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Abstract

In this work we consider the Landau–de Gennes model for liquid crystals with
an externalmagnetic field tomodel the occurrence of the Saturn ring effect under the
assumption of rotational equivariance. After a rescaling of the energy, a variational
limit is derived. Our analysis relies on precise estimates around the singularities and
the study of a radial auxiliary problem in regions, where a continuous director field
exists. Studying the limit problem, we explain the transition between the dipole and
Saturn ring configuration and the occurence of a hysteresis phenomenon, giving a
rigorous explanation of what was derived and simulated previously by [H. Stark,
Eur. Phys. J. B 10, 311–321 (1999)].

1. Introduction

Liquid crystals represent a state of matter with properties intermediate between
liquids and crystalline solids. They are commonly referred to as rod like molecules
(although there are others, for example disk shapedmolecules)whose positional and
orientational ordermay varywithin space, time and parameters such as temperature.
For a general and complete introduction, we refer to [5,24]. Depending on the
alignment of the molecules and its symmetries, liquid crystals are generally divided
into nematic, smectic and cholesteric. Due to their unique properties, liquid crystals
exhibit remarkable structures and applications; see for example [37,41,46].

From a mathematical point of view, several models have been introduced to
study the phenomena arising from liquid crystals [9]. Roughly speaking, theOseen–
Frank model describes liquid crystals by a unit vector field n, which represents the
preferred direction of the molecules at a point, averaging the fluctuations of the
molecules. A peculiarity is, that in practice, we do not distinguish between n and
−n, so that n should rather take values in a projective spaceRP2 to avoid problems
with orientability.
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In order to represent local averages of the directions of the molecules, one gets
an additional degree of freedom. Models describing the liquid crystal with such a
variable include for instance the Ericksen model [25], [52, Ch.6]. The Landau–de
Gennes model goes one step further by using the idea to describe the arrangement
of a liquid crystal by a probability distribution ρ on the sphere of directions, taking
into account that opposite points have the same probability. Then the first moment
vanishes and the (shifted) second moment Q is a symmetric traceless tensor, which
is used to model ρ. This allows to incorporate both the Oseen–Frank and Ericksen
model into the Landau–de Gennes model. A more detailed introduction to the
various models and even for more refined generalizations of the Landau–de Gennes
model, for example the Onsager model or Maier–Saupe model, can be found in
[8,53]. For the challenges and a comparison of the mentioned descriptions, see
[10–12,17,48]. In general, it is difficult to give precise descriptions of minimizers
of the energy functionals associated with one of the models explicitly, except in
some very special cases such as in [56] or for the radial hedgehog solution in [42].

Mathematically speaking, liquid crystal theory shares several techniques and
results with other subjects, for example the Ginzburg–Landau model in micromag-
netics, [15,32,35]. Also, parts of the description, such as function spaces [7] and
liftings [34,44], Q−tensors [16,45], the formation of topological singularities [51]
or similar energy functionals [22,49], are of interest in a more abstract setting.

One interesting pattern one can observe in liquid crystals is the so called "Saturn
ring" effect. Under certain circumstances the defect structure forming in order to
balance a topological charge on the surface of an immersed object in liquid crystals,
takes the form of a ring around the particle, see [1,2,33,46]. Also more exotic
structures such as knots are possible; we refer to [46] for an overview. In addition,
an electromagnetic field can be used to manipulate the occurrence of a Saturn ring.
While this is known in physics for several years [4,27–29,39,40,55], there are
only few mathematical results [3]. Starting from the Landau–de Gennes model,
an equilibrium configuration is found by minimization of the dimensionless free
energy

Eη,ξ (Q) =
∫

�

1

2
|∇Q|2 + 1

ξ2
f (Q) + 1

η2
g(Q) + C0(ξ, η) dx

under suitable anchoring boundary conditions. Here � is the region filled with the
liquid crystal, in our case the complement of the unit ball, that is� = R

3\B1(0) and
C0(ξ, η) is a renormalization constant such that the energy is finite. The first term
is the density for the elastic energy, while f is a potential inducing a force which
tends to push the material into an ordered state. The parameter ξ describes the ratio
between elastic and bulk energy. We are going to consider the limit of ξ converging
to zero, which can be interpreted as the limit for a large particle. The effect of an
externalmagnetic field is described by the function g, with the parameter η coupling
the field to the elastic and bulk energy densities. We will consider a regime where
also η → 0, not much slower than ξ . In our limit of ξ, η → 0, C0 converges to
zero. To complete our model, we impose a strong anchoring boundary condition on
∂� that corresponds to a radial director field n = er . With ξ and η converging to
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zero, we can consider different regimes regarding the relative speed of convergence
of both parameters.

1. The case of strong fields η| ln(ξ)| � 1, where we expect to observe a Saturn
ring was treated in [3].

2. The case η| ln(ξ)| ∼ 1, where the transition between dipole and Saturn ring
takes place is precisely the purpose of this paper.

3. In the case η| ln(ξ)| � 1 we expect only dipole configurations, see Remark
3.3.

Our work is organized as follows: in the first section we define the different parts of
the free energy carefully, establish fundamental properties and discuss their effects
in the minimizing process.

The second section contains the rescaling and states our main theorem, a sort of
�−convergence result in a sense that will be precised later.Wewill prove, that in the
limit η, ξ → 0 in our regime and under the assumption of rotational equivariance,
the model reduces to a simple energy stated on the surface of the sphere S

2 = ∂�,
of the form

E0(F) = 2s∗c∗
∫
F
(1− cos(θ)) dω + 2s∗c∗

∫
Fc

(1+ cos(θ)) dω + π

2
s2∗β|DχF |(S2) ,

where s∗, c∗ > 0 are parameters depending on f and F ⊂ S
2 is a set of finite

perimeter that can be seen as the projection of the region in which a lifting of
Q from RP2 to S

2 exists and the orientation at infinity agrees with the outward
normal of ∂B1. In the same spirit, Fc stands for the region where the lifting has
the opposite orientation and |DχF |(S2) denotes the perimeter of F in S

2. In the
above expression, θ stands for the angle between a point ω on the sphere and e3.
We see the latter perimeter term as representation of a defect line. It tells us that
switching from one orientation to the other comes with a cost, depending on the
balance between the forces (modelled by β), s∗ which is related to the liquid crystal
properties, c∗ which depends on the interaction between magnetic field and liquid
crystal and the length of the defect line. This is the result we are going to prove in
the next two sections.

Section 4 is divided into three parts.We first show that the energy bound implies
the existence of only a finite number of singularities if we are at some distance from
the e3−axis. The main idea will be to replace our functions Qη,ξ by the minimizers
of approximate problems and then use the higher regularity to derive a lower bound
on the energy cost of a singularity. The energy bound then implies that in fact only
finitely many singularities can occur. Next, we provide asymptotically exact lower
bounds for the energy near those singularities. Then, the radial auxiliary problem
is introduced. Given a ray from the surface ∂� to infinity such that Qη,ξ is close to
being uniaxial with prescribed scalar order parameter, we can explicitly calculate
the energy necessary to turn along the ray from our boundary conditions to the
preferred configuration parallel to the external field in ±e3−direction. Combining
the results, we are able to prove the lower bound part of the main theorem.

The construction of a recovery sequence is made in Section 5. We use our
knowledge about the interplay of the three parts of the energy to define approximate
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regions close to the particle in which the energy of the first two terms of E0 is
concentrated and Q is uniaxial. Herewe profit from the exact formula of the optimal
profile from the radial auxiliary problem. Apart from these regions, we construct
the singularities that give rise to the perimeter term of E0.

The remaining section deals with the limit energy. We calculate the minimizers
(depending on β) and compare their energy with that of a dipole and a Saturn ring at
the same β−value. We find that by varying β a hysteresis phenomenon occurs. Our
findings rigorously explain known numerical simulations and physical reasoning
in [38,50].

2. Scaling, Definitions and Preliminaries

Starting from the one constant approximation of the Landau–de Gennes free
energy [47, Ch. 6, Secs. 3-4 and Ch. 10, Sec. 2.3] (see also [23, Ch. 3, Secs. 1-2])
in �r0 = R

3\Br0(0) we find that

E(Q) =
∫

�r0

L

2
|∇Q|2 − a

2
tr(Q2) − b

3
tr(Q3) + c

4
(tr(Q2))2 − 1

2
χaH⊗H : Q dx ,

(1)

where the last term is added to the Landau–de Gennes model to incorporate the
effect of the external magnetic field H. The length r0 is the particle radius, the
parameter L is the elastic constant, a, b, c are the bulk constants depending on the
liquid crystal material. They can be temperature dependent, although it is usually
assumed that only a has a linear dependence, that is a = a0(T −T∗) for a reference
temperature T∗ [45]. However, this case will not be discussed here. As already
noted,H is the magnetic field, which we choose to be parallel to e3, that isH = he3
and χa denotes the magnetic anisotropy. See [31] for more details on the modelling,
in particular how magnetic fields differ from electric and gravitational fields.

In order to be able towork on a fixed domain,we apply the rescaling� := 1
r0

�r0

and x̃ = x/r0. We introduce the new function Q̃(x̃) = Q(r0 x̃) = Q(x) and
∇̃ = ∇x̃ = 1

r0
∇x . Furthermore, we write ã = a

c and b̃ = b
c . Then

E(Q) =
∫

�

Lr30
2r20

|∇ Q̃|2 + r30c

(
− ã

2
tr(Q̃2) − b̃

3
tr(Q̃3) + 1

4
(tr(Q̃2))2

)

− 1

2
χah

2r30 Q̃33 dx̃ .

Dividing by Lr0, we can define

Ẽ(Q̃) =
∫

�

1

2
|∇̃ Q̃|2 + 1

ξ2

(
− ã

2
tr(Q̃2) − b̃

3
tr(Q̃3) + 1

4
(tr(Q̃2))2

)
− 1

η2
Q̃33 dx̃ , (2)

where we introduced the new dimensionless parameters ξ =
√

L
cr20

and η =√
L

2χar20 h
2 . We choose the coefficients ã, b̃ to be fixed from now on, which cor-

responds to choosing a material and keeping the physical system at a constant
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temperature. For a common liquid crystal material such as MBBA at a temperature
of 25◦C we roughly find ã ≈ 2.4, b̃ ≈ 1.8 [47, p. 168]. The analysis and par-
ticularly the constants in the estimates that appear in the following will generally
depend on f and thus on ã and b̃, even if we do not explicitly state this dependence.

We are interested in the limit η, ξ → 0. In the standard Landau–de Gennes
model, ξ → 0 can be interpreted as increasing the particle radius (see [30] for a
detailed discussion). We impose the asymptotic relation η| ln(ξ)| → β ∈ (0,∞)

which can be seen as a coupling of the parameters r0 and h, that is slowly decreasing
the field strength h, while increasing the particle radius in a way that keeps the
system in a state where both Saturn ring and dipole configurations are likely to
appear.

It is convenient to introduce a constant C0 in the integral of (1) to obtain a
non-negative energy density. In our case, this constant depends on ξ and η, but
tends towards a constant independent of those parameters as ξ, η → 0. We will
discuss the issue later in this section.

Fromnowon,wewill only consider the rescaledmodel and thus drop all tildes in
our notation. We continue this section by giving precise definitions for the function
f modelling the bulk term and quantities mentioned in the introduction. We will,
furthermore, introduce a more general function g for the magnetic term in (1).

Definition 2.1. Wedenote by Sym0 the space of symmetricmatriceswith vanishing
trace

Sym0 := {Q ∈ R
3×3 : Q� = Q , tr(Q) = 0} ,

equipped with the norm |Q| = √
tr(Q2). Furthermore, for a, b, c ∈ R, b, c > 0,

we define

f (Q) = C − a

2
tr(Q2) − b

3
tr(Q3) + c

4
(tr(Q2))2 . (3)

As we stated in the introduction, the definition of Sym0 is motivated by the
second order moment of a probability distribution ρ on a sphere. The symmetry
between ±n reads ρ(n) = ρ(−n) for all n ∈ S

2, that is the expectation value of
n vanishes,

∫
S2
n dρ = 0. The second moment

∫
S2
n ⊗ n dρ is symmetric and has

trace 1. From this we subtract the second moment of a uniform distribution on S
2,

that is ρ = 1
4π to get the symmetric and traceless tensor Q.

The specific form of the function f comes from the requirement of being invari-
ant under rotations. Indeed, assuming a polynomial function f and demanding
frame indifference for the bulk energy (and of course for the elastic energy) we
find that f has to satisfy f (Q) = f (R�QR) for all R ∈ O(3). This implies that
f is the linear combination of tr(Q2), tr(Q3), (tr(Q)2)2, tr(Q2)tr(Q3), tr(Q2)2,
tr(Q3)2, etc (see [8, Lemma 3]). It is convenient to consider only the first three terms
although one could in principle add more. The constant C in (3) is chosen such that
f is non-negative and vanishes on uniaxial Q−tensors of a prescribed scalar order
parameter (the setN in Proposition 2.2 below). This is the main property of f one
should keep in mind during our analysis.
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Proposition 2.2. (Properties of f ) There exists a constant C such that f given by
(3) satisfies

1. f (Q) � 0 for all Q ∈ Sym0 and minQ∈Sym0
f (Q) = 0. Let

N :=
{
s∗
(
n⊗ n − 1

3
Id

)
: n ∈ S

2
}

,

where S
2 ⊂ R

3 is the unit sphere and s∗ = 1
4

(
b̃ +

√
b̃2 + 24ã

)
. Then

N = f −1(0) is a smooth, compact, connected manifold without boundary
diffeomorphic to RP2. The constant C can be explicitly be calculated as

C = ã
3 s

2∗ + 2b̃
27 s

3∗ − 1
9 s

4∗ .
2. Furthermore, there exist constants δ0, γ1 > 0 such that if Q ∈ Sym0 satisfies

dist(Q,N ) � δ0, then

f (Q) � γ1 dist
2(Q,N ) .

3. There exist constants C1,C2 > 0 such that for all Q ∈ Sym0

f (Q) � C1

(
|Q|2 − 2

3
s2∗
)2

, Df (Q) : Q � C1 |Q|4 − C2 .

Note that all constants appearing in the above proposition are depending on ã and
b̃.

Proof. A proof of the first statement can be found in [44, Proposition 15]. For the
second result, we refer to [20, Lemma 2.4 (F2)]. The last assertions follows by
elementary calculations as in [20, Lemma 2.4 (F0)]. ��

The last two statements are of technical nature. The third property is used to
establish L∞−bounds in Remark 3.2 and Proposition 4.4 and to establish Propo-
sition 2.4 and Proposition 2.6. The estimate in 2. simply states that one can think
of f as being quadratic close to its minimum which is attained on N . The first
statement gives an interesting connection between f and the space Sym0. In fact,
N plays an important role in our analysis as it will allow us to identify Q and ±n
and thus give a intuitive meaning to Q. This is formalized in the next proposition.

Proposition 2.3. (Structure of Sym0)

1. For all Q ∈ Sym0 there exist s ∈ [0,∞) and r ∈ [0, 1] such that

Q = s

((
n⊗ n − 1

3
Id

)
+ r

(
m⊗m− 1

3
Id

))
, (4)

where n,m are normalized, orthogonal eigenvectors of Q. The values s and r
are continuous functions of Q.

2. Let C = {Q ∈ Sym0 : λ1(Q) = λ2(Q)}, where we denoted by λ1, λ2 the two
leading eigenvalues of Q. Then

C = {Q ∈ Sym0\{0} : r(Q) = 1} ∪ {0} and C\{0} ∼= RP2 × R .



The Saturn Ring Effect in Nematic Liquid Crystals 1409

3. There exists a continuous function R : Sym0\C → N such that R(Q) = Q
for all Q ∈ N . In particular, Sym0\C and N are homotopic. The map R
can be chosen to be the nearest point projection onto N . In this case, for all
Q ∈ Sym0\C decomposed as in (4),R is given byR(Q) = s∗(n⊗ n− 1

3 Id) .

Proof. The first part follows from [19, Lemma 1.3.1] for s = 2λ1 + λ2 and r =
(λ1 + 2λ2)/s, where λ1 � λ2 are the two leading eigenvalues of Q. The second
part is a consequence of the definition of s, r in terms of the eigenvalues and [19,
Lemma 1.3.5]. The last part is a reformulation of Lemma 1.3.6 and Lemma 1.3.7
in [19], together with Lemma 2.2.2. ��

The decomposition (4) provides us with a very useful tool to perform calcula-
tions, for example in Proposition 4.16, Proposition A.1 or Proposition A.2. In the
second statement we introduce C, a subset of the uniaxial Q−tensor, sometimes
referred to as "oblate uniaxial" [26,43]. One can think of C as a cone over RP2. If
a Q−tensor is not oblate uniaxial, there exists a retraction ontoN which coincides
with the nearest point projection and is given by the element of N corresponding
to the dominating eigenvector of Q.

In the remaining part of this chapter we are concerned with the magnetic energy
term, which will be modelled by a function g. We require g : Sym0 → R to be of
class C2 away from 0 and to satisfy the following properties:

1. The function g does not grow faster than f , that is there exists a constantC > 0
such that for all Q ∈ Sym0

|g(Q)| � C (1+ |Q|4) , (5)

|Dg(Q)| � C (1+ |Q|3) . (6)

2. The preferred eigenvector of Q for g is e3 in the following sense: g is invariant
by rotations around the e3−axis and the function O(3) � R �→ g(R�QR) is
minimal if e3 is eigenvector to themaximal eigenvalue of R�QR. Decomposing
Q as in (4) with n = e3 and keeping s and m fixed, then g(Q) is minimal for
r = 0. For a uniaxial Q ∈ N , that is Q = s∗(n ⊗ n − 1

3 Id) for s∗ � 0 and
n ∈ S

2 we have

g(Q) = c2∗(1− n23) . (7)

3. There exist constants δ1,C > 0 such that if Q ∈ Sym0 with dist(Q,N ) < δ

for 0 < δ < δ1, then

|g(Q) − g(R(Q))| � C dist(Q,N ) . (8)

The first and last conditions are technical assumptions. The former allows us
to dominate g by f . This is necessary, since g may be negative. The latter states
the Lipschitz continuity of g in a neighbourhood of N in normal direction. The
second requirement contains the mathematical translation of the physical model.
The homogeneous magnetic field parallel to e3 should favour the alignment of the
dominating eigenvector of Q parallel to e3. Equation (7) expresses the compatibility
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of our Q−tensor analysis with the classical formulations for director fields. From
a mathematical point of view, it is possible to replace (7) by (7’)

g(Q) ≥ c2∗(1− n23) , (7’)

and to obtain a similar limit energy, see Remark 4.18.
We note that the functions g1 and g2, defined as

g1(Q) = 2

3
s∗ − Q33 and g2(Q) =

{√
2
3 − Q33|Q| Q ∈ Sym0\{0}

0 Q = 0
, (9)

satisfy the above assumptions on g (see “Appendix”). The function g1 (with c2∗ = s∗)
is the natural (physical) term to model a magnetic field [47, Ch. 10], we have used
it to derive our scaling in (1), the constant 2

3 s∗ being part of C0. Another possible
choice is g2, which is a useful approximation to g1 introduced in [27] and used

example in [3]. In this case c2∗ =
√

3
2 .

