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Abstract

We study the exterior problem for stationary Navier–Stokes equations in two
dimensions describing a viscous incompressible fluid flowing past an obstacle. It
is shown that, at small Reynolds numbers, the classical solutions constructed by
Finn and Smith are unique in the class of D-solutions (that is, solutions with finite
Dirichlet integral). No additional symmetry or decay assumptions are required.
This result answers a long-standing open problem. In the proofs, we developed the
ideas of the classical Ch. Amick paper (Acta Math. 1988).

1. Introduction

Let E be an exterior domain in R
2, that is, E = R

2 \ B, where B is a bounded
open set with sufficiently smooth boundary.1 To be definite, we assume that the
origin is 0 ∈ B. Without loss of generality, we also let R2 \ B1 ⊂ E , where B1 is
the open unit disk centered at 0. This paper studies the stationary Navier–Stokes
equations in E with a Dirichlet boundary condition on ∂E and nonzero prescribed
velocity at spatial infinity, that is,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�w − (w · ∇)w − ∇ p = 0,

∇ · w = 0,

w|∂E = 0,

w(z) → w∞ = λe1 as |z| → ∞.

(1.1λ)

The parameter λ > 0 will be referred to as the Reynolds number. Here e1 = (1, 0)
is the unit vector along x-axis. Physically, the system (1.1λ) describes the stationary
motion of a viscous incompressible fluid flowing past a rigid cylindrical body.

1 ∂E being of class C2+α , α > 0 would be sufficient. Such regularity is required in [7]
for the construction of Finn-Smith solutions.
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This problem has its origins in the 19th century, starting with the classical paper
of Stokes [31], where the famous paradox of his name was discovered, that is, that
the corresponding linearized system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�w − ∇ p = 0,

∇ · w = 0,

w|∂E = 0,

w(z) → e1 as |z| → ∞
(1.1)

has no solution.2 The mathematical nature of the Stokes paradox was the subject
of many investigations, see, for example, [4,26].

The celebrated J.Leray’s paper [23] can be considered as a landmark point in
the study of the nonlinear problem (1.1λ). There, among many other results, Leray
suggested an elegant approach which was called “the invading domains method”.
Denoting by wk the solution to the problem

⎧
⎪⎪⎨

⎪⎪⎩

−�wk + (wk · ∇)wk + ∇ pk = 0 in E ∩ BRk ,

divwk = 0 in E ∩ BRk ,

wk = 0 on ∂E,

wk = w∞ for |z| = Rk

(1.2)

on the intersection of E with the disk BRk of radius Rk � k(� R0), whose existence
he proved before, Leray showed that the sequence wk satisfies the estimate

∫

E∩BRk

|∇wk |2 � c (1.3)

for some positive constant c independent of k. Hence, he observed that it is possible
to extract a subsequence wkn which weakly converges to a solution wL of prob-
lem (1.1λ)1,2,3 with

∫

E |∇wL |2 < +∞.3 This solution was later called Leray’s
solution (see, e.g., [1] ).

This achievement of Leray immediately raises two crucial questions:
(1) Is the constructed solution wL nontrivial, that is, can we exclude the iden-

tity wL ≡ 0?
This question is rather natural, since if we apply the Leray “invading domains”

method to the corresponding Stokes system (1.1) (or even to the simplest Laplace
equation), then the limiting solution will be identically zero.

2 Stokes himself gave the following explanation: the pressure of the cylinder on the fluid
continuously tends to increase the quantity of fluid which it carries with it, while the friction
of the fluid at a distance from the cylinder continually tends to diminish it. In the case of
a sphere, these two causes eventually counteract each other, and the motion becomes uniform.
But in the case of a cylinder, the increase in the quantity of the fluid carried continually gains
on the decrease due to the friction of the surrounding fluid, and the quantity carried increases
indefinitely as the cylinder moves on ([31], p. 65).
3 This convergence is uniform on every bounded set.
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(2) If wL is nontrivial, what can we say about its behavior at infinity? Namely,
can we guarantee the desired convergence

wL(z) → w∞ as |z| → ∞ ? (1.4)

Many useful properties of Leray solutions were discovered in the classical
papers by D. Gilbarg and H.F. Weinberger [11,12]. Further more, in the very deep
paper [1] Ch. Amick proved, under an additional axial symmetry assumption, that
the Leray solutions are nontrivial and they have some uniform limits at infinity, that
is, there exists a constant vector w0 ∈ R

2 such that

wL(z) → w0 as |z| → ∞. (1.5)

Very recently, in the joint papers by Korobkov–Pileckas–Russo [18–20], this addi-
tional symmetry assumption was removed, that is, they proved that Leray solutions
are always nontrivial and have some uniform limit at infinity (1.5).

Nevertheless, despite the classical papers and the recent progress, the fundamen-
tal question, whether or not the Leray solutions satisfy the limiting condition (1.4),
that is, whether the equality w0 = w∞ holds, is still open. In other words, it is not
clear whether one can construct the solution to the initial problem (1.1λ) by Leray’s
method.

The brilliant success (for the small Reynolds numbers) was reached in 1967 by
another approach. Namely, using the integral representations with the fundamental
solution to Oseen linear system (see below (1.12) ) and a contraction mapping
argument in some suitable Banach spaces, R. Finn and D.R. Smith proved [7] the
following remarkable result:

Theorem 1. (See [7] Corollary 4.2 and Theorem 7.1) There exist constants λ0, M0,

ε0 > 0 depending only on the geometry of ∂E such that, for any 0 < λ < λ0, there
exists a smooth solution wF S(z; λ) to (1.1λ) in E satisfying the pointwise estimate

|(wF S − λe1)i (z)| � M0| log λ|−1λhi (λz), i = 1, 2 (1.6)

for all z ∈ E . Moreover, if w is a smooth solution to (1.1λ) in E satisfying

|(w − λe1)i (z)| � ε0λhi (λz), i = 1, 2 (1.7)

for all z ∈ E , then w ≡ wF S.

(In fact, their construction allows nonzero small boundary data w = a on ∂E
with |a − w∞| small enough, even without zero total flux condition.)

Here the majorant functions hi (ξ) are taken as

0 < |ξ | � 1 : hi (ξ) = log
2

|ξ | , i = 1, 2, (1.8)

|ξ | > 1 :
{

h1(ξ) = |ξ |− 1
2

h2(ξ) = |ξ |− 1
2−μ,

(1.9)
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with 0 < μ < 1
2 chosen arbitrarily and then fixed. To be definite, we simply take

μ = 1
4 .

We briefly describe the approach taken by Finn and Smith [7]. (The reader may
also consult Galdi [10] Section XII.5 for another approach based on Sobolev norms
instead of pointwise bounds.) Let v(z) = λ−1w(z) − e1. To find a desired solution
w(z), it is equivalent to finding v as a solution to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�v − λ∂1v − ∇q = λv · ∇v,

∇ · v = 0,

v|∂E = −e1,

v → 0 as |z| → ∞.

(1.10)

In turn, this is reduced to solving the integral equation

v(z) = v�(z; λ) − λ

∫

E
(
v(z′) · ∇z′

)
G(z, z′; λ) · v(z′)dx ′dy′ =: Tλv, (1.11)

where G is the Green tensor with Dirichlet boundary conditions for the linearized
problem

{
�v − λ∂1v − ∇q = 0,

∇ · v = 0
(1.12)

in E and v�(z; λ) is the linear solution to (1.12) with the same boundary conditions
as v (both G and v� were constructed and studied in [6]). It is proved in [7] that,
when λ is sufficiently small (so that a crucial smallness estimate on v� is valid,
see [7, Lemma 2.1] ), Tλ is a contraction mapping for v belonging to a small ball
centered at 0 in the Banach space

Xλ =
{

v ∈ C(E,R2) : ‖v‖Xλ := max
z∈E;i=1,2

|vi (z)|
hi (λz)

< ∞
}

. (1.13)

Then, using standard perturbative arguments, the existence and (local) uniqueness
for fixed points of Tλ under the conditions of Theorem 1 can be obtained.

Despitemany other efforts (see, e.g., [8,10,21]), the existence problem in (1.1λ)
at high Reynolds numbers (for arbitrary λ > 0) remains open. In the famous lecture
by professor V.I. Yudovich, which he gave at the University of Cambridge and
published in [32], this task was included in the list of the most important open
problems in mathematical fluid mechanics.

