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Abstract

We provide a new analysis of the Boltzmann equation with a constant collision
kernel in two space dimensions. The scaling-critical Lebesgue space is L2

x,v; we
prove the global well-posedness and a version of scattering, assuming that the data
f0 is sufficiently smooth and localized, and the L2

x,v norm of f0 is sufficiently small.
The proof relies upon a new scaling-critical bilinear spacetime estimate for the
collision “gain” term in Boltzmann’s equation, combined with a novel application
of the Kaniel–Shinbrot iteration.
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1. Introduction and Main Results

1.1. Background

Boltzmann’s equation describes the time-evolution of the phase-space density
f (t, x, v) of a dilute gas, accounting for both dispersion under the free flow and
dissipation as the result of collisions. We are interested in the Boltzmann equation
with constant collision kernel in the plane, R2

x × R
2
v , which is written as follows:

(∂t + v · ∇x ) f (t, x, v)

=
∫

S1
dω

∫

R2
du

{
f (t, x, v∗) f (t, x, u∗) − f (t, x, v) f (t, x, u)

}
, (1.1)

with prescribed initial data f (0, x, v) = f0(x, v), and (t, x, v) ∈ [0,∞)×R
2×R

2.
Here the symbols u∗, v∗ are defined by the collisional change of variables

u∗ = u + (ω · (v − u))ω

v∗ = v − (ω · (v − u))ω

and ω ∈ S
1 ⊂ R

2 is a unit vector. We may also write

(∂t + v · ∇x ) f = Q( f, f ) = Q+( f, f ) − Q−( f, f ), (1.2)

where

Q+( f, g)(x, v) =
∫

S1
dω

∫

R2
du f (x, v∗)g(x, u∗) (1.3)

Q−( f, g)(x, v) = 2π f (x, v)ρg(x) (1.4)

and

ρ f (x) =
∫

R2
dv f (x, v).



Small Data Global Well-Posedness for a Boltzmann Equation 329

The PDE (1.1) is scaling-critical, independently in x and v, for the L2
(
R
2
x × R

2
v

)

norm of f0.
The Cauchy problem for (1.1), specifically with the constant collision kernel,

is by now a mature subject and many different techniques are available. One of
the oldest known techniques is the Kaniel–Shinbrot iteration [14], which will be
explained in detail in Section 2; this is a monotonicity-based technique for pro-
ducing a non-negative solution of Boltzmann’s equation. Strichartz estimates have
been used in [3] to solve equations related to (1.1) but containing a cut-off in the
interaction at large velocities. Scattering was subsequently addressed in [13], again
using Strichartz estimates. Global well-posedness has been proven near equilib-
rium by a variety of techniques [1,11,12,22], all of which rely somehow on a
notion of Dirichlet form (and sometimes requiring the long-range version of (1.1),
e.g., true Maxwell molecules). For more background on Boltzmann’s equation we
refer the reader to [6]. Weaker notions of solution are available globally in time
due to DiPerna and Lions [9], but uniqueness remains an open problem for such
solutions.

The difficulty with solving (1.1) at critical regularity is actually more challeng-
ing than appears to be customarily acknowledged, because though the two terms on
the right hand side (known as “gain” Q+ and “loss” Q−, respectively) both scale
the same way, they do not share the same estimates. In fact, the gain term exhibits
a convolutive effect (similar to f ∗v g) which is not observed with the loss term.
This problem was acknowledged in [3] and dealt with by introducing a cutoff in
the collision kernel at large velocities, thereby breaking the scale-invariance of the
problem.

In the present work, we take the point of view that the data f0 should be suffi-
ciently localized and regular enough (in the sense of weighted L2-based Sobolev
spaces) to makes sense of both “gain” and “loss” terms, but that the theorem should
only depend on the smallness of the critical norm, in this case L2. The advantage
of this approach is that the local iteration relies purely upon energy estimates in
L2-based spaces. In particular, we will prove a bilinear estimate of the form

L2
x,v × L2

x,v → L1
t∈RL

2
x,v

for the Q+ operator (acting on the free flow), which is new to the best of our
knowledge. Once this bilinear estimate is in hand, any space of mixed integrability
in x, v, e.g. L p

x Lr
v with p �= r , arises only as the result of Sobolev embedding

applied to an L2-based Sobolev norm.
In our analysis, we will invoke the approach that we introduced in [7,8], based

on the Wigner transform of the Boltzmann equation, which makes the problem
naturally accessible to a combination of techniques from both kinetic theory, and
dispersive nonlinear PDEs.

1.2. Summary of the Present Work

The subject of this paper is a new treatment of the Boltzmann equation with
constant collision kernel in d = 2, which is scaling-critical for the space L2

x,v . We
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prove global well-posedness and scattering for solutions with small norm in the

critical space L2
x,v , whenever

∥
∥
∥〈v〉 1

2+ 〈∇x 〉 1
2+ f0

∥
∥
∥
L2
x,v

is finite but not necessarily

small.
Our proof relies on the Kaniel–Shinbrot iteration, as recommended in the intro-

duction to [3]. As far as we are aware, this is the first time that the Kaniel–Shinbrot
iteration has been implemented outside Maxwellian-weighted L∞ spaces. More-
over, a uniqueness result will be provenwhich does not require either non-negativity
or Sobolev regularity of solutions. Therefore, the existence of a non-negative solu-
tion from Kaniel–Shinbrot will imply that any other local solution in the correct
integrability class is automatically non-negative and coincides with the Kaniel–
Shinbrot solution. From there, the extra regularity is propagated a posteriori, glob-
ally in time (with possibly large growth rate), by constructing sufficiently regular
local solutions and employing standard commutation rules.

Our proof relies on theWigner transform and endpoint Strichartz estimates due
to Keel–Tao [15] for hyperbolic Schrödinger equations in the doubled dimension
2d = 4. We point out that endpoint kinetic Strichartz estimates are false [4] in
all dimensions. For this reason, there is no obvious analogue of our proof which
employs the kinetic picture exclusively.

1.3. Main Results

Our main results are summarized as follows:

Theorem 1.1. There exists a number η0 > 0 such that all of the following are
simultaneously true:

Supposing that f0(x, v) : R2 ×R
2 → R is a non-negative, measurable, locally

integrable function such that
∥
∥
∥ 〈v〉 1

2+ 〈∇x 〉 1
2+ f0(x, v)

∥
∥
∥
L2(R2×R2)

< ∞ (1.5)

and ∥
∥
∥ f0(x, v)

∥
∥
∥
L2(R2×R2)

< η0, (1.6)

then there exists a globally defined (for t�0) non-negative mild solution f ∈
C

([0,∞), L2
x,v

)
of Boltzmann’s equation

(∂t + v · ∇x ) f (t, x, v) = Q( f, f ), (1.7)

where

Q( f, f ) = Q+( f, f ) − Q−( f, f ),

with Q+ and Q− given in (1.3) and (1.4), respectively, such that f (0) = f0 and the
following bounds (1.8), (1.9), (1.10) hold for any T ∈ (0,∞] (noting that T = +∞
is included):

〈v〉 1
2+ Q+( f, f ) ∈ L1

t∈[0,T ]L2
x,v (1.8)
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ρ f ∈ L2
t∈[0,T ]L∞

x

⋂
L2
t∈[0,T ]L4

x (1.9)

〈v〉 1
2+ f ∈ L∞

t∈[0,T ]L2
x,v

⋂
L∞
t∈[0,T ]L4

x L
2
v. (1.10)

The solution f (t) is unique in the class of all mild solutions, with the same initial
data, satisfying the bounds (1.8), (1.9), (1.10) for each T ∈ (0,∞). In particular,
any mild solution with data f0 satisfying (1.8), (1.9), (1.10) is automatically non-
negative (since it is equal to f ).

The solution f (t) also satisfies

‖ f ‖2L∞
t�0

L2
x,v

+ ∥
∥Q+( f, f )

∥
∥
L1
t�0

L2
x,v

�C ‖ f0‖2L2
x,v

(1.11)

Moreover, f (t) scatters in L2
x,v as t → +∞; equivalently, f+∞ = limt→+∞

T (−t) f (t) exists in the norm topology in L2
x,v . Here T (t) = e−tv·∇x .

Finally, f (t) carries (a posteriori) the same regularity as the initial data

∀T > 0,
∥
∥
∥ 〈v〉 1

2+ 〈∇x 〉 1
2+ f (t)

∥
∥
∥
L∞
t∈[0,T ]L2

x,v

< ∞. (1.12)

Remark 1.1. We note that no claim is made regarding the injectivity or non-
injectivity for the map f0 → f+∞. Moreover, no claim is made as to whether
or not the bound in (1.12) is uniform as T → ∞.

Remark 1.2. The constant C appearing in (1.11) is absolute, requiring only the
imposed condition that ‖ f0‖L2 < η0 for another absolute constant η0. The exis-
tence of such an absolute C indicates that the behavior of Boltzmann’s equation
is effectively linear on long timescales if the L2

x,v norm of f0 is sufficiently small.
Note that the bound (1.11) appears to be new.

Remark 1.3. It is an easy consequence of the Q+( f, f ) estimate (1.11), of
Duhamel’s formula, and Minkowski’s inequality, along with the homogeneous
Strichartz estimates, that the solution of (1.7) satisfies f ∈ Lq

t L
r
x L

p
v

([0,∞) ×
R
2 × R

2
)
, whenever p, r�1, q > 2, 1

r + 1
p = 1, and 1

q = 1
p − 1

r . This is the full

range of homogeneous Strichartz estimates expected for L2 solutions of the free
transport equation in d = 2. We do not mention estimates of this form in Theorem
1.1 because they are not relevant to the method of the proof.

1.4. The Local Well-Posedness Theorem

We will also prove a local well-posedness theorem, following a similar line of
reasoning.Wepoint out thatwhile the data is required to have 1

2+ regularity, the time
of existence depends only on regularity at the s level for an arbitrary s ∈ (

0, 1
2

)
. We

are not aware of any analogous theorem in the literature which works at arbitrarily
small fractional (but non-zero) regularities for any Boltzmann equation; the proof
relies on a novel interpolation strategy which would be difficult to implement in the
usual framework of inhomogeneous Strichartz estimates. We also remark that the
theorem is optimal because s = 0 is scaling critical, so we cannot expect a local
theorem depending only on the size of the L2 norm of the data.
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Theorem 1.2. Fix a number s ∈ (
0, 1

2

)
. Then there exists a function λs(·) : R�0 →

R
�0 such that all of the following is true:
Suppose f0 : R2 ×R

2 → R is a non-negative, locally integrable function such
that ∥

∥
∥〈v〉 1

2+ 〈∇x 〉 1
2+ f0(x, v)

∥
∥
∥
L2(R2×R2)

< ∞. (1.13)

Then, for some T0 satisfying

T0 > λs

(∥
∥〈v〉s 〈∇x 〉s f0

∥
∥
L2(R2×R2)

)
, (1.14)

there exists a non-negative mild solution f ∈ C
([0, T0), L2

x,v

)
of Boltzmann’s

equation

(∂t + v · ∇x ) f (t, x, v) = Q( f, f ), (1.15)

where

Q( f, f ) = Q+( f, f ) − Q−( f, f ),

with Q+ and Q− given respectively in (1.3) and (1.4), such that f (0) = f0 and
the following bounds (1.16), (1.17), (1.18) hold for any T ∈ (0, T0):

〈v〉 1
2+ Q+( f, f ) ∈ L1

t∈[0,T ]L2
x,v (1.16)

ρ f ∈ L2
t∈[0,T ]L∞

x

⋂
L2
t∈[0,T ]L4

x (1.17)

〈v〉 1
2+ f ∈ L∞

t∈[0,T ]L2
x,v

⋂
L∞
t∈[0,T ]L4

x L
2
v. (1.18)

The solution f (t) is unique in the class of all mild solutions, with the same initial
data, satisfying all the bounds (1.16, 1.17, 1.18) for each T ∈ (0, T0). In particular,
any mild solution with data f0 satisfying (1.16, 1.17, 1.18) is automatically non-
negative (since it is equal to f ).

We are not able to show that the 1
2+ regularity assumed at t = 0 is propagated,

but we expect this to be true and state it as a conjecture.

Conjecture 1.1. In the notation of Theorem 1.2, the local solution f (t) carries the
regularity of the data up to time T0. More precisely, for any T ∈ (0, T0), it holds
that ∥

∥
∥〈v〉 1

2+ 〈∇x 〉 1
2+ f (t)

∥
∥
∥
L∞
t∈[0,T ]L2

x,v

< ∞ (1.19)

Remark 1.4. It is possible to show that the regularity is propagated for a time that
depends on the size of the 1

2+ norm at time t = 0. The point of the conjecture is
that the 1

2+ regularity persists for a time depending on a lower regularity norm,
namely the s norm.
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Remark 1.5. In view of Theorem 1.2, where the time of existence depends on a
normwhich is very close to L2, it is natural to askwhether it is possible to prove local
well-posedness in a space like L2 or L2 ∩ L1 (note that the L1 norm is conserved
for Boltzmann’s equation). Since L2 is a critical norm for the Boltzmann equation
with constant collision kernel, the best we can hope for is a local well-posedness
time which depends on the profile of the initial data. Unfortunately, so far we have
not been able to extract such a result using our method, though there is no obvious
obstruction. Several a priori estimates are available in complete generality for L2

solutions on a short time interval (assuming that a certain spacetime integral is finite
in which case it is bounded quantatively), and they are presented in Appendix C.

2. Technical Preliminary: The Kaniel–Shinbrot Iteration

In this section,wepresent a brief reviewof theKaniel–Shinbrot iterationmethod
(see [14]) for proving existence of solutions for Boltzmann equations, and describe
its typical use. Then we give a short preview of the new approach based on of the
Kaniel–Shinbrot iteration method that we introduce in this paper.

2.1. The Method of Kaniel and Shinbrot in a Nutshell

The method of Kaniel and Shinbrot is based on three main steps:

(1) Construct a pair of functions satisfying the so-called beginning condition.
(2) Develop sequences of functions which act as barriers (above and below) which

converge monotonically to upper and lower envelopes of a (hypothetical) true
solution.

(3) Prove that the upper and lower envelopes coincide, hence defining a solution to
the Boltzmann equation itself.

We note that there is no claimof uniqueness in theKaniel–Shinbrot iteration, though
the third step (convergence) is typically as hard to prove as uniqueness. Usually,
one views Kaniel–Shinbrot as a proof of existence by construction, followed by a
separate proof of uniqueness in a class of solutions containing the Kaniel–Shinbrot
solution.

We start with two functions g1, h1, which are supposed to be upper and lower
bounds (respectively) for a true solution of Boltzmann’s equation. The first iterates
g2, h2 are defined by the formulas

(
∂t + v · ∇x + 2πρh1

)
g2 = Q+(g1, g1)

(
∂t + v · ∇x + 2πρg1

)
h2 = Q+(h1, h1)

g2(t = 0) = h2(t = 0) = f0. (2.1)

Kaniel and Shinbrot [14] assume that g1, h1 are chosen to guarantee the following
inequalities (for all times on the interval of interest):

0�h1�h2�g2�g1; (2.2)
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this is the so-called beginning condition of the Kaniel–Shinbrot iteration.
The beginning condition (2.2) secured, Kaniel and Shinbrot define the rest of

the iteration (here n�2) as follows:
(
∂t + v · ∇x + 2πρhn

)
gn+1 = Q+(gn, gn)

(
∂t + v · ∇x + 2πρgn

)
hn+1 = Q+(hn, hn)

gn+1(t = 0) = hn+1(t = 0) = f0 (2.3)

They prove by induction that, as long as the beginning condition (2.2) is satisfied,
the following inequalities hold for each n:

0�h1�hn�hn+1�gn+1�gn�g1. (2.4)

In other words, there is a sequence hn increasing from below and a decreasing
sequence gn , all bounded above by the fixed function g1. This allows us to apply
monotone convergence pointwise and conclude the existence (undermild regularity
assumption) of limits g, h with 0�h�g�g1 satisfying the following equations:

(∂t + v · ∇x + 2πρh) g = Q+(g, g)
(
∂t + v · ∇x + 2πρg

)
h = Q+(h, h)

g(t = 0) = h(t = 0) = f0. (2.5)

This system is satisfied, of course, if g = h = f is the (supposedly unique) solution
of Boltzmann’s equation; hence, if the system has a unique solution (g, h = g),
then that solution is exactly the unique solution of Boltzmann’s equation. Thus
the question of convergence of the Kaniel–Shinbrot scheme is closely related to a
uniqueness question.

Remark 2.1. The method of Kaniel–Shinbrot [14] is applicable to the Boltzmann
equation under an angular cutoff condition (Grad cut-off). We note that the Boltz-
mann equation with constant collision kernel satisfies Grad’s cut-off (it is enough
to note that Q+ and Q− = fρ f each make sense taken separately, if f is nice
enough).

Usually we do not prove that the system (2.5) has a unique solution, since this
requires more effort than is actually necessary. In fact, if we can only prove that
g ≡ h (for instance by aGronwall argument), then the function g (or equivalently h)
is itself a solution of Boltzmann’s equation, but there is no guarantee of uniqueness.
In that case, uniqueness is usually proven by an independent argument. This is
indeed the strategy employed in the present work.

