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Abstract

We study the second spatial derivatives of suitable weak solutions to the incom-
pressible Navier—Stokes equations in dimension three. We show that it is locally

L3 for any g > %, which improves from the current result of L3 Similar
improvements in Lorentz space are also obtained for higher derivatives of the vor-
ticity for smooth solutions. We use a blow-up technique to obtain nonlinear bounds
compatible with the scaling. The local study works on the vorticity equation and
uses De Giorgi iteration. In this local study, we can obtain any regularity of the
vorticity without any a priori knowledge of the pressure. The local-to-global step
uses a recently constructed maximal function for transport equations.

1. Introduction

We study the three dimensional incompressible Navier—Stokes equations
ou+u-Vu+ VP = Au, divu = 0. @))

Hereu : (0,7) xR} > R¥and P: (0,7) x R?® > R represent the velocity field
and the pressure field of a fluid in R3, within a finite or infinite timespan of length
T . Initial condition

u(0, ) = ug € L*(R?)

is given by a divergence-free velocity profile uq of finite energy.

Leray [11]and Hopf [8] proved the existence of weak solutions for all time. They
constructed solutions u € Cy, (0, 0o; LZ(R3)) N L2(0, oo; H! (R3)) corresponding
to each aforementioned initial value, and satisfying (1) in the sense of distribution.
A weak solution is called a Leray-Hopf solution if it satisfies energy inequality
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for every ¢ > 0. Since Leray and Hopf much work has been developed in regard
to the uniqueness and regularity of weak solutions. Nonuniqueness of weak solu-
tions was proven very recently by Buckmaster and Vicol using convex integration
scheme [1]. However, the question of the uniqueness of Leray-Hopf solutions still
remains open. The uniqueness is related with the regularity of solutions by the
LadyZenskaya-Prodi-Serrin criteria [7, 10, 14,20,21]: if the velocity belongs to any
space interpolating L%L;" and L Li then it is actually smooth, and hence unique.
The endpoint case LfoLi came much later by Iskauriaza, Serégin and Shverak [9].
These spaces require é higher spatial integrability than the energy space provides,
whichis £ = L®L2NL?H].

At the level of energy space, Scheffer began to study the partial regularity for
a class of Leray-Hopf solutions, called suitable weak solutions [16—19]. These
solutions exist globally and satisfy the following local energy inequality:

8,ﬁ+div u EJFP +|Vu|2<A%.
2 2 )

Scheffer showed the singular set, at which the solution is unbounded nearby, has
time-space Hausdorff dimension at most % This result was later improved by
Caffarelli, Kohn and Nirenberg in [2] (see also [12,23]), where they showed the
1-dimensional Hausdorff measure of the singular set is zero. We will investigate the
regularity of suitable weak solutions. In the periodic setting, Constantin constructed
suitable weak solutions whose second derivatives have space-time integrability

L3¢ for any ¢ > 0, provided the initial vorticities are bounded measures [6].
4
This was improved by Lions to a slightly better space L3'°°, a Lorentz space

which corresponds to weak L3 space [13]. These estimates are extended to higher
derivatives of smooth solutions by one of the authors and Choi using blow-up
arguments: Lﬁ)’coo space-time boundedness for (—A)%V"u, where p = n#++1’
n>1,0 <a < 2[5,22]. They also constructed suitable weak solutions satisfying
these bounds for n + o < 3.

The aim of this paper is to improve these regularity results in Lorentz space.
The main result is the following. Note that the estimate does not rely on the size of

the pressure.

Theorem 1. Suppose we have a smooth solution u to the Navier—Stokes equations
in (0,T) x R3 for some 0 < T < oo with smooth divergence free initial data
uo € L2. Then for any integer n > 0, for any real number q > 1, the vorticity
w = curl u satisfies

< Cynlluoll7, )
L14((0,T)xR3)

4
[V w|m+21 4
{(IV'w|n+2 >C,t =2}

for some constant C,, depending onn and Cy ;, depending only on q and n, uniform
in T. The above estimate (2) also holds for suitable weak solutions with only L*
divergence free initial data in the case n = 1.

This theorem gives the following improvement on the second derivatives:
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Corollary 1. Let u be a suitable weak solution in (0, 00) x R3 wirh initial data
uog € L. Then for any q > %, K CC (0,00) x R3, there exists a constant Cy.k
depending on q and K such that the following holds

3
192l 4., < Cak (nuonzz + 1) :

Let us explain the main ideas of the proof. Similar as previous work on higher
derivatives, the proof is also based on blow-up techniques. In particular, we blow
up the equation along a trajectory, using the scaling symmetry and the Galilean
invariance of the Navier—Stokes equations. That is, if we fix an initial time 7y and
move the frame of reference along some X (), and zoom in into ¢ scale, then it is
easy to verify that u(s, y) and P(s, y), defined by

L (t —f x_—X(t)> = u(t.x) — X(1)

e g2’ e
izp (’ _2’0, x__X(t)> = P(t,x) +x-X(@1), (3)
£ £ &

also satisfy the Navier—Stokes equation
dil +i-Vii+ VP = Aii, divi =0.

We develop the following local theorem for & and P. Note that it needs nothing
from the pressure. Denote B, C R to be a ball centered at the origin with radius
r,and O, = (—r2,0) x B, C R*tobe a space-time cylinder.

Theorem 2. (Local Theorem) There exists a universal constant n; > 0, such that

for any suitable weak solution u to the Navier-Stokes equations in (—4, 0) x R3
satisfying

/ u(t,x)p(x)dx =0 a.e.t e (—4,0), @
B
”VMHLIPILZI(QZ) + ”w“L,szZZ(QQ) =, &)

where ¢ € C°(B)) is a non-negative function with [ ¢ = 1, @ = curlu is the
vorticity, 3 < p1 < 00,1 < pr <00, 1 < q1,q2 < 3 satisfying

1 1 1 1 7
- S )
P p2 @ g2 6
then for any integer n > 0, we have

IV @l L2(0yy2) = Cn

for some constant C,, depending only on n.
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Let us illustrate the ideas of how to go from this local theorem towards the
main result. We want to choose a “pivot quantity”, blow up near a point, and use
this quantity to control V"w. When we patch the local results together, we will
obtain a nonlinear bound with the same scaling as the pivot quantity, so we want
the pivot quantity to have the best possible scaling. The ideal pivot quantities would

be [ |Vul|*dxdz and [ |V2P|dxdt. [ |ul ¥ dxds has a worse scaling and should not
be used. However, we still need to control the flux in the local theorem, so we want
to take out the mean velocity and control # by Vu using Poincaré’s inequality.

In order to take out the mean velocity, we choose X (¢) to be the trajectory of the
mollified flow so that (4) can be realized. Notice that a cylinder Q, in the local (s, y)
coordinate will be transformed into a “skewed cylinder” growing along X (¢) in the
global (¢, x) coordinate. One of the authors recently constructed a maximal function
M g associated with these cylinders [24], which serves as a bridge between the local
theorem and the global result, and is one of the main reasons for the improvement
in this paper. The idea is, if locally the vorticity gradient can be controlled in L >
by the integral of something in the skewed cylinder, and the integral in a skewed
cylinder can be controlled by the maximal function M g, then vorticity gradient is
pointwise bounded by the maximal function.

If one uses [ |Vu|?dxds and [ |V?P|dxds as the pivot quantity, then unfortu-
nately the best possible outcome would just be an L !> bound, as obtained in [24].
The reason is, the maximal function is bounded on L? for p > 1, but for p = 1
it is only bounded from L'to LLo°, Unfortunately |Vu|2 and |V2P| are both L!
quantities, so Mg (|Vu|2 + |V2P|) is only L'>°. We need two things to improve
from L!-°°: replace [ |Vu|*> by [ |Vu|P, and drop the pressure V2 P.

2
Suppose we could use ([ |Vu|Pdxdr)? as the pivot quantity for some p < 2,
2
then we can majorizeitby Mo (|Vu|?)? € Ll,since% > land Mg isboundedin

L% . However, this poses significant difficulties in the local theorem. The nonlinear
term u - Vu is quadratic, and if we only have a subquadratic integrability to begin
with, we cannot treat this quadratic transport term as a source term because it
is not integrable. Observe that what we lack is the temporal integrability rather

than the spatial one: if p is slightly smaller than two, then u - Vu is still L3> in
space, but L'~ in time. To overcome this difficulty, we write u - Vu as @ X u up
to a gradient term, and put L,zf L% on u and L,”L)zf on w. We compensate the
lower integrability term by pairing with a higher integrability term to make w x u
integrable. L,ZJr L)2C_ of w can be interpolated between L%_Li_ and L°L }C while

the latter is controlled by L,z,x of Vu. Since L,2+L)2C’ is closer to L,Z_L)Zf than to

L;’OL}C, the pivot quantity that we use is actually § =" || Vu ||%p +68||Vu ||i2 for v close

to 0. By using more subquadratic integrability and a tiny bit of the quadratic one,
we can complete the task by interpolation. That is why we obtain L1 in the end: it
interpolates L' bound from || Vu||z» and L'* bound from || V|| ». Unfortunately
we still miss the endpoint L'

The second task is more subtle and technical. Without any information on the
pressure, we don’t have any control on the nonlocal effect. However, the role of the
pressure is not important at the vorticity level; if we take the curl of the Navier—
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Stokes equation, the pressure will disappear and we are left with the vorticity
equation involving only local quantities:

oow+u-Vo—w-Vu = Aw. (6)

Inspired by Chamorro, Lemarié-Rieusset and Mayoufi [4], we introduce a new
velocity variable v = — curl ¥ A~!gw using only local information of vorticity (¢
and ¢* are spatial cut-off functions), and this helps us to prove the local theorem.
This is another main reason for the improvement in this paper. Consequently, the
bounds we obtain in the end are on the vorticity w rather than on the velocity u.
This paper is organized as follow: in the preliminary Section 2 we introduce
the analysis tools to the reader. We show how to rigorously derive the main results
from the local theorem in Section 3, and then deal with technicalities of the local
theorem in the later sections. The proof of the local theorem consists of three parts.
Section 4 introduces the new variables v, and shows the smallness of v in the energy
space. Then we use De Giorgi iteration argument in Section 5 to prove boundedness
of v. Finally, we inductively bound w and all its higher derivatives in Section 6.