We finish this section by two propositions. Note that if g � 0 (for example in
the case g = g2), then both propositions are trivial. The first proposition shows that
under the above assumptions on f and g there exists a unique minimizer Q∞,ξ,η

of 1
ξ2

f (Q)+ 1
η2
g(Q). This allows us to characterize a constant C0(ξ, η) such that

the bulk energy density becomes non-negative and vanishes only at Q∞,ξ,η. The
second proposition expresses that if Q is close toN but the dominating eigenvector
n far from e3, then g has to be strictly positive.

Proposition 2.4. For ξ, η > 0 with ξ � η, there exists a unique Q∞,ξ,η ∈ Sym0
such that

Q∞,ξ,η = argmin
Q∈Sym0

1

ξ2
f (Q) + 1

η2
g(Q) ,

given by s∗,ξ2/η2(e3 ⊗ e3 − 1
3 Id), where |s∗,t − s∗| � Ct with s∗ as in Proposition

2.2. Hence, for C0(ξ, η) = − 1
ξ2

f (Q∞,ξ,η) − 1
η2
g(Q∞,ξ,η) � 0 it also holds true

that C0(ξ, η) � Cξ2/η4.

Since s∗,ξ2/η2 → s∗,0 = s∗ for ξ, η → 0 in our regime, we denote Q∞ :=
s∗(e3 ⊗ e3 − 1

3 Id).
In the physically relevant case of g = g1, we have the expansion s∗,ξ2/η2 =

s∗ + (− 2
3a − 4

9bs∗ + 4
3cs

2∗)−1 ξ2

η2
+ O(

ξ4

η4
).

Proof. Let Q ∈ Sym0 be of norm
√

2
3 s∗ and let t � 0. Then we can estimate

1

2 ξ2
f (t Q) + 1

η2
g(t Q) � 1

2ξ2
C f (t

2 − 1)2 − Cg

η2
(1+ t4) .
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So if we choose |t − 1| � t0 > 0 and ξ2

η2
� C f

2Cg
max|t−1|�t0

(t2−1)2

t4+1
, the above

expression is positive. Let ||Q| −
√

2
3 s∗| � δ and dist(Q,N ) > δ. Then f (Q) �

fmin := min{ f (Q) : Q ∈ Sym0, dist(Q,N ) > δ} > 0 and

1

2 ξ2
f (Q) + 1

η2
g(Q) � fmin

2ξ2
− C

η2
(1+ δ3) > 0 ,

for ξ2/η2 � fmin
2C(1+δ3)

. By invariance of f under rotations and property 2. of g
we know that a minimizer Q has the dominating eigenvector e3 or −e3 and has to
verify r = 0. This allows us to write Qs = s(e3 ⊗ e3 − 1

3 Id) for s ∈ (−Cδ,Cδ)

for a constant C > 0. Taking the derivative with respect to s in the energy of Qs

we get

d

ds

(
1

ξ2
f (Qs) + 1

η2
g(Qs)

)
= 1

ξ2

(
−2

3
as − 2

9
bs2 + 4

9
cs3
)

− 1

η2
Dg(Qs) :

(
e3 ⊗ e3 − 1

3
Id
)
= 0.

Wemultiply by ξ2 and since |Dg(Qs)| is bounded and ξ � η this equation admits a
unique positive solution corresponding to a minimum in the energy density, which
we call s∗,ξ2/η2 . This gives the existence of a unique minimizer Q∞,ξ,η and the
claimed representation. By a standard perturbation theory argument we get the
estimate |s∗,t − s∗| � Ct .

Since |s∗,ξ2/η2−s∗| � Cξ2/η2, we have the estimates f (Q∞,ξ,η) � C(ξ2/η2)2

and |g(Q∞,ξ,η)| � Cξ2/η2 from which we get

C0(ξ, η) � C
1

ξ2

ξ4

η4
+ C

2

η2

ξ2

η2
� C

ξ2

η4
.

Proposition 2.5. There exist a, δ0 > 0 such that if 0 < δ < δ0, then

min{g(Q) : Q ∈ Sym0 with dist(Q,N ) � δ , |Q − Q∞| � a
√

δ} > 0 .

Proof. Let 0 < δ < min{δ1, 1}, where δ1 is from (8). Let Q ∈ Sym0 such that
dist(Q,N ) � δ. We can apply (8) to g(Q) to get

g(Q) � g(R(Q)) − C dist(Q,N ) � c2∗(1− n23) − Cδ ,

where n3 is the third component of the dominating unit eigenvector of Q, see
Proposition 2.3.

Since |Q −R(Q)| = dist(Q,N ) � δ and |n| = |e3| = 1 we can estimate

|Q − Q∞|2 � 2|Q −R(Q)|2 + 2|R(Q) − Q∞|2 � 2δ2 + 2s2∗|n⊗ n − e3 ⊗ e3|2
� 2δ2 + 4s2∗(1− n23) ,

and thus

g(Q) � c2∗
4s2∗

|Q − Q∞|2 − 4Cδ �
( c2∗
4s2∗

a− 4C
)
δ > 0 ,
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if |Q − Q∞| � a
√

δ for a > 0 large enough. In order to conclude, it
remains to choose 0 < δ0 � min{δ1, 1} in such a way that the set {Q ∈
Sym0 with dist(Q,N ) � δ , |Q − Q∞| � a

√
δ} is non empty for all δ ∈ (0, δ0).

Setting δ0 = min{1, δ1, 2
3 s

2∗a−2}, we have a
√

δ �
√

2
3 s∗ + δ for all δ ∈ (0, δ0),

that is the set is non-empty. ��
As we have seen in Proposition 2.4, the minimizer Q∞,ξ,η of the bulk term is

not part ofN (which has order parameter s∗). We will introduce a slightly modified

manifoldNη,ξ such that Q∞,ξ,η ∈ Nη,ξ and such that f (Q)+ ξ2

η2
g(Q)+ξ2C0(ξ, η)

controls the squared distance of Q to this new manifold, in analogy to f (Q) �
γ1dist2(Q,N ) from Proposition 2.2.

Proposition 2.6. If ξ2/η2 � 1, then there exists a smooth manifoldNη,ξ ⊂ Sym0,
diffeomorphic to N such that

f (Q) + ξ2

η2
g(Q) + ξ2C0(ξ, η) � γ2 dist

2(Q,Nη,ξ ) (10)

for a constant γ2 > 0. In particular Q∞,ξ,η ∈ Nη,ξ . Furthermore, there exists a
constant C > 0 such that

sup
Q∈Nη,ξ

dist(Q,N ) � C
ξ2

η2
. (11)

Proof. We introduce the notation fη,ξ (Q) for the LHS of (10).
Step 1: Definition of Nη,ξ . Let Q0 ∈ N and {P1, P2, P3} a orthonormal basis

of (TQ0N )⊥. For t ∈ R
3 we define F(Q0, t) := Dν fη,ξ (Q0+ t1P1+ t2P2+ t3P3),

where Dν denotes the derivative normal toN . From perturbation theory it follows

that there exists a t0 ∈ R
3 with |t0| � C ξ2

η2
such that F(Q0, t0) = 0. From

Lemma 2.4 (F1) in [20] we get that if P ∈ Sym0 orthogonal to TQ0N , then
P · (D2 f (Q0))P � γ ‖P‖2. Hence, for Qt = Q0 + t1P1 + t2P2 + t3P3 it holds
that

Dt F(Q0, t0) = D2
ν f (Qt ) + ξ2

η2
D2

νg(Qt )

� D2
ν f (Q0) − C |t0|Id + ξ2

η2
D2

νg(Qt ) � γ

2
Id ,

since D2g is bounded in a compact neighbourhood ofN , |t0| � C ξ2

η2
and ξ2

η2
� 1.

By the Implicit Function Theorem we conclude that there exists a smooth function
ψ : N → R

3 such that F(Q0, ψ(Q0)) = 0. Thus, Nη,ξ := {Qt0 : Q0 ∈
N and t0 = ψ(Q0)} is a smooth manifold, diffeomorphic to N . Furthermore,
since ψ is continuous and N is compact, we deduce that (11) holds.

Step 2: Control of the distance. Since ξ2/η2 is small and fη,ξ grows faster than
the RHS of (10), we can use (11) and argue similar to Proposition 2.4 to deduce that
(10) holds if dist(Q,Nη,ξ ) � δ for some small but fixed δ > 0. Because of this, it
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is enough to show that (10) holds for all Q ∈ Sym0 with dist(Q,Nη,ξ ) < δ. For
such Q, we first define Q0 = R(Q). Let Q1 ∈ Nη,ξ be the element corresponding
to Q0 according to step 1. Then Q − Q1 ∈ (TQ0N )⊥ and by Taylor expansion it
holds that

fη,ξ (Q) � fη,ξ (Q1) + Dν fη,ξ (Q1) : (Q − Q1)

+ 1

2
(Q − Q1) · D2 fη,ξ (Q1)(Q − Q1) − Cδ|Q − Q1|2 .

Note that fη,ξ (Q) � 0 and by construction Dν fη,ξ (Q1) : (Q− Q1) = 0. Evoking
again Lemma 2.4 in [20], we get

fη,ξ (Q) �
(γ

4
− Cδ

)
|Q − Q1|2 .

Choosing δ > 0 small enough there exists a γ2 > 0 such that γ
4 − Cδ � γ2 > 0

and since dist(Q,Nη,ξ ) � |Q − Q1|, (10) follows.
From Proposition 2.4 we know that fη,ξ (Q∞,ξ,η) = 0 and hence by (10) it

follows that dist(Q∞,ξ,η,Nη,ξ ) = 0, that is Q∞,ξ,η ∈ Nη,ξ . ��

3. Statement of Result

From equation (2) and using the notation introduced in the last section, wewrite
our energy

Eη,ξ (Q) =
∫

�

1

2
|∇Q|2 + 1

ξ2
f (Q) + 1

η2
g(Q) + C0(ξ, η) dx , (12)

which is the dimensionless free energy that was announced in the introduction. The
natural space for this energy to be well defined is H1(�,Sym0) + Q∞,ξ,η with
Q∞,ξ,η as in Proposition 2.4. Minimizing the first term would lead to a harmonic
map; the second term prefers Q to be uniaxial with a certain scalar order parameter
and hence norm, while the third term takes its minimumwhen the director is aligned
parallel to e3. Thus the (spatially) constant uniaxial map Q∞,ξ,η = s∗,ξ2/η2(e3 ⊗
e3 − 1

3 Id) would be a minimizer of our free energy. However, this will violate the
strong anchoring conditions we are going to impose on the boundary, namely we
want Qη,ξ ∈ H1(�,Sym0) + Q∞,ξ,η to satisfy

Qη,ξ = Qb on S
2 , (13)

where Qb(x) = s∗
(
x⊗ x − 1

3 Id
)
. The system is therefore frustrated and we expect

the minimizer to be close to s∗(e3 ⊗ e3 − 1
3 Id) everywhere, except for a transition

zone near the boundary. In this boundary layer, whichwill turn out to be of thickness
η, we will find tubes of cross sectional area ξ2 containing the regions where Qη,ξ

is biaxial.
Since the problem is equivariant with respect to rotations around the e3−axis,

it is natural to consider only rotationally equivariant maps. We say that a map Q
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is rotationally equivariant if Q is equivariant with respect to rotations around the
e3-axis. In other words, using cylindrical coordinates, one has

Q(ρ, ϕ, z) = R�
ϕ Q(ρ, 0, z)Rϕ , where Rϕ =

⎛
⎝cosϕ − sin ϕ 0
sin ϕ cosϕ 0
0 0 1

⎞
⎠ .

For uniaxialmapsQ = s∗(n⊗n− 1
3 Id) this is equivalent to the usual notion of equiv-

ariance for vectors n(Rϕx) = R�
ϕ n(x). We define the set of admissible functionsA

to be the set of rotationally equivariant functions Qη,ξ ∈ H1(�,Sym0) + Q∞,ξ,η

satisfying the boundary condition (13). This motivates the definition for Q ∈
H1(�, R

3×3) + Q∞,ξ,η

EAη,ξ (Q) =
{Eη,ξ (Q) if Q ∈ A ,

∞ otherwise.

We believe that minimizers of Eη,ξ are also rotationally equivariant, although this
does not follow from our work and remains an open issue. We will remove the
hypothesis of rotational equivariance in a work in preparation.

The following theorem is the main result of the paper:

Theorem 3.1. Suppose that

η| ln(ξ)| → β ∈ (0,∞) as η → 0 . (14)

Then η EAη,ξ → E0 in a variational sense, where the limiting energy E0 for a set

F ⊂ S
2 is given by

E0(F) = 2s∗c∗
∫
F
(1− cos(θ)) dω + 2s∗c∗

∫
Fc

(1+ cos(θ)) dω

+π

2
s2∗β|DχF |(S2) . (15)

More precisely, we have the following statements:

1. Compactness: For any sequence Qη,ξ ∈ A such that η Eη,ξ (Qη,ξ ) � C, there
exists a measurable set of finite perimeter F ⊂ S

2 that is invariant under
rotations with respect to the e3−axis, measurable functions nη : � → S

2 and
a set ωη ⊂ � with limη→0 |ωη| = 0, �\ωη simply connected, such that for all
σ > 0 it holds nη ∈ C0(�\(Zσ ∪ ωη), S

2) and for all R > 0

lim
η→0

∥∥∥∥s∗
(
nη ⊗ nη − 1

3
Id

)
− Qη,ξ

∥∥∥∥
L2(BR (0)\Zσ )

= 0 , χFη → χF pointwise, (16)

where Zσ = {x ∈ R
3 : x21 + x22 � σ 2} and Fη = {x ∈ ∂� : nη(x) · ν(x) =

−1}.
2. �−liminf: For any sequence Qη,ξ ∈ A and any measurable set of finite

perimeter F ⊂ S
2, measurable functions nη : � → S

2 and a measur-
able set ωη ⊂ � that satisfy limη→0 |ωη| = 0, �\ωη simply connected with
nη ∈ C0(�\(Zσ ∪ ωη), S

2) and (16) hold for all R, σ > 0, we have

lim inf
η→0

η Eη,ξ (Qη,ξ ) � E0(F) . (17)
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3. �−limsup: For any measurable set of finite perimeter F ⊂ S
2 that is invariant

under rotations with respect to the e3−axis there exists a sequence Qη,ξ ∈ A
with ‖Qη,ξ‖L∞ �

√
2
3 s∗ and measurable functions nη : � → S

2 with nη ∈
C0(�\ωη, S

2), limη→0 |ωη| = 0, �\ωη simply connected, such that (16) holds
for all R, σ > 0 and

lim sup
η→0

η Eη,ξ (Qη,ξ ) � E0(F) . (18)

Remark 3.2. 1. In view of (14) we can replace the bound η Eη,ξ (Qη,ξ ) � C , by

Eη,ξ (Qη,ξ ) � C (1+ | ln(ξ)|) . (19)

2. The convergence we show is not a �−convergence in the classical sense since
the limit functional is defined on a different functions space.

3. The compactness can also be formulated globally: It holds

lim
η→0

∫
�\Zσ

dist2(Qη,ξ ,Nη,ξ ) dx = 0

for the manifold Nη,ξ as in Proposition 2.6 which is a small perturbation (at

distance at most C ξ2

η2
) from the manifold N . In addition if g is non-negative

(for example in the case g = g2), Nη,ξ = N and we have the convergence

lim
η→0

∥∥∥∥s∗
(
nη ⊗ nη − 1

3
Id

)
− Qη,ξ

∥∥∥∥
L2(�\Zσ )

= 0 .

Remark 3.3. If β = ∞ in (14), then Theorem 3.1 holds for F = S
2 or F = ∅, that

is no Saturn ring structure can occur in the limit. In the case of g being non-negative,
this follows easily: For Qη,ξ ∈ H1(�,Sym0) + Q∞ with ηEη,ξ (Qη,ξ ) � C we
can introduce ξ̃ such that η| ln(ξ̃ )| → β ∈ (0,∞), that is this new sequence ξ̃

decreases more slowly than ξ . Hence Eη,ξ̃ � Eη,ξ . Applying Theorem 3.1 to this

new energy we get the existence of a set Fβ ⊂ S
2 such that

E0(Fβ) � lim inf
η→0

η Eη,ξ (Qη,ξ ) � C .

Since the RHS is independent of β ∈ (0,∞), we find |DχFβ |(S2) → 0 as β → ∞.
From this we conclude F = S

2 or F = ∅ which have the same energy E0. For the
case of general g one cannot apply this trick, but using (42) it is possible to show
that the perimeter of Fη converges to zero and that E0(S2) is indeed a lower bound.

4. Lower Bound

In this section we prove the lower bound of Theorem 3.1. Our strategy to obtain
the lower bound starts by approximating the sequence Qη,ξ by a more regular one
named Qε . We use ε := ξ to meet the notation in [3,18,19] and let out η in our
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notation since η and ξ are related via (14), that is η ∼ β
| ln(ε)| . We also write Eε

instead of Eη,ξ .We find that away from the e3-axis the sequence Qε has only finitely
many singularities in the neighbourhood of which Qε is far from N . Then we can
estimate the energy of Qε nearby these points from below by balancing |∇Qε |2
and f (Qε). In the region where Qε is close to N , we will use the optimal radial
profile found in [3] by balancing |∇Qε |2 and g(Qε).

4.1. Preliminaries

The construction of the approximation Qε of Qη,ξ follows several steps. First,

we are going to show that Qη,ξ can be approximated by another function Q̃η,ξ

which verifies an additional L∞−bound.