The Kaniel–Shinbrot iteration has been applied to “large” initial conditions
which are “squeezed” between two nearby Maxwellian distributions. This was first
achieved by Toscani [21], using a clever choice of (locally Maxwellian) functions
g1, h1 satisfying the beginning condition of Kaniel and Shinbrot. The approach
was later adapted to soft potentials (with Grad cut-off) by Alonso and Gamba. [2].
Unfortunately, it is not clear to us how to adapt Toscani’s proof to the scaling-
critical (L2

x,v) setting; the lower envelope h1 should presumably be a Maxwellian,
but the upper envelope g1 must be some L2 function which tracks the singularities
of the data. There does not appear to be an obvious choice for upper envelope g1
(satisfying the beginning condition) when the data f0 is not small.
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2.2. The Method of Kaniel and Shinbrot Revisited

The beginning conditions forKaniel–Shinbrot is traditionally satisfied by taking
g1 to be a Maxwellian distribution which bounds f0 from above, with h1 ≡ 0; or,
by “squeezing” f between two Maxwellians g1, h1 which need not be small (but
must be close to each other). However these ideas do not work in our setting since
f0 does not need to be bounded above pointwise; indeed, the only quantitative
estimate we are allowed is that f0 ∈ L2

x,v .
Instead, our strategy is to solve the gain-term-onlyBoltzmann equation using a

bilinear estimate, and subsequently apply the Kaniel–Shinbrot iteration to the solu-
tion of the gain-only equation in order to develop a solution of the full Boltzmann
equation. Thus, for us, h1 is identically zero and g1 satisfies

(∂t + v · ∇x ) g1 = Q+(g1, g1),

with initial data g1(t = 0) = f0. It would seem that the Kaniel–Shinbrot iteration
gains us nothing, since we are initiating the iteration with the solution to a nonlinear
equation. However, it turns out that at critical regularity, the gain-only equation is
easier to solve than the full Boltzmann equation, as was observed byD. Arsenio, [3]
In particular, the gain term Q+ satisfies bilinear estimates which are not available
for the loss term.

Remark 2.2. The suggestion to apply Kaniel–Shinbrot at low regularities is due to
Arsenio in [3], who discussed the possibility in the introduction. However, Arsenio
did not implement the Kaniel–Shinbrot iteration, instead relying on a compactness
argument, apparently due to the lack of uniqueness in his formulation. We have
overcome this limitation by propagating some auxiliary regularity and moment
bounds for the gain-only equation, to the point that a uniqueness theorem for the full
Boltzmann equation is indeed available, thereby allowing us to prove convergence
of the Kaniel–Shinbrot iteration.

3. An Abstract Well-Posedness Theorem

In this section we present an abstract well-posedness theorem, which is inspired
by “space-time" methods that are often used in the context of dispersive PDEs.

Let H be a separable Hilbert space over R or C, and let k�2 be an integer.
Suppose that we have a map

A : H×k → L1 (R,H) (3.1)

such that A is linear with respect to each factor of H (keeping the others fixed),
and an estimate of the following form holds:

‖A(x1, . . . , xk)(t)‖L1
t H �C0

k∏

j=1

∥
∥x j

∥
∥H x1, . . . , xk ∈ H. (3.2)
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We will say thatA is a bounded k-linear mapH×k → L1
tH, and we will generally

write it equivalently as A(t, x1, . . . , xk). We are interested in properly defining,
and then solving, the equation

dx

dt
= A(t, x(t), . . . , x(t)), (3.3)

when x(0) = x0 ∈ H is a given element ofH with small norm. As we will see, the
bound (3.2) along with the k-linearity is sufficient to solve (3.3) globally in time for
small data; scatteringwill also follow automatically, in the sense that limt→+∞ x(t)
exists in the norm topology of H. We will find that x(t) ∈ W 1,1 ((0, T ),H) for
any T > 0, so equation (3.3) holds in a strong sense. The theorem, along with its
proof, is inspired by certain methods due to Klainerman and Machedon for solving
dispersive PDE [18,19].

Remark 3.1. In the complex case, it is acceptable forA to be conjugate linear with
respect to some or all entries; the changes to the proof are trivial so we only discuss
the linear case.

Note that a priori we can only evaluate A(t, x1, . . . , xk) for a.e. t given fixed
elements x1, . . . , xk of H; in particular, the exceptional set in t may depend on
x1, . . . , xk . However, if x(t) is a C1 curve, then near any given time t0, x is almost
a constant. This observation motivates the following result:

Lemma 3.1. LetH be a separable Hilbert space and supposeA : H×k → L1
tH is

a mapping which is linear or conjugate linear in each entry; furthermore, suppose
that the estimate (3.2) holds. Then, for any T ∈ (0,∞), there exists a unique
k-linear map

Ã :
(
W 1,1 ((0, T ),H)

)×k → L1 ((0, T ),H) (3.4)

which satisfies

Ã (t, f1x1, . . . , fk xk) =
⎛

⎝
k∏

j=1

f j (t)

⎞

⎠A(t, x1, . . . , xk) (3.5)

for any x1, . . . , xk ∈ H and any smooth bounded real-valued functions f1, . . . , fk
on [0, T ]; here, f j x j denotes the function ( f j x j )(t) = f j (t)x j . It holds as well
that

∥
∥
∥Ã (t, x1(·), . . . , xk(·))

∥
∥
∥
L1
t∈(0,T )

H

�(1 + k)C0

k∏

j=1

(
∥
∥x j (t)

∥
∥
L∞
t∈(0,T )

H +
∥
∥
∥
∥
dx j
dt

∥
∥
∥
∥
L1
t∈(0,T )

H

)

(3.6)

for any x1(·), . . . , x j (·) ∈ W 1,1 ((0, T ),H).



Small Data Global Well-Posedness for a Boltzmann Equation 337

Proof. (Sketch.) It is possible to prove this result by expanding each x j via
Duhamel’s formula and using k-linearity. However, it is much easier to simply
differentiate A directly as follows, denoting ζ j = dx j

dt :

∂

∂σ
A (t, x1(σ ), . . . , xk(σ )) = A (t, ζ1(σ ), x2(σ ), . . . , xk(σ ))

+ · · · + A (t, x1(σ ), . . . , xk−1(σ ), ζk(σ )) . (3.7)

We can integrate both sides in σ from 0 to t , in order to relate the diagonal σ = t
in terms of quantities off the diagonal:

A (t, x1(t), . . . , xk(t)) = A (t, x1(0), . . . , xk(0))

+
∫ t

0
A (t, ζ1(σ ), x2(σ ), . . . , xk(σ )) dσ

+ · · · +
∫ t

0
A (t, x1(σ ), . . . , xk−1(σ ), ζk(σ )) dσ. (3.8)

The first term is obviously bounded in L1
tH due to (3.2). We demonstrate how to

estimate the first integral term (the others are treated similarly):
∥
∥
∥
∥

∫ t

0
A (t, ζ1(σ ), x2(σ ), . . . , xk(σ )) dσ

∥
∥
∥
∥
L1
t∈(0,T )

H

�
∥
∥
∥
∥

∫ t

0
‖A (t, ζ1(σ ), x2(σ ), . . . , xk(σ ))‖H dσ

∥
∥
∥
∥
L1
t∈(0,T )

�
∥
∥
∥
∥

∫ T

0
‖A (t, ζ1(σ ), x2(σ ), . . . , xk(σ ))‖H dσ

∥
∥
∥
∥
L1
t∈(0,T )

�
∫ T

0
‖A (t, ζ1(σ ), x2(σ ), . . . , xk(σ ))‖L1

t∈(0,T )
H dσ

�C0

∫ T

0
‖ζ1(σ )‖H ‖x2(σ )‖H . . . ‖xk(σ )‖H dσ

�C0 ‖ζ1‖L1
t∈(0,T )

H ‖x2‖L∞
t∈(0,T )

H . . . ‖xk‖L∞
t∈(0,T )

H .

Gathering terms together, we are able to conclude. ��
Remark 3.2. The map Ã clearly extends A, in the sense that we can view any
x0 ∈ H as a function of time by calling it a constant function. Since there is no
ambiguity, we will refer to both operators using the common notation A.

Theorem 3.2. Let H be a separable Hilbert space, fix an integer k�2, and let
A : H×k → L1 (R,H) be a mapping which is linear or conjugate linear in each
entry, and satisfies the estimate

‖A(t, x1, . . . , xk)‖L1
t H �C0

k∏

j=1

∥
∥x j

∥
∥H x1, . . . , xk ∈ H. (3.9)
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Then, defining

M =
(

1

4kk(1 + k)C0

)1/(k−1)

,

we find that for any x0 ∈ H with ‖x0‖H �M there exists a global solution x(t) ∈⋂
T>0 W

1,1 ((0, T ),H) of the integral equation

x(t) = x0 +
∫ t

0
A (σ, x(σ ), . . . , x(σ )) dσ, (3.10)

and this solution is unique in the regularity class
⋂

T>0 W
1,1
t∈[0,T ]H. Moreover, for

the solutions arising in this way, the following estimate holds:

‖x(t)‖kL∞
t�0

H + ‖A (t, x(t), . . . , x(t))‖L1
t�0

H �C1 ‖x0‖kH (3.11)

for some constant C1 depending only on k and C0. In particular, (3.11) implies that
limt→+∞ x(t) exists strongly inH (i.e., the solution scatters).

Proof. (Sketch) We will use the following norm on W 1,1 ((0, T ),H):

‖x(·)‖W1,1
t∈(0,T )

H = ‖x(t)‖L∞
t∈(0,T )

H +
∥
∥
∥
∥
dx

dt
(t)

∥
∥
∥
∥
L1
t∈(0,T )

H
. (3.12)

This norm is equivalent to the usual norm on W 1,1 for fixed finite T by Sobolev
embedding, but exhibits better scaling properties in this context for large T .

Define the map F : W 1,1 ((0, T ),H) → W 1,1 ((0, T ),H) by the formula

[F(x(·))] (t) = x0 +
∫ t

0
A (σ, x(σ ), . . . , x(σ )) dσ. (3.13)

This is well-defined by Lemma 3.1.
Using Lemma 3.1, we easily derive the following boundedness and locally

Lipschitz estimates:

‖[F(x(·))] (t)‖W1,1
t∈(0,T )

H � ‖x0‖H + 2(1 + k)C0 ‖x(·)‖kW1,1
t∈(0,T )

H
and

‖[F(x2(·)) − F(x1(·))] (t)‖W1,1
t∈(0,T )

H

�2k(1 + k)C0

⎛

⎝
∑

i=1,2

‖xi (t)‖W1,1
t∈(0,T )

H

⎞

⎠

k−1

‖x2(t) − x1(t)‖W1,1
t∈(0,T )

H .

Therefore, defining the closed ball

B =
{

x(·) ∈ W 1,1 ((0, T ),H)

∣
∣
∣
∣ ‖x(t)‖W1,1

t∈(0,T )
H �2M

}

,

with M as in the statement of the theorem, we find that FB ⊂ B and F is a strict
contraction ofB. Hence, wemay apply the Banach fixed point theorem and thereby
extract a unique fixed point of F within B. ��
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Theorem 3.3. LetH,A, M, k,C0 be as in the statement of Theorem 3.2. Consider
the integral equation

x(t) = x0 +
∫ t

0
A (σ, x(σ ), . . . , x(σ )) dσ (3.14)

with unique solutions x ∈ ⋂
T>0 W

1,1 ((−T, T ),H), x(0) = x0, as given by
Theorem 3.2 for any x0 ∈ H such that ‖x0‖H �M. Define the map

S : BH
M (0) →

⋂

T>0

W 1,1 ((−T, T ),H) (3.15)

such that

[S(x0)] (t) = x0 +
∫ t

0
A (σ, [S(x0)] (σ ), . . . , [S(x0)] (σ )) dσ. (3.16)

The map S is well-defined by the statement and proof of Theorem 3.2. For any
r ∈ (0, M) define the maps S+

r , S
−
r ,

S±
r : BH

r (0) → H (3.17)

S±
r (x0) = lim

t→±∞ [S(x0)] (t), (3.18)

where the limit is taken in the norm topology ofH; this is possible by Theorem 3.2.
Let U±

r denote the image of S±
r , and note that 0 ∈ U+

r
⋂

U−
r .

Then, there exists r0 = r0(k,C0) > 0 such that if 0 < r < r0 then U+
r ,U−

r
are each open in the norm topology of H, and S+

r ,S−
r are each bijective and

bi-Lipschitz. As a consequence, the composite maps

S+
r ◦ (

S−
r

)−1 : U−
r → U+

r (3.19)

S−
r ◦ (

S+
r

)−1 : U+
r → U−

r (3.20)

are bijective and bi-Lipschitz.

Proof. (Sketch.) The key estimate states that x0 expresses a Lipschitz depencence
on x+∞ = limt→+∞ [S(x0)] (t), at least within sufficiently small neighborhoods
of 0 ∈ H.

Let T > 0 and consider the solution x(t) = [S(x0)] (t) for t ∈ (0, T ). As long
as ‖x0‖H is sufficiently small (depending only on k,C0), we can guarantee that
‖x(T )‖H < M , so that Theorem 3.2 can be applied backwards in time with data
x(T ). Considering two solutions x(t) = [S(x0)] (t), y(t) = [S(y0)] (t), we can
apply this procedure to each of them and derive the following identity:

x(t) − y(t) = x(T ) − y(T ) −
∫ T

t
A (σ, x(σ ), . . . , x(σ )) dσ

+
∫ T

t
A (σ, y(σ ), . . . , y(σ )) dσ.
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Hence, using the norms defined in the proof of Theorem 3.2, along with Lemma
3.1, we have

‖x(t) − y(t)‖W1,1((0,T ),H) � ‖x(T ) − y(T )‖H

+ 2k(1 + k)C0

⎛

⎝
∑

z∈{x,y}
‖z(t)‖W1,1((0,T ),H)

⎞

⎠

k−1

‖x(t) − y(t)‖W1,1((0,T ),H) .

(3.21)

In view of the statement and proof of Theorem 3.2, under the above assumptions
we can deduce the quantitative estimate

‖x(t) − y(t)‖W1,1((0,T ),H) �2 ‖x(T ) − y(T )‖H , (3.22)

as long as ‖x0‖H , ‖y0‖H are sufficiently small (depending on only k,C0). This
immediately implies that

‖x0 − y0‖H �2 ‖x(T ) − y(T )‖H . (3.23)

Taking strong limits inH as T → +∞, we obtain

‖x0 − y0‖H �2 ‖x+∞ − y+∞‖H , (3.24)

which is the desired Lipschitz estimate.

The last claim is the following: for all q ∈ (0, M), S±
q

[
BH
q (0)

]
contains a

neighborhood of 0 ∈ H. This is routine to check by adapting the proof of Theorem
3.2. ��

Remark 3.3. If, instead of the “critical” estimate (3.2), A satisfies a “subcritical”
estimate of the form

‖A(t, x1, . . . , xk)‖L p
t H �C̃

k∏

j=1

∥
∥x j

∥
∥H x1, . . . , xk ∈ H (3.25)

for some p > 1, then we can always convertA into a form suitable for the applica-
tion of Theorem 3.2 by multiplying A by a bump function in time which is equal
to one on an interval [0, T ]. In that case, the constant C0 in the theorem would be

C0 ≈ C̃T
1
p′ , so that the allowable size of the data tends to infinity as T tends to

zero. Hence, Theorem 3.2 can be used to prove awide range of local well-posedness
results in the large for the strictly scaling-subcritical case.

Remark 3.4. There is a version of Theorem 3.2 when k = 1, i.e. linear equations,
but only if C0 < 1

4 .
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Remark 3.5. Local well-posedness for arbitrary x0 ∈ H is not recovered under the
sole assumption (3.2); this is because the equation for x̃(t) = x(t) − x0 contains
linear terms, and we can only solve the linear case when C0 < 1

4 per the previous
remark. (The forcing term A(t, x0, . . . , x0) can always be made negligible, for
fixed x0, by localizing to a small time interval depending on x0.) If, for any T > 0
and any x0 ∈ H, estimates of the following form are satisfied for open intervals
I ⊂ (−T, T ):

lim sup
δ→0+

sup
I⊂(−T,T ) : |I |�δ

sup
y0∈H\{0}

1

‖y0‖H
‖A (t, y0, x0, . . . , x0)‖L1

t∈IH = 0

(and similarly for the other entries of A), then large data LWP can be recovered in
the limited sense that the time of existence depends on x0 ∈ H instead of ‖x0‖H.

4. Example: Cubic NLS in d = 2

In this section we illustrate how Theorem 3.2 can be used to recover small
data global well-posedness and scattering for the L2 critical nonlinear Schrödinger
equation in spatial dimensiond = 2. Furthermore,we illustrate an approach to study
propagation of regularity for the same equation. Although these results themselves
are well known, we illustrate how they can be recovered using the tools of Section
3. This will form a footprint for our study of the Boltzmann equation in subsequent
sections.

Consider the nonlinear Schrödinger equation (NLS)

(i∂t + �) ϕ = |ϕ|2ϕ ϕ(t, x) : R × R
2 → C, (4.1)

where � ≡ �x and ϕ(0, x) = ϕ0(x) ∈ L2(R2). The nonlinearity can be written
ϕϕϕ, so it is either linear or conjugate linear in each entry.

4.1. Small Data Global Existence and Scattering

Wewish to solve this equation for small data ϕ0(x) in the scaling-critical space
L2(R2). We point out that the method as formulated in the statement of Theorem
3.2 yields no conclusion for (4.1) given initial data outside a small ball of the origin
in L2; this is expected due to the fact that (4.1) is L2-critical with respect to scaling.

We impose the unitary change of variables

ψ(t) = e−i t�ϕ(t), (4.2)

which implies ψ(0) = ϕ(0) = ϕ0 and

∂tψ(t) = −ie−i t�g
(
eit�ψ

)
, (4.3)

where g(u) = uuu. Let us define the more general nonlinearity

g(u, v, w) = uvw,
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and estimate, for given u0, v0, w0 ∈ L2
(
R
2
)
,

∥
∥
∥e−i t�g

(
eit�u0, e

it�v0, e
it�w0

)∥
∥
∥
L1
t L2

x

=
∥
∥
∥g

(
eit�u0, e

it�v0, e
it�w0

)∥
∥
∥
L1
t L2

x

=
∥
∥
∥
(
eit�u0

) (
eit�v0

) (
eit�w0

)∥
∥
∥
L1
t L2

x

�
∥
∥
∥eit�u0

∥
∥
∥
L3
t L6

x

∥
∥
∥eit�v0

∥
∥
∥
L3
t L6

x

∥
∥
∥eit�w0

∥
∥
∥
L3
t L6

x

�C ‖u0‖L2
x
‖v0‖L2

x
‖w0‖L2

x
. (4.4)

We have used the unitarity, the Hölder, and the Strichartz estimates, in that order.
In other words, we have shown that

∥
∥
∥e−i t�g

(
eit�u0, e

it�v0, e
it�w0

)∥
∥
∥
L1
t L2

x

�C ‖u0‖L2
x
‖v0‖L2

x
‖w0‖L2

x
. (4.5)

Applying Theorem 3.2 with

A(t, u0, v0, w0) = −ie−i t�g
(
eit�u0, e

it�v0, e
it�w0

)
, (4.6)

we find that solutions of (4.1) are globally well-posed and scatter, as long as the
data ϕ0 ∈ L2

(
R
2
)
has sufficiently small norm. Theorem 3.2 guarantees that, at

the very least, uniqueness of small solutions holds within the class of all mild
solutions satisfying the bound g(ϕ) ∈ L1

t∈[0,T ]L2
x ; this uniqueness criterion can be

equivalently written ϕ ∈ L3
t∈[0,T ]L6

x by definition of g.

