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Abstract

We consider the global existence and large-time asymptotic behavior of strong
solutions to the Cauchy problem of the three-dimensional (3D) nonhomogeneous
incompressible Navier–Stokes equationswith density-dependent viscosity and vac-
uum. After establishing some key a priori exponential decay-in-time rates of the
strong solutions, we obtain both the global existence and exponential stability of
strong solutions in the whole three-dimensional space, provided that the initial
velocity is suitably small in some homogeneous Sobolev space which may be op-
timal compared with the case of homogeneous Navier-Stokes equations. Note that
this result is proved without any smallness conditions on the initial density which
contains vacuum and even has compact support.

1. Introduction

The nonhomogeneous incompressible Navier–Stokes equations ([26]) read as
follows: ⎧

⎪⎨

⎪⎩

∂tρ + div(ρu) = 0,

∂t (ρu) + div(ρu ⊗ u) − div(2μ(ρ)d) + ∇ P = 0,

divu = 0.

(1.1)

Here, t ≥ 0 is time, x ∈ � ⊂ R
3 is the spatial coordinates, and the unknown

functions ρ = ρ(x, t), u = (u1, u2, u3)(x, t), and P = P(x, t) denote the density,
velocity, and pressure of the fluid, respectively. The deformation tensor is defined
by

d = 1

2

[
∇u + (∇u)T

]
, (1.2)

and the viscosity μ(ρ) satisfies the following hypothesis:

μ ∈ C1[0,∞), μ(ρ) > 0. (1.3)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-020-01604-5&domain=pdf
http://orcid.org/0000-0003-1620-5126


1810 C. He, J. Li & B. Lü

We consider the Cauchy problem of (1.1) with (ρ, u) vanishing at infinity and
the initial conditions

ρ(x, 0) = ρ0(x), ρu(x, 0) = m0(x), x ∈ R
3 (1.4)

for given initial data ρ0 and m0.
There is a lot of literature on the mathematical study of nonhomogeneous in-

compressible flow. In particular, the system (1.1) with constant viscosity has been
considered extensively. On the one hand, in the absence of a vacuum, the global
existence of weak solutions and the local existence of strong ones were estab-
lished in Kazhikov [4,23]. Ladyzhenskaya–Solonnikov [24] first proved the global
well-posedness of strong solutions to the initial boundary value problems in both
two-dimensional (2D) bounded domains (for large data) and 3D ones (with ini-
tial velocity small in suitable norms). Recently, the global well-posedness results
with small initial data in critical spaces were considered by many people (see
[1,10,11,18] and the references therein). On the other hand, when the initial den-
sity is allowed to vanish, the global existence of weak solutions is proved by Simon
[31]. The local existence of strong solutions was obtained by Choe–Kim [8] (for
3D bounded and unbounded domains) and Lü–Wang–Zhong [27] (for 2D Cauchy
problem) under some compatibility conditions. Recently, for the Cauchy problem
in the whole 2D space, Lü–Shi–Zhong [28] obtained the global strong solutions for
large initial data. For the 3D case, under some smallness conditions on the initial
velocity, Craig–Huang–Wang [9] proved the following interesting result:

Proposition 1.1. ([9]) Let � = R
3. For positive constants ρ̄ and μ, assume that

μ(ρ) ≡ μ in (1.1) and the initial data (ρ0, m0) satisfy
{
0 ≤ ρ0 ≤ ρ̄, ρ0 ∈ L3/2(R3) ∩ H1(R3),

u0 ∈ Ḣ1/2(R3) ∩ D1
0,σ (R3) ∩ D2,2(R3), m0 = ρ0u0

(1.5)

and the compatibility condition

−μ�u0 + ∇ P0 = ρ
1/2
0 g, in R

3, (1.6)

for some (P0, g) ∈ D1(R3) × L2(R3). Then, there exists some positive constant
ε depending only on ρ̄ such that there exists a unique global strong solution to
the Cauchy problem (1.1) (1.4) provided ‖u0‖Ḣ1/2 ≤ με. Moreover, the following
large time decay rate holds for t ≥ 1:

‖∇u(·, t)‖L2(R3) ≤ C̄t−1/2, (1.7)

where C̄ depends on ρ̄, μ, and ‖ρ1/2
0 u0‖L2(R3).

When it comes to the case that the viscosity μ(ρ) depends on the density ρ,
it is more difficult to investigate the global well-posedness of system (1.1) due
to the strong coupling between viscosity coefficient and density. In fact, allowing
the density to vanish initially, Lions [26] first obtained the global weak solutions
whose uniqueness and regularity are still open even in two spatial dimensions. Later,
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Desjardins [12] established the global weak solution with higher regularity for 2D
case provided that the viscosity μ(ρ) is a small perturbation of a positive constant
in L∞-norm. Recently, some progress has been made on the well-posedness of
strong solutions to (1.1) (see [2,3,7,20,21,29,32] and the reference therein). In
particular, on the one hand, when the initial density is strictly away from vacuum,
Abidi–Zhang [2] obtained the global strong solutions in whole 2D space under
smallness conditions on ‖μ(ρ0) − 1‖L∞ , and later for 3D case, they [3] obtained
the global strong ones under the smallness conditions on both ‖u0‖L2‖∇u0‖L2 and
‖μ(ρ0) − 1‖L∞ . On the other hand, for the case that the initial density contains
vacuum, Huang–Wang [20] obtained the global strong solutions in 2D bounded
domains when ‖∇μ(ρ0)‖L p (p ≥ 2) is small enough; Huang–Wang [21] and Zhang
[32] established the global strong solutions with small ‖∇u0‖L2 in 3D bounded
domains. However, as pointed by Huang–Wang [21], the methods used in [21,32]
depend heavily on the boundedness of the domains and little is known for the
global well-posedness of strong solutions to the Cauchy problem (1.1)–(1.4) with
density-dependent viscosity and vacuum.

Before stating the main results, we first explain the notations and conventions
used throughout this paper. Set

∫

f dx �
∫

R3
f dx .

Moreover, for 1 ≤ r ≤ ∞, k ≥ 1, and β > 0, the standard homogeneous and
inhomogeneous Sobolev spaces are defined as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Lr = Lr (R3), W k,r = W k,r (R3), Hk = W k,2,

‖ · ‖B1∩B2 = ‖ · ‖B1 + ‖ · ‖B2 , for two Banach spaces B1 and B2,

Dk,r = Dk,r (R3) = {v ∈ L1
loc(R

3)|∇kv ∈ Lr (R3)},
D1 = {v ∈ L6(R3)|∇v ∈ L2(R3)},
C∞
0,σ = { f ∈ C∞

0 | div f = 0}, D1
0,σ = C∞

0,σ closure in the norm of D1,

Ḣβ =
{

f : R3 → R

∣
∣
∣
∣‖ f ‖2

Ḣβ =
∫

|ξ |2β | f̂ (ξ)|2dξ < ∞
}

,

where f̂ is the Fourier transform of f.
Our main result can be stated as follows:

Theorem 1.2. For constants ρ̄ > 0, q ∈ (3,∞), and β ∈ ( 12 , 1], assume that the
initial data (ρ0, m0) satisfy

0 ≤ ρ0 ≤ ρ̄, ρ0 ∈ L3/2 ∩ H1, ∇μ(ρ0) ∈ Lq , u0 ∈ Ḣβ ∩ D1
0,σ , m0 = ρ0u0.

(1.8)
Then for

μ � min
ρ∈[0,ρ̄] μ(ρ), μ̄ � max

ρ∈[0,ρ̄] μ(ρ), M � ‖∇μ(ρ0)‖Lq ,

there exists some small positive constant ε0 depending only on q, β, ρ̄, μ, μ̄,

‖ρ0‖L3/2 , and M such that if
‖u0‖Ḣβ ≤ ε0, (1.9)
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the Cauchy problem (1.1)–(1.4) admits a unique global strong solution (ρ, u, P)

satisfying that for any 0 < τ < T < ∞ and p ∈ [2, p0) with p0 � min{6, q},
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 ≤ ρ ∈ C([0, T ]; L3/2 ∩ H1), ∇μ(ρ) ∈ C([0, T ]; Lq),

∇u ∈ L∞(0, T ; L2) ∩ L∞(τ, T ; W 1,p0) ∩ C([τ, T ]; H1 ∩ W 1,p),

P ∈ L∞(τ, T ; W 1,p0) ∩ C([τ, T ]; H1 ∩ W 1,p),√
ρut ∈ L2(0, T ; L2) ∩ L∞(τ, T ; L2), Pt ∈ L2(τ, T ; L2 ∩ L p0),

∇ut ∈ L∞(τ, T ; L2) ∩ L2(τ, T ; L p0), (ρut )t ∈ L2(τ, T ; L2).