2. Preliminary

In this section, we introduce a few tools that we are going to use in the paper,
including the maximal function, Lorentz space, and Helmholtz decomposition.

2.1. Maximal Function Associated with Skewed Cylinders

This is recently developed for incompressible flows in [24]. We quote useful
results here without proof.

Suppose u € LP(0, T; WP (R3; R3)) is a vector field in R3. Fix ¢ € C°(By)
to be a nonnegative function with [ ¢ = 1 through out the paper. For ¢ > 0 define
¢e(x) = 8’3¢(—x/8), and let u. (¢, -) = u(t, -) * ¢ be the mollified velocity. For
a fixed (¢, x) we let X (s) solve the following initial value problem:

X(s) = ue(s, X(5)),
X(@) = x.

The skewed parabolic cylinder Q. (¢, x) is then defined to be

Qg(t,x):z{(t—i—szs,X(t)—I-sy):—9§s§0,y633}. 7

We use M to denote the spatial Hardy-Littlewood maximal function, which is
defined by

M), x) = Sup]i ( )If(t,y)ldy-

r>0

Then we construct the space-time maximal function adapted to the flow.
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Theorem 3. (Q-Maximal Function) There exists a universal constant o such that
the following is true. We say Q.(t, x) is admissible if Q.(t,x) C (0, T) x R3 and

82][ M(|Vul|)dxdr < np. )
Qc(t,x)

Define the maximal function
Mo (f)(t, x) : =sup {][ | f(s,y)|dsdy : Qc(¢, x) is admissible} .
e>0 Q¢ (t,x)

If u is divergence free and M(|Vul) € L9 for some 1 < g < oo, then Mg is
bounded from L' ((0, T) x R3) to L*°((0, T) x R3) and from LP((0, T) x R3)
to itself for any p > 1 with norm depending on p.

Animportant consequence of the weak type (1, 1) bound of the Hardy-Littlewood
maximal function is the Lebesgue differentiation theorem in R”. Similarly, we can
use the Q-maximal function to prove the Q-Lebesgue differentiation theorem.

Theorem 4. (Q-Lebesgue Differentiation Theorem) Let f € Llloc((O, T) x R3).
Then for almost every (t,x) € (0, T) x R3,

lim [f(s,y) — f(t,x)|dsdy = 0.
e=0./0,(,x)

In this case we say (t, x) is a Q-Lebesgue point of f.

2.2. Lorentz Space

Let (X, u) be a measure space. Recall that for a measurable function f, its
decreasing rearrangement is defined as

) =inf{a > 0: u({|f| > a}) < A}, A >0.

For0 < p < 00,0 < g < oo, Lorentz space L”9(X) is defined as the set of
functions f for which

1 1_1
L leracy = =027 FF N g oy = IAP79 f* () ]lLa < oo.
Now we introduct the interpolation lemma for Lorentz spaces.

Lemma 1. (Interpolation of Lorentz Spaces) Let v > 0 be a fixed positive number.
Assume fo € LPO9, f1 € LPV91 where 0 < po, p1 < 00,0 < qo,q1 < oo. If f
is a measurable function satisfying

2f1 <8fo+8"fi foralls >0, )

then f € LP9, where

1 v 1 1 1 1 v 1 1 1

= —+ —,
p 1l+vpy 14+vp;

= — + —.
q 14+vqo 1+vq
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Proof. It is easy to check from the definition of decreasing rearrangement that if
h = f+g then h*(22) < (f +£)*(22) = f*(A) + g*(1). Thus (9) implies

21F* M| < 8fF ) +87VfF(),  foralla>0,8 > 0.
Set§ = 5.8 = fi() 7 £ (1), then
20501 < fEQ VR fEQ) + fF00Y £ )
=2fF"0 000,
Therefore,
1_1 1_1
I fllipa = IA7 "4 £*W) e = ClIIAP "7 £*Q22) |l 1a
1-0_1-6 1—0 o _ 0 0
<Clxm "o fEOT AT 1000
=010 10 L8 8
< CIAm ™o fEO T w AT g
L_L * 1-6 L_L * 6
= Ca70 %0 fFO e IAP1 30 £G4
= Cll foll}reao 1 1Y prar s
1
where C = 27. m|

We would also like to mention that Riesz transform is bounded on Lorentz
space. The proof can be found in [3]. See [15] for general Lorentz spaces.

Lemma2. for1 < p <o0o, 1 <g <00, R;j = a,»ajA*‘ is a bounded linear
operator from LP1(R") to itself. As a spatial operator, it is also bounded in time-
space from LP4((0, T) x R") to itself.

2.3. Helmholtz Decomposition

First, recall two vector calculus identities:
Vu-v)=w-VYv+ W -V)u+u x curlv + v x curl u, (10)
curl(u x v) =udivv —vdivu + (v - Viu — (u - V)v. (11)
For operators A and B, denote [A, B] = AB — B A to be their commutator. Define

Peun = —curlcurl A™! and Py = VA~ !div = Id =Py to be the Helmholtz
decomposition. Then we compute the following commutators:

[, curllu = —V¢ X u, (12)
[, Alu = =2V - Vu — (Ap)u = =2div(Veo Q u) + (Ap)u, (13)
[, A Ju = A~ {2V¢ VA 4 (A<p)A—1u} , (14)

[¢, Peurl]Ju = Vg x curl A+ Vo div A — A_luA(p
+ (AU V)V — (Vo - V) A
+ Peui {2v¢ VA (A(p)A_lu] . (15)
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The first two are straightforward. The third uses
lp, A7 1= —4""[p, 4127,
and the last one is because
(¢, Peurt] = [, — curl curl A™']
= —|[¢, curl] curlA™! — curl[e, (:url]A_1 — curl curl[¢p, A_l],
[o, Peuntlu = Vo x curl A7 u + curl(Vo x A_lu)
—curlcurl A™! {2V<p VA Ty (A(p)A_lu} ,

so we can expand curl(Vg x ALy by (11).

Lemma 3. 0;[¢, Peun] and [¢, Peun]0; are both bounded linear operator from LP
to L? forany 1 < p < oo, Le.

10;[@, PeurtlullLr + lI[@, Peur10;ullLr < Cp,(p||u||LP~

Proof. First, we observe that by Jacobi identity [¢, Pcy1]9; and 0;[¢, Peyn] differ
by
e, Peunl, 9;1 = [@, Peurt, 9i 1] — [Peurt, [@, 9;11 = 0 — [Peun, 9; 9],

which is bounded from L? to L? for any p, because both P,y and multiplication

by 0;¢ are bounded from L? to L?, so we can complete the proof by duality. For

1 < p<3,set # = % — %, from (15) we can see that

I, PeunldiullLe S IV AT 0l o sy + Cpp 1A 0l Lo supp )
S lullpr sy + Cpplldi A ull e (supp )

< CllullLrw3)-

For% <p<oo,setl—%=$=q—l*+%,thenl < p,q,q" < oo. Take any

u € LP(R?) and any vector field v € L9 (R3) to get
/81' [¢, PeyrtJu - vdx = — /[‘P’ PeyrtJu - 0;vdx

= /u : [90, Pcurl]aivdx
< Mell oy (0l o ey + 13 A7 0l Lo supp o))
< lull o @y U0l Lo @) + Caplldi AT 01 Lo* (qupp )
= Cllullpr w3Vl Lo w3)-
O

Corollary 2. 9;[¢, Py] and [¢, Py ]0; are both bounded linear operator from LP
to L? forany 1 < p < oo:
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Proof. 1d = Py + Py commutes with ¢, so [¢, Pyv] = —[¢, Peunl. O
Because of the smoothing effect of the Laplace potential, we have the following.

Lemmad4. Let ¢ € CX*° (R3) be supported away from some openset 2 C R3, that
is, dist(supp ¢, £2) =d > 0. Then forany f € L} (R?), k > 0,

loc

1A @M ek ) Sk 11121 suppe)-

We also have

||]P)V(<ﬂf)||ck(g), ||Pcurl(</)f)||ck(g) Skd ||f||Ll(supp¢)'

3. Proof of the Main Results

In this section, we show that the Local Theorem 2 leads to the main results.
First, we show the pivot quantity is indeed enough to bound V" w.

Lemma 5. There exists no > 0 such that the following holds. Let % <p <2

?;T’]’ <v < 75:;2. If u is a suitable solution to the Navier-Stokes equations in

(=9, 0) x R3 satisfying the condition

/ u(t,x)p(x)dx =0, a.e.t € (—9,0), (16)
B
] 1
14
57" </ |Vu|”dxdt) <, (17)
03
5/ [Vu|?dxdr < na, (18)
03

for some 5 <,
then we have for any n > 0,

||V"w||L§>§(Q8,,,,2) < C,.
Here C,, is the same constant in Theorem 2.
Proof. First, we claim that
Sllewllpoc(—4,0,21(By)) = C2- (19)

Formally, we can take the dot product of both sides of the vorticity equation (1)
with 0 : =“(Z—|, and recalling the convexity inequality »” - Aw < Alw|, we have

0 +u-V—2Aow —w-Vu-o <0. (20)
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Let ¢ € C°((—9,0] x R3) be a cut-off function such that 1g, < ¥ =< 1gp,.
Multiply (20) by ¥ and then integrate in space to get

%/wlwldx 5/[(a,+u-v+A)1/f] |w|dx~|—/1ﬁa)~Vu~w0dx

gc/ 1+|u|2+|Vu|2dx§C(l+ |Vu|2dx)
Bj

Bj
for some large universal constant C > 1. The last step uses Poincaré’s inequaliting
and (16). Integrate in time, we obtain

2 2
lollpoo—a,0;1(y)) = C (1 + ?) < ZCF.