Theorem 4.1. There exists a number η > 0 such that, for any ϕ0 ∈ L2
(
R
2
)

satisfying

‖ϕ0‖L2(R2) < η,

it follows that equation (4.1) has a global solution which scatters in L2
(
R
2
)
. The

solution is unique in the class of all L2 mild solutions for which ϕ ∈ L3
t,locL

6
x .

Remark 4.1. It is crucial to remember that the space W 1,1 (in time) appearing in
Theorem 3.2 is not the usual Sobolev norm of the solution. This is because we
only have W 1,1 after intertwining with the free evolution. For this reason, to avoid
confusion, in practice it is often better to use unitarity in order to state the uniqueness
criterion in terms of an equivalent estimate on the nonlinearity, cf. (3.11).

4.2. Regularity

Regularity is a subtle question because it hides two separate questions.

• The first, which is easy to answer, is whether any ϕ0 ∈ H1
(
R
2
)
, say, yields a

global solution when the H1 norm is small enough. The answer is yes because,
by Leibniz’ rule and standard commutation formulae, and A as in (4.6), we
have

‖A (t, u0, v0, w0)‖L1
t H1

x
�C̃ ‖u0‖H1

x
‖v0‖H1

x
‖w0‖H1

x
. (4.7)
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Now as long as ‖ϕ0‖H1 is smaller than some number which depends explicitly
on C̃ , the cubic NLS will have a global solution which scatters in H1

(
R
2
)
, as

a direct consequence of Theorem 3.2 and Theorem 3.3.
• The second, more difficult, question is whether H1 regularity is propagated for
smooth solutions which are only small in L2. This can be seen as a persistence
of regularity question, since we know that any small L2 data will lead to a global
L2 solution. The answer, perhaps surprisingly, is yes, as we now show.

The key is to introduce a new norm, H1
ε , parameterized by ε ∈ (0, 1], which is

equivalent to H1 up to an ε-dependent factor, but tends to the L2 norm as ε → 0+.
The goal is to prove a bound of the form

‖A (t, u0, v0, w0)‖L1
t H1

ε
�C̃ ‖u0‖H1

ε
‖v0‖H1

ε
‖w0‖H1

ε
, (4.8)

where the constant C̃ is independent of ε. Now as long as ϕ0 ∈ H1 has L2 norm
smaller than some constant depending explicitly on C̃ (not the original C from
(4.5)), we can pick a value of ε depending on ϕ0 so that the H1

ε norm is small
enough. The key here is that the constants appearing in Theorems 3.2 and 3.3 are
quantitative.

The simplest norm which makes the above argument work seems to be the
following one:

‖ϕ0‖2H1
ε

= ‖ϕ0‖2L2 + ε2 ‖ϕ0‖2Ḣ1 . (4.9)

Now if ‖ϕ0‖L2 < η andϕ0 ∈ H1, then there exists a value of ε (depending explicitly
on ‖ϕ0‖L2 and ‖ϕ0‖Ḣ1 ) such that ‖ϕ0‖H1

ε
< η. We have only to choose η according

to the constant C̃ instead of the constant C ; unfortunately, the “gap” between C
and C̃ seems to be unrecoverable by this approach.

In order to establish (4.8) for the norm (4.9), we estimate the L2 and Ḣ1 norms
separately, tracking the location of ε throughout. The important observation is a
power of ε is always accompanied by a single derivative on one of the factors (u0,
v0 or w0), while the remaining factors remain in L2. Thus we may estimate as
follows, where � allows an arbitrary constant which is independent of ε:

‖A (t, u0, v0, w0)‖L1
t H1

ε

� ‖A (t, u0, v0, w0)‖L1
t L2 + ε ‖A (t, u0, v0, w0)‖L1

t Ḣ1

� ‖u0‖L2 ‖v0‖L2 ‖w0‖L2 + ε ‖u0‖Ḣ1 ‖v0‖L2 ‖w0‖L2

+ ε ‖u0‖L2 ‖v0‖Ḣ1 ‖w0‖L2 + ε ‖u0‖L2 ‖v0‖L2 ‖w0‖Ḣ1

� ‖u0‖H1
ε
‖v0‖H1

ε
‖w0‖H1

ε
. (4.10)

As a result of this calculation, we can conclude the following:

Theorem 4.2. There exists a number η̃ > 0 such that all of the following is true:
Let ϕ0 ∈ H1

(
R
2
)
be such that

‖ϕ0‖L2(R2) < η̃ .

Then equation (4.1) has a global solution which scatters in H1
(
R
2
)
. The solution

is unique in the class of all L2 mild solutions for which ϕ ∈ L3
t,locL

6
x .
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5. The Gain-Only Boltzmann Equation

In this section, we focus on the gain-only Boltzmann equation.1 We employ the
inverse Wigner transform which converts this kinetic equation into a hyperbolic
Schrödinger equation, a technique we explored in [7,8]. Subsequently, we can
prove a certain bilinear Strichartz estimate (stated in Proposition 5.2), based on
which we can use Theorem 3.2 to establish small data global well-posedness for
this hyperbolic Schrödinger equation. The bilinear Strichartz estimate is obtained
from a certain bilinear estimate based on Lorentz spaces, and the validity of the
endpoint Strichartz estimate for the hyperbolic Schrödinger equation (which is
crucial for our argument, since the endpoint Strchartz estimate fails on the kinetic
side). However, once we obtain the bilinear Strichartz estimate on the dispersive
side, we can convert it to a bilinear Strichartz estimate on the kinetic side, see
Proposition5.4.Consequently, this proposition combinedwithTheorem3.2provide
us with small data global well-posedness for the gain-only Boltzmann equation,
which is the main result of this section.

Everything below only applies to the gain-only Boltzmann equation with con-
stant collision kernel in dimension d = 2.

5.1. Hyperbolic Schrödinger Equation Associated with the Gain-Only Boltzmann
Equation

We will require the Wigner transform, which we shall now define. Given a
function f ∈ L2

x,v , the Wigner (or Wigner-Weyl) transformation is defined by the
following formula:

γ
(
x, x ′) =

∫

Rd
f

(
x + x ′

2
, v

)

eiv·(x−x ′) dv. (5.1)

Up to a linear change of variables, this is equivalent to a partial Fourier transform
accounting for only the velocity variable. The inverse transformation is defined by

f (x, v) = 1

(2π)d

∫

Rd
γ

(
x + y

2
, x − y

2

)
e−iv·y dy. (5.2)

One of the main interests driving the use of the Wigner transform is that it converts
the free transport generator −v · ∇x into the hyperbolic Schrödinger generator
i�x − i�x ′ . Aside from being the starting point for semiclassical limits (up to
scaling), the Wigner transform allows for the transfer of ideas from the literature
of nonlinear Schrödinger equations (NLS) into the kinetic realm. For the present
study, the big ideas which we wish to adapt are largely related to Xs,b spaces (also
known as Bourgain spaces), which are well-studied for NLS and hyperbolic-NLS,
but have not been fully utilized in the kinetic theory literature. We note that the
spaces used in this paper are not actually Bourgain spaces (which are typically L2

1 The gain-only Boltzmann equation refers to the Boltzmann equation having the Q+
term only.
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in time), but rather, they are scale-invariant spaces (which are L1 in time) inspired
by Bourgain spaces; see Section 3.

In our situation, namely the Boltzmann equation with constant collision kernel
in d = 2, L2

x,x ′ is a scaling critical space for γ , and corresponds to L2
x,v for f .

Remark 5.1. The use of the Wigner transform is necessary for the type of proof
used here. Indeed, if one were to execute the corresponding steps on the kinetic
side (and thereby produce the needed bilinear bound for Q+ acting on the freely
transported solution), the proof would fail because the endpoint kinetic Strichartz
estimates are false in all dimensions. [4] By contrast, we will be using the usual
endpoint Strichartz estimates for the free hyperbolic Schrödinger equation in d = 4
(note the dimension doubling!), which are indeed true by Keel–Tao, [15].

We use the notation η‖ = Pωη and η⊥ = η − Pωη where for any vector η and
any unit vector ω in the plane,

Pωη = ωω · η.

Then

Q+( f, g)(v) =
∫

S1
dω

∫

R2
du f (v∗)g(u∗) (5.3)

Q−( f, g)(v) =
∫

S1
dω

∫

R2
du f (v)g(u) (5.4)

(
Q+( f, g)

)∧
(η) =

∫

S1
dω f̂ (η⊥) ĝ

(
η‖

)
. (5.5)

The Wigner transform of the Boltzmann gain operator Q+ is

B+(γ1, γ2)(x, x
′) = i

∫

S1
dω

× γ1

(

x − 1

2
Pω

(
x − x ′) , x ′ + 1

2
Pω

(
x − x ′)

)

× γ2

(
x + x ′

2
+ 1

2
Pω

(
x − x ′) ,

x + x ′

2
− 1

2
Pω

(
x − x ′)

)

. (5.6)

Theorem 5.1. For any γ0 ∈ L2
x,x ′

(
R
2 × R

2
)
with sufficiently small L2

x,x ′ norm,
there exists a unique global mild solution to the equation

(i∂t + �x − �x ′) γ (t) = B+ (γ (t), γ (t)) (5.7)

with γ (0) = γ0 such that γ ∈ Ct L2
x,x ′ and B+ (γ, γ ) ∈ L1

t,locL
2
x,x ′ . For this

solution, it holds that γ ∈ L∞
t∈RL

2
x,x ′ and B+(γ, γ ) ∈ L1

t∈RL
2
x,x ′ , and the solution

scatters in L2
x,x ′ as t → ±∞.

Theorem 5.1 follows from Theorem 3.2 along with the following estimate for
the gain term B+:
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Proposition 5.2. There is a constant C > 0 such that, for any γ0,1, γ0,2 ∈
L2
x,x ′

(
R
2 × R

2
)
,

∥
∥
∥B+ (

eit�±γ0,1, e
it�±γ0,2

)∥
∥
∥
L1
t L

2
x,x ′(R×R2×R2)

�C
∏

i=1,2

∥
∥γ0,i

∥
∥
L2
x,x ′(R

2×R2)
,

(5.8)
where �± = �x − �x ′ .

We will need the Lorentz spaces L p,q defined by the following quasi-norm, for
any function h(ξ) : Rn → C:

‖h (ξ)‖L p,q∗ (Rn) = p
1
q

∥
∥
∥
∥λ

∣
∣
{
ξ ∈ R

n : |h(ξ)|�λ
}∣
∣
1
p

∥
∥
∥
∥
Lq

(
R+, dλ

λ

) . (5.9)

Note that L p,p = L p for 1 < p < ∞. In all cases of interest here, the Lorentz
quasi-norm above can be shown to be equivalent to a Banach space norm.

Lemma 5.3. For any Schwartz functions f, g : R2 → C, it holds that
∥
∥
∥
(
Q+( f, g)

)∧
(η)

∥
∥
∥
L2

η(R2)
�C

∥
∥
∥ f̂ (η)

∥
∥
∥
L4,2

η (R2)

∥
∥ĝ(η)

∥
∥
L4,2

η .(R2)
. (5.10)

Also, if γ0,1, γ0,2 ∈ L4,2
x,x ′

(
R
2 × R

2
)
, it holds that

∥
∥B+ (

γ0,1, γ0,2
)∥
∥
L2
x,x ′(R

2×R2)
�C

∏

i=1,2

∥
∥γ0,i

∥
∥
L4,2
x,x ′(R

2×R2)
. (5.11)

Proof. (Lemma 5.3)
We apply Minkowski, Hölder, and Fubini (twice), as follows:

∥
∥
∥
(
Q+( f, g)

)∧
(η)

∥
∥
∥
L2

η

=
∥
∥
∥
∥

∫

S1
dω f̂ (η⊥) ĝ

(
η‖

)
∥
∥
∥
∥
L2

η

�
∫

S1
dω

∥
∥
∥ f̂ (η⊥) ĝ

(
η‖

)∥∥
∥
L2

η

=
∫

S1
dω

∥
∥
∥ f̂ (η⊥)

∥
∥
∥
L2

η⊥

∥
∥ĝ

(
η‖

)∥
∥
L2

η‖

�
∥
∥
∥ f̂ (η⊥)

∥
∥
∥
L2

ωL
2
η⊥

∥
∥ĝ

(
η‖

)∥
∥
L2

ωL
2
η‖

= C

∥
∥
∥
∥
∥

1

|η| 12
f̂ (η)

∥
∥
∥
∥
∥
L2

η

∥
∥
∥
∥
∥

1

|η| 12
ĝ (η)

∥
∥
∥
∥
∥
L2

η

.

Then again, because |η|−1 ∈ L2,∞ (
R
2
)
, we may apply the duality

(
L2,1

)′ =L2,∞
([10] Theorem 1.4.17 (v)), combined with the “power property,” to deduce that

∥
∥
∥
∥
∥

1

|η| 12
f̂ (η)

∥
∥
∥
∥
∥
L2

η

=
∥
∥
∥
∥
1

|η|
∣
∣
∣ f̂ (η)

∣
∣
∣
2
∥
∥
∥
∥

1
2

L1
η

�
∥
∥
∥
∥

∣
∣
∣ f̂ (η)

∣
∣
∣
2
∥
∥
∥
∥

1
2

L2,1
η

�
∥
∥
∥ f̂ (η)

∥
∥
∥
L4,2

η (R2)
,



Small Data Global Well-Posedness for a Boltzmann Equation 347

hence we obtain
∥
∥
∥
(
Q+( f, g)

)∧
(η)

∥
∥
∥
L2

η(R2)
�

∥
∥
∥ f̂ (η)

∥
∥
∥
L4,2

η (R2)

∥
∥ĝ(η)

∥
∥
L4,2

η (R2)
, (5.12)

which is (5.10).Remark:The full duality of Lorentz spaces is not actually necessary
at this stage; in fact, a simple application of the Hardy-Littlewood rearrangement
inequality is sufficient.

Using the change of variables

w = x + x ′

2
z = x − x ′

2
,

we find that (5.11) follows immediately from (5.10) and Hölder’s inequality, as
long as we can show that

L4,2
w,z

(
R
2 × R

2
)

⊂ L4
w

(
R
2, L4,2

z

(
R
2
))

. (5.13)

The L4
wL

4,2
z norm of a function F(w, z) can be controlled directly from the defi-

nition of L p,q as follows:
{∫

R2
dw

∫ ∞

0

dλ

λ
λ2

∣
∣
∣
{
z ∈ R

2 : |F(w, z)|�λ
}∣
∣
∣
1
2

×
∫ ∞

0

dλ′

λ′
(
λ′)2

∣
∣
∣
{
z ∈ R

2 : |F(w, z)| �λ′}
∣
∣
∣
1
2
} 1

4

.

Now the idea is to move the dw integral to the inside and apply Cauchy-Schwarz
in w, followed by Fubini; this leads us to the quantity

{∫ ∞

0

dλ

λ
λ2

∣
∣
∣
{
(w, z) ∈ R

4 : |F(w, z)| �λ
}∣
∣
∣
1
2

×
∫ ∞

0

dλ′

λ′
(
λ′)2

∣
∣
∣
{
(w, z) ∈ R

4 : |F(w, z)| �λ′}
∣
∣
∣
1
2
} 1

4

,

but this is comparable to the L4,2
w,z norm of F , so we are done. ��

Finally we are ready to prove our main result for this section.

Proof. (Proposition 5.2)
We estimate by Lemma 5.3, combined with Hölder’s inequality in time, to get

that
∥
∥
∥B+ (

eit�±γ0,1, e
it�±γ0,2

)∥
∥
∥
L1
t L

2
x,x ′(R×R2×R2)

�C
∏

i=1,2

∥
∥
∥eit�±γ0,i

∥
∥
∥
L2
t L

4,2
x,x ′(R

2×R2)
. (5.14)
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We apply Theorem 10.1 of Keel–Tao [15], with H = L2
x,x ′

(
R
2 × R

2
)
, B0 =

L2
x,x ′

(
R
2 × R

2
)
, B1 = L1

x,x ′
(
R
2 × R

2
)
, and (q, σ, θ) = (

2, 2, 1
2

)
to deduce the

Strichartz estimate (see Appendix A)
∥
∥
∥eit�±γ0

∥
∥
∥
L2
t L

4,2
x,x ′(R

2×R2)
� ‖γ0‖L2

x,x ′(R
2×R2) . (5.15)

Here we have used the real interpolation space
((

L2
x,x ′ , L1

x,x ′
)

1
2 ,2

)′
=

(

L
4
3 ,2
x,x ′

)′
= L4,2

x,x ′ ; (5.16)

e.g. see Chapter 5 of the book [5].
Combining (5.14) and (5.15), we are able to conclude. ��

5.2. Back to the Gain-Only Boltzmann Equation

Combining Proposition 5.2 and Plancherel’s theorem, and defining T (t) =
e−tv·∇x , we easily deduce the following bound stated in the spatial domain:

Proposition 5.4. There is a constant C > 0 such that, for any f0, g0 ∈
L2
x,v

(
R
2 × R

2
)
,

∥
∥Q+ (T (t) f0, T (t)g0)

∥
∥
L1
t L2

x,v(R×R2×R2)
�C ‖ f0‖L2

x,v(R2×R2) ‖g0‖L2
x,v(R2×R2)

(5.17)

The following theorem is an immediate consequence of Proposition 5.4 and
Theorem 3.2:

Theorem 5.5. For any f0 ∈ L2
x,v

(
R
2 × R

2
)
with sufficiently small L2

x,v norm,
there exists a unique global (t ∈ R) mild solution to the equation

(∂t + v · ∇x ) f (t) = Q+ ( f (t), f (t)) , (5.18)

with f (0) = f0 such that f ∈ Ct L2
x,v and Q+ ( f, f ) ∈ L1

t,locL
2
x,v . For this

solution, it holds that f ∈ L∞
t∈RL2

x,v and Q+( f, f ) ∈ L1
t∈RL2

x,v , and the solution
scatters in L2

x,v as t → ±∞.