Since the work [7], another interesting problem has appeared: whether unique-
ness in Theorem 1 is true globally, that is, without assumption (1.7)? Note, that
for the same flow problem in three dimensions, such a smallness condition is not
needed to prove uniqueness, see, e.g., [5,21]. In two dimensions, the problem ap-
pears to be much more difficult, mainly because the Dirichlet energy alone is not
sufficient to control the behavior of functions at infinity. As shown in [10] Section
XII.2, the usual energy estimate argument would run into immediate difficulties
when applied to prove uniqueness for (1.1λ) in the unbounded domain E . We also
point out that, when the Reynolds number λ is large, uniqueness is, in general, not
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expected to hold for the Navier–Stokes equations.4 When λ = 0, uniqueness of
the trivial solution w = 0 is conjectured by Amick in [1, p.99] and still remains an
open problem.

It is well known (see, e.g., [7]), that every Finn–Smith solution has a finite
Dirichlet integral, that is, it is a D-solution. The purpose of our article is to give a
positive answer to the uniqueness problem for small Reynolds numbers in the class
of D-solutions. The main result is as follows:

Theorem 2. There exists a positive constant λ1 depending only on the geometry
of ∂E such that, for 0 < λ < λ1 and for arbitrary D-solution w to (1.1λ), the
identity w(z) ≡ wF S(z; λ) holds. Here wF S(z; λ) is the Finn-Smith solution given
by Theorem 1.

We prove Theorem 2 by deriving the estimate (1.7) for arbitrary D-solution
to (1.1λ) when λ is sufficiently small, thus invoking the uniqueness statement in
Theorem 1. More precisely, Theorem 2 is an immediate corollary of the following
lemma:

Lemma 3. There exist positive constants λ1 and M1 depending only on the geom-
etry of ∂E such that, for 0 < λ < λ1 and for arbitrary D-solution w to (1.1λ), we
have

|(w − λe1)i (z)| � M1| log λ|− 1
2 λhi (λz)� ε0λhi (λz), i = 1, 2. (1.14)

Here λ0 and ε0 are those given by Theorem 1.

Remark 4. In fact, we can prove Theorem 2 and Lemma 3 under more general
boundary conditions for w on ∂E . Namely, if w|∂E = λa and a is a constant vector,
then uniqueness as in Theorem 2 holds and our proof goes through with only minor
modifications. See Remark 10 for further discussions.

Remark 5. The study of general D-solutions, that is, solutions to theNavier–Stokes
system (1.1λ)1,2 with a finiteDirichlet integral inE without any a priori conditions at
infinity,was initialized by theLeray paper [23].5 Many useful and elegant properties
of D-solutions were discovered in the classical papers [1,12]. Recently, based on
these ideas, it was proved [18,19] that every D-solution is uniformly bounded and,
moreover, it has a constant uniform limit at infinity.6 Of course, any D-solution w
to (1.1λ) satisfies w → λe1 �= 0 at infinity by assumption. In the remarkable paper
of L.I. Sazonov [27] it was proved that any D-solution to (1.1λ) satisfies rather

4 For example, in the recent paper [15] it was written: “The question of the uniqueness of
weak solutions for small data is even more open in two-dimensional exterior domains... For
two-dimensional exterior domains with nonempty boundary, we would a priori also expect
the existence of infinitely many weak solutions parameterized by some parameter”.
5 Physically, finiteness of the Dirichlet integral means that the total energy dissipation

rate in the fluid is finite.
6 This result is not trivial since in general the finiteness of the Dirichlet integral does not

guarantee even the boundedness of themapping, for example, the function f (z) = (
ln(|z|)) 1

3

has a finite Dirichlet integral in E .
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strong decay estimates at infinity, namely, it is physically reasonable (or in the
class of PR) in the sense of [29, page 350]. In [29], Smith showed that the behavior
of any PR-solution is essentially controlled at infinity by that of the fundamental
Oseen solution (see also [9] and [10, Ch.XII]). In particular, using the results of
[27,29], for any D-solution w to (1.1λ) we have

|(w − λe1)i (z)| � M(λ,w)λhi (λz), i = 1, 2 (1.15)

for some constant M(λ,w). Thus, the essence of Lemma 3 is that the dependence

of M onw is removed and a smallness factor | log λ|− 1
2 is achieved when λ is small.

Note, that some uniqueness results concerning the 2d exterior problem were
obtained recently, see, e.g., [15,24,33,34], but in the quite different context and of
quite different nature. Namely, in [24,33,34] it was considered the cases of zero
limit at infinity under additional symmetry and smallness assumptions (including
external force and energy inequality); and in [15] it was considered the case E = R

2

under additional assumptions of type (1.7) and in the presence of external force.
More detailed survey of results concerning boundary value problems for the

stationary NS-system in plane exterior domains can be found, for example, in
[10,13]. The subject is still a source of interest, as evidenced, e.g., by the papers
[14–16].

Now let us describe the main ideas and approaches of our paper. The proof
of Lemma 3 starts with an interesting and very useful result stating that any D-
solutions to (1.1λ) have extra small Dirichlet energy when λ is small:

Dλ =
∫

E
|∇w|2 � Cε2λ2 with ε = 1√| log λ| . (1.16)

The presence of ε is closely related to the Stokes paradox introduced earlier (see
below Remark 10 for more detailed explanation of this fact). Note that similar
logarithmic smallness was proved in [1, Theorem 22] for the Dirichlet energy of
the Stokes solutions in bounded domains.

We now make a crucial observation: outside the critical circle {r � 1
λ
}, pressure

is uniformly small, that is,

|p(z)| � Cελ2

(see Lemma 12). Also, we have to use a very elegant result of Amick [1] stating
that Bernoulli pressure p + w2

2 − λ2

2 is increasing and decreasing along two regular
vorticity level sets (curves) {ω = 0} which are going from ∂E to infinity (see
Lemma 13). The smallness of Dirichlet energy and pressure, along with the help
of Amick’s technique of working with level sets, gives us many initial estimates
concerning the behavior of w outside (and near) the critical circle.

The estimates (1.14) are then considered separately, — inside and outside the
critical circle {r = 1

λ
}. The inequalities inside the critical circle can be obtained by

applying standard technique based on estimates for solutions to the Stokes system
inside disks, and it is a kind of routine (see the Appendix II).
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Outside the critical circle, our circumstance and the techniques developed in
papers [1,12,18,20] allow to prove the uniform pointwise estimate

|w(z) − (λ, 0)| � Cελ (1.17)

(see Section 5, Step 2 ). The last estimates open the possibility to apply the technique
of the Sazonov paper [27] on integral operators associated with the fundamental
solution to the Oseen system in order to prove the estimate

|w(z) − (λ, 0)| � Cελ|λz|− 1
4−δ ∀|z| � 1

λ
,

which coincides with the standard inequality using in the definition of the P R-
solutions. Finally the well-known results of Smith’s classical paper [29] allow
to derive the required estimates (1.14) and to finish the proofs.

The rest of the paper is organized as follows. In Section 2, we introduce some
frequently used notations and lemmas. A brief introduction to two-dimensional
Oseen system is also included. In Section 3, a crucial smallness of Dirichlet energy
is proved which has various interesting consequences. In Sections 4, 5 we prove
pointwise bounds for w inside and outside the critical circle respectively. The final
proof of the main result is summarized at the end of Section 5. For a reader’s
convenience, we moved the proof of the uniform estimates (1.17) (where the subtle
real analysis arguments from [1] are used) into Appendix I.

2. Notations and Preliminaries

2.1. Notational Conventions

We work in the two dimensional setting and z will be a general point with
Cartesian coordinates (x, y) in the plane. By a domain wemean an open connected
set.

Let �r1,r2 := {z : r1 < |z| < r2} and Er := {z : |z| > r}. Sr will stand for the
circle {z : |z| = r} and Br for the open disk {z : |z| < r}. We will often use f̄ (r)

to denote the average of a function f on the circle Sr , that is,

f̄ (r) := 1

2π

∫ 2π

0
f (r, θ)dθ.

We use standard notations for Sobolev spaces W k,q(�), where k ∈ N, q ∈
[1,+∞]. In our proof we do not distinguish the function spaces for scalar valued
or vector valued functions, since it will be clear from the context which one we
mean.
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2.2. Properties of D-Solutions

We present some standard facts about the behavior of general D-functions
(=functions with bounded Dirichlet integral). For the proof of the next Lemma,
see, e.g., section 2 in [18].

Lemma 6. Let f ∈ W 1,2
loc(�) and assume that

D f :=
∫

�r1,r2

|∇ f |2dxdy < ∞

for some ring �r1,r2 = {z ∈ R
2 : 0 < r1 < |z| < r2} ⊂ �. Then we have

| f̄ (r2) − f̄ (r1)| � 1√
2π

(

D f ln
r2
r1

) 1
2

. (2.1)

Further more, if r2 < βr1, then there exists a number r ∈ [r1, r2] such that

sup
|z|=r

| f (z) − f̄ (r)| � Cβ D
1
2
f , (2.2)

with constant Cβ depending on β only.