(1.10)

Moreover, it holds that

sup
0≤t<∞

‖∇ρ‖L2 ≤ 2‖∇ρ0‖L2 , sup
0≤t<∞

‖∇μ(ρ)‖Lq ≤ 2‖∇μ(ρ0)‖Lq , (1.11)

and that there exists some positive constant σ depending only on ‖ρ0‖L3/2 and μ

such that, for all t ≥ 1,

‖∇ut (·, t)‖2L2 + ‖∇u(·, t)‖2
H1∩W 1,p0

+ ‖P(·, t)‖2
H1∩W 1,p0

≤ Ce−σ t , (1.12)

where C depends only on q, β, ρ̄, ‖ρ0‖L3/2 , μ, μ̄, M, ‖∇u0‖L2 , and ‖∇ρ0‖L2 .

As a direct consequence, ourmethod can be applied to the case thatμ(ρ) ≡ μ is
a positive constant andobtain the followingglobal existence and large-timebehavior
of the strong solutions which improves slightly those due to Craig–Huang–Wang
[9] (see Proposition 1.1).

Theorem 1.3. For constants ρ̄ > 0 and μ > 0, assume that μ(ρ) ≡ μ in (1.1)
and the initial data (ρ0, u0) satisfy (1.5) except u0 ∈ D2,2. Then, there exists some
positive constant ε depending only on ρ̄ such that there exists a unique global strong
solution to the Cauchy problem (1.1) (1.4) satisfying (1.10) with p0 = 6 provided
‖u0‖Ḣ1/2 ≤ με. Moreover, it holds that

sup
0≤t<∞

‖∇ρ‖L2 ≤ 2‖∇ρ0‖L2 , (1.13)

and that there exists some positive constant σ depending only on ‖ρ0‖L3/2 and μ

such that, for t ≥ 1,

‖∇ut (·, t)‖2L2 + ‖∇u(·, t)‖2H1∩W 1,6 + ‖P(·, t)‖2H1∩W 1,6 ≤ Ce−σ t , (1.14)

where C depends only on ρ̄, μ, ‖ρ0‖L3/2 , ‖∇u0‖L2 , and ‖∇ρ0‖L2 .

A few remarks are in order.

Remark 1.1. To the best of our knowledge, the exponential decay-in-time proper-
ties (1.12) in Theorem 1.2 are new and somewhat surprising, since the known
corresponding decay-in-time rates for the strong solutions to system (1.1) are
algebraic even for the constant viscosity case [1,9] and the homogeneous case
[6,15,16,22,30]. Moreover, as a direct consequence of (1.11), ‖∇ρ(·, t)‖L2 re-
mains uniformly bounded with respect to time which is new even for the constant
viscosity case (see [9] or Proposition 1.1).
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Remark 1.2. It should be noted here that our Theorem 1.2 holds for any function
μ(ρ) satisfying (1.3) and for arbitrarily large initial density with vacuum (even
has compact support) with a smallness assumption only on the Ḣβ -norm of the
initial velocity u0 with β ∈ (1/2, 1], which is in sharp contrast to Abidi-Zhang [3]
where they need the initial density strictly away from vacuum and the smallness
assumptions on both ‖u0‖L2‖∇u0‖L2 and ‖μ(ρ0) − 1‖L∞ .

Remark 1.3. For our case that the viscosity μ(ρ) depends on ρ, in order to bound
the L p-norm of the gradient of the density, we need the smallness conditions on
the Ḣβ -norm (β ∈ (1/2, 1]) of the initial velocity. However, it seems that our con-
ditions on the initial velocity may be optimal compared with the constant viscosity
case considered by Craig–Huang–Wang [9] where they proved that the system (1.1)
is globally wellposed for small initial data in the homogeneous Sobolev space Ḣ1/2

which is similar to the case of homogeneous Navier–Stokes equations (see [13]).
Note that for the case of initial-boundary-value problem in 3D bounded domains,
Huang–Wang [21] and Zhang [32] impose smallness conditions on ‖∇u0‖L2 . Fur-
thermore, in our Theorems 1.2 and 1.3, there is no need to imposed additional initial
compatibility conditions, which is assumed in [9,21,32] for the global existence of
strong solutions.

Remark 1.4. It is easy to prove that the strong-weak uniqueness theorem [26,
Theorem 2.7] still holds for the initial data (ρ0, u0) satisfying (1.8) after modifying
its proof slightly. Therefore, our Theorem 1.2 can be regarded as the uniqueness and
regularity theory of Lions’s weak solutions [26] with the initial velocity suitably
small in the Ḣβ -norm.

Remark 1.5. In [7], Cho–Kim considered the initial boundary value problem in
3D bounded smooth domains. In addition to (1.8), assuming that the initial data
satisfy the compatibility conditions

−div
(
μ(ρ0)

(
∇u0 + (∇u0)

T
))

+ ∇ P0 = ρ
1/2
0 g

for some (P0, g) ∈ H1× L2, it is shown ( [7]) that the local-in-time strong solution
(ρ, u) satisfies

ρut ∈ C
(
[0, T ]; L2

)
. (1.15)

However, to obtain (1.15), it seems difficult to follow the proof of (1.15) as in [7].
Indeed, in our Proposition 3.7 (see [29] also), we give a complete new proof to
show that ρut ∈ H1

(
τ, T ; L2

)
(for any 0 < τ < T < ∞) which directly implies

[29]

ρut ∈ C
(
[τ, T ]; L2

)
. (1.16)

In fact, (1.16) is crucial for deriving the time-continuity of ∇u and P, that is (see
(1.10)),

∇u, P ∈ C
(
[τ, T ]; H1 ∩ W 1,p

)
. (1.17)
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We nowmake some comments on the analysis in this paper. To extend the local
strong solutions whose existence is obtained by Lemma 2.1 globally in time, one
needs to establish global a priori estimates on smooth solutions to (1.1)–(1.4) in
suitable higher norms. It turns out that as in the 3D bounded case [21,32], the key
ingredient here is to get the time-independent bounds on the L1(0, T ; L∞)-norm
of ∇u and then the L∞(0, T ; Lq)-norm of ∇μ(ρ) and the L∞(0, T ; L2)-one of
∇ρ. However, as mentioned by Huang–Wang [21], the methods used in [21,32]
depend crucially on the boundedness of the domains. Hence, some new ideas are
needed here. First, using the initial layer analysis (see [17,19]) and an interpolation
argument (see [5]), we succeed in bounding the L1(0,min{1, T }; L∞)-norm of∇u
by ‖u0‖Ḣβ (see (3.34)). Then, in order to estimate the L1(min{1, T }, T ; L∞)-norm
of ∇u, we find that ‖ρ1/2u(·, t)‖2

L2 in fact decays at the rate of e−σ t (σ > 0) for
large time (see (3.21)), which can be achieved by combining the standard energy
equality (see (3.25)) with the fact that

∥
∥
∥ρ1/2u

∥
∥
∥
2

L2
≤ ‖ρ‖L3/2‖u‖2L6 ≤ C‖∇u‖2L2 ,

due to (1.1)1 and the Sobolev inequality. With this key exponential decay-in-time
rate at hand, we can obtain that both ‖∇u(·, t)‖2

L2 and ‖ρ1/2ut (·, t)‖2
L2 decay at

the same rate as e−σ t (σ > 0) for large time (see (3.22) and (3.23)). In fact, all
these exponential decay-in-time rates are the key to obtaining the desired uniform
bound (with respect to time) on the L1(min{1, T }, T ; L∞)-normof∇u (see (3.35)).
Finally, using these a priori estimates and the fact that the velocity is divergent free,
we establish the time-independent estimates on the gradients of the density and the
velocity which guarantee the extension of local strong solutions (see Proposition
3.7).

The rest of this paper is organized as follows: in Section 2, we collect some
elementary facts and inequalities that will be used later. Section 3 is devoted to the
a priori estimates. Finally, we will prove Theorems 1.2 and 1.3 in Section 4.

2. Preliminaries

In this section we shall enumerate some auxiliary lemmas.
We start with the local existence of strong solutions which has been proved in

[29].

Lemma 2.1. Assume that (ρ0, u0) satisfies (1.8) except u0 ∈ Ḣβ. Then there exist a
small time T0 > 0 and a unique strong solution (ρ, u, P) to the problem (1.1)–(1.4)
in R

3 × (0, T0) satisfying (1.10).