Proposition 4.1. Let Qη,ξ ∈ H1(�,Sym0) + Q∞,ξ,η such that (19) holds. Then

there exists a constantC1 > 0 and Q̃η,ξ ∈ H1(�,Sym0)+Q∞,ξ,η which decreases
the energy Eη,ξ , verifies

‖Q̃η,ξ‖L∞(�) � C1 (20)

and Q̃η,ξ − Qη,ξ → 0 in L2 as η, ξ → 0.

Proof. Let N >

√
2
3 s∗ to be chosen later. We can define Q̃η,ξ as

Q̃η,ξ :=
{
N

Qη,ξ

|Qη,ξ | if |Qη,ξ | > N ,

Qη,ξ otherwise.

This function is clearly admissible and has lower Dirichlet energy. Since we cannot
conclude that g(Q̃η,ξ ) � g(Qη,ξ ), we need to show that the (possible) increase of
the energy in g is compensated by the decrease in f . So if Q ∈ Sym0 of norm 1
and t > N , we get, by (6) and Proposition 2.2,

d

dt

(
1

ξ2
f (t Q) + 1

η2
g(t Q)

)
� C

t3

ξ2
− C

1+ t3

η2
� 0

if N � N1 with a certain N1 large enough, depending on f and g. Hence, the
sum of bulk and magnetic energy of Q̃η,ξ is smaller than the one of Qη,ξ and we

conclude Eη,ξ (Q̃η,ξ ) � Eη,ξ (Qη,ξ ). The L∞− bound is obvious, so it remains to

show that ‖Q̃η,ξ − Qη,ξ‖L2(�) converges to zero as η, ξ → 0. We decompose �

into two sets,

� = {x : |Qη,ξ (x)| � N } ∪ {x : |Qη,ξ (x)| > N },

and note that
∫ |Q̃η,ξ −Qη,ξ |2 = 0 if |Qη,ξ | � N . Hence, we only need to estimate

the difference |Q̃η,ξ − Qη,ξ | on the second set. By Proposition 2.2 and (5) we get
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that there exists C, N2 > 0 (depending on f and g) such that if N � N2, then for
Q ∈ Sym0 with |Q| � N it holds that

∣∣∣2
3
s2∗ − |Q|2

∣∣∣2 � 2

(∣∣∣2
3
s2∗ − |Q|2

∣∣∣2 − ξ2

η2
|Q|4 + ξ2C0(ξ, η)

)

� C

(
f (Q) + ξ2

η2
g(Q) + ξ2C0(ξ, η)

)
.

For |Q| � max{N1, N2} we additionally have |Qη,ξ − Q̃η,ξ | = |N − |Qη,ξ ||.
Taking N even bigger if necessary it holds that

∫
|Qη,ξ |>N

|Qη,ξ − Q̃η,ξ |2 dx

=
∫
|Qη,ξ |>N

|N − |Qη,ξ ||2 dx � C
∫
|Qη,ξ |>N

∣∣∣2
3
s2∗ − |Qη,ξ |2

∣∣∣2 dx

� C
∫

�

f (Q) + ξ2

η2
g(Q) + ξ2C0(ξ, η) dx � C(1+ | ln ξ |)ξ2 ,

which converges to zero as ξ → 0. This proves our claim for C1 � N . ��
Since g may not be regular in Q = 0 (for example if g = g2), we will replace

g by gφ, with a cut-off function φ such that gφ is smooth, but keeps the relevant
information from g. In order to replace g in the energy, we just need to show that∫
(1 − φ)g(Qη,ξ ) dx tends to zero in the limit ξ, η → 0. This is made precise in

the next proposition.

Proposition 4.2. Let φ ∈ C∞([0,∞), [0, 1]) be a cut-off function with φ = 1

on [q0,∞) and φ = 0 on [0, 1
2q0], where q0 ∈ (0,

√
2
3 s∗). Then the function

Q �→ g(Q)φ(|Q|) is smooth and there exists a constant C > 0 such that
∫

�

(1− φ(|Qη,ξ |))g(Qη,ξ ) dx � C
ξ2

η
.

Proof. The smoothness of gφ is obvious, since φ is smooth and we supposed g
smooth away from 0. So it remains the energy estimate. First note that if Q ∈ Sym0

with |Q| � q0, then for ξ, η small enough f (Q)+ ξ2

η2
g(Q)+ξ2C0(ξ, η) � 1

2 fmin >

0, where fmin = min{ f (Q) : Q ∈ Sym0, |Q| � q0}. Indeed, by Proposition 2.2

fmin > 0 and by (5) we can choose ξ2

η2
small enough such that ξ2

η2
g(Q) � 1

4 fmin.

Since ξ2C0(ξ, η) converges to zero as ξ, η → 0, this can equally be bounded by
1
4 fmin. Hence

C � η

ξ2

∫
{x∈� : |Qη,ξ (x)|�q0}

f (Qη,ξ ) + ξ2

η2
g(Qη,ξ ) + ξ2C0(ξ, η) dx

� 1

2

η

ξ2
fmin|{x ∈ � : |Qη,ξ (x)| � q0}| .
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Now we use this estimate to bound
∫

�

(1− φ(|Qη,ξ |))g(Qη,ξ ) dx � C |{x ∈ � : |Qη,ξ (x)| � q0}| � C
ξ2

η
.

��
From now on, we simply write g(Q) instead of g(Q)φ(|Q|). We will also

replace η, ξ in our notation by ε, that is Q̃ε := Q̃η,ξ . For the sake of readability,

we introduce the notation fε(Q) := f (Q) + ε2

η2
g(Q) + ε2C0(ε, η). The next step

will be defining the more regular sequence Qε replacing Q̃ε . In view of the lower
bound for the claimed �−limit we still want Qε to be rotationally equivariant and
that it converges to the same limit as Q̃ε , while decreasing the energy.

We thus define the three dimensional approximate energy for 0 < γ < 2 and
ω ⊂ �

E3D
ε (Q, ω) =

∫
ω

1

2
|∇Q|2 + 1

ε2
fε(Q) + 1

2εγ
|Q − Q̃ε |2 dx .

We seek Qε by minimizing E3D
ε (Q,�) among rotationally equivariant fields

Q. Because of the equivariance, the problem can be stated as a two dimen-
sional problem. Indeed, calculating |∂ϕQ|2 for a rotationally equivariant map Q ∈
H1(�,Sym0) + Q∞,ξ,η, and using the equivariance, we can write Q(ρ, ϕ, z) =
R�

ϕ Q(ρ, 0, z)Rϕ and thus

|∂ϕQ|2 =
∣∣∣(∂ϕRϕ)�QRϕ + R�

ϕ Q(∂ϕRϕ)

∣∣∣2 = |Q|2 + 6(Q2
12 − Q11Q22) .

This expression does no longer depend on ϕ. In order to shorten notation, we
introduce the matrix

Q2×2 := 1

2

(
∂

∂Qi j
|∂ϕQ|2

)
i j

=
⎛
⎝2(Q11 − Q22) 4Q12 Q13

4Q21 2(Q22 − Q11) Q23
Q31 Q32 0

⎞
⎠ .

Note that, Q2×2 : Q = 1
2 |∂ϕQ|2. So the whole energy does not depend on ϕ any

more and using cylindrical coordinates, it can be rewritten as

E3D
ε (Qε,�) =

∫ 2π

0
E2D

ε (Qε,�
′) dϕ = 2π E2D

ε (Qε,�
′) ,

where E2D
ε is the two dimensional energy given by

E2D
ε (Q, ω′) =

∫
ω′

ρ

2
|∇′Q|2 + 1

ρ
Q2×2 : Q + ρ

ε2
fε(Q) + ρ

2εγ
|Q − Q̃ε |2 dρ dz ,

where∇′ = (∂ρ, ∂z) denotes the twodimensional gradient andω′ ⊂ �′ = {(ρ, z) ∈
R
2 : ρ > 0 , ρ2 + z2 > 1}. In order to shorten notation, we are going to write



The Saturn Ring Effect in Nematic Liquid Crystals 1419

1
2 |∇Q|2 instead of 1

2 |∇′Q|2 + 1
ρ2 Q2×2 : Q whenever we make no use of this

division of the gradient. Now we define Qε to be

Qε := argmin
Q∈A′

E2D
ε (Q,�′) , (21)

where A′ = {Q ∈ H1(�′,Sym0) + Q∞,ξ,η : (13) holds for ρ2 + z2 = 1}. We
eventually extend Qε to a map in H1(�,Sym0)+Q∞,ξ,η which we will also call
Qε by defining Qε(ρ, ϕ, z) := R�

ϕ Qε(ρ, z)Rϕ .

Remark 4.3. 1. Note that Q̃ε |�′ is an admissible function in (21), so that Qε does
exist.

2. The function Qε has lower energy than Q̃ε .
3. Thanks to the energy bound in (19) we know that

‖Qε − Q̃ε‖2L2(�)
� C(| ln ε| + 1)εγ → 0 as ε → 0 ,

that is the two sequences have the same limit for vanishing ε.
4. The minimizer Qε solves the two dimensional Euler-Lagrange equation

− ρ�Qε + 1

ρ
Qε,2×2 − ∂ρQε + ρ

ε2
Dfε(Q) + ρ

εγ
(Qε − Q̃ε) = � Id .

(22)

Note that the equation contains an additional term (RHS) due to the fact that
Sym0 is a subspace of the space of real matrices, that is a Lagrange multiplier
� is needed to ensure the tracelessness constraint.

5. The function Qε also solves the three dimensional Euler-Lagrange equation

− �Qε + 1

ε2
Dfε(Qε) + 1

εγ
(Qε − Q̃ε) = �3D Id , (23)

despite the fact that it does not need to be a minimizer of E3D
ε . To see this, write

�3D Id = −�Qε + 1

ε2
Dfε(Qε) + 1

εγ
(Qε − Q̃ε)

= −∂2ρQε − 1

ρ
∂ρQε − 1

ρ2 ∂2ϕQε − ∂2z Qε + 1

ε2
Dfε(Q) + 1

εγ
(Qε − Q̃ε)

= R�
ϕ

(
−∂2ρQε − 1

ρ
∂ρQε − ∂2z Qε + 1

εγ
(Qε − Q̃ε)

)
Rϕ

− 1

ρ2 ∂2ϕ(R�
ϕ QεRϕ) + 1

ε2
Dfε(R

�
ϕ QεRϕ) .

One can explicitly calculate that ∂2ϕ(R�
ϕ QεRϕ) = R�

ϕ Q2×2,εRϕ and since fε
is invariant under the change Q ↔ R�

ϕ QRϕ , for symmetric matrices Q, we
also have Dfε(R�

ϕ QεRϕ) = R�
ϕ Dfε(Qε)Rϕ . This implies that a rotationally

equivariant extended solution of (22) is also solution of (23).
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The last part of this subsectionwill be the followingpropositionwhichquantifies
the regularity we have gained by replacing Q̃ε with Qε . This result relies on the
three dimensional Euler-Lagrange equation. In fact, this is the only time we use
(23) and cannot use (22) due to its singular behaviour near ρ = 0.

Proposition 4.4. Let ‖Q̃ε‖L∞ � C1 for a constant C1 �
√

2
3 s∗ > 0 and let Qε be

the rotationally equivariant extended minimizer of (21). Then Qε ∈ C1(�,Sym0),

‖Qε‖L∞ � C and ‖∇Qε‖L∞ � C

ε
.

Proof. From equation (23) and by elliptic regularity we deduce that for Q̃ε ∈ H1

we have Qε ∈ H3, that is Qε ∈ C1, 12 since we are in dimension 3. Note that the
boundary of � is smooth. To prove the L∞-bounds we take a constant C2 > C1
such that Dfε(Q) : Q � 0 for all Q ∈ Sym0 with |Q| � C2. This is possible due
to Proposition 2.2 and (6). We define a comparison map

Qε :=
{
C2

Qε|Qε | if |Qε | > C2 ,

Qε otherwise.

Then |∇Qε | � |∇Qε |, |Qε − Q̃ε | � |Qε − Q̃ε | and fε(Q) � fε(Qε) by Propo-
sition 2.2 and our choice of C2. Hence E3D

ε (Qε,�) � E3D
ε (Qε,�) with strict

inequality unless Qε = Qε . The estimate ‖∇Qε‖L∞ � C
ε
follows from [14,

Lemma A.2], using (23), (20) and γ < 2. ��

4.2. Finite Number of Singularities Away from ρ = 0

We introduce the notation �σ := {x ∈ � : x21 + x22 � σ 2} = �\Zσ for
σ > 0, with Zσ defined as in Theorem 3.1. In the same spirit, we define the two
dimensional analogue �′

σ = {(ρ, z) ∈ �′ : ρ > σ }, that is �σ can be obtained
from �′

σ through rotation around the e3−axis.
The main theorem we want to prove in this subsection is the following:

Theorem 4.5. For all σ, δ > 0 there exists λ0, ε0 > 0 such that for ε � ε0 there is
a set Xε ⊂ �′ which satisfies:

1. The set Xε is finite and its cardinality is bounded independently of ε.
2. If x ∈ �′

σ and dist(x, Xε) > λ0ε, then dist(Qε(x),N ) � δ.

The general idea behind this subsection is the same as in [18,19], where the
analysis has been carried out for the case of minimizers of the energy

∫ |∇Qε |2 +
1
ε2

f (Qε) and uses ideas from [13]. We will show that in our situation with the

modified bulk potential fε and the additional term 1
εγ ‖Qε− Q̃ε‖2L2 the same results

hold. There are twomain ingredients for the proof of Theorem 4.5: Proposition 4.11
that tells us that a singularity has an energy cost of order | ln ε| and Proposition
4.7 that allows us to deduce that Qε is close to N (and hence being uniaxial)
provided 1

ε2

∫
fε(Qε) is sufficiently small. While the second ingredient uses only

the regularity of Qε , the first one makes use of equation (22) in the form of the
following proposition:
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Proposition 4.6. (Pohozaev identity) Let Qε be the minimizer of (21) and ω′ ⊂ �′
open with Lipschitz boundary, x ∈ ω′. Then

∫
∂ω′

ρ((x − x) · ν)

(
1

2
|∇′Qε |2 + 1

2ρ2 |∂ϕQε |2 + 1

ε2
fε(Qε) + 1

2εγ
|Qε − Q̃ε |2

)

= 1

2

∫
ω′

ρ|∇′Qε |2 + 1

2

∫
ω′

1

ρ
|∂ϕQε |2 + 3

ε2

∫
ω′

ρ fε(Qε) + 3

2εγ

∫
ω′

ρ|Qε − Q̃ε |2

+ 1

εγ

∫
ω′

ρ(Qε − Q̃ε) : ((x − x) · ∇′ Q̃) +
∫

∂ω′
ρ ((x − x) · ∇′Qε) : (ν · ∇′Qε) ,

where ν denotes the outward unit normal vector on ∂ω′.

Proof. To improve readability,wedrop the subscripts ε in the proof.Our calculation
only requires that Q is solution of equation (22).

Let ω′ ⊂ �′ open with Lipschitz boundary and let x ∈ ω′ be an arbitrary point.
By translation and without loss of generality we may assume that x = 0. Testing
the i j-component of equation (22) with xk∂k Qi j and summing over i, j, k we find

0 =
∑
i, j,k

∫
ω′
−ρ�Qi j xk∂k Qi j + 1

ε2

∫
ω′

ρ
∂ fε

∂Qi j
xk∂k Qi j

+ 1

εγ

∫
ω′

ρ(Qi j − Q̃i j )xk∂k Qi j

−
∫

ω′
∂ρQi j xk∂k Qi j +

∫
ω′

1

ρ
Q2×2,i j xk∂k Qi j

=:I + I I + I I I + I V + V .

(24)

Note, that the RHS of (22) vanishes since Qi j is traceless, that is

∑
i, j,k

∫
ω′

�δi j xk∂k Qi j =
∑
k

∫
ω′

�xk∂k

⎛
⎝∑

i, j

δi j Qi j

⎞
⎠ =

∑
k

∫
ω′

�xk∂k(tr(Q)) = 0

For the first term (I ) we calculate, using integration by parts

∑
i, j,k,l

∫
ω′
−ρ ∂2l Qi j xk∂k Qi j =

∑
i, j,k,l

∫
ω′

ρ ∂l Qi jδlk∂k Qi j +
∫

ω′
ρ ∂l Qi j xk∂l∂k Qi j

−
∫

∂ω′
ρ ∂l Qi j xk∂k Qi jνl +

∫
ω′

δρl∂l Qi j∂k Qi j xk,

(25)

where ν is the outward-pointing normal vector on ∂ω′. Note, that the last term reads∫
ω′(∂ρQ) : ((x · ∇′)Q) and thus is cancelled by (IV). We apply another integration
by parts to the second term on the RHS of (25). This yields

∑
i, j,k,l

∫
ω′

ρ ∂l Qi j xk∂l∂k Qi j =
∑
i, j,k,l

1

2

∫
ω′

ρ xk∂k(∂l Qi j∂l Qi j )

=− 2

2

∑
i, j,l

∫
ω′

ρ ∂l Qi j∂l Qi j
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+
∑
i, j,k,l

1

2

∫
∂ω′

ρ ∂l Qi j∂l Qi j xkνk

− 1

2

∫
ω′

δρk xk∂l Qi j∂l Qi j .

Combined with (25), this gives

I + I V =
(
1− 2

2
− 1

2

)∫
ω′

ρ |∇′Q|2 + 1

2

∫
∂ω′

ρ |∇′Q|2(x · ν)

−
∫

∂ω′
ρ (x · ∇′Q) : (ν · ∇′Q). (26)

The second integral (I I ) simply gives

I I =
∑
k

1

ε2

∫
ω′

ρ ∂k( fε(Q))xk = − 1

ε2

∫
ω′
3ρ fε(Q) + 1

ε2

∫
∂ω′

ρ fε(Q)(x · ν).

(27)

For (III) we need to add (and subtract) the same integral with derivatives on
Q̃i j . Then

I I I = 1

εγ

∫
ω′

ρ (Qi j − Q̃i j )∂k Qi j xk

= 1

2εγ

∫
ω′

ρ ∂k(Qi j − Q̃i j )
2xk + 1

εγ

∫
ω′

ρ (Qi j − Q̃i j )∂k Q̃i j xk

= − 3

2εγ

∫
ω′

ρ (Qi j − Q̃i j )
2 + 1

2εγ

∫
∂ω′

ρ (Qi j − Q̃i j )
2xkνk

+ 1

εγ

∫
ω′

ρ (Qi j − Q̃i j )∂k Q̃i j xk .