The circles Sr in Lemma 6 will often be called good circles.
Next, we present an elegant lemma from [12, Theorem 4, page 399] that allows

us to control the direction of the averaged velocity on circles for D-solutions to the
Navier–Stokes equations.

Lemma 7. ([12]) Let w be a D-solution to the Navier–Stokes equations in some
ring �r1,r2 = {z ∈ R

2 : 0 < r1 < |z| < r2}. Denote by w̄ the average of w over the
circle Sr and let ϕ(r) be the argument of the complex number associated with the
vector w̄(r) = (w̄1(r), w̄2(r)), that is, w̄(r) = |w̄(r)| (cosϕ(r), sin ϕ(r)). Assume
also that |w̄(r)| � σ > 0 for some constant σ and for all r ∈ (r1, r2). Then the
estimate

sup
r1<ρ1 � ρ2<r2

|ϕ(ρ2) − ϕ(ρ1)| � 1

4πσ 2

∫

�r1,r2

(
1

r
|∇ω| + |∇w|2

)

(2.3)

holds. Here, ω = ∂2w1 − ∂1w2 is the vorticity.

2.3. The Stokes Estimates

We recall the following classical local regularity estimate for the linear Stokes
system (for the proof, see, for instance, [10, Theorem IV.4.1 and Remark IV.4.1]):
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Lemma 8. Let wS be a local solution in B1 to the Stokes system
{

�wS − ∇ pS = fS,

∇ · wS = 0.
(2.4)

Then there holds the following regularity estimates for k = 0, 1, 2, · · · and 1 <

s < ∞:

‖∇k+2wS‖Ls (B 1
2
) + ‖∇k+1 pS‖Ls (B 1

2
) � C(k, s)

(‖wS‖W 1,s (B1)
+ ‖fS‖W k,s (B1)

)
.

(2.5)

Moreover, the domains B 1
2

can be replaced by B+
1
2

= B 1
2

∩ R
2+ if we assume that

wS = 0 on ∂R2+ ∩ ∂ B+
1
2

. Here R
2+ is the upper half plane {(x, y) : y > 0}.

It follows from this lemma and standard bootstrapping arguments that D-
solutions to (1.1λ) are locally smooth.

2.4. The Oseen System

For convenience of our presentation in Section 5, here we summarize some
known results on the Oseen system (1.12) in two dimensions. The fundamental
solution of the Ossen system (E, e), introduced in [25], consists of a symmetric
tensor of rank two Ei j and a vector e j , such that

�Ei j − ∂1Ei j − ∂i e j = δi jδ0,
∑

i=1,2

∂i Ei j = 0, (2.6)

where i, j = 1, 2 and δ0 is the delta function supported at the origin. Explicitly,
(E, e) are given by

E =
[
∂1(H + L) − L ∂2(H + L)

∂2(H + L) −∂1(H + L)

]

, e = −∇H (2.7)

where �H = δ0 and −�L + ∂1L = δ0. More explicitly, H and L are given by

H = 1

2π
ln r, L = 1

2π
er cos θ/2K0(r/2) (2.8)

where K0 denotes the modified Bessel function of the second kind. Asymptotically,
it holds that

K0(ρ) =
√

π

2

(
1

ρ1/2 + O

(
1

ρ3/2

))

e−ρ (2.9)

as ρ → ∞. As a consequence, E11 exhibits a parabolic wake region {(x, y) :
x � 0, |y| � √

x} in which the decay at infinity is slower than outside. It is also
known that near the singularity of E at z = 0, it holds that

Ei j (z) = − 1

4π

(

δi j ln
1

r
+ zi z j

r2

)

+ o(1) (2.10)
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as r = |z| → 0. Here z1 = x , z2 = y. The Fourier transform of E is given by

Êi j (ξ) = ξiξ j − |ξ |2δi j

|ξ |2(|ξ |2 + iξ1)
. (2.11)

More detailed asymptotic behavior and summability of (E, e) are summarized in
[10, Section VII.3]. Next, we write T(u, p) for the stess tensor

T(u, p) = ∇u + (∇u)ᵀ − pI. (2.12)

It is straightforward to check the following Green identity for the Oseen operator
using integration by parts:

∫

�

(∇ · T(u, p) + ∂1u) · v −
∫

�

(∇ · T(v, q) − ∂1v) · u

=
∫

∂�

v · T(u, p) · n − u · T(v, q) · n + (u · v)(n · e1), (2.13)

for any pairs (u, p), (v, q) such that u, v are smooth solenoidal vector fields and
p, q are smooth scalar functions in �̄. Here n = (n1, n2) is the normal vector of
∂� pointing outward with respect to �. Suppose that (v, q) is a solution to the
forced Oseen system

�v − ∂1v − ∇q = f,

∇ · v = 0,

in a bounded domain�with sufficiently smooth boundary. Using (2.13) for (E(z −
·),−e(z − ·)) and (v, q) we have

v(z) =
∫

�

f(z′)E(z − z′)

−
∫

∂�

v(z′) · Tz(E, e)(z − z′) · n

−
∫

∂�

E(z − z′) · T(v, q)(z′) · n +
∫

∂�

(v(z′) · E(z − z′))(n · e1) (2.14)

for any z ∈ �̄. Here the integrals are taken over the variable z′ and Tz means that
we take derivative in z when definingT. For any D-solutionw to the Navier–Stokes
equations in the exterior domain E tending to the limiting velocity e1 at infinity, the
following representation formula holds in E for v = w − e1:

v(z) = −
∫

E
(v · ∇z′)E(z − z′) · v

−
∫

∂E
v(z′) · Tz(E, e)(z − z′) · n

−
∫

∂E
E(z − z′) · T(v, q)(z′) · n +

∫

∂E
(v(z′) · E(z − z′))(n · w(z′)). (2.15)

In [29], pointwise asymptotic behavior of v is obtained through this representation
formula for solutions of class PR. For more details, we refer to [29, Theorem 5] .
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3. Smallness of DλDλDλ and the Corresponding Estimates for Pressure and
Bernoulli Pressure

From here and for the subsequent three sections, we shall always let w be
an arbitrary D-solution to (1.1λ) with λ > 0.

Unless otherwise specified, we use C, M to denote absolute positive constants,
or positive constants that depend only on ∂E . It is important that they do not depend
on λ. The specific value of such constants may change from line to line.

Denote the total Dirichlet energy of w by Dλ. Using the celebrated reductio ad
absurdum argument of Leray [23] or the Leray-Hopf extension method [17], it is
possible to prove that, for any 0 < λ < �, the apriori bound Dλ < M3(�, ∂E)

holds for some constant M3. It turns out, however, that when λ is small, we can
use a special solenoidal extension of the boundary value in (1.1λ) to prove an extra
smallness of the Dirichlet energy. Note, that such an extension was also used earlier
in [1, Theorem 22] to study the Dirichlet energy of the Stokes solutions in bounded
domains.

The main result of the section is the following lemma:

Lemma 9. There exist constants 0 < λ2 < 1
2 , M2 > 0 depending only on the

geometry of ∂E such that, for 0 < λ < λ2, we have

Dλ =
∫

E
|∇w|2 � M2λ

2

| log λ| . (3.1)

Proof. Let τ ∈ C∞(R) with τ(r) = 0 for r � 1
2 and τ(r) = 1 for r � 1. Define

μ(r) = τ(log r/ log R), so that μ(r) = 0 when r �
√

R. The parameter R � 2 has
to be chosen later. Define a solenoidal vector field A = (A1, A2) by

A1 = ∂y(λyμ(|z|)), A2 = −∂x (λyμ(|z|)).
Such A clearly satisfies the same boundary condition as in (1.1λ). Set w̃ = w−A,
then w̃ = 0 on ∂E and w̃ → 0 at ∞. By (1.1λ), w̃ satisfies the equation

−�w̃ − �A + (w̃ + A) · ∇w̃ + w̃ · ∇A + A · ∇A + ∇ p = 0.

Multiplying this equation by w̃ and integrating in E gives
∫

E
|∇w̃|2 +

∫

E
∇A · ∇w̃ +

∫

E
(w̃ · ∇)A · w̃ +

∫

E
(A · ∇)A · w̃ = 0. (3.2)

(Note that we actually first carry out this energy estimate in E ∩ Bρ and then let
ρ → ∞. Due to the asymptotic behaviour of w at infinity proved in [29, Theorem
5] (see estimates (1.15) from our Remark 5), the boundary integrals on Sρ converge
to 0, thus leading to (3.2).)

