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Abstract

In this paper we prove the persistence of space periodic multi-solitons of arbi-
trary size under any quasi-linear Hamiltonian perturbation, which is smooth and
sufficiently small. This answers positively alongstanding question of whether KAM
techniques can be further developed to prove the existence of quasi-periodic solu-
tions of arbitrary size of strongly nonlinear perturbations of integrable PDEs.
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1. Introduction

The Korteweg—de Vries (KdV) equation
du = —02u + 6ud,u (1.1)

is one of the most important model equations for dispersive phenomena with
numerous applications in physics. The seminal discovery in the late sixties that
(1.1) admits infinitely many conservation laws [28,30], and the development of
the inverse scattering transform method [18], led to the modern theory of infinite
dimensional integrable systems (for example [13,16] and references therein).

One of the most distinguished features of (1.1) is the existence of sharply
localized traveling waves of arbitrarily large amplitudes and particle like properties.
Kruskal and Zabusky, who discovered them in numerical experiments in the early
sixties, both on the real line and in the periodic setup (cf. [24]), coined the name
solitons for them. More generally, they found solutions, which are localized near
finitely many points in space. In the periodic setup, these solutions are referred
to as periodic multi-solitons or finite gap solutions. Due to their importance in
applications, various stability aspects, in particular long time asymptotics, have
been extensively studied. A major question concerns the persistence of the multi-
solitons under perturbations. In the last thirty years, KAM methods pioneered by
Kolmogorov, Arnold, and Moser to treat perturbations of integrable systems of
finite dimension, were developed for PDEs. Most of the work focused on small
amplitude solutions or semilinear perturbations. It has been a longstanding question
from experts in PDEs and in infinite dimensional dynamical systems whether KAM
results hold also for solutions of arbitrary size under quasi-linear perturbations,
called strongly nonlinear in [26], of integrable PDEs.

The aim of this paper is to prove the first persistence result of periodic multi-
solitons of KdV of arbitrary size under strongly nonlinear perturbations—see The-
orem 1.1 below. Note that in this case, it was not even known if there exist solutions
of the perturbed equation which are global in time.

To describe the class of perturbations of the KdV equation considered, we
recall that (1.1), with space periodic variable x in T :=R/Z, can be written in
Hamiltonian form

du = 9y VH (u), de”(u)::/ %(3xu)2(x)+u3(x)dx, (1.2)
Ty

where VHF denotes the L>-gradient of H*4V and 8, is the Poisson struc-
ture, corresponding to the Poisson bracket, defined for functionals F, G by
{F,G}:= fT] VF 0,VG dx.
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We consider quasi-linear perturbations of (1.1) of the form
oru = —8)?14 + 6udcu + calx, u(x), 8xu(x))83u + -, (1.3)

where 0 < ¢ < 1 is a small parameter and - - - comprises terms which are e-small
and contain x-derivatives of u up to second order. We assume that the perturbation
is Hamiltonian, namely 8a8$u +---=¢0,VP, where VP is the Lz-gradient of a
functional of the form

Pu) :=/ FOu(x), dux))dx, f:TixRxR—=R C*®-smooth. (1.4)
Ty

Note that the nonlinear vector field
RVPw) == ), ux), Ru()dju+ -, ug:=0du (1.5)

has the same order as the linear one Bgu in (1.1). When written as a Hamiltonian
PDE, (1.3) takes the form

du = 9y VH, (1) (1.6)
with Hamiltonian
H(u) := H* (u) + ¢ P (u). (1.7)

To state our main result, we first need to introduce some more notation. Note that
the mean u +— fTu u(x) dx is a prime integral for (1.6). We restrict our attention to
functions with zero average (cf. Remark (R1) below) and choose as phase spaces
for (1.6) the scale of Sobolev spaces Hj(T1), s > 0,

HS(TI)::{ueHS(’]I‘l): u(x)dx:O}, L2(Ty) = HO(T)),

T
where

1

HS(TI):z{u(x) =3 ™ gy = (Z(,,)Zx|un|2) <00, U_n =T Vne Z] (1.8)
nez nez

and (n) :=max{l, |n|} for any n € Z. We also write L?(T;) for H°(T}). The

symplectic form on L%(Tl) is given by

1 .
W (u, v)::/ O wvdx, a7 lu=>)" ;unelz’f”, Vu,v e L3(Ty) (1.9)
T n#0

Note that the Hamiltonian vector field Xy (u) = 0,V H (u), associated with a
Hamiltonian H, is determined by dH (u)[-] = WL% Xy, ).

S4-gap potentials According to [21], the KdV equation (1.1) on T is an inte-
grable PDE in the strongest possible sense, meaning that it admits globally defined
canonical coordinates on Hé) (Ty), so that (1.1) can be solved by quadrature, see
Theorem 3.1 in Section 3 for a precise statement. These coordinates, referred to as
Birkhoff coordinates, are particularly suited to describe the finite gap solutions of
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KdV. Each of these solutions is contained in a finite dimensional integrable subsys-
tem Ms, , of dimension 2|S |, with S, being a finite subset of N :={1, 2, .. .}.
The integrable subsystem Mg, can be described in terms of action angle coordi-
nates 6 := (0p)nes, » I := (In)nes, as follows: there exists a real analytic, canonical
diffeomorphism

Wg, TS xR — Mg, , 0, 1) — q(0, 5 1), TS := (R/2xZ)%, (1.10)

(cf. (3.5)) so that the pull-back of the KAV Hamiltonian, H*?" o Wg,, is a real
analytic function of the actions / alone. Elements in Mg, are referred to as S, -
gap potentials. The function ¢(6, x) = ¢(6, x; I) is real analytic. In action angle
coordinates, any solution of (1.1) on Mg, is given by

0@) =00 — kW), 1) = v,

where 0@ e TS+ denotes the initial angles,v € RS:{) the initial actions, and "4V (v)
the frequency vector

kY (v) 1= 3 (H*Y 0 Wg,)(0, v) € RS+, (1.11)

(Cf. Section 3.1 for more details.) The corresponding finite-gap solution of (1.1)
on Mg, is then given by

f q(Q(O) — " (e, x; v) (1.12)
and hence is quasi-periodic in time. The map
RY — RS+, v > oMV (v), (1.13)

is a local diffeomorphism (see Remark 3.10). In the entire paper, & C ]REJ{)
will always denote an open, nonempty set with the property that the map & —
RS+, v > kY (v), defined by (1.11), is a diffeomorphism onto its image and that

its closure is a compact subset of REJ{). Then, for some § > 0 small enough,

E + Bs,(6) € R, (1.14)
where Bs, (8) denotes the ball in RS+ of radius 8, centered at the origin. Furthermore

we introduce the Sobolev spaces of periodic, real valued functions HS = H* (TS+ x
Ty, R),

= {g = ) g Y mi=g ), VU ) e x L,
(€, J)EZS+ XL,

25 /2 . .
IIglls::( > lgz.jlz(ﬁ,n“) < +00, (Z,])::max{l,lﬁl,m}}.
(£,))€Z5+ X7

(1.15)

Note that by the Sobolev embedding theorem, H* < C%(TS+ x Ty, R) for any
s > (|S4| + 1)/2 where CO(TS+ x Ty, R) denotes the Banach space of continuous
functions endowed with the supremum norm.
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The main result of this paper is Theorem 1.1 below. It says that for ¢ small
enough and for v in a subset E, of E of asymptotically full Lebesgue measure,
there is a quasi-periodic solution of equation (1.6) close to the finite gap solution
g (= (V)t, x; v) of (1.1). More precisely, the following holds:

Theorem 1.1. Let f be a function in C*° (T x R x R, R), S} a finite subset of N,
and b a real number in (0, 1). Then there exist s > (|ISy|+1)/2, and 0 < gy < 1
so that the following holds: there exists a decreasing family of measurable subsets
Ee € &, 0 < & < g, with asymptotically full measure, that is

lim |[E \ E¢| =0, (1.16)
e—0

with the property that for any v € E;, the perturbed KdV equation (1.6) admits
a quasi-periodic solution t +> ug(we(V)t, x; v) with frequency vector we(v) =
—wkdv(v) € RS+, where ug(-, -3 v) € HS(TS+ x T}, R) and

e Gy -5 0) — g G5 )y S el=b. (1.17)

Here, (0, x;v), 0 € TS+, is the S, -gap potential in Mg, defined in (1.10). The
quasi-periodic solution t — u¢(we(V)t, x; v) is linearly stable.

We make the following remarks:

(RO) Since the Hamiltonian vector field in (1.6) is autonomous, any translate
e (e (V)1 + 00 x;v), 00 € TS+, of u, (we (V)1 x; v) is also a solution of
the perturbed KdV equation (1.6).

(R1) The result of Theorem 1.1 holds for any density f in C*(T; x R x R, R)
with s, large enough and for any family of S -gap solutions of KdV with
average c¢ (cf. [21, page 112]). We assume in this paper that f is C*° and
¢ = 0 merely to simplify the exposition.

(R2) The methods developed to prove Theorem 1.1 are quite general. We expect
that analogous results can also be proved for equations in the KdV hierarchy
as well as for the defocusing NLS and equations in the NLS hierarchy such
as the defocusing mKdV equation.

Theorem 1.1 is proved at the end of the paper in Section 8.3. It is deduced from
Theorem 4.1 (Section 4), which is proved by applying a Nash—-Moser iteration
scheme (Section 8.1) and by establishing the measure estimates of Section 8.2.
Before describing the main ideas of the proof in detail, we first comment on the
novelty of our result.

1. The first KAM results for (1.1) were proved by Kuksin [25] (cf. also [26]) and
Kappeler—Poschel [21] for finite gap solutions of arbitrary size for semilinear
perturbations of the KAV equation. This means that the density f of (1.4) does
notdependonu,,andhence 0, VP (u) = Buzf(x, u(x))uy+- - - dependsonly on
u and u,. (Note that in addition, the dependence on u, is linear.) Subsequently,
Liu—Yuan [29] proved KAM results for semilinear perturbations of small ampli-
tude solutions of the derivative NLS and the Benjamin—Ono equations whereas
Zhang—Gao-Yuan [32] proved analogous results for the reversible derivative
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NLS equation. More recently, Berti—-Biasco—Procesi [6]-[7] proved existence
of small quasi-periodic solutions of derivative Klein-Gordon equations. For the
NLS and the beam equations in higher space dimension, KAM results were
obtained by Eliasson—Kuksin [15] and, respectively, Eliasson-Grébert—Kuksin
[14]. In all of these works, the perturbations are required to be semilinear.

On the other hand, the results in Baldi-Berti—-Montalto [3,4], for quasi-linear
perturbations of the KAV and mKdV equations concern only small amplitude
solutions. The proofs of these results make use of pseudo-differential calcu-
lus and rely in a decisive manner on the differential nature of these equations.
The latter property cannot be read off in the action-angle coordinates outside
a neighborhood of the origin. Furthermore, also the results of Giuliani [19]
for the generalized KdV equation, the ones of Feola—Procesi [17] for the NLS
equation, and the ones of Berti-Montalto [ 10] and Baldi-Berti-Haus—Montalto
[1] for water waves concern small amplitude solutions.

Thus the challenging problem of the persistence of the finite gap solutions of
(1.1) of arbitrary size under strongly nonlinear perturbations (1.5) remained
completely open.

2. In [9], we used the “one-smoothing property” of the Birkhoff coordinates of
the defocusing NLS equation on T, established in [23], to prove a KAM result
for semilinear perturbations. This property is used to deal with the difficulties
related to the double “asymptotic multiplicity” of the frequencies. For the KdV
equation, a “one-smoothing property” has been proved near the equilibrium in
[27] and then in general in [22], however it is not sufficient for dealing with the
quasi-linear perturbations (1.5).

3. The proof of Theorem 1.1 uses the canonical coordinates constructed in [20]
near any given compact family of S -gap potentials in Ms_ , reviewed in Sec-
tion 3.2. These coordinates admit an expansion in terms of pseudo-differential
operators up to a remainder of arbitrary negative order. Due to its length, this
part of the proof of Theorem 1.1 has been published in a separate paper [20].
In Section 3.3 we show that the linearization of the Hamiltonian vector field
X, when expressed in these coordinates, admits an expansion in terms of
pseudo-differential operators. This property is one of the key ingredients for
implementing the Nash—-Moser iteration scheme as explained in the subsequent
paragraph.

Ideas of the Proof Theorem 1.1 is proved by means of a Nash-Moser iterative
scheme to construct, for any v belonging to a suitable subset E, of E, a quasi-
periodic solution of (1.6) with frequency vector @ = —w*?’(v) near the S, -gap
solution # — g( — &*¥(v)t, x; v) of the KAV equation (1.1) (cf. (1.12)), which
evolves on the torus 7, := Vg, (’]I‘S+ x {v}) (cf. (1.10), (3.5)). The subset E; is
obtained by imposing along the iterative scheme suitable non-resonance conditions.
In particular we will always assume w to be diophantine, meaning that there exist
positive constants 0 < y < land T > |S;| — 1 so that |w - £] = y|€|~" for any
¢ € 75+ \ {0}
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The starting point of our proof is to express the perturbed KdV equation (1.6)
in the canonical coordinates (6, y, w) € TS+ x RS+ x Li(?ﬁ), constructed in [20],
in a neighborhood of a torus 7,,. Here

L3(T)):= {w =3 w,d e Lg(T,)}, Sti=7\ (S U(=Spufo}). (1.18)

neSt

To be more precise, denote by B (§) the open ball in Li(Tl), centered at 0, of
radius §, and by Bg_ () the one in RS+ (cf. (1.14)). According to [20], forv € B
and 0 < § < 1 sufficiently small, there exists a canonical coordinate chart

v, V() — L%(Tl), @, y,w) = ¥, 0, y,w), V(@):= TS+ x Bs, (8) x B1(9),

so that the following key properties hold (cf. Theorem 3.2):

(P1) W, (0,y,0) = Vg, (6, v+ y) forany (0, y) € TS+ x Bs, () (with Vg, as
in (1.10), (3.9));

(P2) W, (0, y, w) € Hj(T) forany (0, y, w) € TS+XBS+(8)X(BJ_(5)0H$(T1))
and s € N;

(P3) equation (1.6) takes the form (9, ¥, w) = X4, where the Hamiltonian vector
field X4y, is given by

X1, = (=VyHe, VoHe, 0:VuwHe), He:=He o Wy;

for ¢ = 0, the manifold {w = 0} is invariant for the constant vector field
X3y = (—*"" (1), 0, 0);

(P4) W, admits an expansion in terms of pseudo-differential operators, up to regu-
larizing operators satisfying tame estimates, as stated in Theorem 3.2-(AE1)
(note that in the estimates Theorem 3.2-(Est1), the dependence with respect
to the highest Sobolev norm is linear);

(P5) the linearization of (6, ¥, w) = X, along the manifold {y = 0, w = 0}
is in diagonal form with coefficients depending only on v; more specifically
30 = —Qg‘i“(v)'i, 3y =0, 3w = 9,2V (D; v)w, (cf. the normal form
Hamiltonian (3.12)).

As a consequence of (P1)—(P3), for ¢ = 0, the curve ¢ +— (—a)kd”(v)t, 0,0) is
a solution of (8, y, w) = X74,, evolving on the torus TS+ x {0} x {0}, which is
invariant under the flow of X4,. We look for a quasi-periodic solution of @, y,w) =
X4, near the torus TS+ x {0} x {0}, with frequency vector @ = —w*?¥(v), of the
form I(wt) where

RS — RS x RS+ x HY(Ty), H:(Ty):=H*(Ty)N L3 (Ty),
with s sufficiently large, is the lift

(@) =(9,0,0) + (), tlp) =) — ¢, y(@),w(p))

of a torus embedding and ¢ is (2777Z)5+-periodic. Thus the unknown function ¢
satisfies (cf. (4.6))

Fo) =0, Fuo():=w-dyl(p) — X, ((p)
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and the map 7 — W, ({(wt)) € H(Ty) is a quasi-periodic solution of (1.6). The
equation F, (1) = 0 is solved by a Nash—Moser iteration scheme. The core of
this scheme is the construction of an approximate right inverse of the linearized
operator dF,, at an embedding (@) = (6(¢), y(¢), w(p)), near ip(¢) = (¢, 0, 0),
and the proof that it satisfies suitable tame estimates, cf. Theorem 5.7. One of the
main issues is to construct an approximate inverse of the linear operator, acting on
L7 (T,

LY = w8, — 8:d) Vi He((9)),

where d | denotes the differential with respect to w. We achieve this goal by reducing
,Cg) ) to a linear diagonal operator with constant coefficients. Using properties (P4)
and (P5) we prove that

(P6) the linearized Hamiltonian operator d,d | V,,H, in a neighborhood of a S -
gap potential is close to 9, Qkdv(p; v) (acting in H{ (Ty)) and it admits an
expansion in terms of classical pseudo-differential operators, up to smoothing
remainders which satisfy tame estimates in /] (T1) —see Lemmata 3.5 and 3.7
in Section 3.3.

Property (P6) allows us to use pseudo-differential techniques, developed in [1,3,
10], to reduce 52? ) to a diagonal one with constant coefficients up to smoothing

remainders. Actually, using (P6) we prove that the operator Lg) ) has the form (cf.
Lemma 6.2)

M
£O = .9, - nl(ag") 33 + 2,07 + a0, + 3 a0k + 04 (D a))) +RY,
k=0

(1.19)

where I is the L2-orthogonal projector onto the subspace Li (T), the coefficients
aﬁ’,z (p,x), k = =3,..., M, are real valued functions, a_go) ~ —1, and Rgg) isa
¢-dependent regularizing operator which satisfies tame estimates in the Sobolev
spaces H S(T§+ x Tp). The order M of regularization has to be sufficiently large
to ensure the convergence of the KAM iterative reducibility scheme, carried out in
Section 7; M is fixed in (7.6) and depends on the cardinality |S| of S; and on
the diophantine exponent 7 of the frequency vector w. We point out that the term
Qk_dlv (D; w) in (1.19) is not e-small, since the finite gap solutions considered might
have large amplitudes. More precisely, Qk_dlv (D; w) is the Fourier multiplier, acting
on Lzl(’]I‘l ), with symbol a),’jd” — (27rn)3 (cf. (3.62)), which takes into account the
difference between the KdV-frequencies and the frequencies (27m)3, n € 7, of the
Airy equation ;v = —831). We also mention that the pseudo-differential operator
ZQ/[:O agz o kis not present in [3], since in the latter paper only small amplitude
finite gap solutions are considered.

In order to show that the regularizing operator ng in (1.19) is tame (which is
a key property for the convergence of a Nash—-Moser iterative scheme), we prove
in Section 3.2 novel results of independent interest concerning the extensions of
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the differential of the canonical coordinates of [20] to Sobolev spaces H*(T), of
negative order s < 0 (cf. Corollaries 3.3 and 3.4).

The special form (1.19) allows to find preliminary transformations which diag-
onalize Lg) ) up to a pseudo-differential operator of order zero plus a regularizing
remainder (see Section 6). More precisely we conjugate Eg) ) to the Hamiltonian
operator (cf. (6.69))

LY = w8, — (m332 + midx +Op(r§”) + Q"4 (D; w)) + RS, (1.20)

where m3 + 1 and m are real constants, which are e-small, Op(r(§4)) is a pseudo-

differential operator of order 0 and Rg‘,}) is a regularizing operator satisfying tame

estimates. The map which conjugates E((B ) to E,(j ) is obtained by the composi-
tion of the transformations introduced in Sections 6.2—6.5. These transformations,
inspired by [3], are Fourier integral operators given by symplectic flows of linear
Hamiltonian transport PDEs or pseudo-differential maps. In particular, we point out
that in order to conjugate the pseudo-differential terms a(_olg 0 k under the transport
flow used in Section 6.3, we need a quantitative version of the Egorov theorem,
which is stated and proved in Section 2.5. We remark that in contrast to [3], we
implement in Section 6.2 the time-quasi-periodic reparametrization before the con-
jugation with the transport flow to avoid a technical difficulty in the conjugation
of the remainders obtained in the Egorov theorem. Furthermore, we mention that
related transformations have been developed in [5] for proving upper bounds for
the growth of Sobolev norms for certain classes of PDEs.

At this point, using properties of the KdV frequencies that are recorded in Sec-
tion 3.4, we are able to perform in Section 7 a KAM reducibility scheme to complete

the diagonalization of the operator Lg‘ ) in (1.20) for most values of v. Since the

variable coefficients term —Op(r(g4) ) + ng in (1.20) (which is renamed Ry in
(7.3)) is proven to satisfy the tame estimates of Lemma 7.1, such a KAM reducibil-
ity scheme can be implemented along the lines developed in Berti-Montalto [10].
See Theorem 7.3 for details.

Finally in Section 8 we implement a standard Nash—Moser iterative scheme to

construct a solution of F,, (1) = 0 for all frequency vectors w satisfying “Melnikov
nonresonance conditions”, cf. (8.37). By the results of Section 8.2, using properties
of the KdV frequencies, we prove that the set of such non-resonant frequencies has
asymptotically full measure as ¢ — 0.
Notation. We denote by N:={0,1,2,...} the natural numbers and set
N;:={l,2,...}. Given a Banach space X with norm | - ||x, we denote by
H(‘;X = HS(TFS+, X), s € N, the Sobolev space of functions f : TS+ —» X
equipped with the norm

I llzgx =1 £ Lz x + max 195 f .z x.

In case s = 0, we often write LéX instead of H(g X. Occasionally, we denote the
Sobolev space H*(T1) = H*(T;, R) in (1.8) by HS and write L2 for H?. The
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space L% is endowed with the standard L>-inner product ( f, g) ;2 given by

(f. g)L§ :=/T f(x)g(x)dx. (1.21)
1

Note that the Sobolev space H® = H* (TS+ x Ty, R) defined in (1.15) is an algebra
for the product of functions if s > so where throughout the paper, s¢ is defined as

1
50 1= [&%} 11, (1.22)

where [ ] denotes the integer part. For any s = 0, denote by &) the sequence space

hf) = {Z = (Znnez € h* 0 = 0}5

h o= {z = (Zwnez, 72n € C : IIZIIf <00, In=12_pn, Vn€ Z}, (1.23)
where ||z||f = Znez(n)leznlz < 00. By F we denote the Fourier transform,
F : LXT)) — h°% u > (up)nez, where u, := le u(x)e 27 dx forany n € Z
and by F~! : h% — L2(T)) its inverse. Furthermore, we denote by l'[§ the L2-
orthogonal projector onto the subspace of functions with zero average Lj(T1). We
set

H{ (Ty):=H*(T}) N LI (Ty),
HY = H{ (TS x T):={u € H (T x T1) :ulp,-) € L3 (T1)} (1.24)

where Li(Tl) is defined in (1.18). Often we write Lﬁ_ for HJO_. The space HE (Ty)
is also denoted by Li('ﬂ‘l). By IT, we denote the L?-orthogonal projector onto
L3 (Ty), Ty : L3(Ty) — L2 (Ty). Let

& =TS x RS x H{(Ty), €=6&,
E, := RS x RS+ x Hi(T)), E = Ey. (1.25)

Elements of £ are denoted by r = (6, y, w) and the ones of its tangent space E by
T=@,7,®).Fors < 0, we consider the Sobolev space H{ (T) of distributions,
and the spaces & and E; are defined in a similar way as in (1.25). Note that H | * (T)
is the dual space of H (T;). On E, we denote by (-, -) the inner product, defined
by

(61,31, D), 62,52, 2)):=01 - 02+ 1 -T2+ (D1, W2) 2. (126)

By a slight abuse of notation, I also denotes the projector of E; onto its third
component, IT; : E; — H{ (Ty), (@\, y, w) — w. Furthermore, we denote by d
the differential with respect to w of any map, defined on an open set of &, taking
values in some Banach space.

Forany 0 < § < 1, we denote Bg_ (§) the open ball in RS+ of radius 8 centered
at 0 and by Bj_ (8), s = 0, the corresponding one in H i (T;) where we also write
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B (8) for Bg (8). These balls are used to define the following open neighborhoods
iné&,s €N,

VE(8):=T,* x Bs,(8) x BS.(5), V(©®)=V(6), 0<s<1. (1.27)

The space of bounded linear operators between Banach spaces X1, X» is denoted by
B(X1, X2) and endowed with the operator norm. For two linear operators A, B we
denote by [A, B] their commutator, [A, B] := AB — BA and for a linear operator
A, acting on an Hilbert space H, by A" the transpose of A with respect to the
scalar product of H. In case A is invertible, the transpose of the inverse A lof A
is denoted by A~ ".