Next, the following well-known Gagliardo–Nirenberg inequality will be used
frequently later (see [25, Theorem 2.2]).

Lemma 2.2. ([25]) For r ∈ (6/5,∞] and

p ∈

⎧
⎪⎨

⎪⎩

[2, 3r
3−r ], if r ∈ (6/5, 3),

[2,∞), if r = 3,

[2,∞], if r ∈ (3,∞],
(2.1)
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there exists some generic constant C > 0 that may depend on p and r such that
for all f ∈ { f | f ∈ L2,∇ f ∈ Lr }

‖ f ‖L p ≤ C‖ f ‖α
L2‖∇ f ‖1−α

Lr ,
1

p
= α

2
+ (1 − α)

(
1

r
− 1

3

)

. (2.2)

A direct consequence of Lemma 2.2 is the following inequality which will be
useful for the next regularity results on the Stokes equations (Lemma 2.4):

Lemma 2.3. For q > 3 and r ∈ [2q/(q +2), q], there exists some generic constant
C > 0 that may depend on q and r such that for all f ∈ Lq and g ∈ {g|g ∈
L2,∇g ∈ Lr }

‖ f g‖Lr ≤ C‖ f ‖Lq ‖g‖α
L2‖∇g‖1−α

Lr , (2.3)

with α = 2r(q−3)
q(5r−6) .

Proof. On the one hand, Holder’s inequality shows that for 1 ≤ r ≤ q

‖ f g‖Lr ≤ C‖ f ‖Lq ‖g‖L p , (2.4)

with

p � rq

q − r
,

where we agree with p = ∞ provided r = q.

On the other hand, since r ∈ [2q/(q +2), q] ⊆ (6/5, q] due to q > 3, noticing
that

p = rq

q − r

⎧
⎨

⎩

= ∞, if r = q > 3,
< ∞, if 3 ≤ r < q,

< 3r
3−r , if 6/5 < 2q/(q + 2) ≤ r < 3,

which implies that p satisfies (2.1), after using the Gagliardo–Nirenberg inequality
(2.2), we have

‖g‖L p ≤ C‖g‖α
L2‖∇g‖1−α

Lr ,
1

p
= α

2
+ (1 − α)

(
1

r
− 1

3

)

. (2.5)

Putting (2.5) into (2.4) leads to

‖ f g‖Lr ≤ C‖ f ‖Lq ‖g‖α
L2‖∇g‖1−α

Lr , (2.6)

where
1

r
− 1

q
= α

2
+ (1 − α)

(
1

r
− 1

3

)

. (2.7)

It thus follows from (2.7) that

α = 2r(q − 3)

q(5r − 6)
∈ (0, 1],

which together with (2.6) proves (2.3). We thus finish the proof of Lemma 2.3. ��
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Next, the following regularity results on the Stokes equations will be useful for
our derivation of higher order a priori estimates:

Lemma 2.4. For positive constants μ, μ̄, and q ∈ (3,∞), in addition to (1.3),
assume that μ(ρ) satisfies

∇μ(ρ) ∈ Lq , 0 < μ ≤ μ(ρ) ≤ μ̄ < ∞. (2.8)

Then, if F ∈ L6/5 ∩ Lr with r ∈ [2q/(q + 2), q], there exists some positive
constant C depending only on μ, μ̄, r, and q such that the unique weak solution

(u, P) ∈ D1
0,σ × L2 to the Cauchy problem

⎧
⎪⎨

⎪⎩

−div(2μ(ρ)d) + ∇ P = F, x ∈ R
3,

divu = 0, x ∈ R
3,

u(x) → 0, |x | → ∞
(2.9)

satisfies
‖∇u‖L2 + ‖P‖L2 ≤ C‖F‖L6/5 , (2.10)

‖∇2u‖Lr + ‖∇ P‖Lr ≤ C‖F‖Lr + C‖∇μ(ρ)‖
q(5r−6)
2r(q−3)
Lq ‖F‖L6/5 . (2.11)

Moreover, if F = divg with g ∈ L2 ∩ Lr̃ for some r̃ ∈ (6q/(q +6), q], there exists
a positive constant C depending only on μ, μ̄, q, and r̃ such that the unique weak

solution (u, P) ∈ D1
0,σ × L2 to (2.9) satisfies

‖∇u‖L2∩Lr̃ + ‖P‖L2∩Lr̃ ≤ C‖g‖L2∩Lr̃ + C‖∇μ(ρ)‖
3q(r̃−2)
2r̃(q−3)
Lq ‖g‖L2 . (2.12)

Proof. First, multiplying (2.9)1 by u and integrating by parts, we obtain after using
(2.9)2 that

2
∫

μ(ρ)|d|2dx =
∫

F · udx ≤ ‖F‖L6/5‖u‖L6 ≤ C‖F‖L6/5‖∇u‖L2 ,

which, together with (2.8), yields

‖∇u‖L2 ≤ C‖F‖L6/5 , (2.13)

due to

2
∫

|d|2dx =
∫

|∇u|2dx . (2.14)

Furthermore, it follows from (2.9)1 that

P = −(−�)−1divF − (−�)−1divdiv(2μ(ρ)d),

which, together with the Sobolev inequality and (2.14), gives

‖P‖L2 ≤ ‖(−�)−1divF‖L2 + ‖2μ(ρ)d‖L2 ≤ C‖F‖L6/5 + C‖∇u‖L2 .

Combining this with (2.13) leads to (2.10).



Global Well-Posedness and Exponential Stability of 3D… 1817

Next, we rewrite (2.9)1 as

−�u + ∇
(

P

μ(ρ)

)

= F

μ(ρ)
+ 2d · ∇μ(ρ)

μ(ρ)
− P∇μ(ρ)

μ(ρ)2
. (2.15)

Applying the standard L p-estimates to the Stokes system (2.15) (2.9)2 (2.9)3 yields
that, for r ∈ [2q/(q + 2), q],

‖∇2u‖Lr + ‖∇ P‖Lr ≤ ‖∇2u‖Lr + C

∥
∥
∥
∥∇

(
P

μ(ρ)

)∥
∥
∥
∥

Lr
+ C

∥
∥
∥
∥

P∇μ(ρ)

μ(ρ)2

∥
∥
∥
∥

Lr

≤ C ‖F‖Lr + C ‖2d · ∇μ(ρ)‖Lr + C ‖P∇μ(ρ)‖Lr

≤ C‖F‖Lr + C‖∇μ(ρ)‖Lq ‖∇u‖
2r(q−3)
q(5r−6)

L2 ‖∇2u‖1−
2r(q−3)
q(5r−6)

Lr

+ C‖∇μ(ρ)‖Lq ‖P‖
2r(q−3)
q(5r−6)

L2 ‖∇ P‖1−
2r(q−3)
q(5r−6)

Lr

≤ C‖F‖Lr + C‖∇μ(ρ)‖
q(5r−6)
2r(q−3)
Lq (‖∇u‖L2 + ‖P‖L2)

+ 1

2

(
‖∇2u‖Lr + ‖∇ P‖Lr

)
,

where in the third inequality we have used Lemma 2.3. Combining this with (2.10)
yields (2.11).

Finally, we will prove (2.12). Multiplying (2.9)1 by u and integrating by parts
leads to

4
∫

μ(ρ)|d|2dx = −2
∫

g · ∇udx ≤ μ‖∇u‖2L2 + C‖g‖2L2 ,

which, together with (2.14), gives

‖∇u‖L2 ≤ C‖g‖L2 . (2.16)

It follows from (2.9)1 that

P = −(−�)−1divdivg − (−�)−1divdiv(2μ(ρ)d),

which implies that, for any p ∈ [2, r̃ ],
‖P‖L p ≤ C(p)‖∇u‖L p + C(p)‖g‖L p . (2.17)

In particular, this, combined with (2.16), shows that

‖P‖L2 + ‖∇u‖L2 ≤ C‖g‖L2 . (2.18)

Next, we rewrite (2.9)1 as

−�u + ∇
(

P

μ(ρ)

)

= div

(
g

μ(ρ)

)

+ G̃, (2.19)

where

G̃ � g · ∇μ(ρ)

μ(ρ)2
+ 2d · ∇μ(ρ)

μ(ρ)
− P∇μ(ρ)

μ(ρ)2
.
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Holder’s inequality thus gives
∥
∥
∥
∥

g · ∇μ(ρ)

μ(ρ)2

∥
∥
∥
∥

L
3r̃
3+r̃

≤ C‖∇μ(ρ)‖Lq ‖g‖
2r̃(q−3)
3q(r̃−2)

L2 ‖g‖1−
2r̃(q−3)
3q(r̃−2)

Lr̃

≤ ε‖g‖Lr̃ + C(ε)‖∇μ(ρ)‖
3q(r̃−2)
2r̃(q−3)
Lq ‖g‖L2 .

