute that

1
/ plog pg dx = —5 log ((Zne)N det Cov(u))
(and in particular this integral is absolutely convergent). Now
o
plogp = plog pG + plog —.
PG
The first term on the right-hand side of this equation is absolutely integrable, and
the integral of the second term exists (in particular, the integral of the negative part

of the second term is finite, and the value of the full integral is in fact —H,; (1)).
Therefore the integral f plog p dx € (—oo, oo] exists. Moreover,

1 N
H() = — / plogp dx = > log ((27‘[6) det COV(/L))
1
+Hyg (W) £ 5 log ((Zne)N det COV(,[L))

with equality if and only if ug = u.

To prove the second inequality in the statement of the lemma, define 7z := [ x du
to be the mean of j. Then Cov(u) = G(u) — i’ , so in particular det Cov(u) <
det G(u), with equality if and only if &z = 0.
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C.2. Lemma 2.9

Proof. Without loss of generality we can assume that ;; = p; dx forall j.
First, by the Portmanteau theorem for weak convergence of measures (Theorem
A.1) we have, for any z € R that

TGz = / (eTx)? du < Timinf / (Tx)? dulh
j—00

= lim inf/szxTz du =liminf z7G(u )z £ Cllz)*.
J—>00 J—>00

It follows that u € M3 (and moreover G() < C - ;).

Our goal is to put ourselves in a position to use the upper semi-continuity (note

our sign convention) of the relative entropy with respect to the topology of weak

convergence (see Fact 2.7). Let 8 > 0, and let Zg = fe‘ﬂnx”z dx. Let yg be the

. . . . 2
Gaussian measure with density proportional to e #I*I", Then

H(unj) = —/Pj logp;j dx

pj(x)
ZLﬁefﬂnan
= log(Zp) + Hy, (1)) + BTEIG (L)),
Then by the upper semi-continuity of the relative entropy with respect to the topol-
ogy of weak convergence, we have
lim sup H (1) < log(Zp) + Hy, (11) + BCN = H(1) + B (CN — TrG()]) .

j—o00

=10g(Zﬁ)—/pj(X)10g d)H-ﬂ/Pj(X)IIJCII2 dx

Since this inequality holds for any 8 > 0, the lemma follows.

C.3. Fact 2.11

Proof. We can assume that u is absolutely continuous with respect to the Lebesgue
measure, that is, has a density p (otherwise H(u) = —oo and the inequality is
trivial). It follows that w; := m;#u are absolutely continuous with respect to the
Lebesgue measure, that is, have densities p;, fori = 1, 2. Let x = (x1, x2) denote
the splitting of x € R according to the product structure RY = R? x RN =P,
Then using the fact that | x > has density pj(x1)p2(x2), one directly computes
that

H (1) + H(u2) + H/HXHZ (1)
=/,01(x1)10g/01(xl)dx1 +/p2(x2)logp2(x2)dx2+/‘p(x)log&
p1(x1)p2(x2)
p(x)

=/p(x)logpl(xl)dx+/p(x)10gpz(xz)dx+/p(x)10g7
p1(x1)p2(x2)
=/p(x)10gp(x)dx

= H(w),
but by Fact 2.7, the relative entropy term is non-negative.
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C.A4. Lemma 3.2

Proof. Upper semi-continuity follows directly from Fatou’s lemma. €2 is proper
because its domain is nonempty and evidently 2 does not attain the value +oo.
Now let6 € [0, 1]and Ay, A> € dom 2. Then

—log/ (e—%xTAlx—U(x)>9 (e—%xTAzx—U(x))l_e dx
RN

0 1-0
—log [(/ 2% A =U() dx> (/ o~ 2% Azx=U(x) dx) }
R¥ R

=0Q[A]+ (1 —6)RQ[A3],

QoA + (1 - 0)As]

1\%

where we have used Holder’s inequality in the second step. This establishes concav-

ity. Strict concavity on dom €2 follows from the following fact: Holder’s inequality

holds with equality in this scenario if and only if e~ 2l A—U() _ =33 Apx—U )

for all x, that is, if and only if A| = Aj.
Lastly, observe that since dom €2 is an open set, for any A € dom €2,