The constructed extension A satisfies the pointwise bounds

|A| � Cλ, |∇A|2 � Cλ2

|z|2(log R)2
.
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As a consequence, the Dirichlet energy of A is bounded by

∫

E
|∇A|2 � Cλ2

log R
. (3.3)

The second term in (3.2) can be treated with Hölder’s inequality and (3.3), while
the fourth term in (3.2) is estimated by

−
∫

(A · ∇)A · w̃ =
∫

(A · ∇)w̃ · (A − w∞)

� 1

4

∫

|∇w̃|2 +
∫

r � R
|A|2|A − w∞|2

� 1

4

∫

|∇w̃|2 + Cλ4R2. (3.4)

The use of (3.3) gives a bound for the third term in (3.2),

−
∫

(w̃ · ∇A) · w̃�
(∫

r � R
|w̃|4

) 1
2 (∫

|∇A|2
) 1

2

� Cλ√
log R

(∫

r � R
|w̃|4

) 1
2

� Cλ√
log R

· R2
(∫

|∇w̃|2
)

. (3.5)

In the last step we used the following Sobolev type inequality in �R = BR ∩
E, R � 2 for functions f defined in �R with the property that f vanishes on the
boundary ∂E :

‖ f ‖L4(�R) � C R‖∇ f ‖L2(�R).

This can be easily checked using Sobolev imbeddings for unit disk, scaling, and
the inequality (2.1).

Now we let R = λ−1/4. Choose λ2 < 1
2 sufficiently small such that for any

0 < λ < λ2 we have

C R2λ√
log R

= 2Cλ1/2√| log λ| <
1

4
, λ4R2 = λ3

1
2 <

λ2√
log λ

.

Then, combining the estimates (3.2), (3.3), (3.4), and (3.5), we obtain for 0 < λ <

λ2 that

∫

|∇w̃|2 � Cλ2

| log λ| . (3.6)

Together with (3.3), inequality (3.6) gives the conclusion. ��
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Remark 10. The small factor | log λ|−1 will be essential for our remaining argu-
ments. Its presence is, in some sense, a reflection of the Stokes paradox. For exam-
ple, it guarantees that for any sequence of solutions w(k) to (1.1λ) with λk → 0,
the modified sequence λ−1

k w(k), which is solution to the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�w − λk(w · ∇)w − ∇ p = 0,

∇ · w = 0,

w|∂E = 0,

w(z) → e1 as |z| → ∞,

(3.7)

converges (on every bounded set) to the zero function which is the only D-solution
to the Stokes system (1.1)1,2,3. If, instead of w|∂E = 0 in (1.1λ), one prescribes
a more general boundary condition w|∂E = λa for a general fixed non-constant
function a, then due to [7, Theorem 4.2], one can still construct solutions to the
Navier–Stokes equations when λ is sufficiently small. However, for such solutions
only a weaker bound

∫

E |∇w|2 < M4λ
2 can be obtained, see [7, Lemma 5.2].

Thus the uniqueness (or non-uniqueness) of solutions under such inhomogeneous
boundary conditions among all D-solutions is a more subtle problem, and lies still
beyond the reach of our methods. Nevertheless, when a is a fixed constant vector
on ∂E , the proof of Lemma 9 works by a slight modification in the definition of A.
The rest of our proof (including the uniqueness result) also works in this situation.

Next, using (1.1λ), (3.1), Lemma 8, and standard bootstrapping arguments, we
obtain explicit bounds for w near ∂E , namely, in �3 = E ∩ B3. For simplicity,
we work with infinitely smooth ∂E here. If ∂E has only finite regularity, then the
following estimates near the boundary are valid up to a finite k (nevertheless still
sufficient for the rest of the paper):

Lemma 11. Let w be an arbitrary D-solution to (1.1λ) for some 0 < λ < λ2.

Then ‖w‖Ck (�3)
� C(k, ∂E)D

1
2
λ for any integer k � 0. Moreover, up to the sub-

traction of a suitable constant, the associated pressure p → 0 at infinity and

‖p‖Ck (�3)
� C(k, ∂E)D

1
2
λ for any integer k � 0.7

Proof. The regularity estimate of w is standard. We have used that Dλ is small,

so that D
m
2
λ , m � 2 coming from the nonlinear term are dominated by D

1
2
λ . Let us

explain the last statement. It is proved in [12] that the pressure p has a uniform
limit at infinity which, after the subtraction of a suitable constant, may be taken
as 0. Denote p̄(r) = 1

2π

∫ 2π
0 p(r, θ)dθ . It is shown in [12, Lemma 4.1] that

2π | p̄(r2) − p̄(r1)| �
∫

r>r1
|∇w|2dxdy � Dλ (3.8)

7 Throughout the rest of the paper, we always assume that such subtraction of a constant
has been carried out.
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for any 1� r1 � r2 < ∞. Sending r2 → ∞, (3.8) gives, for any r1 � 1,

| p̄r1 | �
Dλ

2π
. (3.9)

Note that ‖∇ p‖Ck (�3)
� C(k, ∂E)D

1
2
λ follows from (2.5) and bootstrapping argu-

ments. Using (3.9), we get

‖p‖Ck+1(�3)
� C(k, ∂E)(D

1
2
λ + Dλ)

� C(k, ∂E)D
1
2
λ . (3.10)

��
The next lemma plays the crucial role in many estimates near and outside the

critical circle |z| = 1
λ
.

Lemma 12. Let w be an arbitrary D-solution to (1.1λ) for some 0 < λ < λ2. Then
the pressure p can be decomposed as p = p1 + p2 such that

lim
z→∞ p1 = lim

z→∞ p2 = 0, (3.11)

‖p1‖C0 � C Dλ, (3.12)

|p2(z)| � C D
1
2
λ

|z| , ∀|z| � 2. (3.13)

Proof. By equations (1.1λ)1 and (1.1λ)2, the pressure solves the Poisson equation
in E :

�p = −∇w · (∇w)ᵀ. (3.14)

Let p1 be the potential solution to (3.14), that is,

p1(z) = − 1

2π

∫

E
log |z − ζ |(∇w · (∇w)ᵀ)(ζ ) dζ1 dζ2.

By the classical div-curl lemma (see, e.g., [3]), ∇w · (∇w)ᵀ belongs to the Hardy
space H1(R2). Hence, by the Calderón-Zygmund theorem for Hardy spaces [30],
∇2 p1 ∈ L1(R2), and ∇ p ∈ L2(R2). Moreover, p1 ∈ C0(R2) and converges to 0
at infinity. In particular,

sup
R2

|p1| � C‖∇w · (∇w)ᵀ‖H1 � C Dλ. (3.15)

Let p2 = p − p1, a function defined in E . Clearly, p2 is a harmonic function and
satisfies

lim
r→∞ p2 = 0. (3.16)
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By Lemma 11 and (3.15), we have

sup
S1

|p2| � sup
S1

(|p| + |p1|)

� C(D
1
2
λ + Dλ)

� C D
1
2
λ . (3.17)

Since z �→ 1
z is a conformal mapping in the extended complex plane, p2(

1
z ) is

a harmonic function in z ∈ B1 with p2(
1
0 ) = 0. Then by the classical Schwarz

lemma and by estimate (3.17), we have |p2(
1
z )| � C D

1
2
λ |z| for |z| � 1

2 . This proves
(3.13). ��

Let � = |w|2
2 + p be the Bernoulli function. To proceed, we need an ele-

gent observation made by Amick [1] for a general D-solution w to (1.1λ)1,2,3 in
E . This result concerns topological behaviour of certain level sets of the vorticity
ω = ∂2w1−∂1w2. Namely, Amick proved that there exist finitely many distinct un-
bounded connected components of the set {z ∈ E : ω(z) �= 0}. These components
are denoted by V+ and V− in his paper [1]. Each V+ and V− is a simply-connected
domain not separated from ∂E , essentially due to themaximumprinciple forω. Then
one may take the two unbounded components of ∂V+ for some V+ as Ci , i = 1, 2,
so that the statements in the following lemma are satisfied:

Lemma 13. (See [1] Theorem 11) For any D-solution w to (1.1λ), there ex-
ist two unbounded continuous curves Ci , parametrized by arc length as Ci =
{(xi (s), yi (s) : s ∈ (0,∞))}, i = 1, 2. The functions xi (·) and yi (·) are real-
analytic on (0,∞) except possibly at isolated points, and they satisfy (xi (0), yi (0))
∈ {|z| = 1} and |(xi (s), yi (s))| → ∞ as s → ∞. The vorticity ω vanishes on these
two curves. Moreover, the maps s → �(xi (s), yi (s)) are monotone decreasing and
increasing in s ∈ (0,∞) respectively for i = 1, 2.