(28)

The fifth integral (V) simply gives
∫

ω′
1

ρ
Q2×2 : ((x · ∇′)Q) =

∫
ω′

1

2ρ
(x · ∇′)(Q2×2 : Q)

= −1

2

∫
ω′

(
0+ 1

ρ

)
|∂ϕQ|2 + 1

2

∫
∂ω′

(ν · x) 1
ρ
|∂ϕQ|2.

(29)

Combining (26), (27), (28) and (29), the equality (24) reads
∫

∂ω′
ρ(x · ν)

(
1

2
|∇′Q|2 + 1

2ρ2 |∂ϕQ|2 + 1

ε2
fε(Q) + 1

2εγ
|Q − Q̃|2

)

= 1

2

∫
ω′

ρ |∇′Q|2 + 1

ρ
|∂ϕQ|2 + 3

ε2

∫
ω′

ρ fε(Q) + 3

2εγ

∫
ω′

ρ |Q − Q̃|2

+ 1

εγ

∫
ω′

ρ (Q − Q̃) : (x · ∇′ Q̃) +
∫

∂ω′
ρ (x · ∇′Q) : (ν · ∇′Q),

which gives the result. ��
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Since almost all term in consideration contain a ρ factor due to the passage
from � to �′

σ , it is natural to introduce

ρσ
min(x0, l) := inf

{
ρ : (ρ, z) ∈ Bl(x0) ∩ �′

σ

}
, (30)

for a point x0 ∈ �′
σ and l > 0. Note that if we write x0 = (ρ0, z0), then

ρσ
min(x0, l) = max{ρ0 − l, σ }. In particular, ρσ

min(x0, l) � σ .
The following proposition is a key ingredient in the proof of Theorem 4.5.

Proposition 4.7. For all δ > 0 there exist constants λ0, μ0 > 0 such that for all
σ > 0, x0 ∈ �′

σ , ε small enough and l ∈ [λ0ε, 1] the following implication holds:
1

ε2

∫
B2l (x0)∩�′

σ

ρ fε(Qε) � μ0 ρσ
min(x0, 2l) ⇒ dist(Qε,N ) � δ on Bl (x0) ∩ �′

σ .

Proof. We claim that λ0, μ0 can be defined as

λ0 := δ

2C
, μ0 := π

8
λ20 fmin ,

where C is a constant such that ε‖∇Qε‖L∞ � C (see Proposition 4.4) and fmin

is the minimum of f on the set {Q ∈ Sym0 : |Q| �
√

2
3 s∗, dist(Q,N ) � δ/2}.

Note that fmin > 0 since on this compact set f is strictly positive. Furthermore,
for ε small enough, we also have fε � 1

2 fmin on this set.
In order to show that the definition indeed gives the desired implication, we

argue by contradiction. Therefore we assume that there exists x0 ∈ � and l ∈
[λ0ε, 1] such that there is an x ∈ Bl(x0) ∩ �′

σ with 1
ε2

∫
B2l (x0)∩�′

σ
ρ fε(Qε) �

μ0ρ
σ
min(x0, 2l) and dist(Qε(x),N ) > δ.
This implies that Bλ0ε(x) ⊂ B2l(x0) ∩ (R2\B1(0)). Indeed one can show that

dist(x, ∂�) > λ0ε. Otherwise one would have dist(Qε(x),N ) � ‖∇Qε‖L∞dist
(x, ∂�) � Cλ0 = δ

2 by definition of λ0. This clearly contradicts the assumption
that dist(Qε(x),N ) > δ. Then, for all y ∈ Bλ0ε(x)∩�′

σ by the triangle inequality

dist(Qε(y),N ) � dist(Qε(x),N ) − |Qε(x) − Qε(y)| > δ − λ0ε‖∇Qε‖L∞ � δ

2
.

By definition of fmin this implies fε(Qε(y)) > 1
2 fmin. Since Bλ0ε(x) ∩ �′

σ ⊂
B2l(x0) ∩ �′

σ and |Bλ0ε(x) ∩ �′
σ | � 1

2π(λ0ε)
2 we know that

1

ε2

∫
B2l (x0)∩�′

σ

ρ fε(Qε) � 1

ε2
ρσ
min(x0, 2l)

∫
Bλ0ε (x)∩�′

σ

fε(Qε)

� 1

ε2
ρσ
min(x0, 2l)

π

2
(λ0ε)

2 1

2
fmin = 2μ0ρ

σ
min(x0, 2l) ,

which contradicts our assumption. ��
The next lemma basically tells us that for α ∈ (0, 1) there has to be some

radius r � εα/2 so that we can control the energy on ∂Br in terms of the energy on
Bεα/2 . It will become important later on when we will use it to bound the energy
contributions of the boundary terms from Pohozaev identity (Proposition 4.6).



1424 François Alouges, Antonin Chambolle, and Dominik Stantejsky

Lemma 4.8. For all x0 ∈ �′ there exists r ∈ (εα, ε
α
2 ) (depending on x0 and ε)

such that
∫

∂Br (x0)∩�′
ρ

(
1

2
|∇Qε |2 + 1

ε2
fε(Qε) + 1

2εγ
|Qε − Q̃ε |2

)
dx

� 4E2D
ε (Qε, Bεα/2(x0) ∩ �′)

αr | ln ε| .

Proof. The proof consists of an averaging argument. Assume that no such r exists.
With the notation B ′ = Bεα/2(x0) ∩ �′, this would imply

E2D
ε (Qε, B

′) =
∫ εα/2

0

∫
∂Br (x0)∩�′

ρ

(
1

2
|∇Qε |2 + 1

ε2
fε(Qε) + 1

2εγ
|Qε − Q̃ε |2

)
dx dr

�
∫ εα/2

εα

∫
∂Br (x0)∩�′

ρ

(
1

2
|∇Qε |2 + 1

ε2
fε(Qε) + 1

2εγ
|Qε − Q̃ε |2

)
dx dr

� 4E2D
ε (Qε, B ′)
α| ln ε|

∫ εα/2

εα

1

r
dr

= 4E2D
ε (Qε, B ′)
α| ln ε|

α

2
| ln(ε)|

= 2E2D
ε (Qε, B

′) .

This gives that E2D
ε (Qε, B ′) = 0 and thus Qε is constant on B ′ and Qε = Q̃ε ≡

Q∞,ε , but since the constant map Q∞,ε satisfies the lemma, we get a contradiction.
��

The following two results (Lemma 4.10 and Proposition 4.11) are similar to
[13], see also [19, Lemma 1.4.8, Proposition 1.4.9]. Lemma 4.10 states that we
can derive a better bound (independent of ε) than (19) on balls Bεα for the energy
contribution of fε . Then Proposition 4.11 tells us the cost in terms of energy for
such a ball if Qε is not close to N . Both results rely on the Pohozaev identity
(Proposition 4.6) and Lemma 4.8. We start with a proposition that will help us in
the proof of Lemma 4.10 to obtain estimates at the boundary of ∂�′.

Proposition 4.9. There exist constants C�, ε1 > 0 such that for all 0 < ε � ε1,
r ∈ (εα, ε

α
2 ) and y ∈ �′ there exists z ∈ Br (y) ∩ �′ such that

ν(x) · (x − z) � C�r ∀x ∈ ∂�′ ∩ Br (y) ,

where ν is the outward unit normal on ∂�′.

Proof. Let us start by considering the domain R = {(x1, x2) ∈ R
2 : x1, x2 > 0}.

Let y ∈ R and r > 0 such that Br (y) ∩ ∂R  = ∅ (otherwise the result is trivial).
Let L1 = |{x2 = 0} ∩ Br (y)| and L2 = |{x1 = 0} ∩ Br (y)|. Then we define
z = y + r

2

(
R1/L(0, 1)� + L1/L(1, 0)�

)
, where L2 = L2

1 + L2
2. We will show

that this definition of z indeed satisfies our claim. Without loss of generality we
may assume that y1 � y2. We consider the following cases:
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1. (0, 0) ∈ Br (y). In this case, L1 = y1 +
√
r2 − y22 and L2 = y2 +

√
r2 − y21 .

Let x = (x1, 0). Then ν(x) = (0,−1)� and

ν(x) · (x − z) = (y2 − x2) + r

2

L1

L
� r

2

L1

L
.

Analogously, for x = (0, x2) we find ν · (x − z) � r
2
L2
L . Since y1 � y2 we

have also the inequality L1 � L2. Minimizing L2/L subject to the constraint
y1 � y2 we get y1 = y2 and thus L1 = L2, that is ν(x) · (x − z) � r

2
√
2
.

2. L2  = 0 and (0, 0) /∈ Br (y). Then L1 = 2
√
r2 − y22 and L2 = 2

√
r2 − y21 . A

similar calculation as in the first case shows that ν(x) · (x − z) � r
2
√
2
.

3. L2 = 0. The lengths L1, L2 are given as in the second case, but since L2 = 0
we get directly ν(x) · (x − z) � r

2
L1
L = r

2 .

Now we consider the domain �′. For a radius 0 < r < 1
2 the angular difference

between the normal vectors of �′ and R is smaller than arccos(1− r). Thus, for ε1
small enough, 0 < ε � ε1, r ∈ (εα, ε

α
2 ), we can find C� > 0 such that

ν(x) · (x − z) � r

2
cos

(π

4
+ arccos(1− r)

)

� r

2
cos

(π

4
+ arccos(1− ε

α/2
1 )

)
� C� r > 0 .

��
Lemma 4.10. Let x0 ∈ �′. Then there exists a constant Cα > 0 which depends
only on α, γ,�, the energy bound in (19) and the boundary data in (13) such that
if ε is small enough

1

ε2

∫
Bεα (x0)∩�′

ρ fε(Qε) dx � Cα .

Proof. By Lemma 4.8 there exists r ∈ (εα, ε
α
2 ) and a constant C > 0 such that

for ε small enough

∫
∂Br (x0)∩�′

ρ

(
1

2
|∇Qε |2+ 1

ε2
fε(Qε) + 1

2εγ
|Qε − Q̃ε |2

)
� C

αr
, (31)

where we also used the energy bound (19).
Now assume in a first step that Br (x0) ⊂ �′. Using the Pohozaev identity from

Proposition 4.6 with ω′ = Br (x0) and x = x0, we find

3

ε2

∫
Br (x0)

ρ fε(Qε) �
∫

∂Br (x0)
ρ ((x − x0) · ν)

(
1

2
|∇Qε |2 + 1

ε2
fε(Qε) + 1

2εγ
|Qε − Q̃ε |2

)

+ 1

εγ

∫
Br (x0)

ρ |Qε − Q̃ε ||(x − x0) · ∇′ Q̃ε |

−
∫

∂Br (x0)
ρ ((x − x0) · ∇′Qε) : (ν · ∇′Qε) .

(32)
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Notice that since x ∈ ∂Br (x0) we have (x − x0) · ∇′Qε = rν · ∇′Qε , that is

((x − x0) · ∇′Qε) : (ν · ∇′Qε) = r
∣∣ν · ∇′Qε

∣∣2 � 0 ,

and (x − x0) · ν = r |ν|2 = r . Substituting this into (32), one gets

3

ε2

∫
Br (x0)

ρ fε(Qε) �r
∫

∂Br (x0)
ρ

(
1

2
|∇Qε |2 + 1

ε2
fε(Qε) + 1

2εγ
|Qε − Q̃ε |2

)

+ 1

εγ

∫
Br (x0)

ρ |Qε − Q̃ε ||(x − x0) · ∇′ Q̃ε | .

By (31) and Cauchy-Schwarz inequality this entails

3

ε2

∫
Br (x0)

ρ fε(Qε) dx � r
C

αr
+ r

εγ

(∫
Br (x0)

ρ |Qε − Q̃ε |2
) 1

2
(∫

Br (x0)
ρ |∇′ Q̃ε |2

) 1
2

� C

α
+ C

ε
α
2

εγ

(
(1+ | ln ε|)2εγ

) 1
2 � C

α
+ Cε(α−γ )/4 ,

provided α > γ and ε small enough. This proves the claim in the case where
Br (x0) ⊂ �′.

In a second step we show that the result also holds if Br (x0) � �′. We define
� = Br (x0) ∩ ∂�′ which is now non-empty. This enables us to write ∂(Br (x0) ∩
�′) = �∪ (∂Br (x0)∩�′). Again we apply Proposition 4.6 with ω′ = Br (x0)∩�′
but this time we set x = z, where z ∈ �′ ∩ Br (x0) is given by Proposition 4.9 for
y = x0. By Proposition 4.6 we get

3

ε2

∫
Br (x0)∩�′

ρ fε(Qε) dx

�
∫

∂Br (x0)∩�′
ρ ((x − x) · ν)

(
1

2
|∇Qε |2 + 1

ε2
fε(Qε) + 1

2εγ
|Qε − Q̃ε |2

)

+
∫

�

ρ ((x − x) · ν)

(
1

2
|∇Qε |2 + 1

ε2
fε(Qε) + 1

2εγ
|Qε − Q̃ε |2

)

− 3

2εγ

∫
Br (x0)∩�′

ρ |Qε − Q̃ε |2 − 1

εγ

∫
Br (x0)∩�′

ρ (Qε − Q̃ε) : ((x − x) · ∇′ Q̃)

−
∫

�

ρ ((x − x) · ∇′Qε) : (ν · ∇′Qε) −
∫

∂Br (x0)∩�′
ρ ((x − x) · ∇′Qε) : (ν · ∇′Qε) ,

where we denoted ν the unit outward normal. For the integrals on ∂Br (x0) ∩ �′
and Br (x0)∩�′ we proceed as before using |(x − x) · ν| � 2r . Note, that this time
(x−x)·τ does not necessarily vanish. Nevertheless, the integral involving this term
can be estimated from above by

∫
∂Br∩�′ 2rρ |∇′Qε |2 and then be estimated using

(31). Now we estimate the integrals involving �. First note that Qε = Q̃ε = Qb

on � ∩ ∂� with f (Qb) = 0, that is
∫
�∩∂�

ρ f (Qε) = 0 ,
∫
�∩∂�

ρ fε(Qε) �
CQbε

α/2/η2 and
∫
�∩∂�

ρ |Qε − Q̃ε |2 = 0. On �\∂� ⊂ {ρ = 0} we find that all
integrals vanish because of the bounds in Qε established in Proposition 4.4. We
are left with the two integrals on � ∩ ∂� with gradients. The idea is now to split
the gradient into a tangential and a normal part. The tangential part depends only
on the boundary data Qb, the normal part needs to be estimated. So let τ be the
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unit tangent vector on �. Decomposing ∇′Qε = (ν · ∇′Qε)ν + (τ · ∇′Qε)τ and
substituting this into

∫
�∩∂�

ρ(x − x) · ν 1
2 |∇′Qε |2 yields

3

ε2

∫
Br (x0)∩�′

ρ fε(Qε) dx

� 4
C

α
+ Cε(α−γ )/4 + CQbε

α/4 −
∫

�∩∂�

ρ ((x − x) · ∇′Qε) : (ν · ∇′Qε)

+ 1

2

∫
�∩∂�

ρ ((x − x) · ν)|ν · ∇′Qε |2 + 1

2

∫
�∩∂�

ρ ((x − x) · ν)|τ · ∇′Qε |2

� 4
C

α
+ Cε(α−γ )/4 + CQbε

α/4 − 1

2

∫
�∩∂�

ρ ((x − x) · ν)|ν · ∇′Qε |2

−
∫

�∩∂�

ρ ((x − x) · τ)(τ · ∇′Qb) : (ν · ∇′Qε) ,

where we used that (x − x) = ((x − x) · ν)ν + ((x − x) · τ) · τ and that τ · ∇′Qε =
τ · ∇′Qb only depends on the given boundary values. We apply the inequality
ab � a2/(2C2) + C2b2/2 with C = √

C�/2 from Proposition 4.9 to get

3

ε2

∫
Br (Qε )∩�′

ρ fε(Qε) dx

� 4
C

α
+ Cε(α−γ )/4 + CQbε

α/4 − 1

2

∫
�∩∂�

ρ ((x − x) · ν)|ν · ∇′Qε |2

+ 1

C�

∫
�∩∂�

ρ |(x − x) · τ ||τ · ∇′Qb|2 + C�

4

∫
�∩∂�

ρ |(x − x) · τ ||ν · ∇′Qε |2.

Then we apply Proposition 4.9 to get

1

ε2

∫
Br (Qε )∩�′

ρ fε(Qε) dx � 4
C

α
+ Cε(α−γ )/4 + CQbε

α/4 − 1

2

∫
�∩∂�

C�rρ |ν · ∇′Qε |2

+ C�

4

∫
�∩∂�

2rρ |ν · ∇′Qε |2

= 4
C

α
+ Cε(α−γ )/4 + CQbε

α/4 .

��
We have now all the necessary tools to prove the second important ingredient

for the proof of Theorem 4.5.

Proposition 4.11. For all δ, σ > 0 there exist ε2, ζα > 0 such that for 0 < ε � ε2
and x0 ∈ �′

σ the following implication holds:

dist(Qε(x0),N ) > δ ⇒ E2D
ε (Qε, Bεα (x0) ∩ �′) � ζα(| ln ε| + 1)ρσ

min(x0, ε
α) ,

with ρσ
min � σ defined as in (30). The constant ζα can be chosen to be dependent

only on α and δ, while ε2 depends on δ, σ, α, γ .
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Proof. Let’s assume that the conclusion does not hold at x0 ∈ �′
σ , that is

E2D
ε (Qε, Bεα (x0) ∩ �′) � ζα(| ln ε| + 1)ρσ

min(x0, ε
α). Then there exists a radius

r ∈ (ε2α, εα) such that
∫

∂Br (x0)∩�′
ρ

(
1

2
|∇Qε |2 + 1

ε2
fε(Qε) + 1

2εγ
|Qε − Q̃ε |2

)
dx � 2ζαρσ

min(x0, ε
α)

αr
.

(33)

Indeed, otherwise

E2D
ε (Qε, Bεα (x0) ∩ �′) �

∫ εα

ε2α

2ζαρσ
min(x0, ε

α)

αr
dr = 2ζαρσ

min(x0, ε
α)| ln(ε)| ,

which clearly contradicts our assumption for ε < 1
e .