Throughout the paper, & € RS+ denotes a parameter set of frequency vectors.
Given any function f : Q2 — X, we denote by A, f the difference function
Apf:Q2xQ— X, (01, w2) = f(w)) — f(w).

2. Preliminaries

The goal of this section is to record analytical tools used throughout the paper.
In Section 2.1 we introduce function spaces of functions of the variables ¢, x,
depending on a parameter w in a Lipschitz continuous way, and state their main
properties. In addition, we introduce the classes of ¢-dependent linear operators
used in the paper, and the subclasses of Hamiltonian and of symplectic ones. In
Section 2.2 we review the notion of periodic pseudo-differential operators and basic
elements of their calculus. They are a key tool in Section 6, for the reduction of
the linearized operators obtained along the Nash—Moser iteration, to operators with
constant coefficients, up to smoothing remainders. In Section 2.3 we discuss the
notion of tame and modulo-tame operators, introduced in [10] as a technical tool
in order to facilitate the derivations of tame estimates, mainly needed to setup the
KAM reducibility scheme in Section 7. The results of Sections 2.4 and 2.5 are
new. In Section 2.4 we prove tame estimates for compositions of functions and
operators with a torus embedding  : TS+ — TS+ x RS+ x H 1 (Ty), acting in
spaces of functions of the variables (¢, x) € TS+ x Ty. These tame estimates are
at the heart of the convergence of the KAM reducibility scheme, proved in Section
7 and of the Nash—Moser iteration, proved in Section 8.1. In Section 2.5, we prove
a version of the Egorov theorem with quantitative tame estimates needed in the
reduction step of Section 6.3.

2.1. Function Spaces and Linear Operators

In the paper we consider real or complex functions u (¢, x; w), (¢, x) € TS+ x
T, which are Lipschitz continuous with respect to the parameter w € €2, where Q2
is a subset of RS+, In the sequel, we will often suppress w in u (g, x; @) to make
notation lighter. Given 0 < y < 1 and s > 0, we define the norm

Li Li li
el o= a5 = Nl + y
i lu(r) —u(@)ly (2.1)
[l := sup [lu(@)lly, ful":=  sup -

weR w1, EQ, w1 Fwr |w1 - w2|
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where || || is the norm of the Sobolev space H*, defined in (1.15), and u(w;) =
u(-,-; wy). For a function u : @ — C, the sup norm and the Lipschitz semi-
norm are denoted by |u|*"P and, respectively, |u|"P. Correpondingly, we write
] HPO) t= Ju[MP -y .

By Iy, N € N4, we denote by I1y the smoothing operators on H*,

(HNM)(QO, x) = E ue’jei(ﬁ-tp+2njx)’
[, HIEN
1 i .
- —i(-p+2mjx)
Uy j = ——=— u(p, x)e dodx, 2.2
L,j (27T)|S+| ,/IFS+><T1 (‘p ) @ (2.2)

and let Hﬁ :=Id — TTy. For any @« = 0 and s € R, the operators [Ty and Hi
satisfy the standard estimates

L L L Li
Iyl < Nl B, g ullP < N @3)
Furthermore, the following interpolation inequalities hold: for any 0 < 51 < 57 and

0<6 <1,

L L L
lellgP T gy, < 200l (el gP 7)1 2.4)
Multiplication and composition with Sobolev functions satisfy the following tame
estimates:

Lemma 2.1. (Product and composition)
(i) Forany s = so = [(IS+] + 1)/2] + 1 (cf. (1.22)),

Li L L
luv]s®7 < C) Il oI5 + Clso) lully?? vls*Y. 2.5)

(i) Let B, - w) : TS+ x Ty — Rwith |Bll5 3 < 8(s0) small enough. Then
the composition operator B : u +— Bu, (Bu)(p, x) :=u(p,x + B(p, x))
satisfies, for any s 2 so + 1,

L L Li Li
1Bulls™ < ully P+ 1811 0. (2.6)
The function B, obtained by solving y = x + B(p, x) forx, x =y + ,é((p, y),
satisfies

L
AP < IBIEEY . Vs = so. 2.7)

(iii) Let a(; w) : TS+ — R with ||oz||§;§$/2) < 8(so) small enough. Then the
composition operator A : u — Au, (Au)(@, x) :=u(p+a(p)w, x) satisfies,
foranys 2 so + 1,

Li Li L Li
IAully ™7 < Ml B+ el a2 2.8)
The function &, obtained by solving ¥ = ¢ + a(@)w for ¢, ¢ = ¥ + a(H)w,
satisfies

o, Li Li
&l < el Vs = so. (2.9)
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Remark 2.2. Note that for s > so, the bound C(s)|lulls™" |v[sP™

+C (o)l ol of uv ]|y in (2.5)is linearin [lully ™" S,

It is this property of the estimate which is referred to as “tame”.

and ||v||

Proof. Item (i) follows from (2.72) in [10] and (ii)—(iii) follow from [10, Lemma
2.30]. O

Ifthe vector w € RS+ is diophantine, thatis |w-£] = y/|€|” forany £ € Z5+\{0},
the equation w - dyv = u with u(gp, x) satisfying ug ; = 0 for any j € Z, has the
periodic solution

-1 Uej ie-p+2mjx)
v=(w-0y) u= — e )
¢ Z iw - £
JEZ,LeTS+\{0}

and it satisfies the standard estimate (cf. [9, Lemma 2.2])

_ Li _ Li
(@ - 3) ] s®P <y~ HulHn . (2.10)

We also record Moser’s tame estimate for the nonlinear composition operator
u(p, x) = £)(@, x) = f(p, x, u(p, x)).

Since the variables ¢ and x play the same role, we state it for the Sobolev space

HS (Td).

Lemma 2.3. (Composition operator, [10, Lemma 2.31]) Let f € C®(T? xR, C).
Ifv(hw) € HS (T, RY), w € K, is a family of Sobolev functions satisfying
||v||£“(:g§;/) < 1 where so(d) > d /2, then, for any s = so(d),

LE@)IPY < Cs, A + []lEP). 2.11)

Moreover; if f (g, x,0) =0, then [|[Ew) |5 < C(s, f)llv]|FPY.

Next we discuss classes of linear operators used in this paper. Throughout
the paper we consider g-dependent families of linear operators A : TS+ —
L(L*(Ty, C)), ¢ — A(p), acting on complex valued functions u(x) of the space
variable x. We also let A act on functions u (¢, x) of space-time. In this way we get
an element in £(L2(TS+ x Ty, C)), again denoted by A, which is defined by

Alu](p, x) = (Au) (@, x) := (A(@)u(p, -))(x). (2.12)

We say that the linear operator A is real if it maps real valued functions to real
valued functions. When u in (2.12) is expanded in its Fourier series,

up,x) =Y uj(@e = Y g OO (213)
jez jE€Z €75+

one obtains

(Au)(p, x) = Z Aj:’((p)uj/((p)ei%tjx
JJ €L
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=YY A O 214
JEL LTS+ j €L 0TS+

We shall identify an operator A with the matrix (Aj:/ € —10)) €T 0TS

Definition 2.4. Given a linear operator A as in (2.14) we define the following
operators:

.7
1. |A| (MAJORANT OPERATOR) whose matrix elements are |A'J’. e —10)).
2.TIyA, N € N4, (SMOOTHED OPERATOR) whose matrix elements are

Ay if ((—e)<N

My A, (€ — )= ,
otherwise.

(2.15)

3. (3,)? A, b € R, whose matrix elements are (£ — e’)bAjﬁ’(z — 0.
4. 0y, A(p) = [0yp,,, Al (DIFFERENTIATED OPERATOR) Whose matrix elements are

i€, — e;n)A-J’. —2¢).

Hamiltonian and symplectic operators will play an important role in the reduc-
tion procedure of linearized operators, implemented in Sections 6 and 7. They are
defined as follows.

Definition 2.5. (Hamiltonian and symplectic operators)

(i) A g-dependent family of linear operators X (¢), ¢ € TS+, densely defined in
L%(TI‘ 1), 1s HAMILTONIAN if X (¢) = 05 G (@) for some real linear operator G (¢)
which is self-adjoint with respect to the L?-inner product. By a slight abuse of
terminology, @ - 9, — 9, G(¢) is also said to be a Hamiltonian operator.

(ii) A @-dependent family of linear operators A(p) : L%(']I‘l) — L%(']I‘l), Yo €
TS+, is SYMPLECTIC if

Wiz (A@u, A@)v) = Wia(u,v). Yu,v e Li(Ty),

where the symplectic 2-form WL(Z) is the one defined in (1.9).

Under a ¢-dependent family of symplectic transformations ®(¢), ¢ € TS+, the
linear Hamiltonian operator w - dy, — 9, G (@) transforms into one which is again
Hamiltonian. Self-adjoint operators and real ones are characterized in terms of their
matrix elements as follows:

Lemma 2.6. A family of linear operators R(p), ¢ € TS+ with Fourier series
R(@) =Y ycpss R, is

(i) SELF-ADJOINT if and only iijf'(e) = Rj.}(—a, Vi, j' €7, 0,0 e75+;

(ii) REAL if and only iij.}(Z) = Rjj,(—ﬁ), Vj,j €Z, 0,0 eZ5;
(iii) REAL AND SELF-ADJOINT if and only iijf’(z) = R:jf, (0),Vj,j €Z, 0,0 T+,
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The next lemma describes the structure of specific linear Hamiltonian operators
(cf. Definition 2.5), and will be used in Lemmata 6.2 and 6.5.

Lemma 2.7. Let X : H8+3 (Ty) — H(';' (Ty) be a linear Hamiltonian vector field
of the form

X = a3(x)d> + a2 (x)d* + a; (x)d, + bounded operator (2.16)
where a3, ap, a; € C*°(T, R). Then a, = 2(a3)y.

Proof. Since X is a linear Hamiltonian vector field it has the form X = 9,.4 where
A is a densely defined operator on L%(Tl) satisfying A = AT. Since by (2.16),
A =0"X = a3(0)3x + (— (@)x + @2)dx +...and AT = —XTo;7! =
a3(x)dxy + (3(a3)x — a2)dx + ..., the identity A = A" implies that ay =
2(az);. O

2.2. Pseudo-differential Operators

In this section we introduce the class of pseudo-differential operators, acting
on functions on T, which are used in this paper, and discuss their basic calculus,
following [10]. (Note however that in [10], the space variable x is in R/(27Z)
whereas in this paper it is in T.)

Definition 2.8. (Pseudo-differential operators, symbols) We say thata : T xR —
C is a symbol of order m € R if, for any o, 8 € N,

009l a(x, )] < Capl&)" P, V(x.6) €Ty xR. (2.17)

The set of such symbols is denoted by $™. Given a € §™, we denote by A the
operator, which maps a one periodic function u(x) = )" jez U jelz’” * to

A[M](X) = (Au)(x) = Z/eza(x’ j)ujeiz”jx,

The operator A is referred to as the PSEUDO-DIFFERENTIAL OPERATOR (WDO) of
order m, associated to the symbol a, and is also denoted by Op(a) or a(x, D)
where D = %3x. Furthermore we denote by O PS™ the set of pseudo-differential
operators a(x, D) with a(x, &) € §™ and set OPS™ % := N,;cr OPS™.

When the symbol a is independent of &, the operator A = Op(a) is the mul-
tiplication operator by the function a(x), that is, A : u(x) +— a(x)u(x) and we
also write a for A. If a is independent of x, the operator A = Op(a) is referred to
as Fourier multiplier. In particular, (D) denotes the Fourier multiplier with symbol
(§) := max{l, ]}

More generally, we consider symbols a(¢, x, §; w), depending in addition on
the variable ¢ € TS+ and the parameter w € 2, where a is C* in ¢ and Lipschitz
continuous with respect to w. By a slight abuse of notation, we denote the class
of such symbols of order m also by S™. Alternatively, we denote A by A(p),

Op(a(e, -)), ora(p, x, D; o).
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Given an even cut-off function g € C*°(R, R), satisfying

1 2
0=x0 =1, x() =0, V[§| < ok xo@&) =1, V[g]2 3 (2.13)
we define, for any m € Z, 97" = Op(xo(§)(i2mw &)™), so that
A" PX] = (127 )" e, j e Z\ {0}, 9™M[1]=0. (2.19)

Note that Bg[u](x) = u(x) — ugp, hence 8)? is not the identity operator.

Following [10, Definition 2.11], we introduce for any s > 0 the norm of a
symbol a (g, x, &; w) in $™, which controls the regularity in (¢, x) and the decay
in £ of a and its derivatives afa € §"F 0 < B < a,in the Sobolev norm || |s.
By a slight abuse of terminology, we refer to it as the norm of the corresponding

pseudo-differential operator. Unlike as in [10], we consider the difference quotient

Lip(y)

instead of the derivative with respect to w, and write | |5, instead of | |m S0

Definition 2.9. (Norm of pseudo-differential operators) Let A(w) :=a(p, x, D; w) €
O PS™ be a family of pseudo-differential operators with symbols a(g, x, §; w) €
S§™ of orderm € R.Fory € (0,1), @ € N, s 2 0, we define the WEIGHTED WDO
NORM of A as

L |A(@1) — A(@2) s,
|A[RD) = sup |A(@)|msa+y sup L
weQ w1,02€Q |w) — ;]
w1 Fw

where | A (@) n.s.o = MaXo<p<q SUPser 10/ aC, - & )l (E) "+,

The pseudo-differential norm |- | mli(y)

forany s <s',a < o,and m < m/,

satisfies the following elementary properties:

L Li L Li L Li
| | ip(y) < | | ip(y) | | IP(V) < | | ip(y) | | ip(y) <| ip(y) (220)

m,s,a m,s’,a’ m,s,a’’ m',s,a m,s,a -

For a Fourier multiplier g(D; w) with symbol g € S™, one has

L L
10p(2) In%) = 10p() -2 < C(m,a, ), Vs =0, .21)

m,0,a

and for a function a(¢, x; w),

L L L
0p(@)[6™*Y = [0p(@)[6™Y < llalls™. (2.22)

0,s,a

Composition. If A = a(¢,x, D;w) € OPS™, B = b(p,x, D;w) € OPS”‘,,
then the composition AB := A o B is a pseudo-differential operator with a symbol
oap(p, x,&; w)in ™™ which, for any N > 0, admits the asymptotic expansion

oAB(p, X, E; ) = Z ﬂﬁ,aga(w X, &) 0 b(p, x, & 0) +ry(p. X, & 0) (2.23)

with remainder ry € S™"'~N=1 We record the following tame estimate for the
composition of two pseudo-differential operators, proved in [10, Lemma 2.13]:
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Lemma 2.10. (Composition) Let A = a(p,x, D;w), B = b(p,x, D; ®) be

pseudo-differential operators with symbols a(p, x,&; w) € S™, b(p,x,&;w) €

S™ m,m’" € R. Then A o B is the pseudo-differential operator of order m + m’,

associated to the symbol o 4p(@, x, &; w) which satisfies, for any o € N, s 2 s,
|AB|Lip(y) < C(S)|A|LiP(V)|B|LiP(V)

m+m',s,a ~MA m,s,o m’,so+a+|m|,a

Li Li
+C(s0)| A2 | B P (2.24)

m’,s+a+|m|,a’

Moreover; for any integer N 2 1, the remainder Ry :=Op(ry) with ry as in (2.23)
satisfies

Lip(y) Lip(y) Lip(y)
|RN|m+m’—N—l,s,a Sm,N,a C(s)|A|m,s,N+l+a|B|m’,so+2(N+1)+\m|+a,oz
Lip(y) Lip(y)
+C(s0)|A|m,so,N+l+a|B|m’,s+2(N+l)+\m|+a,oz’ (2.25)

By (2.23) the commutator [A, B]of A = a(x, D) € OPS™ and B = b(x, D) €
OPS™ isa pseudo-differential operator of order m + m’ — 1, and Lemma 2.10
yields (cf. [10, Lemma 2.15]).

Lemma 2.11. (Commutator) If A = a(p,x,D;w) € OPS™ and B =
b(p,x, D;w) € OPS”',, m,m’ € R, then the commutator [A, B]:=AB — BA
is the pseudo-differential operator of order m + m’ — 1 associated to the symbol
oap(p, x, &) —opalp, x, &, w) € gmAm'—1 which for any @ € N and s 2 s
satisfies

|[A’ B]Ii:lli(lz’)—l,s,ot gm.m’,a C(s)|A|:;11,ps(j—/;+|m’|+ot,a+l |B|1~nl’l?§‘3)/-)&-2+|m\+a,a+l (2 26)

Lip(y) Lip(y)
+ C(SO) | A |m,so+2+|m’|+v¢,u+l |B |m’,s+2+|m\+oz,a+l N

In the case of operators of the special form a9}", Lemmas 2.10 and 2.11 simplify
as follows:

Lemma 2.12. (Composition and commutator of homogeneous symbols) Let A =
adl’, B = ba;"/ where m,m’ € 7 and a(p, x; w), b(p, x; w) are C®-smooth
functions with respect to (¢, x) and Lipschitz with respect to w € 2. Then there exist
combinatorial constants Ky, € R, 0 <n < N, with Koy = 1 and K1 ,,, = m so
that the following holds:

(i) Forany N € N, the composition AoB isin O PS™ " and admits the asymptotic
expansion

N
AoB = Kuma@b)d"™ ™" +Ry(a.b)
n=0

where the remainder Ry (a, b) is in O PS" M =N=1_ Fyrthermore there is a
constant oy (m) > 0 so that, for any s 2 so, a € N,
Lip(y) Lip(y) Lip(y)
RN, D) b 1 g St s Noa a5 1B E T

Lip(y) Lip(y)
+lla ”SO+UN (m) ||b||s+aN (m)*
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(ii) For any N € N, the commutator [A, B] is in O PSS =1 and admits the
asymptotic expansion

N
[A.B1 =Y (Knma(@!h) — Ky @ a)b)d" ™ =" + Qy (a, b)

n=1

where the remainder Qy(a, b) is in o psmtm'=N-1 Furthermore, there is a
constant oy (m, m’) > 0 so that, for any s = sg, o € N,

Lip(y) Lip(y) Lip(y)
|QN(a’b)|m+m’—N—1,s,a Sm,m’,s,N,ot ”a”s—i-aN(m,m’)||b||so+oN(m,m’)
Lip(y) Lip(y)
+”a”so+ﬂN(m,m’)”b”eraN(m,m’)'

Proof. The results follow from the asymptotic expansion formula (2.23) and
Lemma 2.10. O

Finally we give the following result on the exponential of a pseudo-differential
operator of order 0.

Lemma 2.13. (Exponential map) If A :=Op(a(p, x, §; w)) isin OPSO, then

> k>0 %U Ak (@, x, &; w) is asymbol of order 0 and hence the corresponding pseudo-
differential operator, denoted by ® = exp(A), is in O PS°. Furthermore, for any
s = 5o, a € N, there is a constant C (s, a) > 0 so that

| —1d]gPY < JAGPY) exp(C(s, @) AlGPT) ) (2.27)

0,s,a 0,5+, 0,s0+a,a/"

Proof. Iterating (2.24), for any s = so, @ € N, there is a constant C(s, a) > 0
such that
k Llp(y) k-1 Lip(y) \k—1 4 Lip(¥)
A% g5 = Cls, )" (A ) A Vk=1. (2.28)

0,50+a,a 0,54,

Therefore

|d — IdlLlpO/) < Z |Ak|LIP(V) S |A|Llp<y> Z EC(S’ kAP k=1

0,5, = 0,s,a = 0,s+a,a 0,s0+a,a
k>1 1
Lip(y) Lip(y)
é |A|0,5+a,aexp(c(s’ a)lAlo,so+a.a)

This shows that ) ;- %UAk (¢, x, &; w) is a symbol in SO and that the estimate
(227)holds. O

2.3. Lip(y)-Tame and Modulo-Tame Operators

In this section we review the notions and the main properties of Lip(y)-o-tame
and Lip(y)-modulo-tame operators, introduced in [10, Section 2.2]. (Again, unlike
[10], we consider difference quotients instead of first order derivatives with respect
to w.)
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Definition 2.14. (Lip(y)-o-tame) Let 0 > 0 and 0 < y < 1. A linear operator
A = A(w) asin (2.12) is said to be Lip(y )-o -tame if there exist numbers s, S with
so < s1 < S and a non-decreasing function [s1, ST — [0, +00), s > M4 (s), so
that, forany sy <s < Sandu € H',

A(wy) — A
sup |A(@)ully +y  sup ”M

weR w1,02€Q |w1 — w2 s
w1 Fw)
§ Mot ulls+o + mA(S)“u”ner (2.29)

When o is zero, we simply write Lip(y)-tame instead of Lip(y)-0-tame. We say
that 974 (s) is a TAME CONSTANT of the operator A. Note that 974 (s) is not uniquely
determined and that it may also depend on o, referred to as loss of derivatives. We
will not explicitly record this dependence.

Remark 2.15. In the sequel, often we will not explicitly record the domain of
definition [s1, S] of the Lip(y)-o -tame constant 914 (s) in order to make the state-
ments lighter. Similarly, we will always assume that 0 < y < 1, without stating it
explicitly.

Representing the operator A by its matrix elements (A;l —-v )) oSt ) je
as in (2.14), we have, for any j’ € Z, £’ € Z5+ and any w1, w2 € Q, | # w2,

AwAjI'(e —?) ‘2)

>, e p(jal -0+
e / lw) — ws

< (Malsn) (L, j1y2e+)

(2.30)

where we recall that A, f = f(w1) — f(wy).

Lemma 2.16. (Composition, [10, Lemma?2.20]) Let A, B be aLip(y)-o0 s-tame and
respectively, a Lip(y)-op-tame operator with tame constants M 4 (s) and Mp (s).
Then the composition A o B is Lip(y)-(o4 + op)-tame with a tame constant sat-
isfying

Map(s) SMa()Mp(s1 4+ 04) + Ma(s1)Mp(s +04).

We now discuss the action of a Lip(y)-o-tame operator A(w) on a family of
Sobolev functions u(w) € H*.

Lemma 2.17. (Action on H*, [10, Lemma 2.22]) Let A := A(w) be a Lip(y)-o-
tame operator with tame constant M A(s). Then for any s € [s1, S, for any family
of Sobolev functions u:=u(w) € H*¥°, Lipschitz continuous with respect to ,
the following tame estimates hold:

Li Li Li
HAulEP7) < 9 x (s |22 4+ 904 (5) el 52

Pseudo-differential operators are tame operators. We will use, in particular, the
following lemma:
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Lemma 2.18. Let a(p, x,&; w) € SO be a family of symbols that are Lipschitz
continuous with respect to w. If A = a(p, x, D; w) satisfies |A|g}£ﬁ%’ ) < 400 for

any s 2 so, then A is Lip(y)-tame with a tame constant satisfying
Ma(s) < Cs)|AIGEY . 2.31)
As a consequence, for any s > s,

L L Li L
1Al < C (o) Alg 0 el ™Y + C)IAGEY NuloP . 2.32)

Proof. See [10, Lemma 2.21] for the proof of (2.31). The estimate (2.32) then
follows from Lemma 2.17. 0O

In the KAM reducibility scheme of Section 7, we need to consider Lip(y )-tame
operators A which satisfy a stronger condition, referred to Lip(y )-modulo-tame.

Definition 2.19. (Lip(y)-modulo-tame) A linear operator A := A(w) asin (2.12) is
Lip(y)-modulo-tame if there exist numbers s1, S with Let so < s; < § and a non-
decreasing function [s1, S] — [0, +00), s — zm{{, (s), so that forany s; < s < §
andu € H®,

[Alw) — Alw)|

sup || [ A@) ulls +y sup | TR

e w1,02€R | — ;3] s
w1 Fw
< () llulls + 95, () e, (2.33)

The constant zmi, (s) is called a MODULO-TAME CONSTANT of the operator A.