Remark 5.2. It is not necessary in Theorem5.5 for f0 to be non-negative. However,
assuming f0 is non-negative, we can show that the solution f (t) of the Q+ equation
(5.18) is non-negative for a.e. (t, x, v) ∈ (0,∞) × R

2 × R
2. Indeed, there is a

globally convergent expansion of f (t) in terms of f0, which comes from iterating
Duhamel’s formula:

f (t) =T (t) f0 +
∫ t

0
T (t − t1)Q

+ (T (t1) f0, T (t1) f0) dt1

+
∫ t

0

∫ t1

0
T (t − t1)Q

+ (
T (t1 − t2)Q

+ (T (t2) f0, T (t2) f0) , T (t1) f0
)
dt2 dt1 + . . . .

(5.19)

If f0�0 then all the terms in the series are non-negative for t�0; hence, the solution
f (t) is non-negative at positive times.
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5.3. Short-Time Estimates

The bilinear estimates above will not be suitable for every result we wish to
prove, e.g. uniqueness, where we must rely upon integrability properties instead
of regularity. For this reason we will require the following “short-time” estimates
which follow essentially from the dominated convergence theorem.

Proposition 5.6. Let f0 ∈ L2
x,v

(
R
2 × R

2
)
. Then it holds that

lim sup
T→0+

sup
g0∈L2

x,v , ‖g0‖L2x,v =1

∥
∥Q+ (T (t) f0, T (t)g0)

∥
∥
L1
t∈[−T,T ]L2

x,v
= 0 (5.20)

lim sup
T→0+

sup
g0∈L2

x,v , ‖g0‖L2x,v =1

∥
∥Q+ (T (t)g0, T (t) f0)

∥
∥
L1
t∈[−T,T ]L2

x,v
= 0, (5.21)

where we note that T (t) is an operator whereas T > 0 is real valued.

Proof. We only prove the first bound; the second proceeds similarly. By the proof
of Proposition 5.2, for any two density matrices γ0,1, γ0,2 ∈ L2

x,x ′ , B+ (the Wigner
transform of Q+) satisfies the bilinear estimates

∥
∥
∥B+ (

eit�±γ0,1, e
it�±γ0,2

)∥
∥
∥
L1
t∈[−T,T ]L2

x,x ′

�C
∏

i∈{1,2}

∥
∥
∥eit�±γ0,i

∥
∥
∥
L2
t∈[−T,T ]L

4,2
x,x ′

(5.22)

Apply Strichartz in the second entry only to yield
∥
∥
∥B+ (

eit�±γ0,1, e
it�±γ0,2

)∥
∥
∥
L1
t∈[−T,T ]L2

x,x ′

�C
∥
∥
∥eit�±γ0,1

∥
∥
∥
L2
t∈[−T,T ]L

4,2
x,x ′

∥
∥γ0,2

∥
∥
L2
x,x ′

. (5.23)

Now observe that since γ0,1 ∈ L2
x,x ′ by assumption, it follows that eit�±γ0,1 ∈

L2
t L

4,2
x,x ′ by Strichartz; therefore, by the dominated convergence theorem,

lim sup
T→0+

∥
∥
∥eit�±γ0,1

∥
∥
∥
L2
t∈[−T,T ]L

4,2
x,x ′

= 0 (5.24)

We take the sup in γ0,2, followed by the limsup in T , and then conclude by
Plancherel. ��

6. Tools for the Analysis of the Full Boltzmann Equation

In this section, we present key tools that will allow us to treat the full Boltzmann
equation in subsequent sections.
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We start this section by presenting Strichartz estimates for the spatial density

ρ f (x) =
∫

R2
f (x, v) dv (6.1)

in Section 6.1.
The main challenge for solving Boltzmann’s equation (with a constant collision

kernel) in L2
x,v

(
R
2 × R

2
)
is that the spatial density ρ f is not necessarily well-

defined when f ∈ L2
x,v; therefore, since the loss term has the form Q−( f, f ) =

fρ f , we find that Q− might notmake sense. The idealway to dealwith this situation
would be to realize that Q− subtracts from f , and therefore view the loss term as
an unbounded operator at least when t → 0+. However, it is not clear to us how
to implement this strategy, nor whether it would produce enough integrability to
prove uniqueness (and we are not aware of any full treatment of this problem in
the literature). The simplest way to avoid the issue of unbounded operators is to
introduce an auxiliary norm; one natural possibility would be the L1

x,v norm of f
(since it is conserved if f0 has enough smoothness and decay), but we have instead
elected to impose moment and regularity bounds on f0 so that we can employ
Strichartz estimates in the auxiliary space, which we introduce in Section 6.2.

6.1. Strichartz Estimates for the Spatial Density

The following lemma follows from a velocity averaging argument. We present
the details following the dispersive context [18] for the reader’s convenience.

Lemma 6.1. Fix a sufficiently small number δ > 0. Let I ⊆ R be an open interval
and let f (t, x, v) : I × R

2 × R
2 → R be a measurable and locally integrable

function. Then the following estimates hold whenever the respective norms are
finite:

∥
∥ρ f

∥
∥
L2
t∈I L∞

x
�C̃δ

(∥
∥
∥〈v〉 1

2+δ 〈∇x 〉 1
2+δ f

∥
∥
∥
L∞
t∈I L2

x,v

+
∥
∥
∥〈v〉 1

2+δ 〈∇x 〉 1
2+δ (∂t + v · ∇x ) f

∥
∥
∥
L1
t∈I L2

x,v

)

(6.2)

∥
∥ρ f

∥
∥
L2
t∈I L4

x
�Cδ

(∥
∥
∥〈v〉 1

2+δ f
∥
∥
∥
L∞
t∈I L2

x,v

+
∥
∥
∥〈v〉 1

2+δ (∂t + v · ∇x ) f
∥
∥
∥
L1
t∈I L2

x,v

)

.

(6.3)

The constants Cδ, C̃δ do not depend on the interval I .

Proof. Observe that (6.2) follows immediately from (6.3) due to Morrey inequal-
ities [20] and the fact that 〈∇x 〉 commutes with the operators (∂t + v · ∇x ) and
f → ρ f . Therefore, we will prove only the estimate (6.3); moreover, up to possi-
bly increasing the constant Cδ by a fixed factor, we are free to assume that I = R

by standard approximation arguments. If the right hand side of (6.3) is finite, then it

immediately follows that 〈v〉 1
2+δ f ∈ C

(
I, L2

x,v

)
, so we can assume f is as regular
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as necessary by standard approximation arguments. Finally, by Duhamel’s formula,
we have

f (t) = e−tv·∇x f0 +
∫ t

0
e−(t−σ)v·∇x {(∂t + v · ∇x ) f } (σ ) dσ.

Using Duhamel, along with the linearity of the map f → ρ f and Minkowski’s
inequality (first in x , then in t), we obtain

∥
∥ρ f

∥
∥
L2
t L4

x
�

∥
∥
∥ρ

[
e−tv·∇x f0

]∥
∥
∥
L2
t L4

x

+
∫

R

∥
∥
∥ρ

[
e−(t−σ)v·∇x {(∂t + v · ∇x ) f } (σ )

]∥
∥
∥
L2
t L4

x

dσ

and therefore we immediately deduce (6.3), once the same inequality holds with

(∂t + v · ∇x ) f = 0.

In words, we can assume f is a solution of the free transport equation.
Altogether, we only need to show that if f0(x, v) is smooth and compactly

supported in R2 × R
2, then

∥
∥ρT (t) f0

∥
∥
L2
t L4

x(R×R2)
�Cδ

∥
∥
∥〈v〉 1

2+δ f0
∥
∥
∥
L2
x,v(R2×R2)

, (6.4)

where T (t) f0 = e−tv·∇x f0. By the fractional Gagliardo-Nirenberg-Sobolev
inequality [20], it suffices to show that

∥
∥
∥(−�x )

1
4 ρT (t) f0

∥
∥
∥
L2
t L2

x(R×R2)
�Cδ

∥
∥
∥〈v〉 1

2+δ f0
∥
∥
∥
L2
x,v(R2×R2)

, (6.5)

whenever f0 is smooth and compactly supported in R
2 × R

2.2 We will establish
(6.5) using the spacetime Fourier transform to conclude the lemma.

To prove (6.5), we apply Plancherel in (t, x) on the left-hand side, and in x on
the right-hand side; hence, an equivalent bound is

∥
∥
∥Ft,x

{
(−�x )

1
4 ρT (t) f0

}
(τ, ξ)

∥
∥
∥
L2

τ L
2
ξ

�Cδ

∥
∥
∥〈v〉 1

2+δ Fx { f0} (ξ, v)

∥
∥
∥
L2

ξ,v

. (6.6)

Let us define
H(ξ, v) = Fx { f0} (ξ, v). (6.7)

Then (6.6) may be re-cast as the following inequality:

∥
∥
∥
∥|ξ | 12

∫

R2
dvδ (τ + v · ξ) H (ξ, v)

∥
∥
∥
∥

2

L2
τ L

2
ξ

�C2
δ

∥
∥
∥〈v〉 1

2+δ H(ξ, v)

∥
∥
∥
2

L2
ξ,v

. (6.8)

2 Note that if f0 is smooth and compactly supported, then for any fixed t ∈ R, T (t) f0 is
also smooth and compactly supported.



352 T. Chen, R. Denlinger & N. Pavlović

The quantity on the left can be equivalently written as
∫

R

dτ
∫

R2
dξ

∫

R2
dv

∫

R2
duδ (τ + v · ξ) δ (τ + u · ξ) |ξ | H (ξ, v) H (ξ, u),

which is the same as
∫

R

dτ
∫

R2
dξ

∫

R2
dv

∫

R2
duδ (τ + v · ξ) δ (τ + u · ξ) |ξ |

×
(

1

〈u〉 1
2+δ

〈v〉 1
2+δ H (ξ, v)

) (
1

〈v〉 1
2+δ

〈u〉 1
2+δ H (ξ, u)

)

The idea of [18] is to apply the Cauchy-Schwarz inequality, AB� A2

2 + B2

2 , but
pointwise in (τ, ξ, v, u) (not in the integral sense!) to the two terms in the large
parentheses. Thus we will end up with the sum of two terms, one involving only
H(ξ, v) and the other only involving H(ξ, u); under the obvious symmetry u ↔ v,
we can discard one of them up to a factor of 2.

Thus we now only need to prove that
∫

R

dτ
∫

R2
dξ

∫

R2
dv

∫

R2
duδ (τ + v · ξ) δ (τ + u · ξ) |ξ |

×
(

1

〈u〉1+2δ
〈v〉1+2δ |H (ξ, v)|2

)

�C2
δ

∥
∥
∥〈v〉 1

2+δ H (ξ, v)

∥
∥
∥
2

L2
ξ,v

(we can assume H vanishes for ξ close to the origin, so that the integral on the left
certainly makes sense). Hence if we can show that

sup
(τ,ξ)∈R×R

2�=0

∫

R2
duδ (τ + u · ξ)

|ξ |
〈u〉1+2δ < ∞, (6.9)

then we will be done (note that the other δ-function, δ (τ + v · ξ), is absorbed by
the integral in τ , but only after using the supremum bound).

Let us define

I (τ, ξ) =
∫

R2
duδ (τ + u · ξ)

|ξ |
〈u〉1+2δ .

If we denote the line

P (τ, ξ) =
{
u ∈ R

2 | τ + u · ξ = 0
}

,

then it follows that

I (τ, ξ) =
∫

u∈P(τ,ξ)

d�(u)
1

〈u〉1+2δ ,

where d�(u) is the induced linear measure. We can only increase the value of
the integral of 〈u〉−1−2δ by translating the line P (τ, ξ) toward the origin of R2.
Therefore,

sup
(τ,ξ)∈R×R

2�=0

I (τ, ξ) �
∫

q∈R
dq

(
1 + q2

) 1
2+δ

< ∞,

so we are able to conclude. ��
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6.2. Weights and Regularity

Let ε ∈ (0, 1] and define the norm

‖ f0‖2H1,1
ε

= ‖ f0‖2L2
x,v

+ε2 ‖v f0‖2L2
x,v

+ε2 ‖∇x f0‖2L2
x,v

+ε4 ‖v ⊗ ∇x f0‖2L2
x,v

. (6.10)

Note that the space H1,1
ε is independent of ε > 0, but the norm of a fixed element

f0 ∈ H1,1
ε does depend on ε in general. The norm on H1,1

ε is equivalently written
as

‖ f0‖H1,1
ε

=
∥
∥
∥
∥

(
1 + ε2|v|2

) 1
2
(
1 + ε2|ξ |2

) 1
2 Fx f0(ξ, v)

∥
∥
∥
∥
L2

ξ,v

, (6.11)

where Fx f0 is the Fourier transform of f0 in the spatial variable only. This may
also be written as

‖ f0‖H1,1
ε

= ‖〈εv〉 〈ε∇x 〉 f0‖L2
x,v

, (6.12)

where 〈v〉 = (
1 + |v|2) 1

2 . We will use the notation H1,1 ≡ H1,1
1 when the depen-

dence on ε is unimportant.
More generally, we also define the norms

‖ f0‖Hα,β
ε

= ∥
∥〈εv〉β 〈ε∇x 〉α f0

∥
∥
L2
x,v

, (6.13)

where the exponents α, β�0 are chosen independently.
The following commutation relations are standard:

∇x Q
+ ( f, g) = Q+ (∇x f, g) + Q+ ( f,∇x g)

∇x T (t) f0 = T (t)∇x f0
vT (t) f0 = T (t) (v f0) .

Additionally, from conservation of energy, we have
∣
∣vQ+ ( f, g)

∣
∣ � Q+ (|v f | , |g|) + Q+ (| f | , |vg|) .

Using the commutation relations and Proposition 5.4, we have
∥
∥∇x Q

+ (T (t) f0, T (t)g0)
∥
∥
L1
t L2

x,v
� ‖∇x f0‖L2

x,v
‖g0‖L2

x,v
+ ‖ f0‖L2

x,v
‖∇x g0‖L2

x,v

(6.14)
∥
∥vQ+ (T (t) f0, T (t)g0)

∥
∥
L1
t L2

x,v
� ‖v f0‖L2

x,v
‖g0‖L2

x,v
+ ‖ f0‖L2

x,v
‖vg0‖L2

x,v

(6.15)

and
∥
∥v ⊗ ∇x Q

+ (T (t) f0, T (t)g0)
∥
∥
L1
t L2

x,v
� ‖v ⊗ ∇x f0‖L2

x,v
‖g0‖L2

x,v

+ ‖∇x f0‖L2
x,v

‖vg0‖L2
x,v

+ ‖v f0‖L2
x,v

‖∇x g0‖L2
x,v

+ ‖ f0‖L2
x,v

‖v ⊗ ∇x g0‖L2
x,v

.

(6.16)

Using (6.14), (6.15) and (6.16), and the definition of H1,1
ε , we obtain the following

estimate: ∥
∥Q+ (T (t) f0, T (t)g0)

∥
∥
L1
t H

1,1
ε

�C ‖ f0‖H1,1
ε

‖g0‖H1,1
ε

. (6.17)

Here, the constant C does not depend on ε ∈ (0, 1].
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Proposition 6.2. For any f0, g0 ∈ H1,1, it holds that
∥
∥Q+ (T (t) f0, T (t)g0))

∥
∥
L1
t H

1,1
ε

�C ‖ f0‖H1,1
ε

‖g0‖H1,1
ε

(6.18)

where T (t) = e−tv·∇x . The constant C is independent of ε ∈ (0, 1].

Similarly, we also have

Proposition 6.3. For any f0, g0 ∈ H0,1, it holds that
∥
∥〈εv〉 Q+ (T (t) f0, T (t)g0))

∥
∥
L1
t L2

x,v
�C ‖〈εv〉 f0‖L2

x,v
‖〈εv〉 g0‖L2

x,v
(6.19)

where T (t) = e−tv·∇x . The constant C is independent of ε ∈ (0, 1].

The bounds in the preceding two propositions can be interpolated against Propo-
sition 5.4, using Theorem 5.1.2 of the book [5], to obtain

Proposition 6.4. Let α ∈ (0, 1). For any f0, g0 ∈ Hα,α , it holds that
∥
∥Q+ (T (t) f0, T (t)g0))

∥
∥
L1
t H

α,α
ε

�C ‖ f0‖Hα,α
ε

‖g0‖Hα,α
ε

(6.20)

where T (t) = e−tv·∇x . The constant C is independent of ε, α.

Proposition 6.5. Let α ∈ (0, 1). For any f0, g0 ∈ H0,α , it holds that
∥
∥〈εv〉α Q+ (T (t) f0, T (t)g0))

∥
∥
L1
t L2

x,v
�C

∥
∥〈εv〉α f0

∥
∥
L2
x,v

∥
∥〈εv〉α g0

∥
∥
L2
x,v

(6.21)

where T (t) = e−tv·∇x . The constant C is independent of ε, α.

6.3. A Useful Lemma

The next lemma is a consequence of Section 3; we record it here to help clarify
themain ideas underlying the present work. Note that the theory of Section 3 cannot
be applied “out of box” to the Boltzmann equation accounting for the loss term. For
this reason, it is crucial to observe that the theory of Section 3 rests upon a single
bound which can be applied to the Q+ term in any estimate.