This proves the claim. A more rigorous proof can be obtained by difference quotient
same as in Constantin [6] or Lions [13] Theorem 3.6, so We omit the details.
Now we interpolate between (17) and (19). Let 0 = +U,

1
”w”Lf’quz(Qz) < ”w”L”(Qz)”w”LOOLl(Q )< < 0)'? 1p807 =1 < 2771’
where we choose 17y =
by

11 1 .
T S am from Theorem 2, and p», g» are determined

1 0 1 0

— =, —=—4+1-0.

P2 P 9@ p
Combining the above with (17) we have

1

S0 =11 2

1
”vu”Lf’Lf(Qz) + ”w”L}DzLZZ(QZ) = 5771 + )

By the choice of 6 and the range of v,
1 1 1 1 2+v
+ —

J— —_ = <
p p2 p pld+v)y pd+v)
1 1

1 l+vp  24v+ v 7

P pA+v)  p+v) 6
One can also easily check that p < 2 implies g» < 2, and thus by (16) and (21)
the requirements of the Local Theorem 2 are satisfied with p; = g1 = p, and it
completes the proof of the lemma. O

Now we transform this lemma into the global coordinate. Recall that Q. (¢, x)
is defined by (7).

Corollary 3. There exists n3 > 0 such that, if for some § < n»,

2
5% <][ |Vu|pdxdf)]+5f \VulPPdxdr <mse™,  (22)
Qe (1.) Qe (t.x)

then

IV w(t, x)| < Cpe 2.
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Proof. Define i by (3). Then (22) implies

52 (][ |Vﬁ|dedt>”5n3, 5][ Vi 2dxdr < 73
03 03

1 1
=48 (/ IVftlpdxdt)p <n;10sl”, 8/ |Vii|*dxdr < 3] Q3l.
03 03
Moreover, (16) is satisfied by . Therefore, if we choose 73 such that
1 1
max {7732|Q3|”, 773|Q3|} =12,

then by Lemma 5, @ : = curl # has bounded derivatives at (0, 0), and thus finish
the proof of the corollary by scaling. O

Then we use the maximal function to go from the local bound to a global bound.
Proof of Theorem 1. First, we fix % <p <2, f;_

be a small constant to be specified later. Finally we
0,T) x R3, define

2
I(e) = &* [5—2” <][ |M(Vu)|1’) "4 5][ |M(Vu)|2:| .
0.:(1.x) 0:(1.x)

If (¢, x) is both a Q-Lebesgue point of | M (Vu)|? and of | M (Vu)|?, then we claim
that there exists a positive & = &, x) such that one of two cases is true:

S}

<v§76p_;12.Letr7 << 1

xa0 <8 < o0.For (¢, x) €

==

1

Case 1. 3g;,x <tZ,and I(gq ) =1.
1

Case 2. 3g;x) =tZ,and I(eq,y)) <.

This is because, by Theorem 4,
2
lim 1(e) = 0* [72 (LM (V) (1, )IP) P+ 8IM (Val) (1, 0) | = 0,
e—

and I (¢) is a continuous function of €.
On the one hand, in both cases we have [ (¢) < n, which implies that

1 1
—v 2 p P 1 2 2 :
87 IM(Vu)| =Jn, 8 MV~ | = n.
Qe (1,x) Qe (1,%)

If we set n < 77(2), then depending on § > 1 or § < 1, one of the two would imply
admissibility condition (8) by Jensen’s inequality. Therefore Q. (¢, x) is admissible
and

1) = £ [572 MoUM(Vi)) 7 + sMo(M(Vw?) ]
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so we can combine two cases and conclude
1 2
£y, < max {— [S_ZVMQ(M(VM)P)p + 5MQ(M(W)2)] , 81t‘2} . (23)
’ n

On the other hand, if we set n < 73, then in both cases I(g) < n3. If § < n»
one would have

IV'w(t, x)| < Cpe™" 72 24)

by Corollary 3. If § > 12, notice that by Jensen’s inequality,

2
(][ |M(w)|f’)”s][ MEWP,
Qe (t,x) Q¢ (t,x)
SO

2
I(e) > &* [(52“ +5— 1) (f |M(Vu)|1’> "t ][ |M<w>|2]
Qe (t,x) Qe (t,x)
2
284[(1—772)(][ |M(W)|P) +n2][ |M<w>|2}
Qe (t,x) Q¢ (t,x)

2
w4l 2w Y 2
>0 =n)ny"e" | n, IM(Vu)| +m2 IM(Vu)|~ | .
Q¢ (t,x) Qe (t,x)

If we require n < (1 — 712)’7%”’73’ then

2
p
&t [nz_zu <][ IM(W)I”> + nz][ IM(W)IZ} = m.
0 (1.x) Q(t.x)

Again by Corollary 3, we would still have (24). In conclusion, we choose
n = min ’né, (- nz)n%“ns] :

Then for any 0 < § < oo one would have

4 1
V(1 x)| 72 < C77% max {f [a*ZVMQ(M(vu)Pﬁ T BMQ(M(Vu)z)} , 81f2} ,
n

by putting (24) and (23) together. Denote f = |V”w|$, and we denote f| =
2
MoM(Vu)P)r, fr = MQ(M(|VM|)2). Then we have almost everywhere

Flpacy2) S 2 fi + 81
By Theorem 3,
2
Ifillzr < CoMVP |7, S Cpll M(Vi)?ll1 < Cpll V3,
Ly

I f2oll 1o < CLIM(V)? |11 < CilIVull3,.
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Finally, by the interpolation between Lorentz spaces Lemma 1,

1 o2yl Spa IV 207y m) < 1400172 gs)-

This proves the theorem for ¢ > 1 + 2v. Recall that p can be arbitrarily chosen
between % and 2, and v can be chosen between % and %, so v can be
arbitrarily small, therefore we prove the theorem for any ¢ > 1. O

Estimates on V2u can be obtained by a Riesz transform of Au = — curl w.

Proof of Corollary 1. Wecanput K C (ty, T) x Bg for some ty, T, R > 0. Denote
Q= (to, T) x Bog.Letp € C° (R?) be a smooth spatial cut-off function between
1p, < p <1,,. Then

VAP 4 S 180l g+ IVl g Tl g
Since Au = — curl w, the case n = 1 of Theorem 1 gives
3
||Au1{|A w3l o = < Cqlluoll 1> gs)-

SO

3 R3 3
laul, 4., <€ ||uo||L2(R; +CilliE g S C ol @, +Ci (E) .
As for lower order terms,
Vu| 4 < |IVully2c0),
l ||L§(Q) S IVullze

u < |lully o .
[ ||Lg(Q) < llullpeor2()

For Leray-Hopf solution, ||[Vu ||L?OLEQL3H’J((O’T)XR3) < |luoll;2, so

[A(pu)| 4

3
Ly 0K 012 gy + 1+ ol 2y S a0l g, + 1.

Because Riesz transform is bounded from L%’q ((to, T) x R?) to itself by Lemma 2,
2 2 %
<
1920l 44 ) S IV, 40 ) ok 0l + 1
O

Remark 1. For smooth solutions to the Navier—Stokes equation, we have L'
estimate for the third derivatives for any ¢ > 1,

H V2w1{|vzw|>a—2}‘ = Cq”“o”iZ

L14((0,T)xR3)
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4. Local Study: Part One, Initial Energy

The next three sections are dedicated to the proof of the Local Theorem 2. In
[22], the proof of the local theorem consists of the following three parts:

Step 1. Show the velocity u is locally small in the energy space £ = L7° L% N
L?H].

Step 2. Use De Giorgi iteration and the truncation method developed in [23]
to show u is locally bounded in L°.

Step 3. Bootstrap to higher regularity by differentiating the original equa-
tion.

In our case, directly working with u is difficult due to the lack of control on the
pressure, which is nonlocal. Therefore, we would like to work on vorticity, whose
evolution is governed by (6) and only involves local quantities. Since w is one
derivative of u, we have less integrability to do any parabolic regularization, and
we don’t have the local energy inequality to perform De Giorgi iteration. This
motivates us to work on minus one derivative of w, but instead of w we use a
localization of w. Similar as [4], we introduce a new local quantity

v:=—curl wﬁA_qu curlu = —curl (pﬁA_lcpw. ,

where ¢ and ¢° are a pair of fixed smooth spatial cut-off functions, which are
defined between 13g <@ < 13§, IBA < ¢ﬁ < 135. This v is divergence free

and compactly supp(s)rted. It will lfelp u; get rid of the i)ressure P, while staying in
the same space as u: it scales the same as u, has the same regularity, inherit a local
energy inequality from u, and its evolution only depends on local information. We
will follow the same three steps above, but we will work on v instead of u.