Replacing (31) by (33) in the proof of Lemma4.10, that isC = 2ζαρσ
min(x0, ε

α),
we find

1

ε2

∫
Br (x0)∩�′

ρ fε(Qε) � 8ζαρσ
min(x0, ε

α)

α
+ Cε

(α−γ )/4
2 ,

where the constantC canbe chosen to be independent ofα and ε.We choose ε2 small
enough such that it satisfies the estimate λ0ε2 < 1

2ε
α
2 . Now choose ζα � α μ0

16 and

ε2 � (
μ0σ
2C )

4
α−γ , whereμ0 is the constant from Proposition 4.7. These bounds imply

that μ0ρ
σ
min(x0, ε

α) � 8ζαρσ
min(x0,ε

α)

α
+Cε

(α−γ )/4
2 , that is we can apply Proposition

4.7 with l = 1
2ε

α . This implies dist(Qε(x0),N ) � δ, which proves the claim. ��
Now we can finally prove Theorem 4.5 and define the set of singularities Xε .

To do this, one can proceed as follows: In a first step we cover � with balls of size
εα and look for balls where the energy is large. The number of such balls has to be
finite because of the energy bound. In view of Proposition 4.11, Qε will be almost
uniaxial outside of these balls. In the second step we improve our estimates to the
scale ε. We cover the balls with high energy from step one with balls of size ε and
determine balls where f is large. By Lemma 4.10 this number will be finite too
and Proposition 4.7 implies that Qε is indeed close toN on all other balls. We can
then take Xε to be the set of all centers of balls with large energy.
Proof of Theorem 4.5 Let δ, σ > 0 be given and choose α ∈ (0, 1). Let {Bεα (y) :
y ∈ �′} be a covering of �′. By Vitali Covering Lemma there exists a countable
family of points {yi }i∈Iε such that

�′ ⊂
⋃
i∈Iε

Bεα (yi ) , B 1
5 εα (yi ) ∩ B 1

5 εα (y j ) = ∅ if i  = j .

Let ζα > 0 be given as in Proposition 4.11. We define

Jε :=
{
i ∈ Iε : E2D

ε (Qε, B2εα (yi ) ∩ �′) > ζα(1+ | ln ε|)σ
}

.

Then by the energy bound (19),

ζα(1+ | ln ε|)σ#Jε
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Fig. 1. First covering argument: Find balls Bεα , where the energy is large

�
∑
i∈Jε

E2D
ε (Qε, B2εα (yi ) ∩ �′) � CE2D

ε (Qε,�
′) � C(1+ | ln ε|) . (34)

Indeed, note that there is a constant C depending only on the space dimension
such that each point in �′ is covered by at most C balls. This implies the second
inequality in (34). From (34)wedirectly infer that the cardinality of Jε is boundedby
a constant dependent on δ, σ, α aswell as the space dimension and the energy bound,
but independent of ε. Let i ∈ Iε\Jε and x0 ∈ Bεα (yi )∩�′

σ . If dist(Qε(x0),N ) > δ

wededuce by Proposition 4.11 that E2D
ε (Qε, B2εα (yi )∩�′) � E2D

ε (Qε, Bεα (x0)∩
�′) > ζα(| ln(ε)| + 1)σ , a contradiction to i ∈ Iε\Jε . Hence

dist(Qε(x),N ) � δ ∀x ∈ Bεα (yi ) ∩ �′
σ , i ∈ Iε\Jε;

see also Figure 1. Note, that this estimate is not good enough since we announced
the radius around points in Xε to be of order ε instead of εα .

Now fix i ∈ Jε . Again by Vitali Covering Lemma we can consider a covering
of Bεα (yi ) ∩ �′

σ of the form

Bεα (yi ) ∩ �′
σ ⊂

⋃
j∈Iε,i

Bλ0ε(z j ) , B 1
5λ0ε

(z j ) ∩ B 1
5λ0ε

(zk) = ∅ if j  = k ,

with all z j ∈ Bεα (yi ) and where λ0 is given by Proposition 4.7. Furthermore, we
define

Jε,i :=
{
j ∈ Iε,i : 1

ε2

∫
B2λ0ε (z j )∩�′

σ

ρ fε(Qε) � μ0 σ

}
,

with μ0 again from Proposition 4.7. By Lemma 4.10, recalling that 2λ0ε < εα ,

μ0 σ #Jε,i �
∑
j∈Jε,i

1

ε2

∫
B2λ0ε (z j )∩�′

σ

ρ fε(Qε) � C

ε2

∫
Bεα (yi )∩�′

ρ fε(Qε) � Cα (35)
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Fig. 2. Second covering argument: find balls, where 1
ε2

∫
ρ fε(Qε) is large

so #Jε,i is also bounded independently of ε. Applying Proposition 4.7 to the sets
B2λ0ε(z j ) for j ∈ Iε,i\Jε,i we get that dist(Qε(x),N ) � δ for all x ∈ Bλ0ε(z j ) ∩
�′

σ , see Figure 2. Thus, setting Xε :=⋃{z j : j ∈⋃i∈Jε Jε,i } yields the result. ��

4.3. Lower Bound Near Singularities

The goal of this subsection is to precisely determine the cost of a singularity. The
plan is to use estimates as in [21, Chapter 6] which generalize the idea of [35,49].
The general idea is to decompose the gradient of a function into a derivative of its
norm and of its phase as for example

|∇u|2 = |∇|u||2 + |u|2
∣∣∣∇ u

|u|
∣∣∣2

for any vectorial function u that does not vanish. Following [19], we replace the
phase u/|u| by the projection of Qε onto N . As a substitute for the norm, we
introduce the auxiliary function φ.

Definition 4.12. We define the function φ : Sym0 → R by

φ(Q) =
{ 1

s∗ s(Q) (1− r(Q)) Q ∈ Sym0\{0} ,
0 Q = 0 ,

where s∗ is given as in Proposition 2.2 and s, r are the parameters from the decom-
position of Q in Proposition 2.3.

Proposition 4.13. The function φ is Lipschitz continuous on Sym0 and C1 on
Sym0\C with φ(Q) = 1 for all Q ∈ N . Furthermore, for a domain ω ⊂ �
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and Q ∈ C1(ω,Sym0), the function R ◦ Q is C1 on the open set Q−1(Sym0\C)

and it holds that

|∇Q|2 � s2∗
3
|∇(φ ◦ Q)|2 + (φ ◦ Q)2|∇(R ◦ Q)|2 in ω ,

where we use the convention that (φ ◦ Q)2|∇(R ◦ Q)|2 := 0 if Q(x) ∈ C.
Proof. The proposition follows directly from Lemma 2.2.3 and Lemma 2.2.7 in
[19]. ��

The next theorem gives the desired lower bound close to a singularity on a two
dimensional unit disk. A proof of this can be found in [20, Proposition 2.5]. Observe
that we work here with the function f , not fε .

Theorem 4.14. There exist constants κ∗,C > 0 such that for Q ∈ H1(B1,Sym0)

satisfying Q(x) /∈ C for all x ∈ B1\B 1
2
and (R ◦ Q)|∂B1 being non-trivial, seen as

element of π1(N ), it holds that∫
B1

1

2
|∇′Q|2 + 1

ε2
f (Q) dx � κ∗φ2

0(Q, B1\B 1
2
)| ln ε| − C (36)

for a number φ0(Q, B1\B 1
2
) := essinfB1\B 1

2
φ(Q) > 0. Furthermore, κ∗ = s2∗ π

2 .

The constant κ∗ can be calculated as in [20, Lemma 2.9] or [19, Lemma 1.3.4]
and is specific forN ∼= RP2. For other manifolds, there are analogous results with
different constants, see [21]. For our purposes, we will use the following version
of Theorem 4.14:

Corollary 4.15. Let x0 ∈ �′ such that Bη(x0) ⊂ �′. Let Q ∈ H1(Bη(x0),Sym0)

satisfying Q(x) /∈ C for all x ∈ Bη\B 1
2 η and (R ◦ Q)|∂Bη is non-trivial, seen as

element of π1(N ). Then, with the same constant C > 0 as in Theorem 4.14∫
Bη(x0)

1

2
|∇′Q|2 + 1

ε2
f (Q) dx � κ∗φ2

0(Q, Bη\B 1
2 η)
(| ln ε| − | ln η|)− C ,

(37)

where κ∗ = s2∗ π
2 .

Proof. By translating �′ we can assume that x0 = 0. In order to apply The-
orem 4.14, we define x = 1

η
x and Q(x) = Q(ηx) = Q(x). Therefore Q ∈

H1(B1(0),Sym0) and verifies the hypothesis of Theorem 4.14 with ε̃ = εη, that is
∫
Bη(x0)

1

2
|∇′Q|2 + 1

ε2
f (Q) dx =

∫
B1(x0)

1

2
|∇′Q|2 + 1

η2ε2
f (Q) dx

� κ∗φ2
0(Q, B1\B 1

2
)| ln ε̃| − C

� κ∗φ2
0(Q, Bη\B 1

2 η)
(| ln ε| − | ln η|)− C .

��
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4.4. Lower Bound Away from Singularities

The following proposition shows that we can uniformly bound the functions φ

and φ0 from the previous section if Q is close to N .

Proposition 4.16. Let dist(Q,N ) � δ on ω ⊂ �. Then

1−
√
3

s∗
δ � (φ ◦ Q)(x) � 1+

√
3

s∗
δ .

Proof. Let Q ∈ Sym0 with dist(Q,N ) � δ. In other words, |Q − R(Q)| � δ,
since R is the nearest-point projection onto N . We use Proposition 2.3 to write

Q = s

((
n⊗ n − 1

3
Id

)
+ r

(
m⊗m− 1

3
Id

))
and R(Q) = s∗

(
n⊗ n − 1

3
Id

)
,

for n,m orthonormal eigenvectors of Q, s > 0 and r ∈ [0, 1). We can estimate

|Q −R(Q)|2 =
∣∣∣∣(s − s∗)(n⊗ n − 1

3
Id) + sr(m⊗m− 1

3
Id)

∣∣∣∣
2

= 2

3
|s − s∗|2 + 2

3
|sr |2 − 2

3
sr(s − s∗)

� 1

3
|s − s∗|2 + 1

3
|sr |2 + 1

3
|s − s∗ − sr |2 ,

(38)

that is δ2 � 1
3 |s(1− r) − s∗|2 = s2∗

3 |φ(Q) − 1|2. Hence |φ(Q) − 1| �
√
3

s∗ δ. ��
Away from singularities the main contribution to the energy comes from the

Dirichlet term and the external field since Qε is close to N . More precisely, we
only need the energy in radial direction, that is |∇Qε |2 can be replaced by |∂r Qε |2
and the problem becomes, essentially, one dimensional. We formalize this thought
by introducing an auxiliary problem as in [3],

I (r1, r2, a, b) := inf
n3∈H1([r1,r2],[0,1])

n3(r1)=a, n3(r2)=b

∫ r2

r1

s2∗|n′3|2
1− n23

+ c2∗(1− n23) dr, (39)

for 0 � r1 � r2 � ∞, a, b ∈ [−1, 1]. Note, that this is equivalent to minimizing∫ ( 1
2 |∂r Q|2 + g(Q)

)
dr for a function Q taking values in N subject to suitable

boundary conditions. For the infimum we have

Lemma 4.17. Let 0 � r1 � r2 � r3 � ∞ and a, b, c ∈ [−1, 1]. Then
1. I (r1, r2, a, b) + I (r2, r3, b, c) � I (r1, r3, a, c).
2. I (r1, r2,−1, 1) � 4s∗c∗.
3. Let θ ∈ [0, π ]. Then

I (0,∞, cos(θ),±1) = 2s∗c∗(1∓ cos(θ)) .
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Furthermore, the minimizer n(r, θ) of I (0,∞, cos(θ), 1) is C1 and |∂θn|2,
|∂rn|2, |n−e3| decay exponentially as r → ∞. The minimizer can be explicitly
expressed as

n(r, θ) =
⎛
⎜⎝
√
1− n23
0
n3

⎞
⎟⎠ , n3(r, θ) = A(θ) − exp(−2c∗/s∗r)

A(θ) + exp(−2c∗/s∗r)
, A(θ) = 1+ cos(θ)

1− cos(θ)
.

Proof. The first part follows directly from definition, since any function that is
admissible for I (r1, r2, a, b) combined with one for I (r2, r3, b, c) is admissible
for I (r1, r3, a, c). For the second claim, we use the inequality X2 + Y 2 � 2XY

with X = s∗|n′3|/
√
1− n23 and Y = c∗

√
1− n23 to get

I (r1, r2,−1, 1) � 2s∗c∗
∫ r2

r1
|n′3| dr � 2s∗c∗

∣∣∣∣
∫ r2

r1
n′3 dr

∣∣∣∣
= 2s∗c∗|n3(r2) − n3(r1)| = 4s∗c∗ .

The third part follows from Lemma 3.4 and Remark 3.5 in [3]. ��
Remark 4.18. 1. A close look at Lemma 4.17 reveals that it is enough to con-

sider a rotationally symmetric function g which has a strict minimum on N at
Q = s∗(e3 ⊗ e3 − 1

3 Id). Indeed, then for Q = s∗(n ⊗ n − 1
3 Id) we can write

g̃(n3) = g(Q) and I becomes I (r1, r2, a, b) = inf
∫ r2
r1

s2∗ |n′3|2
1−n23

+ g̃(n3) dr .

Taking a minimizer n3(r) for n3(0) = 0 and limr→∞ n3(r) = t we can

define G(t) = 2s∗
∫ √ g̃(n3)

1−n23
|n′3| dr . One can then derive estimates analogous

to Lemma 4.17, for example I (r1, r2,−1, 1) � 2G(1).
2. Lemma 4.17 and (39) only uses the form of g on N . As we have seen in

Proposition 4.2, we can neglect the behaviour of g far from N for smaller
norms of Q due to the dominating character of f in our asymptotic regime.
With the same argument one could also introduce a cut-off for higher norms as
long as the growth assumption (5) is satisfied. Thus the essential information
about how g contributes to the energy is g|N , that is (7).

Now we can combine all our previous results to prove the lower bound of
Theorem 3.1. The idea consists in replacing Q̃ε by its approximation Qε and use
the equivariance to write the energy as a two dimensional integral. By Theorem
4.5 we can exclude regions in �′

σ where Qε is far from N . Extending the sets if
necessary, we can assure that the union has vanishing measure in the limit η, ε → 0
and that the complement �0 is simply connected. The scaling of η and ε allows to
apply Corollary 4.15 to each of these extended sets where the boundary datum is
nontrivial. The expression we calculate here can later be identified as the perimeter
term in E0. In the simply connected complement �0 there exists a lifting nε of Qε

which fulfils the compactness (16). We then want to apply Lemma 4.17 to the rays
in �0 for the lower bound. We consider the rays with high energy (that we can
estimate easily) and those with low energy where we need to be more precise about
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Fig. 3. Construction made in the proof of Theorem 3.1. The arrows represent a lifting nε .
In the region �1 the director field nε has non-trivial homotopy class, around the region �2,
nε has a trivial one

their behaviour far from the boundary ∂�. Using a diagonal sequence, we can pass
to the limit σ → 0.

Proof of the lower bound (17) of Theorem 3.1 Let δ, σ > 0 be arbitrary. We define
Qε as in (21) and extend it rotationally equivariant. From Theorem 4.5 for ε � ε0
we know that there exists a finite set Xε of singular points xε

1 , . . . , x
ε
Nε

in �′
σ . In a

first step, we suppose that all these points are included in the set�′
R = �′

σ ∩BR(0).

Since �′
R is bounded, there exists another finite set X , such that each sequence

xε
j converges (up to a subsequence) to a point in X as ε, η → 0. Note that there

may be more than one sequence converging to the same point in X and we a priori
only know that X ⊂ �′ ∩ BR .

We first assume that the set X is contained in �′
σ \∂�. Since η| ln ε| → β ∈

(0,∞) we know that ε � C exp(− 1
η
). Assume that η is small enough such that

2λ0ε � 1
2η.

For xi ∈ X we define �̃ε
i
′ = conv{Bη(xi ) ∪ {0}} ∩ �′. If xi is the only point

of the set X that lies on the ray from 0 through xi we define �ε
i
′ := �̃ε

i
′. If x j for

j ∈ J ⊂ I define the same ray, that is lie on a common line through 0, then we set
�ε

j
′ :=⋃

k∈J �̃ε
k
′. After relabelling, we end up with a finite number N of sets �ε

k
′,

k = 1, . . . , N . We define �ε
0
′ := �′

σ \
⋃N

k=1 �ε
k
′ (see Figure 3). Since all points in

Xε converge to some point in X , we may assume that ε is small enough such that

⋃
x∈Xε

Bλ0ε(x) ⊂
⋃
x∈X

B2λ0ε(x) ⊂
N⋃

k=1

�ε
k
′ ⊂ �′

σ . (40)
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We drop the ε in the notation of�ε
k
′ for simplicity and call�k the three dimensional

set defined by rotating �′
k around the e3−axis.

Using (21) and Remark 4.3 we can write

η Eε(Q̃ε) � η

∫
�

1

2
|∇Qε |2 + 1

ε2
fε(Qε) + 1

2εγ
|Qε − Q̃ε |2 dx

� η

∫
�0

1

2
|∇Qε |2 + 1

ε2
fε(Qε) + 1

2εγ
|Qε − Q̃ε |2 dx

+ η

N∑
k=1

∫ 2π

0

∫
�′
k

ρ

(
1

2
|∇Qε |2 + 1

ε2
fε(Qε)

)
dρ dz dϕ .

(41)

For x ∈ �0 we know by Theorem 4.5 that dist(Qε(x),N ) � δ. Since �′
0 and

thus �0 is simply connected there exist liftings ±nε : �0 → S
2 such that

s∗
(
nε ⊗ nε − 1

3
Id

)
= R ◦ Qε and

∥∥∥∥s∗
(
nε ⊗ nε − 1

3
Id

)
− Qε

∥∥∥∥∞ � δ on �0 .