Applying similar arguments to the other terms of G̃, we arrive at

‖G̃‖
L

3r̃
3+r̃

≤ ε(‖g‖Lr̃ + ‖∇u‖Lr̃ + ‖P‖Lr̃ )

+ C(ε)‖∇μ(ρ)‖
3q(r̃−2)
2r̃(q−3)
Lq (‖g‖L2 + ‖∇u‖L2 + ‖P‖L2).

(2.20)

Using (2.19) and (2.9)3, we have

‖∇u‖Lr̃ ≤ C‖∇ × u‖Lr̃

= C
∥
∥
∥(−�)−1∇ × div

(
g(μ(ρ))−1

)
+ (−�)−1∇ × G̃

∥
∥
∥

Lr̃

≤ C‖g‖Lr̃ + C
∥
∥
∥G̃

∥
∥
∥

L
3r̃
3+r̃

,

which, together with (2.17), yields

‖∇u‖Lr̃ + ‖P‖Lr̃ ≤ C‖g‖Lr̃ + C
∥
∥
∥G̃

∥
∥
∥

L
3r̃
3+r̃

.

Combining this, (2.20), and (2.18) gives (2.12). The proof of Lemma 2.4 is finished.
��

3. A Priori Estimates

In this section, we will establish some necessary a priori bounds of local strong
solutions (ρ, u, P) to the Cauchy problem (1.1)–(1.4) whose existence is guaran-
teed by Lemma 2.1. Thus, let T > 0 be a fixed time and (ρ, u, P) be the smooth
solution to (1.1)–(1.4) on R

3 × (0, T ] with smooth initial data (ρ0, u0) satisfying
(1.8).

We have the following key a priori estimates on (ρ, u, P):

Proposition 3.1. There exists some positive constant ε0 depending only on q, β, ρ̄,

μ, μ̄, ‖ρ0‖L3/2 , and M such that if (ρ, u, P) is a smooth solution of (1.1)–(1.4) on

R
3 × (0, T ] satisfying

sup
t∈[0,T ]

‖∇μ(ρ)‖Lq ≤ 4M,

∫ T

0
‖∇u‖4L2dt ≤ 2‖u0‖2Ḣβ , (3.1)

the following estimates hold:

sup
t∈[0,T ]

‖∇μ(ρ)‖Lq ≤ 2M,

∫ T

0
‖∇u‖4L2dt ≤ ‖u0‖2Ḣβ , (3.2)

provided that ‖u0‖Ḣβ ≤ ε0.
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Before proving Proposition 3.1, we establish some necessary a priori estimates,
see Lemmas 3.2–3.5.

Westartwith the following time-weighted estimates on the L∞(0,min{1, T }; L2)-
norm of the gradient of velocity:

Lemma 3.2. Let (ρ, u, P) be a smooth solution to (1.1)–(1.4) satisfying (3.1). Then
there exists a generic positive constant C depending only on q, β, ρ̄,μ, μ̄,‖ρ0‖L3/2 ,

and M such that

sup
t∈[0,ζ(T )]

(
t1−β‖∇u‖2L2

)
+

∫ ζ(T )

0
t1−β‖ρ1/2ut‖2L2dt ≤ C‖u0‖2Ḣβ , (3.3)

with ζ(t) = min{1, t}.
Proof. First, standard arguments ([26]) imply that

0 ≤ ρ ≤ ρ̄, ‖ρ‖L3/2 = ‖ρ0‖L3/2 . (3.4)

Next, for fixed (ρ, u) with ρ ≥ 0 and divu = 0, we consider the following
linear Cauchy problem for (w, P̃):

⎧
⎨

⎩

ρwt + ρu · ∇w − div
(
μ(ρ)

[∇w + (∇w)T
]) + ∇ P̃ = 0, x ∈ R

3,

divw = 0, x ∈ R
3,

w(x, 0) = w0, x ∈ R
3.

(3.5)

It follows from Lemma 2.4, (3.5)1, (3.1), (3.4), and the Garliardo-Nirenberg in-
equality that

‖∇w‖H1 + ‖P̃‖H1 ≤ C
(‖ρwt + ρu · ∇w‖L2 + ‖ρwt + ρu · ∇w‖L6/5

)

≤ C(ρ̄1/2 + ‖ρ‖1/2
L3/2)

(
‖ρ1/2wt‖L2 + ρ̄1/2‖u · ∇w‖L2

)

≤ C‖ρ1/2wt‖L2 + C‖∇u‖L2‖∇w‖1/2
L2 ‖∇2w‖1/2

L2

≤ C‖ρ1/2wt‖L2 + C‖∇u‖2L2‖∇w‖L2 + 1

2
‖∇2w‖L2 ,

which directly yields that

‖∇w‖H1 + ‖P̃‖H1 + ‖ρwt + ρu · ∇w‖L6/5∩L2

≤ C‖ρ1/2wt‖L2 + C‖∇u‖2L2‖∇w‖L2 .
(3.6)

Multiplying (3.5)1 by wt and integrating the resulting equality by parts leads to

1

4

d

dt

∫

μ(ρ)

∣
∣
∣∇w + (∇w)T

∣
∣
∣
2
dx +

∫

ρ|wt |2dx

= −
∫

ρu · ∇w · wtdx + 1

4

∫

μ(ρ)u · ∇
∣
∣
∣∇w + (∇w)T

∣
∣
∣
2
dx

≤ ρ̄1/2‖ρ1/2wt‖L2‖u‖L6‖∇w‖L3 + Cμ̄‖u‖L6‖∇w‖L3‖∇2w‖L2

≤ C‖ρ1/2wt‖L2‖∇u‖L2‖∇w‖1/2
L2 ‖∇2w‖1/2

L2 + C‖∇u‖L2‖∇w‖1/2
L2 ‖∇2w‖3/2

L2

≤ 3

4
‖ρ1/2wt‖2L2 + C‖∇u‖4L2‖∇w‖2L2 ,

(3.7)
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where in the last inequality one has used (3.6). This combined with Grönwall’s
inequality and (3.1) yields

sup
t∈[0,ζ(T )]

∫

|∇w|2dx +
∫ ζ(T )

0

∫

ρ|wt |2dxdt ≤ C‖∇w0‖2L2 . (3.8)

Furthermore, multiplying (3.7) by t leads to

d

dt

(

t
∫

μ(ρ)

∣
∣
∣∇w + (∇w)T

∣
∣
∣
2
dx

)

+ t
∫

ρ|wt |2dx

≤ Ct‖∇w‖2L2‖∇u‖4L2 + C‖∇w‖2L2 .

Combining this with Grönwall’s inequality and (3.1) shows that

sup
t∈[0,ζ(T )]

t
∫

|∇w|2dx +
∫ ζ(T )

0
t
∫

ρ|wt |2dxdt ≤ C‖w0‖2L2 , (3.9)

where one has used the simple fact that

sup
t∈[0,ζ(T )]

‖ρ1/2w‖2L2 +
∫ ζ(T )

0
‖∇w‖2L2dt ≤ C‖w0‖2L2 ,

which can be obtained by multiplying (3.5)1 by w and integrating by parts.
Hence, the standardStein-Weiss interpolation arguments (see [5,Theorem5.4.1])

together with (3.8) and (3.9) imply that, for any θ ∈ [β, 1],

sup
t∈[0,ζ(T )]

t1−θ

∫

|∇w|2dx +
∫ ζ(T )

0
t1−θ

∫

ρ|wt |2dxdt ≤ C(θ)‖w0‖2Ḣ θ .