Lemma 6.6. Let I = (a, b) ⊂ R be a nonempty open interval with −∞�a <

b� + ∞. Furthermore, for i = 1, 2, suppose fi (t, x, v) : I × R
2 × R

2 → R

is a function such that fi ∈ L∞
t∈I L2

x,v and (∂t + v · ∇x ) fi ∈ L1
t∈I L2

x,v . Then the
following estimate holds:

∥
∥Q+ ( f1(t), f2(t))

∥
∥
L1
t∈I L2

x,v

�C
∏

i=1,2

(
‖ fi (t)‖L∞

t∈I L2
x,v

+ ‖(∂t + v · ∇x ) fi (t)‖L1
t∈I L2

x,v

)
, (6.22)

for some constant C which does not depend on f1, f2 or the interval I .
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Proof. We may assume without loss that I = (0, T ) for some T > 0. The lemma
then follows fromProposition 6.4 andLemma3.1, under the following assignments:
H = L2

x,v , x j (t) = etv·∇x f j (t), and

A(t, x1, x2) = etv·∇x Q+ (
e−tv·∇x x1, e

−tv·∇x x2
)

.

Here we have used that e−tv·∇x is an isometry on L2
x,v for any t ∈ R. ��

Similarly, we deduce the following result as a consequence of Proposition 6.4
and Lemma 3.1:

Lemma 6.7. Let ε ∈ (0, 1] and let α ∈ (0, 1). Let I = (a, b) ⊂ R be a nonempty
open interval with −∞�a < b� + ∞. Furthermore, for i = 1, 2, suppose
fi (t, x, v) : I × R

2 × R
2 → R is a function such that fi ∈ L∞

t∈I Hα,α and
(∂t + v · ∇x ) fi ∈ L1

t∈I Hα,α . Then the following estimate holds:
∥
∥Q+ ( f1(t), f2(t))

∥
∥
L1
t∈I H

α,α
ε

�C
∏

i=1,2

(
‖ fi (t)‖L∞

t∈I H
α,α
ε

+ ‖(∂t + v · ∇x ) fi (t)‖L1
t∈I H

α,α
ε

)
, (6.23)

for some constant C which does not depend on f1, f2, α, ε or the interval I .

The following result is similarly straightforward to prove by omitting spatial
derivatives throughout the argument:

Lemma 6.8. Let ε ∈ (0, 1] and let α ∈ (0, 1). Let I = (a, b) ⊂ R be a nonempty
open interval with −∞�a < b� + ∞. Furthermore, for i = 1, 2, suppose
fi (t, x, v) : I × R

2 × R
2 → R is a function such that 〈v〉α fi ∈ L∞

t∈I L2
x,v and

〈v〉α (∂t + v · ∇x ) fi ∈ L1
t∈I L2

x,v . Then the following estimate holds:
∥
∥〈εv〉α Q+ ( f1(t), f2(t))

∥
∥
L1
t∈I L2

x,v

�C
∏

i=1,2

(∥
∥〈εv〉α fi (t)

∥
∥
L∞
t∈I L2

x,v
+ ∥

∥〈εv〉α (∂t + v · ∇x ) fi (t)
∥
∥
L1
t∈I L2

x,v

)
,

(6.24)

for some constant C which does not depend on f1, f2, α, ε or the interval I .

7. Uniqueness

In this section, we present our main uniqueness result.

Theorem 7.1. There is at most one mild solution of the full Boltzmann equation on
an interval [0, T ], with given initial data f0, such that the estimates

〈v〉 1
2+ Q+( f, f ) ∈ L1

t∈[0,T ]L2
x,v (7.1)

ρ f ∈ L2
t∈[0,T ]L∞

x

⋂
L2
t∈[0,T ]L4

x (7.2)

〈v〉 1
2+ f ∈ L∞

t∈[0,T ]L2
x,v

⋂
L∞
t∈[0,T ]L4

x L
2
v (7.3)

are all verified.
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Remark 7.1. Theorem7.1makes no assumptions about the non-negativity of either
f (t) or f (0) = f0; in particular, neither f nor ρ f needs to be non-negative any-
where on their respective domains of definition.

Remark 7.2. A similar statement is discussed in [13]. We note that the analysis in
[13] does not cover the case studied in our work (constant collision kernel in d =
2) because the parameter range (in their notation) rv�pv needed for Lemma 2.4
in [13] does not match the required parameter range rv > pv for the Strichartz
estimate controlling the loss term.

7.1. Proof of Theorem 7.1

Let f, g be two mild solutions of Boltzmann’s equation on the given interval
[0, T ] (each satisfying the bounds stated in the theorem), and consider the difference

w = f − g. (7.4)

The function w satisfies the difference equation

(∂t + v · ∇x ) w = Q+( f, w) + Q+(w, g) − wρ f − gρw, (7.5)

with w(0) = 0. Now we apply the lemma to follow (it is not hard to check that all
necessary bounds follow from the hypotheses of the uniqueness theorem and the
fact that f, g solve Boltzmann’s equation with w being their difference).

Lemma 7.2. Assume that fi , i = 1, 2, 3, 4, satisfy the bounds

〈v〉 1
2+ fi ∈ L∞

t∈[0,T ]L2
x,v

⋂
L∞
t∈[0,T ]L4

x L
2
v (7.6)

〈v〉 1
2+ (∂t + v · ∇x ) fi ∈ L1

t∈[0,T ]L2
x,v (7.7)

ρ fi ∈ L2
t∈[0,T ]L∞

x

⋂
L2
t∈[0,T ]L4

x . (7.8)

Also assume that w is a mild solution of the equation

(∂t + v · ∇x ) w = Q+( f1, w) + Q+(w, f2) + wρ f3 + f4ρw (7.9)

for t ∈ [0, T ], and satisfies the bounds

〈v〉 1
2+ w ∈ L∞

t∈[0,T ]L2
x,v (7.10)

〈v〉 1
2+ (∂t + v · ∇x ) w ∈ L1

t∈[0,T ]L2
x,v. (7.11)

Then if w(t = 0) = 0 then w ≡ 0 for 0�t�T .

Proof. The bounds imposed on w immediately imply that 〈v〉 1
2+ w ∈ C

([0, T ],
L2
x,v

)
. Let us suppose that the conclusion fails and define

t0 = inf
{
t ∈ [0, T ]

∣
∣
∣‖w(t)‖L2

x,v
> 0

}
. (7.12)
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Then 0�t0 < T , and w ≡ 0 for all 0�t�t0 by continuity.
Let us define the error, for 0�s�T − t0,

et0(s) =
∥
∥
∥〈v〉 1

2+ w

∥
∥
∥
L∞
t∈[t0,t0+s]L2

x,v

+
∥
∥
∥〈v〉 1

2+ (∂t + v · ∇x ) w

∥
∥
∥
L1
t∈[t0,t0+s]L2

x,v

, (7.13)

and note that et0(s) < +∞, by hypothesis. We re-write the equation for w as
follows:

(∂t + v · ∇x ) w

= Q+ ( f1 − T (t − t0) f1(t0), w) + Q+ (T (t − t0) f1(t0), w)

+ Q+ (w, f2 − T (t − t0) f2(t0)) + Q+ (w, T (t − t0) f2(t0))

+ wρ f3 + f4ρw. (7.14)

The most dangerous terms are

Q+ (T (t − t0) f1(t0), w) (7.15)

and
Q+ (w, T (t − t0) f2(t0)) , (7.16)

because a quantitative estimate will always be proportional to

‖ fi (t0)‖L2
x,v

× et0(s),

which is not necessarily a small multiple of et0(s) (unless ‖ fi (t0)‖L2
x,v

is small).
We will address this problem using the short-time estimates from Proposition 5.6.

We will show how to estimate (7.15); the alternative term (7.16) is dealt with
similarly. To begin, let us define

ζ = (∂t + v · ∇x ) w,

and then use Duhamel’s formula to write

w(t) =
∫ t

t0
T (t − σ) ζ(σ )dσ, (7.17)

since w(t0) = 0. Due to the bilinearity of Q+, we can now write

Q+ (T (t − t0) f1(t0), w) =
∫ t

t0
Q+ (T (t − t0) f1(t0), T (t − σ)ζ(σ )) dσ

=
∫ t

t0
Q+ (T (t − t0) f1(t0), T (t − t0)T (t0 − σ)ζ(σ )) dσ. (7.18)

Now, by Minkowski’s inequality, we have
∥
∥Q+ (T (t − t0) f1(t0), w)

∥
∥
L1
t∈[t0,t0+s]L2

x,v

�
∫ t0+s

t0

∥
∥Q+ (T (t − t0) f1(t0), T (t − t0)T (t0 − σ)ζ(σ ))

∥
∥
L1
t∈[t0,t0+s]L2

x,v
dσ.

(7.19)
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Apply Proposition 5.6 to obtain
∥
∥Q+ (T (t − t0) f1(t0), w)

∥
∥
L1
t∈[t0,t0+s]L2

x,v

�
∫ t0+s

t0
δ f1(t0)(s) ‖T (t0 − σ)ζ(σ )‖L2

x,v
dσ

=
∫ t0+s

t0
δ f1(t0)(s) ‖ζ(σ )‖L2

x,v
dσ = δ f1(t0)(s) ‖ζ(t)‖L1

t∈[t0,t0+s]L2
x,v

�δ f1(t0)(s)et0(s), (7.20)

where, for each f1(t0) ∈ L2
x,v ,

lim sup
s→0+

δ f1(t0)(s) = 0

The same argument can be applied with a weight 〈v〉 1
2+ to yield

∥
∥
∥〈v〉 1

2+ Q+ (T (t − t0) f1(t0), w)

∥
∥
∥
L1
t∈[t0,t0+s]L2

x,v

�δ̃ f1(t0)(s)et0(s), (7.21)

where for each f1(t0) with 〈v〉 1
2+ f1(t0) ∈ L2

x,v it holds that

lim sup
s→0+

δ̃ f1(t0)(s) = 0.

Next we consider the term

Q+ ( f1 − T (t − t0) f1(t0), w) (7.22)

(the corresponding term involving Q+ and f2 is dealt with similarly). Here we use
Lemma 6.8 to write

∥
∥
∥〈v〉 1

2+ Q+ ( f1 − T (t − t0) f1(t0), w)

∥
∥
∥
L1
t∈[t0,t0+s]L2

x,v

�C

(
∥
∥
∥〈v〉 1

2+ ( f1 − T (t − t0) f1(t0))
∥
∥
∥
L∞
t∈[t0,t0+s]L2

x,v

+
∥
∥
∥〈v〉 1

2+ (∂t + v · ∇x ) f1
∥
∥
∥
L1
t∈[t0,t0+s]L2

x,v

)

×
(

∥
∥
∥〈v〉 1

2+ w

∥
∥
∥
L∞
t∈[t0,t0+s]L2

x,v

+
∥
∥
∥〈v〉 1

2+ (∂t + v · ∇x ) w

∥
∥
∥
L1
t∈[t0,t0+s]L2

x,v

)

�C
∥
∥
∥〈v〉 1

2+ (∂t + v · ∇x ) f1
∥
∥
∥
L1
t∈[t0,t0+s]L2

x,v

× et0(s).

Now let us consider the term

wρ f3 .



Small Data Global Well-Posedness for a Boltzmann Equation 359

We have, by Hölder’s inequality,
∥
∥
∥〈v〉 1

2+ wρ f3

∥
∥
∥
L1
t∈[t0,t0+s]L2

x,v

�
∥
∥
∥〈v〉 1

2+ w

∥
∥
∥
L∞
t∈[t0,t0+s]L2

x,v

∥
∥ρ f3

∥
∥
L1
t∈[t0,t0+s]L∞

x

�s
1
2
∥
∥ρ f3

∥
∥
L2
t∈[0,T ]L∞

x
et0(s).

Finally, consider the term

f4ρw.

We have, by Hölder’s inequality, and Lemma 6.1,
∥
∥
∥〈v〉 1

2+ f4ρw

∥
∥
∥
L1
t∈[t0,t0+s]L2

x,v

�
∥
∥
∥〈v〉 1

2+ f4
∥
∥
∥
L∞
t∈[t0,t0+s]L4

x L
2
v

‖ρw‖L1
t∈[t0,t0+s]L4

x

�s
1
2

∥
∥
∥〈v〉 1

2+ f4
∥
∥
∥
L∞
t∈[0,T ]L4

x L
2
v

‖ρw‖L2
t∈[t0,t0+s]L4

x

�Cs
1
2

∥
∥
∥〈v〉 1

2+ f4
∥
∥
∥
L∞
t∈[0,T ]L4

x L
2
v

× et0(s). (7.23)

Altogether we can conclude the bound

et0(s)�c(s)et0(s),

where

c(s) =C
∑

i=1,2

(

δ̃ fi (t0)(s) +
∥
∥
∥〈v〉 1

2+ (∂t + v · ∇x ) fi
∥
∥
∥
L1
t∈[t0,t0+s]L2

x,v

)

+ Cs
1
2
∥
∥ρ f3

∥
∥
L2
t∈[0,T ]L∞

x
+ Cs

1
2

∥
∥
∥〈v〉 1

2+ f4
∥
∥
∥
L∞
t∈[0,T ]L4

x L
2
v

. (7.24)

Clearly, c(s) → 0 as s → 0+; hence, taking s small enough, we shall have
c(s) < 1. This implies that et0(s) < et0(s); since et0(s) is finite, we can conclude
that et0(s) = 0 for some s > 0 sufficiently small. This contradicts the definition of
t0, so we are done. ��

8. The Kaniel–Shinbrot Iteration

The problem we encounter in trying to solve Boltzmann’s equation is that we
are unable to prove Proposition 5.4 with Q− in place of Q+. Indeed, it is not even
clear whether Q−( f, f ) is meaningful, in general, when f is a mild solution of the
gain-only equation obtained from Theorem 5.5. On the other hand, it is definitely
possible to solve uniquely the full Boltzmann equation (with constant collision
kernel in d = 2) locally in time if we assume that

〈v〉 1
2+ 〈∇x 〉 1

2+ f0 ∈ L2
x,v

(
R
2 × R

2
)

.

The challenge, therefore, is to propagate sufficient regularity for the gain-only
equation, assuming a smallness condition only for the L2

x,v norm. To this end, we
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will need to employ a small parameter ε ∈ (0, 1] to encode the fact that higher
derivatives may be much larger than the L2

x,v norm of f0.
We proceed by first establishing regularity of the gain-only equation in Section

8.1. Then, in Section 8.2, we present a novel application of the iterative method of
Kaniel–Shinbrot to establish existence of global solution to theBoltzmann equation.

8.1. Regularity for the Gain-Only Equation

Theorem 8.1. There exists a number η ∈ (0, 1) such that of all the following is
true:

(i) For any f0 ∈ Hα,α , α ∈ (0, 1), with ‖ f0‖L2
x,v

< η, there exists a unique global
(t ∈ R) mild solution to the gain-only Boltzmann equation

(∂t + v · ∇x ) f (t) = Q+ ( f (t), f (t)) (8.1)

with f (0) = f0 such that f ∈ Ct,locH
α,α and Q+( f, f ) ∈ L1

t,locH
α,α . For

this solution, it holds that f ∈ L∞
t Hα,α and Q+( f, f ) ∈ L1

t H
α,α , and the

solution scatters in Hα,α as t → ±∞.
(ii) For any f0 ∈ Hα,α with ‖ f0‖L2

x,v
< η, we have the estimate

‖ f ‖2L∞
t∈RL2

x,v
+ ∥

∥Q+ ( f, f )
∥
∥
L1
t∈RL2

x,v
�C ‖ f0‖2L2

x,v
(8.2)

for the solution f of the gain-only Boltzmann equation (note, this bound
only depends on the L2

x,v norm of f0). Also, if f0(x, v)�0 a.e. − (x, v) then
f (t, x, v)�0 for a.e. − (t, x, v) such that t�0.

(iii) If α > 1
2 , then we have 〈v〉 1

2+ f ∈ L∞
t L4

x L
2
v and ρ f ∈ L2

t L
∞
x

⋂
L2
t L

4
x .

Combining these estimates, the loss term Q−( f, f ) = ρ f f (although not
appearing in the equation for f ) satisfies

〈v〉 1
2+ Q−( f, f ) ∈ L2

t∈RL
2
x,v.

Proof. Parts (i) and (ii) are direct consequences of Proposition 6.4, combined with
Theorem 3.2 taking H = Hα,α

ε where ε = ε ( f0) is sufficiently small; here we
have used the fact that the constantC in Proposition 6.4 does not depend on ε. Note
that L2

x,v ⊂ Hα,α , so the uniqueness in L2
x,v implies that L2

x,v and Hα,α solutions
coincide globally in time (as long as the L2

x,v norm of f0 is small enough).

For part (iii), to see that 〈v〉 1
2+ f ∈ L∞

t L4
x L

2
v , we may observe that

〈v〉 1
2+ 〈∇x 〉 1

2+ f ∈ L∞
t L2

x,v and apply the Sobolev embedding theorem in the
x variable. On the other hand, the estimate ρ f ∈ L2

t L
∞
x

⋂
L2
t L

4
x follows directly

from Lemma 6.1 and the estimates from part (i). The estimate on Q−( f, f ) then
follows from Hölder’s inequality. Note that, contrary to part (ii), all the bounds
from part (iii) depend explicitly on the Hα,α norm of f0. ��
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8.2. The Full Equation via Kaniel–Shinbrot Iteration

The iteration of Kaniel and Shinbrot constructs a decreasing sequence
gn(t, x, v) and an increasing sequence hn(t, x, v) with 0�hn�gn . The goal is to
show that limn gn = limn hn = f , with f being a solution of the full Boltzmann
equation. One can view the functions gn, hn as being “barriers”which progressively
limit the possible oscillation of f , until eventually there is no room left in which to
wiggle.

Recall the convenient notation

ρ f (x) =
∫

R2
f (x, v) dv. (8.3)

The iteration is as follows:
(
∂t + v · ∇x + 2πρgn

)
hn+1 = Q+ (hn, hn)

(
∂t + v · ∇x + 2πρhn

)
gn+1 = Q+ (gn, gn)

gn+1(0) = hn+1(0) = f0.