For convenience, from now on we will use 1 to denote a small universal constant
depending only on the smallness of 71, such that lim;, o7 = 0. Similar as the
constant C, the value of n may change from line to line. The purpose of this
section is to obtain the smallness of v in the energy space &£, which is the following
proposition:

Proposition 1. Under the same assumptions of the Local Theorem 2, we have

IWlg, = sup |v(t)|2dx+/ IVol?dx < 7. (25)
te(—1,0) / By 01

For convenience, define ¢3, g4, g5 by

111 11 1_(1 1)
»ooq 3 g @ 3 g5 g 3),
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4.1. Equations of v
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We use (10) in (1) to rewrite the equation of u, then take the curl to rewrite the
equation of w, finally apply — curl * A~!¢ on the vorticity equation to obtain the

equation of v:
ot + Peyrl (0 X u) = Au,
orw + curl(w X u) = Aw,
0tV — curl<pﬁA_l<p curl(w x u) = —Curl(pﬁA_lgpAa).
The second term of (26) is
curlgoﬁA_l(pcurl(a) X u) =B — Pyt (pw X u),
where B denotes the quadratic commutator
B:=—curl(l — (pﬁ)A71<p curl(w x u) + curl Ail[go, curl](w X u)

= —curl(1 — (pt)A_lgp curl(w x u) + curl A_l(—Vgp X (w X u)).

Here we used (12). The right hand side of (26) is
— curl (pﬁAflgoAa) =Av+L,
where L denotes the linear commutator
L:=[—curl <puA_1(p, Alw

= — curl[(pﬁA_l(p, Alw

= — curl[tpﬁ, A]A_lcpa) — curl <puA_l[<p, Alw

= —curl[¢?, A]JA™ 'gw + curl ! A7 2 div(Ve ® 0) — (Ap)w).
Here we used (13). Therefore we have the equation for v as the following:

01V + Peyri (o x u) = B + L + Av.
We observe the following localization decomposition:
Lemma 6. We can decompose
ou=v+w, pw = curlv 4+ @,

where w and w are harmonic inside Bj.
Proof. We can compute v by

v = —curl goﬁA_lgo curl u

curl(1 — cpﬁ)A”(p curl u — curl A”(p curl u

= curl(1 — q)ﬁ)A—lgow — curl A_1[<p, curl]u + Py (pu)
= curl(1 — ¢ﬁ)A71(pw + curlAil(Vgo x u) — Py (ou) + ou
= curl(1 — goﬁ)A_lww + curlA_l(V(p X U) — VA_I(Vga -u) + ou,

(26)

27)
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using divu = 0. We denote

w:=—curl(l — pHA g —curl A7 (Vo x u) + VAT (Vg - u),

which implies the first decomposition pu = v + w. By taking the curl,

curl(pu) = curl v + curl w,

Vo x u+ gpw = curl v — curl curl(1 — (pﬁ)A_lgoa) — curl curl A_I(V<p X u)

= curl v — curl curl(1 — (pu)A_lgoa) 4+ Peunn (Vo X u).
We denote
w : = — curlcurl(l — (pﬁ)A_lww —Py(Vo x u)
= —curl curl(1l — (pﬁ)A_lgoa) —va~! div(Ve x u)
= —curl curl(l — (pﬁ)A_lww +va~! Vo - w),

which implies the second decomposition g = curl v + @ . We can easily see that
Aw and Az are both the sum of a smooth function supported outside B3 and the

2
Newtonian potential of something supported inside supp(Vy) C B s \ B 5,80 they

are harmonic inside Bj.
Using this decomposition, we can continue to expand

Peurl (0w X u) = oo x u — Py(pw X u)

O

1
:wxv—i—a)xw—EPV((curlv—i—w)xu—i—a)x(v—i—w))

1
=w X v—EIP’v(curlv Xu+wxv)—W,
where W denotes the remainders involving w and o,
1
W::—a)xw~|—§]P’v(zz7 XU+wxw).

By subtracting (11) from (10), for divergence free u, v we have
curlv x u +curlu x v=—V(u-v)+2u - Vo + curl(u x v),

SO

1
Peurl(pw X u) = w x v + EV(u -v) —Pydiviu @ v) — W

1
=a)><v—i—V(Eu-v—A_ldivdiv(u@v))—W.

For convenience, denote the Riesz operator
1 .
R = 3 tr —A~ ! div div
Finally, we have the equation of v as

ovt+wxv+VRu®v)=B+L+ W+ Av, divv = 0.

We now check the spatial integrability of these new terms.

(28)
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Lemma 7. Forany 1 < p < 09,

lvlle, IVwliLe, lwliee S l@lipis,) + lullLrs,),
IVulle, IV e S l@llesy)s

2
IV=wliLr S lullyrp(B2).

If we denote g = (% — %)_T_l, then
IBllzasy) S llw X ullzr(s,),
ILILr By S llowllLr(sy)s
IWllLrgy Sllo X wllpey) + o X ullLrsy)-

Proof. v, w, w are all supported inside B», so

lvller < lloullr + llwlee S lullees,) + IVwliLe,
IVwllzr < IV curl(1 — ) A~ gl Loy + IV curl A7 (Ve x u)
+ VAT (Ve w) e
S = eHA olle2 + Ve x ullpr + |V - ullLr
S llolipigy + lullLr sy,
e < Ilcurlcurl(1 — o)A gollLrsy) + VAT (Ve - ) Lr
< (1 —gHA gl ez + IVA™ div(Ve x )| Lr
<llolrip,y + IVe x ullLr

< llollpip,y + lullLrs,-

Here we used Lemma 4 since ¢ and 1 — ¢ are supported away from each other, and
we also used the boundedness of Riesz transform by Lemma 2. Their derivatives
are bounded by

IVollr = IV curl o A~ gl Lo
< |Veurl A gollpr + IV curl(1 — o) A~ gl Lo (s,
S loliLesy) + llollpis,) S lolliLes,)
IV2wliLr < [VZcurl(1 — ) A™ goollLr(sy) + |V curl A7 (Vg x u)| e
+ VAT (Ve )
S llollps,) + lullwres,) S lullwis s,
IV |lr < IV curlcurl(1 — ") A~ goollLr sy + IV AT (Vo - )| Lo

S llollpis,) + lolliLrsy) S lollLrs,)-

The proof for B, L, W are similar, so we omit it here. m]
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Since u € £ and w € L°°L1, it can be seen from the above lemma that
v, Vw, w € &, thus

1

IBll3py Sl xull 5 €Ly,

LZ(B )
1Ll L28y) S ll@llp2(g,) € L7,

Wl s Slloxwl 3 +loxul 3 €Lf,
L2(By) L2(By) L2(By)

therefore B, L, W € L L13OC .t L2 1OC .- In the appendix we prove the suitability

for v: it satisfies the followmg local energy inequality:
5 o2 vl

T+|Vv| + div [vR(z ® v)] <A7+ -(B+L+W). (29)

4.2. Energy Estimate
Multipling (29) by ¢* then integrating over R yields

d [l
dt 2

2
< /%mp“dx + /(v - VeHR(u ® v)dx

—dx +/(p4|Vv|2dx

+/g04v-de+/g04v-de+/cp4v-de.

Let us discuss these terms. For the first four terms on the right hand side,

lv|?
Iy:= / I agtdx < Cllgul el (30)

IR : :/(v -VeHR(u @ v)dx < Cllev| 2 |Ru ® v)| ;2

< Cle*vll2llu @ vll2, (1)
Iy : =/¢4v~de < llg*vll 2 19*Bll .2
< C|l¢* Vil xul g (32)

2
Iy : =/<ﬂ4v‘de = ||§0§|U|§||Lﬁ|||v|§”Lq3 lo” Ll o2

1 2
< lg®vl} 5 1011745 0l L2 (By).- 33)
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Here we use Holder’s inequality, and ¢ is compactly supported in B, and qlz + q% +
% < 1. For the W term,

Iw:=/<p4v-de
4 1 4

=— |9 v-a)xwdx+§ ov-Py(w xu+wx w)dx

=—Iw + l1

= —iwi+ S iwa.
For the first one, we break it as

Iw =/<p4v-wxwdx=/<p3vxcurlv-wdx+/g03v-w X wdx.
Using (10),
1 2
v X curlv = §V|v| —(v-V)v,
we have
3 1 2 403 3
¢ v x curlv - wdx = —3 [v]“div(p"w)dx + [ v-V(p w) - vdx
< Cle*vllz2 (IVw @ vl 2 + lw @ v]l12) -
The remaining is of lower order:
/¢3v s x wdx < C||<p2v||Lz||w x wl 2.
For the second one,
Iw> =/Pv(g04v).(w Xu—+wxw)dx
< IPv(@*)llollm x u+ o xw| g,
where
4 _ -1 4.0 4 _ -1 4 2
IPv(e"v)lige = IVA™ div(g™v)llpe = IVA™ (v Vo )6 < Cligvll 2.

Thus Iw can be bounded by
Iwgcw%m;QVw®wH+nwxwhﬁwwxu+wxwhg.6@

In summary, we conclude that, for —4 <t <0,

d v|?
5-¢¢%m+/wwwm§u+m+m+h+m, (35)

with good estimates on each of the term on the right.
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4.3. Proof of Proposition 1

First we check the integrability of each terms.

Lemma 8. (Integrability) Given conditions (4) and (5), we have

||<Pw||Lfl LI ((—4,0)xR3) =1 ||<P0)||LtP2L;12 ((—4,0)xR3) =1
”VU”LtPlel ((—4,0)xR3) =n, ||Vv||Lf2Lzz((—4,O)><R3) =n,
”U”Lfl LB ((—4,0)xR3) =1 ||v||Lf2Lz4((74,0)><R3) =1

va”Lflez’((féL,O)xR%) =n,
(36)

37

||w||L,pILZS((—4,0)XR3) =n
||w”L,ple3((—4,0)xR3) =1 ||w||Lf2L¥4((—4,O)><]R3) =n.

Proof. Integrability of u is obtained by Sobolev embedding and that pu has average
0. Integrability of ¢w is given. The remaining are consequences of Lemma 7 and
Sobolev embedding. O

Proof of Proposition 1. We prove Proposition 1 using a Gronwall argument. Mul-
tiply (35) by an increasing smooth function v (¢) with ¢ (f) = 0 for t < —2,
Y1(t) = 1fort > —1, we have

2
5 (w (r)/ alvl dx>+w1(r>/<p |Vol*dx

2
v
= Wf(ﬂ/(ﬁ“%dx +y1(@®) Ja+ I +1Ig + IL + Iw) .