(3.10)
Finally, takingw0 = u0, the uniqueness of strong solutions to the linear problem

(3.5) implies that w ≡ u. The estimate (3.3) thus follows from (3.10). The proof
of Lemma 3.2 is finished. ��

As an application of Lemma3.2,we have the following time-weighted estimates
on ‖ρ1/2ut‖2L2 for small time:

Lemma 3.3. Let (ρ, u, P) be a smooth solution to (1.1)–(1.4) satisfying (3.1). Then
there exists a generic positive constant C depending only on q, β, ρ̄,μ, μ̄,‖ρ0‖L3/2 ,

and M such that

sup
t∈[0,ζ(T )]

(
t2−β‖ρ1/2ut‖2L2

)
+

∫ ζ(T )

0
t2−β‖∇ut‖2L2dt ≤ C‖u0‖2Ḣβ . (3.11)

Proof. First, operating ∂t to (1.1)2 yields that

ρutt + ρu · ∇ut − div(2μ(ρ)dt ) + ∇ Pt

= −ρt ut − (ρu)t · ∇u + div(2(μ(ρ))t d).
(3.12)
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Multiplying the above equality by ut , we obtain after using integration by parts and
(1.1)1 that

1

2

d

dt

∫

ρ|ut |2dx +
∫

2μ(ρ)|dt |2dx

= −2
∫

ρu · ∇ut · utdx −
∫

ρu · ∇(u · ∇u · ut )dx

−
∫

ρut · ∇u · utdx + 2
∫

(u · ∇μ(ρ)) d · ∇utdx �
4∑

i=1

Ji .

(3.13)

Now, we will use the Gagliardo–Nirenberg inequality, (3.1), and (3.4) to esti-
mate each term on the right hand of (3.13) as follows:

|J1| + |J3| ≤ C‖ρ1/2ut‖L3‖∇ut‖L2‖u‖L6 + C‖ρ1/2ut‖L3‖∇u‖L2‖ut‖L6

≤ C‖ρ1/2ut‖1/2L2 ‖∇ut‖3/2L2 ‖∇u‖L2

≤ 1

4
μ‖∇ut‖2L2 + C‖ρ1/2ut‖2L2‖∇u‖4L2 ,

(3.14)

|J2| =
∣
∣
∣
∣

∫

ρu · ∇(u · ∇u · ut )dx

∣
∣
∣
∣

≤ C
∫

ρ|u||ut |
(
|∇u|2 + |u||∇2u|

)
dx +

∫

ρ|u|2|∇u||∇ut |dx

≤ C‖u‖L6‖ut‖L6

(
‖∇u‖2L3 + ‖u‖L6‖∇2u‖L2

)
+ C‖u‖2L6‖∇u‖L6‖∇ut‖L2

≤ C‖∇ut‖L2‖∇2u‖L2‖∇u‖2L2

≤ 1

8
μ‖∇ut‖2L2 + C‖∇2u‖2L2‖∇u‖4L2 ,

(3.15)
and

|J4| ≤ C‖∇μ(ρ)‖Lq ‖u‖L∞‖∇ut‖L2‖∇u‖
L

2q
q−2

≤ C(q, M)‖u‖1/2
L6 ‖∇u‖1/2

L6 ‖∇ut‖L2‖∇u‖
q−3

q

L2 ‖∇2u‖
3
q

L2

≤ 1

8
μ‖∇ut‖2L2 + C‖∇u‖L2‖∇2u‖3L2 + C‖∇u‖4L2 .

(3.16)

Substituting (3.14)–(3.16) into (3.13) gives

d

dt

∫

ρ|ut |2dx + μ

∫

|∇ut |2dx

≤ C
(
‖ρ1/2ut‖2L2 + ‖∇2u‖2L2

)
‖∇u‖4L2 + C‖∇u‖L2‖∇2u‖3L2 + C‖∇u‖4L2

≤ C‖ρ1/2ut‖2L2‖∇u‖4L2 + C‖ρ1/2ut‖3L2‖∇u‖L2 + C‖∇u‖10L2 + C‖∇u‖2L2 ,

(3.17)
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where in the last inequality one has used

‖∇u‖H1 + ‖P‖H1 + ‖ρ(ut + u · ∇u)‖L6/5∩L2

≤ C
(
‖ρ1/2ut‖L2 + ‖∇u‖3L2

)
,

(3.18)

which can be obtained by taking w ≡ u in (3.6). It thus follows from (3.17) and
(3.3) that, for t ∈ (0, ζ(T )],

d

dt

∫

ρ|ut |2dx + μ

∫

|∇ut |2dx

≤ C‖ρ1/2ut‖2L2

(
‖∇u‖4L2 + ‖ρ1/2ut‖L2‖∇u‖L2

)

+ Ct3(β−1)‖∇u‖4L2 + C‖∇u‖2L2 .

(3.19)

Since (3.3) implies

∫ ζ(T )

0
‖ρ1/2ut‖L2‖∇u‖L2dt t

≤ C sup
0≤t≤ζ(T )

(
t
1−β
2 ‖∇u‖L2

)
(∫ ζ(T )

0
t1−β‖√ρut‖2L2dt

)1/2 (∫ ζ(T )

0
t2β−2dt

)1/2

≤ C‖u0‖2Ḣβ ,

we multiply (3.19) by t2−β and use Grönwall’s inequality, (3.1), and (3.3) to obtain
(3.11). The proof of Lemma 3.3 is finished. ��

Next, we will prove the following exponential decay-in-time estimates on the
solutions for large time, which plays a crucial role in our analysis:

Lemma 3.4. Let (ρ, u, P) be a smooth solution to (1.1)–(1.4) satisfying (3.1). Then
for

σ � 3μ/(4‖ρ0‖L3/2), (3.20)

there exists a generic positive constant C depending only on q, β, ρ̄,μ, μ̄,‖ρ0‖L3/2 ,

and M such that

sup
t∈[0,T ]

eσ t‖ρ1/2u‖2L2 +
∫ T

0
eσ t

∫

|∇u|2dxdt ≤ C‖u0‖2Ḣβ , (3.21)

sup
t∈[ζ(T ),T ]

eσ t
∫

|∇u|2dx +
∫ T

ζ(T )

eσ t
∫

ρ|ut |2dxdt ≤ C‖u0‖2Ḣβ , (3.22)

sup
t∈[ζ(T ),T ]

eσ t
∫

ρ|ut |2dx +
∫ T

ζ(T )

eσ t
∫

|∇ut |2dxdt ≤ C‖u0‖2Ḣβ , (3.23)

and
sup

t∈[ζ(T ),T ]
eσ t

(
‖∇u‖2H1 + ‖P‖2H1

)
≤ C‖u0‖2Ḣβ . (3.24)
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Proof. First, multiplying (1.1)2 by u and integrating by parts leads to

1

2

d

dt
‖ρ1/2u‖2L2 +

∫

2μ(ρ)|d|2dx = 0. (3.25)

It follows from the Sobolev inequality [14, (II.3.11)], (3.4), and (2.14) that

‖ρ1/2u‖2L2 ≤ ‖ρ‖L3/2‖u‖2L6 ≤ 4

3
‖ρ0‖L3/2‖∇u‖2L2 ≤ σ−1

∫

2μ(ρ)|d|2dx,

(3.26)
with σ as in (3.20). Putting (3.26) into (3.25) yields

d

dt
‖ρ1/2u‖2L2 + σ‖ρ1/2u‖2L2 +

∫

2μ(ρ)|d|2dx ≤ 0,

which together with Grönwall’s inequality gives

sup
t∈[0,T ]

eσ t‖ρ1/2u‖2L2 +
∫ T

0
eσ t

∫

|∇u|2dxdt

≤ C‖ρ1/2
0 u0‖2L2 ≤ C‖ρ0‖

L
3
2β

‖u0‖2
L

6
3−2β

≤ C‖u0‖2Ḣβ ,

(3.27)

due to β ∈ (1/2, 1].
Next, similar to (3.7), we have

d

dt

∫

2μ(ρ)|d|2dx +
∫

ρ|ut |2dx ≤ C‖∇u‖4L2‖∇u‖2L2 , (3.28)

which combined with Grönwall’s inequality, (3.27), (3.3), and (3.1) gives (3.22).
Furthermore, multiplying (3.17) by eσ t ,we obtain (3.23) after usingGrönwall’s

inequality, (3.11), (3.1), (3.21), and (3.22).
Finally, it follows from (3.18), (3.22), and (3.23) that (3.24) holds. The proof

of Lemma 3.4 is completed. ��
We will use Lemmas 3.2–3.4 to prove the following time-independent bound

on the L1(0, T ; L∞)-norm of∇u which is important for obtaining the uniform one
(with respect to time) on the L∞(0, T ; Lq)-norm of the gradient of μ(ρ):

Lemma 3.5. Let (ρ, u, P) be a smooth solution to (1.1)–(1.4) satisfying (3.1). Then
there exists a generic positive constant C depending only on q, β, ρ̄,μ, μ̄,‖ρ0‖L3/2 ,

and M such that ∫ T

0
‖∇u‖L∞dt ≤ C‖u0‖Ḣβ . (3.29)

Proof. First, it follows from the Gagliardo–Nirenberg inequality that for any p ∈
[2,min{6, q}] ∩ [2, 6),

‖ρut + ρu · ∇u‖L p

≤ C‖ρ1/2ut‖
6−p
2p

L2 ‖ρ1/2ut‖
3p−6
2p

L6 + C‖u‖L6‖∇u‖
L

6p
6−p

≤ C‖ρ1/2ut‖
6−p
2p

L2 ‖∇ut‖
3p−6
2p

L2 + C‖∇u‖L2‖∇u‖
p

5p−6

L2 ‖∇2u‖
4p−6
5p−6
L p .