Similarly as mentioned in Remark 2.15, the domain of definition of Dﬁi (s) will
often not be explicitly recorded. By Definition 2.19, if B is a Lip(y)-modulo-tame

operator and A is a linear operator satisfying |A§/ 0] |B; ()|, then A is Lip(y)-
modulo-tame with a modulo-tame constant 93??4 (s) satisfying sm{{, (s) < ?JJI% (s).

Moreover, by comparing Definitions 2.19 and 2.14 (for 0 = 0) one deduces the
following lemma (cf. [10, Lemma 2.24] for details):

Lemma 2.20. An operator A which is Lip(y )-modulo-tame with modulo-tame con-
stant smﬁ, (s) is also Lip(y)-tame and smi (s) is a tame constant for A.

The class of Lip(y)-modulo-tame operators (Definition 2.19) is closed under
the operations coming up in the KAM reduction procedure, namely: sum and com-
position (Lemma 2.21); projections (Lemma 2.23); solution of the homological
equation (Lemma 7.5). Let us give the precise statement of the first property.

Lemma 2.21. (Sum and composition [10, Lemma 2.25]) Let A, B be Lip(y)-
modulo-tame operators with modulo-tame constants smi (s) and, respectively ,
9311}9 (s). Then A+ B is Lip(y)-modulo-tame with a modulo-tame constant smi\ +5()
satisfying

M, 5 (5) < D (5) + My (). (2.34)
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The composed operator Ao B is Lip(y)-modulo-tame with a modulo-tame constant
satisfying, for some C > 1,

M, 5 (5) < C (D ()M (51) + M (s1) M (5)). (2.35)

Assume in addition that (B(p)bA, (B(p)bB (see Definition 2.4) are Lip(y) -modulo-
tame with modulo-tame constants 9)? )P A (s) and, respectively, N )P B (s). Then

(0, ) (AB) is Lip(y)-modulo-tame wzth a modulo-tame constant 9)?
bounded for some C(b) = 1 by

b(AB)( )

COo) (M, oy @M (1) + M, 1 GOM ) + MM, 1 (1) + MM, 14 9)).
(2.36)

Iterating the tame estimates (2.35) and (2.36) for the composition of operators
we get that, for any n = 2,

M (5) < (200, (s1))" ™9 (), (2.37)
and
My o an () <4c<b>C)'H(zmti bA<s>[9ﬁn ]! (2.38)
I, DI ) [ s0)] 7).
As an application of (2.37)—(2.38) we obtain the following:

Lemma 2.22. (Exponential map) Let A and (8¢)bA be Lip(y)-modulo-tame oper-
ators and assume that QJTE‘ 2 [s1, 8] — [0, +00) is a modulo-tame constant satis-

fying
M (s1) < 1. (2.39)

Then the operators ®*! :=exp(£A), ®*! —1d, and (3,,)°(d*!' —1d) are Lip(y)-
modulo-tame with modulo-tame constants satisfying, for any sy < s < S,

Miyir_1q(8) S M (s),

ff
M, ot 1)) o My 1oy () + MM, 0y (1). (2:40)
Proof. In view of the identity ®*! —1Id = > a1 % and the assumption (2.39)
the claimed estimates follow by (2.37)—(2.38). O

Along the KAM reducibility scheme of Section 7.1 we need the following
estimates for the operator HﬁA := A—TIy A where I1y A is the smoothed operator,
defined in (2.15):
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Lemma 2.23. (Smoothing, [10, Lemma 2.27]) Suppose that (8(p)bA, b =0,
is Lip(y)-modulo-tame. Then the operator HﬁA (cf. Definition 2.4) is Lip(y)-
modulo-tame with a modulo-tame constant satisfying

My, 1) < NP, 1 (5), My, () < M, (s). 2.41)

We will also encounter linear operators of the form & +— (az, h) 1241 where
ai, ap are smooth functions. According to the next lemma, such operators are
modulo-tame regularizing. Recall that (D) denotes the Fourier multiplier with sym-

bol (&).

Lemma 2.24. Let a; (-; w), ax(+; w) be functions in C®(TS+ x Ty, C) and w € Q.
Consider the linear operator R : L)zc — L%, h — (ap, h)L)z( ajy. Then for any

A € NS+ andny, ny 2 0, the operator (D)™ 8$R(D)"2 is Lip(y)-tame with a tame
constant satisfying, for some o = o (ny, n2, A) > 0 and, for any s > s,

M ipymgp Ry () Ssonrng.r (MaXi=1201i lls+0) - (Maxi=1,2]1di lls9+)-

Proof. Foranynj,n, =20, € NS+, he L%, one has that, for some combinatorial
constants ¢, 1,»

(DY"ORR(DYh =Y caup (DY (05 ar] ({D)"[9)2az]. h)
MAAr=A

2
L%’

where we used that the operator (D) is self-adjoint. The lemma then follows by
2.5). O

2.4. Tame Estimates

In this section we record tame estimates for compositions of functions and
operators with the lift { of a torus embedding TS+ — & (cf. (1.25)) of the form

i(9) = (9,0,0) + 1(p) where 1(g) = (O(p), ¥(9), w(p)) is (27Z)"*-periodic,

endowed with the norm [[¢][s*7” := @527 4 ||y 15PY) 4 w7 The main
@ [
results are Lemmas 2.25 and 2.26, whose relevance is described in Remark 2.27.

Note that the norm | - || of the Sobolev space H* = H*(TS+ x T}), introduced
in (1.15), is equivalent to

s = Wl o ~s g2 + T2 ay (2.42)

and that by interpolation estimates (which are proved using Young’s inequality),
one has

lwilag g = Nwllggropz + Iwllzz gyre Sso 1Wls+o- (2.43)
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Given a Banach space X with norm || ||x and s € N, we denote by C*(TS+, X) the
Banach space of C*-smooth maps f : TS+ — X, equipped with the norm

Iflesx =D 95 £IX" 105 FIXT:= sup 0% f(@)lx. (2.44)
0<al<s gl

If X is a Banach space and H a Hilbert space, the following Sobolev embedding
results hold: for any s1 € N,

HPU(TS+ | X) < (TS, X), Vs > |S4],
HP1(TS+, H) < COV(TS+, H), Vs > [S4]/2. (2.45)

For the convenience of the reader, let us prove the two cases for s; = 0. To see that
HS(TS+, X) < CO(TS+, X) fors > IS4 |, consider for any givenu € H* (TS+, X)
its Fourier expansion u(¢) = ), s+ uge'?, uy € X. Integrating by parts, one
has

1 —il-g - S
= || ———— < s s +
el = | ey [ w0 dp| | S 0 Mg, ve ez
The claimed embedding then follows, since s > |S4|:

lullcgx < D Nuelx Ss lullmgx Y- (O S lullmgx.
(eZ8+ (eZ8+

To see that H* (TS+, H) <> CO(TS+, H) for s > IS+/2, use Plancherel’s identity
lullZs x ~s 2pezss luelly (€)% to conclude that
¢

ezt luellx £ (Cpegse NuellZ €)' 2 (X pegs (072 S ullmgx.

On the Banach spaces C* (TS+, X) the following interpolation inequalities hold:
for any integer 0 < k < s,

1—k k
I legx S 1 gy 11 - (2.46)

In the next lemma, we assume the tame estimates (2.47) for the function ¢ =
(@, y,w) +— a(y) in the x-variable only, and we deduce tame estimates for the
composed function a(i(¢)) in the variables (¢, x). Recall that &, E are defined
in (1.25) and V*(8) in (1.27). Let 2 be an open bounded subset of RS+, In more
detail, the following holds:

Lemma 2.25. (Tame estimates for functions) Let ¢ > 0 and assume that, for
any s 2 0, the map a : V°(8) N E1o) X & — H*(Ty) is C* with respect to
= (0, y, w), C! with respect to w, and satisfies forany t € V° (8)NEs1o, @ € NS+
with || £ 1, and | = 1, the tame estimates

l0ga (@ o)l Ss 1+ lwllys+o,
!

ld'0%a(: OF - Ellmg Sora 30 (Fillee, [ Ealle,) @47

j=1 n#j
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I
+ lwl e [ 15 1E, -
Jj=1
ARV Lip(y) ~~ o~ S,
Then for any torus embedding t with ||t|g %" < 8 and any mapst, 11,1 : T>+ —
Eiso+0, the following tame estimates hold for any s 2 0:

. . g
M la@ I Sy 1+ ey )

. Lip(y) Lip(y) Lip(y) Lip(y)
”da(t)m”SIP v SS |m|s—1‘£§‘g/+o' + ”l”s—l‘fsg/-‘,-o"mls()lg-g)-/ ’
o ~ -, Li Li
la2a® 1, 2P <5 TR Ellso+o (2.48)
Lip(y) Lip(y) Lip(y) Lip(y) Lip(y)
| A Y it o 1 [t | o A 1 [ tE A

(ii) If in addition a6, 0, 0; ) = 0, then a@® 15" <y 1122},

~

(i) If in addition a(0, 0, 0; w) = 0, dya(0, 0, 0; w) = 0, and 9,,a(0, 0, 0; w) =

0, then
o Lip(y) Lip(y) Lip(y)
”a(‘)“x SS ||L||S+S0+O'||L||S0+G ’
v Lip(y) Lip(y) ;~Lip(y) Lip(y) Lip(y)
||da(L)[?J||Y SS ”L”So-l—tf |m|s+so+o' + ||L||S+S0+O' |m|so+o' .

Proof. (i) Itsuffices to prove the estimates for |d2a()[T1, 21l and [|d2a (D) [T, D117
in (2.48) since the ones for a (i) and da(i) then follow by Taylor expansions. By
the hypothesis (2.47) with [ = 2, « = 0, we have, for any ¢ € TS+, s 20,

ld*a@ @) (@), @]las S @, R@E, + 1@ E, R, .,
@, @ lE, 2@ E, - (2.49)

Squaring the expressions on the left and right hand side of (2.49) and then integrat-
ing them with respect to ¢, one concludes, using (2.42), (2.43), and the Sobolev
embedding (2.45), that

ld?a@ B2y Ss [T lso 2 llso+o
HT lsobor T2 s+ + Helltor T -t 122 -4 (2.50)

In order to estimate ||d2a(Z)[71,'f2]||Hq§L)zc, we estimate ||d2a(f)[T1,T2]||C$L%. We
claim that

ld?a®E. Blley 2 So [Tillsotro [ ll+so+o
+ ”TI “S-‘rS()-‘rG’ “TQHS(H—G + ||[||s+s0+a ”Tl ||so+a |@||so+0,

51)

so that the estimate for ||d2a(Z)[?1 Jo1s stated in (2.48) follows by (2.50), (2.51),
and (2.42). The bound for ||d%a()[T1,72] ||LllD is obtained in the same fashion.
PROOF OF (2.51). By the Leibnitz rule, for any 8 € NS+, 0 < |8] < s,

0} (a2ae)i (). T2(0)])
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= > cpppdl (@al@)[0Ti(0). 1T (p)]. (2.52)
Bi+P2+p3=p

where cg, g, g, are combinatorial constants. Each term in the latter sum is estimated
individually. For 1 < 81| < s, we have

M (dal(@))[3T1(9). 8082 (9)]

= Yy, d"Pal@)[0 ), - 08 (9), 30T (9), 00T ()]

1=mZ|B1l
a1t tom=p1

for suitable combinatorial constants cq, ... o,,. Then, by (2.47) with [ = m + 2,
a = 0, we have the bound

185" (@>a @197, 87 B]llco2 (2.53)
S 2 (e llgmg)) e (U el ot DT ot 2l it

1=mZ|Bi |
ajtFom=p1

Arguing as in the proof of the formula (75) in [9], forany j =1, ..., m, we have

ol

|
1— L
1+ ||t||c|a ) Sp (L4 llellgg,) PTA+ el e g, ) 7"

and, using the interpolation estimate (2.46), we get

At Ml et )= (U Dell gt T i 221l (2.54)
@ 182 7;\ 1831 m eyl loj1
Ss |n||cu ot C"f,l‘ mnco 7 C“f)ﬂ ]‘[<1+||z||coE,, P (L el g, )
-1 1l B % m—y" *’ Py *j
Ss \ﬁllco Il c"” IFEHCOE 2 Ic"" A+ llelleop,)™ == PR+ Nl gppr g ) == T

By (245), (243), (1 + lltlicog, )" ™" < (1 + lellsgo)”" " < (1 +8)"~" and
Yislyl _ g 1 B2l _ 1Bl oo that

1B Al 1Bl 1Bl
ﬂ]‘\;Jﬂﬂ ‘t;z‘\ \ﬁ]\‘;;l\ﬂz\ % 1B21+183] 1811
@54 S Millggy, M1l algo . TElls, (4 Wllegs,) 7 (1 + ey, ¥
s (Billege, 2llege, (0 + lulleg ) ™ (|m|cm, P2y, (0 + lelcyz,))

1831

x (IRillege, P2lleg e, (1 + lellege,)) ™
and, by the iterated Young inequality with exponents |8]/|81l, |81/182l, |81/1B3],

we conclude that the expression on the line (2.54) is bounded by
Filleos, T lleor, O+ lellye,) + Ty 2, Bllese, (1 + ellcog, )

+ Rilleo, P2lleg £, (1 + lelleo,)

(2.45),(2.43)
Ss lells+so-+o I lso+o ”T2”S0+0
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+ |m ||s+so+a ”?2||so+o + ||71 ”xo+a ||"\2||s+s0+oo

Clearly, the term (2.53) satisfies the same type of bound as (2.54). The left hand
side in (2.52) with 81 = 0 is estimated in the same way and thus (2.51) is proved.
ProoF (ii)—(iii). Let ¢ — i(p) = (B(¢), y(p), w(p)) be a torus embedding.
If a(#,0,0) = 0, one has by the mean value theorem a(i) = fol da(ip)[1] dt
with ; :=(1 — 1)(0(p),0,0) + ti(p) and T:= (0, y(p), w(p)). If a(,0,0),
dya(0,0,0), d,a (9, 0,0) vanish, we write a () = fol(l — 0)d?a()[0, 7] dt.

Ttems (ii)—(iii) follow by (i), noting that [7|5*" = [1(0, (), w()|5PY) <
llells L) for anys =2 0. O

Given M € N, we define the constant
5y ;= max{sg, M + 1}. (2.55)

Lemma 2.26. (Tame estimates for smoothing operators) Assume that, for any M =
0, there is op; 2 0 so that the following holds:

o Assumption A. For any s > 0, the map
R+ (VM (8) N Eytoy) X Q2 — BH(Ty), HTMTI(T)))

is C® with respect to t, C' with respect to  and, for any t € Vo (8) N Estour
o € NS+ with |a| £ 1,

105 R ) W]l geerrsr Ssom N0 + Nwllpyson (W12,

and, for any | 2 1,

!

ld' 93 R )[DIEL, - Tl yoemsr St 1@y [ ] 11,
j=1

1Bl 22 (0150w H IElE,,, + Z (&1 Evmy [T IRllEs,))-

n#j
o Assumption B. For any —M — 1 < s < 0, the map
R :VM(S) x Q — B(H'(Ty), HTM+1(T))

is C°° with respect to x, C' with respect to  and, for any t € VM (8), a € NS+
with |a| < 1, and [ 2 1,

105 R (x; )Wl pys+mr+1 Ssom W]y,
I
192 R (e @R - Bl oot Seonnt 1@l [ 1E7 1, -
j=1
Then for any S > sy and ) € NS+, there is a constant op (L) > 0, so that for
any ((¢) = (¢, 0,0) + () with ||L||Iv‘013-(c)r//\)4()\) < § and any ny, ny € N satisfying
ni +ny < M + 1, the following holds:
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(i) The operator (D)™ 8:} (R o 0){D)"2 is Lip(y)-tame with a tame constant satis-
fying, forany sy <5 <8,

Lip(y)
Em(l))"];)(}(Rc,;)([)y'z (s) f,S,M,)L 1+ ”L”sfoM(A)'

(ii) The operator (D)’“('3&‘((173(?)[2])(D)”2 is Lip(y)-tame with a tame constant
satisfying, for any sy <5 <8,

Lip(y) Lip(y) Lip(y)
M pyap@ROmEDY2 ) S50 W5 oy ) F 150 00 g0 1)

(iii) If in addition R(6,0,0; w) = 0, then the operator (D)”laé(R o ){D)" is
Lip(y)-tame with a tame constant satisfying, for any sy < s < S,

Lip(y)
Em(p)ﬂl 9% (Rol)(D)"2 (8) Ss.mn ||L||S+UM %

Remark 2.27. Let us comment on Lemma 2.26 and its applications. Under the
above assumptions A and B for the operator valued map ¢t = (0, y, w) — R(r),
with R(r) acting on spaces of functions of the x-variable only, we obtained tame
estimates for the composed operator R(i(¢)), acting on spaces of functions in the
variables (¢, x). Assumption B regarding the action of R(xr) on negative Sobolev
spaces is used to prove that also (D)"'R({(¢))(D)"? with nj +ny < M + 1 is
a modulo-tame operator. Lemma 2.26 will be used in the proof of Lemma 6.4 to
show that the remainder RE‘},) in the expansion (6.23) is a tame operator satisfying

(6.31). The verification that Rf‘,l,) satisfies the assumptions A and B of Lemma 2.26
is proved by applying Lemmata 3.5 and 3.7.

Proof. Sinceitems (i) and (ii) can be proved in a similar way, we only prove (ii). For
any given ni, ny € Nwithny +ny < M + 1, set Q := (D)"'R(D)"2. Assumption
A implies that for any s = M + 1 and any ¢ € V¥ (8§) N Es44,,, the operator Q(r)
isin B(H$) and for any Ty, ..., %1 € Esto, With! = 1,and w € H?,

1QW Wl ay Ss.ar 1wy + Nwll ystou 11 gaa1,

1
la' (QWI@NEr, ..., Tlllay Ssmwa 1Dy [ | IF11E,,

=l (2.56)
1 1
Py (I § LT S T § A P ]
j=1 j=1 n#j

Furthermore, Assumption B implies that for any ¢ € V™ (§), the operator Q() is
in B(L2) and for any T, ..., T € Eqy, 1 2 1,

l

1QWlBaz Sm 1. 1d'QWIE ..., Tillpa2) Sm [TElE, - @57
j=1
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One computes by Leibniz’s rule that

RAQU@IED]) = Y. ot d T QU@ i), - .., 94 T(). 8 Tp)].
(S
M4 A1 =A

(2.58)

where ¢, .. 1., are combinatorial constants.
ESTIMATE OF ||8$; (dQ(f(go))fL\((p)])[{D]||LéH§. By (2.56), we have, fors =2 M + 1,

a1 QN85 i(p). .. .. 32T(9). 8, D @]l 11 (2.59)
k
Seoni 1@ 1z 105 Tl [T 10260 g,

n=1
k
~ A v
+ 1D (@) | 41 (llt(so)llEmM 195 T ey, [T 105" 1),

n=1

k
Aio o A
+ Y 10 T £y, ([ 105 U@ 1, 105" T N,

j=1 n#j
k
A o
+ 105 T £y, [ | ||a$"t(go>||E(,M).
n=1

Note that by the Sobolev embedding and (2.43), for any s = 0, 1 € NS+,

185 1@, S 1+ 105Ucor, S 1+ lellstsotiul- (2.60)

. o . Li
Hence (2.58)~(2.59) and || -[| .2 i < |l |ls imply that for any  with ||L||s01f’:;’ﬂ)4(k) <3
andany s =2 M + 1,
||3$(dQ(Z(<P))[T(<P)])[@(<P)]||L5)H; (2.61)
S 101 Tllsgron ) + 1D ar+1 (1510400 Pllsotonr ) + [Tllss0400))

for some constant o (A) > O.
ESTIMATE OF ||8$(dQ(Z(<p))[?(g0)])||H§.;B(L%). Foranys € N, B € NS+, |B] < s, we

need to estimate || 85“ (dQU(@)[e)]) Iz25(12)- As in (2.58) we have

I (d QM) ip)])
= Y Copnan dT QU (). L AT (p), 9, )] (2.62)
OSK=| B2

ay+.. a1 =p+xr

.....

where g, ... q;,, are combinatorial constants. By (2.57) and (2.60) one obtains that

I QDI (), - ., ki), 35 T 2312
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k

oo [T+ e 1) T s 1 (2.63)
j=1

for some 7y, > 0. Using the interpolation inequality (2.4), and arguing as in the
proof of the formula (75) in [9], we have, for any [ with ||¢|/,,, = 1 and any
j=1,...,k,
o e |
1— J
L lelloinp S (LA Hlellyp) ™ BFTCL A lellg4a4np) P
llelly, <1 el
S A Nellipanitna) P,

_ gl o1
[B+A| [B+A]
Il okt 11+nm S |m|nM ”T”|/3+)»|+,7M-

Then by (2.63) and since 21;21 letj| + lagy1] = |B + Al, it follows that

I QNI (), - ., 5kU(0), 35 T 2 3(r2)

X))l legril gyl

Son U lellpntom) T Dl ™ 105
il e
So (L W)Wy ) " TGS e
Ssoi MTlgattm + Nelligattna [l (2.64)

where for the latter inequality we used Young’s inequality with exponents
B2 IBAM Combining (2.62) and (2.64) we obtain

Yol el

||3$(dQ(Z)m)IIH$B(L§) S Mo st agnr + Nellstingany Ty - (2.65)

ESTIMATE OF ||3$ d[)[w] ”HEZL%' Using that

N 1/2
(20 1AOs03(0%) ™ So 141050

LeZ5+

one deduces from [9, Lemma 2.12] that for any { with [|¢]|25 43|49, < 1 and any
s Z 50,

19, QO 52 Ss 105 QAT 20 5,2 1Bl 2

+ 105 QDI ye+s0 g g2, 1Bl g0 .2 (2.66)

(2.65)
Ssomt 10115 1202501214740

A 1B lso (1 s-t50+ 131 +ma0 F 1ellsso121mae T 2503 e )-

Increasing the constant o/ (1) in (2.61) if needed, one infers from the estimates
(2.61), (2.66) that for any s = s); = max{sg, M + 1}, 8{,} (dQ()[1]) satisfies

195 @ QOB Seomr D15 Tllso 03,00
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FNW s 4y (MW st042) + Nellsonr 00 T lsot00r2)) - (2-67)

Furthermore, arguing similarly, one can show that for any w1, wy € Q, w1 # ws,
the operator BQAw(d Q(D)[1]) satisfies the estimate, for any s = sy,

10520 (d QWD _ 1B [P
~S, M\
|l — ws| = sot+om () (2.68)
—~ Lip(y) Lip(y) Lip(y)
+ ||w||sM(|m|s+gM(x) + ||‘||s+aM(A)|m|so+cw()»))'

It then follows from (2.67) and (2.68) that there exists a tame constant
sm%(dg(z)m) (s) for 82 (dQ(D[1]) satisfying the estimate stated in item (ii).
(iii) Since R(#,0,0) = 0, one has by the mean value theorem R({) =

fol dR(()[dt with i, = (1 —1)(0(p), 0, 0) + ti(p) and Wp) := (0, y(¢), w(p)).
Since [Ty < ||¢lls for any s = 0, item (iii) is thus a direct consequence of (ii). O

2.5. Egorov Type Theorems

In this section we investigate operators obtained by conjugating a pseudo-
differential operator of the form a(¢p, x)d)", m € Z, by the flow map of a transport
equation. The main result is an Egorov type theorem, stated in Proposition 2.31,
saying that such a conjugated operator is again a pseudo-differential operator, up
to a smoothing remainder; it is used in Section 6.3.