In particular, Qε(x) ∈ Sym0\C for all x ∈ ∂�′
k for all k = 1, . . . , N . Let

M ⊂ {1, . . . , N } be the set of elements k ∈ {1, . . . , N } such that (R ◦ Qε)|∂�′
k

is non-trivial as an element of π1(N ). On Bη(xk) we apply Corollary 4.15 to∫
Bη(xk )

1
2 |∇Qε |2 + 1

ε2
f (Qε). The term η

∫
Bη(xk )

1
η2
|g(Qε)| + C0(ε, η) is seen to

be bounded by Cη. On the remaining �′
k\Bη(xk) we use that the energy density

1
2 |∇Qε |2 + 1

ε2
fε(Qε) � 0 is non-negative. Hence we get

η

N∑
k=1

∫
�′
k

ρ

(
1

2
|∇Qε |2 + 1

ε2
fε(Qε)

)
dρ dz

� η

N∑
k=1

inf
�′
k

ρ

∫
�′
k

(
1

2
|∇Qε |2 + 1

ε2
f (Qε)

)
dρ dz − Cη

� η
∑
k∈M

κ∗φ2
0(Qε, Bη(xk)\B 1

2 η(xk))
ρε
k − η

|xε
k |

| ln ε|η

− Cφ2
0(Qε, Bη(xk)\B 1

2 η(xk)) η| ln η| − Cη

�
(
1−

√
3

s∗
δ

)2 ∑
k∈M

ρε
k − η

|xε
k |

π

2
s2∗η| ln(ε)|

− C

(
1+

√
3

s∗
δ

)2

η| ln η| − Cη ,

(42)

where we also applied Proposition 4.16 to estimate φ0 from below.
Before estimating the energy coming from �0, we need an additional informa-

tion, namely we want to show that nε(rω) approaches +e3 and −nε(rω) approx-
imates −e3 (or vice versa) as r → ∞ for almost everywhere ω ∈ S

2. However, it
will be enough for our analysis to just show that nε is close to either+e3 or−e3 up
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to some factor times
√

δ. To start with, we show that the vector nε(rω) for r → ∞
is close to+e3 or−e3 almost everywhere. By (21) and the energy bound we know,
that for almost everywhere ω ∈ S

2 the integral

∫ ∞

R

η

ε2
f (Qε) + 1

η
g(Qε(rω)) + ηC0(ε, η) dr < ∞ . (43)

We argue by contradiction, that is assume that there exists some ω ∈ S
2 satisfying

(43) such that lim supr→∞ ||nε
3(rω)| − 1| > 2Ca

√
δ for a C > 0 to be specified

later and a is the constant from Proposition 2.5. This implies that there exists a
sequence r� such that r� → ∞ as � → ∞ and |nε

3(r�ω)| < 1 − 2Ca
√

δ for all
� ∈ N or in other words |Qε−s∗(e3⊗e3− 1

3 Id)| > 2a
√

δ for a suitably chosenC (A
calculation shows that C � 5

4
√
2s∗

is sufficient). By Lipschitz continuity of Qε this

implies |Qε−s∗(e3⊗e3− 1
3 Id)| > a

√
δ for all r ∈ I� := (r�− εCa

√
δ

C , r�+ εCa
√

δ
C ).

This implies that g(Qε) � gmin > 0 for such points in I�, where we used gmin =
min

{
g(Q) : Q ∈ Sym0 , dist(Q,N ) � δ , |Q − s∗(e3 ⊗ e3 − 1

3 Id)| � a
√

δ
}

> 0
by Proposition 2.5. With this estimate in mind it becomes clear that we have the
lower bound

1

η

∫
I�

η

ε2
f (Qε) + 1

η
g(Qε(rω)) + ηC0(ε, η) dr � 1

η
gmin|I�| = 1

η
gmin

2εCa
√

δ

C
> 0 .

Summing over disjoint intervals yields a contradiction to (43).
This implies that either lim supr→∞ nε

3(rω) � 1−2Ca
√

δ or lim infr→∞ nε
3(rω)

� −1 + 2Ca
√

δ. Indeed, nε
3(rω) cannot alternate between ±1 since by continu-

ity this yields a contradiction for δ small enough such that 2Ca
√

δ � 1
2 . Next,

consider the lifting nε and suppose that there exist directions ω+, ω− ∈ S
2 such

that nε(rω+) is close to +e3 (resp. nε(rω−) close to −e3) as r → ∞. Since our
previous analysis holds almost everywhere, we can assume that the angle between
ω+ and ω− is smaller than π and that ω± are not parallel to e3. Let v = ω+ − ω−
andw = ω++ω−. We estimate the energy in new coordinates (r, s) in the segment
between the rays defined through ω+ and ω− to get that

C �
∫ R̃

R+1

∫ r |v|/2

−r |v|/2
ρ

(
η

2

∣∣∣∇′Qε

(
r

v

|v| + s
w

|w|
)∣∣∣2 + 1

η
g
(
Qε

(
r

v

|v| + s
w

|w|
)))

ds dr

� C(1− Cδ)2
∫ R̃

(R+1)

∫ r |v|/2

r |v|/2
ρ

(
ηs2∗

∣∣∣ v

|v| · ∇
′nε
∣∣∣2 + 1

η
c2∗(1− nε

3) − Cδ

)
ds dr .

Lemma4.17gives the lower bound
∫ r |v|/2
−r |v|/2

(
ηs2∗| v

|v| · ∇′nε |2 + 1
η
c2∗(1− nε

3)
)
ds �

4c∗s∗ − C
√

δ. Using ρ � r min{sin(θ+), sin(θ−)} for θ± being the angular coor-
dinate of ω±, we end up with

C � C(1− Cδ)2
∫ R̃

R+1
r(4c∗s∗ − C

√
δ) dr � CR(1−√

δ)R̃
3
2 > 0 ,
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provided δ > 0 small enough. Sending R̃ to infinity, we get a contradiction. Hence,
nε has to approach either+e3 or−e3 almost everywhere and thuswe can distinguish
the two liftings by their asymptotics far from ∂�.

We now introduce sets Fσ,ε, F̃σ,ε which we use later to prove the compactness
result. First choose one of the two possible liftings nε ∈ C0(�0, S

2). Without loss
of generality we choose the lifting such that nε(rω) is close to+e3 as r → ∞. The
boundary conditions (13) imply thatnε(ω) = ±ν(ω),whereν is the outwardnormal
on S

2 for allω ∈ ∂�0∩S
2. We define Fσ,ε := {ω ∈ S

2∩∂�0 : nε(ω) ·ν(ω) = 1}.
Conversely, F̃σ,ε is then given by F̃σ,ε = {ω ∈ S

2 ∩ ∂�0 : nε(ω) · ν(ω) = −1}.
The remaining part of S

2 ∩ �σ is denoted Sσ,ε = (S2 ∩ �σ )\(Fσ,ε ∪ F̃σ,ε) =⋃
k�1(S

2 ∩ ∂�k). Note that the sets Fσ,ε , F̃σ,ε and Sσ,ε are rotationally symmetric
with respect to theϕ coordinate. Since the θ−angular size of all�k converges to zero
(that is |Sσ,ε | → 0 as ε → 0) and S

2 ∩�σ is compact, we get that (up to extracting
a subsequence) χFσ,ε (resp. χ̃Fσ,ε

) converges pointwise to a characteristic function

χFσ (resp.χF̃σ
). By triangle inequalityweget dist(Q̃ε,Nε) � dist(Qε,Nε)+|Qε−

Q̃ε |, whereNε is the manifoldNη,ξ introduced in Proposition 2.6. By Remark 4.3,
Proposition 2.6 and the energy bound (19) we get that

∫
�0

dist2(Q̃ε,Nε) dx → 0 as

ε, η → 0.Onbounded sets additionally use (11) to get the claimed L2−convergence
in (16).

As a last step, it remains the energy estimate on�0.We split the integral over�0
in (41) in several parts. Forω ∈ Fσ,ε such that the energy on the ray in directionω is
large, that is

∫∞
1

η
2 |∇Qε |2+ η

ε2
f (Qε)+ 1

η
g(Qε)+ηC0(ε, η)+ η

2εγ |Qε− Q̃ε |2 dr �
4s∗c∗, we can use Lemma 4.17, which implies

∫ ∞

1

η

2
|∇Qε |2 + η

ε2
f (Qε) + 1

η
g(Qε) + ηC0(ε, η)

+ η

2εγ
|Qε − Q̃ε |2 dr � 4s∗c∗ � I (1,∞, ν3(ω),+1) . (44)

Analogously, for points ω ∈ F̃σ,ε with energy greater than 4s∗c∗ we use
I (1,∞, ν3(ω),−1) as a lower bound. Let’s consider the set of pointsω ∈ S

2∩∂�0
such that the energy on the ray through ω is smaller than 4s∗c∗. We claim that there
exists a constant C > 0 independent of ω and a radius Rη,ω ∈ (R − Cη, R] such
that ||nε

3(Rη,ωω)| − 1| � 2Ca
√

δ � 1. Indeed, if ||nε
3(Rη,ωω)| − 1| > 2Ca

√
δ

on (R − Cη, R] then on this set |Qε − s∗(e3 ⊗ e3 − 1
3 Id)| � 2a

√
δ. Hence for

C large enough this contradicts 4s∗c∗ �
∫ η

ε2
f (Qε) + 1

η
g(Qε) + ηC0(ε, η) dr �

(R − (R − Cη))Ca
√

δ
η

. In order to conclude that the energy from 1 to Rη,ω is (up

to some small contributions of size
√

δ) close to I (1,∞, ν3(ω),±1) we need to
show that for ω ∈ Fσ,ε the vector nε(Rη,ω) is close to +e3 and not −e3 (and
vice versa for ω ∈ ˜Fσ,ε). Again we argue by contradiction, that is we assume that
|nε(Rη,ω) + e3| � 2Ca

√
δ. We subdivide the ray in direction ω from R to infinity

into segments of length 1, identified with the intervals J� = [�, �+1] for the radial
variable, for integers � � R. On every segment, the energy bound on the ray implies
the existence of two points a�, b� ∈ J� with |a� − �| � Cη, |b� − (� + 1)| � Cη
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such that ||nε
3(a�)| − 1| � 2Ca

√
δ, ||nε

3(b�)| − 1| � 2Ca
√

δ. Since we assumed
nε(Rω,η) close to−e3 and nε approaches+e3 for � → ∞, there exists some integer
� � R such that |nε

3(a�)+1| � 2Ca
√

δ, |nε
3(b�)−1| � 2Ca

√
δ. Together with (8),

this implies

∫
J�

η

2
|∇Qε |2 + 1

η
g(Qε) dr � I (�, � + 1,nε

3(a�),nε
3(b�))

−C(Ca+ 1)
√

δ � 4s∗c∗ − C
√

δ .

In order to show that for δ and ε small enough this contradicts the assumption of the
ray having energy smaller than 4s∗c∗, we prove that the energy coming from the
segment [0, R] has to be positive with a uniform lower bound. Since ω ∈ Fσ,ε ⊂
∂�σ one can show as in 2. in Lemma 4.17 that on such a ray

∫ R
1

η
2 |∇Qε |2 +

1
η
g(Qε) dr � 4s∗c∗( 12σ

2 − 8Ca
√

δ). So combining this result and the estimate for
Jk , we get

4s∗c∗ � 4s∗c∗ − C
√

δ + 2s∗c∗
(1
2
σ 2 − 8Ca

√
δ
)

,

which yields a contradiction for δ, ε small enough. For ω ∈ Fσ,ε we then use the
change of variables r = 1+ ηr̃ , (8), Proposition 4.13 and Proposition 4.16 to get

∫ R

1

η

2
|∇Qε |2 + 1

η
g(Qε) dr �

∫ (R−1)/η

0

1

2
|∇Qε |2 + g(R ◦ Qε) − C dist(Qε,N ) dr̃

� (1− Cδ)2
∫ (R−1)/η

0

1

2
|∇(R ◦ Qε)|2 + g(R ◦ Qε) dr̃ − Cδ

� I (0, (Rη,ω − 1)/η, ν3(ω),nε
3((Rη,ω − 1)/η)) − Cδ

� I (0, (Rη,ω − 1/η, ν3(ω),+1) − Cδ ,

(45)

where we also used Proposition 2.6 to get

dist(Qε,N ) � dist
(
Qε,Nε

)

+C
ε2

η2
� C

(
f (Qε) + ε2

η2
g(Qε) + ε2C0(ε, η)

) 1
2 + C

ε2

η2

and thus by Cauchy-Schwarz inequality and the energy bound on the ray∫ (R−1)/η
0 dist(Qε,N ) dr̃ � C

√
R ε√

η
+ CR ε2

η3
. So by (44) and (45) we get that

for ω ∈ Fσ,ε we have

∫ ∞

1

η

2
|∇Qε |2 + 1

η
g(Qε) dr

� min{I (0,∞, ν3(ω),+1), I (0, (Rη,ω − 1/η, ν3(ω),+1) − Cδ} .
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Furthermore, by compactness, χFσ,ε converges point wise almost everywhere to
χFσ . Since (Rη,ω − 1)/η → ∞ as η → ∞ we can apply Fatou’s Lemma to get the
energy contribution from �0 related to Fσ,ε by

lim inf
ε,η→0

∫
Fσ,ε

∫ ∞

1

η

2
|∇Qε |2 + η

ε2
f (Qε) + 1

η
g(Qε) + ηC0(ε, η) dr dω

�
∫

S2∩∂�0

lim inf
ε,η→0

min{I (0,∞, ν3(ω),+1), I (0, (Rη,ω − 1/η, ν3(ω),+1) − Cδ}χFσ,ε (ω) dω

�
∫
Fσ

I (0,∞, ν3(ω),+1) dω − Cδ .

Now combine this estimate, the analogous result for F̃σ,ε , the formulae for
I (0,∞, ν3(ω),±1) from Lemma 4.17 and (42) to get

lim inf
ε,η→0

ηEη,ξ (Qη,ξ ) �
∫
Fσ

2s∗c∗(1− cos(θ)) dω +
∫
F̃σ

2s∗c∗(1+ cos(θ)) dω

+ (1− Cδ)2
∑
k∈M

ρk − η

|xk | π2s2∗β − Cδ ,

for the points xk = (ρk, θk) ∈ X .
It remains to show that for all k ∈ M, the point xk/|xk | corresponds to a jump

between Fσ and F̃σ . For this it is enough to show that the orientation of nε relative
to the normal on ∂� changes when following ∂�′

k ∩ �′ for all k ∈ M. So let
k ∈ M and consider the curve � : ∂�′

k → S
2 defined by nε |∂�′

k
. By definition

of M, the curve is non-trivial in π1(N ), that is � jumps an odd number of times
from one vector to its antipodal vector on the sphere. Hence, the orientation has to
change. In the limit ε, η → 0, this implies that

2π
∑
k∈M

ρk

|xk | = |DχFσ |(S2 ∩ {ρ > σ }) .

This implies our result in the case Xε, X ⊂ (�′ ∩ BR(0))\∂�.
We now explain the changes in our construction if there are some xi ∈ X ∩ S

2.
Basically, we use the same construction as before, but we need to take care that the
lower bound involving Corollary 4.15 stays applicable. To see this, we extend the
map Qε outside of � using the boundary values. We define

Qε(x) =
{
Qε(x) x ∈ Bη(xi ) ∩ �,

s∗
(

x
|x | ⊗ x

|x | − 1
3 Id
)
x ∈ Bη(xi ) ∩ B1(0) .

Then f (Qε) = 0 and |∇Qε |2, |g(Qε)| � C on Bη(xi ) ∩ B1(0), that is

∫
Bη(xi )∩B1(0)

1

2
|∇Qε |2 + 1

ε2
f (Qε) + 1

η2
g(Qε) + C0(ε, η) dx � C1 .
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Thus, if (R ◦ Qε)|∂�′
i
is non-trivial as element of π1(N ), we can apply Corollary

4.15 to the extension Qε , that is

η

∫
Bη(xi )∩�′

1

2
|∇Qε |2 + 1

ε2
f (Qε) dx � η

∫
Bη(xi )∩R2

|∇′Qε |2 + 1

ε2
f (Qε) dx − η C1

�
(
1−

√
3

s∗
δ

)2
π

2
s2∗η| ln ε| − C η| ln η| − C η .

If (R ◦ Qε)|∂�′
i
is trivial, then we just estimate as before, using that the energy is

non-negative.
It remains one last case. Assume that there is a point xε

k ∈ Xε such that |xε
k | →∞ as ε → 0. This causes two modifications to our previous results: This time, we

define �̃ε
k
′ = conv{Bη(xε

k )∪ {0}} ∩�′. Doing so, we risk to exclude a region from
�0 that is too large for proving the compactness, namely when we define the set
ωη afterwards. However, this is not really a difficulty, for two reasons. First, it is
possible to extend nε continuously in �̃ε

k
′\�̂ε

k
′, with �̂ε

k
′ = (Bη(xε

k )∪[0, xε
k ])∩�′,

where [0, xε
k ] is the line segment between the points 0 and xε

k . Second, in order to
conclude that the measure of �̂ε

k is also bounded, we need to show that ρε
k cannot

grow to infinity. To see this, note that xε
k ∈ �σ and by applying Proposition 4.11

one gets from the energy bound that ρσ
min(x

ε
k , ε

α) is indeed bounded. All estimates
for the lower bound that we have done before stay valid in this setting.

So far, we have established the inequality

lim inf
η,ξ→0

ηEη,ξ (Qη,ξ )

� (1− Cδ)2
π

2
s2∗β|DχFσ |(S2 ∩ {ρ � σ })

+
∫
Fσ

2s∗c∗(1− cos(θ)) dω +
∫
F̃σ

2s∗c∗(1+ cos(θ)) dω − C
√

δ .

(46)

We now define the set ωσ,ε as proxy for the set ωη from Theorem 3.1. Let
ω′

σ,ε := ⋃
k�1 �̂ε

k
′, where the sets �̂ε

k
′ = �ε

k
′ for bounded sequences |xε

k |, and
given as in the second construction if |xε

k | diverges. This is well defined for ε (and
therefore η) small, depending on σ and δ. Recall that since η| ln ε| → β ∈ (0,∞),
we have the asymptotic η ∼ | ln ε|−1. Let ωσ,ε be the corresponding rotational

symmetric extended set. Then |ω′
σ,ε | � C |⋃x∈Xε

Bη(x)| � Cη2|Xε | � C η2

δ4σ 2 ,
that is choosing η small we can force the measure of ω′

σ,ε to vanish in the limit.
Note that this also implies that the measure of ωσ,ε vanishes because we have an
upper bound on the ρ−component of points in Xε .