(3.30)
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Moreover, the Gagliardo–Nirenberg inequality also gives

‖ρut + ρu · ∇u‖L6

≤ C‖ut‖L6 + C‖u‖L6‖∇u‖L∞

≤ C‖∇ut‖L2 + C‖∇u‖L2‖∇u‖1/4
L2 ‖∇2u‖3/4

L6 ,

which implies (3.30) holds for all p ∈ [2,min{6, q}]. Combining (3.30), (2.11),
and (3.18) yields that for any p ∈ [2,min{6, q}],

‖∇2u‖L p + ‖∇ P‖L p ≤ C‖ρut + ρu · ∇u‖L6/5∩L p

≤ C‖ρ1/2ut‖
6−p
2p

L2 ‖∇ut‖
3p−6
2p

L2 + C‖∇u‖
6p−6

p

L2

+ 1

2
‖∇2u‖L p + C‖ρ1/2ut‖L2 + C‖∇u‖3L2 .

(3.31)

Then, setting

r � 1

2
min

{

q + 3,
3(5 − 2β)

3 − 2β

}

∈
(

3,min

{

q,
6

3 − 2β

})

, (3.32)

one derives from the Sobolev inequality and (3.31) that

‖∇u‖L∞ ≤ C‖∇u‖L2 + C‖∇2u‖Lr

≤ C‖∇u‖L2 + C‖ρ1/2ut‖L2 + C‖ρ1/2ut‖
6−r
2r

L2 ‖∇ut‖
3r−6
2r

L2

+ C‖∇u‖
6(r−1)

r
L2 .

(3.33)

Finally, on the one hand, it follows from (3.3) and (3.11) that for t ∈ (0, ζ(T )],

‖∇u‖L∞ ≤ C‖u0‖Ḣβ t
β−2
2 + C‖u0‖

6−r
2r

Ḣβ t
β−2
2

(
t2−β‖∇ut‖2L2

) 3r−6
4r

+ C‖u0‖2Ḣβ t2r(β−1)/3 + C‖∇u‖4L2 ,

which, together with (3.1), (3.11), and (3.32), gives

∫ ζ(T )

0
‖∇u‖L∞dt

≤ C‖u0‖Ḣβ + C‖u0‖
6−r
2r

Ḣβ

(∫ 1

0
t
2(β−2)r

r+6 dt

) r+6
4r

(∫ 1

0
t2−β‖∇ut‖2L2dt

) 3r−6
4r

≤ C‖u0‖Ḣβ .

(3.34)
On the other hand, using (3.33), (3.22), and (3.23), we obtain that for t ∈

[ζ(T ), T ],
‖∇u‖L∞ ≤ C‖ρ1/2ut‖L2 + C‖∇ut‖L2 + C‖∇u‖L2 + C‖∇u‖6L2

≤ C‖u0‖Ḣβ e−σ t/2 + C‖∇ut‖L2 ,
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and thus

∫ T

ζ(T )

‖∇u‖L∞dt ≤ C‖u0‖Ḣβ + C

(∫ T

ζ(T )

e−σ tdt

)1/2 (∫ T

ζ(T )

eσ t‖∇ut‖2L2dt

)1/2

≤ C‖u0‖Ḣβ .

(3.35)
Combining this with (3.34) gives (3.29) and finishes the proof of Lemma 3.5. ��

With Lemmas 3.2–3.5 at hand, we are in a position to prove Proposition 3.1.

Proof of Proposition 3.1. Since μ(ρ) satisfies

(μ(ρ))t + u · ∇μ(ρ) = 0,

standard calculations show that

d

dt
‖∇μ(ρ)‖Lq ≤ q‖∇u‖L∞‖∇μ(ρ)‖Lq , (3.36)

which together with Grönwall’s inequality and (3.29) yields

sup
t∈[0,T ]

‖∇μ(ρ)‖Lq ≤ ‖∇μ(ρ0)‖Lq exp

{

q
∫ T

0
‖∇u‖L∞dt

}

≤ ‖∇μ(ρ0)‖Lq exp
{
C‖u0‖Ḣβ

}

≤ 2‖∇μ(ρ0)‖Lq ,

(3.37)

provided that

‖u0‖Ḣβ ≤ ε1 � C−1 ln 2. (3.38)

Moreover, it follows from (3.3) and (3.22) that

∫ T

0
‖∇u‖4L2dt ≤ sup

t∈[0,ζ(T )]

(
t1−β‖∇u‖2L2

)2
∫ ζ(T )

0
t2β−2dt

+ sup
t∈[ζ(T ),T ]

(
eσ t‖∇u‖2L2

)2
∫ T

ζ(T )

e−2σ tdt

≤C‖u0‖4Ḣβ ≤ ‖u0‖2Ḣβ ,

(3.39)

provided that

‖u0‖Ḣβ ≤ ε2 � C−1/2. (3.40)

Choosing ε0 � min{1, ε1, ε2},we directly obtain (3.2) from (3.37)–(3.40). The
proof of Proposition 3.1 is finished. ��

The following Lemma 3.6 is necessary for further estimates on the higher-order
derivatives of the strong solution (ρ, u, P):
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Lemma 3.6. Let (ρ, u, P) be a smooth solution to (1.1)–(1.4) satisfying (3.1). Then
there exists a positive constant C depending only on q, β, ρ̄, μ, μ̄, M, ‖ρ0‖L3/2 ,

and ‖∇u0‖L2 such that for p0 � min{6, q},

sup
t∈[0,T ]

eσ t
(
‖∇u‖2L2 + ζ‖∇u‖2H1 + ζ‖P‖2H1

)
+

∫ T

0
ζeσ t‖∇ut‖2L2dt

+
∫ T

0
eσ t

(
‖∇u‖2H1 + ‖P‖2H1 + ζ‖∇u‖2

W 1,p0
+ ζ‖P‖2

W 1,p0

)
dt ≤ C.

(3.41)

Proof. First, multiplying (3.28) by eσ t , we get after using Grönwall’s inequality,
(3.21), and (3.2) that

sup
t∈[0,T ]

eσ t‖∇u‖2L2 +
∫ T

0
eσ t‖ρ1/2ut‖2L2dt ≤ C. (3.42)

Combining this with (3.17) gives

d

dt

∫

ρ|ut |2dx + μ

∫

|∇ut |2dx ≤ C‖ρ1/2ut‖4L2 + C‖∇u‖2L2 ,

which along with Grönwall’s inequality, (3.42), and (3.21) implies that

sup
t∈[0,T ]

ζeσ t‖ρ1/2ut‖2L2 +
∫ T

0
ζeσ t‖∇ut‖2L2dt ≤ C. (3.43)

Combining this, (3.18), and (3.42) gives

sup
t∈[0,T ]

ζeσ t
(
‖∇u‖2H1 + ‖P‖2H1

)
+

∫ T

0
eσ t

(
‖∇u‖2H1 + ‖P‖2H1

)
dt ≤ C.

(3.44)
Finally, it follows from (3.18), (3.31), (3.42), and (3.4) that, for p0 � min{6, q},

‖∇u‖H1∩W 1,p0 + ‖P‖H1∩W 1,p0 ≤ C‖∇ut‖L2 + C‖∇u‖L2 , (3.45)

which, together with (3.43) and (3.21), implies

∫ T

0
ζeσ t

(
‖∇u‖2

W 1,p0
+ ‖P‖2

W 1,p0

)
dt ≤ C.