Let ® (79, 7, ¢) denote the flow of the transport equation

9: (10, 7, 9) = B(r, )P (10, 7. 9), P (70, 70, ¢) =1d, (2.69)
where B(t, ¢) is the transport operator, given by

B(f, (P) = HL(b(Tv §07 x)ax + bx(f’ ‘P’ x))v
B(g, x) (2.70)
l + TIBX ((pa x) '

IT; is the L%—orthogonal projector L% — Li(Tl), and B(p,x) = B(p, x; w)
is a real valued function, which is C* with respect to the variables (¢, x) and
Lipschitz continuous with respect to the parameter w € 2. For brevity we set
O(7,¢0):=D(0, 7,¢0) and (p):=P(0, 1, ¢). Note that CI>((,0)_1 = ®(1,0, ¢)
and that

b=b(r,p,x):=

(19, 7, 90) = P(7, ) 0 P(710, (p)_l. 2.71)

By standard hyperbolic estimates, equation (2.69) is well-posed. The flow
® (19, 7, @) has the following properties:

Lemma 2.28. (Transport flow) Let Ao € N, S > sg. For any . € N with . < X,
any ni,ny € Rwithny +ny = —A — 1, and any s 2 s, there exist constants
o (o, n1,n2) > 0and 8§ = 5(S, o, n1,n2) € (0, 1) so that the following holds: if
B(p, x)) satisfies

gL <s, 2.72)

so+o (ho,n1,n2) =
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then for anym € Sy, (D)™ 8;‘1” D (19, T, ) (D)"? is a Lip(y)-tame operator with a
tame constant satisfying

Lip(y)
M pymgp, d(xo,0.0) (D2 () Ssaommy L+ 1BIG Gy )

Vso <s < S, Vi, 7 el0,1]. (2.73)

In addition, ifn| +ny = —A—2, then (D)™ Bém (@ (70, T, ) —1d)(D)"2 is Lip(y)-
tame with a tame constant satisfying

Lip(y)

m([))ma&n (P (19,7,9)—Id)(D)"2 () SS.rp.m1ma ||ﬂ||s+g(,\0,,,l’n2),
Vso Ss < S, Vo, T €0, 1]. (2.74)

Furthermore, letsy < s1 < S,ni,ny € R, Ao e N, A S Agwithny+ny = —A—1,
m € Si. If B1 and By satisfy ||Bills,+om,.ny) < 8 for some o(ny,n2) > 0, and
6 € (0, 1) small enough, then

(D)™ 8 A1a® (0, T, 9)(D)" || 51
stl,)LO»nlJlZ ||A12,8||s1+tr(n1,n2)s V‘[O, T € [O, 1]7 (275)

where A2 := o — 1 and AP (10, T, @) := P (10, T, ¢; B2) — P (70, T, @; B1).

Proof. The proof of (2.73) is similar to the one of Propositions A.7, A.10 and
A.111n [10] and hence we omit it. (Essentially the only difference is that the vector
field (2.70) is of order 1, whereas the vector field considered in [10] is of order
%.) Using (2.73) we now prove (2.74). By (2.69), one has that ® (g, 7, ¢) — Id =
f; B(t, 9)® (10, t, ) dt. Then, for any A € N with A < Ap and any n,ny € R
with n| + np = —X — 2, one has, by Leibniz’ rule that,

(D)™ 8% (30, T, 9) — 1d)(D)"

= Y o /T((D)"laé,i,B(z,¢)<D>”2“2“)(<D>*"2*k2*‘aé,i@(ro,r,<p><D>"2)dt

A=A 70
T
s eny— o —1 ok
= Y cwzf ((D)Y" 8, B(z, 9)(D) 1 ==41) ((D) 2727 g2 o (x, 1, ) (D)"2) dr,
Ai+Ap=L 0
where c;, ;, are combinatorial constants and we used that np + Ay +1 = —1 —
1,A2

n1 — A1. Recalling the definition (2.70) of B, using Lemmata 2.10, 2.18, 2.30-(i),
and (2.73), one has that for any s = s,

_ —1—nj—2; Lip(y) Lip(y)
m<D>,,la$rInB<D)—]—nl—M (S) SS |<D)n|B<D) " l|0,3+)‘l,0 53‘,)»],)11 ”:8”34,0()”,"1)»
) Lip(y)
M ) 1m322 ety oy ) Ssramm LB Gy na)- (2.76)

Then (2.74) follows by (2.76), Lemma 2.16 and (2.72). The estimate (2.75) follows
by similar arguments. 0O

For what follows we need to study the solutions of the characteristic ODE
d:x = —b(7, ¢, x) associated with the transport operator defined in (2.70).
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Lemma 2.29. (Characteristic flow) The characteristic flow y ™7 (¢, x) defined by

0y (@, x) = =b(T, 0,y (@, X)), yOO(p,x) =1, (2.77)

is given by
YO (@ x) = x5+ 109, x) + BT, 9. x + 0B, X)), (2.78)
where y >y +/§(t, @, y) is the inverse of the diffeomorphism x — x + 18(p, x).

Proof. A direct computation proves that y%7(y) = y + Bz, ¢, y) and therefore
y©0x) = x + B(¢, x). By the composition rule of the flow ™7 = y07 o 5700
we deduce (2.78). O

Lemma 2.30. There are constants o and § > 0 so that the following holds: if

L
BN < 6, then

@ 161157 < 1BILEY for any s = so;
~ s+o y
.. Li Li
Qi) 7™ (0, x) — x [ <, 1B for any o, T € [0, 1] and s = so;
(i) for any |Bjllsi+0 < 6, j = 1,2 with s1 > so, Apb:=b(; B2) — b(:; B1)
and Apy™T =yt B) — y™T(; B1) can be estimated in terms of
ApB:=p — p1as

[A1bls Soi 181285140 1ALy sy Ssi 1A12B]ls)40-

Proof. Item (i) follows from the definition of / in (2.70) and Lemma 2.3. Item
(i1) can be deduced from Lemma 2.1 and (2.78) and item (iii) follows by similar
arguments. 0O

The main result of this section is the Egorov type theorem below, saying that
the operator obtained by conjugating a(¢, x)d;', m € Z, with the time one flow
D () = ©(0, 1, p) of the transport equation (2.69), remains a pseudo-differential
operator with a homogenous asymptotic expansion up to a regularizing remainder
satisfying the quantitative tame estimate (2.83).

Proposition 2.31. (Egorov) Let N, Lo € N and S > s be given and assume that
B, sw)anda(-, -; w) are in C""(TSJr x T) and Lipschitz continuous with respect
to w € 2. Then there exist constants oy (Arg), oy > 0, 8(S, N, Ag) € (0, 1), and
Co > 0 so that the following holds: if

Lip(y) Lip(y)
IBIERD) <8, Hlalli” < Co (2.79)

then for any m € 7, the conjugated operator
P(p):=2(@Po(@) (@) ", Po:=alp,x; w)d'",
is a pseudo-differential operator of order m with an expansion of the form

N

P@) =D pm-ip. x; @3 + Ry (p) (2.80)
i=0

with the following properties:
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1. The principal symbol py, of P is given by
P xi0) = (14 By (@, i 0)"a(@. : @) )=vi gy 28D

where y +— y + B(q), y; w) denotes the inverse of the diffeomorphism x +—
x + (g, x; w).

2. Foranys 2 spandi =1,..., N,
Li Li Li Li Li
1pm = alls™® ), 1pmeiIFPY Son 1BIEEY + llall 2 g11ER).
(2.82)

3. Foranyk € Sy, any ) € Nwithh < Ao, andanyny, ny € Nwithni+ny+ig <
N — 1 — m, the pseudo-differential operator (D)™ 8$;kRN (p)(D)" is Lip(y)-
tame with a tame constant satisfying

Lip(y) Lip(y) Lip(y)
My Ruvp)0y2 8) S8.N2o BTy ) F 1910 0) 181l s oy 1)
Vso < s < S. (2.83)

4. Let 51 > so and assume that ||Bjlls;+on0) = 8 and |laj|ls,+ox0o) = Co,
j=1,2. Then

”A12pm—i”51 gsl,N ||A12a||s1+aN + ||A12,8”s1+01\u i=0,...,N,

and for any k € S, any A < Ao, and any ny,ny € N withn| +ny + Ay <
N—-1-—m,

(D)™ 85 A1 RN (@) (D) | Bas1) St Nomyny 18128115110y 0) + 1 A12B L5 40 G

where Apa = a» — ay, A2 = Br — B1, and Ay Ry = Rﬁ) — 'RS) with
R%) denoting the remainder in (2.80), corresponding to aj, B; for j =1, 2.
Proof. The L%—orthogonal projector IT} : LX(T)) — Li(T 1) is a Fourier multi-
plierof order 0, IT; = Op(x1 (£)), where x, isaC® (R, R) cut-off function which
is equal to 1 on a neighborhood of S* and vanishes in a neighborhood of S U {0}.
We then decompose the operator B(t, ¢) = 1 (b(t, ¢, x)dx + by(7, ¢, X)) as
B(t, ¢) = Bi(7, ¢) + Boo (7, ¢) with
Bl (T’ (p) = b(T’ (p’ -x)ax + bx(fv (07 x)’
BOO(T’ (ﬂ) = Op(bOO(Tv @7 X, ‘i:)) € OPS_OO (284)

swhere for some o > 0, By, satisfies for any s, m = 0 and @ € N the estimate

Li Li
Boo 27 <o 1BIERD), (2.85)

—m,s,o0 ~JIM,S,0 s+o

The conjugated operator P(t, ¢) := P (7, ¢)Po(¢) P (7, <p)_1 solves the Heisen-
berg equation

¥ P(t,9) =[B(t,9), P(r,9)], P, ¢) =Polp) = alp, x; 0)d;". (2.86)
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Indeed, one has

&P, 0) = 3:P(7, 9)Polp) P (1, 0) ' + O(1, «p)%«p)az(ob(r, <p>”)
=3 2(1, ) Po(@)P (1. 0) ' — (1, 0)Po(9) (7, 9) & (1, p) D (7, )

CD Bz, 9)d(1, ) Po(p) b (7, )"
— ®(z, 9)Po(@) @ (7, 9) "' B(r, )@ (7, 9)P(1, )~
=[B(t, 9), P(z, 9)]. (2.87)

We look for an approximate solution of (2.86) of the form

N

Pn(z,9):= Z Pm—i(T, 0, )37 (2.88)
i=0

for suitable functions p,,_;(t, ¢, x) to be determined. By (2.84)
[B(z,¢), Pn(t, )] = [Bi(z, ¢), Pn(t, )] + [Boo (7, @), Pn (T, 9)], (2.89)

where [Boo (. ¢), Py (7, @)lisin O PS~,and [By (1. ¢), Py (z. )] = Yo [bo.+
by, pm_ia;"—f]. By Lemma 2.12, one has forany i =0, ..., N

[68y + bes pm—id? ] = (b(pm—i)x — (m — )by pm—i) 3"

N—i
+ Y gi(b, )3+ R (b, pui).
j=1
where the functions g; (b, py—i)(t,¢,x), j =0,..., N — i, and the remainders

RN (b, pm—i) can be estimated as follows: there exists oy :=on(m) > 0 so that
for any s = s0, (cf. Lemma 2.30-(i))

L Li Li
lg; B, P Suvos 1BISED | i 157

Li Li
FIBIERD | i | HPD) (2.90)

So+onN st+oy

and for any s = so and « € N (cf. Lemma 2.12-(ii))

L L Lip(
RN Gy P01 o S IBISE | i i)

BRI p—i 18T 2.91)
Adding up the expansions for [b8 + by, pm—i0 ] 0 <i < N, yields
N .
[Bi(1.0). Px(z.0)] = Y (b(pm—i)x — (m — )by pm—i) 3"
i=0

N N—i

N
+ Z Z gj(b, pm—i)a)rcn_l_J + ZRN(bv pm—i)
i=0 j=1 i=0
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N .
=Y (b(pm—i)x — (m = Dby )3
i=0

1

N k N
+ )Y b pma DO+ D RN (B, i)
k=1 j=1 i=0
= (b(pm)x - mbxpm)a;n

N
+ Z (b(pm—i)x —(m — )by pm—i + @)3;”4 + On,
i=1
(2.92)
where

N

i
Qu =) Ry, pu—i) € OPS" M1 gi= ) gi(b, pu-itj). VI<i<N.
i=0 j=1

(2.93)
Defining forany s 2 0and 1 <i < N,
Li .
Mo (s) o= max{[| pu—ells ™ k = 0,....0 — 1),
Li .

M(s) :=max{|| pu—illy*7, i = 0,..., N}, (2.94)

we deduce from (2.90) and (2.91) that forany s 2 sg,« € N,i =0, ..., N,

~ L Li Li

18157 <o Mai (s + 0w IBIREYL) +Mei(s0 + o) BN LY 05

Li Li Li
1OV IPT o S MG+ om) 1Bl + (o + om) BNy R

By (2.88),(2.89), and (2.92) the operator Py (z, ¢) solves the approximated Heisen-
berg equation

0: Py (7, <P) = [B(r, ), Pn (z, 90)] + OPSm—N—l’
if the functions p,,—; solve the transport equations

0¢ pm = b(pm)x — mbx pp,

. ~ . (2.96)
O Pm—i = b(pm—i)x — (m —Dbxpm—i +gi, Yi=1...,N

Note that, since g; only depends on py,—i+1, - .., Pm, We can solve (2.96) induc-
tively.
DETERMINATION OF p,,. We solve the first equation in (2.96),

O pm (T, 0, x) =Db(T, 0, x)0x pm (T, 0, x) —mby (T, 0, X) P (T, @, X),
pm(oa (pﬂ x) = a((pa x)'

By the method of characteristics we deduce that

P9, 7" (9. 3)) = exp( = m /O ba(t, 9,7 (g, %)) di )alp, x) (2:97)
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where %7 (¢, x) is given by (2.78). Differentiating the equation (2.77) with respect
to the initial datum x, we get

I (A y™ T (x) = —bu(T, 0, y T (X)AY T (x), Ay =1,

implying that
T
Iy (g, x) = eXp( —/ bi(t, o, V’O’t(w,X))dt) (2.98)

70

From (2.97) and (2.98) we infer that

P03 = (07", 0))" a0, 0)) eeyro- (2.99)

Evaluating the latter identity at T = 1 and using (2.78), we obtain (2.81).
INDUCTIVE DETERMINATION OF p;,—;. Fori = 1,..., N, we solve the inhomoge-
neous transport equation,

0t pm—i = bOxpm—i — (M — )by pm—i +8i» pm—i(0,¢,x) =0.
By the method of characteristics one has

T T
pm_ia,w,y):fo exp( = 0n =) [ b0y (0 )Tt 0y 3
t
(2.100)

The functions p,,—; (¢, y) in the expansion (2.80) are then given by p,,,—; (¢, ¥) :=
pm—i(l, @, y). Next we prove the estimates for p,,_; stated in (2.82). They follow
from the following

Lemma 2.32. There exist 01(\,N) > OIE,NA) > -0 > UI(\?) > 0 so that for any
ie{l,...,N}, tel0,1], ands = s,

Li Li Li Li
1pm(z, ) =l <o 181MP%) + 1a )P 7 181,

s+01(\?) s+01(\?) so+oy
Lip(y) Lip(y) Lip(y) (2.10D)
: . < .
1= S5 WBIE 0 + lall 0B, -

Proof of Lemma 2.32. We argue by induction. First we prove the claimed esti-
mate for p,, — a with p,, given by (2.99). Recall that %7 (¢, x) = x + ,é(t, ©,X)
and y"0p, y) = y + 1B(¢, y) (cf. 2.78)). Since a(p, y + 1(p, y)) —alp, y) =
for ax(p, y+1tB(p, y))B(p, y)dt, the claimed estimate for p,, then follows by Lem-
mata 2.1, 2.30 and assumption (2.79). Now assume that forany k € {1, ...,i — 1},
1 < i < N, the function p,,_k, given by (2.100), satisfies the estimates (2.101).
The ones for p,—; then follow by Lemmata 2.1, 2.3, 2.30, (2.95), (2.94),
and (2.79). O
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Continuing the proof of Proposition 2.31, note that in view of the definition
(2.88) of Py (7, @), it follows from (2.101), Lemma 2.10, (2.22) and (2.21) that for
anya € N, t € [0, 1],and s = s0,

1PN (T, @)% Spsva llally™ + ||ﬂ||“‘°% + lla ||“"(¥N>> ||ﬁ||L“’(V3N>
(2.102)
By (2.89), (2.92), and (2.96) we deduce that Py (z, ¢) solves
3 Pn (T, 9) = [B(x, 9), Pn(t, )] — QV (x,0), Pw(0,9) = aa;",(2 103)
QY (r, ) := QN (x, 9) + [Boo(T, 9), Py (z, )]l € OPS" N1,

where Qy is defined in (2.93).
Next we estimate the difference between Py (t) and P (7). First we establish
the following formula:

Lemma 2.33. The operator Ry (z, ¢) :=P(z, ¢) — Py (7, ) is given by

T
Ry (T, ) = /0 o, 7, 9)QV 0, 9@ (x, 1, 9) dn. (2.104)
Proof of Lemma 2.33. Writing Py (7, ¢) — P(z, ¢) as

Pr(t, @) — P(t,0) = Vn(t, 9) (1, 0) L,
(T, 9) :=Pn (1, 9) @ (T, 9) — (1, ) Po(9), (2.105)

one verifies by a straightforward calculation that Vy (t) solves
d:VN (T, 9) = BT, 9)Vn (1. 9) — Q) (1. 9)®(7.9), Vi (0,9) =0,

where Qg\}) is given in (2.103). By the variation of the constants formula,

Vn (@, ¢) = —fo oz, )b (1. )~ QD (0, @)D (1, ) iy

and, by (2.105) and (2.71), we deduce (2.104). O

Using formula (2.104) we now prove the estimate for Ry (z, ¢) stated in (2.83)
of Proposition 2.31. First we estimate QE\I,) = On(1,9)+[Bxo(t, ), Pn(T,9)] €
OPS"N=1 (¢f. (2.103)). The estimate of Qy, obtained from (2.95), (2.94),
(2.101), and the one of [Bso(7, @), Py (7, ¢)], obtained from (2.85), (2.102),
Lemma 2.11, imply that there exists a constant 8y > 0 so that for any s = s,
o eN,

1 Li L Li Li
198 . @)% 1o Sy 1BICRE + 1al 1815 (2.106)

Let k € Sy, Ao with A < A9, and ny,ny € N with ny +np + A0 + m =
N — 1. In view of the formula (2.104) of Ry(z, ¢), the claimed estimate of
(D)™ 8A R (T, p){D)™ follows from corresponding ones of

(D)™} ©(n, T, )32 QY (0, )3} D (z, 0, ) (D)™
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(t,n € [0, 1] and A 4+ A2 4+ A3 = A) which we write as
ny—A— 1
((Dymaj @, 7. o) (DY == (Dl Q0 (n, ) D))
(D= e n. ) (D)),
By Lemma 2.28, one obtains tame constants for the operators

(DY 3,1 ®(n, T, ) (D) ML (D) TR D (z, n, 9) (D)2,

k

and by the estimates (2.106), (2.21), and Lemmata 2.10, 2.18 a tame constant for
(DY 932 Q) (n, @) (D)2,

allowing us to deduce that the composition of these three operators satisfies the
bound (2.83) (using also Lemma 2.16 together with the assumption (2.79)). This
proves the bound (2.83) for Ry.

Item 4. of Proposition 2.31 can be shown by similar arguments. 0O

In the sequel we also need to study the operator obtained by conjugating w - 9,
with the time one flow ®(¢) = ®(0, 1, ¢) of the transport equation (2.69). A
straightforward calculation shows that

D(@)o(@-dy) 0 @(p) ' =w-dy + P(p) 0ow- 3y (D)™,

where, according to Definition 2.4-4, for any p-dependent family of linear operators
A(p), the operator w - 9, A(¢) is defined as

@ 0A@) = Y Oy, A@) = Y onldy,. A@)].

meS4 meS4

‘We now show that the operator @ (¢) ow- 9y, (P (@)~ 1) is a pseudo-differential oper-
ator of order one, admitting an expansion in decreasing symbols. More precisely,
the following holds:

Proposition 2.34. (Conjugation of - 9,) Let N, Ao € Nand S > so and assume
that B(-, -; ) is in C*°(TS+ x T1) and Lipschitz continuous with respect to w € Q.
Then there exist constants oy (rg), on > 0, 8(S, N, Ag) € (0, 1), and Coy > 0 so
that the following holds: if

Lip(y)
1Blsy oy gy = 0 (2.107)

then W (¢) :=®(p) ow - 8¢(<I>(<p)*1) is a pseudo-differential operator of order 1
with an expansion of the form

N

V()= pioi(e.x: )3, + Ry () (2.108)
i=0

with the following properties:
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1. Foranyi=0,...,Nands = so, [Ipi—iIs™" <o 18120,

2. Foranyk € Sy, any . € Nwithh < Ao, andanyny, ny € Nwithni+ny+ig <
N — 1 — m, the pseudo-differential operator (D)™ Bé‘kRN (p)(D)" is Lip(y)-
tame with a tame constant satisfying

Lip(y)
m(n)ma{ékRN(@(D)nz () S8.N.2o ”’3”S+<TN()»0)’ Vso=s=S.

3. Let so < 51 < S and assume that || B s, +ox (ho) <6, j=1,2 Then

IALpi—ills; Ssi.v 1A1R2Bls 40y, i =0,..., N,

and, forany A < Ao, ny,ny € Nwithny +ny +i0 SN —2, andk € Sy
(D)™ 85 A RN (@) (D) | Bes1) Ssi.Nomyny 1812851 10n o)

2 1 2 1
where A28 = B2 — B1, A2p1-i = Pg_)i - Pg_),», and ARy = RE\,) —RE\,)-

Here pgj_) ; and Rg\{) denote the coefficient p,,—; and the remainder Ry in the
expansion (2.108), corresponding to B for j = 1, 2.

Proof. Wehavethat W (¢) = W(1, ¢) where U (1, ¢) := P (7, ¢)ow-d,(P(z, <p)’1).
Arguing as in (2.87), one sees that the operator W (7, ¢) solves the inhomogeneous
Heisenberg equation

0 W(z, 9) = [B(z,9), ¥(1,9))] —w-3,(B(7,¢9)), ¥(0,¢)=0.

The latter equation can be solved in a similar way as (2.86) by looking for approx-
imate solutions of the form of a pseudo-differential operator of order 1, admitting
an expansion of the form (2.108) (cf. (2.88)). The proof then proceeds in the same
way as the one for Proposition 2.31 and hence is omitted. O

We finish this section by the following application of Proposition 2.31 to Fourier
multipliers.

Lemma 2.35. Let N, g € N, m € Z, and S > sy and assume that Q is a Lipschitz
family of Fourier multipliers with an expansion of the form

N
Q=) i@+ Oy, Qn(w)eBH, H NI s >0.
i=0

(2.109)

Then there existon (Ag), on > 0,and s = 8(S, N, o) € (0, 1) so that the following
holds: if

g
1B ) 6, (2.110)

so+on (Ao

then ®(9)Q®(¢)~! is an operator of the form Q + Qa () + Ry (@) with the
following properties:
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1. Qa(p) = ZIN=0 om—i (¢, x; @)~ where for any s 2 s,

Li Li .
letm i I5P7 <o v 181K i =0,...,N. 2.111)

stoy
2. Forany k € Sy, . € Nwith . < Ao, and ny,ny € Nwithn; +ny + Ay <
N —m—2, the operator (D)™ 8& R (D)"? is Lip(y)-tame with a tame constant
satisfying

Lip(y)
Em(D)”IBQkRN(D)W ($) S8.N.20 ||,3||S+JN(AO), Vso =5 =S. (2.112)
3. Let so < 51 < S and assume that ||Bj||s,+oy () = 8, j = 1,2. Then
Aol Ssiv 181285140y, 1 =0,..., N,

and, forany k € Sy, A < Lo, andny,ny € Nwithny+ny+ig S N—m—2,
(D)0}, A RN (@) (D) [1B(ts1y Ssr.Nomymy 181281510y (o)

2 1 2 1
where A2 = B2 — 1, Appay—i = a,(,,)_,- —afn)_l., and ARy = Rﬁv) —Rﬁv).
Here oz,(n]ii and RE\J,) denote the coefficient ay,—; and, respectively, remainder
R, corresponding to B; for j =1, 2.

Proof. Applying Proposition 2.31 to ®(¢)3”" " ®(¢)~! fori =0,..., N, we get
N ‘ v |
@)L n-i @) @) =3 en i@ + Qale) + RY ()
i=0 i—0

where Q¢ (@) = ZIN:O A—i (@, x; w)a;"—i with «,,_; satisfying (2.111) and the
remainder Rg\l,)(fp) satisfying (2.112). Next we write ®(¢)On®(p) ™' = Oy +
R (4) wh

~ (@) where

2 _ _
RY (@) = (®(9) —1d) Qn D ()~ + Qu(P(e) ™ — 1d).