We nowwant to sendσ → 0 and choose a diagonal sequencewith the properties
announced in the theorem. From our previous construction, for a sequence σk ↘ 0
there exist corresponding sequences δk ↘ 0,ηk ↘ 0 and εk ↘ 0 such that from (46)

ηEη,ξ (Qη,ξ ) �π

2
s2∗β|DχFσk ,ε |(S2 ∩ {ρ � σk})

+
∫
Fσk ,ε

2s∗c∗(1− cos(θ)) dω +
∫
F̃σk ,ε

2s∗c∗(1+ cos(θ)) dω − 1

k
,
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and, furthermore, |ωσk ,ε| � 1
k , |S2\(Fσk ,ε∪F̃σk ,ε)| � 1

k and
∫
�σk \ωσ,ε

dist2(Q̃ε,Nε) dx

� 1
k2

for ε � εk and η � ηk . The sequences εk and ηk depend on σk and δk and are
related via ηk | ln εk | → β as k → ∞.

Thus we can define the function nη : � → S
2 announced in the theorem as

nη := nε on �σk\ωη for η ∈ (ηk+1, ηk), ωη := ωσk ,ε and extend it measurably
to a map � → S

2. This definition assures that nη ∈ C0(�σk\ωη, S
2) and the

convergence in (16) holds. Furthermore, we define the set Fη := Fσk ,ε for η ∈
(ηk+1, ηk). Then our analysis shows that the sequence χFη has the point wise
almost everywhere limit χF , for F =⋃

k>1 Fσk since |χF −χFη | � |χF −χFσk
|+

|χFσk
− χFσk ,ε | and the measure of the set on which these two terms are nonzero is

smaller than Cσ 2
k + 1

k .
This finishes the proof of the first part of Theorem 3.1 and (17). ��

5. Upper Bound

In this sectionwe are going to prove the upper bound fromTheorem 3.1, namely
(18). Since all functions are rotationally equivariant, it is useful to introduce the
two dimensional energy for sets ω′ ⊂ �′

E2D
ε (Q, ω′) =

∫
ω′

ρ

(
1

2
|∇′Q|2 + 1

ρ2 Q2×2 : Q + 1

ε2
f (Q) + 1

η2
g(Q) + C0(ξ, η)

)
dρ dθ .

First, we prove the next lemma, which gives the upper bound in the case where
there are no singularities near the axis ρ = 0.

Remark 5.1. 1. The energetically relevant part of the construction in Lemma 5.2
away from defects is carried out with uniaxial Q−tensors of scalar order param-
eter s∗. One could also carry this out by using the physically motivated order
parameter s∗,ξ2/η2 to obtain a sharper upper bound for ξ, η > 0. In our regime
of the limit ξ, η → 0, both constructions yield the same upper bound.

2. In the construction of the singularities in (55), we use an isotropic core Q = 0.
Other choices, such as a oblate uniaxial state surrounded by a biaxial region,
are possible and would yield a sharper upper bound for ξ, η > 0 for certain
parameters. However, our upper bound for ξ, η → 0 is independent of this
choice.

Lemma 5.2. Let σ > 0 and F ⊂ S
2 be a rotationally symmetric set of finite

perimeter such that S2 ∩{ρ � σ, z > 0}, S
2 ∩{ρ � σ, z < 0} are contained in one

of the sets F, Fc. Then there exists a rotationally equivariant sequence of functions

Qε ∈ H1(�,Sym0) such that the compactness claim (16) holds, ‖Qε‖L∞ �
√

2
3 s∗

and

lim sup
ε→0

η Eη,ξ (Qε) � E0(F) .



1442 François Alouges, Antonin Chambolle, and Dominik Stantejsky

Fig. 4. Partition of �′ into regions for the construction of Qε (arrows represent nε )

Proof. The proof consists in providing an explicit definition for Qε , generalizing
the construction made in [3]. The idea is the following: let F ⊂ S

2 ∩ {ρ � σ } be
rotationally symmetric. Since we assume F to be of finite perimeter, |DχF |(S2 ∩
{ρ � σ }) < ∞. Let F ∩ Fc ∩�′

σ = {θ0, . . . , θM } for some M ∈ N and θi < θi+1
for all i = 0, . . . , M−1.We nowdefine themap Qε on the two dimensional domain
�′. We divide �′ into several regions and define Qε on each region separately (see
Figure 4). After that, we derive the estimates that are needed to ensure that the
rotated map R�

ϕ QεRϕ satisfies the energy estimate.
Let �′ be parametrized by polar coordinates (r, θ). As usual, we denote by

F ′ = F ∩ �′ and Fc ′ = Fc ∩ �′. Note that ρ = r sin θ . Let R > 2 be fixed.
Step 1 (Construction on F ′

η and (Fc)′η): We define F ′
η = F ′\⋃M

i=0 B2η(θi ) ⊂
S
1 ⊂ �′ and (Fc)′η = Fc ′\⋃M

i=0 B2η(θi ) ⊂ S
1 ⊂ �′. For (r, θ) ∈ [1,R] × F ′

η we
define

Qε(r, θ) := s∗
(
n⊗ n − 1

3
Id

)
with n(r, θ) =

⎛
⎜⎝
√
1− n23((r − 1)/η, θ)

0
n3((r − 1)/η, θ)

⎞
⎟⎠ ,

(47)

where n3 is given by Lemma 4.17. Analogously, for (r, θ) ∈ [1,R] × (Fc)η we
define

Qε(r, θ) := s∗
(
n⊗ n − 1

3
Id

)
with n(r, θ) =

⎛
⎜⎝
−
√
1− n23((r − 1)/η, π − θ)

0
n3((r − 1)/η, π − θ)

⎞
⎟⎠ .(48)

Since the defined Qε is uniaxial of scalar order parameter s∗, we have f (Qε) = 0
and by (7) we can estimate the energy on �F ′

η
= {(r, θ) : θ ∈ F ′

η, r ∈ [1,R]}
ηE2D

ε (Qε,�F ′
η
)
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= η

∫
F ′

η

∫ R

1
ρ

(
s2∗|∂rn|2 +

s2∗
r2

|∂θn|2

+ 1

ρ2 Q2×2,ε : Qε + c2∗
η2

(1− n23) + C0(ξ, η)

)
r dr dθ

=
∫
F ′

η

∫ (R−1)/η

0

(
s2∗|∂tn|2 + c2∗(1− n23) + C0(ξ, η)

)
(1+ ηt)2 sin θ dt dθ

+
∫
F ′

η

∫ (R−1)/η

0

η2s2∗
(1+ ηt)2

[
|∂θn|2 + 2

sin2 θ
(1− n23)

]
(1+ ηt)2 sin θ dt dθ ,

where we set r = 1+ ηt and used that Q2×2,ε : Q = |Qε |2 − 6s∗(1− n23)s∗n23 =
2s2∗(1− n23). Estimating C0 by Proposition 2.4 and using Lemma 4.17 we get

η E2D
ε (Qε,�F ′

η
) �

∫
F ′ I (0, (R− 1)/η, cos θ, 1) sin θ dθ + C η

� 2s∗c∗
∫
F ′(1− cos θ) sin θ dθ + C η . (49)

Applying the same steps to (Fc)′η, we get

η E2D
ε (Qε,�(Fc)′η ) � 2s∗c∗

∫
Fc ′

(1+ cos θ) sin θ dθ + C η . (50)

Step 2 (Construction on (�+
θi ,η

)′ and (�−
θi ,η

)′): Next, we construct Qε for

(r, θ) ∈ [1 + 4η,R] ×⋃M
i=0 B2η(θi ). Without loss of generality, we assume θ ∈

B2η(θ0) and that smaller angles belong to F ′, while larger values lie in Fc ′. We
define (�+

θ0,η
)′ = {(r, θ) : θ0 − 2η � θ � θ0, r ∈ [1+ 4η,R]} and (�−

θ0,η
)′ =

{(r, θ) : θ0 � θ � θ0 + 2η, r ∈ [1+ 4η,R]}.
Since we want Qε to have H1-regularity, we need to respect the values of Qε

that we already constructed at θ = θ0 − 2η and θ = θ0 + 2η. We do this by
interpolating between these given values and s∗(e3 ⊗ e3 − 1

3 Id) at θ = θ0. More
precisely, for (r, θ) ∈ (�+

θ0,η
)′ we define

Qε(r, θ) = s∗
(
n⊗ n − 1

3
Id

)
with n(r, θ) =

⎛
⎝sin(φ(r, θ))

0
cos(φ(r, θ))

⎞
⎠ ,

where the phase φ is given by

φ(r, θ) = θ0 − θ

2η
arccos (n3 (r, θ0 − 2η)) . (51)

Similarly, the phase for (r, θ) ∈ (�−
θ0,η

)′ is given by

φ(r, θ) = −θ − θ0

2η
arccos (n3 (r, π − (θ0 + 2η))) . (52)

Note that Qε is indeed continuous for θ = θ0 and that Qε coincides with our
previous definition at θ = θ0 − 2η and θ = θ0 + 2η.
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Now we calculate the energy coming from the two regions. We assume that
(r, θ) ∈ (�+

θ0,η
)′, the estimates for (�−

θ0,η
)′ are similar. Since Qε is takes values in

N , f (Qε) = 0 and furthermore by (7)

g(Qε) = c2∗(1− cos2(φ(r, θ))) = c2∗ sin2(φ(r, θ)) � c2∗ sin2(φ(r, θ0 − 2η)) .

For the gradient, we note that

1

2
|∇′Qε(r, θ)|2 = s2∗ |∂rn(r, θ)|2 + s2∗

r2
|∂θn(r, θ)|2 = s2∗ |∂rφ(r, θ)|2 + s2∗

r2
|∂θφ(r, θ)|2

=
(

θ − θ0

2η

)2

s2∗ |∂rφ(r, θ0 − 2η)|2 + s2∗
4r2η2

|φ(r, θ0 − 2η)|2

� s2∗ |∂rn(r, θ0 − 2η)|2 + s2∗
4r2η2

|φ(r, θ0 − 2η)|2 .

Note, that for η → 0 the phase φ stays bounded. Furthermore, all terms decrease
exponentially in r by Lemma 4.17 and are thus integrable. Since 1

2 |∂ϕQε |2 =
Q2×2 : Q = 2s2∗ sin2(φ(r, θ)), this term converges to zero exponentially and
is bounded for η → 0. So finally we use the estimates on C0(ξ, η), the above
calculations and the usual change of variables t = 1+ ηt to get

η E2D
ε (Qε, (�

+
θi ,η

)′) � C η . (53)

Analogously,

η E2D
ε (Qε, (�

−
θi ,η

)′) � C η . (54)

Step 3 (Construction on B ′ and D′): Throughout this construction, we assume
that we are in the same situation as in Step 2, namely that we are switching from F ′
to Fc ′ as the angle θ increases. In this situation, we are going to construct a defect
of degree −1/2. Otherwise, one would need to define a defect of degree 1/2, that
is one needs to switch the sign of the angle in the definition of Q(α).

• We first define a map QB on the two dimensional ball B1(0) using polar coor-
dinates as follows

QB(r, α) =
⎧⎨
⎩
0 r ∈ [0, ε)( r

ε
− 1

)
Q(α) r ∈ [ε, 2ε)

Q(α) r ∈ [2ε, 1) ,

(55)

where

Q(α) = s∗
(
n(α) ⊗ n(α) − 1

3
Id

)
with n(α) =

⎛
⎝sin(α/2)

0
cos(α/2)

⎞
⎠ .

• On B1\B2ε we calculate

∫
B1\B2ε

1

2
|∇′QB |2 dx = 1

2

∫ 2π

0

∫ 1

2ε

(
|∂r QB |2 + 1

r2
|∂αQB |2

)
r dα dr
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= 1

2

∫ 1

2ε

1

r
dr
∫ 2π

0
|∂αQB |2 dα

= − ln(2ε)
∫ 2π

0
s2∗

1

4
(cos2(α/2) + sin2(α/2)) dα

= π

2
s2∗| ln(ε)| −

ln(2)π

2
s2∗ .

Furthermore, f (QB) = 0 on B1\B2ε and
∫
B1\B2ε |g(QB)| dx � C |B1\B2ε |.

This implies∫
B1\B2ε

1

2
|∇′QB |2 + 1

ε2
f (QB) + 1

η2
g(QB) dx � π

2
s2∗ | ln(ε)| +

C1

η2
|B1\B2ε | .(56)

• On B2ε\Bε we find
∫
B2ε\Bε

1

2
|∇′QB |2 dx = 1

2

∫ 2π

0

∫ 2ε

ε

(
|∂r QB |2 + 1

r2
|∂αQB |2

)
r dα dr

= 1

2

∫ 2π

0

∫ 2ε

ε

(
1

ε
− 1

)2

|Q(α)|2r

+ 1

r

( r
ε
− 1

)2 |∂αQ(α)|2 dr dα

= 2

3
πs2∗

(
1

ε
− 1

)2 ∫ 2ε

ε

r dr + 1

2
πs2∗

∫ 2ε

ε

1

r

( r
ε
− 1

)2
dr

= πs2∗
(
1

ε
− 1

)2

ε2 + π

2
s2∗
(
ln(2) − 1

2

)

� C .

In addition, f (QB) = 0 and
∫
B2ε\Bε

|g(QB)| dx � C |B2ε\Bε |. Together, we
get
∫
B2ε\Bε

1

2
|∇′QB |2 + 1

ε2
f (QB) + 1

η2
g(QB) dx � C2

(
1+ 1

η2

)
|B2ε\Bε | .

(57)

Finally, the gradient of QB on Bε(0) is zero. The contributions from f and g
are easily seen to be bounded by C |Bε |, so that∫

Bε

1

2
|∇′QB |2 + 1

ε2
f (QB) + 1

η2
g(QB) dx � C3

(
1

ε2
+ 1

η2

)
|Bε | . (58)

Combining (56), (57) and (58) we get∫
B1(0)

1

2
|∇′QB |2 + 1

ε2
f (QB) + 1

η2
g(QB) dx

� π

2
s2∗| ln(ε)| + C

(
1+ 1

η2

)
|B1(0)| + C . (59)

Note that we have the same bound for QBr̃ (r, α) = QB(r/r̃ , α) on Br̃ (0), where
r̃ � 1. In addition, this bound is invariant under rotations and translations of the
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domain. Again we assume that θ ∈ Bη(θ0).We use the construction of QB to define
Qε on the set B := Bη(1+ 2η, θ0) ⊂ [1, 1+ 4η] × [θ0 − 2η, θ0 + 2η] via

Qε(r, θ) = Rθ0QB(r/η, α) , (60)

where Rθ0 is the rotation matrix around the ρ−axis with angle θ0, r2 = (r −
1 − 2η)2 + (θ − θ0)

2 and α being the angle between the vectors (0, 1)� and
(θ0 − θ, r − 1− 2η)�. Note, that the term |B1(0)| in (59) transforms to |B|, which
can be estimated byCη2. For the remaining term of E2D

ε we notice that Q2×2,ε : Qε

is bounded on B and that ρ � σ − η, thus
∫
B ρ−1Q2×2,ε : Qε � C(σ − η)−1.

Then, using ρ � (1+ 2η) sin(θ0)+ η, we get from (59) together with the estimate
on C0(ξ, η) from Proposition 2.4, that

η E2D
ε (Qε, B) � ((1+ 2η) sin(θ0) + η)

π

2
s2∗η| ln(ε)| + Cη + C

σ − η
η . (61)

We now want to construct the map Qε on the set D = {(r, θ) ∈ [1, 1+ 4η] ×
[θ0 − 2η, θ0 + 2η]}\B by interpolating between the values given by Steps 1 and 2
on the one hand, and the values on ∂B on the other hand. We use the same polar
coordinates (r , α) as for the definition of Qε on B to parametrize D. Let �α/2 be
the phase associated to the director of Qε(η, α) and�(α) the phase of the boundary
values on ∂(D ∪ B). We set

φ(r , α) = R(α) − r

R(α) − η
�α/2 + r − η

R(α) − η
�(α) ,

where

R(α) =
{

2η
| cos(α)| if α ∈ [−π/4, π/4] ∪ [3π/4, 5π/4] ,

2η
| sin(α)| otherwise .

In particular, |R(α)| � 2
√
2η and |∂αR(α)| � 2

√
2η. Then we define

QD(r , α) = s∗
(
n(r , α) ⊗ n(r , α) − 1

3
Id

)
with n(r , α) =

⎛
⎝sin(φ(r , α))

0
cos(φ(r , α))

⎞
⎠ .

Then f (Qε |D) = 0 since Qε |D is uniaxial and of scalar order parameter s∗ and
|g(Qε |D)| is bounded. We can estimate the gradient
∫
D

1

2
|∇′Qε |2 dx =

∫
D

1

2

(
|∂r Qε |2 + 1

r2
|∂θ Qε |2

)
r dr dθ

� (1+ 4η)

∫ 2π

0

∫ R(α)

η

1

2

(
|∂r Qε |2 + 1

r2
|∂αQε |2

)
r dr dα

� (1+ 4η)s2∗
∫ 2π

0

∫ R(α)

η

(
|∂rφ|2 + 1

r2
|∂αφ|2

)
r dr dα .

(62)
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Since �α/2 and �(α) are bounded and ∂rφ = −1
R(α)−η

�α/2 + 1
R(α)−η

�(α),

we can easily infer that |∂rφ|2 � C
η2
. Furthermore it is clear by definition that

|∂α�α/2|2 � C . So it remains to derive bounds on ∂α�(α). For α ∈ [0, π/4] we
have �(α) = arccos(n3(1 + 4η, θ0 − 2η))

√
R(α)2−4η2

2η , that is |∂α�(α)|2 � C .
Similarly, ∂α� is bounded for α ∈ [−π/4, 0]. For α ∈ [π/4, 3π/4] and r(α) =
1 +

√
R2(α) + 8η2 − 4

√
2R(α)η cos(3π/4− α) one can show that �(α) =

arccos(n3(r(α), θ0 − 2η)). An explicit calculation yields |∂α�(α)|2 � C . By the
same argument, ∂α� is also bounded for α ∈ [−3π/4,−π/4] For α ∈ [3π/4, π ]
we have �(α) = −2η tan(π − α)+ θ0 − π

2 , so that |∂α�(α)|2 is also bounded by
a constant. We plug this result into (62) and use the fact that Q2×2,ε : Qε is also
bounded, σ � 1+ 4η and C0 � Cξ2/η2 to get

E2D
ε (Qε, D) � 2(1+ 4η)s2∗

∫ 2π

0

∫ R(α)

η

(
C + C

σ 2

)
σ dσ dα

+ C

σ − cη
� C + C

σ − cη
. (63)

Hence by (61) and (63)

η E2D
ε (Qε, B ∪ D) � ((1+ 2η) sin(θ0) + 2η)

π

2
s2∗η| ln ε| + Cη + C

σ − Cη
η .