For each n, observe that we are simply solving linear differential equations (with
the initial data always fixed at f0), so the existence of the iteration is typically not
a big problem. It is possible to show (see e.g. [6]), using monotonicity, that if

0�hn−1�hn�gn�gn−1 (8.4)

holds globally, then
0�hn�hn+1�gn+1�gn . (8.5)

Hence, in order to exploit monotonicity, we must at least have

0�h1�h2�g2�g1, (8.6)

where
(
∂t + v · ∇x + 2πρg1

)
h2 = Q+ (h1, h1)

(
∂t + v · ∇x + 2πρh1

)
g2 = Q+ (g1, g1)

g2(0) = h2(0) = f0, (8.7)

and this is the so-called beginning condition (note that no initial conditions are
imposed for (h1, g1)). Note that the beginning condition has to be verified for all
time (or at least on the full time interval for which the iteration is to be employed).
For this reason, establishing the beginning condition is considered themost difficult
part of the Kaniel–Shinbrot iteration.

We choose h1 as follows:

h1 ≡ 0,

and we choose g1 to solve the gain only equation

(∂t + v · ∇x ) g1 = Q+ (g1, g1) , g1(0) = f0. (8.8)
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Then we compute h2 and g2 according to (8.7) to obtain

h2(t) = [T (t) f0] e
− ∫ t

0 T (t−τ)ρg1 (τ ) dτ (8.9)

and

g2(t) = T (t) f0 +
∫ t

0
T (t − τ)Q+(g1, g1)(τ ) dτ. (8.10)

Therefore, the condition
0�h1(t)�h2(t)�g2(t) (8.11)

is satisfied for all t�0. On the other hand, since h1 ≡ 0 we see from (8.7) and (8.8)
that g2 and g1 solve the same initial value problem. Therefore

g2(t) = g1(t) (8.12)

for all t�0, for which we can make sense of the gain only equation. We conclude
that for our choice of h1 and g1, the beginning condition follows (8.11) and (8.12).

Since all the gn, hn are bounded by g1, under the conditions of Theorem 8.1

with f0 ∈ H
1
2+, 12+ we automatically have

sup
n

‖hn‖L∞
t L2

x,v
� sup

n
‖gn‖L∞

t L2
x,v

< ∞
sup
n

∥
∥Q+ (hn, hn)

∥
∥
L1
t�0

L2
x,v

� sup
n

∥
∥Q+ (gn, gn)

∥
∥
L1
t�0

L2
x,v

< ∞
sup
n

∥
∥Q− (hn, hn)

∥
∥
L1
t∈[0,T ]L2

x,v
� sup

n

∥
∥Q− (gn, gn)

∥
∥
L1
t∈[0,T ]L2

x,v
< ∞,

assuming the iterationmakes sense.Moreover, since the functions hn are increasing
and the gn are decreasing, we can define their pointwise limits

g = lim
n

gn h = lim
n

hn .

Since 0�hn�gn�g1, and Q±(g1, g1) ∈ (
L1
t,x,v

)
loc, an easy application of the

dominated convergence theorem shows that

Q±(hn, hn) → Q±(h, h) Q±(gn, gn) → Q±(g, g),

in the sense of distributions.Mixed terms such as Q−(hn, gn) are handled similarly.
Altogether we conclude that the limits g, h satisfy

(
∂t + v · ∇x + ρg

)
h = Q+ (h, h)

(∂t + v · ∇x + ρh) g = Q+ (g, g)

g(0) = h(0) = f0,

in the sense of distributions.
We have yet to show that h = g in order to conclude the convergence of the

Kaniel–Shinbrot iteration. Let us define

w(t, x, v) = g(t, x, v) − h(t, x, v)�0, (8.13)
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and note that w�g1. The function w satisfies the following equation in the sense
of distributions:

(∂t + v · ∇x ) w = Q+ (g, w) + Q+ (w, h) + ρwh − ρhw

w(0) = 0.

The goal is to show that w = 0 globally in t�0. This follows from Lemma 7.2 as
long as we can show

〈v〉 1
2+ Q+(g1, g1) ∈ L1

t∈[0,T ]L2
x,v (8.14)

ρg1 ∈ L2
t∈[0,T ]L∞

x

⋂
L2
t∈[0,T ]L4

x (8.15)

〈v〉 1
2+ g1 ∈ L∞

t∈[0,T ]L2
x,v

⋂
L∞
t∈[0,T ]L4

x L
2
v, (8.16)

but these bounds follow from Theorem 8.1 since we assume f0 ∈ H
1
2+, 12+. We can

conclude that the Kaniel–Shinbrot iteration converges to a solution of Boltzmann’s
equation.

As a final crucial remark, let us note that since 0� f �g1 (by construction),

and f0 ∈ H
1
2+, 12+, by Theorem 8.1 we have the following estimates for the full

Boltzmann equation with small L2
x,v norm:

〈v〉 1
2+ Q+( f, f ) ∈ L1

t L
2
x,v

〈v〉 1
2+ Q−( f, f ) ∈ L2

t L
2
x,v

〈v〉 1
2+ f ∈ L∞

t L2
x,v

⋂
L∞
t L4

x L
2
v

ρ f ∈ L2
t L

∞
x

⋂
L2
t L

4
x

‖ f ‖2L∞
t L2

x,v
+ ∥

∥Q+( f, f )
∥
∥
L1
t L2

x,v
�C ‖ f0‖2L2

x,v
.

Let us emphasize that we have not established that f ∈ L∞
t∈[0,T ]H

1
2+, 12+ so it

is not valid to apply Lemma 6.1 directly to the solution f of Boltzmann’s equa-
tion in order to deduce that ρ f ∈ L2

t∈[0,T ]L∞
x . Rather, we are using the fact that

0�ρ f �ρg1 combined with the propagation of regularity for the gain-only equa-

tion, g1 ∈ L∞
t H

1
2+, 12+, and applying Lemma 6.1 to g1. Indeed, to obtain the best

possible bounds, we are required to convert all regularity information on g1 into
integrability information via the Sobolev embedding, at which point it becomes
useful information for the solution f of the full Boltzmann equation. This is a

strange situation because we are using the regularity condition f0 ∈ H
1
2+, 12+ to

construct global solutions f (t) for which a priori the H
1
2+, 12+ norm could blow

up to +∞ in finite time (we will show later by an independent argument that this
blow-up scenario cannot happen).
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9. Scattering in L2
x,v

The idea is to use the non-negativity of f in a rather strong way. We can write
the solution of Boltzmann’s equation as follows:

T (−t) f (t) +
∫ t

0
T (−σ)Q− ( f (σ ), f (σ )) dσ

= f0 +
∫ t

0
T (−σ)Q+ ( f (σ ), f (σ )) dσ (9.1)

Everything on either side is non-negative (we are assuming t�0), so we can write
∫ t

0
T (−σ)Q− ( f (σ ), f (σ )) dσ� f0 +

∫ t

0
T (−σ)Q+ ( f (σ ), f (σ )) dσ, (9.2)

which implies
∫ t

0
T (−σ)Q− ( f (σ ), f (σ )) dσ� f0 +

∫ ∞

0
T (−σ)Q+ ( f (σ ), f (σ )) dσ. (9.3)

Then, by monotone convergence in t , for almost every (x, v) we have
∫ ∞

0
T (−σ)Q− ( f (σ ), f (σ )) dσ� f0+

∫ ∞

0
T (−σ)Q+ ( f (σ ), f (σ )) dσ. (9.4)

Taking the L2
x,v norm of both sides and applying Minkowski on the right hand side

only, and using the fact that T (t) preserves L2
x,v , we obtain

∥
∥T (−t)Q− ( f (t), f (t))

∥
∥
L2
x,vL

1
t�0

� ‖ f0‖L2
x,v

+ ∥
∥Q+ ( f (t), f (t))

∥
∥
L1
t�0

L2
x,v

(9.5)

We have
Q+ ( f (t), f (t)) ∈ L1

t�0L
2
x,v, (9.6)

because (9.6) holds for the solution of the gain-only Boltzmann equation (with
small data f0 ∈ L2

x,v), and the solution of the full Boltzmann equation is bounded
above by the solution of the gain-only Boltzmann equation as a result of the Kaniel–
Shinbrot construction.

We can combine (9.5) and (9.6) to conclude

T (−t)Q± ( f (t), f (t)) ∈ L2
x,vL

1
t�0, (9.7)

and this implies that the limit in norm

lim
t→+∞

∫ t

0
T (−σ)Q ( f (σ ), f (σ )) dσ (9.8)

exists in L2
x,v , by the dominated convergence theorem. Indeed, the L2

x,v remainder
is bounded by

∫

dx dv
∫ ∞

t
dσ

∫ ∞

t
dσ ′ {T (−σ) |Q ( f (σ ), f (σ ))|} {

T (−σ ′)
∣
∣Q

(
f (σ ′), f (σ ′)

)∣
∣
}
,

(9.9)
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and this clearly tends to zero as t → +∞.
As a result of the convergence argument detailed above, if we define

f+∞ = f0 + lim
t→+∞

∫ t

0
T (−σ)Q ( f (σ ), f (σ )) dσ, (9.10)

then it follows that f+∞ ∈ L2
x,v and

lim
t→+∞ ‖T (−t) f (t) − f+∞‖L2

x,v
= 0. (9.11)

The same argument implies the following slightly more general result (which does
not require uniqueness, nor that f0 necessarily have small L2

x,v norm):

Theorem 9.1. Suppose f ∈ ⋂
T>0 L

∞
t∈[0,T ]L2

x,v is a non-negative mild solution of
the full Boltzmann equation,

(∂t + v · ∇x ) f = Q+ ( f, f ) − fρ f , (9.12)

such that, along the solution f (t), the gain operator Q+ satisfies

T (−t)Q+ ( f (t), f (t)) ∈ L2
x,vL

1
t�0. (9.13)

Then f (t) scatters in L2
x,v as t → +∞; that is, there exists a function f+∞ ∈ L2

x,v
such that the limit

lim
t→+∞ ‖ f (t) − T (t) f+∞‖L2

x,v
= 0 (9.14)

holds.

Remark 9.1. The gain-only Boltzmann equation scatters in H
1
2+, 12+, assuming

only that f0 ∈ H
1
2+, 12+ ∩ BL2

η ; of course, this implies that solutions of the gain-

only equation remain uniformly bounded in H
1
2+, 12+ as t → +∞. However, we do

not knowwhether the full Boltzmann equation scatters in H
1
2+, 12+; indeed, whereas

we show in Section 10 that the solution of the full Boltzmann equation propagates

H
1
2+, 12+ for small L2

x,v solutions, we do not even know whether the H
1
2+, 12+ norm

(for the full Boltzmann equation) remains bounded in time as t → +∞.

Remark 9.2. Due to the lack of L1
t L

2
x,v bilinear spacetime estimates for Q−( f, f ),

we cannot use Theorem 3.3 (or its proof) to describe qualitatively the correspon-
dence between f0 and f+∞ for the full Boltzmann equation (though Theorem 3.3
clearly applies to the gain-only equation).
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10. Propagation of Regularity for the Full Equation

Recall that some extra regularity for the gain-only equation was required to pro-
duce enough integrability to close the Kaniel–Shinbrot iteration and prove unique-
ness.However, so farwehave said nothing about the regularity of the full Boltzmann
equation. The point of this section is to prove that, for all the regularity which we
required to construct a solution, such regularity is indeed propagated by the solution
itself.

Remark 10.1. It is important to observe that it is not necessary to propagate regu-
larity for the full Boltzmann equation in order to close theKaniel–Shinbrot iteration.
Thus, the regularity for the full equation is propagated a posteriori.

10.1. Loss Operator Bounds

Recall the loss operator
Q− ( f, g) = fρg. (10.1)

Lemma 10.1. Let α ∈ ( 1
2 , 1

]
. For any two measurable and locally integrable func-

tions f0(x, v), g0(x, v) such that 〈v〉α 〈∇x 〉α f0, 〈v〉α 〈∇x 〉α g0 ∈ L2
x,v , the func-

tion Q− (T (t) f0, T (t)g0) is in L2
t,x,v

(
R × R

2 × R
2
)
and the following estimate

holds:
∥
∥〈v〉α 〈∇x 〉α Q− (T (t) f0, T (t)g0)

∥
∥
L2
t,x,v

�C
∥
∥〈v〉α 〈∇x 〉α f0

∥
∥
L2
x,v

∥
∥〈v〉α 〈∇x 〉α g0

∥
∥
L2
x,v

. (10.2)

Proof. We will assume α ∈ ( 1
2 , 1

)
; the case α = 1 follows in a similar manner by

using the Leibniz differentiation rule (note that H1
x = L2

x ∩ Ḣ1
x , and that |∇x | can

be replaced by ∇x in defining the Ḣ1
x semi-norm).

We begin with the L2
x estimate. We have

∥
∥〈v〉α Q− (T (t) f0, T (t)g0)

∥
∥
L2
t,x,v

= ∥
∥〈v〉α {T (t) f0} ρT (t)g0

∥
∥
L2
t,x,v

�
∥
∥〈v〉α T (t) f0

∥
∥
L∞
t L2

x,v

∥
∥ρT (t)g0

∥
∥
L2
t L∞

x

�
∥
∥〈v〉α f0

∥
∥
L2
x,v

∥
∥〈v〉α 〈∇x 〉α g0

∥
∥
L2
x,v

�
∥
∥〈v〉α 〈∇x 〉α f0

∥
∥
L2
x,v

∥
∥〈v〉α 〈∇x 〉α g0

∥
∥
L2
x,v

,

where we have used that α > 1
2 in order to apply Lemma 6.1.

Let us now turn to the Ḣα
x estimate; by Theorem B.1 (due to Kenig-Ponce-Vega

[17]) we have
∥
∥〈v〉α |∇x |α Q− (T (t) f0, T (t)g0)

∥
∥
L2
x

=
∥
∥
∥|∇x |α

( {〈v〉α T (t) f0
}
ρT (t)g0

)∥
∥
∥
L2
x

�
∥
∥
∥
(

〈v〉α T (t) f0
)

|∇x |α ρT (t)g0

∥
∥
∥
L2
x

+
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+ C
∥
∥ρT (t)g0

∥
∥
L∞
x

∥
∥〈v〉α |∇x |α T (t) f0

∥
∥
L2
x
.

Now we take the L2
t,v norm of both sides, and then apply Hölder’s inequality and

Lemma 6.1 (which is justified because α > 1
2 ) to get

∥
∥〈v〉α |∇x |α Q− (T (t) f0, T (t)g0)

∥
∥
L2
t,x,v

�
∥
∥
∥
(

〈v〉α T (t) f0
)

|∇x |α ρT (t)g0

∥
∥
∥
L2
t,x,v

+ C

∥
∥
∥
∥

∥
∥ρT (t)g0

∥
∥
L∞
x

∥
∥〈v〉α |∇x |α T (t) f0

∥
∥
L2
x

∥
∥
∥
∥
L2
t,v

�
∥
∥〈v〉α T (t) f0

∥
∥
L∞
t L4

x L
2
v

∥
∥|∇x |α ρT (t)g0

∥
∥
L2
t L4

x

+ C
∥
∥ρT (t)g0

∥
∥
L2
t L∞

x

∥
∥〈v〉α |∇x |α T (t) f0

∥
∥
L∞
t L2

x,v

�
∥
∥〈v〉α T (t) f0

∥
∥
L∞
t L4

x L
2
v

∥
∥〈v〉α |∇x |α g0

∥
∥
L2
x,v

+ C
∥
∥〈v〉α 〈∇x 〉α g0

∥
∥
L2
x,v

∥
∥〈v〉α |∇x |α T (t) f0

∥
∥
L∞
t L2

x,v

�
∥
∥〈v〉α 〈∇x 〉α T (t) f0

∥
∥
L∞
t L2

x,v

∥
∥〈v〉α 〈∇x 〉α g0

∥
∥
L2
x,v

+ C
∥
∥〈v〉α 〈∇x 〉α g0

∥
∥
L2
x,v

∥
∥〈v〉α 〈∇x 〉α T (t) f0

∥
∥
L∞
t L2

x,v
.

Note that |∇x | commutes with ρ(·), and we have used the Sobolev embedding

H
1
2
x

(
R
2
) ⊂ L4

x

(
R
2
)
in the last step. We finally use the fact that T (t) preserves

Hα,β to obtain
∥
∥〈v〉α |∇x |α Q− (T (t) f0, T (t)g0)

∥
∥
L2
t,x,v

�C
∥
∥〈v〉α 〈∇x 〉α f0

∥
∥
L2
x,v

∥
∥〈v〉α 〈∇x 〉α g0

∥
∥
L2
x,v

.

Combining the L2
x and Ḣα

x estimates allows us to conclude. ��
The next lemma is a refinement of Lemma 10.1 which only places a spatial

gradient on one argument at a time.

Lemma 10.2. Let α ∈ ( 1
2 , 1

]
, and let I ⊆ R be an open interval (either bounded

or unbounded). Let f (t, x, v) : I × R
2 × R

2 → C be a measurable and locally
integrable function such that

〈v〉α 〈∇x 〉α f ∈ L∞ (
I, L2

x,v

)
(10.3)

and
〈v〉α 〈∇x 〉α (∂t + v · ∇x ) f ∈ L1

(
I, L2

x,v

)
. (10.4)

Then the following estimate holds:
∥
∥〈v〉α |∇x |α Q−( f, f )

∥
∥
L2

(
I,L2

x,v
)

�C ×
{∥
∥ρ f

∥
∥
L2(I,L∞

x )

∥
∥〈v〉α |∇x |α f

∥
∥
L∞(

I,L2
x,v

)
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+ ∥
∥〈v〉α f

∥
∥
L∞(I,L4

x L
2
v)

∥
∥〈v〉α |∇x |α f

∥
∥
L∞(

I,L2
x,v

)

+ ∥
∥〈v〉α f

∥
∥
L∞(I,L4

x L
2
v)

∥
∥〈v〉α |∇x |α (∂t + v · ∇x ) f

∥
∥
L1

(
I,L2

x,v
)
}

. (10.5)

The constant C does not depend on the interval I , but it may depend on α.

Proof. As in the proof of Lemma 10.1, we will assume α ∈ ( 1
2 , 1

)
. The case α = 1

may be checked directly in a similar fashion.
We begin by applying Theorem B.1, which is due to Kenig-Ponce-Vega [17]:

∥
∥〈v〉α |∇x |α Q−( f, f )

∥
∥
L2
x

=
∥
∥
∥
∥|∇x |α

(

〈v〉α fρ f

)∥
∥
∥
∥
L2
x

�
∥
∥〈v〉α f |∇x |α ρ f

∥
∥
L2
x
+ C

∥
∥ρ f

∥
∥
L∞
x

∥
∥〈v〉α |∇x |α f

∥
∥
L2
x
.