Two immediate consequences of Lemma 13 and the known fact that � → λ2

2
at infinity are as follows: for any r � 1 we have

max|z|=r
�(z)� λ2

2
, (3.18)

and

min|z|=r
�(z)� λ2

2
. (3.19)

Hence, using Lemma 12, for any r = |z| � λ−1, it holds that

max|z|=r
|w|2 � λ2 − CλD

1
2
λ , (3.20)



1502 M. Korobkov & X. Ren

and

min|z|=r
|w|2 � λ2 + CλD

1
2
λ (3.21)

for arbitrary D-solution w to (1.1λ) with 0 < λ < λ2.
Due toLemma6, there exists a sequenceof “good” radii Rn ∈ [2nλ−1, 2n+1λ−1)

for n = −4,−3, · · · , 1, 2, · · · , such that

|w(Rn, θ) − w̄(Rn)| � C D
1
2
λ (3.22)

for all 0� θ < 2π . From (3.20), (3.21) and by the triangle inequality we obtain

∣
∣|w̄(Rn)| − λ

∣
∣� C D

1
2
λ . (3.23)

Hence, by (2.1) of Lemma 6, we have

∣
∣
∣|w̄(r)| − λ

∣
∣
∣� C D

1
2
λ (3.24)

for any r � 1
16λ . When λ is sufficiently small, this implies, in particular, that

|w̄(r)| � λ

2
. (3.25)

In order to use Lemma 7 to control the direction of the vector w̄, below we need to
establish some suitable estimates for w in the region r � λ−1.

Lemma 14. Let w be an arbitrary D-solution to (1.1λ) with 0 < λ < min{λ2, 1
16 }.

Then the estimate |w| � Cλ holds for all r � (8λ)−1.

Proof. By Lemma 12, we have |p| � Cλ2| log λ|− 1
2 for r � (16λ)−1. According to

the estimates (3.1) and (3.22), (3.23), we obtain

�� Cλ2 (3.26)

on the good circle SR−4 . Recall, that � satisfies the classical identity

�� = ω2 + w · ∇�.

Therefore, from the maximum principle for � and from the convergence � → λ2

2
at infinity, we obtain�� Cλ2 in the region r � R−4. Combinedwith thementioned
estimate of p, this clearly implies |w| < Cλ in the region r � (8λ)−1. ��

Lemma 15. Let w be as in Lemma 14, then
∫

E\B
(4λ)−1

r |∇ω|2 dxdy � CλDλ.
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Proof. Let ρ∗ ∈ ((8λ)−1, (4λ)−1) to be chosen later. The classical vorticity equa-
tion �ω = w · ∇ω implies the identity

div (rω∇ω) = r |∇ω|2 + ω∂rω − (w · er )
ω2

2
+ div

(
rw

ω2

2

)
. (3.27)

Then we have the energy estimate

∫

r � ρ∗
r |∇ω|2dxdy +

∫

r � ρ∗
ω∂rω dxdy −

∫

r � ρ∗
(w · er )

ω2

2
dxdy

+ ρ∗
∫

Sρ∗
∂r

ω2

2
ds − ρ∗

∫

Sρ∗
(w · er )

ω2

2
ds = 0. (3.28)

(Strictly speaking, to obtain the last formula, we have to integrate (3.27) on bounded
domains Bρ \ Bρ∗ first and then let ρ → +∞, that is, the outer boundary goes to
infinity. Using boundedness of Dirichlet energy of w, it can be easily checked that
the boundary terms on large circles |z| = ρ disappear, at least for a sequence of
radii going to infinity.)

The second term in (3.28) can be treated using Hölder’s inequality as follows:
∣
∣
∣
∣
∣

∫

r � ρ∗
ω∂rω dxdy

∣
∣
∣
∣
∣
� 1

2ρ∗

∫

r � ρ∗
ω2 dxdy + ρ∗

2

∫

r � ρ∗
|∂rω|2 dxdy

� Dλ

ρ∗
+ 1

2

∫

r � ρ∗
r |∇ω|2.

The third term on the left of (3.28) is controlled by CλDλ since by Lemma 14
|w| � Cλ holds true in E\B(8λ)−1 . Hence, we just need to treat the boundary terms.
Using

∫

r � ρ

ω2dx dy =
∞∫

ρ

dr

(∫

Sr

ω2ds

)

� 2Dλ

(with ds := rdθ ), it is easy to show that there exists a ρ∗ ∈ ((8λ)−1, (4λ)−1) such
that

∫

Sρ∗
ω2ds � CλDλ, −

[

∂r

∫

Sr

ω2ds

]

r=ρ∗
� Cλ2Dλ (3.29)

for some constant C . Then (3.29) and Lemma 14 together imply that

− ρ∗
∫

Sρ∗
∂r

ω2

2
ds � CλDλ, ρ∗

∫

Sρ∗
(w · er )

ω2

2
ds � CλDλ. (3.30)

Hence, from (3.28) we deduced
∫

r � ρ∗ r |∇ω|2 dxdy � CλDλ for such ρ∗. This
proves the lemma. ��
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Using (3.25) and Lemma 7 with σ = λ
2 , as well as the assumed convergence

w → λe1 at infinity, we have

|ϕ(r)| � C

λ2

∫

E\B
(4λ)−1

(
1

r
|∇ω| + |∇w|2

)

dxdy

for any r � 1
4λ . Here ϕ(r) is the angle of w̄(r). FromLemma 15, and using Hölder’s

inequality, we obtain

|ϕ(r)|� C

λ2

∫

E\B
(4λ)−1

(
μ

r3
+ μ−1r |∇ω|2 + |∇w|2

)

� C

(
μ

λ
+ Dλ

μλ
+ Dλ

λ2

)

� C
D

1
2
λ

λ

for any r � 1
4λ (takingμ = D

1
2
λ in the penultimate inequality). Together with (3.24),

this implies that

|w̄(r) − λe1| � C D
1
2
λ (3.31)

for all r � 1
4λ . By (3.22), we immediately have that

|w − λe1| � C D
1
2
λ (3.32)

on SRn for n = −2,−1, · · · . These estimates on the good circles SRn will play
important roles in the next two sections.

4. Pointwise estimates inside the critical circle (Stokes regime)

Letw be an arbitrary solution to (1.1λ) with 0 < λ < min{λ2, 1
16 } so that all the

bounds in Section 3 are valid. In the present section the pointwise upper estimates
for |w−λe1|will be derived within the bounded region {r � λ−1}∩E . They imply,
in particular, that the required crucial estimates (1.14) are valid in this region.

We prove the following:

Lemma 16. The inequality |w(z)−λe1| � C D
1
2
λ

(
log 2

λr

) 1
2 holds for all z ∈ {r � λ−1}

∩ E .

The method here is quite standard. It is based on the inequality (3.31) and
accurate direct applications of linear Stokes estimates introduced in Section 2.3.
The proof on Lemma 16 contains no surprising methods or ideas, and the reader
can omit it on the first reading. So we moved this proof to the Appendix II.

The combination of Lemmas 16, 14 immediately implies

Corollary 17. |w| � Cλ throughout E .
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5. Pointwise Estimates Outside the Critical Circle (Oseen Regime)

We assume 0 < λ < min{λ2, 1
16 } so that the estimates in Sections 3, 4 are valid.

In this section, we prove the required decay estimates (1.14) for |w − λe1| in the
unbounded region r � λ−1.

To make some notations simpler, we define a rescaled Navier–Stokes solution
u(z) = λ−1w(λ−1z), q(z) = λ−2 p(λ−1z) in the rescaled domain λE . Let

v = u − e1 and ε = | log λ|− 1
2 .

As usual, the components of u, v will be denoted by ui , vi , i = 1, 2.

Lemma 18. There exists a constant 0 < λ3 < min{λ2, 1
16 }, such that when 0 <

λ < λ3, there holds |vi (z)| � Cεhi (z) in |z| � 1, i = 1, 2.

Here the majorant functions hi (ξ) are the same as in Theorem 1, that is,

|ξ | > 1 :
{

h1(ξ) = |ξ |− 1
2

h2(ξ) = |ξ |− 3
4 .

Proof. With slight abuse of notation, in this proof, we still denote the Bernoulli

function for u by � = |u2|
2 + q, and denote the vorticity by ω = ∂2u1 − ∂1u2.

Hence � and ω here are different from those in previous sections. Define the
stream functionψ for u in λE by the relation∇ψ = u⊥ = (−u2, u1). In particular,
we have

ω = �ψ.

For definiteness, put ψ(1, 0) = 0.
Let

γ = � − ωψ.