2 1T
/ e(Sx e 2% Ax—U(x) dx < +00
RN

for some § > 0. Now, for any polynomial P, there exists a constant C such that for
all A’ in a sufficiently small neighborhood of A,

P(x)e—%xTA/x—U(x) < Ce&xze—%xTAx—U(x).
Since derivatives of all orders of the integrand in (2.2) are of the form
P(x)ef%xTAX7U()C)’

differentiation under the integral is justified, and the smoothness result follows.

C.5. Lemma 3.4

Proof. First assume A € dom €2, so Z[A] < —+o0. Let © € M, and define
fx) = %xTAx + U (x). For any f such that e~/ is integrable, define v 7 to be the
probability measure with density proportional to e~/ Then, provided that 1 < A,

1
/fdM—H(M)=Q[A]—/10g<Z[A]e_f) du — H(w)

d d
= SlAl+ / tog (d_lo ~loe <%> an (C.1)

du

= Q[A] — H,,; (1) = Q[A]

Since © € My, we have H(u) < oo as discussed in Remark 3.5. Careful
observation reveals that manipulations are valid in the sense of the extended real



572 LIN L1u & MICHAEL LINDSEY

numbers even when | f du = +00. Moreover, i & A if and only if u & v, in
which case both sides of (C.1) are +o00. Therefore (C.1) holds for all © € M.
For A € dom £, (C.1) establishes the ‘<’ direction of (3.3). For A ¢ dom £,
Q[A] = —o0, so this direction is immediate.

Next suppose that A € dom . Since dom €2 is open, it follows that vy € Mo.
From (C.1) and the inequality —H,, (1) 2> 0 (which holds with equality if and
only if i = vy), it follows that (3.3) holds. Moreover, that the infimum in (3.3) is

. . . _1 _
uniquely attained at u = v, thatis, at du(x) = ﬁe 3T AX=U() gy,

C.6. Lemma 3.7

Proof. By definition F[G] = —oc whenever G € SN\S i’ . Now we show that also
F[G] = —oo for G on the boundary S i’ . This follows from the fact that for such
G,any 1 € G~1(G) is supported on a subspace of R of positive codimension, that
is, not absolutely continuous with respect to the Lebesgue measure, and therefore
H(un) = —oo. Moreover, since such u is in My, we have (via the weak growth
condition) that f U du € (—o0, o0], so the expression within the supremum of
(3.2)is —oo for all u € G~1(G).

Meanwhile, for G € Sf_’ 4, one can see that 7[G] > —oo by considering  to
be mean-zero with a compactly supported smooth density, linearly transformed to
have the appropriate covariance G. For such u, both terms in the supremum are
finite.

Moreover, for G € Si\’Jr we also have that 7[G] < +o0. Indeed, for u € Q’I(G),
by Lemma 2.8 we have H (i) < % log [(2ne)" det G]. Since [U dpu = —Cy(1+
Tr G), we have a finite upper bound on the expression in the supremum in (3.2),
which finishes the proof.

C.7. Lemma 3.8

Proof. Let G, G, € Sﬁr, 6 € [0, 1], and ¢ > 0. Furthermore let 1, uy € Mj
such that u; € G~ 1(G;) and W([ui] = F[G;]— ¢/2. Then, noting that O¢1 + (1 —
s € GH(OG + (1 —6)G»), we observe

FIOG1 + (1 —-0)G2] = sup Yn]
HEG10GI+(1-6)G2)
Z W [0ur + (1 —0)uo]
Z OW[ui]+ (1 —0)W[u]
Z 0FIG1]+ (1 =) F[Ga] — e,

where the penultimate step employs convexity of W. Since ¢ was arbitrary, we have
established concavity.