(64)

This finishes our construction of Qε(ρ, θ).
Step 4 (Transition to Q∞(ξ, η)): So far, we have constructed the sequence Qε

inside a ball of radius R around 0. Because of the exponential convergence of the
optimal profile from Lemma 4.17 , the function Qε is close to Q∞ on ∂BR. We
will now construct a transition zone from Qε to Q∞ for r ∈ (R,R+ η) and then
from Q∞ to Q∞(ξ, η) for r ∈ (R + η,R + 2η). Since Qε(R, θ) ∈ N for all
θ ∈ [0, π ] we can linearly interpolate the phase between Qε(R, θ) and Q∞ as in
Step 2. We estimate as in Step 2 and thus the cost of this interpolation in terms of
energy is given by

η E2D
ε (Qε, BR+η\BR) � C η . (65)

For r ∈ (R+ η,R+ 2η) we linearly interpolate between Q∞ and Q∞(ξ, η), that
is we define

Qε(r, θ) = 1

η
((R+ 2η − r)s∗ + (r −R− η)s∗,ξ2/η2)

(
e3 ⊗ e3 − 1

3
Id

)
.

Since |s∗,ξ2/η2 − s∗| � Cξ2/η2 and by Proposition 2.4 we get

η E2D
ε (Qε, BR+2η\BR+η) � C η2

(
ξ4

η6
+ ξ2

η4
+ ξ2

η4
+ ξ2

η2

)
. (66)

Finally, if r � R+ 2η we set Qε = Q∞(ξ, η), which has energy 0.
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If we now extend Qε to � by using the rotated function Qε(ρ, ϕ, θ) =
R�

ϕ Qε(ρ, θ)Rϕ and integrate E2D
ε in ϕ-direction, we get from (49), (50), (53),

(54), (64), (65) and (66)

ηEε(Qε,�) � 2s∗c∗
∫ 2π

0

∫
F ′

(1− cos(θ)) sin(θ) dθ dϕ

+ 2s∗c∗
∫ 2π

0

∫
Fc ′

(1+ cos(θ)) sin(θ) dθ dϕ

+ π

2
s2∗η| ln ε|

M−1∑
i=0

∫ 2π

0
((1+ 2η) sin(θi ) + 2η) dϕ + Cη + Cη

σ − cη
.

(67)

Taking the limsup η, ε → 0 in (67) yields the inequality

lim sup
η,ε→0

Eη,ξ (Qε) � 2s∗c∗
∫
F
(1− cos(θ)) dω

+ 2s∗c∗
∫
Fc

(1+ cos(θ)) dω + π

2
s2∗β|DχF |(S2)

= E0(F) .

It remains to show the claimed convergence. It is clear by definition of Qε

that
⋃

η>0 Fη = F and
⋃

η>0(F
c)η = Fc which implies the convergence for χF .

The continuity of nε as a function with values in S
2 outside a set ωη is clear by

construction if we choose ωη to contain all balls B, we used in step 3. Taking ωη as
the union of all sets B and D from step 3. we can also achieve that �\ωη is simply
connected. Extending nε inside B measurably, yields the compactness claim. ��
Proof of the upper bound (18) of Theorem 3.1 We choose a sequence σk > 0 which
converges to zero as k → ∞. We approximate the set F by sets Fk such that the
domains S

2∩{ρ � σk, z > 0} and S
2∩{ρ � σk, z < 0} are fully contained in Fk or

Fc
k . By Lemma 5.2 there exist sequences Qε,k such that lim supη,ε→0 Eη,ξ (Qε,k) �

E0(Fk) and (16) holds. We observe that

|DχFk |(S2) = |DχFk |(S2 ∩ {ρ � σk}) = |DχF |(S2 ∩ {ρ � σk})
and ∣∣∣∣

∫
F

(
1− cos(θ)

)
dω −

∫
Fk

(
1− cos(θ)

)
dω

∣∣∣∣ ,∣∣∣∣∣
∫
Fc

(
1+ cos(θ)

)
dω −

∫
Fc
k

(
1+ cos(θ)

)
dω

∣∣∣∣∣ � Cσ 2
k .

Hence lim supη,ε→0 Eη,ξ (Qε,k) � E0(Fk) � E0(F) + Cσ 2
k and taking a diagonal

sequence Qε = Qε,k(ε) we get

lim sup
η,ε→0

Eη,ξ (Qε) � E0(F) .

The compactness (16) follows by triangle inequality. ��
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6. Limit Problem, Transition and Hysteresis

Physicists have successfullymanipulated the Saturn ring configuration by using
electric fields [33] and observed a transition between dipole and Saturn ring by
changing the strength of the field (see [6, p. 190ff] and [39,40]) or the radius of the
particle [54]. In [40, Fig. 1] a series of images shows the accelerated shrinking of
a Saturn ring defect loop around a spherical particle towards a dipole defect, once
the applied electric field is switched off. The configurations intermediate between
dipole and Saturn ring are observed to be unstable. Similar transitions from Saturn
ring to dipole have been observed by accelerating a droplet inside a liquid crystal
[36,57].

In [50] physical reasoning, scaling arguments and numerical simulations are
conducted to explain this type of transition and the occurrence of a hysteresis
phenomenon. To our knowledge the hysteresis has not yet been observed, but cannot
be excluded [54]. Our limit model provides an analytical setting, in which we are
able to reproduce the findings derived by H. Stark from physical arguments and
numerical simulations. The reduced magnetic coherence length ξH introduced in
[50] corresponds to our parameter η in the one constant approximation. As pointed
out in the first section, our limit ξ, η → 0 corresponds to an increasing particle
radius r0 → ∞ and a simultaneously decreasingfield strengthh → 0 since ξ ∼ r−1

0
and η ∼ h−1ξ . The slower the decrease of h, the stronger is the influence of the
magnetic field in η| ln(ξ)| and thus in β. It is therefore reasonable to say that small
values of β correspond to strong magnetic field, relative to the size of ξ | ln(ξ)|.
This translates the assumption of high magnetic fields ξH � 1 (while keeping r0
fixed) in [50] to smaller values of β in our limit. Although the calculations in [50]
are based on the Oseen–Frank model rather than the Landau–de Gennes that we
are using, we are able to reproduce the behaviour of the energy E0 as a function
of θd , compare Figure 5 and [50, Fig. 11]. From our calculation, we also find the
hysteresis for changing values of βs∗. For β � 1, that is small external fields, the
dipole is the only stable configuration. Increasing the field, the systemwill maintain
the dipole, until we reach β = 0, where a transition to the Saturn ring takes place.
Decreasing the field while starting from a Saturn ring, we will retain the structure
until we reach s∗

c∗ β = 8
π
≈ 2.546 and the Saturn ring closes to a dipole.

The rest of this section is devoted to the calculation of the minimal energy
configurations of the limiting model which we have explained above.

In a first step, we claim that if F is a minimizer of E0, then F and Fc are
connected. Indeed, assume that one of the two sets, say F , is not connected. Then
there are two possibilities: If Fc is connected, then F also contains the point θ = π

and we can decrease the energy E0 by handing over this set to Fc. If Fc is also
not connected, then we can similarly exchange points between F and Fc while
decreasing the energy until both sets are connected.

Now that we know that F and Fc are connected, we deduce that there can only
be one angle under which the defect line separating F and Fc occurs. Let us name
this angle θd ∈ [0, π ] and let F ⊂ S

2 be the set corresponding to 0 � θ � θd .
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Then we can express the limit energy as

E0(F) = 2s∗c∗
∫
F
(1− cos(θ)) dω + 2s∗c∗

∫
Fc

(1+ cos(θ)) dω + π

2
s2∗β|DχF |(S2)

= 2s∗c∗
∫ 2π

0

∫ θd

0
(1− cos(θ)) sin(θ) dθ dϕ

+ 2s∗c∗
∫ 2π

0

∫ π

θd

(1+ cos(θ)) sin(θ) dθ dϕ

+ π

2
s2∗β(2π sin(θd))

= 8πs∗c∗
(
sin4(θd/2) + cos4(θd/2)

)
+ π2βs2∗ sin(θd) .

Setting the derivative of this expression to zero gives the equation

πs∗ cos(θd)
(
πβs∗ − 8c∗ sin(θd)

)
= 0 ,

which yields the two families of solutions θ1 = π/2+πZ and θ2 = arcsin(πβs∗
8c∗ )+

2πZ. We note that

1. For s∗
c∗ β = 8

π
≈ 2.546, the two families are equal. We conclude that for

s∗
c∗ β � 8

π
the only stable configuration is a dipole at θd = 0, π (see Figure 5).

2. The energy of the Saturn ring θd = π/2 and the dipole θd = 0 are equal for
s∗
c∗ β = 4

π
≈ 1.273, which means for greater values of s∗

c∗ β the dipole is the
globally energy minimizing configuration, while for smaller values the Saturn
ring is optimal.

3. The case where θd = π/2 is the only (local) minimizer corresponds to β = 0,
that is θ2 = 0.

In particular, we see that the only stable energy minimizing configurations are the
dipole (which corresponds to F = ∅ or F = S

2) and the Saturn ring (where F is
the upper half-sphere).

The available experimental and theoretical results are in agreement with these
findings. Nevertheless, the conducted experiments mostly use an electric field to
manipulate the orientation of the liquid crystals and were not yet able to observe
the hysteresis phenomenon, described in [50] and in this work.

We hope that our analysis stimulates further research into this direction.

7. Conclusion

The goal of this article was to derive an effective energy of the Landau–de
Gennes model for a spherical particle immersed into a nematic liquid crystals under
the influence of a homogeneous external magnetic field, stated in the framework of
variational convergence. We imposed strong anchoring conditions at the boundary
of the particle and investigated the interplay of elastic, bulk and magnetic free
energy in an intermediate regime parametrized by β that exhibits singularities of
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Fig. 5. Plot of the energy E0 for different values of β s∗
c∗ as a function of the angle θd

Fig. 6. Left: Plot of the energy of the dipole and Saturn ring as a function of s∗
c∗ β. Right:

Hysteresis induced by changing s∗
c∗ β

both dipole and Saturn ring type. Studying the limit energy, we show that there
are no stable minimizers other than the dipole or the Saturn ring and we determine
ranges for β in which either of the two is energyminimizing.We calculate values of
β where a transition between the two takes place, finding a hysteresis phenomenon.
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A. Appendix

In this section we check that the two functions g1 and g2 as defined in (9) ver-
ify the assumptions on g, in particular (5), (6), (7) and (8). All calculations are
straightforward.

Proposition A.1. (Properties of g1) Let g1 be given as in (9). Then

1. If Q ∈ N is given by Q = s∗(n⊗ n − 1
3 Id) with n ∈ S

2, then

g1(Q) = s∗
(
1− n23

)
,

that is c2∗ = s∗.
2. There exists a constant C > 0 such that for all Q ∈ Sym0

|g1(Q) − g1(R(Q))| � C dist(Q,N ) . (68)

3. The function g1 satisfies the growth assumptions (5),(6) and is invariant by
rotations around the e3−axis. For fixed |Q|, g1(Q) is minimal if e3 is the
eigenvector corresponding to the maximal eigenvalue of Q. For Q = s((e3 ⊗
e3 − 1

3 Id)+ r(m⊗m− 1
3 Id)) (using the notation of (4)), g1(Q) is minimized

for r = 0.

Proof. For Q = s∗(n⊗ n − 1
3 Id) with n ∈ S

2 and s∗ � 0 one easily checks that

g1(Q) = 2

3
s∗ − s∗

(
n23 −

1

3

)
= s∗ − s∗n23 .

For the second assertion, we take a Q ∈ Sym0 and use Proposition 2.3 to write

Q = s

((
n⊗ n − 1

3
Id

)
+ r

(
m⊗m− 1

3
Id

))
,

with s > 0, 0 � r < 1 and n,m orthonormal eigenvectors of Q and R(Q) =
s∗
(
n⊗ n − 1

3 Id
)
. Then we can estimate

|g1(Q) − g1(R(Q))| =
∣∣∣s
(
n23 −

1

3

)
+ sr

(
m2

3 −
1

3

)
− s∗

(
n23 −

1

3

)∣∣∣
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� |s − s∗|
∣∣∣n23 − 1

3

∣∣∣+ |sr |
∣∣∣m2

3 −
1

3

∣∣∣ .
On the other hand, as in (38),

dist2(Q,N ) = |Q −R(Q)|2 � 1

3
|s − s∗|2 + 1

3
|sr |2 .

Combining these two expressions, we find that

|g1(Q) − g1(R(Q))| � 4√
3
dist(Q,N ) ,

which completes the proof of the second assertion for the choice C = 4√
3
.

The function g1 is smooth and obviously satisfies (5) and (6). Furthermore, since
g1 only depends on Q33, it is invariant under rotations around the e3−axis. Writing
once again Q ∈ Sym0 in the form of Proposition 2.3, we get

g1(Q) = 2

3
s∗ − s

((
n23 −

1

3

)
+ r

(
m2

3 −
1

3

))
.

For fixed s, r,m this is minimized by n23 = 1, which corresponds to the principal
eigenvector n equal to e3. We also see that for n = e3 and s fixed, g becomes
minimal if r = 0, sincem ⊥ n. ��
Proposition A.2. (Properties of g2) Let g2 be given as in (9). Then

1. g2(Q) � 0 for all Q ∈ Sym0 with equality of and only if Q = t (e3⊗ e3− 1
3 Id)

for some t � 0.
2. If Q ∈ N is given by Q = s∗(n⊗ n − 1

3 Id) with n ∈ S
2, then

g2(Q) =
√
3

2

(
1− n23

)
,

that is c2∗ =
√

3
2 .

3. There exist constants δ1,C > 0 such that if Q ∈ Sym0 with dist(Q,N ) � δ

for 0 < δ < δ1, then

|g2(Q) − g2(R(Q))| � C dist(Q,N ) . (69)

4. The function g2 satisfies the growth assumptions (5),(6) and is invariant by
rotations around the e3−axis. For fixed |Q|, g2(Q) is minimal if e3 is the
eigenvector corresponding to the maximal eigenvalue of Q. For Q = s((e3 ⊗
e3 − 1

3 Id) + r(m ⊗ m − 1
3 Id)) (using again the notation of (4)), g2(Q) is

minimized for r = 0.

Proof. Minimizing g2 under the tracelessness constraint, we get the necessary
conditions

− 1

|Q| +
Q2

33

|Q|3 − λ = 0 ,
Q33Q j j

|Q|3 − λ = 0 for j = 1, 2 ,
Q33Qi j

|Q|3 = 0 for i  = j
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for a Lagrange multiplier λ. For Q = 0 the claim is clear by definition. So let
Q ∈ Sym0\{0}. If Q33 = 0 we get a contradiction. Hence we can assume Q33  = 0.
Then the third equation from above implies Qi j = 0 for i  = j and the second
Q11 = Q22. By tr(Q) = 0, we have Q33 = −2Q11. Then the first equation
reads 0 = 3

2Q
2
33 − |Q|2, that is Q33 = √

2/3|Q|. Inserting this into g2 we get
minSym0

g2 = 0. Our conditions also imply the claimed representation Q = t (e3⊗
e3 − 1

3 Id). Reversely, it is obvious that g2 = 0 for such Q.
For the second claim, it is straightforward to check that forQ = s∗(n⊗n− 1

3 Id) ∈ N
we have |Q|2 = 2

3 s
2∗ . Thus

g2(Q) =
√
2

3
− s∗(n23 − 1

3 )√
2
3 s∗

=
√
2

3
+ 1

3

√
3

2
−
√
3

2
n23 =

√
3

2

(
1− n23

)
.

For the next property we use the same notation as before (from Proposition 2.3) to
write

Q = s

((
n⊗ n − 1

3
Id

)
+ r

(
m⊗m− 1

3
Id

))
,

with s > 0, 0 � r < 1 and n,m orthonormal eigenvectors of Q. From the second

part of this proposition, we infer that g2(R(Q)) =
√

3
2 (1−n23). In order to calculate

g2(Q), we note that

|Q|2 = s2
∣∣∣∣n⊗ n − 1

3
Id

∣∣∣∣
2

+ (sr)2
∣∣∣∣m⊗m− 1

3
Id

∣∣∣∣
2

+ 2s2r

(
n⊗ n − 1

3
Id

)
:
(
m⊗m− 1

3
Id

)

= 2

3
s2
(
r2 − r + 1

)
.

This implies

|g2(Q) − g2(R(Q))| =
∣∣∣∣∣∣
√
2

3
− s(n23 − 1

3 ) + sr(m2
3 − 1

3 )√
2
3 s
√
1− r + r2

−
√
2

3
+ s∗(n23 − 1

3 )

s∗
√

2
3

∣∣∣∣∣∣

�
n23 − 1

3√
2
3

(
1√

1− r + r2
− 1

)
+ m2

3 − 1
3√

2
3

r√
1− r + r2

.

Note, that the Taylor expansion at r = 0 is given by
1√

1− r + r2
− 1 = r

2
+O(r2)

and
r√

1− r + r2
= r +O(r2). Hence

|g2(Q) − g2(R(Q))| � 3

2
r +O(r2) . (70)
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As in Proposition A.1 we get that dist2(Q,N ) � 1
3 |s − s∗|2 + 1

3 |sr2| and hence

|s − s∗| �
√
3 dist(Q,N ) and |r | �

√
3 dist(Q,N )

|s| . We define δ1 = 1

2
√
3
s∗ and

together with (70) we get

|g2(Q) − g2(R(Q))| � Cr �
√
3dist(Q,N )

|s| � C
2
√
3

s∗
dist(Q,N ) .

It remains to prove the last assertion. Again the growth assumptions (5) and (6)
are trivially satisfied. With the same arguments as in Proposition A.1 (since |Q| is
fixed), we get that g2(Q) is minimal for n = e3. Finally, we can compute

g2

(
s

((
e3 ⊗ e3 − 1

3
Id

)
+ r

(
m⊗m− 1

3
Id

)))
=
√
2

3
−

2
3 s + sr

(
m2

3 − 1
3

)
√

2
3 s
√
1− r + r2

and see that this is indeed minimal if r = 0. ��
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