It is known that γ satisfies the two-sided maximum principle [1]. Now we divide
the proof into a few steps.
Step 1: preparations. For convenience, in this step we collect and list some crucial
information that we know on u in the region {r � 1

4 }. By (3.1) we have
∫

λE
|∇u|2dxdy � Cε2. (5.1)

Further more, by Lemma 15 we obtain
∫

r � 1
4

r |∇ω|2dxdy � Cε2. (5.2)

As a consequence
∫

Sr1
|∂θω|2 � Cε2 for some 1

4 < r1 < 1
2 . Then by virtue of

Newton–Leibniz formula, since ω changes sign on any circle surrounding the ori-
gin (see [1]), we get |ω| � Cε on Sr1 . Using convergence ω → 0 at infinity and the
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two-sided maximum principle again, we have |ω| � Cε in r � r1. By Lemma 12,
the pressure satisfies the inequality

|q| � Cε (5.3)

in r � 1
8 . By the discussion on good circles SRn in Section 3, in particular (3.32),

we have a sequence of radii rn = λRn ∈ [2n, 2n+1), n = −2,−1, · · · , 1, 2, · · ·
such that

|u − e1| � Cε on every Srn . (5.4)

Combining (5.3) and (5.4), we get |�− 1
2 | � Cε on Sr−2 . By Corollary 17, we have

|u| � C (5.5)

in λE . Due to the definition ofψ , we have also |ψ | � C in� 1
4 ,4. Since γ = �−ωψ ,

on Sr−2 we obtain |γ − 1
2 | � |� − 1

2 | + |ωψ | � Cε. It is proved in [1, Theorem
14(b)] that γ → 1

2 . By the two-sided maximum principle of γ , we find that

|γ − 1

2
| � Cε (5.6)

for any r � r−2. We also point out here that by (5.1), (5.5) and the local regularity
theory of Lemma 8, we have the pointwise control on derivatives

|∇u|, |∇2u| � Cε (5.7)

in r � 1
4 .

Step 2: pointwise smallness of v. In E1, we claim that

|v| � Cε. (5.8)

The proof of this claim is essentially based on the classical works [1,12], and on
the recent work [18]. In [1], Amick proved that the absolute value |u| is close to
the limiting value 1 using the smallness of three quantities: the Dirichlet energy,
|γ − 1

2 |, and the pressure. We refer to the proof of Theorem 21(a) in [1] for details.
In our situation, such smallness is evidently provided by (5.1)–(5.6). Further, in
[18, Lemma 3.3(ii)] Korobkov et al. proved the smallness of |v| = |u − e1| using
Amick’s result and the additional observation that the angle of velocity is also under
control.

In our situation, we have to modify some of the arguments in [1] so that the
smallness factor ε can be fully preserved. The complete proof of (5.8) is presented in
ourAppendix I. In fact,many technicalmoments ofAmick’s proof can be simplified
using [18, Remark 4.1].
Step 3: summability of v. For this step, we mainly use the potential estimates for
Oseen system which are developed in [27, Lemmas 1–2] by L.I.Sazonov (see also
[9], [28] ). As will be shown, the pointwise smallness of v and the smallness of
Dirichlet energy together are sufficient to control certain Lebesgue norms of v in
the exterior domain by the regularity estimates near the boundary.
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We write Eρ = {r � ρ} and write Ei = (E1i , E2i ), i = 1, 2, where Ei j is the
Oseen tensor introduced in Section 2.4. Using (2.15) in the domain E1 and applying
suitable integration by parts (and using ∂1v1 + ∂2v2 = 0), we obtain

v2(z) =
∫

E1
(v1∂2E12 − v1∂1E22 − v2∂2E22 + 2∂2v1 E12)v2

−
∫

S1
(v21n1 + 2v1v2n2)E12 −

∫

S1
v(z′) · Tz(E2, e2)(z − z′) · n

−
∫

S1
E2(z − z′) · T(v, q)(z′) · n +

∫

S1
(v(z′) · E2(z − z′))(n · u(z′))

=: A2(z) + B2(z). (5.9)

Here A2 and B2 stand for the area integrals and the boundary integrals respectively.
The area integrals are taken over the variable z′. Note that Ei j appearing in the
integrals should be understood as Ei j (z − z′) and the derivatives on Ei j act on the
variable z′. For representation of v1, we simply use (2.15) without integration by
parts to get

v1(z) = −
∫

E1
(v1∂1E11 + v2∂1E21 + v2∂2E11)v1 + v22∂2E21

−
∫

S1
v(z′) · Tz(E1, e1)(z − z′) · n

−
∫

S1
E1(z − z′) · T(v, q)(z′) · n +

∫

S1
(v(z′) · E1(z − z′))(n · u(z′))

=: A1(z) + B1(z). (5.10)

As before, A1 stands for the area integrals and B1 stands for the boundary integrals.
Of course, the key issue here is to estimate the area integrals, because decay of

boundary integrals outside the unit disk can be estimated relatively easily (using
the uniform smallness of v).

Let us recall some estimates of E. By the exact form of E and the asymptotic
of K0 at infinity (see Section 2.4), we have

E11 ∈ L3,∞ ∩ L3+δ,

E12 = E21, E22 ∈ L2,∞ ∩ L2+δ

in R2 for any finite δ > 0, and

∂2E11 ∈ L
3
2 ,∞

in R2. Here Ls,∞ is the weak Ls-space. Moreover, by the Fourier transform (2.11)
of E and by the Mikhlin multiplier theorem (see, e.g., [30, ChapterVI,§4–5]) we
have

‖∂k Ei j ∗ f ‖Ls (R2) � Cs ‖ f ‖Ls (R2)
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for any f ∈ Ls(R2), 1 < s < ∞, (i, j, k) �= (1, 1, 2).8 It is also known that
v1 ∈ L3+δ(E1) and v2 ∈ L2+δ(E1) for any δ > 0 by the estimates (1.15). With
the above bounds, using weak Young inequality for convolutions (see, e.g., [22,
Section 4.3]), we deduce from (5.9) that

‖v2‖Ls (E1) � ‖A2‖Ls (E1) + ‖B2‖Ls (�1,2) + ‖B2‖Ls (E2)
� 2‖A2‖Ls (E1) + ‖v2‖Ls (�1,2) + ‖B2‖Ls (E2)
� Cs

(‖v‖L∞(E1) + ‖∂2v1‖L2(E1)
) ‖v2‖Ls (E1)

+ ‖v2‖Ls (�1,2) + ‖B2‖Ls (E2) (5.11)

for any 2 < s < ∞. Using information from Step 1 and Step 2, we have

‖v‖L∞(E1) + ‖∂2v1‖L2(E1) � Cε

and

‖v2‖Ls (�1,2) + ‖B2‖Ls (E2) � C‖v‖C1(� 1
2 ,2

) + ‖q‖L∞(� 1
2 ,2

) � Csε

for any 2 < s < ∞. Hence, when ε is sufficiently small (depending on the choice
of s), or equivalently, when λ is sufficiently small, we obtain from (5.11) that

‖v2‖Ls (E1) � Csε (5.12)

for any 2 < s < ∞. Similarly, using (5.10), we have

‖v1‖Lm (E1) � ‖A1‖Lm (E1) + ‖B1‖Lm (�1,2) + ‖B1‖Lm (E2)
� 2‖A1‖Lm (E1) + ‖v1‖Lm (�1,2) + ‖B1‖Lm (E2)
� Cm

(‖v‖L∞(E1) + ‖v2‖L3(E1)
) ‖v1‖Lm (E1) + Cm‖v2‖2L2m (E1)

+ ‖v1‖Lm (�1,2) + ‖B2‖Lm (E2) (5.13)

for any 3 < m < ∞. Using (5.12) and similar arguments as those for v2, we deduce

‖v1‖Lm (E1) � Cmε (5.14)

for any 3 < m < ∞, when λ is sufficiently small (depending on the choice of m).
Step 4: pointwise decay of v. First, we prove a pointwise decay estimate for
vorticity using an idea of Gilbarg and Weinberger [12]. By Hölder’s inequality,

∫ ∞

1

dr

r

∫ 2π

0
|∂θ (r

3
2 ω2)|dθ = 2

∫

E1
r− 1

2 |ω∂θω|dx dy

�
∫

E1
ω2dx dy +

∫

E1
r |∇ω|2dx dy

� Cε2.

8 Similar facts concerning the integrability of Ei j are collected in [27, §2–3].
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Hence, for each n = 0, 1, 2, · · · , there exists r ∈ [2n, 2n+1) such that
∫ 2π

0
|∂θ (r

3
2 ω2)|dθ � Cε2.

Recall that there are two curves λCi , i = 1, 2 with Ci given by Lemma 13 such
that ω vanishes on them. Evidently, Sr intersects λCi for any r � 1. Hence, for
r ∈ [2n, 2n+1) given above, we have

r
3
4 max

Sr
|ω| � Cε. (5.15)

By the two-sided maximum principle for ω, the above estimate holds for any r � 2.
For any disk Bρ(z) ⊂ E , the following standard identity holds:

v(z) = 1

2π

∫

∂ Bρ(z)

v(ζ )

ρ
ds − 1

2π

∫

Bρ(z)

ω(ζ )(z − ζ )⊥

|z − ζ |2 dζ.