We then argue as in the proof of the estimate of the remainder Ry (t, ¢) in Propo-

sition 2.31. Using Lemma 2.28 and the assumption that Qp is a Fourier multi-

plier in B(H*, HSTN+1=") we get that Rﬁ) (@) satisfies (2.112), and Ry (@) =

R%)((p) + Rﬁ) () satisfies (2.112) as well. Item 3. follows by similar arguments.
O

3. Integrable Features of KdV

In this section we discuss the canonical coordinates which are used to prove
the existence of quasi-periodic solutions of the perturbed KdV equation (1.6) close
to the finite gap manifold Msg_, cf. (1.10), via a Nash—Moser iterative scheme.
These coordinates were constructed in [20] specifically for this purpose. Their
main properties were described in broad terms in the Introduction (cf. (P 1)-(P6)).
We discuss their features in detail in Sections 3.2-3.3. In Section 3.4 we record
properties of the KdV-frequencies, which will be needed in particular to derive the
measure estimates of Section 8.2.
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3.1. Birkhoff Coordinates

According to [21], the KdV equation (1.1) on the torus admits global canonical
coordinates, called Birkhoff coordinates, so that equation (1.1) can be solved by
quadrature, cf. Theorem 3.1. We use them to describe the S -gap potentials. Unfor-
tunately they are not suited for implementing a Nash—Moser iteration scheme for
the search of quasi-periodic solutions of (1.6), since they do not seem to possess
an expansion in terms of pseudo-differential operators.

The Birkhoff coordinates zx, k # 0, take values in the sequence space h8 (cf.
(1.23)), which we endow with the standard Poisson bracket defined by {z,, zk} =
i2mn &g, —, forany n, k € Z \ {0}.

Theorem 3.1. (Birkhoff coordinates, [21]) There exists a real analytic diffeomor-

phism WKV . hg — H(g) (Ty) so that the following holds:

(1) for any s € Z>, \Ilkd“(hg) C Hy(Ty) and ykdv hy — Hi(Ty) is a real
analytic symplectic diffeomorphism.

(ii) Hkdvowkdv h(l) — Risareal analytic function of the actions Iy := 2,11—ka2—k,
k > 1. The KAV Hamiltonian, viewed as a function of the actions (I)k>1, is
denoted by H*V.

(iii) WX (0) = 0 and the differential dyW*?’ of Wk qt 0 is the inverse Fourier
transform F~ L.

By Theorem 3.1, the KdV equation, expressed in the Birkhoff coordinates
(Zn)ns0, reads

dzn = ik ((Lk=1)zn, Yn € Z\{0}, b9 ((T)k=1) i= £87, HE (I)k=1), Ym > 1,

and its solutions are given by z(t) := (2, (¢))n0 Where

1

an () = 20 (@exp(iy® (" =1)1). Y e Z\(0). [ = ——

7k (0)z_¢(0), Vk > 1.
Let us consider a finite set Sy C Ny = {1, 2, ...} and define
S:=S; U(=S;), St:=N;\S;, Sh:=StuU(-Si) cz\{0}).

In Birkhoff coordinates, a S —gap solution of the KdV equation, also referred to
as Sy —gap solution, is a solution of the form

(1) = exp(iok? (v, 0)1)2,(0), z,(0) #0, Yn €S, z,(t) =0, Vn € S*,
(3.1

where v := (I k(o))keg L € REB and, by a slight abuse of notation, we write
S
(1 Igest) = O™ (g1, 1= Uokes, €RZ. (32)

Such solutions are quasi-periodic in time with frequency vector (cf. (1.11))

W) = (" (,0)), 5, € R, (3.3)
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parametrized by v € Ri}') The map v — @ ??(v) is a local analytic diffeomor-
phism, see Remark 3.10.

When written in action-angle coordinates 0 = (6,),es, € TS+, 1 = (I)nes L €
Ri}, which are related to the complex Birkhoff coordinates z,, = z,(0, 1), n # 0
by

2an 0, 1) :=\2mnl, e VneSy, z,0,1)=0, VneS:, (3.4
the S -gap solution (3.1) reads
01) =00 — k), I(t)=v, z,(t)=0, VneSt.

Furthermore, we introduce the map Wg, : TS+ x RS+ — Mg . C Ng=0H;(TY),
which coordinatizes the manifold Ms, of S -gap potentials (cf. (1.10)),

Ws, (0, 1) :=V* " ((2,(0, D)nez\(0)) 3.5

where z,,(0, 1), n # 0, are given by (3.4).

3.2. Normal Form Coordinates for the KdV Equation

Theorem 3.2 below rephrases Theorem 1.1 in [20], in a form taylored to our
needs. A key property of the normal form coordinates is stated in Theorem 3.2-
(AE1), saying that they admit an expansion in terms of pseudo-differential opera-
tors. This property, together with the additional Corollaries 3.3 and 3.4 below, allow
to prove, in Section 3.3, that the linearized Hamiltonian vector field d,d | V,,’H,
admits an expansion in terms of classical pseudo-differential operators, up to
smoothing remainders which satisfy tame estimates. These key results are needed
for implementing our diagonalization procedure of the linearized operator carried
out in Sections 6-7.

We consider an open bounded set & C ]RS;E) so that (1.14) holds for some § > 0.
Recall that V*(8) C &, V(8) = V°(8), are defined in (1.27) and the spaces & and
E; are given by (1.25). The elements in & are denoted by r = (6, y, w) whereas the
ones in E; by T = (8,7, ). The space V(8) N & is endowed with the symplectic
form

W= (Zjes+dy,- /\d@j) W, (3.6)

where V| is the restriction to Lzl (Ty) of the symplectic form WL(Z) defined in (1.9).
The Poisson structure 7 corresponding to W, defined by the identity {F, G} =
W(XF, Xg) = (VF, JVG), is the unbounded operator

T Es— Es, (0,7, 1)~ (=7,0, 0,0), (3.7)

where (, ) is the inner product (1.26).
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Theorem 3.2. (Normal form KdV coordinates with pseudo-differential expansion,

[20]) Let S+ C N be finite, E an open bounded subset of RS:{) so that (1.14) holds
for some 8§ > 0. Then, for § > 0 sufficiently small, there exists a canonical C*
Sfamily of diffeomorphisms ¥, : V(§) — ¥,(V(§)) C L%(Tl), @,y,w) — q,
v € E, with the property that W, extends Vs, introduced in (3.5), namely

"IJU(Q’ )77 O) = \IIS+(9, v + )’), V(Q’ y’ O) € V((S)v VU € E? (38)

and is compatible with the scale of Sobolev spaces Hy(T1),s € N, in the sense
that lIJU(V(8) N 55) € Hj(Ty) and that W, : V() N & — H(Ty) is a
C®® —diffeomorphism onto its image, so that the following holds:

(AE1) (Asymptotic expansion of W,) For any integer M > 1, v € E, ¢t =
@, y, w) € V(8), ¥, (xr) admits an asymptotic expansion of the form

M
W0, y, w) =Ws, (0. v+y) +w+ Y _a¥ @ v) o w+ Ry v)
k=1
3.9)

where RA‘U,I(O, v,0;v) =0and, foranys € Nand 1 < k < M, the functions

V() x B — H'(Ty), (x,v) > a¥,(x; v),
V©B)NE) x B — HTMTUT)), 1, v) > Ry v),

I

are C*.

(AE2) (Asymptotic expansion ofdlll;'—) Foranyt € V'(8) (cf. definition (1.27)),
v € E, the transpose AWV, (;)—r of the differential AV, (x) : E1 — HO1 (T isa
bounded linear operator dW,, (;)—r : HOl (Ty) — Ei, and, for any q € HO1 (Ty)
and integer M > 1, dW, (x) " [q] admits an expansion of the form

M M
a7 = (0.0, g+ Y a¥ @ wa 7 + 1Y 07 w) A% e vig))
k=1 k=1
+R4Y @ iG] (3.10)
where, forany s > land 1 <k < M,
.
VI©6) x 8 = H(Ty), (1, v) = a®} (1;v),
VI(8) x & — B(H} (Ty), H (T))), (. v) > A% (1 ),
. T
WV'®) NE) x B — B(HS(TY), Esym+1)s (,v) = RYY @ v),

are C*°. Furthermore,

a®? (r1v) = —a¥ (1 v). (3.11)
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(AE3) (Normal form) For any v € B, the Hamiltonian H*V (- ; v) :== H* o
v, V) - R (cf. definition (1.27)) is in normal form up to order three,
meaning that

1
HY @, y, wiv) = oMV W) -y + E(de”(D; Vw, ),

1
3Oy + RO,y wiv) (312
where o*? (v) = (@k? (v, 0))yes,

A 0) = 0" 0. jhes,.  QANDivw =Y QI Ww,e T,

neSt
kd LY L i2 (3.13)
v - v vV, — N i rrnx’
Q. () 271nw" v,0), Vn eSS+, w %w e
ne
and R* : V1(8) x B — R is a C*® map satisfying
RMY@, y, wiv) = O( Uyl + wllm)? ), (3.14)

and has the property that, for any s > 1, its L>—gradient
V'O NE) x E = Ey, (1,v) = VRMY (11 ) = (Ve R (15 v), VR (15 1), Vi R¥ (1))
is a C* map as well. As a consequence

VRMY(9,0,0;v) =0, diVRFY(6,0,0;v) =0, 8,VR¥Y(,0,0;v)=0.
(3.15)

(Estl) Foranyv € 8,0 e NS+ 1 e V(8),1 <k <M,T1,....,T1 € Eg,s €N,

!
18%a” @ vllmy Soka L ld8%a% @ wEL . Tlley Sokia l_[ 1T 11 2o -
j=1
Similarly, foranyv € B, 0 € NS+, 1 e V) NE;, T, ..., T € Es, s €N,
195 Ry (65 s Soomtee lwllag.
I

a0 Ry 5 R - Bl o Seania D (616, [ Filleo)

Jj=1 i#]
1
+llwla [T Iz
j=1
(Est2) Foranyv € B, o € NS+ r e VI(§), 1 <k < M, T1.....T1 € Ey,

s>1,

l
v’ laa d¥T /. =
19%a%y " (e llmy Seka 1 1d'9%a%y @ WE . By Ssata [ ] IE1E
j=1

av’ .
195 ALY @ Wl iy Sskar 1.

l
T ~
Id' a5 ALY @ WL - B g sy Sskda | [T l1E-
j=1
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Similarly, foranyv € B, @ € N5+, r e V(&) N &, T1,....T1 € Es, § € HS,
s> 1,

T A~ -~ -~
1SRG @ WG Egr Ssbta 11 azs + 1wllezs 171 s
!
T ~ ~ —~
la' (B¢ RGY  WIGN)EL - Tl By Ssmata 1@ [ ]IS,
j=1

+ 11 2 Z (mE I1 mEl) + 10 g2 lwl s H IElE,-
j=1 i#]j
We now apply Theorem 3.2 to obtain in the two corollanes below novel results
concerning the extensions of d W, (;)T and dW, (x) to Sobolev spaces of negative
order. These results will be used to deduce Lemmata 3.5 and 3.7, which allow to
verify the assumptions A and B of Lemma 2.26 for the remainders, as explained in
Remark 2.27. The spaces &, E; for negative s are defined as in (1.25).

Corollary 3.3. (Extension of W, (¢) " and its asymptotic expansion) Let M > 1.
There exists oy > 0 so that for any ¢ € V°M (8) and v € &, the operator dW, (x) "
extends to a bounded linear operator d\W¥,, (;c)T : Hofo1 (Ty) - E_p—1 and for

anyq € H_M_l (Ty), dW, (x) "[q] admits an expansion of the form

dw,® "1 = (0.0.11.7 + ML 3 v a9 i 7)
k=1

+RG @ v; d¥ T)[G] (3.16)
with the following properties:
(1) For any s = 0, the maps

VoM (§) x B — H*(Ty), (1, v) > a(@v;d¥"), 1<k<M,

are C*. They satisfy a® (x; v; av’) = ad‘y (r; v) (¢f. Theorem 3.2-(AE2))

and for any o € NS+ T, .... 5 € Es,,, and (r,v) € VM (8) x &,
195a (55 v; ¥ D iy Ssnta 1,

I
(.17)
193’ a®y (s v; W DIEL . Ty Ssmta H I%lle,, -
(i) Forany —1 < s < M + 1, the map
RG 3 5d¥T) VO (S) x E — B(Hy " (T1), Em1-5)
is C*° and satisfies for any « € NS+, 71, ...,7 € Eoy,, § € H,*(Ty), and

(r,v) € VM (§) x E,

195 RS @5 v; ¥ DG Epr1-y SMa 1Ty
1

182d' R (& vi d¥ DEr . TG ey, Sotte 1T [] I 11E,, -
Jj=1
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(3.18)
(iii) For any s = 1, the map
R (55 d¥ ) 0 (VM) N Estoy) X B — BHG(T1), Exrmi1)

is C* and satisfies for any o € NS+ T, ..., T € Esioy q € Hy(Ty), and
(xr,v) € (VOM(S) mgs—&-o;u) X B,

198RS 5 v3 A DG Eyrsrye Ssbtio 1G5 + 1504 1] 11

I
8% d" RG;" (x: vs dU DE, - TG Epryrss Ssmita 1@ H Izl £,
=1

I 1
1 (X B3y [Ty + el vy, [T IS, )-
j=1 i#] =1
(3.19)

Proof. By Theorem 3.2, for any (g, v) € V(8) x E, the differential d\W,, (x) : Eg —
L%(Tl) is bounded and, for I any M = 1, differentiating (3.9), d W, (r)[z] admits the
expansion for any T = (9 y, w) € Eg of the form

dv, ()[z] = w + Za (T v)8 w +R§JI)(;; [zl (3.20)

k=1

Ry (@ v)[E = Z(a w)da®, (r; v)[E + AR (55 v)[E] + do, Vs, 0, v + )0, 71,
k=1

For o)y = M, the map RE&I) S VM) x E — B(Eg, HM+1(T))) is C*® and
satisfies, by Theorem 3.2-(Estl), for any o € NS+ 1 >1,

1
18R Yy @ WE 1 vt 1B

I
_ (3.21)
185a" R (; WIEL - B e Swate By | | 111,

j=1

Now consider the transpose operator d\W,, ®": L(z)(']l‘ 1) = Eo. By (3.20), for any
g€ L%(Tl), one has

M
W, © (@1 = (0.0, LG + ML Y (=D o7 (@%@ » 7)) + RY @ v 13,
k=1

(3.22)

Since each function afk (r;v) is C* and R;}I) v . HM-4T) -
Ey is bounded, the right hand side of (3.22) defines a linear operator in
B(HO*M*1 (Ty), E_p—1), which we also denote by d W, (;)T. By (2.12), the expan-
sion (3.22) yields one of the form (3.16) where by (3.21) and Theorem 3.2-(Est1),
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the rema}‘i/lndler RG (x5 v dw ) satisfies for any o € NS+, T, ..., 5 € E,,,, and
q e Hy " (Ty)
195 R (&5 vs AW DG By Sata 11 gy-m-1,4

} (3.23)
la¢d R (x: v W DR . TGN 2y Sata 171 y-v- 11‘[ IEllE,,, -

j=1
The restriction of the operator dW,(r) " : HO*M*I(TI‘I) — E_py_1 to HO1 (Ty)
coincides with (3.10) and, by the uniqueness of an expansion of this form,
a®l (@ v; d\yT)—ad“’ (; v, k=1,..., M,
RS (v v: dw )[g] = Z(ax “w) AT @ wIgl +RYY @@l V7 e B (Ty).
k=1
The claimed estimates (3.17) and (3.19) then follow by Theorem 3.2-(Est2). In
particular we have, for any « € NS+ T,....T € Esy.q € H(} (Ty),
198 RG (x5 v AW DG £y S (1T

(3.24)
102" Ry (e vi AW DELL - TG Eyrse St 1113 H IEllE,, -

j=1
Finally the estimates (3.18) follow by interpolation between (3.23) and (3.24). O

Corollary 3.4. (Extension of d; W, (¢) and its asymptotic expansion) Let M = 1.
There exists oy > 0 so that for any ¢ € VM (§) and v € E, the operator d | WV, ()
extends to a bounded linear operator, d; ¥, (¢) : HIM_Z(']I‘l) — HO_M_Z(Tl),

and for any W € HIM_z(Tl), d WV, (x)[w] admits an expansion

dv,wl=w+ Zaem(;, V; dl\ll)a w +Rex'(p, v; d, W)[w] (3.25)
k=1

with the following properties:
(i) For any s = 0, the maps
VoM ($) x B — HY(T1), (r,v) = a®l(@v;di¥), 1<k<M,

are C*°. They satisfy a® (v; v; d L W) = a_l(;, v) (cf. Theorem 3.2-(AE1)) and
forany a € NS+ TI,....T € Esy,, and (x,v) € VM (§) x &,

9y asy (r: vid L W)|lgs Ssoma 1o

- (3.26)
10¢d'a®y (¢ vi dLW)Er - By Somte | IR, -

j=1
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(ii) Forany 0 < s < M + 2, the map
R (- d W) 1 VM (8) x B — B(H*(Ty), HMH175(T)))

is C™ and satisfies, for any o € NS+ %1, ...,7 € Egy, w € H*(Ty), and
(xr,v) € VM (§) x &,

108 R (v v d L WD g1 St 1] g
!
2 d R (x5 vs dL )R - TN oo Somto 1D [ IR, -
j=1

(3.27)
(iii) For any s = 0, the map
R, di W) 1 (VM () N Etoy) X B — B(H(Ty), HMHH(T)))

is C* and satisfies for any @ € NS+ Ty, ..., 7 € Egioy, w € H(Ty), and
@ v) € (V™M) NEtoy) X B,

105 RS (&5 v; du WD yoies S 1Dl + ¥y, 1D L2,
l
1oy d" (RS & v dy WID)EL - Bl gyres Ssomre 1D [ ]I 15,
j=1

/ 1
+ ||w||L_g(Z & 1E oy [ ] 1Bl B0y + 18l £y, [T 185150y, )-
j=1 i#] j=1

(3.28)

Proof. By Theorem 3.2-(AE2), for any (r,v) € V() x g, the operator
di W, " : HJ(T) — H|(T)) is bounded and for any M > 1 and ¢ € H}(T)),
d, W, (r) "[7 ] admits the expansion of the form

M
~ ~ T ke~ ~
div,@ [@1=T.G+ 1LY ald @ g+ R @ wIigl.

k=l (3.29)

M
Ry @ wIZ =T @7 w) A% @ wIgl + Ry @ wig).
k=1

For oy = M + 1, the map RY : VoW (8) x & — B(H/ (Ty), HY+2(Ty)) is €
and by Theorem 3.2-(Est2), satisfies for any & € N+ and 7y, ..., % € Eq),

2 A -~
10 RS (5 WG 2 Swta 1301

! (3.30)
||83’d’72§5,)(x; WL - TG e Sue 1G5 H %11 £, -

Jj=1
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Now consider the transpose operator (dL\IJV (;)T)T : HII(’IFl) — HO_I(Tl). It
defines an extension of d | W, (¢) to HII (T'1), which we denote again by d | W, (¢).
By (3.29), for any w € HII(’]I‘l), one has

M
AL, @B =D+ Y (Do (@ly @ vd) + R (v @] (3.31)
k=1

Since each function a? (;, v) is C*° and the operator R(z) )" H M=2 (T)) —

H0 (Ty) is bounded, the right hand side of (3.31) defines a linear operator in
B(HO_M_Z(Tl), E_p—2), which we also denote by dW,,(x). By (2.12), the expan-
sion (3.31) yields one of the form (3.25) where by (3.30) and Theorem 3.2-(Est2),
the remainder R}’ (x; v; dWT) satisfies for any o € NS+, 7, ....% € Eg, . and
W e HyM=2(T))

108 R (v vi dL WD ot St 1B -2,

} (3 32)

08 d' R (x: vi dL W)L - BB ot St 1B yui- z]‘[ 51,
j=1

The restriction of the expansion (3.31) to L? 7 (Ty) coincides with the one of
d) W, (x)[w], obtained by differentiating (3.9) (see (3.20)). It then follows from
the uniqueness of an expansion of this form that

a“l e vdi W) =a¥ @v), k=1,....M,
M
R4 (v di W] = Y@ w)d 1 a¥y (6 D]+ d1 Ry (s v)[@], VD € L] (T)).
k=1

The claimed estimates (3.26) and (3.28) thus follow by Theorem 3.2-(Estl). In
particular, for any & € N+, 31,.... 7] € Esy,and W € Li('ﬂ‘l),

18y R (; v: dL W)@ gy Swte 192,

”aaleext( ved W [" I ( 33)
vd Ry (e vidiWEn, - mlw]] i Mla”w”L?l_[”A]”EqM

j=1

The claimed estimates (3.27) are then obtained by interpolating between (3.32) and
(3.33). O

3.3. Expansions of Linearized Hamiltonian Vector Fields

In this section, we apply Theorem 3.2 and Corollaries 3.3-3.4, to obtain
asymptotic expansions of the linearized Hamiltonian vector fields d.d | V,,’/P and
8,d |V, H*¥ . These expansions are key for implementing the KAM reduction
procedure of Sections 67 to obtain an approximate right inverse of - 9y — d X, .
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For any Hamiltonian of the form P(u) = le f(x, u(x), uy(x)) dx with a C*-
smooth density
[ TixRxRe= R, (x,,8) > f(x, %, ), (3.34)
define
P:=PoVW,, Pv):=PW ), r=(y w), (3.35)

where W), is the coordinate transformation of Theorem 3.2. As a first result, we
provide an expansion of the linearized Hamiltonian vector field d,d | V,,P.

Lemma 3.5. (Expansion of d,d | V,,P) Let P(u) = le f(x,u,uy)dx with f €
C®(T; x R x R). Forany M € N there is opy > M + 1 so that for any r € VM ()
and v € &, the operator d,d) Vy,'P(x; v) admits an expansion of the form

M43
Oxd VP VI =TI ) a3k v 9:dL Vo P) 874 []
k=0
+Rum (¥ v; 8xd1L Vi P)[-] (3.36)

with the following properties:

1. For any s 2 0, the maps

VM) N Estoy) x E— H(T1), (@ v) > a3 (¥ v; 0xd 1 Vo P),
0<k<M+3,

are C*°, and satisfy for any a € N3+, T1,..., 51 € Egiq,,, and (r,v) €
(VUM é)n 5S‘+O’M) x &,

1y a3k (s v; 9xd L Vi Pl Ssoma 1+ 1wl ysvon s (3.37)
!

198" a3 (x: v; 9:d Vi PR - Billmy Somta Y (8ilE.,, [ ] Flle,)
j=1 n#j

1
+lwllyerou [ ] IF11E,,, -
j=1
2. Forany 0 < s < M + 1, the map
VoM (8) x & — B(H (T, H'T'(T),  (x.v) = Rar(x; v; dxd L Vi P),

is C* and satisfies for any @ € N5+, 71,..., 7 € Egy,, (x,v) € VM (8) x E,
and w € H*(Ty),

||33RM(I; v 8xdiva)[a] HH)?'HI*S 5S,M,ot ”ﬂ)\”H;S s (338)
!