We take the L2
t∈I L2

v norm of both sides, followed by Hölder’s inequality, to get
∥
∥〈v〉α |∇x |α Q−( f, f )

∥
∥
L2
t∈I L2

x,v

�
∥
∥〈v〉α f |∇x |α ρ f

∥
∥
L2
t∈I L2

x,v
+ C

∥
∥
∥
∥

∥
∥ρ f

∥
∥
L∞
x

∥
∥〈v〉α |∇x |α f

∥
∥
L2
x

∥
∥
∥
∥
L2
t∈I L2

v

= C

∥
∥
∥
∥

∥
∥ρ f

∥
∥
L∞
x

∥
∥〈v〉α |∇x |α f

∥
∥
L2
x

∥
∥
∥
∥
L2
t∈I L2

v

+ ∥
∥〈v〉α f |∇x |α ρ f

∥
∥
L2
t∈I L2

x,v
.

Finally we apply Hölder’s inequality, followed by Lemma 6.1 since α > 1
2 ; we are

using the fact that |∇x |α commutes with ρ(·). This yields
∥
∥〈v〉α |∇x |α Q−( f, f )

∥
∥
L2
t∈I L2

x,v

�C
∥
∥ρ f

∥
∥
L2
t∈I L∞

x

∥
∥〈v〉α |∇x |α f

∥
∥
L∞
t∈I L2

x,v

+ ∥
∥〈v〉α f

∥
∥
L∞
t∈I L4

x L
2
v

∥
∥|∇x |α ρ f

∥
∥
L2
t∈I L4

x

�C
∥
∥ρ f

∥
∥
L2
t∈I L∞

x

∥
∥〈v〉α |∇x |α f

∥
∥
L∞
t∈I L2

x,v

+ C
∥
∥〈v〉α f

∥
∥
L∞
t∈I L4

x L
2
v

∥
∥〈v〉α |∇x |α f

∥
∥
L∞
t∈I L2

x,v

+ C
∥
∥〈v〉α f

∥
∥
L∞
t∈I L4

x L
2
v

∥
∥〈v〉α |∇x |α (∂t + v · ∇x ) f

∥
∥
L1
t∈I L2

x,v
,

hence the conclusion. ��

10.2. Gain Operator Bounds

The proof of Lemma 10.2, which allows us to apply spatial gradients to one
entry at a time in Q−( f, f ), does not work for the gain operator Q+( f, f ) in our
formulation. The difficulty is that we do not have an exact commutation rule for
|∇x |α and Q+( f, f ), and the multilinear Riesz–Thorin theorem does not apply.

Nevertheless, it is possible to recover a useful inequality in “Peter-Paul” form
(before optimizing) which estimates fractional spatial derivatives of the gain oper-
ator, which will be essential for the global propagation of regularity to be proven
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in Section 10.4. The strategy is to apply the multilinear Riesz–Thorin theorem to
well-chosen inhomogeneous norms with a suitable ε-dependent weight; then, we
divide out powers of ε from both sides, and optimize over ε. In this way, we are
able to avoid any problem-specific commutator estimates, which would not be in
keeping with the spirit of our approach.

Lemma 10.3. Let α ∈ [0, 1], and let I ⊆ R be an open interval (either bounded
or unbounded). Let f (t, x, v) : I × R

2 × R
2 → C be a measurable and locally

integrable function such that

〈v〉α 〈∇x 〉α f ∈ L∞ (
I, L2

x,v

)
(10.6)

and
〈v〉α 〈∇x 〉α (∂t + v · ∇x ) f ∈ L1

(
I, L2

x,v.
)

(10.7)

Then, for any q ∈ (0,∞), the following estimate holds:
∥
∥〈qv〉α |∇x |α Q+( f, f )

∥
∥
L1

(
I,L2

x,v
)

�C
∥
∥〈qv〉α f

∥
∥
L∞(

I,L2
x,v

)
∥
∥〈qv〉α |∇x |α f

∥
∥
L∞(

I,L2
x,v

)

+ C
∥
∥〈qv〉α (∂t + v · ∇x ) f

∥
∥
L1

(
I,L2

x,v
)
∥
∥〈qv〉α |∇x |α f

∥
∥
L∞(

I,L2
x,v

)

+ C
∥
∥〈qv〉α f

∥
∥
L∞(

I,L2
x,v

)
∥
∥〈qv〉α |∇x |α (∂t + v · ∇x ) f

∥
∥
L1

(
I,L2

x,v
)

+ C
∥
∥〈qv〉α (∂t + v · ∇x ) f

∥
∥
L1

(
I,L2

x,v
)
∥
∥〈qv〉α |∇x |α (∂t + v · ∇x ) f

∥
∥
L1

(
I,L2

x,v
) .

(10.8)

The constant C is independent of I, q, α.

Proof. Adapting the proof of Proposition 6.4 as necessary, by using the multilinear
Riesz–Thorin theorem we are able to show that, for any f0, g0 ∈ Hα,α , α ∈ [0, 1],
and q, ε ∈ (0,∞),

∥
∥〈qv〉α 〈ε∇x 〉α Q+ (T (t) f0, T (t)g0)

∥
∥
L1
t L2

x,v

�C
∥
∥〈qv〉α 〈ε∇x 〉α f0

∥
∥
L2
x,v

∥
∥〈qv〉α 〈ε∇x 〉α g0

∥
∥
L2
x,v

, (10.9)

where the constant C does not depend on α, q, ε. It suffices to check the endpoints
α = 0 and α = 1, viewing ε, q ∈ (0,∞) as arbitrary constants.

Having verified (10.9), let f, g be time-dependent functions as in the statement
of the lemma. Combining (10.9) and Lemma 3.1, and using the fact that T (t) is an
isometry on L2

x,v for each t ∈ R, we deduce the following estimate, up to increasing
the constant by an absolute factor:

∥
∥〈qv〉α 〈ε∇x 〉α Q+( f, g)

∥
∥
L1

(
I,L2

x,v
)

�C
∏

h∈{ f, g}

(
∥
∥〈qv〉α 〈ε∇x 〉α h

∥
∥
L∞(

I,L2
x,v

)
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+ ∥
∥〈qv〉α 〈ε∇x 〉α (∂t + v · ∇x ) h

∥
∥
L1

(
I,L2

x,v
)

)

. (10.10)

Now may we specialize to the case g = f :
∥
∥〈qv〉α 〈ε∇x 〉α Q+( f, f )

∥
∥
L1

(
I,L2

x,v
)

�C

(
∥
∥〈qv〉α 〈ε∇x 〉α f

∥
∥2
L∞(

I,L2
x,v

)

+ ∥
∥〈qv〉α 〈ε∇x 〉α (∂t + v · ∇x ) f

∥
∥2
L1

(
I,L2

x,v
)

)

. (10.11)

At this point we need to estimate εα |∇x |α � 〈ε∇x 〉α on the left, and 〈ε∇x 〉α �
1+ εα |∇x |α on the right (and note the squares!), and finally, divide throughout by
εα . Hence we obtain the following “Peter-Paul” inequality:

∥
∥〈qv〉α |∇x |α Q+( f, f )

∥
∥
L1

(
I,L2

x,v
)

� C

εα

(
∥
∥〈qv〉α f

∥
∥2
L∞(

I,L2
x,v

) + ∥
∥〈qv〉α (∂t + v · ∇x ) f

∥
∥2
L1

(
I,L2

x,v
)

)

+ Cεα

(
∥
∥〈qv〉α |∇x |α f

∥
∥2
L∞(

I,L2
x,v

) + ∥
∥〈qv〉α |∇x |α (∂t + v · ∇x ) f

∥
∥2
L1

(
I,L2

x,v
)

)

.

(10.12)

The conclusion then follows by optimal choice of ε and trivial manipulations. ��

10.3. Local Propagation of Regularity

The idea for proving local propagation of regularity is to construct a local
solution in the more regular space Hα,α with α > 1

2 , and then appeal to uniqueness
via Theorem 7.1 to conclude that the Hα,α solution coincides with the small L2

x,v
solution obtained from Kaniel–Shinbrot. The various estimates required to apply
Theorem 7.1 to Hα,α solutions follow immediately from the local well-posedness
theory in Hα,α for α > 1

2 , combined with the Sobolev embedding theorem and
Lemma 6.1.3 The local theory presented here relies on the L2

x,v norm remaining
small, which is parallel to the assumption for the uniqueness theorem, Theorem 7.1;
however, the Hα,α norm may be very large and the local theory will still be valid.
The time of existence for local solutions given f0 ∈ Hα,α ∩ BL2

η is determined
solely by the magnitude of the Hα,α norm. A separate argument (discussed in
Section 10.4) is required to obtain the propagation of regularity on arbitrarily large
time intervals.

Recall the Hα,α norm with ε dependence

‖ f ‖Hα,α
ε

= ∥
∥〈εv〉α 〈ε∇x 〉α f

∥
∥
L2
x,v

. (10.13)

3 Interestingly, it was the local Hα,α theory with α > 1
2 which served as the inspiration

for Theorem 7.1 in the first place (and, by extension, the proof of convergence of the Kaniel–
Shinbrot scheme).
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We know that the gain term Q+ obeys, by Proposition 6.4, the following estimate:

∥
∥Q+ (T (t) f0, T (t)g0)

∥
∥
L1
t H

α,α
ε

�C ‖ f0‖Hα,α
ε

‖g0‖Hα,α
ε

, (10.14)

and the constant does not depend on α, ε ∈ (0, 1]. With respect to the loss term,
we cannot expect bounds independent of ε, but we can use Lemma 10.1 to prove
the following:

∥
∥Q− (T (t) f0, T (t)g0)

∥
∥
L2
t H

α,α
ε

�Cε ‖ f0‖Hα,α
ε

‖g0‖Hα,α
ε

. (10.15)

Hence, by Hölder’s inequality,

∥
∥Q− (T (t) f0, T (t)g0)

∥
∥
L1
t∈[0,T ]H

α,α
ε

�CεT
1
2 ‖ f0‖Hα,α

ε
‖g0‖Hα,α

ε
. (10.16)

Note that the size of the constant Cε in (10.16) is irrelevant for our analysis, but it
can be estimated as Cε � ε−4α when ε → 0+. The point is that the large factor of
Cε can always be balanced in (10.16) by letting T be small. Since the parameter ε

reflects (in this instance) the size of the Hα,α norm at a given time t0, we can apply
Theorem 3.2 using (10.14) and (10.16) to deduce local well-posedness for the full

Boltzmann equation in Hα,α ∩ B
L2
x,v

η (for some constant η > 0), with existence
time depending only on the Hα,α norm.

Remark 10.2. We can say nothing for f0 outside the η-ball of L2 by the above
logic, due to the fact that the constant C in (10.14) remains fixed regardless of any
localization in time.

As a result of the preceding discussion, we may conclude as follows:

Theorem 10.4. There exists a number η > 0 such that all of the following is true:
Let α ∈ ( 1

2 , 1
]
and f0 ∈ Hα,α , and, further, suppose that

‖ f0(x, v)‖L2
x,v

< η. (10.17)

Then there exists a time T > 0 such that, for t ∈ [0, T ], the full Boltzmann equation

(∂t + v · ∇x ) f = Q+( f, f ) − fρ f (10.18)

has a unique mild solution f (t) such that f ∈ L∞
t∈[0,T ]Hα,α , Q±( f, f ) ∈

L1
t∈[0,T ]Hα,α and f (0) = f0 all hold. The solution is continuous, in the sense

that f ∈ C ([0, T ], Hα,α). Additionally, the time T may be chosen to depend only
on the Hα,α norm of f0; that is, the lower bound

T�T0
(‖ f0‖Hα,α

)
> 0 assuming ‖ f0(x, v)‖L2

x,v
< η

may be assumed.
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10.4. Global Propagation of Regularity

The key observation to round out our discussion of regularity is that we do not
have to propagate the entire Hα,α norm, because part of it is given to us for free by
the Kaniel–Shinbrot iteration. Indeed we already know that 〈v〉α f ∈ L∞

t�0
L2
x,v ,

and similarly 〈v〉α Q+( f, f ) ∈ L1
t�0

L2
x,v and 〈v〉α Q−( f, f ) ∈ L2

t�0
L2
x,v . (See

Theorem 8.1 and Section 8.2.) Hence, we have only to show that

∀T ∈ (0,∞),
∥
∥〈v〉α |∇x |α f

∥
∥
L∞
t∈[0,T ]L2

x,v
< ∞ (10.19)

and
∀T ∈ (0,∞),

∥
∥〈v〉α |∇x |α Q±( f, f )

∥
∥
L1
t∈[0,T ]L2

x,v
< ∞. (10.20)

Note that Theorem 7.1, combined with Sobolev embedding, implies that the local
Hα,α solution from Theorem 10.4 coincides with the solution obtained via Kaniel–
Shinbrot. (This is due to the fact that Theorem 7.1 refers only to integrability prop-
erties, not regularity properties, in the (x, v) domain.) Therefore, we can assume
that the Hα,α norms are finite on small time intervals. We can then use continuity
arguments, combined with Lemma 10.2 and Lemma 10.3, to extend the Hα,α time
up to a larger small time interval which now only depends on controlled quantities
which do not contain |∇x |α . Finally, a standard iteration in time provides the desired
result.

Theorem 10.5. There exists an absolute constant η > 0 such that the following is
true:

Let T ∈ (0,∞) and α ∈ ( 1
2 , 1

]
, and suppose f (t) ∈ C

([0, T ], L2
x,v

)
is a mild

solution of the full Boltzmann equation satisfying all of the following estimates:

‖ f ‖L∞
t∈[0,T ]L2

x,v
+ ∥

∥Q+ ( f, f )
∥
∥
L1
t∈[0,T ]L2

x,v
< η (10.21)

〈v〉α Q+( f, f ) ∈ L1
t∈[0,T ]L2

x,v (10.22)

ρ f ∈ L2
t∈[0,T ]L∞

x ∩ L2
t∈[0,T ]L4

x (10.23)

〈v〉α f ∈ L∞
t∈[0,T ]L2

x,v ∩ L∞
t∈[0,T ]L4

x L
2
v (10.24)

and f (0) = f0. If in addition f0 ∈ Hα,α , then f ∈ L∞
t∈[0,T ]Hα,α and Q±( f, f ) ∈

L1
t∈[0,T ]Hα,α .

Remark 10.3. We emphasize the ordering of quantifiers: A single η > 0 works
simultaneously for all T > 0. Also, the supplied estimates automatically imply
〈v〉α Q−( f, f ) ∈ L2

t∈[0,T ]L2
x,v , by Hölder’s inequality.

Proof. In view of Theorem 10.4, Theorem 7.1, and the Sobolev embedding
theorem, we only need to formally estimate 〈v〉α |∇x |α f ∈ L∞

t∈[0,T ]L2
x,v and

〈v〉α |∇x |α Q±( f, f ) ∈ L2
x,v . Additionally, due to Lemma 10.1, Proposition 6.4,

Lemma 3.1, and Duhamel’s formula with f0 ∈ Hα,α , it will be enough to show
that

〈v〉α |∇x |α (∂t + v · ∇x ) f ∈ L1
t∈[0,T ]L2

x,v. (10.25)
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Suppose that 0�t0 < T and 0 < s�T − t0, and let et0(s) denote the quantity

et0(s) = ∥
∥〈qv〉α |∇x |α (∂t + v · ∇x ) f

∥
∥
L1
t∈[t0,t0+s]L2

x,v
(10.26)

whenever it is well-defined, or +∞ otherwise. Note that e0(s) < +∞ for some
s > 0 by Theorem 10.4 and Theorem 7.1. Additionally, if et0(s) < +∞, then
lims→0+ et0(s) = 0 by the dominated convergence theorem. We want to show that
e0(T ) < +∞.

We define, for convenience,

M = ∥
∥〈v〉α f

∥
∥
L∞
t∈[0,T ]L2

x,v
+∥

∥〈v〉α f
∥
∥
L∞
t∈[0,T ]L4

x L
2
v
+∥

∥ρ f
∥
∥
L2
t∈[0,T ]L∞

x
+∥

∥ρ f
∥
∥
L2
t∈[0,T ]L4

x
.

(10.27)
Pick a number q ∈ (0, 1) such that

∥
∥〈qv〉α f

∥
∥
L∞
t∈[0,T ]L2

x,v
+ ∥

∥〈qv〉α Q+ ( f, f )
∥
∥
L1
t∈[0,T ]L2

x,v
< η, (10.28)

where η is as in the statement of the theorem (the size of η may be determined by
tracking constants through the proof).

Suppose t0, s are such that e0(s + t0) = e0(t0) + et0(s) < +∞ (here the
allowable values of t0, s are determined by the solution f itself, not necessarily by
the statement of Theorem 10.4). Since f solves Boltzmann’s equation, we clearly
have

et0 (s)

�
∥
∥〈qv〉α |∇x |α Q+( f, f )

∥
∥
L1
t∈[t0 ,t0+s]L2

x,v
+ ∥

∥〈qv〉α |∇x |α Q−( f, f )
∥
∥
L1
t∈[t0 ,t0+s]L2

x,v
.

(10.29)

We have, as an immediate consequence of Lemma 10.2, the estimate
∥
∥〈qv〉α |∇x |α Q−( f, f )

∥
∥
L1
t∈[t0,t0+s]L2

x,v

�CMs
1
2

(

‖ f0‖Hα,α + 1

qα
e0(t0) + 1

qα
et0(s)

)

. (10.30)

Note that s can be chosen, depending only on the parameters M, q fixed as above,
to make the prefactor on et0(s) as small as we like.