Formally, we can integrate from —4 to t < 0 and to get

4|v|2 ! 4 2
w)/w de+/2¢1(S)/<0 Vol
t 2 t
- / R0 / <p4%dxd;+ / RACICTTTRYED

This integration is justified since v satisfies the local energy inequality (29) in
distribution, and v (1)¢*(x) € C°((—4,0] x By). Because of (30), (31), (32),
(33), (34), and

le?vlz2(p,). ”¢’2””L2<3 ,=C (1 + /¢4|v|2dx) :

we can conclude that

2
" <w1(r)/ alvl dx) +w1<t)/ 4Vol2dx

2
<Co(1) (1 + Y1 (1) /¢4%dX> ,
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where

2
mozwm/hw%m

el + e @ vll g2+ oo >l g

0l s Nl + 190 © 0l 2

+llo x w2+l xu+wx w||L%

< NI, + 10l z2 + Nl Tl s g + N0l g Nl
0l ol 25, + IV 5 0l

Tl ol

e s lull s + ol 2wl s

1

5<Mh?+ww +Wh%&ﬁWWN§+WM@O

LP
1
2
X (IIUIILZ4 vl o + lleoll 2 + IIZUIIL34)

Here we used interpolation for ||v||i2 < [lvll e llvll 1. Therefore
X X

1
uwgsMwﬁ+m@ﬁwm%M+wwﬁ+wmQM
t

X <n.

1
2
waﬂwﬂﬂww+wmobz

t

By Gronwall’s lemma, we conclude that for every —4 < < 0,

2 t y
1+wm0/¢4%dx+/ﬂwun/@ﬂvm%xSeﬁﬂbmmseW.
—4

Therefore by taking the sup over —1 <t < 0 and ¢ = 0 respectively, we conclude
that

sup /Iv(t)lzdx <, / |Vol?dxdr < 7.
01

—1=<t=<0

5. Local Study: Part Two, De Giorgi Iteration

In this section, we derive the boundedness of v in Q 1 which is the following.
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Proposition 2. Let v solves (28). If (25) holds for sufficiently small n, and we have
integrability bounds in Lemma 8, then we have

lvllLeoy = sup [[v(@)llLeB,) < 1.
2 te(=1,0) 2

The proof uses De Giorgi technique and the truncation method. First, we set a
dyadically shrinking radius

1 1 1
r, = S +87, rl= F1+2x87, ri = S +4x 87,

Then we define dyadically shrinking cylinder Qy’s

b b2 b b b b
T, =7, B, = B, (0), 0, = (-T.,0) x B,
=1 B{ = B :(0) 0; = (~T;.0) x B}

k=Tk > k= 5 k= k> ,

2
Tf =, Bl = B,:(0), 0} = (-Tf,0) x Bl

We also introduce positive smooth space-time cut-off functions p; and p,f with
#
< < < <
lop=pe=ton dgp=pi=lg -
Then, let c; denote a sequence of rising energy level

—k Uk
Ck=1_2 ) Uk:(|U|_Ck)+, ﬁkZM1

2 = {vx > 0}, I, =1g,, ap =1— B.

We define analogous of vector derivative di and energy quantity Uy to get

df = 1 (a VIVl + Bl VoP?)

Uk = 1080 g o, p20ay T 12 g0
We have the following truncation estimates:
Lemma 9.
av < ¢ <1,
1B o221 2y = OUk-1:
117 < C*Up-1.

o=
LPLINLILS(Q, )
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Proof. The first estimate follows from the definition. By Lemma 4 in [23], we
have |Vug| < di and |V(Brv)| < 3dk. Moreover, since |V|v|| < |Vv|?, we see
dy < d_1, as v; and By are monotonously decreasing, so

”V(ﬁkv)”L2(Q]bc,1) S 3||dk||L2(Q/b<71) S 3||dk—1 ”LZ(QZ,l)‘

Moreover, the truncation gives |8 v| + 27K, = v +27F1 = vy, s0

> < _
1BVl o2 (gr ) = Mok=1ll o200 s

—k
2 ||1kI|L?OL’%(Q]b(71) S ”Uk—1||L;>OL%(Q271)7

27K 114l

=< ”vk—l ”L,OOL%(Q?{71) + ||Vvk—l||L2(Q;(71)

S ”vk—l ”L,OOL%(Q271) + ”dk—l ”LZ(QZ,])‘

< [|Uf—
sy = e=illzrs gy

Corollary 4. (Nonlinearization) If f € L LY(Qx_1), with

forsome 0 <6 < 1,0 <o <y, then, uniformly in o,

(O

Proof. By interpolation,

v
/j |/3kv|g|f|dth =< Ck”f”LIPLz(Qk_I)UkZ_l-

1
< 2
”ﬂkv”v ”1k“L1peLZG(Qk—1) = Uk*l’

where
1 6 1-
+

0 1

Therefore, using Holder’s inequality,

1Bl ] fldxdt < NI fllppa I1Bevll o ap 1Lkl
L,"L
Qi1 [X r

First, we recall the following identities from [23]:

akv-a.v=8.<

akv~Av=A(

2

2
[v] — Vi

2

2 2
[v] — Vi

2

O
N 0 N 1-6
"6 2
6 1-6
T 6 2
y—o 5
Lo %0 = ||f||L;’LZ Uy
O
>, (38)
>+d,§— [Vvl|?. (39)
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Since o v is bounded, we can multiply equation (28) by o v and obtain

wi? = v}
ot )+ VR@ o)

v — g\ | o 2
— A — +di — IV +apv- (B+L+W), (40)

using (38) and (39). Denote C, = B 4+ L + W. Subtracting (40) from (29), we have

2 2
v v
a,?" + d} + div(vR(u ® v)) — v - VR(u @ v) < A?k + Brv - Cy.

Multipling by pf, then integrating in space and from o to 7 in time,

[oha] [ [ ndtasa

T
< / / (B,pk—l-A,ok)?kdxdt— / / ok div(uR (1 ® v))dxdr
7 T 7 T
+/ /pkakv - VR(u ® v)dxdr +/ /pkﬂkv - Cydxdr.
o (e

Taking the sup over t > —ka, and seto < _ka—v we obtain

Uy < sup /pk—dx—f-/ /pkd,fdxdt
b

Te(~T},0)

SCk/J U,%dxdt—l— sup {/ /,okakv VR(u ® v)dxdr
0

I te(~T,0)

—/ u/’ok div(vR(u ® v))dxdt
_Tk

+/f/mmeﬂm4. @1)
_p

Using Corollary 4, the first one is bounded by

5
/QJ v,%dxds < /h |Brv|>dxds < Uu; . (42)

k Qk—l

Now let us deal with the last few terms. For simplicity, we use [[ dxdz to denote
T . . .
f_Tku Jg3 dxdz in the rest of this section.
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5.1. Highest Order Nonlinear Term

Define three trilinear forms:
To[vi, v2, v3] = //,Ok div(viR(v2 ® v3))dxdt,
Tvlvi, v2, v3] = //kal - VR(v2 ® v3)dxdt,
Taiv[vi, v2, v3] = // ok divviR(v2 ® v3)dxdr.

There are symmetric on vz, v3 positions. When we have enough integrability, that
is, when

1
£,x°

[Vurllvallvsl, [vil[Vvallvs], [villvz]| Vs € L
we have Leibniz is rule
T, =Tv + Taiy.

The goal is to estimate the first two double integrals in (41),

// prarv - VR(u ® v)dxdr — // pr div(vR(u# ® v))dxdr
= Tylogv, u, v] — Tolv, u, v].
We first separate w ® v from u# ® v, and we have

Tylarv, w, v] — To[v, w, v] = Ty[agv, w, v] — Ty[v, w, v] — Tav[v, w, V]
= —Tv[Bkv, w, v]

=— //pkﬂkv - VR(w ® v)dxdt.

Denote —VR(w®uv)=: W5 and we will deal with itlater. The remaining (1 —w)®v
can be separated into interior part and exterior part,

(u—w)®v:p£v®v+(l —p,f)(u—w)@v.
The exterior part is bounded and smooth in space over the support of p:
IoeR((1 = pP) = ) ® V)l e < Cll = w) @015
< Cllu—wllyn g,y 0l pas < 1.

Here, we denote

1 1 1
—=—+4+— < 1.
pP3 P1 P2
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Therefore we can use Leibniz is rule similarly as to as w and

Tylegv, (1 — p)(u — w), v] = Tolv, (1 — pP)( — w), v]

= Tylov, (1 — pb)(u — w), v] — Ty[v, (1 — p)(u — w), v]

= —Tv[Bv, (I — p))(u — w), v]

=- // peBrv - VR ® (1= pp)(u — w))dxdr

52
3 3
<ckyl ™

by nonlinearization Corollary 4. The interior part is
Tvlogv, pgv, v] — Tolv, pgv, v]

= Tvlaxv, pf v, Brv] + 2Ty [axv, pragy, vl
+ Tylokv, pgakv, arv] — Tolv, pgv, v]

= Tylogv. o Brv. frv]
+ 2T, [ay v, pgakv, Brv] — 2T gy [k v, p,Eakv, Brv]
+—1}[akv,p2akv,akv]—-Thw[akv,pﬁakv,akv]
— To[v, piv, v]

='Tv[akv,p£ﬂkv,ﬁkv]
+ 2Taiv[Brv, p,frxkv, Brvl + Taiv[Brv, p,fakv, o v]
+—21;[akv,p£akv,ﬁkv]+—Tg[akv,p£akv,akv]
—-TL[v,pﬁv,v]

= Tyloxv, o v, Brv] + TawlBrv. pfav, (B + vl
— Tolov. p Biv. frv] — Tol frv, pjv. vl

Notice that the boundedness of o v guarantees enough integrability to switch be-

tween trilinear forms. Then
ITylev, o Bev, Bevll. [TawlBev, ppaxv, (B + D]
5 4
S IV 200, ©U1 < Uy

ITolaxv, pf Brv, Brvll, ITolBrv, pfv, vl S UL .