This combined with (3.42)–(3.44) gives (3.41) and completes the proof of Lemma
3.6. ��

The following Proposition 3.7 is concerned with the estimates on the higher-
order derivatives of the strong solution (ρ, u, P) which in particular imply the
continuity in time of both ∇2u and ∇ P in the L2 ∩ L p-norm:
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Proposition 3.7. Let (ρ, u, P) be a smooth solution to (1.1)–(1.4) satisfying (3.1).
Then there exists a positive constant C depending only on q, β, ρ̄, μ, μ̄, ‖ρ0‖L3/2 , M,

‖∇u0‖L2 , and ‖∇ρ0‖L2 such that for p0 � min{6, q} and q0 � 4q/(q − 3),

sup
t∈[0,T ]

ζ q0eσ t
(
‖∇u‖2

W 1,p0
+ ‖P‖2

W 1,p0
+ ‖∇ut‖2L2

)

+
∫ T

0
ζ q0+1eσ t

(
‖(ρut )t‖2L2 + ‖∇ut‖2L p0 + ‖Pt‖2L2∩L p0

)
dt ≤ C.

(3.46)

Proof. First, in a similar way to (3.36) and (3.37), we have

sup
0≤t≤T

‖∇ρ‖L2 ≤ 2‖∇ρ0‖L2 , (3.47)

which together with the Sobolev inequality and (3.42) gives

‖ρt‖L2∩L3/2 = ‖u · ∇ρ‖L2∩L3/2

≤ C‖∇ρ‖L2‖∇u‖1/2
L2 ‖∇u‖1/2

H1 ≤ C‖∇u‖1/2
H1 .

(3.48)

Next, it follows from (3.12) that ut satisfies
{

−div(2μ(ρ)dt ) + ∇ Pt = F̃ + divg,

divut = 0,

with

F̃ � −ρutt − ρu · ∇ut − ρt ut − (ρu)t · ∇u, g � −2u · ∇μ(ρ)d.

Hence, one can deduce from Lemma 2.4 and the Sobolev inequality that

‖∇ut‖L2∩L p0 + ‖Pt‖L2∩L p0 ≤ C‖F̃‖
L6/5∩L

3p0
p0+3

+ C‖g‖L2∩L p0 . (3.49)

Using (3.1), (3.4), (3.48), (3.41), and (3.45), we get by direct calculations that

‖F̃‖
L6/5∩L

3p0
p0+3

≤ C‖ρ‖1/2
L3/2∩L

3p0
6−p0

‖ρ1/2utt‖L2 + C‖ρ‖
L3∩L

6p0
6−p0

‖u‖L∞‖∇ut‖L2

+ C‖ρt‖L2∩L3/2

(

‖ut‖
L6∩L

6p0
6−p0

+ ‖∇u‖2H1 + ‖∇u‖H1‖∇u‖W 1,p0

)

+ C‖ρ‖L2∩L p0 ‖ut‖L6‖∇u‖L6

≤ C‖√ρutt‖L2 + ε‖∇ut‖L p0 + C(ε)‖∇ut‖L2(1 + ‖∇u‖3/2
H1 ) + C‖∇u‖5/2

H1 ,

(3.50)
and that

‖g‖L2∩L p0 ≤ C‖∇μ(ρ)‖Lq ‖u‖L6∩L∞‖∇u‖L2∩L∞

≤ C‖∇ut‖L2‖∇u‖H1 + C‖∇u‖2H1 ,
(3.51)

where in the second inequality one has used the following simple fact that

‖∇u‖L∞ ≤ C‖∇u‖H1∩W 1,p0 ≤ C‖∇ut‖L2 + C‖∇u‖L2 , (3.52)
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due to the Sobolev inequality and (3.45). Then, putting (3.50) and (3.51) into (3.49),
we obtain after choosing ε suitably small that

‖∇ut‖L2∩L p0 + ‖Pt‖L2∩L p0

≤ C‖√ρutt‖L2 + C‖∇ut‖L2(1 + ‖∇u‖2H1) + C‖∇u‖H1 + C‖∇u‖3H1 .
(3.53)

Now, multiplying (3.12) by utt and integrating the resulting equality by parts
lead to

∫

ρ|utt |2dx + d

dt

∫

μ(ρ)|dt |2dx

=
∫

div(μ(ρ)u)|dt |2dx −
∫

ρ(u · ∇ut + ut · ∇u) · uttdx −
∫

ρt u
j
t u j

ttdx

−
∫

ρt u · ∇u j u j
ttdx − 2

∫

∂i (u
k∂kμ(ρ)d j

i )u j
ttdx �

5∑

i=1

Ii .

(3.54)
We will use (3.41), (3.53), and the Sobolev inequality to estimate each term on

the righthand side of (3.54) as follows:
First, it follows from (3.1), (3.41), and (3.53) that

|I1| ≤ C‖u‖L∞‖∇μ(ρ)‖Lq ‖∇ut‖
2(p0q−p0−2q)

q(p0−2)

L2 ‖∇ut‖
2p0

q(p0−2)

L p0

≤ ε‖∇ut‖2L p0 + C(ε)‖∇u‖
q(p0−2)

p0q−p0−2q

H1 ‖∇ut‖2L2

≤ Cε‖√ρutt‖2L2 + C(ε)
(
1 + ‖∇u‖q0

H1

)
‖∇ut‖2L2

+ C(ε)‖∇u‖2H1 + C(ε)‖∇u‖6H1 ,

(3.55)

where in the last inequality we have used

q(p0 − 2)

p0q − p0 − 2q
∈ [1, q0].

Next, Hölder’s inequality gives

|I2| ≤ ε

∫

ρ|utt |2dx + C(ε)‖∇u‖2H1‖∇ut‖2L2 . (3.56)

Then, direct calculations show

I3 = −1

2

d

dt

∫

ρt |ut |2dx +
∫

(ρui )t∂i u
j
t u j

t dx

≤ −1

2

d

dt

∫

ρt |ut |2dx + C‖ρ‖L6‖∇ut‖L2‖ut‖2L6

+ C‖ρt‖L2‖u‖L∞‖∇ut‖L3‖ut‖L6

≤ − d

dt

∫

ρu · ∇u j
t u j

t dx + C(ε)(1 + ‖∇ut‖L2 + ‖∇u‖4H1)‖∇ut‖2L2

+ ε

∫

ρ|utt |2dx + C(ε)‖∇u‖2H1 + C(ε)‖∇u‖6H1 ,

(3.57)
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where in the last inequality one has used (3.48) and (3.53).
Next, it follows from (1.1)1 and (3.48) that

I4 = − d

dt

∫

ρt u · ∇u j u j
t dx +

∫

(ρui )t∂i (u · ∇u j u j
t )dx +

∫

ρt (u · ∇u j )t u
j
t dx

= − d

dt

∫

ρt u · ∇u j u j
t dx +

∫

ρui
t (u · ∇u j∂i u

j
t + ∂i (u · ∇u j )u j

t )dx

+
∫

ρt u
i (u · ∇u j∂i u

j
t + ∂i (u · ∇u j )u j

t )dx +
∫

ρt (u · ∇u j )t u
j
t dx

≤ − d

dt

∫

ρt u · ∇u j u j
t dx + C‖ut‖L6‖∇u‖2H1(‖∇ut‖L2 + ‖ut‖L6)

+ C‖ρt‖L2‖∇u‖1/2
H1

(
‖∇ut‖L2‖∇u‖H1‖∇u‖H1∩W 1,p0 + ‖ut‖L6‖∇u‖2H1

)

+ C‖ρt‖L2‖ut‖L6
(‖ut‖L6‖∇u‖H1 + ‖∇ut‖L3‖∇u‖H1

)

≤ − d

dt

∫

ρt u · ∇u j u j
t dx + C(ε)

(
1 + ‖∇ut‖L2 + ‖∇u‖4H1

)
‖∇ut‖2L2

+ ε

∫

ρ|utt |2dx + C(ε)‖∇u‖2H1 + C(ε)‖∇u‖6H1 .

(3.58)
Finally, direct calculations lead to

I5 = −2
d

dt

∫

∂i (u
k∂kμ(ρ)d j

i )u j
t dx − 2

∫

∂i (u
kμ(ρ)∂kd j

i )t u
j
t dx

+ 2
∫

∂i (u
k∂k(μ(ρ)d j

i ))t u
j
t dx

= 2
d

dt

∫

uk∂kμ(ρ)d j
i ∂i u

j
t dx + 2

∫

(μ(ρ)uk∂kd j
i )t∂i u

j
t dx

− 2
∫

(∂i u
kμ(ρ)d j

i )t∂ku j
t dx − 2

∫

uk
t ∂i (μ(ρ)d j

i )∂ku j
t dx

− 2
∫

uk(∂i (μ(ρ)d j
i ))t∂ku j

t dx

� 2
d

dt

∫

uk∂kμ(ρ)d j
i ∂i u

j
t dx +

4∑

i=1

I5,i .