193 d" (Rt @ v; 3xd i Vu PY@N L - Tilll i Somtta 101 [ IR g, -
j=1
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3. Forany s 2 0, the map
VM (8) N Esroy) x B — BH(T1), HPMHU(T)), (2, v) > Ra(x; v 0:d 1 Vo P),

is C* and satisfies for any « € NS+, F1,....T1 € Esioy (1, v) € VM ()N
Estoy) X B, and W € HY (Ty),

185 R pg (x: vs ade_Vw'P)[@]HH;+M+1 SoMoa H@HH; + ||w||H;+0M Hﬁ”L%a
l%d! (R (x; v; dxdy Vi P)D)[ELL - - @]\IH;+M+1 SsM. e 101 s 1_[11-21 %11 £,

@12 (1wl s+on Ty 18120y, + Xmy €11 By, iz [ElES,, ). (3.39)

Remark 3.6. The coefficientas in (3.36) can be computed as a3 (x; v; 9,d1 V' P) =
_(aé f)(xv u, ux) |M=‘l’v(F)'

Proof. Differentiating (3.35) we have that
VP v) = (dW, @) [VP(¥,®)]. (3.40)
where by (3.34),
VP(u) =y [ @ £) 6, u, ux) — (g, £)(x, u, iy)) | (3.41)

and Hé is the L2-orthog0nal projector of L%(T;) onto L%(Tl). By (3.40), the
w—component V,,P(x; v) of VP(r; v) equals (d V¥, (;))T[VP(\IIV (;))]. Differ-
entiating it with respect to w in direction w then yields

ALV, P WD) = (dW, @) [dVP W, @)[d v, @[]
+H(dL(dL W, @) TR [VP W, )] (3.42)

Analysis of the first term on the right hand side of (3.42): Evaluating the differential
dV P(u) of (3.41)atu = ¥, (), one gets

d(VP) (W, @)[A] = My (b2 v)agh + b1 (x: v)dch + bo(x: v)h),
ba(g v) = — 07, £ (x, ) U=, (1)’

bo(x; v) = (03 /) uz) = (O30, N 4)) )]y -

by(x; v) :=(b2(x; V))x, (3.43)

By Lemma 2.3 and Theorem 3.2 one infers that for any s = 0, the maps
V() NEua) x B~ HY, @) bimv), =012,

are C* and satisfy for any o € NS+ Ty, ..., € Es43, and (¢, v) € (V3(6) N
6S+3) X Es

109 (&5 W)l Ssa 1+ Wl s, (3.44)
192 d"bi (s WIEL - By Ssta 2 1Tl E s [livej 181 + lwllgoes [Ty 1115 -
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By Corollary 3.3 (expansion of d v)"), Corollary 3.4 (expansion of d; W¥,),
(3.44) (estimates of b;), (3.43) (formula for d(VP)(¥,(r))), and Lemma 2.12
(composition), one obtains the expansion

0x (d LWy (1) T [dVP (W, (@) [dL ¥, @[]
M+3
=T Y af? (@i + Ry, (3.45)
k=0

where aél)(;; v) = by(x; v), the functions agl_)k(zc; v),k=0,..., M+ 3, and the
remainder Rj(y; v) satisfy the claimed properties 1-3 of the lemma, in particular
(3.37)—(3.39).

Analysis of the second term on the right hand side of (3.42): Since dW, (¢) is
symplectic, dW, (;)T =77 lay, (;c)’1 dx where J is the Poisson operator defined
in (3.7), implying that for any W € Hj_ (T),

di(dw,® ")w] = -7 'd¥, @)~ (dLdWw, @) [D])dW, (1) 8

= —dw, ("9, ' d(d v, @D])[Tdw,m " -]
By this identity we get
3y (dL(dL W, (@) T[1)[VP (W, ()] (3.46)
= —3:d W, "3, 'd(dL W @[ ])[TdWu @ VP, @)].
Arguing as for the first term on the right hand side of (3.42) (cf. (3.45)) one gets
an expansion of the form

M+3
0 (AL (LW ) TN [VP )] = T Y a1 )8 + Ra(xi v),
k=3

(3.47)

where the functions agz_)k (r;v), k = 3,..., M + 3, and the remainder R,(g; v)
satisfy the claimed properties 1-3 of the lemma, in particular (3.37)—(3.39).
Conclusion: By (3.42) and the above analysis of the expansions (3.45) and (3.47),
the lemma and Remark 3.6 follow. 0O

As a second result of this section we derive an expansion for the linearized
Hamiltonian vector field dcd | Vy, H*Y where H*V(x; v) = HFV(W, (1)) (cf.
Theorem 3.2-(AE3)). We recall that the family of Fourier multipliers Qkdv(p; vy,
v € B, is defined in (3.13).

Lemma 3.7. (Expansion of d.d | Vo HYY For any M € N thereisoy > M + 1
so that, for any (¢, v) € V" (§) x &, the operator dvd | Vo H* (13 v) admits an
expansion of the form
3xd 1 Vi HM (1 v)[] = 9,25 (D; v)[] + 9:d 1 Vi R* (15 w1,
M+1
Oedy Vi RM (e v)[ = T Y~ arx(x v; 0:d1 Vi R¥) 01751 (3.48)
k=0

+ R (15 v; 8xdy Vi REV)[],



Large KAM Tori for Quasi-linear Perturbations of KdV 1447

with the following properties:

1. For any s 2 0, the maps

(VoM (8) N Esoy) X B = H(T1), (1, v) > a1-x(5; v; dxd 1 Vi RFY),
0<k<M+1,

are C* and satisfy for any « € NS+ T1,.... 7 € Esioy, and (r,v) €
VM) NEsqoy) X B,

8§ a1k (e: v: Bxd L Vo R¥ ) s Sk 151+ 1wl ysvony
X

a8 a1k (x: v; dxd L Vi RE R Bl gy Skt et (1 By, Tty Bl )

A+ 1wl srop) T2y 1B 1E,,, - (349)
2. Forany 0 <s < M + 1, the map
R (5 5 dxd | Vi RFYY 1 VoM (8) x & — B(H[*(Ty), HY1=5(T)))

is C* and satisfies for any « € NS+, T1,..., 7 € Eqy,, (1, 1) € VM (8) x E,
and w € H*(Ty),

195 Ryt (55 v3 3:d L VRE @11 e s Soma (I + Twll o) @]y, (3.50)
1
" 08 Rops (x5 v; 0 L VR )N@IE, - Bl i Ss o 101 [ IS, -
j=1

(3.51)

3. Forany s = 0, the map

Ryt (55 0xd | Vo RFIY) - (VM (8) N E 1) x B — B(HS (Ty), H™M (1)),

is C*° and satisfies for any « € N+, T1, ..., 71 € Estoyr (V) € (Estoy N
VoM (8)) x B, and B € H: (Ty),

195 Rope (55 v; Bd L VR[] 1
Ssma (VI Twll ) 1@ 22 + Al Tl gow) 1Bl (3.52)

1
a9 Ry (5 v; 9xd L VR DIEL - Filll oot Soomta 1Bl [ ] 1118,
j=1
!

1
1@l 2 3 (Il Erray [T 1By, ) + 1@l 2wl yrso [T, -
j=1 n#j j=1
(3.53)
Proof. Differentiating H*?" (x; v) = H* (W, (1)), we get

Vi M (15 v) = (dL W, () T[VH*Y (0, (1) ] (3.54)
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where by (1.2),
VHM () = g Gu® — uyy) (3.55)

and where I"I(J)- is the Lz-orthogonal projector onto L%(Tl). Differentiating (3.54)
with respect to w in direction W we get

dy Vi HA Y () [@0] = (dLW, (1) T [dVE (W, () [d LW, (0 [D]]]
+ (AL v, @) T [0])[VEM (W, )] (3.56)

On the other hand, by (3.12)
dy Vi H (13 v) = QK" (D; v) + dL VW RM (1 v)
and by (3.15) d| V,,R¥ (0, 0, 0; v) = 0, implying that

d Vy,H 6,0, 0: v) = QY (D; v),

(3.57)
dVyRMY (15 v) = dy Vi H (0, y, w; v) — d 1V, HEY 6,0, 0; v).

In order to obtain the expansion (3.48) it thus suffices to expand dV,
H*v (@, y, w; v))[W] and then subtract from it the expansion of d V,,H*"
0,0, 0; v))[w]. We analyze separately the two terms in (3.56).

Analysis of the first term on the right hand side of (3.56): Evaluating the differential
dV H* (i) at u = W, (1), one gets

d(VH*) (W, (0)[h] = T (= 82k + bo(x; v)R),  bo(x; v) :=6W, (). (3.58)

By Theorem 3.2-(AE1) and the estimates (Estl), the function by (r; v) satisfies, for
any s = 0,

10560 V)llay Ssa 14wl s, (3.59)

1 1
193 d"boe; WL, - Eilllmg Sota ) T lleg [ [IElE + lwl e [T IE 18-

j=1 i#j j=1

By Corollary 3.3 (expansion of (d L)), Corollary 3.4 (expansion of d; W),
(3.59) (estimates of by), (3.58) (formula for d(VH*¥V)(W,(r))), and Lemma 2.12
(composition), one obtains the expansion

3 (d LW, () T [aVHMY (0, @) [dL W, (0[1]]

M+1
T _
=T (-8 — @ @v) +a?y @)+ > af’, @l ™) + R v)
k=0
31D M+1
=0 (-9 + ) al @l ™) + R ), (3.60)
k=0

where the functions afl_)k(;; v),k = 0,..., M + 1 and the remainder R;(g; v)
satisfy the properties 1-3 stated in Lemma 3.5, in particular (3.37)—(3.39).
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Analysis of the second term on the right hand side of (3.56): By (3.46) one has

A (dL(dLw, @) T)[VH (W, )] = —8:dW, (1) "3y d(dL W, (0)[])
[Tdw, @) " VH" (¥, 1))

Arguing as for the first term on the right hand side of (3.56) one obtains an expansion
of the form

M+1
3 (dL(dL W, () L) [VHM (W, ()] = T Z a®, @)l 4 Ry v),

(3.61)

where a; )(;, v) = 0 (cf. (3.16)) and where the functions a k(;; v), k =
1,..., M + 1 and the remainder R;(x; v) satisfy the properties 1- 3 of Lemma 3.5,
in particular (3.37)-(3.39).

Conclusion: Combining (3.56), (3.57), (3.60), and (3.61) one obtains the claimed
expansion (3.48) with

ar—x (@ v; 05dy Vi R¥) :=a' (5 v) —alV,0,0,0;v) + a5 v) — a6, 0,0; v)
R (x; v; 3:ed i VRYY) := Ry (15 v) — R1(6, 0,0; v) + Ra(x; v) — R2(6, 0, 0; v).

Since a (;, v), Ri(x;v), and a (;, V), Ro(x;v) satisfy properties 1-3 of
Lemma 3 5 in particular (3.37)—(3. 39) the claimed estimates (3.49)—(3.53) then
follow by the mean value theorem. O

3.4. Frequencies of KdV

In this section we record properties of the KdV frequencies wkd”, used in

particular for the measure estimates in Section 8.2, and discuss an expansion of
9, kv (D: v) (cf. (3.13)) needed in Section 6.
Recall that the family of operators QY (D; v), introduced in (3.13), is defined

forve E C R>o Actually, it is defined on all of R>0 (cf. (3.2)) and according to
[20, Lemma 4.1], 9, Qk4V (D; I) can be written as

9, QX V(D 1) = =33 + Q" (D; I, (3.62)

where Q’idl”(D; I) is a family of Fourier multiplier operators of order —1 with an
expansion in homogeneous components up to any order.

Lemma 3.8. Forany M € Nand I € R>0’ Qk_dl”(D; I) admits an expansion of
the form

ok (D; 1) = QMY(D; 1) + Ry (D; 1; Q*),

M
QEV@E D =) a1 Q) xo®) 218) 7, (3.63)

k=1
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where the functions a_i (I ; Q’idl”) are real analytic and bounded on compact subsets

of RS:O and vanish identially for k even, and where Ry (D; I; Qkfll“) is a Fourier
multiplier operator with multipliers

Ry (—n; I; QM) = —Ryg(n; I; QXY), Vn e ST,

(3.64)

R
. 7. Okdvy _ M
Raa(n; 1 044) = 5 Mo,

where the functions [ +— R“Ai;’ (I) are real analytic and satisfy, for any j € Sy,
B eN,

sup [Ryf (DI < Cy,  sup |3}5j73ﬁ’4”(1)| = Cu.p. (3.65)

neSt neSt
uniformly on compact subsets of RS;{).
Proof. The result follows from [20, Lemma C.7]. O

Lemma 3.9. (Non-degeneracy of KdV frequencies, [21, Proposition 15.5]) For any
finite subset Sy C N the following holds on ]REB:
(1) The map I — det((81k a)ﬁd”(l, 0))k,neg+) is real analytic and does not vanish
identically.
(ii) For any £ € Z5+and j, k € S* with (¢, j, k) # (0, j, j), the following func-
tions are real analytic and do not vanish identically:

Dtk + M £ 0, D luef® + F — T £ 0. (3.66)
neSy neSy

Remark 3.10. It was shownin [12] that forany / € R‘i*o, det((37, 0k (1, 0))k nes, )

£0.

Finally, we record the following asymptotics of the KdV frequencies, used in
Section 7,

ok (1,0) — 2rn)* = 0(n™"), nojkd(1,0) = 0(1), (3.67)

uniformly on compact sets of actions / € REB (cf. for example [22, Proposition
8.1]).

4. Nash—-Moser Theorem

The purpose of this short section is to state Theorem 4.1 which reformulates
Theorem 1.1 in the canonical coordinates described in the previous section. In
Section 8.3, we derive Theorem 1.1 from Theorem 4.1.

In the canonical coordinatesp = (6, y, w) € V(8)NE;, defined by Theorem 3.2,
with symplectic 2-form given by (3.6), the Hamiltonian equation (1.6) reads as

819 = —Vy'He, ny = VQHE, atw = 8wa'H€, (41)
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where H, := H, o ¥, and H; is given by (1.7). More explicitly,

He(r; v) = HE (15 0) + P13 v),
HP = gV o w,, P=PoW,, veE, 4.2)

where H*4V(¢; v) has the normal form expansion (3.12). We denote by X7, the
Hamiltonian vector field associated to H;. For ¢ = 0, the Hamiltonian system (4.1)
possesses, for any value of the parameter v € E, the invariant torus TS+ x {0} x {0},
filled by quasi-periodic finite gap solutions of the KdV equation with frequency
vector ¥4V (v) := (wk?V (v, 0)),es, introduced in (1.11).

By our choice of E, the map —wk?V : & - Q:= — *¥?(E) is a real analytic
diffeomorphism. In the sequel, we consider v as a function of the parameter € €,
namely

V= () = (W) N (~w). (4.3)

To keep the notation simpler, we often will not record the dependence of the Hamil-

tonian H, on v = (w*??)~!(—w). Consider the set of diophantine frequencies in
Q,
DC(y, 7) = {a) €Q:w-b > (Z”)r, Ve e 78+ \ {0}}. (4.4)

For any torus embedding TS+ - V() NE, ¢ — (B(p), y(p), w(p)), close to the
identity, consider its lift

RS — RS x RS x HI(Ty), Ugp)=(9,0,0)+ (), (4.5)

where (@) = (O(¢), y(p), w(p)) and where O () :=6(¢) — @ is (2r7Z)5+ peri-
odic. Often we will refer to the torus embedding i simply as torus. We look for a
torus embedding [ such that F,, (¢, ) = 0 where

w - 9y0(¢) + (VyHe) (i)
Folt,0)= | w-0py(p) — (VoHe) (i) — ¢ | - (4.6)
w - dpw(p) — 0x(VuwHe) ({(9))
The additional variable ¢ € RS+ is introduced in order to control the average of the
y-component of the linearized Hamiltonian equations — see Section 5, in particular

(5.35). Actually any invariant torus for X4, , = X3, + (0, ¢, 0) with modified
Hamiltonian

Hec (0, y, w) :=He (0, y,w) +¢ -0, ¢ RS, (4.7)

is invariant for X, due to (5.5). Note that H, ; is not periodic in 6, but that
its Hamiltonian vector field is. The Lipschitz Sobolev norm of the periodic part
() = (O(p), y(¢), w(p)) of the embedded torus (4.5) is defined by

Lip(y) . Lip(y) Lip(y) Lip(y)
ells™ " == 11®ls +Iylls + llwlls (4.8)
Li . . . . .
where ||w||g P0) s the Lipschitz Sobolev norm introduced in (2.1) and
A tEP) o BP0 . LiPY) Lip(y) _ Lip(y) . _ Lip(y)
1®lls = 1Ol =100 s, gsiy IVlls = Iyl =09 s oy sy

(4.9)
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Theorem 4.1. There exists > (|Sy|+1)/2 and gy > 0 so that for any 0 < ¢ < &,
there is a measurable subset Q2, C 2 satisfying
Q
oy Eas() (4.10)
e—0 meas(£2)
and for any w € Q, there exists a torus embedding with lift T, : RS+ — RS+ x
RS+ x H 1 (T1) (cf- (4.5)) which satisfies the estimate

liw — (@, 0, 05?7 = 0(ey™2), y=c% 0<a<x 1, (411
and solves
@ - Iplo(@) — X1y (@) =0,  v= (") (~w). (412

As a consequence, the embedded torus T,(TS*) is invariant under the flow of the
Hamiltonian vector field X, (.., and is filled by quasi-periodic solutions of (4.1)
with frequency vector € Q. Furthermore, the quasi-periodic solution I,,(wt) =
(wt, 0, 0) + 1, (wt) is linearly stable.

Remark 4.2. Up to the end of Section 7, y € (0, 1) is assumed to be a constant
independent of & with ey =3 « 1. Only in Section 8, y and ¢ are required to be
related by y = ¢ forsome 0 < a <« 1.

Theorem 4.1 is proved in Section 8 and is applied to deduce Theorem 1.1 (cf.
Section 8.3 for details). At the core of the proof of Theorem 4.1 is the construc-
tion of an approximate right inverse of the linearized operator d, ; F,, (¢, {) at an
approximate solution. This construction is carried out in Sections 5-7.

Along the proof we shall use the following tame estimates of the Hamiltonian
vector field X4, with respect to the norm || - ||£lp(y) in (4.8). Using the expansion
(3.12) provided in Theorem 3.2, and the definition of P in (3.35), we decompose

the Hamiltonian H,, defined in (4.2), as
He = N +P. where
1 1
Ny, wiv) = o W) -y + ZQE 0]y + 5 (@ (D5 vw, w)
P, = RKY 4¢P, (4.13)

2
L%

The Hamiltonian vector field of P, and H, satisfy the following tame estimates:

Lemma 4.3. There exists 01 = 01(S4) > 0 so that for any s > 0, any torus
embedding T of the form (4.5) with ||‘||sL01F+(Zl) < 8, and any mapst, 71,7 : TS+ — Ej,
the following tame estimates hold:

o Li Li Li Li
1Xp, 15T <y (14 el POy 4 o PO

s+oq 0+o1 s+o1
- Lip(y) Lip(y) Lip(y) Lip(y) Lip(y)
ldXp, O™ S (6 + Nelgha ) [T ter + el 1Ty -

o ~ 4, Li Li Li Li Li
12 X3, O, BIPY S I IER @ m) + 1E n ea) E

Lip(y) Lip(y) Lip(y)
+ ||L||s+(71 (|m”50+o’1 ”’[\2”3()4»0'] .
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Proof. By (4.13), one has Xp, = eXp + Xpuw and d*Xp, = d*°Xn +

dZng. The claimed estimate for dXp, (O[] follows noting that, by Lem-
. Li Li Li Li

mata 3.5, 2.25, 2.26, [dXp O <o TS + 1212155 and, by

Lemmata 3.7, 2.25, 2.26,

o Li Li Li Li Li
1dX zeas QTIPS (SRR 1y 500 7 LipGr)

~ so+o1 s+oq s+oq so+toq *

The one for || Xp, (Z)||£“ip()/) is obtained by the mean value theorem. Indeed,
one has [|XpM[EPY <o 1+ (1eIFPY 4 o) 2291 HPY)) " and taking into

~ ) s+o1 ) so—‘&-m s+o1
account (3.15), [ Xzuaw D15 <5 Il ® 2 1P, Finally, the estimate for

dZXHS (D[11,712] is verified using again Lemmata 3.5, 3.7, 2.25,2.26. O

5. Approximate Inverse

In order to prove Theorem 4.1 we implement a Nash—-Moser iteration scheme
that leads to a solution of F, (¢, ) = 0 (cf. (4.6)). For this purpose we construct
an almost-approximate right inverse of the linearized operator

it Folt, DL T = @ - 3,0 — d, X, (D[ — 0,2, 0), (5.1)

where H, = N + P, is the Hamiltonian in (4.13). Note that the perturbation P,
and the differential d,  F,, (¢, ¢) are independent of ¢. Thus, in the sequel, we often
write d, ¢ F, (1) instead of d, ; F, (¢, ¢). The construction of an almost-approximate
right inverse of d, ; F, (1) is the main result of this section, stated in Theorem 5.7.
It is proved under the assumption A-I, introduced below (cf. (5.29)—(5.32)). In
Theorem 7.11, these assumptions are stated as a theorem, and its proof is given in
Section 7.2.
Throughout this section we assume that the following ansatz holds:

e Ansatz. The maps o +— () :=i(¢; ®) — (¢, 0,0), and w — ¢(w) are Lips-
chitz continuous with respect to w € Q, and for0 <y < 1

Lip(y) -2 Lip(y)
lellag S ev™2 1ZIs"" S, (5.2)
where Z, referred to as error function, is defined by

Z(p) :=Fut, 0)(@) = w - 0yi(p) — X, ({(9)) — (0,£,0).  (5.3)

We already mention that at each step of the Nash—-Moser scheme of Theorem 8.1,
the above ’Ansatz’ is shown to hold, with the constant o specified in Theorem 5.7,
depending on |S4 | and 7 (given in Section 8).

Let us first give an outline of the proof of Theorem 5.7. Since the 6-, y-, and
w-components of the linear operator d, X4, () form a coupled system, it turns out
to be difficult to invert the operator d, ; F, (1) in (5.1). To overcome this difficulty,
we use the approach developed in [3,8-10], consisting in transforming d, ; F,(t)
into approximately triangular form, see (5.33). Let us describe in broad terms how
to achieve this: If the error function Z, defined in (5.3), vanishes, then the torus 7 is
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invariant for the Hamiltonian H, , defined in (4.7). Furthermore, by (5.5) below,
also ¢ vanishes in this case, implying that [ is invariant for the Hamiltonian H.
Hence the invariant torus { is isotropic (cf. [8]) (where [ being isotropic means
that the pullback of the symplectic form by { vanishes) and there exist symplectic
coordinates in a neighborhood of this torus (cf. (5.16)) so that when expressed in
these coordinates, the linearized equations form a triangular system as described in
(5.33). In general, the torus { is only “approximately” invariant up to order O(Z)
and the linearized equations can only be approximately conjugated to a triangular
system as in (5.33). Taking all this into account, we proceed as follows: given
an approximately invariant torus i(¢) = (0(¢), y(¢), w(yp)) satisfying (5.2), we
first construct an isotropic torus i5(¢) = (0(¢), ys(¢), w(p)) which is close to i
(cf. Lemma 5.4). Note that by (5.13), F(is, ¢) is also of the order O(Z). Since
Is is isotropic, the diffeomorphism (¢, n, v) — (@, y, w) = Gs(¢, n, v) defined
in (5.16) is symplectic. In these coordinates, the torus is reads ¢ — (¢, n, v) =
(¢, 0,0), and the transformed Hamiltonian K :=H, ; o G5 takes the form (5.18),
where the terms 94/Coo, K10 + @, and Ko are of the order O(Z) (cf. Lemma 5.5).
Neglecting terms of the order O(Z), the problem of finding an approximate right
inverse of the operator d, ; F,(t) is reduced to the task of inverting the operator D
in (5.33). The system (5.34) is solved in a triangular fashion as follows. First we
solve the second equation in the system (5.34), cf. (5.35)—(5.36). Then we solve the
third equation in (5.34) using the assumption A-I, cf. (5.37). Finally, to determine
$, we solve the equation (5.38), cf. (5.41)—(5.42). In conclusion, we prove that the
operator (5.44) is an almost-approximate right inverse of the operator d, ; F,(t)
which satisfies tame estimates — see Theorem 5.7 for details.

We start our construction by noting that the 2-form }V given by (3.6) is exact:

W= (Zjes+dy,- AdO;) @ Wy =dA,
where A is the Liouville 1-form

~_ ~ 1, _ .
Aywld 3 W1=3 7 o 30 + 5 (07w, D). (54)

The pullbacks i*A and i*)V of A and respectively W by a torus embedding  are
related by ¥V = di*A. Recall that the embedding { is said to be isotropic if
W =0.

First, we provide an estimate of ¢ in terms of the error function Z(¢) defined in
(5.3). We recall that by the ansatz (5.2), Z(¢) and ¢ are Lipschitz continuous with
respect to the parameter @ € 2.