Wl

In conclusion,

‘ // prarv - VR(u @ v)dxdr — // pr div(vR (1 ® v))dxdt

— //pkﬂkv - Wodxdr

45 2
k mln{§,§—§p3}
< ckut :

(43)
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5.2. Lower Order Terms

For the bilinear and linear term, recall that inside Bj,
B=—cul A7 (Vg x (0 x u)),
L =curl A7 Qdiv(Vy @ ) — (Ap)w) .
Therefore,

||pkB||Lp3Loo < lw x u” = ”””Lf‘Lj? ”a)”LtmLz2 =n,

6
L3 (02

<
”pkL”Lf’ZL;o = ”w”Lﬁszzz(Qz) =1

Thus
5_ L
//B prBrvdxde < kUl T (44)
// L - pefrvdxdr < C* ,; 13”2. (45)
5.3. W Terms

Finally, let us deal with
1
W+ W, =—wx w—i—EIPv(zzr Xu+wxw)— VR(w ®v).
Here VR = %Vtr —Py div, so
1 .
VR(w ® v) = EV(w -v) — Py diviv ® w)

1

= E(onv+v~Vw+w x curlv + v x curl w) — Py (v - Vw)
1

=5 (w-Vv—v-Vw) + Py (v - Vw)

1
+ E(w x curlv + v x curl w)
VR(w ® v) = Pv(VR(w ® v))

1 1
= —Pv(w~Vv—v-Vw)+§]P’v(w x curl v + v x curl w)
1
= EPV (curl(v x w) — vdivw + wdiv v)
1
+ EPV (w x curlv + v x curl w)

1 1
= _E]PV (v(u-Vo)) + EPV (w x curlv + v x curl w) .
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Hence

1
W—i—Wg:—a)xw—i—z]P’v(v(u~V<p))

1
—i—E]P’V(wxu+wxw+curlvxw+curlw><v).

Again, we separate W 4+ W, into exterior and interior part, with
W+W, = Wext + Wil’lt7

where

1
Wext = —(1 = po x w + 5Py (u(u - Vo))

+%]P’v ((l—p,f)(w Xu—+wxw+curlv x w+ curl w x v)),
Win = —pfo x
+%]P’v<,o£(w xu+wxw+curlvxw+curlwxv))
=—p£curlvxw—p£w X W

1
+§]P’v<p£(wxu+curlwxv+wxw))

1
—I—E]I”v(,o,f(a)xw—i—curlvxw—wxw))

= —pgcurlv X w—pgw X w
+ Py (,o,fw X u) + Py (,0,3 curl v x w)

= —Pcuﬂ(,olg curlv x w) — }P’Cm(pgw X w) + Py (pgw X v) .

Similarly as to the bilinear terms, prWex; is small in Lf 3 L%°. Among the three
terms in Wip, p,fzzr x w is bounded in L/*L%°, and ,o,fzzr isin L2 L%°. Finally, for
the first term,

Peyri (curl v x pgw) = —Pcyri(curl p,fw X V) 4+ Peyrg (v - Vp,fw + p,fw - Vv),
Pcuﬂ(,ogw - V) = Peyn (curl(v x p,fw) +v- Vp,fw —vdiv ,o,fw)
= curl(v x p,fw) + Peurt (v - Vp,fw —vdiv p,fu)),
curl(v x ,ogw) = vdiv p,Ew + ,o,fw -Vv—v- V,o,fw.
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Every term is a product of v and V p,fw (possibly with a Riesz transform) except

,o,fw - Vv. Because in §2;, V|v| = Vg are the same, we have

2

/pk’gkv ' ('Olgw - Vvdx = //Okﬂk(w : V)%dx
=/Pkﬂklv|(w-V)|v|dx
= /kak(w-V)vkdx

'U2
k

2
vp .
—/?dlv(pkw)dx.

Therefore, every term of Py (curl v x p,fw) is a product of v and V pyw or V pgw.
Inside By, w € L' C°. In conclusion,

S_2
// PkBrv - Wexedxdr < CkUk},fp3 )
2

5
//pkﬁkv . ]P’Curl(,olii curlv x w)dxdr < CkU,j:lW,
5.2
//pkﬂkv . ]P’wﬂ(pgw x w)dxds < CkUk3_13p3,
5_2
//pkﬂkv ~Pv(p,§w x v)dxdt < CkUkz_lz')z,
so the sum is bounded in

2

5__2
// prBrv - (W + Wa)dxdr = // Pk Brv - (Wine + Wex)dxdr < U [,
(46)

provided that Uy_; < 1.

5.4. Proof of Proposition 2

Proof of Proposition 2. Coming back to (41), by estimates (42) on the first term,
(43) on the trilinear terms, (44), (45) on the B, LL terms and (46) on the W terms,
we conclude that

S (52 4
mm{gfﬁ,?}

Ur < Cru, ,
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provided that Uy < 1. Here p3 > 1 ensures the index is strictly greater than 1.

Since
= sup /|v0| dx+/ / dodxdt
te(—1,0) By

= sup /|v| dx+/ [Vv|2dxds < 7
te(—1,0) B

by Proposition 1, we know that if 1 is small enough, Uy — 0 as k — oo. Thus in
Q 1 |[v] < 1 a.e.. This finishes the proof of Proposition 2. a

6. Local Study: Part Three, More Regularity

In this section, we will show that the vorticity @ is smooth in space. We will
only work with the vorticity equation from now on. After the previous two steps,
in B; we should always decompose u = v + w, because v is bounded and w is

2

harmonic.
For convenience, given a vector w, we denote

1)
o =— 0® : =lw|%’, a € R.

o]’

Let 0, be the partial derivative in any space direction or time. Then we have

de(l0]) = 2! - de0,

de(@*) = |w|* 10 + (@ — D)(@* % - o),
1
—0s0u(j0]") = ||~ 19,0 +(a—2><w“1 3e0)? + 0! 040,

>(@— D@2 e0)? + 0! 8s00w
4(

2 1
+ 0¥ - 0g0e®.

o
o (V2

o2

6.1. Bound Vorticity in the Energy Space
We will first show w is bounded in the energy space.
Proposition 3. Ifu = v+ win Q 1 where v, w are bounded in
IIUIILOO(QD + ”VU”LZ(Q%) <2, (47)

[curlw] 3 +llw] 4 <2, (48)
L?LE(Q%) L3Llpx<Ql>

w = curlu solves the vorticity equation (6), then

3
@) lloFlle,) < C,
4
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®) lleg,) < C.
8

Proof of Proposition 3 (a). We fix a pair of smooth space-time cut-off functions o
and ¢ which satisfy
<¢=1y

1o <o0=<l1g,.

ool—
B
Nl—

Take the dot product of the vorticity equation (6) with %a)%

0t - B = (|o]?),

N W

1

0 (- Vo= - V)(|ol?),

| W

1 30 4 39
w? - Aw < A(lw|2) — §|Va)4| .

[NSJ OS]

Therefore,
303 14 3,
0 4+u-V—-24)(w|2)+ Ea)-Vu-a)Z + §|Va)4| <0.
Multiply by 0 then integrate over space to get

6 3 [ 6w, ip 3 6 3
0 (8t+u~V—A)(|w|2)dx+§ o’ |Vwt| dxf—z o'w-Vu-w2dx.

(49)
For the left hand side, we can integrate by parts to get
3
/06(@ +u-V — A)(|o|?)dx
d 6 3 6 3
=+ [ ololidr - <(8t+u-V+A)Q>|a)|2dx, (50)

where the latter can be controlled by

/((at +u-V+A)Q6) lwl2dx < C (1 + ||u||Lm(Bl)>/g4|w|3dx. (51)
2

For the right hand side, using u = v + w over the support of o, we can separate
6 1 6 1 6 1
ow-Vu -w2dx = | og°w-Vv-w2dx+ [ 0°w-Vw - w2dx, (52)
The Vv term can be controlled by
6 i 6 1
ow-Vv-w2dx =— [ w- V(e w?) - vdx

:—/Q6w'v(w%)'UdX—/w~(a)%®VQ6)-vdx,
(53)
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where
1 _1 _3 1 | Y 0. 0
w-V(w?) = |w| 2a)~Vw—§(w~Vw-w 2w = w? -Vw—i(aﬂ Vo - o')w
1 31 313 1 3 3
= |lw-V(w?2)] < sz -Vo| =2|w|* 7? i.Vo| =2lw|?* |V]w|?