The fact that F is proper follows from Lemma 3.7. Since F is concave, by Theorem
A.9itis continuous on int dom JF, which is in fact all of dom F by the weak growth
assumption. Thus we only need to check upper semi-continuity at points G outside
ofdom F.AtG ¢ dom F = S¥, upper semi-continuity is trivial because F = —oo
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on a neighborhood of G. Therefore let G € BSfrV . and suppose that G € Si’ 4
such that Gy — G as k — oo. We need to show that lim sup;,_, ., F[Gk] = —oc.
Throwing outall Gy ¢ S iv . from the sequence cannot increase the limit superior, so
we can just assume that Gy € SiVJF for all k. Since G € 8Siv+, we have det G = 0,
and therefore det Gy — 0. By Lemma 3.7 we have

1
FIGi] = 5 log [(27e)" det Gi ] + Cy (1 + Tr Gy).

Since the right-hand side of this inequality goes to —oo as k — oo, the proof is
complete.

C.8. Lemma 3.9

Proof. Observe that (1) €2 and F are upper semi-continuous, proper concave func-
tions (by Lemmas 3.2 and 3.8), (2) F = Q* and Q = F*, and (3) both dom €2 and
dom F = Siv . are open. Then the strict concavity and differentiability of F on
domF =8 i’ 4 follow directly from Theorem A.17.

Now we turn to proving C°°-smoothness. Though infinite-order differentiability
is not typically discussed in convex analysis, it can be obtained from infinite-
order differentiability and strict convexity of the convex conjugate via the implicit
function theorem. Indeed, define the smooth function % : Sj’r 4 xdom Q — S" by

h(G, A) = VQ[A] — G.

Then Dh = (—ISn | V2Q ), and since €2 is smooth and strictly concave, the
right block is invertible for all A, G. Fix some G’ € 8%, andlet A" = VF[G'] €
dom 2,50 h(G’, A’) = 0. Then the implicit function theorem gives the existence of
a smooth function ¢ on a neighborhood V C &’ , of G’ such that 2(G, $(G)) =0
for all G € V. But this means precisely that ¢ = VF, hence in particular VF is
smooth at G'.

C.9. Lemma 4.4

Proof. Write

Z[A, eU] = /e—%xTAX—SU(” dx.

We want to show that as e — 0%, Z[ -, eU] epi-converges (see Definition A.19) to
Z[-,eU].If so, then —2[ -, eU] epi-converges —2[ -, 0], and Theorems A.21 and
A.20 yield in particular that F[ -, U] — F[ -, 0] pointwise on S_,A_/+ ase — 0T,
Then by Theorem A.18 we have the pointwise convergence of the gradients on
SV, thatis, A[G, eU] — A[G,0] = G lase — 0T for G e SV,

Thus it remains to show that Z[ -, eU] epi-converges to Z[ -, eU]. The first of the
conditions in Definition A.19 follows immediately from Fatou’s lemma, so we need
only show that for any A € SV, there exists a sequence A, — A such that

limsup Z[A., eU] £ Z[A, 0]

e—071
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In particular, it suffices to show that

limsup Z[A, eU] < Z,[A, O]. (C.2)

e—071

ForA ¢S i’ ., the righthand side is +o00, so the inequality holds trivially.

Thus assume A € Siv +- By the weak growth condition, we can write U(x) =
U(x) — A — Allx||?, where C > 0 and U = 0. Then

Z[A, U] = /e”‘e_%xT(A_”)x_gﬁ(x) dx < /e”e_%xT(A_g’\)x dx,

and evidently the righthand side converges to Z[A, 0] by dominated convergence.

C.10. Lemma 4.5

Proof. Let G € S iv - Recall Eq. (C.2) from the proof of Lemma 4.4. From this
inequality, it follows that there exists 7 > 0 and an open neighborhood A/ of G~!
in Sf+ such that A € dom [ -, eU] for all (¢, A) € (0, 1) x N.

Now consider ¢ > 0 sufficiently small so that &€ < t and A= Ag() e N
(possible by Lemma 4.4). Define the smooth function / : (0, 7) x V' — SN by

h(e, A) = VAQIA, eU] — G.