By Lemma 10.3, we have
∥
∥〈qv〉α |∇x |α Q+( f, f )

∥
∥
L1
t∈[t0,t0+s]L2

x,v

�const. ×
(
η + Ms

1
2

)(

‖ f0‖Hα,α + e0(t0) + et0(s)

)

. (10.31)

Combining estimates (and picking η small enough once and for all), we find that
there exists a number s̃ > 0, depending on the solution f only through M, q,
with the following property: if e0(t0) < ∞, then et0(s) < ∞. This is sufficient to
conclude the theorem. ��
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11. The Local Well-Posedness Theorem

In view of the Kaniel–Shinbrot iteration, in order to prove Theorem 1.2 it suf-
fices to prove a suitable local well-posedness theorem for the gain-only Boltzmann
equation. This theorem will require α = 1

2+ regularity on f0 but the time of exis-
tence will depend only on the Hs,s norm for given s ∈ (0, 1

2 ).

Let us define the norms, for α ∈ ( 12 , 1), 0 < θ < 1 and ε > 0,

‖ f ‖Hα,α
ε,θ

=
∥
∥
∥
(
1 + ε2|v|2)

α
2 (1−θ) (

1 + ε2|ξ |2)
α
2 (1−θ) (

1 + |v|2)
α
2 θ (

1 + |ξ |2)
α
2 θ Fx f (ξ, v)

∥
∥
∥
L2

ξ,v

.

(11.1)

The Hα,α
ε,θ norm is equivalent (up to powers of ε) to the Hα,α norm, but for small ε

the Hα,α
ε,θ norm is nearly equal to the Hs,s norm where s = αθ . Also note that

(
Hα,α

ε , Hα,α
)
θ

= Hα,α
ε,θ ,

with equality of norms.
The following bilinear estimate is proven in [7]:

Proposition 11.1. Let α > 1
2 . Then there is a constant C = C(α) such that, for the

constant collision kernel in dimension d = 2,

∥
∥Q+ (T (t) f0, T (t)g0)

∥
∥
L2
t∈RHα,α �C ‖ f0‖Hα,α ‖g0‖Hα,α . (11.2)

On the other hand, from Proposition 6.4 we know that

∥
∥Q+ (T (t) f0, T (t)g0)

∥
∥
L1
t∈RH

α,α
ε

�C ‖ f0‖Hα,α
ε

‖g0‖Hα,α
ε

, (11.3)

where the constant C is independent of ε.
Interpolating these two estimates yields

∥
∥Q+ (T (t) f0, T (t)g0)

∥
∥
L
pθ
t∈RH

α,α
ε,θ

�C ‖ f0‖Hα,α
ε,θ

‖g0‖Hα,α
ε,θ

, (11.4)

where C is independent of ε and 1/pθ = 1 − 1
2θ ; note that pθ > 1 for each

θ ∈ (0, 1).
The chain of reasoning is as follows: let α = 1

2+ and fix a desired regularity
s ∈ (0, 1

2 ); then, θ is fixed so that s = αθ . Let f0 ∈ Hα,α be an arbitrary initial
datum. By choosing ε very small, we can let the Hα,α

ε,θ norm approach the Hs,s

norm of f0, while the constant C remains fixed. This implies that the local time
of existence depends only on the Hs,s norm of f0, by an application of Theorem
3.2 (we have localized in time using that pθ > 1). Altogether, we will be able to
conclude as follows:
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Theorem 11.2. Let f0 ∈ H
1
2+, 12+ and fix s ∈ (0, 1

2 ). The gain-only Boltzmann
equation

(∂t + v · ∇x ) f = Q+( f, f ) (11.5)

hasamild solution f ∈ C
(
[0, T ], H 1

2+, 12+
)
such that Q+( f, f ) ∈ L1

t∈[0,T ]H
1
2+, 12+

and f (t = 0) = f0. The solution is unique in the class of all mild solutions with

the same initial data satisfying Q+( f, f ) ∈ L1
t∈[0,T ]H

1
2+, 12+. The existence time

T depends only on s and the Hs,s norm of f0.

Once we have Theorem 11.2, we repeat the Kaniel–Shinbrot iteration as in
Section 8.2 to conclude Theorem 1.2.

Proof. (Theorem 11.2) Since s ∈ (0, 1
2 ) and α = 1

2+, we can fix θ ∈ (0, 1) so that
s = αθ ; then, we have pθ > 1 where 1/pθ = 1 − 1

2θ .
Under the change of variables

f̃ (t) = T (−t) f (t),

the equation (11.5) is transformed into

∂t f̃ (t) = T (−t)Q+ (
T (t) f̃ (t), T (t) f̃ (t)

)

Fix a smooth, even function ψ(t) : R → R, which is decreasing on (0,∞), equals
1 on (0, T ), and equals 0 on (2T,∞). Then consider the equation

∂t f̃ (t) = A(t, f̃ (t), f̃ (t)), (11.6)

where

A(t, f0, g0) = ψ(t)T (−t)Q+ (T (t) f0, T (t), g0)

and f̃ (t = 0) = f0. By (11.4), the definition ofψ , and Hölder’s inequality, it holds
that

‖A (t, f0, g0)‖L1
t H

α,α
ε,θ

�CT θ/2 ‖ f0‖Hα,α
ε,θ

‖g0‖Hα,α
ε,θ

, (11.7)

where the constant C is independent of ε. By Theorem 3.2, equation (11.6) is
well-posed as long as

‖ f0‖Hα,α
ε,θ

�CT−θ/2, (11.8)

where the constantC is again independent of ε. Letting ε tend to zero, this condition
becomes

‖ f0‖Hs,s �CT−θ/2, (11.9)

which is what we wanted. ��
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Appendix A. An Endpoint Strichartz Estimate

We recall Theorem 10.1 from [15].

Theorem A.1. [15] Let σ > 0, H be a Hilbert space and B0, B1 be Banach spaces.
Suppose that for each time t we have an operator U (t) : H → B∗

0 such that

‖U (t)‖H→B∗
0

� 1 (A.1)
∥
∥U (t) (U (s))∗

∥
∥
B1→B∗

1
� |t − s|−σ . (A.2)

Let Bθ denote the real interpolation space (B0, B1)θ,2. Then we have the estimates

‖U (t) f ‖Lq
t B

∗
θ

� ‖ f ‖H (A.3)
∥
∥
∥
∥

∫

(U (s))∗ F(s) ds

∥
∥
∥
∥
H

� ‖F‖
Lq′
t Bθ

(A.4)
∥
∥
∥
∥

∫

s<t
U (t) (U (s))∗ F(s) ds

∥
∥
∥
∥
Lq
t B

∗
θ

� ‖F‖
Lq̃′
t B∗

θ̃

, (A.5)

whenever 0�θ�1, 2�q = 2
σθ

, (q, θ, σ ) �= (2, 1, 1), and similarly for (q̃, θ̃ ). If the
decay estimate is strengthened to

∥
∥U (t) (U (s))∗

∥
∥
B1→B∗

1
� (1 + |t − s|)−σ , (A.6)

then the requirement q = 2
σθ

can be relaxed to q� 2
σθ

, and similarly for (q̃, θ̃ ).

For our application, wewill need to think of γ0(x, x ′) as an arbitrarymeasurable
complex-valued function of x, x ′ ∈ R

2. Let us take H = L2
x,x ′

(
R
2 × R

2
)
, B0 =

L2
x,x ′

(
R
2 × R

2
)
, and B1 = L1

x,x ′
(
R
2 × R

2
)
. We employ the notation�± = �x −

�x ′ . The energy estimate
∥
∥
∥eit�±γ0

∥
∥
∥
L2
x,x ′

� ‖γ0‖L2
x,x ′

(A.7)

is immediate. The dispersive estimate
∥
∥
∥ei(t−s)�±γ0

∥
∥
∥
L∞
x,x ′

� |t − s|−2
∥
∥γ0(x, x

′)
∥
∥
L1
x,x ′

(A.8)

follows from writing the fundamental solution of (i∂t + �±) γ = 0, that is

1

t2
ei

(|x |2−|x ′|2)/t

for initial data δ(x)δ(x ′), and applying Young’s inequality. The relevant parameters
for Theorem A.1 are q = 2, θ = 1

2 and σ = 2. The real interpolation space

(B0, B1)θ,2 is the Lorentz space L
4
3 ,2
x,x ′ ([5] Theorem 5.3.1), and its dual is L4,2

x,x ′
([10] Theorem 1.4.17 (vi)), so we obtain

∥
∥
∥eit�±γ0

∥
∥
∥
L2
t L

4,2
x,x ′(R

2×R2)
� ‖γ0‖L2

x,x ′(R
2×R2) , (A.9)

which is the desired inequality.
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Appendix B. Fractional Leibniz Formulas

Theorem B.1. Let s ∈ (0, 1) and n ∈ {2, 3, 4, 5, . . . }. Then if f (x), g(x) : Rn →
R are measurable functions such that f ∈ Hs (Rn) and g ∈ L∞ (Rn), then
(−�)

s
2 ( f g) and f (−�)

s
2 g are canonically identified with well-defined tempered

distributions, and their difference is in L2 (Rn) and the following estimate holds:
∥
∥
∥(−�)

s
2 ( f g) − f (−�)

s
2 g

∥
∥
∥
L2(Rn)

�C (n, s)
∥
∥
∥(−�)

s
2 f

∥
∥
∥
L2(Rn)

‖g‖L∞(Rn) .

(B.1)

Proof. The estimate follows formally from [17], Appendix A, Theorem A.12, in
the one-dimensional case, for Schwartz functions f, g. (Also see [16] problem 5.1
and pp. 105–110 for themultidimensional case.) The objective here is to ensure that
the result remains true in suitable inhomogeneous Sobolev spaces; the argument is
broken into three parts.

(i) For f, g in the Schwartz class, the estimate (B.1) is true due to [17].
(ii) Keeping f fixed in the Schwartz class, we can pass to the distributional

limit gn ⇀ g ∈ L∞ (Rn) in (B.1), where each gn is Schwartz and uniformly
bounded in L∞. Every term makes sense because g is a tempered distribution and
f is Schwartz.

(iii) We need to pass to the limit fn → f ∈ Hs (Rn) in (B.1), where the fn
are Schwartz and uniformly bounded in Hs , but g ∈ L∞ (Rn) is now fixed. Now
fn, f are uniformly bounded in Hs (Rn), hence uniformly bounded in Lr (Rn)

where 1
2 − s

n = 1
r , by the Sobolev embedding theorem. Hence fng and f g are

uniformly bounded in Lr (Rn), so they are well-defined tempered distributions, as
is (−�)

s
2 ( f g). For any Schwartz function ψ , the estimate

∫

ψ (−�)
s
2 ( f g)�C

∥
∥
∥(−�)

s
2 ψ

∥
∥
∥
Lr ′ (Rn)

‖ f ‖Lr (Rn) ‖g‖L∞(Rn)

�C
∥
∥
∥(−�)

s
2 ψ

∥
∥
∥
Lr ′ (Rn)

∥
∥
∥(−�)

s
2 f

∥
∥
∥
L2(Rn)

‖g‖L∞(Rn) , (B.2)

where 1
2 − s

n = 1
r , follows from duality, Hölder’s inequality, and Sobolev’s inequal-

ity.
Finally we deal with the term f (−�)

s
2 g. The idea is to re-write it as

f (−�)
s
2 g = −

{
(−�)

s
2 ( f g) − f (−�)

s
2 g

}
+ (−�)

s
2 ( f g) , (B.3)

so it is a difference of two things which apparently make sense. Using this differ-
ence formula and the commutator estimate of Kenig-Ponce-Vega from the theorem
statement, we can prove the estimate

∫

ψ f (−�)
s
2 g

�C

(

‖ψ‖L2(Rn) +
∥
∥
∥(−�)

s
2 ψ

∥
∥
∥
Lr ′ (Rn)

)∥
∥
∥(−�)

s
2 f

∥
∥
∥
L2(Rn)

‖g‖L∞(Rn) , (B.4)
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where g ∈ L∞ (Rn) and f, ψ are in the Schwartz class. We conclude (by
density of Schwartz functions in Hs (Rn)) that f (−�)

s
2 g is canonically iden-

tified with a well-defined tempered distribution whenever f ∈ Hs (Rn) and
g ∈ L∞ (Rn); moreover, we can take distributional limits in fn where needed
(keeping g ∈ L∞ (Rn) fixed) to derive the desired estimate in this class. ��

Appendix C. Some general estimates in L2 ⋂
L1

Assume throughout this appendix that 0� f0 ∈ L2
x,v ∩ L1

x,v . As is typical for
a kinetic equation, we will consider a suitable mollification (with the same, i.e.
unmollified, initial data f0), which takes the following form:

(∂t + v · ∇x ) f n = Q( f n, f n)

1 + 1
nρ f n

. (C.1)

Here n = 1, 2, 3, . . . and f n(t = 0) = f0. Note that we are not allowed to
mollify the data in general, because that would change the profile of the data, and
we are looking for local well-posedness in the critical space L2 (with an auxiliary
L1 estimate). It is well-known that the mollified equation (C.1) is globally well-
posed for initial data f0 ∈ L1; the proof is by a Picard iteration and time-stepping
procedure. [9]

Since Q = Q+ − Q− (both non-negative) and ρ f n�0, we can conclude

(∂t + v · ∇x ) f n�Q+( f n, f n), (C.2)

which implies

f n(t)�T (t) f0 +
∫ t

0
T (t − t ′)Q+( f n, f n), (t ′) dt ′ (C.3)

where T (t) = e−tv·∇x . In particular, for 0�t�T ,

f n(t)�T (t) f0 +
∫ T

0
T (t − t ′)Q+( f n, f n).(t ′) dt ′ (C.4)

Apply Q+(·, ·) to both sides of this inequality and apply monotonicity to obtain

Q+( f n, f n)�Q+ (T (t) f0, T (t) f0)

+
∫ T

0
Q+ (

T (t) f0, T (t − t ′)Q+( f n, f n)(t ′)
)
dt ′

+
∫ T

0
Q+ (

T (t − t ′)Q+( f n, f n)(t ′), T (t) f0
)
dt ′

+
∫ T

0

∫ T

0
Q+ (

T (t − t ′)Q+( f n, f n)(t ′), T (t − t ′′)Q+( f n, f n)(t ′′)
)
dt ′ dt ′′.

(C.5)
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Now we take the L1
t∈[0,T ]L2

x,v norm of both sides (noting that this quantity might
be infinite), and apply Minkowski’s inequality to get
∥
∥Q+( f n, f n)

∥
∥
L1
t∈[0,T ]L2

x,v
�

∥
∥Q+ (T (t) f0, T (t) f0)

∥
∥
L1
t∈[0,T ]L2

x,v

+
∫ T

0

∥
∥Q+ (

T (t) f0, T (t − t ′)Q+( f n, f n)(t ′)
)∥
∥
L1
t∈[0,T ]L2

x,v
dt ′

+
∫ T

0

∥
∥Q+ (

T (t − t ′)Q+( f n, f n)(t ′), T (t) f0
)∥
∥
L1
t∈[0,T ]L2

x,v
dt ′

+
∫ T

0

∫ T

0
dt ′ dt ′′

× ∥
∥Q+ (

T (t − t ′)Q+( f n, f n)(t ′), T (t − t ′′)Q+( f n, f n)(t ′′)
)∥
∥
L1
t∈[0,T ]L2

x,v
.

(C.6)

Apply Proposition 5.4 to the last term, and Proposition 5.6 to the first three terms,
to obtain

∥
∥Q+( f n, f n)

∥
∥
L1
t∈[0,T ]L2

x,v
�δ f0 (T ) ‖ f0‖L2

x,v

+ 2
∫ T

0
δ f0 (T )

∥
∥T (−t ′)Q+( f n, f n)(t ′)

∥
∥
L2
x,v

dt ′

+
∫ T

0

∫ T

0
C

∥
∥T (−t ′)Q+( f n, f n)(t ′)

∥
∥
L2
x,v

∥
∥T (−t ′′)Q+( f n, f n)(t ′′)

∥
∥
L2
x,v

dt ′ dt ′′,

(C.7)

where lim supT→0+ δ f0(T ) = 0 (note that δ f0(T ) depends on the profile of the data
for any fixed T > 0).

Overall, we conclude that
∥
∥Q+( f n, f n)

∥
∥
L1
t∈[0,T ]L2

x,v
�δ f0(T ) ‖ f0‖L2

x,v

+ 2δ f0(T )
∥
∥Q+( f n, f n)

∥
∥
L1
t∈[0,T ]L2

x,v
+ C

∥
∥Q+( f n, f n)

∥
∥2
L1
t∈[0,T ]L2

x,v
, (C.8)

where lim supT→0+ δ f0(T ) = 0. In the case that
∥
∥Q+( f n, f n)

∥
∥
L1
t∈[0,T0]L2

x,v
is finite

for some T0 > 0, a standard continuity argument allows us to bound this quantity
uniformly in n up to some other small time T > 0 which depends on f0. We can
state this is an alternative: there are numbers C( f0), T ( f0) such that, for each n,
exactly one of the following holds:

(1) Case 1:
∥
∥Q+( f n, f n)

∥
∥
L1
t∈[0,σ ]L2

x,v
= ∞ for every σ > 0

(2) Case 2:
∥
∥Q+( f n, f n)

∥
∥
L1
t∈[0,T ( f0)]L2

x,v
�C( f0)

In particular C( f0), T ( f0) are independent of n; hence, as long as Case 2 holds
for infinitely many n, we can hope for a compactness argument. Note that once
Q+( f n, f n) is placed uniformly in L1

t∈[0,T ( f0)]L
2
x,v , the method of Section 9

implies that

T (−t)
Q−( f n, f n)(t)

1 + 1
nρ f n(t)
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is uniformly bounded in L2
x,vL

1
t∈[0,T ( f0)]; in particular, (∂t + v · ∇x ) f n is locally

integrable in (t, x, v), boundedly with respect to n. Moreover, on [0, T ( f0)], f n

satisfies the full range of Strichartz estimates expected for L2 solutions of the free
transp1ort equation, uniformly in n.

Remark C.1. The classical L1 velocity averaging lemma used in [9] requires that
both f n and (∂t + v · ∇x ) f n are relatively weakly compact in L1(K ) for compact
sets K ⊂ [0,∞) × R

2
x × R

2
v . However, a refinement cited as Lemma 4.1 in [3]

states that, under the condition that f n is relatively weakly compact in L1(K ) for
compact sets K , it suffices for (∂t + v · ∇x ) f n to be uniformly bounded in L1(K )

for compact K .
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