Lemma 5.1. One has
12 [HP0) < || Z [P, (5.5)

Proof. We follow the arguments in [8, Lemma 3] and [3, Lemma 6.1]. Since the
Hamiltonian H, is autonomous, the “restricted” action functional

6T >R G [ (= A3V @) ~ V00 ) de
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is constant, where ['¥) () :=1(y¥ + ¢) and Aj(y+¢) is the canonical one form A
defined in (5.4), evaluated at {(y + ¢). Using that 3y, G (0) = 0, a direct calculation
shows that ¢ can be expressed in terms of Z(¢) = (Zg(¢), Zy(¢), Zy(p)) as

= ! T _ T _ Ta—1
= mBAl ./TS+ ([Bwy(fﬂ)] Zg(p) — [3p0(@)] " Zy(p) — [Bpw(9)] 0 Zy (<p)) do.
The latter formula together with the tame estimates (2.5) and the ansatz (5.2) imply
(5.5). 0O
For an approximately invariant torus embedding i = (6(¢), y(¢), w(g)), the
1-form
e 1
PA =), @O0 ak@):=10,0@)]1" (@) - e + 507 w(@), By wig))z,
(5.6)
is only “approximately closed”, in the sense that
W =dI"A =) jes, A (@)dpr Adgj,  Akj(p) = dy,a; (@) — dy;ax (@),
k<j
(5.7)

is of the order O(Z). Here ¢;, k € S, denotes the standard basis of RS+, More
precisely, the following lemma holds:

Lemma 5.2. Let € DC(y, t) (cf. (4.4)). Then for any k, j € S4, the coefficient
Ayij in (5.7) satisfies, for some o = o (t,Sy) > 0, Vs > s,

Li _ Li Li Li
AR IS <o v~ UZIERY + 121D 2. (5.8)

Remark 5.3. In the sequel the constant 0 = o (7, S;), referred to as loss of deriva-
tives, will be tacitly increased in the course of our arguments if needed.

Proof. For any j, k € Sy, the coefficient Ay; satisfies the identity w - 0, Ax; =
W(awZ((p)gk, Bwi(w)gj)—i— W(B(pf(go)gk, 8¢Z(g0)gj) (cf. [8, Lemma 5]). The esti-
mate (5.8) then follows by (5.2) and (2.10). O

As in [3,8] we first modify the approximate torus { to obtain an isotropic torus
Is which is still approximately invariant. Let Ay, := ) keSy 8£k.

Lemma 5.4. (Isotropic torus) Let w € DC(y,t). The torus Is(p):=
0(9), ys(¢), w(p)) defined by

Y5(@) = y(@) = [3,0@)]1" " p(). (@) = (0j (@) jes,. pj(9):= A;‘Zkesﬁwkj(m,

5.9)
is isotropic and there exists 0 = o (t,Sy) > 0 so that for any s = s,
lys — yI5™Y < ey 2, (5.10)
lys — yIE°Y <oy U ZIEEY 4+ 12 1z, (5.11)
s [P < TN+ el 2 e, (5.12)
1Fu s, OIFPT <oy 1ZIERY 1220 z) S0, (5.13)
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Proof. The isotropy of the modified torus is is proved in [8]. By a standard Neu-
mann series argument and using the ansatz (5.2), it follows that for any s = s,
there is a constant C(s) > 0 so that

— Li Li — Li Li
118,61 —1dI5*Y < coN, 8,01 1P < 14 ) ltP.

(5.14)

Furthermore, by the estimate (5.8) for the coefficients Ax; and the definition (5.9)
of p, one gets

Li _ Li Li Lip(y)
™Y <5 y T U ZIEEY + 1 Z IR e 22, (5.15)

The estimates (5.10), (5.11) then follow by using (5.14), (5.15), the interpolation
estimate (2.5), the ansatz (5.2), sy‘z <« 1, and the definition of ax, k € Sy, in
(5.6). The estimate (5.12) follows by similar arguments. To prove (5.13), it suffices
to estimate F,, (s, ¢) — Fo (L, ¢). One computes

Qs, W)ys — ¥l
Folts, §) = Fu(t, 8) = | @ 9p(ys — yo) | + Xp,(s) — Xp, (0).
0

The estimate (5.13) then follows by using the mean value theorem to bound
Xp,(ts) — Xp, (1), together with Lemma 4.3 and by applying the estimate (5.11)
on ys — y (using also the ansatz (5.2)). O

In order to find an approximate inverse of the linearized operator d, ; F,(ts),
we introduce the symplectic diffeomorphism G; : (¢, n,v) — (@, y, w) of the
phase space TS+ x RS+ x Li(’]l‘l), defined by

6 ¢ 0(¢)

v | =Gs [ 1| = ys@) +[0,6)1 0 — [Gei) @@)] (7 v)  (5.16)
w v w(g) +v

where @ :=w o 6~1. Since I5 is an isotropic torus embedding (cf. Lemma 5.4), G
is symplectic by [8, Lemma 2]. In the new coordinates, ;s is the trivial embedded
torus ¢ — (¢, n, v) = (¢, 0, 0) and the Hamiltonian vector field XH,, (with H ¢
defined in (4.7)) is given by

Xi = (dGs) ' Xp,, 0Gs, K =Ker=HecoGs. (5.17)

The Taylor expansion of /C in n, v at the trivial torus ¢ +— (¢, 1, v) = (¢, 0, 0) is
of the form

1
K@, n,v,0) =0(9) - £ + Koo (@) + K10(8) - n + (Ko1(¢), v)p2 + §K20(¢)77 N
1
+(Kn@m, v) 2 + E(Koz(tb)v, V)2 +K>3(¢,m,0) (5.18)

where IC§3 comprises all the terms which are at least cubic in the variables (1, v),
and where Koo (¢) € R, K10(¢) € RS+, Ko1(¢) € L2 (T1), Kao(¢) isa[Sy| x Sy
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real matrix, Koa(¢) : L3 (Ty) — L% (T)) is a linear self-adjoint operator, and
Ki1(¢) : RS+ — Li(']I‘l) is a linear operator of finite rank. At an exact solution of
Fuw(t, ) =0onehas Z = 0 and Koy = const, Kjg = —w, Ko = 0.

Denote by Id; the identity operator on Li(']l“l). The linear transformation
dGsl 0,00 = dGs(p, 0, 0) then reads

] 90 (@) 0 0 ¢
dGslip,00) | 1| = | dys(@) (901" T —[@ew) @I, | |7
0l dpw () 0 Id | 0l

(5.19)

It approximately transforms the linearized operator d, ; F,(ts) (see the proof of
Theorem 5.7) into the one obtained when the Hamiltonian system with Hamiltonian
Ke,¢ (cf.(5.17))islinearized at (¢, n, v) = (¢, 0, 0), differentiated also with respect
to ¢, and 0, is replaced by w - 9,

w3 + dpK10@D ] + Koo (0)i + K[| (0)T
P | @ p7 = (9p0) T 1T1 - 05 (98(9) T [E1) D] — 0 K0 @)1 — [8pKC10()1 77— [0 Kot ()17 | -
- g0 — 0x (99 K01 (@[] + K11 ()T + Koo (9)7)

)y =) S

(5.20)

o~

Using (5.2) and (5.10), one shows as in [3] that the operator ¢ = (¢, 77, V) +> dGs[t]
satisfies for any s > sg

1dGs(p, 0,0, 1dGs(p,0,0)" @™
S IESPY 4 el 22 P, (5.21)
ld>Gs(e. 0,01, 221015 (5.22)
<o P BRI P Y 1B I + 1ee m s .

The next lemma provides estimates for the coefficients of the Taylor expansion
(5.18) of the Hamiltonian /C.

Lemma 5.5. There exists 0 := o (7, Sy) > 0 so that for any s > sg

Li Li Li — Li Li Li
196 Coolls™? + 1110 + @l + 1oty <5y~ IZIERY 4+ 22 1z 2n )y,

so+o
Lip( Lip(
120 — U WIS < e+ Nl B, (5.23)
Lip(y) —2.nLip(») Lip(y),_,Lip(y) ’
ICinlls™ <o ey 2 nlcE” + el Inllghy’

T . Lip(y) -2 Lip(y) Lip(y) Lip(y)
1T vl ™Y So ey 2l + ey ol e

Proof. First we prove the claimed estimates for Ko, K19, Ko and then the ones
for KCao, K11, ICTI.

ESTIMATES OF K, K10, Ko1: The Hamiltonian vector field associated to the Hamil-
tonian KC in (5.17) is given by Xx:=(=V, K, V4K + (8¢9)T§, 0y Vy,K). Fur-
thermore, since I5(¢) = G5(@, 0, 0), the directional derivative w - d,5(¢) equals
dGs(p,0,0)[(w, 0, 0)]. Using the transformation law of vector fields we get that

Folts: (@) = 0 dpls(9) — X, (15(0))
=dGs(p,0,0)[(w,0,0)] —dGs(p, 0,0) Xk (¢, 0,0),
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or
Xxc(9,0,0) = (,0,0) — (dG5(p,0,0) " Foyts, 0. (5.24)
Furthermore, by (5.18), one computes

X (9,0,0) = (= Kio(g), 3,0(@)[¢]+ VKoo (@), 3:Ko1(9)).  (5.25)

By comparing the two expressions (5.24) and (5.25), and by using the estimate
(5.5) of ¢, the estimate (5.13) of F,(ts, ¢), the estimate (5.21) of d Gy, the ansatz
(5.2) and that ||[8¢9]T||£lp(y) <1+ C(s)||L||sLlp(V), one gets the first estimate in
(5.23).

ESTIMATES OF Ko, K11, ICTI: We prove the claimed bound for Ky and K. The
estimate for ICIT1 can be proved arguing similarly. By (5.18), one has KCy(¢) =
9, V,K(¢,0,0) and K11(p) = 9,V,K(g, 0, 0). Furthermore, taking into account
the formulae (4.7), (5.16), (5.17), one then infers that

K20(9) = [9,0(9)] '3,V He ((@)[3,0 ()]
“LY 10,6(0)17 Q&7 (1) [,0 @)1 + [8,0(9)1 "8, V, P (KN [0 ()]
K11(9) = —[@ D) O(@)10,Vy He (G508 @) + 8y Vo He (5 (0))[0,6(0)] T
CLY 1@ ) O 3,0 )] — (@) (0 ()1, Y, Pe (59,0 ()]
+ 0y Vi Pe (5 (0)[9,6 (9)] .

_ Li _ Li Li
By 18,6 (@)1" — 1[5 + 18,6 (0)1 T —1d[™Y < el (ef. (5.14),
the estimates for 9, VP (i), 9y Vo P (Is) of Lemma 4.3, the interpolation estimate

(2.5), and (5.2), one obtains the claimed bounds. O

In order to construct an almost-approximate right inverse of (5.20), we need
that

Lo=T1 (-3 = 0:Koa(p) ;2 (5.26)
is “almost-invertible”, that is invertible up to a remainder of order O (N, _al ), where
N,:=K}!, vn2>0, (5.27)

and
Koi=KX, x:=3)2, (5.28)

are the scales used in the nonlinear Nash—Moser iteration in Section 8.1. The con-
stants a, Ko are given in the almost-invertibility assumption A-I below.

Based on results obtained in Sections 6-7, the almost invertibility of £, is
proved in Theorem 7.11, but here it is stated as an assumption to avoid the involved
definition of the subset 2, of the set 2 of frequency vectors w, for which £, can
be shown to admit an almost-approximate right inverse. Recall that DC(y, ) is the
set of diophantine frequencies in €2, defined in (4.4).
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A-I Almost-invertibility of L. There exists a subset 2, C DC(y, T) such
that, for all w € Q,, the operator L, in (5.26) admits a decomposition

Lo=LS+Ry+ RS (5.29)

with the following properties: there exist constants Ko, Ny, o, 11, u(b), a, p,
sy > 0,50 that forany S > sy, 65 < s < S and w € Q, the following holds:
(i) The operators R, R$ satisfy the estimates

Lip(y) -2 L() 71 Lip( Lip(y)
IRohls™ Ss ey >N 2 (IRIET + NG IILIISf/(f,HUIIhIIs;fIg), (5.30)
L Lip(y) —b Lip(y) T 71 Lip(y) Lip(y)
IRE s ™ Ss.o Ky (Il sy + NGy Il ) s 1Bl o). Vb > 0.

(5.31)

(ii) The operator L, admits a right inverse. More precisely, for any g €
Hi‘m (TS+ x T), there is a solution h € Hj(’ﬂ‘S+ x T1) of the linear
equation L h = g, denoted by (£<)_1 g, satisfying the tame estimates

L L — L
125 gl <s v (gl + NGy~ bR

ey, (5.32)

s+ 185y to

In order to find an almost-approximate inverse of the linear operator (5.20) and
hence of d, ; F,(15), note that the remainder £, — £, = Ry, + Ri is small (cf.
(5.30)—(5.31) in A-I) and that by Lemma 5.5 and by the estimate (5.5) of ¢, the
terms 9 K10, g K00, 901 and 9y (8¢9(<p)T[§]) in (5.20) are of the order O (Z).
Therefore, it suffices to invert the operator

- 3 - 3<ﬂ¢ + ’C2O(€0)’7 + /C11(<P)T
D[¢, 7,7, ¢]: w- 3,7 — 050(9) T (5.33)
L3V — 9 K11(9)n

obtained by neglecting in (5.20) the terms 3410, 3¢5/ o0, 95/Co1, 9 (8¢0(¢)T[§])
and by replacing £, by L (cf. (5.29)). We look for a right inverse of D by solving
the system

&1
D¢, .. ¢]1= |82 |- (5.34)
83

We first consider the second equation in (5.34), w - B(pﬁ =g+ 8¢9(¢)TE. Since
3,0(¢p) = Id + 3,0(¢), the average (3,0 "), = ﬁ Jrsi 9,0 T (9)dg equals
the identity matrix Id of RS+, We then define

= —(g2)y (5.35)

so that (g, + 8¢9(¢)TE)¢ vanishes and define
Ai=n0+ 71, M=) " (g2+30) 7). (5.36)

where the constant vector 7jp € RS+ will be determined in order to control the
average of the first equation in (5.34). Next we consider the third equation in (5.34),
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(L5)v = g3+ 3:K11(p)7, which, by assumption (5.32) on the invertibility of £,
has the solution

V= (L) gz + K11 (@) + (L3 8:K11(@)7o. (5.37)

Finally, we solve the first equation in (5.34). After substituting the solutions E, 7
(cf. (5.35), (5.36)), and v (cf. (5.37)), this equation becomes

w - 3<p<$= g1+ Mo+ Mago + M3gs — Ma(g2),, (5.38)

where aand 7o are the unknowns and where Mj:9+— Mij(p),1 < j <4, are
defined as

Mi(p) == — Kao(p) — K11(9) T (£3) 1 8:K11(p), (5.39)
Mo () =M (@)[w-3,17", Ma(p):= —Kii(p) (L5, Ma(p):=Ma(9)ds6(p) "
(5.40)

In order to solve equation (5.38) we have to choose 7y so that the average of the right
hand side vanishes. By Lemma 5.5, by the ansatz (5.2) and by the tame estimates
(5.32), the p-averaged matrix is (M), = —Qg‘i“(v) + O(ey~2). Since the matrix
Qgﬁv(v) = (3, 0% (v, 0))k nes, is invertible (cf. Lemma 3.9-(i), Remark 3.10),
(M), is invertible for ey‘z small enough and (M );1 = —Qg‘i" m~1+0 (8)/_2).
We then define

o= — (1) ({810 + (Magady + (Maga)y — (Miy(ga)y).  (5:41)
With this choice of 7, the equation (5.38) has the solution
¢ = (@-9)"" (g1 + MiTlo + Mago + Mags — Ma(ga)y).  (5.42)
Altogether, we have obtained a solution (a, 7,7, ?) of the linear system (5.34).

Proposition 5.6. Assume (5.2) (Ansatz) with o = (b) + o and that the estimates
(5.32) (item (ii) of A-1) hold. Then, for any v € 2, and any g =(g1, 82, 83) with
g1, g € Ho(TS+, RS+) 8 € H””(TS+ X Tl) and sy < s <8, the system
(5.34) has a solution ((]5 n, ?, C) where c/) 0, ; are deﬁned in (5.35)—(5.37),
(5.41)~(5.42). We denote (¢, 7,0, C) by DL g. It satisfies the tame estimates

1 ,Li _ Li 1y, Li Li

D~ gl <s vy 2 (gl B + Nty I o lglie i ). (5.43)
Proof. The proposition follow/§ by the definitions of ? (cf. (5.35)), 1 (cf. (5.36)),
v (cf. (5.37)), o (cf. (5.41)), ¢ (cf. (5.42)), the definitions of M;, 1 < j < 4, in
(5.39)—(5.40), by the estimates of Lemma 5.5, and the ansatz (5.2) as well as the
estimates (5.32) for (£35)~! (item (ii) in A-I). O



Large KAM Tori for Quasi-linear Perturbations of KdV 1461

Let Gs : (,n,v,) (Gs(¢p,n.,v), ¢) and note that its differential
dgg (¢, n, v, ¢) is independent of ¢. In the sequel, we denote it by dG5(¢, 1, v) or
dGsl(g,n,v)- Finally we prove that the operator

~ — —1
To = T()(L) = dG3|(¢’0,0) o ]D) 1 [e] (dG5|((p,0,())) (5.44)

is an almost-approximate right inverse for d, ; (1) meaning that d, ; 7, (1) o
To(t) — Id can be estimated in terms of the error function Z = F, (1) (Capprox-
imate’, cf. (5.47)) and of terms which are small (Calmost’, cf. (5.48), (5.49)). Let

1@ 1. 0. O = max{[|(@. n. )PP, 1|1},

Theorem 5.7. (Almost-approximate inverse) Assume the almost-invertibility
assumption A-1 of L. Then there exists oo = o03(t,Sy) > 0 so that, if (5.2)
(Ansatz) holds with pg = sy + w(o) + o3, then for any w € €, and any
g = (g1, 82, g3) with g1, g2 € HTO (TS, RS), g3 € H{T7(TS+ x T)), and
sy S5 < S, To()g, defined by (5.44), satisfies

Li — Li — Li Li
ITo@el ™ S5 v 2 (Ngllsber + Ng'y = Nl o I8 Ty ) (5:45)

Moreover To(1) is an almost-approximate right inverse of d, ; F,,(1). More pre-
cisely,

dit Fot) 0 To(t) —1d = P + P, + P2, (5.46)

where the operators P, P,,, Pj; are defined in the course of the proof and satisfy
the following estimates:

L — L — Li Li
Wﬂ“”ﬁy%fomﬁ%0+wwWmﬂmmyMJQ, (5.47)
Lip(y) 4N —1 Lip(y) Lip(y)
1Pugllsn® Ss ey N2 (1+ NSy~ s o ) llR 90, (5.48)
1, Lip(y) 2g—b Lip(y) —1 Lip(y) Lip(y)
1Py elsn” Sso v Ky (Igllg gy s+ No' v Il gt ) ionin | €llsmion)s Vb > 0.

(5.49)

Proof. The bound (5.45) follows from the definition of Ty (¢) in (5.44), the esti-
mates (5.43) of |D~ 1g||Llp(V), and the ones of dGs(¢p, 0,0) and of its inverse
in (5.21). It remains to estimate d, ; (1) o To(t) — Id. The operators P, P,
Pj; in (5.46) are defined as follows: by the formula (5.1) for d, ; F,(t) and since
only the y—components of Is and { differ from each other (cf. (5.9)), one has
di . Fo(t) = d, ; Fou(s) + E where, by the mean value theorem, £ can be written
as

1
o0 ] = /0 0, (d Xp, 6. y5 + 5O — yp) w)E)ds [y — ysl.  (5.50)

Denote by k := (¢, 1, v) the symplectic coordinates defined by G . Letalso £ (¢) =
(¢, 0, 0) 4+« (¢) the torus embedding defined by i(¢) = G5(k(¢)) where G5 is the
symplectic transformation given by (5.16). The nonlinear operator F, (cf. (4.6)) is
transformed under G into

Folt, §)(@) = dGs(k(p)lw - 9ok (9) — X (K (9))] (5.51)
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where IC = H, ; 0 G5 (cf. (5.17)). Differentiating (5.51) at the trivial torus Ko (¢) =
Gy (i5)(9) = (¢,0.0), we get

dit Fo(ts) =dGs(ko)(w - 9y — dk,;X,c(/Zo))dag(/%o)_l + &1, (5.52)

&1 1= d*Gs(Ro)[dGs (ko) ' Fulis, ©), dGs (ko) 'TI[-1],  (5.53)

where IT denotes the projection IT : ([,E) — 1. Let us consider the operator

w -3y — dy,¢ Xxc(Ko) in more detail. By the definition (5.33) of D and the discussion
following it, we decompose w - 9, — dic,c Xxc(Ko) as

w -3y —der Xxc(Ko) =D+ Rz + R, + RS (5.54)

where in view of (5.20),

R R 9K 10(@)[4]
Rz16. 7,0, C1:= | =09 Koo (@)[®] — 35 (356 () T [£1)[B] — [0pK10(9)] 7 — [36Ko01 ()] D
=0 (g Ko1 (@) [p])

R R 0 R R 0
R,(¢, 7. @.¢l:=| 0 |, Ri@.5.0,21:=| 0
R[] RE[@]

with R, and Rc% given by (5.29). By (5.50) and (5.52)—(5.54) we get the decom-
position

d,c Fo() = dGs (o) oD o (dGs(i0)) " + & + £+ EL (5.55)

where
£:=E + & +dGs(ko)Rz(dGs (k) ', (5.56)
1 =dG3R0)R,(dGs(0) ™", &L :=dGs@RE(dCs(Rk0)) . (5.57)

Letting the operator To = To(¢) (cf. (5.44)) act from the right to both sides of the
identity (5.55) and taking into accout that Ko(¢) = (¢, 0, 0), one obtains

dl,{'fw(t)OTO_Id:,P‘i‘,Pw—f‘,Pj;, P:=& oTo,
Po:=EyoTy, Pr:=ELoTy.

To obtain the claimed estimate for P we first need to estimate £. By (5.2) (Ansatz),
(5.5) (estimate for ¢), Lemma 5.5 (estimates of the components of Rz), (5.10)-
(5.13) (estimates related to t5), and (5.21)—(5.22) (estimates of dGgs(ko) and its
inverse) one infers that

Lip(y) Lip(y) i~ Lip(y) Lip(y) i~ Lip(y) Lip(y) Lip(y) i~ Li
IEE TP So v~ (121080 T + NZIVEY GRS -+ 1z 1l B gy ).

(5.58)

for some o > 0, where Z is the error function, Z = F,(, ¢) (cf. (5.3)). The
claimed estimate (5.47) for P then follows from (5.58), the estimate (5.45) of Ty,
and the ansatz (5.2). The claimed estimates (5.48), (5.49) for P,, and, respectively,
Pj follow by the estimates (5.30)—(5.31) of R,, and Rj; (cf. A-I), the estimate
(5.45) of Ty, the estimate (5.21) of dGs (ko) and its inverse, and the ansatz (5.2).
O
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The goal of Sections 6 and 7 below is to prove that the Hamiltonian operator £,
defined in (5.26), satisfies the almost-invertibility A-I, including the tame estimates
(5.30)—(5.32).

6. Reduction of £, Up to Order Zero

The goal of this section is to reduce the Hamiltonian operator £,,, defined in
(5.26), to a differential operator of order three with constant coefficients, up to
an operator of order zero — see L‘g‘ ) defined in (6.69). It is the starting point for
the KAM reduction scheme, implemented in Section 7, which will reduce Cg‘ ) to
a diagonal operator with constant coefficients. The main result of this section is
Proposition 6.7.

In the sequel, we consider torus embeddings (@) = (¢,0,0) + (p) with
t(:) = (- ; w), w € DC(y, 1) (cf. (4.4)), satisfying

Li _ _
Il < ey, ey 2 < 8(S), 6.1)

where o= uo(t, S4) > sp and S > o are sufficiently large, 0 < §(S) < 1is
sufficiently small, and 0 < y < 1. The index S of the Sobolev space H f will be
fixed in (8.4), along the Nash Moser iteration scheme of Section 8.1. In the course of
the Nash—Moser iteration we will verify that (6.1) is satisfied by each approximate
solution—see the bounds (8.8).

Notation. For a quantity g (1) = g(7) such as an operator, a map, or a scalar function,
depending on i(p) = (¢, 0, 0) + ¢(¢), we denote for any two such tori embeddings
i1, I3 by Apg the difference

Apg:=g2) — g).