Then Dh(e, A) = (* | VAQ[A, €U]), and since Q[ -, eU] is smooth and strictly
concave, the right block is invertible for all ¢, A. Moreover, we have h (g, A) =0
by construction. Then the implicit function theorem gives the existence of a smooth
function ¢ on a neighborhood I of & such that i (e, ¢ (¢)) = 0 forall ¢ € I, but this
means precisely that ¢ = Ag. The implicit function theorem then also says that

oh
G(e) = —(ViQIAG(e), 8U])_1£(8, A (e)) (C3)

for all ¢ € I, where A’G denotes the ordinary derivative of the function Ag of a
single variable. In particular Eq. (C.3) holds at ¢ = &, but since £ was arbitrary
(beyond being taken sufficiently small), it follows that Eq. (C.3) simply holds for
all & > 0 sufficiently small.

We want to show that all derivatives of Ag : (0, c0) — SV extend continuously
to [0, 00). Starting with A., we can examine these functions by taking further
derivatives on the righthand side of Eq. (C.3). The result will be an expression
involving integrals of the form

/ P(x, Ux)) e 3 Ac@x=eUt gy

where P is some polynomial, and it suffices to show that such integrals converge
to their desired limits

/P(x,U(x)) e~ G gy
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The argument is by dominated convergence. First observe that from the at-most-
exponential growth assumption (Assumption 2.5), it follows that there exista, b >
0 such that |P(x, U(x))| < ae?*1l for all x. As in the proof of Lemma 4.4, write
Ux)=U(x)— A — Allx]|?, where C > 0 and U = 0. Then

1P (x, U(x))e—%xTAG(s)x—aU(x” < 1P(x, U))| eske—%xT(AG(s)—EA)x—SINJ(x)

_l.T _
g aeb\lxlles)»e 3x" (Ag () 8)»))6'

Then for all ¢ > 0 small enough such thate < 1 and Ag(e) —eA > %G’l, we see
that the absolute value of the integrand is bounded uniformly by

_1,.T5-1
aebl\x\leke X' G x’

which is integrable. This completes the dominated convergence argument, and we
conclude that all derivatives of Ag extend continuously to [0, 00).

Next we aim to use the preceding to show that all derivatives of & and X also
extend continuously to [0, c0).

To this end, recall the Dyson equation

Y6 =Ag — G,

which requires that the desired extension property of X is equivalent to that of
A, which we have already proved.
Now for any ¢ > 0, we have

Dg(e) =2F[G,eU] — TrlogG — N log(2me)
=Tr[Ag(e)G] — 2Q[Ag(¢), eU] — Trlog G — N log(2me)
by Legendre duality, from which it follows from our extension property for Ag,

together with the arguments used to establish it, that all derivatives of ®¢ extend
continuously to [0, 00).

C.11. Lemma 4.12

Proof. Based on Egs. (4.6) and (4.7), we want to show that G[A(M)(e), Ug(M)] ~
G[AM) (¢), eU]. As a first step, we aim to show that ZIAM) (g), US(M)] ~ Z[AB)
(e), eU]. Indeed, we can write

ZIAM (¢), eU] — Z[AM) (e), UM

(=M

LT _
_ /e—%xTA(m(s)x—aU(x) 1_eo 2 [EG(*?) e (8)}5 dx (C.4)

‘We can choose C such that

(EM)

—CeMT < S6(e) — B (e) < CeMT!

for all ¢ > 0 sufficiently small.
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Now let R(s) = &~ P/% for p € (0,1). We split the integral in (C.4) into a part
over Bg(g)(0) and another part over the complement. The integrand is dominated
by e~%* " for some § uniform in &, the integral of which over the complement of
BR()(0) decays super-algebraically as ¢ — 0, so we can neglect this contribution.
Meanwhile, for x € Bg()(0), we have

<
’xT [Eg(s) - EE;M)(@)]X‘ < CeM+1=p,

hence there exists C’ such that

1.7 (=M)
| — efzx |:EG(8)7):G (s)]x < C’gM'H_t"

for all x € Bpr()(0). Combining with (C.4) and dominated convergence, we have
established Z[AM) (¢), UM ~ Z[AMD (¢), eU].