Here (z − ζ )⊥ = (−(z2 − ζ2), z1 − ζ1) ∈ R
2. By virtue of this identity, following

[27, Section 5], using ‖v‖Lm (r � 1) � Cmε, m > 3 from Step 3, and (5.15), we
immediately reach the pointwise bound

|v(z)| � Cδε r− 3
10+δ (5.16)

in E1 for any δ > 0 (when λ is sufficiently small). Choose and fix a small δ such
that 3

10 − δ > 1
4 . Now the meaning of “λ being sufficiently small” in Step 3 is also

fixed.
Next, we use the representation formula (2.15) in E1 again to get

v(z) = −
∫

E1
(v · ∇z′)E(z − z′) · v

−
∫

S1
v(z′) · Tz(E, e)(z − z′) · n

−
∫

S1
E(z − z′) · T(v, p)(z′) · n +

∫

S1
(v(z′) · E(z − z′))(n · u(z′))

=: N + L. (5.17)

Here L are the sum of all boundary integrals and N is the area integral. By the
asymptotic form of E, we have

|Li | � Cεhi (z) (5.18)

in r � 2. It is easy to check that |N| � Cε2 in � 1
2 ,2. Hence |L| � |v| + |N| � Cε in

�1,2, and as a consequence, (5.18) holds in r � 1.
Now it remains to estimate the second term N in (5.17) (area integrals). This

can be done using Lemmas 1 and 2 from the classical Smith paper [29, p.361].
These lemmas give some self-improving estimates for termN, that is, if we assume
a priori that v has the uniform decay of type (5.16), then a posteriori N has better
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decay, etc. So we can use these two lemmas (with parameter σ = 0 there) finitely
many times to improve the bound (5.16) untilN is shown to be decaying faster than
the right of (5.18). This concludes the proof of Lemma 18. ��

Now we are ready to give the

Proof of Lemma 3. Lemma 18 implies that, when λ is sufficiently small,

|(w(z) − λe1)i (z)| � C | log λ|− 1
2 λhi (λz), i = 1, 2

in the exterior region Eλ−1 = {z : r � λ−1}. By Lemmas 16 and 9, the above
also holds true in the bounded region {z : r � λ−1} ∩ E (with a different positive
constant C). Hence, (1.14) holds throughout E for some positive constant M1. It

remains to take λ sufficiently small so that M1| log λ|− 1
2 � ε0 where ε0 is given by

Theorem 1.
��

Now the assertion of the main Theorem 2 follows immediately from Lemma 3
and from the conditional uniqueness result in Finn–Smith Theorem 1. The proof is
finished.
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A. Appendix I

Proof of Step 2. In this section we discuss the proof of the uniform pointwise esti-
mate (5.8), that is,

|u − (1, 0)| = |v| � Cε

for r � 1.
Step 2a. First of all, consider the “good” cone

K±y =
{

r � 1, |θ | ∈ (1

5
π,

4

5
π

)
}

,

which is separated from the x-axis. Here one can simply follow the proof of [1,
Theorem 19]. The key observation is that |ψ | � cr > 0 in such a cone, and this
fact, by virtue of smallness, gives

|� − 1

2
| � Cε, |γ − 1

2
| = |� − 1

2
− ωψ | � Cε
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on good circles and by maximum principle for ω, implies |ω| � Cεr−1 in K±y ,
which easily gives the required smallness |u − (1, 0)| � Cε here.
Now consider the more complicated region

{
r � 1, |θ | � 1

5
π

}
.

Here the previous estimate |ω| � Cεr−1 does not hold in general, so the arguments
should be more delicate and subtle. The main ideas here are due to Amick [1] and
Korobkov et al. [18, Remark 4.1].
Step 2b. We are going to use the uniform smallness of γ -function

∣
∣γ − 1

2

∣
∣ = ∣

∣� − 1

2
− ωψ

∣
∣� Cε

and the level sets of the stream function ψ . On the first step here we show that the
set C = {r � 1

2 , ψ = 0} consists of exactly two smooth curves C±. Indeed, from
Step 1, we know that

|ψ − y| � Cε (A.1)

in � 1
2 ,2. Using (5.1), there exists an angle θ1 ∈ [ π

10 ,
π
5 ) such that

+∞∫

1/4

|∂ru(r, θ)|2rdr � Cε2

for θ = θ1,−θ1, π − θ1,−π + θ1. Hence, for such θ ,

∫ rn+1

rn

|∂ru(r, θ)|dr � Cε

(∫ rn+1

rn

dr

r

) 1
2

,

� Cε

with rn, n = −2,−1, · · · given in Step 1. In view of (5.4), we obtain

|v(r, θ)| � Cε

for any r � 1
2 and θ = θ1,−θ1, π − θ1,−π + θ1. By the definition of ψ and (A.1),

we have

|ψ − y| � Cεr (A.2)

pointwise on the set

N := (∪n � −2Srn

) ∪ {
r � 1

2
, θ = θ1,−θ1, π − θ1,−π + θ1

}
. (A.3)

When λ is small, this implies that C must intersect N within the cone K :=
{r � 1

2 , |θ | < π
10 or |π−θ | < π

10 }.Moreover, by (5.4), C intersects each Srn , n � −2
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at exactly two points, one with x > 0 and another with x < 0. On the level set C
we have

∣
∣
∣
|u|2
2 − 1

2

∣
∣
∣ = |γ − 1

2 − q| � Cε (see (5.3), (5.6) ), hence

∣
∣
∣|u| − 1

∣
∣
∣ � Cε on C. (A.4)

As a consequence, |∇ψ | = |u| �= 0 on the set C, that is, C is a regular curve in the
case when λ is small.
Further, when λ is small, C cannot contain any closed curve L by an elegent idea
of Amick’s. To explain this, suppose C contains a closed curve L. Let U denote the
domain bounded by L, then

(∫

U
ω2 dxdy

) 1
2 |U | 12 �

∣
∣
∣
∣

∫

U
ω dxdy

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

U
�ψ dxdy

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

L
∂nψ ds

∣
∣
∣
∣ =

=
∫

L
|∇ψ | ds =

∫

L
|u| ds

(A.4)

� 1

2
|L|.

(Note, that onL one of the identities ∂nψ ≡ |∇ψ | or ∂nψ ≡ −|∇ψ | holds, because
L is regular closed level set of ψ .) This implies

|L| � Cε|U | 12 ,

which contradicts with the isoperimetric inequality when ε is small. Hence C must
consist of two smooth curves starting from r = 1

2 and extending to infinity, each
contained inK∩{x > 0} andK∩{x < 0} respectively. We denote these two curves
by C±.
Step 2c. Here we show that

|v| � Cε along C±. (A.5)

Take any point z ∈ C+ (C− would be similar) with r = |z| � 1. By Lemma 6, there
exist good circles Sr̃n centered at z with r̃n ∈ [2−n−1r, 2−nr), n = 1, 2, · · · , such
that

|u − ū(n)| � Cε on Sr̃n .

Here ū(n) is the average of u on Sr̃n . Since Sr̃n must intersect C+ and on C+ the
inequality (A.4) holds, we obtain

∣
∣
∣|ū(n)| − 1

∣
∣
∣ � Cε

on each Sr̃n . From this, (2.1) of Lemma 6 implies

∣
∣
∣|ū(ρ)| − 1

∣
∣
∣ � Cε,
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where ū(ρ) is the mean value of u on circles Sρ(z) centered at z with radius ρ � r
2 .

Let ϕ(n) be the angle of ū(n). By Lemma 7, we have, for any n, m � 1,

|ϕ(n) − ϕ(m)| � C
∫

|ζ−z| � r
2

|∇ω|
|ζ − z| + |∇u|2 dζ1dζ2

� C

(∫

1� |ζ−z| � r
2

|∇ω|
|ζ − z|dζ1dζ2

)

(A.6)

+ C

(∫

|ζ−z| � 1

|∇ω|
|ζ − z|dζ1dζ2

)

+ Cε2

� Cε. (A.7)

In this last line we have used (5.2) and (5.7) for the first and second terms in the
penultimate inequality respectively. By construction, the circle Sr̃1 must intersect
the set N (see (A.3) ) on which |v| � Cε. Hence, |ū(1) − e1| � Cε. Letting n =
1, m → ∞ in (A.6), and using (A.4), we get |v(z)| � Cε. Note that this implies
that the slope of C± is small.
Step 2d. Now take arbitrary point z1 = (x1, y1) ∈ {r � 1, |θ | < π

5 , x > 0} (the
case x < 0, |π − θ | < π

5 is similar) and show that

|v(z1)| � Cε.