(3.59)

We estimate each I5,i (i = 1, · · · , 4) as follows:
First, integration by parts gives

I5,1 = 2
∫

(μ(ρ)uk)t∂kd j
i ∂i u

j
t dx + 2

∫

μ(ρ)uk∂k(d
j

i )t∂i u
j
t dx

= −2
∫

u · ∇μ(ρ)uk∂kd j
i ∂i u

j
t dx + 2

∫

μ(ρ)uk
t ∂kd j

i ∂i u
j
t dx

−
∫

div(μ(ρ)u)|dt |2dx

≤ C‖u‖2L6q/(q−3)‖∇μ(ρ)‖Lq ‖∇2u‖L3‖∇ut‖L3 (3.60)
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+C‖∇2u‖L3‖∇ut‖2L2 + |I1|
≤ Cε‖ρ1/2utt‖2L2 + C(ε)(1 + ‖∇u‖q0

H1 + ‖∇ut‖L2)‖∇ut‖2L2

+C(ε)‖∇u‖6H1 + C(ε)‖∇u‖2H1

where in the last inequality we have used (3.41), (3.45), (3.53), and (3.55).
Then, it follows from (3.1) and (3.52) that

|I5,2| ≤ C‖u‖L∞‖∇μ(ρ)‖Lq ‖∇u‖L3q/(q−3)‖∇u‖L6‖∇ut‖L2

+ C‖∇u‖L∞‖∇ut‖2L2

≤ C‖∇u‖H1∩W 1,p0

(
‖∇u‖2H1‖∇ut‖L2 + C‖∇ut‖2L2

)

≤ C‖∇u‖4H1 + C(1 + ‖∇u‖2H1 + ‖∇ut‖L2)‖∇ut‖2L2 .

(3.61)

Similarly, combining Hölder’s inequality and (3.45) leads to

|I5,3| ≤ C‖ut‖L6‖∇ut‖L2(‖∇μ(ρ)‖Lq ‖∇u‖L3q/(q−3) + ‖∇2u‖L3)

≤ C‖∇ut‖2L2(‖∇ut‖L2 + ‖∇u‖H1).
(3.62)

Finally, using (1.1)2 and (1.1)3, we obtain after integrating by parts that

I5,4 = −2
∫

uk∂ j Pt∂ku j
t dx − 2

∫

uk(ρu j
t + ρu · ∇u j )t∂ku j

t dx

= 2
∫

∂ j u
k Pt∂ku j

t dx − 2
∫

ukρu j
tt∂ku j

t dx

− 2
∫

uk(ρt u
j
t + (ρu · ∇u j )t )∂ku j

t dx

≤ C‖∇u‖L6‖Pt‖L3‖∇ut‖L2 + C‖√ρutt‖L2‖∇u‖H1‖∇ut‖L2

+ C‖u‖L∞‖∇ut‖L2‖ρt‖L2(‖ut‖L∞ + ‖∇u‖H1‖∇u‖L∞)

+ C‖u‖L∞‖∇ut‖L2(‖∇ut‖L2 + ‖ut‖L6)‖∇u‖H1

≤ Cε

∫

ρ|utt |2dx + C(ε)(1 + ‖∇ut‖L2 + ‖∇u‖4H1)‖∇ut‖2L2

+ C(ε)‖∇u‖2H1 + C(ε)‖∇u‖6H1 ,

(3.63)

where in the last inequality one has used (3.53) and (3.48).
Substituting (3.55)–(3.63) into (3.54), we get after choosing ε suitably small

that

d

dt

∫

μ(ρ)|dt |2dx + � ′(t) + 1

2

∫

ρ|utt |2dx

≤ C(1 + ‖∇ut‖L2 + ‖∇u‖q0
H1)‖∇ut‖2L2 + C‖∇u‖2H1 + C‖∇u‖6H1 ,

(3.64)

where

�(t) � −
∫

ρu · ∇u j
t u j

t dx −
∫

ρt u · ∇u j u j
t dx + 2

∫

uk∂kμ(ρ)d j
i ∂i u

j
t dx
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satisfies

|�(t)| ≤C‖√ρut‖L2‖∇ut‖L2‖∇u‖H1 + C‖ρt‖L2‖u‖L6‖ut‖L6‖∇u‖L6

+ C‖∇μ(ρ)‖Lq ‖∇ut‖L2‖∇u‖2H1

≤1

4
μ‖∇ut‖2L2 + C‖√ρut‖2L2‖∇u‖2H1 + C‖∇u‖4H1 ,

(3.65)

due to (3.1) and (3.48).
Then, multiplying (3.64) by ζ q0eσ t and noticing that (3.41) gives

ζ q0(1 + ‖∇ut‖L2 + ‖∇u‖q0
H1)‖∇ut‖2L2 ≤ Cζ q0+1‖∇ut‖4L2 + Cζ‖∇ut‖2L2 ,

we get after using Grönwall’s inequality, (3.65), (3.41), and (3.43) that

sup
0≤t≤T

ζ q0eσ t‖∇ut‖2L2 +
∫ T

0
ζ q0eσ t

∫

ρ|utt |2dxdt ≤ C. (3.66)

Furthermore, it follows from (3.48) and (3.41) that

‖(ρut )t‖2L2 ≤ C‖∇u‖H1‖∇ut‖2L2∩L p0 + C‖ρ1/2utt‖2L2 ,

which togetherwith (3.66), (3.45), (3.53), and (3.41) gives (3.46) and thus completes
the proof of Proposition 3.7. ��

4. Proofs of Theorems 1.2 and 1.3

With all the a priori estimates in Section 3 at hand, we are now in a position to
prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. First, by Lemma 2.1, there exists a T∗ > 0 such that the
Cauchy problem (1.1)–(1.4) has a unique local strong solution (ρ, u, P) on R

3 ×
(0, T∗]. It follows from (1.8) that there exists a T1 ∈ (0, T∗] such that (3.1) holds
for T = T1.

Next, set

T ∗ � sup{T |(ρ, u, P) is a strong solution on R3 × (0, T ] and (3.1) holds}.
(4.1)

Then T ∗ ≥ T1 > 0. Hence, for any 0 < τ < T ≤ T ∗ with T finite, one deduces
from (3.41) and (3.46) that

∇u, P ∈ C
(
[τ, T ]; L2

)
∩ C

(
R3 × [τ, T ]

)
, (4.2)

where one has used the standard embedding

L∞(τ, T ; H1 ∩ W 1,p0) ∩ H1(τ, T ; L2) ↪→ C([τ, T ]; L2) ∩ C(R3 × [τ, T ]).
Moreover, it follows from (3.1), (3.4), (3.47), and [26, Lemma 2.3] that

ρ ∈ C([0, T ]; L3/2 ∩ H1), ∇μ(ρ) ∈ C([0, T ]; Lq). (4.3)
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Thanks to (3.42) and (3.46), the standard arguments yield that

ρut ∈ H1(τ, T ; L2) ↪→ C([τ, T ]; L2),

which, together with (4.2) and (4.3), gives

ρut + ρu · ∇u ∈ C([τ, T ]; L2). (4.4)

Since (ρ, u) satisfies (2.15) with F ≡ ρut + ρu · ∇u, we deduce from (1.1), (4.2),
(4.3), (4.4), and (3.46) that

∇u, P ∈ C([τ, T ]; D1 ∩ D1,p), (4.5)

for any p ∈ [2, p0).
Now, we claim that

T ∗ = ∞. (4.6)

Otherwise, T ∗ < ∞. Proposition 3.1 implies that (3.2) holds at T = T ∗. It follows
from (4.2), (4.3), and (4.5) that

(ρ∗, u∗)(x) � (ρ, u)(x, T ∗) = lim
t→T ∗(ρ, u)(x, t)

satisfies

ρ∗ ∈ L3/2 ∩ H1, u∗ ∈ D1
0,σ ∩ D1,p

for any p ∈ [2, p0). Therefore, one can take (ρ∗, ρ∗u∗) as the initial data and apply
Lemma 2.1 to extend the local strong solution beyond T ∗. This contradicts the
assumption of T ∗ in (4.1). Hence, (4.6) holds. We thus finish the proof of Theorem
1.2 since (1.11) and (1.12) follow directly from (3.47) and (3.46), respectively. ��
Proof of Theorem 1.3. With the global existence result at hand (see Proposition
1.1), one can modify slightly the proofs of Lemma 3.4 and (3.47) to obtain (1.13)
and (1.14). ��
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