3.3 3 45
<2|w|*|Voi| < |o|? + Vo3 |~

. . 3 3 .
Here the second to the last inequality is due to 0;|w|% = 9;w* - °. Since |v| < 1
over the support of o,

60 - V(w3 6, |3 6 32
o'w-V(w2) -vdx < | o’|lw|2dx + [ 0’ |Vw? | dx. (54)
By using (50)—(54) in (49), we conclude that
d 4
- 96|w|%dx+§/g6|vw%|2dx
s/[(a, +u- V+A)Q6] |3 dx
6 1
4+ | 0°w-Vw - w2dx
+/w~(a)%®VQ6)~vdx
+/g6|w|%dx+/g6|w%|2dx
d k 1 3
o Q6|w|%dx+§/gﬁ|w%|2dx
3
=C (1 + ||u(t)||L°°(B%) + IIVw(t)IILOO(By) /Q4|w|2dX-

By Holder’s inequality,

2
3 1 3 3
/Q4|w|2dx§||w(l)||23 (/Q6|w|2dx) :
LZ(By)
2

Therefore we can write

d 61,13 ! 61,3 |2 61,13
I Q|a)|2dx+§ o’ |Voi|"dx <CP(t) |1+ | o’|lw|2dx ),

where

1
P(r) = <1 +llu@®llL=s,) + ||Vw(t)||L°°(B1)> llo®]*
2 2 L2(

By)
2

= (2 + [lw®)|lLes,) + ||Vw(t)||L°°(Bl)>
2 2

1 1
x | lcurlv(r)]|* 5 + [lcurlw(®)||*,
L2(By) L2(By)
3 3
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since # = w + v, and |v| < 1 inside B%. By (47),

0 1
/ Pdr S {1+ llwll 4 IIVUIILZ(Q )+||Cur1w(t)||2 3 <C.
1 L7 Lip (0 1) L2LZ(Q))
2

7
Thus, by Gronwall’s inequality,

<eC — 1.

lw? |12 <e

L°°L2nL2H1(Q]) =

Proof of Proposition 3(b). From Proposition 3(a) and Sobolev embedding,

lell 30309 <C,
LPLINLELZ(Q1)
i

this interpolates the space

lolliirze, =€
Multiply the vorticity equation (6) by ¢ then integrate over R3 to get
Y L. L e L g,
dr 2
— /(u -Vo) - gza)dx
+ /(a) -Vu) - gza)dx.

The first integral is L' in time because w € L} L2. For the second,

2
/(u Vo) - gza)dx = /gzu . V%dx
|| 2
—u Vgodx
—/g|w|2u-Vg

< llsolp2llu - Velwll2;

4
the latter is bounded L' in time, by u € L}L and w € L}L2. For the third
integral,

/(a) S Vu) - ¢lwdx = /(w -V) - Codx + /(a) -Vw) - ¢*wdx.
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w is bounded in Lt% Lip,, and for v,
/(a) V) - ¢lwdx = /v (- V)(¢*w)dx
= /v cw(w-Veh)dx + / v (¢%w - Vo)dx.
The former is L! in time, while the latter can be bounded by Cauchy-Schwartz,

2 l 2 l 2 2
v- (¢ cu~ch)dx§2 v ® cw| dx+2 ¢“|Vwl|~dx.

In conclusion,

d 5 o 1/ ) 5

— —dx + = Vol|*d

” < > X+ > ¢“|Vwl|“dx
2

< Cllw(t)lle(B%) + C””U)”L“’(B%)||w(t)||L2(B%)”gw(t)”Lz

+ C||Vw||Loc(B%>||gw(r>||iz
2|CU|2
<Cot)|1+ gde s

D) = IIw(t)Iliz(Bl) +llu@ e Hllo@lzg,) + IVw@)lLes);),
3 4 S i

where

whose integral is bounded using (47),

16 x

0
D)t < [lwl720y ,+ lull 4 lollsr2¢0,) F IV 4 =C.

By a Gronwall is argument, we have

2 c
lleoll — L

. < e
LFELanLil Q) =

6.2. Bound Higher Derivatives in the Energy Space

Now we bootstrap to higher regularity of @ using similar ideas as in the proof
of Proposition 3.

Proposition 4. For anyn > 1, ifu = v + w in Qg-n, where v, w are bounded in

”v”LOO(Qg—n/z) + ”v”L%Herl(ngﬂ/z) S ci’lv (55)

lwll 4 < cn, (56)
L} CE (Qgn )
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for some constant c,, w = curlu solves the vorticity equation (6), and is bounded
in

”a)”L?CHg*IQL%H;z(Qgﬂl/z) = Cp, (57)
then for any multiindex o with || = n,

3
@ V¥ g, < Cn
®) IV¥@llgQy 1) = Cn

for some C,, depending on c, and n.

Proof of Proposition 4(a). Similarly, we fix smooth cut-off functions ¢, and ¢,
which satisfy

lo, .1 == 1Q8,,,/4 <on =< 1Qg,n/z-
Differentiate (6) by V¢ to get
#Vew+u-VV%w — V%0 - Vu + P, = AV%w, (58)

where

P, = Z (O,B[) curl (VPw x V¥ Pu).

B<a
Multiply (58) by %QS(V“LU)% then integrate in space to get
d ; 4
= [ ofIvew|idx + -/gng“w%ﬁdx
dr 3
6 PRE
s/[(8,+u-V+A)gn]|v w|2dx
+ /ggv“w -Vuw - (V“a))%dx
+/V“a)- (V'0)? ® Vo) - vdx
3 3
+||v||%oo(Q87n)/Q2|vaa)|2dx+/Q2|vvaa)4|2dx
3 6 o N i
+ > 0,(V¥w)2 - Pydx,

the same as in the proof of Proposition 3(a). Therefore,

d 1
= obIViwlidx + - /gngaw%ﬁdx
dt 3
4oa, |3
< C (14 1u) s,y + ||Vw(r)||Loo<Bg,n>)/Qn|v ol }dx

3
+ E/gg(v%)% P, dx.
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Terms other than P, are dealt with in the same way as in Proposition 3:

2

4o, |3 o % 6|, |3 3

onlViw|2dx < Vi (D]~ onlViw|2dx ) .
L2 (Bgn)

The induction condition (57) ensures that | V¥ ]| L2(Qg-n) = Cn- Therefore

0 1
/ (T @i ) + V0O i, 0) V001, dr
78—}1

2 (Bg—n)

1
<1 o0 Veol? < .
~ ( + ”U”L (Bg—n) + ”w”[‘th}(Bgn)) ” a)”Lz(ngn) — Cn

Now let’s focus on P, :

n n n
Po| S Y IVFl |V U < ) VRV ] 4+ ) IVE0| |V )
k=0 k=0 k=0

‘We denote
P, = |VEw| [V * 1y, Pyi= |VE ||V +y).
First we estimate P, ;. By (55) and (57), when k = 0,

1

IPv.oll 3 = ||0)||L[2L§(Q8,n)||vn+ U“L,sz(Qg—n) < Cp,
L; L (Qg—n)

and when 0 < k < n,

k n+1—k
||Pv,k|| L3 <V wHL[ZL)ZC(Qg,n)”V U”L?LE(QS*U < C,.
X

(L (Qg—n)

Next we estimate Py, y. When 0 < k < n,

IPuill |

t

1—
3 = IVl IV Tl g < Co.
Ly (Qg—n) ! L LP(Qg—n)

Finally, when k = n,

|Pw,n| 3 = |Vna)||VU)|.
L (Bg-n)

Therefore,

/gg(vaw)% Podx < (1 +/Q,§|vaw|3dx)
n n—1
X 1Pyl 3 + IPw.ill 2
(,; ! L2 (Bg—n) ,; v LZ(B

In conclusion, we have shown that

) + ”Vw"L)?O(Bgn)) :

8§~ n g—n

d 1 ,
- o8 IVe w3 dx + 3/Q3|vv0‘w%|2dx <Co@) (1 +/.Q,§’|V”w|3dx>,
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where

1
D(t) = (1 + |u@) LBy + VWO LB,0)) V¥R (D] 5
L2 (Bg-n)

n
+Y Pkl 3 Y IPukll 3 IVwlieme)

i (Bg-n) 12 L (Bg—n)
with integral
0
/ @ (t)dr < Cy,.
—8*2"/4

Taking the sum over all multi-index « with size |«| = n, we have

1
o o8IV | dx + g/QSIV”Hw%de <Co@) (1 +/Q,§|V"+1w|3dx>.

Finally, Gronwall inequality gives
n+1 3 .
v w|4”L?°L§ﬁL,2H}(Q87n/4) < Cy.
0

Proof of Proposition 4(b). Now we multiply (58) by ¢ 2V® then integrate over
R3 to get that

d 2 |V0‘w|2
dt

v I2

art [ Gvveolar = [t +agh
—/(u-vv%)-g,%v“wdx
+ / (Ve - Vu) - ¢2V*wdx
+/g,$v°‘w-Padx.

For the same reason, the only term that we need to take care of is P, term, and the
others are dealt the same as with Proposition 3(b):

VD(
/(8t§3+Ag3)| 2‘”' dx /(u VV%0) - gZV“a)dx—i-/(V“a) Vu) - ¢2V*wdx

- o 5 o |Votw|2 2
S IV wan(QWﬁ||u||Loo<Q8_,,,4>||v Oy ( [ S2mydx

, V90
+||Vw||Loo<Q8_,,/4) / S dx o Ivllio, 0 V0l g,

|Va | 2 a2
||U||Loo(Q8 ) dx +¢ [ ¢, IVVi0|“dx.
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The last term can be absorbed into the left, and we will use Gronwall on the
remaining terms.
Now we shall focus on the P, term. From Proposition 4(a), we have

Vil 3 39 < Cy,. (59)
LELIOLI L2 (Qgns0)

Again, by interpolation,
n n
v w”L?L)%(ngnM) < Cy, v a)”LtzL,Sr(QS*"/At) < C,.
First we estimate Py, ;. In this case, forany 0 < k <n,

}1+1*kw” 4 < Cn~

P 1 < IV*kw|,4 \Y%
I w,k”Lt L%(Qs—”m) < ”Lr L.%(Qs—"/4)” L,j L (0g ) =

Then we estimate P, . When 0 < k < n,
okl 200, ) = IVl 2300, IV ™0l 12160, ) < Ca-
For the case k = 0 of the v term, we put the curl on V*w to obtain
/g,%V“a) ~curl (@ x V*v) dx
= /(a) x Vo) - curl (¢ V¥ w)dx

< /g,fIwIIV“vIIVV“wI + snlVenllol[VEv[| V¥ w|dx

1
< /g,$|w|2|vav|2dx +e / SalVVeoltdx + - / IVeulP[V¥0l*dx,
where |VV®w| term can be absorbed to the left. By (59) and Sobolev embedding,

||w||Lt°°L:§(Q8_,,/4) <Cy.