Let z2 = (x1, y2) ∈ C+. To simplify notations, let’s change the coordinate system,
namely, let’s move the coordinate origin to the point z2, so now

z2 = (x1, y2) = (0, 0) ∈ C+, z1 = (x1, y1) = (0, y1).

Consider the case y1 > 0, that is, when the point z1 is above the C+ curve, so that
ψ(z1) > 0 (the opposite case y1 < 0 case is quite similar). Let

R = y1.

Using Lemma 6, we find two good circles SR1(z1) and SR2(z2) centered at z1 and
z2 respectively, with radii

R1, R2 ∈ (2R

3
,
3R

4

)
.

Clearly,

SR1(z1) ∩ SR2(z2) �= ∅ �= C+ ∩ SR2(z2).

As a result, on both SR1(z1) and SR2(z2) we have

|v| � Cε. (A.8)

Note that ψ = 0 on C+. We can integrate ∇(ψ − y) = v⊥ starting from z2 ∈ C+
along arcs ofC+, SR2(z2) and SR1(z1). This process gives |ψ−y| � CεR on SR1(z1).
As a consequence, by virtue of the evident inequalities

1

4
R � min

(x,y)∈SR1 (z1)
y < max

(x,y)∈SR1 (z1)
y <

7

4
R,
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we have
∣
∣
∣
∣
ψ

y
− 1

∣
∣
∣
∣ � Cε (A.9)

on SR1(z1) = ∂ BR1(z1).
Now we are going to prove that the last estimate is valid not only for boundary
circle SR1(z1), but for all points of the disk BR1(z1). Recall that

|γ − q − 1

2
| =

∣
∣
∣
∣
|∇ψ |2

2
− ψ�ψ − 1

2

∣
∣
∣
∣ � Cε (A.10)

pointwisely holds in the region {r � 1} (see (5.3), (5.6) ). Denote ψ = y(1 + S) in
BR1(z1). Since C+ ∩ BR1(z1) = ∅ andψ is positive on BR1(z1), by construction we
have that the values (1+ S) are positive on BR1(z1) as well. Assume at the moment,
that S has positive maximum at the interior point of the disk BR1(z1). Then at this
maximum point ∇S = 0 and �S � 0, therefore,

|∇ψ |2 − 2ψ�ψ = (1 + S)2 − 2ψy�S � (1 + S)2,

which, by virtue of (A.10), implies (1 + S)2 � 1 + Cε, and consequently,

S � Cε

at any maximum point of S inside the disk BR1(z1). Similarly, a consideration for
the negative minimal points of S gives S � −Cε. Hence, taking into account (A.9),
we have proved

∣
∣
∣
∣
ψ

y
− 1

∣
∣
∣
∣ � Cε (A.11)

in BR1(z1). In particular,

|ψ − y| � CεR in BR1(z1).

Next, one observes that

�(
√

ψ − √
y) = 2ψ�ψ − |∇ψ |2

4ψ
3
2

+ 1

4y
3
2

.

Hence, using (A.10) and (A.11), we get

|�(
√

ψ − √
y)| � Cεy− 3

2 � CεR− 3
2 (A.12)

in the disc BR1(z1). On the other hand, (A.11) implies

|√ψ − √
y| � CεR

1
2 (A.13)

in BR1(z1). Now, applying the standard estimates for Laplac operator in the unit
disk and scaling to the function

√
ψ − √

y with (A.12)–(A.13), we obtain

|∇(
√

ψ − √
y)| � CεR− 1

2

inside 1
2 BR1(z1), that implies the required estimate |∇ψ(z1)−e⊥

1 | = |u−e1| � Cε,
see [1, Proof of Theorem 27, page 118].

��
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B. Appendix II

Proof of Lemma 16. Let wr = w · er be the radial component of w. We need the
following classical inequality:

d

dr

∫ 2π

0
|w(r, θ) − w̄(r)|2dθ =

∫ 2π

0
2wr · (w − w̄(r))dθ

�
∫ 2π

0

[

r |wr |2 + |w − w̄(r)|2
r

]

dθ

�
∫ 2π

0
|∇w|2rdθ. (B.1)

By our assumption on the domain E , we have {r � 1} ⊂ E . By integrating (B.1)
on the interval [r,∞), and using the fact that w → λe1 uniformly at infinity, we
obtain

∫ 2π

0
|w(r, θ) − w̄(r)|2dθ � Dλ (B.2)

for any r � 1. By (2.1) and (3.31), for 1� r � 3
2λ

−1, we have

|w̄(r) − λe1| � |w̄(r) − w̄(R1)| + |w̄(R1) − λe1|

� C D
1
2
λ

(

log
2

λr

) 1
2 + C D

1
2
λ � 2C D

1
2
λ

(

log
2

λr

) 1
2

. (B.3)

Herewe have used that log R1
r � log 4

λr � C log 2
λr and log

2
λr � c for any r � 3

2λ
−1,

for some absolute positive constants c, C . Combining (B.2) and (B.3), we obtain

∫ 2π

0
|w − λe1|2dθ � 2

∫ 2π

0
|w − w̄|2dθ + 2

∫ 2π

0
|w̄ − λe1|2dθ

� 2Dλ + C Dλ log
2

λr

� C Dλ log
2

λr

for 1� r � 3
2λ

−1. Integrating the above in r with respect to the measure rdr gives

∫

� 1
2 r, 32 r

|w − λe1|2 dxdy � Cr2Dλ log
2

λr
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for any 2� r � λ−1. (Recall our notation �r1,r2 := {z : r1 < |z| < r2}.) Now we
use Ladyzhenskaya’s inequality to obtain

∫

� 2
3 r, 43 r

|w − λe1|4 dxdy � C
∫

� 1
2 r, 32 r

|w − λe1|2 dxdy
( ∫

� 1
2 r, 32 r

|∇w|2 dxdy

+ 1

r2

∫

� 1
2 r, 32 r

|w − λe1|2 dxdy
)

� Cr2D2
λ

(

log
2

λr

)2

(B.4)

for any 2� r � λ−1. By Hölder’s inequality and (B.4), we have

∫

� 2
3 r, 43 r

|w · ∇w| 43 dxdy �

⎛

⎝

∫

� 2
3 r, 43 r

|w|4 dxdy

⎞

⎠

1
3
⎛

⎝

∫

� 2
3 r, 43 r

|∇w|2 dxdy

⎞

⎠

2
3

�

⎛

⎝

∫

� 2
3 r, 43 r

|w − λe1|4 dxdy

⎞

⎠

1
3
⎛

⎝

∫

� 2
3 r, 43 r

|∇w|2 dxdy

⎞

⎠

2
3

+
⎛

⎝

∫

� 2
3 r, 43 r

λ4 dxdy

⎞

⎠

1
3
⎛

⎝

∫

� 2
3 r, 43 r

|∇w|2 dxdy

⎞

⎠

2
3

� Cr
2
3 D

4
3
λ

(

log
2

λr

) 2
3 + Cr

2
3 λ

4
3 D

2
3
λ

� Cr
2
3 λ

4
3 D

2
3
λ max

{

| log λ|− 2
3

(

log
2

λr

) 2
3

, 1

}

� Cr
2
3 λ

4
3 D

2
3
λ (B.5)

for any 2� r � λ−1. Local regularity theory for Stokes system as shown in Sec-
tion 2.3 yields the estimate

‖∇2w‖
L

4
3 (� 3

4 r, 54 r
)
� C

( 1

r2
‖w − λe1‖

L
4
3 (� 2

3 r, 43 r
)
+ 1

r
‖∇w‖

L
4
3 (� 2

3 r, 43 r
)

+ ‖w · ∇w‖
L

4
3 (� 2

3 r, 43 r
)

)

whereC is independent of r . Applying (B.4), (3.1) and (B.5) to the above inequality,
we obtain

‖∇2w‖
L

4
3 (� 3

4 r, 54 r
)
� Cr− 1

2 D
1
2
λ

(

log
2

λr

) 1
2
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for any 2� r � λ−1, which clearly implies

‖∇2w‖L1(� 3
4 r, 54 r

) � C D
1
2
λ

(

log
2

λr

) 1
2

.

Now, Sobolev space theory (see, e.g., [2, Lemma 4.3] ) gives the following bound
for the variation of w:

diamw(� 3
4 r, 54 r )� C

(
‖∇w‖L2(� 3

4 r, 54 r
) + ‖∇2w‖L1(� 3

4 r, 54 r
)

)

� C D
1
2
λ

(

log
2

λr

) 1
2

, (B.6)

for any 2� r � λ−1. Together with (B.3), (B.6) gives the desired bound

|w(z) − λe1| � C D
1
2
λ

(

log
2

λr

) 1
2

(B.7)

in the region 2� r � λ−1. To finish the proof, we point out that for the region
{r � 2} ∩ E , due to Lemma 11, (B.7) also holds true. ��
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