This result, together, together with analogous arguments applied to integrals of the
form

oy —le[zcw)—E‘gm(s)}x
/x,-xj e A E@x—eU) [ _ 72 ¢ dx,

yields G[AM) (e), UM ~ GIAM (¢), £ U.

C.12. Lemma 5.1

Proof. For convenience, we define

FlG] = sup [H(u) — / U dM:| .
neG=1(G)NM,

Evidently 7, £ F and F.[G] = —0if G ¢ S frv 1> SO We can restrict attention to
GeSY,.
Fixe > 0.Let G € SL_, so F[G] is finite, and let u € M such that

H(u)—/U du = F[G] — /2.

In particular, H(u) # —o0o, so du = p dx for some density p. Then consider
the measure ug € M. (R) given by density pg := ZEI - p - XR, Where xp is the
indicator function for Bg(0) and Zr = f BR(0) P dx. By monotone convergence,
Z R — 1.

Unfortunately we cannot expect G(ug) = G, but we do have G(ug) — G
(following from dominated convergence, together with the finite second moments
of ©). We then want to modify ug (keeping its support compact) to construct a
nearby measure with the correct second moments.
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To this end let Gg = Tr[G — G(ur)] + G(uR), where Tg > 1 is chosen so that
Tp — 00 and the eigenvalues of G g remain uniformly bounded away from zero
and infinity (possible since G(ug) — G). Note that we have G = rlglGR + (1 -
72 G (1R).

Now let m € M be any compactly supported measure with a density and finite
entropy, and let mg = Tg#m, where Ty is a linear transformation chosen so that
G(wg) = Grg. Since the eigenvalues of Gg are uniformly bounded away from
zero and infinity, the T can be chosen to have determinants uniformly bounded
away from zero and infinity (which guarantees that that the | H (rg)| are uniformly
bounded), and wr can be taken to have uniformly bounded support. Then finally
we can define a measure vg = rlglnR + (1 — r;l)uR, so G(vg) = G and vg is
compactly supported.

For the proof it suffices to show that

H(vg) — / U dvg — H(u) — f U du (C.5)

as R — oo.
By the weak growth condition (Definition 2.3), we can choose a constant C such
that U defined by U (x) := C(1 + ||x||2) + U (x) satisfies U (x) = ||x||2. Now

/(1 ) dpg — /(1 %12 dyt < 400

by monotone convergence together with the fact that Zr — 1. Furthermore
! /(1 + Ix]I?) dmg — 0,
so in fact
/(1 + [Ix]I*) dvg — /(1 + lIx]1*) dp < 400

Therefore, without loss of generality, we can prove C.5 under the assumption
that U(x) = |lx||>. But then [U dug — [ U du by monotone convergence,
and 7, ! J U dng — 0 since the 7 have uniformly bounded support, so in fact
JU dvg — [U dp.

Then we need only show that H(vg) — H(w). Here one verifies from the
construction that vg converges weakly to , and moreover the second moments of
VR, i are uniformly bounded, so by Lemma 2.9, we have lim supp H(vg) < H(1).
However, by the concavity of the entropy, we have H(vg) = rElH (rp) + (A —
11;1 )H (1t g). Now recall that the | H (T g) | are uniformly bounded in R, so tlgl H(mg) —
0. Thus the statement lim inf g H(vg) = H(u) (and hence also H(vg) — H(u))
will follow if we can establish H (ug) — H(u).

Now

H(ug) = log(Zp) — Z / p logp dx,

Br(0)
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but we know that Zg — 1, so we need only show that

/ plogpdx—>/,ologpdx.
Br(0)

From Lemma 2.8, the negative part of p log p is integrable. But then the fact that
H () > —oo precisely means that the positive part of p log p is integrable, that
is, p log p is absolutely integrable. Then the desired fact follows from dominated
convergence.
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