Therefore

2 2o, 2 2 o2
// Salol 1V vPdxds < ol o, IV Wi2s0q, ., ) < Cn
In conclusion,
d V|2 V0|2
i g,f' 5 | dx+/g,$|vvaw|2dx5Cq>(t)(1+/g3' 5 | dx>,

where

O1) = V0D, + lulei IV Ol .

VWL + W IV 0l g,

n—1

1, -
0l + D Pkl z2s g + D Pukli2s, )
k=0 k=0

1
2 a2 Rvs 2
+ ”a)||L3(Bgfn/4)”V vllLG(Bg—n/4) + e ”V w(t)lle(Bg—n/4)
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has the integral | 38—2" /16 @ (t)dt < C,. Finally, Gronwall is inequality gives

o .
V@l e 12261 (0g 1) < Cnt-

6.3. Proof of the Local Theorem
Proof of the Local Theorem 2. First, Proposition 1 gives

lvlleco) < 1,

where 1 can be chosen arbitrarily small if we pick 17 small. Next, by Proposition 2,
we know that

vliLeo,) < 1.
2

These two steps implies (47). As for (48), curl w = @ in By, so we use interpolation
in (37) to get that

1 1
leudwl 3 <l@ll 2 < 1ol wlwlly,u <0,
by % tx o o

w is harmonic inside Bj, therefore

Snllwll 4 =,

ol 4 s s
L; C;'(Q%) Ly LL(Q1)

due to (36) and p; > %. Therefore, we can use Proposition 3 to obtain
lolle,) = C.
8

The next step is to use Proposition 4 iteratively. Suppose that for n > 1 we
know that

V" llg(gy ) < cns

which is equivalent to (57). Let ¢, and <p5 be a pair of smooth spatial cut-off
functions, with

1 , <g.<1p , ., 1, <¢'<lp , ,

F1a 73 ) T
and set
. g A—1 —
v i =—curlg, A" g, Wy = Qui — Uy.

On the one hand, Vv, is a Riesz transform of ¢, up to lower order terms, so by
the boundedness of Riesz transform we know that

V" vull 200y ) = 1V @ll12(0 ) < Enmt.
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On the other hand, we have similar boundedness estimates to those of Proposition 2
as before, so

” Un ”LOO(ngn/z) S 1

w, is harmonic in B_1_, so we also have
F
lwall & So lwall s <.
L G (Qg—n o) LPLYO 1)

874

Therefore, by Proposition 4,
IV'@llgy 1) = Cn-
By induction, we have
IV ol e 120021 (040 1) =
for any n. By Sobolev embedding, this implies, for any #, that

2
V' llxoy ) SIV'@llLeraig, 5 + IV 0llirr2(0, 5 = Cn
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A. Suitability of Solutions

Theorem 5. Let u be a suitable weak solution to the Navier—Stokes equation in
R3. That is, u € L?OL)% N L?Hx1 solves the following equation in the sense of
distribution:

oru+u-Vu+ VP = Au, divu =0, (60)

where P is the pressure, and u satisfies the following local energy inequality in the
sense of distribution:

> Jul? 2 _

op— +d —+P Vul|* < A—. 61
- Fdivi{u| ==+ +|Vul|” < > (61)
Suppose v € L;’OLi N Ltszl is compactly supported in space and solves the

following equation,

v+ wxv+ VRuQv) = Av+ C,, divv =0 (62)
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2

where w = curl u is the vorticity, C, € L,ILlOC x

6
2753 .
+L; LlOC’x is a force term, and

1
R = —tr—A~ ! divdiv
2
is a symmetric Riesz operator. Moreover, suppose v differs from gu by
gu—v=weLXH NLH?
for some fixed p € CX (R3). Then v satisfies the following local energy inequality:

LI 2 |v|?
817+dlv(vR(u®v))+|Vv| §AT+U~CU. (63)

Proof. It is well-known that the pressure P can be recovered from u by
P =—-A""divdiviu ® u).

Since

2
u~Vu+VP=V% +oxu— VA divdiviu @ u)

=wxu+ VRu®u),
the Navier—Stokes equation (60) can be rewritten as
oru+wxu—+ VR(u®u) = Au, (64)
and local energy inequality (61) can be rewritten as

> ) |ul?
a,T+dlv(uR(u®u))+|w| < AT. (65)

First, multiply (64) by ¢, to get
orpou + o x pu + VR ® pu) = A(pu) + [VR, ¢](u @ u) + [¢, Alu.
Denote
Cy =[VR, pl(u ®u) + ¢, Alu

for these commutator terms. Subtracting the equation of v from this equation of
ou, we will have the equation for w. In summary,

orpu + w X pu + VR(u ® pu) = A(pu) + C,, (66)
v+ wx v+ VRu Qv) = Av+ Cy, 67)
ow+wxw+ VRu®w)=Aw+C, —C,. (68)
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-

4
. 2 §—£
Joc(r.x)- Since Aw € L7, we have Av € Ly, .
6

Recall from [22] that Au € L

Moreover, C,, C, € L }Lz +L?L7 ., and gu, v € £ are compactly supported.

loc,x loc, x>

Therefore, we can multiply (66) and (67) by w, and (68) by ¢u and v, to get

w9 (pu) +w-w X pu+ w- VR ® pu) = w - A(pu) +w - Cy, (69)
w-vt+tw-oxv+w-VRu®@v)=w-Av+w-C, (70)

ou- 0w+ @u - x w+eu- VRu @ w) = pu - Aw + ¢u - (C, — Cy).
(71)

veorwtv-oxw+v-VRu®@w)=v-Aw+v-(C, —Cp). (72)
Now take the sum of (69)—(72). The 9, terms are
ou - w4+ w - 0 (pu) +v-dw—+ w - v
= 0/ (pu - w) + 9 (w - v)
= 3 (lpul® = [vf?).
The wx terms are
w-oXput+ou-oXw+w-oxv+v-oxw=0.
The VR terms are
w-VRUu®opu)+v - VRu®@w) +¢u- VR(u ® w) + w- VR ® v)
= div(wRu ® ¢u)) + div(vR(u ® w))
+ div(puR(u @ w)) + div(wR(u ® v))
—div(w)VR(u ® pu) — div(v) VR (u ® w)
— div(eu) VR(u @ w) — div(¢) VR(u ® v)
= 2div(puR(u ® pu) — vR(1 ® v))
— (- Vo) (VRu @ ¢pu) + VR ® w) + VR ® v))
= 2div(puR(u ® pu) — vR(u ® v)) — 2(u - Vo)R(u  ¢pu).
Here we use divv = 0, div(pu) = divw = u - V. The A terms are
ou - Aw+w-Alpu) +v- Aw+ w - Av
=A(-w)—2V(pu) : Vw+ AW -w) —2Vv : Vw
= Allgul® = ol*) = 20V (gu)[* — |Vol).
The commutator terms are
w-Cy+ou-(C,—C)+w-Cy+v-(C, —Cy) =2¢u-C, —2v-C,.
In summary, half the sum of these four identities (69)—(72) gives

loul> — [v]* 2 2
BZT + div(puR(u ® pu) — vR(u ® v)) + |V(pu)|” — |V

_ pleul? — P
R s— +ou-C,—v-Cy+ (u-Vo)R(pu ® u). (73)
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Next, multiply local energy inequality of u (65) by ¢2. Then

lpul?
2

0r + |<qu|2 + div ((pzuR(u ® u))

|ul?
2

2
<A|<pu|
- 2

+ [¢?, Al—= + [div, ¢*] (uR(u @ 1)),

lpul?
2

3 + |V (pu)|* + div (puR (u ® gu))

lpul? 5 lul? 5 .
SAT+[¢ ,A]T+|u®V¢I +2(u ® Vo) : (¢Vu)

+ [div, ¢*] uR(u @ 1)) + div(pu[R, ¢](u ® u)). (74)
The quadratic commutator terms in (74) are

|u|?
(9%, Al +u® Vol? +2(u ® Vo) : (pVu)
2
u
yy A]% PVl + 2 - Vu - u
|ul?

2

2
|u

— _2V(g?) - V- AW + P |Vel? +2Vg - Vu - gu

ul> 1 21,12 2 2

= —2¢V¢-Vu-u—pAplul
=gu - (=2Vyp - Vu — (Ap)u)
=qu-[p, Alu.

The cubic commutator terms in (74) are

[div, goz] R @ u)) + div(pulR, ¢l(u ® u))
=2¢Ve - uRu Qu) + ¢u - VIR, ¢](u ® u) + div(pu)[R, ¢](u @ u)
=2¢ - V)R @u) + gu - VIR, ¢](u @ u) + (u - Vo)[R, ¢](u ® u)
=2¢u-Vo)Ru @ u) 4+ ¢u - VIR, ¢](u ® u)
4+ (u-Vo)R(pu @u) — (u - Vo)oRu ® u)
=gu - VoRu @ u) + ¢u - VIR, ¢l(u @ u) + (u - Vo)R(pu Q u)
=gu-[V,¢]Ru®u)+ ¢u - VIR, pl(u @ u) + (u - Vo)R(pu @ u)
=gu - ([V,9]R = V[p,R]) (u @ u) + (u - Vo)R(pu @ u)
=ou-[VR,o]Ju®@u) + (u-Vo)R(pu Q@ u).
Therefore, local energy inequality for gu can be simplified as
|pul®
2
< AM
- 2

3 + | V(pu)[* + div (puR (u ® gu))

+ou-Cy+ (u-Vo)R(pu ® u).

Subtracting (73) from this, we obtain (63). O
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