6.1. Expansion of L,

As a first step, we derive an expansion of the operator £, = TII J_(CD “9p —
3:K02()), 2  defined in (5.26).
1

Lemma 6.1. The Hamiltonian operator 0Ky (¢) acting on Li (Ty) is of the form

0 Ko2(p) = M1 3x(d1 VwHe) (ls(9) + R(p) (6.2)

where H, is the Hamiltonian defined in (4.2) and the remainder R(p) is given by
2

R(p)[h] = Zje&(h, gj)L%Xj, Vh e L} (T)), (6.3)

with functions g;, x; € HY, j € Sy, satisfying, for some o :=o(t,S;) > 0 and
any s 2 s

Li Li Li
115D 1 157 < e + lell5 2. (6.4)

Let sy 2 so and let 11, I be torus embeddings satisfying (6.1) with g 2 s; + o.
Then, forany j € S,

A28 lls) + 1A 12X} lls) Ssi ez = tillsy+o- (6.5)
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Proof. The operator KCga(¢) is defined by Kp(p) = diV,K(p,0,0) =
d1 Vy(He o Gs)(¢, 0, 0). Differentiating the Hamiltonian (H, o Gs)(¢, n,v) =
HS(O(go),ya(ga) + Li(p)n + La(p)w, w(p) + v) with respect to v, we get
Vo(He 0 Gs) (@, 0, v) = La(9) "0y He(Gs(, 0, v) + ViyHe(Gs (@, 0, v)), where
we used that by (5.16) L1 (¢) :=[9400(¢)1~ " and L (¢) := — [dw (0 ()] d; .
Since Gs(¢, 0, 0) = i5(¢p), it then follows that

dxd 1 Vy(He 0 Gs) (9, 0,0) = 3yd ) Vi He ((s(9)) + R(gp)

where R(¢) := Ri(¢)+R2(9)+R3(p) with Ry (¢) := dx L2 (¢) T dyy He (15 (9)) L2(¢)
and

Ra(¢) :=dxLa(p) Td18yHe (i5(9)),  R3(9) 1= 8,8y Vi He (15(9)) L2 ().

Each of the linear operators Ry, Ry, Rz isof the form (6.3) since itis the composition
of linear operators, at least one of which has finite rank. For example, expressing
the linear operator Lo (¢) : Li('ﬂ‘l) — RS+ in terms of the canonical basis e

JESE La@lhl =Y s, (b, La@)T [gj])ﬁ ¢;, ¥ h € L7, one obtains

I"

Ri@hl =3 o (b L2@) lej)) 12 A1@lej], A1) i=0xLa(@) T8y He (5 (0)),

showing that it has the form (6.3). By similar arguments one concludes the same
for R, and R3. Let us prove that R; satisfies the estimates (6.4). By the explicit
form of Ly (¢), Lemma 2.1-(ii) and (5.2), one gets

Li Li Li
IL2(@)e 1Y, 1L2@) TLe 115 <5 1l for some o > 0.
(6.6)

Furthermore, since H, = N 4P with A and P, given by (4.13), one has 9y, H, =
Qgﬁv + dyyPe, 3y ViyHe = 3,V Pe and d dyHe = d 3, Ps. Using the estimates

in Lemma 4.3 and (5.2), we then infer the bound [|A1[e; 1" <, [y B for

some o > 0, implying together with (6.6) the claimed estimate in (6.4). By similar
arguments, one obtains the ones for Ry and R3, as well as the estimate (6.5). O

By Lemma 6.1 the linear Hamiltonian operator £, has the form
Lo=LY —R, LY :=w-0,—10.(dLVwHe)(s(p)). (6.7)

where here and in the sequel, we write w - 9, instead of 1 - 9| L2 in order to
simplify notation. The operator L, is defined for any w € . In a next step we
prove in Lemmata 6.2 and 6.3 below that the Hamiltonian operator Eg) ), acting
on LZL('JI‘l), is the sum of a pseudo-differential operator of order three, a Fourier
multiplier with ¢ —independent coefficients and a small smoothing remainder.

First note that, since H, = H*V 4¢P (cf. (4.2)) and d,d | V,, H¥¥V = 5, Qkdv 4
dvd) Vyy R¥Y (cf. (3.12)), we have
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LY =y + 83 — 1L 0"V (D; ) — ML :d) Vi RMY () — eT1 L 0xd ) Vo Pis)
(6.8)
where we write 83 instead of 83 | 2 and where Qk_dl” (D; w) is given by (cf. (3.62))
QMM (D w) = QMY (D: v(w) = 8: 2 (D v(w)) + 83 (6.9)
with v(w) defined in (4.3).
Lemma 6.2. (Asymptotic expansion of L:g) )) For any M € N, the Hamiltonian

operator £C((?), w € Q, acting on Li(Tl), defined in (6.7), admits an expansion of
the form

£ =w- 0, - (0] + 2671002 + a0, + Op(r”) + 04 (D: )

0) v
+R{ (5(0); @), (6.10)
where a;O) = agO) (o, x; ), a%O) = aio) (¢, x; w) are real valued functions satisfy-

ing for any s > sg

0 Li Li 0),Li Li
lal” + 1157 <o ar e NI, NaO 1P S5 e+ Nl

(6.11)

for some oy > 0 and where the pseudo-differential symbol r(()o) = réo) (p,x,§; w)

has an expansion in homogeneous components

M
o (g x. &) =Y a) (. x 0)(278) K x0(&) (6.12)
k=0
(with xo defined in (2.18)) where the coefficients aﬁ),j ::ag),f (¢, x; w) satisfy
Li Li
sup [l QY <o e+ R s 2 s, (6.13)
Furthermore, the remainder is defined by
0) -~ . e v . . kdv
Ry Us(@); w) = —Ryu(ls(p); v(w); 3xdy Vi R™Y)
—&eRm(Us(9); v(w); 0xd 1 Viy'P) (6.14)

where the latter two remainders are given by (3.48) and (3.36) with v(w) =
(wkdv)—l (_w)

Finally, for any s1 2 so and any torus embeddings 1\, 13 satisfying (6.1) with
wo = s1 + oy it follows that forany 0 < k < M + 1,
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0) 0)
||A12a3 ”S] SS],M 8”“ - L2||S|+(TM’ ||Alzal_k||S] §S|,M ”Ll - L2||.Y1+UM'
(6.15)

Proof. By the definition (6.8) of E((,? ), the expansion (3.48) of d,d Vo Rk the
expansion (3.36) of 9,d, V,, P, and the formula for the coefficient of 83, described
in Lemma 2.7, one obtains (6.10) with

“éo)(sa,x; )= — 1 +eaz(ls(¢); v(w); dxd L ViyyP),
al” (9, x; @) 1= a1 (I (9); V(®); ded 1 Yy R¥Y) + ey (i5(9); v(@); 3:dL VP),
a9, x; ) = a_i (i5(9); V(@); 8xdy Vi RMY) + ea_ (5(9); v(@): d:d1 Vo P), k=0,..., M,

and v(w) = (0**Y)~!(—w). By Lemma 3.7-1, the functions
ar_x(t; v(w); 3cdL Vi R¥Y), 0 < k < M + 1, satisfy the hypothesis of
Lemma 2.25-(ii). In view of (5.10) one then infers that for any s = so

L
lar—i(is(@): v(@): ddy Yy RE)[FPT < g el 50
for some oy > 0. Similarly, by the first item of Lemma 3.5, the functions
as_(Is(@); v(w); 9xd1 VyP), 0 < k < M + 3, satisfy the hypothesis of
Lemma 2.25-(i), implying that for any s = so,

o Li Li
llas—x (5 (@); v(@); 3xd1 Vi PY 1YY Sor 1+ (1220

for some o)y > 0, proving (6.11), (6.13). The estimates (6.15) follow by similar
arguments. O

We remark that in the finitely many steps of our reduction procedure, described
in the subsequent sections, the loss of derivatives oy = op(t, S+) > 0 might have
to be increased, but the notation will not be changed.

We finish this section by showing that the operator Qk_dlv(D; ), which is
a Fourier multiplier with ¢—independent coefficients, admits an expansion as
described in the following lemma:

Lemma 6.3. For any M € N,
kdv(D; w) = chd“(w)a “F 4+ Ry (05 w) (6.16)

where for any 1 < k < M, the function Q@ — R, w ckd”(a)) is Lipschitz
and where Ry (Q%4; w) : Li(Tl) — L? 1 (Ty) is a Lipschitz family of diagonal
operators of order —M — 1. Furthermore, foranynl, ny € Nyny+ny < M+1, the
operator (DY Ry (Q*V: w) (D)2 is Lip(y)-tame with a tame constant satisfying
93?<D>,11RM(Qk_dlu;w)<D)n2 (s) £ C(s, M) forany s = sy and C(s, M) > 0.
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Proof. By Lemma 3.8, Q*¥V(D; w) = Q"¥(D; ») + Ru(D; w; Q4?) where

M

QWD) =" D" ap(w: Q) xoE) (278) Fhe ()T,
k=1 ,s;:gSl

Ry (@)

gy he @

Ru(D; w; QF)[h] =)

£eSt

Hence (6.16) holds with %" (@) := a_g (w; QX9),k = 1, ..., M and Ry (Q*4Y; w)
= Ru(D; w; Qk_dlv). For any integer ny, ny such that ny +ny < M + 1, one has
that

Ry (@) ()" +"2

Gy M@

(D" R (QX; o) (D) h = )
EeSt

3 ni+n
where, by (3.65), % < Cy. Therefore || (D) R (QX4Y: w) (DY k|

<wm ||h||s forany s = 0. The correpsonding Lipschitz estimate is proved in a similar
way. 0O

6.2. Quasi-periodic Reparametrization of Time

The goal of this section is to conjugate the operator £, = L((B ) _ Rin (6.7) to
the operator [IS), defined in (6.22), which admits an expansion of the form (6.23)
with the property that its highest order coefficient agl) satisfies (6.25). This property

will allow us in Section 6.3 to conjugate EEUI ) to an operator with constant highest
order coefficient (cf. (6.42)).

The operator ®), by which £, is conjugated, is induced by the change of
variable ¢, defined by the quasi-periodic reparametrization of time,

9 =¢+aV (@ orequivalently ¢ =9 +aV(w

where a1 : TS+ — R, is a small, real valued function chosen below (cf. (6.19)).
In more detail, D and its inverse ()~ are given by

@), x):=h(p +aV(@o,x), (@) 'W@, 0 =@ +aD D)o, x).
(6.17)
First recall that the coefficient aéo) in the expansion (6.10) satisfies agO) =-—-1+
O(ée) (cf. (6.11)). Hence the the cube root (aéo) (o, x))% is smooth.

Lemma 6.4. Let m3 be the constant

1 dx -3
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and define, for w € DC(y, 1), the function

1 dx -3
&M _ 1
(P ) :=(w-dyp)~ [ </T1 —(a(o)(z? = ))3) — l]. (6.19)

Then for any M € N, there exists a constant oy > 0 so that the following holds:
(i) The constant m3 satisfies
Im3 + 1[HPO) <y e (6.20)
and for any s 2 so, M, &V satisfy
e DY O < ey TN A+ R (6.21)
(i) The Hamiltonian operator
E((Dl) = %cb(l)ﬁw (@M=,
p(®) =, V(1 +w-9pa") =1+ 0D (w-dpa™),  (6.22)
admits an expansion of the form

£ =w- 8y — (a0} + 2007 + af"a, + 0p(r") + Q4 (D: ) ) + R

(6.23)
. L _ (D @ _ (M
where the coefficients a;’ = a3 (U, x; w) and a;” = a; " (¥, x; ) are real
valued and satisfy
las? + 1157 Soar et lellssop). NafV 15D S e+ D). Vs 2 so,
(6.24)
and
dx _1
f — = m;’, V® €T, (6.25)
Ti (a3 ' (¥, x; w))3

The function r( e 1)(19 x, &; w) in (6.23) is a pseudo-differential symbol in
the symbol class 50 ¢ cf (2.8)) and admits an expansion of the form

o (9, x, & 0) = Za(“(f} x; @) (278) ¥ x0(8), (6.26)

where y is defined in (2.18) and where for any 0 < k < M, s 2 s,
1)L L
la P Soom e+ lelgEyy. (6.27)

Furthermore, the function p appearing in (6.22) satisfies

L L L
lp = TIEPD o=t = P9 < e o RO, (6.28)
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Let s1 2 s and let 11, [y be torus embeddings, satisfying (6.1) with py =
s1+ouy. Then

o 1
1Aamsl, 1Aa P, 1A1aD,, [Aa"];,,
+1
1A1205 sy Soromr 11 = 2Ny 10 (6.29)
1
IA12a s Soom = llsy 4oy VE=0,..., M,

(iii) Let S > sy where sy is defined in (2.55). Then the maps (MDY= gre Lip(y)-
1-tame operators with tame constants satisfying

M nyet () Ssomr 1+ [l B, Wso+1 <5 <. (6.30)

s+opy

For any given Ly € N, there exists a constant oy (Lo) > 0 so that for any
m €Sy, A,ni,ny € Nwithh < Agandny +ny + Ao £ M + 1, the operator
8$m (D)™ R;}I) (D)2 is Lip(y)-tame with a tame constant satisfying

g
My oy oy &) Ssm €+ Ml Yom S5 S8 (63D)

If in addition, s| 2 sy and (1, 1o are torus embeddings, satisfying (6.1) with
to 2 s1 + oy (ko). then

192 (D)™ AR (DY | B(as1y Sevdtag 11 = @llsi 4oy Gy (6.32)
Proof. Writing IT; as Id + (IT; — Id), the operator 555’ ) (cf. (6.10) ) becomes
LO =w- 9, — <a§°’ag +2(@y")50% +a{”0x + Op(ry”) + Q 4" (D; a)))
+RY) (5(0): w) + R (15(0): ),

where R'P (05(9); @) 1= (1d—T1 1) (03”83 +2(a{”) 2 +a\” 9, +Op(r")). Since
(Id — HL)th = 0 for any & € H?7, the operator Rg,ll) = Rﬁf[) (I5(¢); w) can be
written as

Ri) = (d = 1)(@ + 13} + 2,07 +a” 0, + 0p(r™) ). (6.33)

and is a finite rank operator of the form (6.3) with functions g;, x; € H satisfying
(6.4) (use (6.11), (6.13)).
The estimate (6.30) follows by Lemma 2.1-(iii) and (6.21). Note that

W ow-d,0 (@) =p@aw-dy, p:=0V1+w-d,a"),

and that any Fourier multiplier g(D) is left unchanged under conjugation, that is,
oW g(D) (@)~ = g(D). Using (6.7) and (6.10), we obtain (6.23) where

(0)

(I ._ (1)< a3 _>
= ® , 6.34
4 1+ 9,60 (6.34)
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a” =10 @”), i is of the form (6.26) with a'}) :=1oM (@), and the

remainder R;}I) is given by
1 1 . _
Ry = S OURY @)+ ~oORY @) (@)
1
—— DRy (@)~ (6.35)
1Y

We choose ¢! such that (6.25) holds, yielding (6.18), (6.19). We now verify the
estimates, stated in items (i) and (ii). Recall that we assume throughout that (6.1)
holds. The estimates (6.20)—(6.21) follow by (6.18), (6.19), (6.11), and by using
Lemma 2.1-(iii), Lemma 2.3. The estimate (6.28) on p follows by the definition
(6.22), (6.19), and by applying Lemma 2.1-(iii), Lemma 2.3. Hence, by Lemma 2.1
and the estimates (6.11), (6.13), and (6.28), we deduce (6.27). The estimates (6.29)
are obtained by similar arguments. Let us now prove item (iii). The estimate (6.30)
follows from Lemma 2.1-(iii). Since (®1)*! commutes with every Fourier mul-
tiplier, we get

%<D>'“d><”72§3)<za(¢))(<1>“>)—1<D>"2 = %<D>”‘R§3)<za,a(¢)><0>"2 (6.36)

where I5.4(¢) :=15(¢ + aV(¢p)w). By Lemma 2.1, (5.10), and (6.21) one has

Lip(y) Lip(y)
lles,ells Ss ||L||s+gM

. Moreover, by (6.3), we have
1 _ 1
;cb(”R(fp)(cb(”) 'h= Zjeg+ (n. (Cb(l)gj))L)%;((D(l)Xf)’Vh € L. (6.37)

and by (6.33), the conjugated operator %CID(I)R%I)(CDU))_Ih has the same form.
The estimates (6.31) are then obtained by using (6.36), (6.14), and Lem-
mata 3.5, 3.7, 2.26 to estimate the first term on the right hand side of (6.35) and
by (6.37), (6.30), (6.4) and Lemma 2.24, to estimate the second and third term in
(6.35). The estimates (6.32) are proved by similar arguments. 0O

6.3. Elimination of the (¢, x)-Dependence of the Highest Order Coefficient

The goal of this section is to remove the (¢, x)-dependence of the coefficient
aél)((p, x) of the Hamiltonian operator ES ), given by (6.22)—(6.23), where we
rename ¥ to ¢. Actually this step will at the same time also remove the coefficient
of 83 thanks to the Hamiltonian nature of the subprincipal operator of order 2,

described in Lemma 2.7. We achieve these goals by conjugating the operator E,(Ul )
by the flow @@ (z, ), acting on Li(']I‘ 1), defined by the transport equation

002 (7, ) = M10, (67 (7.9, )PP (1, 9), D0, 9) =1d1, (6.38)

where

B@ (g, x)

b =bP(x, 9, %) 1= ——5——,
1 + IIBX (907 -x)
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and ,3(2) (¢, x) is a small, real valued periodic function chosen in (6.40) below. The
flow d>(2)(r, @) is well defined for 0 < 7 < 1 and satisfies the tame estimates
provided in Lemma 2.28. Since the vector field IT; 0y (b(z)h), h € Hi(Tl), is
Hamiltonian (it is generated by the Hamiltonian % le bPDh2 dx), each @@ (x, ),

0 <1 <1,¢ e TS is a symplectic linear isomorphism of H 1 (T1). Therefore the
time one conjugated operator,

L2 =@ LD(@?)7 0@ .= (1, ¢), (6.39)

is a Hamiltonian operator acting on H{ (T1).

Given the (7, ¢)-dependent family of diffeomorphisms of the torus Ty, x +—>
y =x+ 8P (¢, x), we denote the family of its inverses by y — x = y +
BP0, ).

Lemma 6.5. (Reduction to constant coefficients of the third order term) Let
B (@, y;w) = D1, ¢, y; w) be the real valued, periodic function
1/3
3(2) coy e a—l m3
AP, yiw) =0 (———— 1 (6.40)
(a3’ (. y; @)/

(which is well defined by (6.25)) and let M € N. Then there exists oy > 0 so that
the following holds:

(i) For any s Z sg
Li %2y Li Li
IBP ISP B@ ISP <o e (14 el E). (6.41)
(ii) The Hamiltonian operator Eg ) in (6.39) admits an expansion of the form

LD = w3, — (m30; + aiz)ax + Op(r(g2)) + Q" (D; w)) + R;&,)

(6.42)
where a}z) = a§2) (¢, x; w) is a real valued, periodic function, satisfying
2) ,Li Li
laP 1P <o ar e+ (120, (6.43)

The pseudo-differential symbol réz) = r(gZ) (@, x, &; w) is in SO and satisfies, for
any s 2 s, the estimate

2).,Li Li
0P )G o e+ el Ear).

(6.44)

Lets| 2 sgandletiy, 3 be torus embeddings satisfying (6.1) with iy = s1+opy.
Then

5 2 2
1A12BP s, 1A12BP s, 1A12aP ]y, 1A120p¢ ) 0,510
Ssl,M ”Ll _L2||S1+UM~ (645)
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(iii) Let S > sp;. Then the symplectic maps (P@)EL gre Lip(y)-1 tame operators
with tame constants satisfying

M penet () Ssomr 1+ Il P, Vs +1 <5 <. (6.46)

st+op

Let Lo € N. Then there exists a constant oy (Ag) > 0 so that for any A, ny, ny €
N with A < Ao and ny +ny + rg £ M — 1, the operator Bé‘m (D)”‘RE&I)(D)’”,
m € Sy, is Lip(y)-tame with a tame constant satisfying

.
Mo @y &) Ssibnio €+ I, Vom 5 S 5. (647)

Let s1 2 sy and 1, [» be torus embeddings satisfying (6.1) with po = s +
oy (Xo). Then

2
192 (D)™ AR (DY | Bcars1y Sorno 10t = 2llsi4ap o). (648)

Proof. We use the Egorov type results proved in Section 2.5. According to (6.23),
(6.26), the conjugated operator is given by

ﬁg) — (D(Z)ﬁ((vl)(q)@))—l (6.49)
= -3, - 2Pa" 3@ —20P(a§"),07(@) ! — 2P} a(0?) !

M

=Y @aBa K@) — o 0k (D; @) (@) !
k=0

+02RY (@) + 0P (-9, (@)7).

By (6.40), (6.20), (6.24) and Lemmata 2.1, 2.3, the estimate (6.41) follows.

Using (6.1) with uo > 0O large enough, the estimate (6.41) implies that
18 ||1T(:p+(gﬂ)4 o) SMoo ey ~2, where the constant o (1) is the constant appearing
in the smallness conditions (2.79), (2.107), (2.110). Now we apply Proposition 2.31

to expand the terms

2@a{a} (@)1, 20 (@) 82(@?)7,
@M 317k 0 <k <M+1,

Lemma 2.35 to expand the term ®@ Q’idl”(D; @) (®@)~L and Proposition 2.34
to expand @ (w - 8, (#®@)~!). Using also the bounds (6.11), (6.13), (6.41) one
deduces (6.43), (6.44). By the choice of £ in (6.40) and Proposition 2.31, the
coefficient of the highest order term of <I>(2)a§1)8$ (®@)~1 (and hence of ﬁg )) is
given by

5 1
(11 + B2 (0. P @ ) lye s 5 () = M3

which is constant in (¢, x) by (6.25). Since ®® is symplectic, the operator £§3 ) is
Hamiltonian and hence by Lemma 2.7, the second order term equals 2(m3), 83,
which vanishes since m3 is constant. The remainder CI>(2)R$I)(©(2))_1 can be
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estimated by arguing as at the end of the proof of Proposition 2.31 (estimate of
Rn (T, ¢)), using Lemma 2.28 to estimate ®D (d@)~L the estimate (6.31) for
RE&,), the estimate (6.41) of 8@, ,5 @ and (6.1) with o large enough. The esti-
mates (6.46) follow from (2.73) and (6.41). The bounds (6.45), (6.48) are derived
by similar arguments. O

6.4. Elimination of the x-Dependence of the First Order Coefficient

The goal of this section is to remove the x-dependence of the coefficient
afz) (¢, x) of the Hamiltonian operator [,((02 ) in (6.39), (6.42). To this end, we conju-

gate the operator Eff ) by the variable transformation induced by the flow ®® (z, @),
acting on Li(?l‘l), defined by

-0V (1, 9) = ML (6P (9. 13 V(2. 9)), @D (0) =1dL,  (6.50)

where b (¢, x) is a small, real valued, periodic function, chosen in (6.52) below.
Since the vector field IT J_(b(S) 0 lh), h € Hj (Ty), is Hamiltonian (it is generated
by the Hamiltonian %le 19(3)(3;1h)2 dx), each ®® (z, @) is a symplectic linear
isomorphism of H{ forany0 <7 < landg € TS+, and the time one conjugated
operator,

-1
£ =0 LD (@) 0¥ =0 (1), 6.51)
1s Hamiltonian.

Lemma 6.6. Let b3 (¢, x; w) be the real valued periodic function
I _
p® (¢, x; w):= 3—m38x ! (aiz)(go, X, w) — (a?))x(go; w)),
(a (2)) (p; ) := /T (2)(<p, x; w)dx (6.52)
1

and let M € N. Then there exists oy > O with the following properties:

(i) For any s 2 s,

L L
16D < e+ el By (6.53)

s+opm

and the symplectic maps (®)*! are Lip(y)-tame and with tame constants
satisfying
L
Moy (8) S 1+ NeliEr). (6.54)
(ii) The Hamiltonian operator in (6.51) admits an expansion of the form
LY =w-8, — (m39] +al (9)dx + Op(ry”) + "4 (D; w)) + RS (6.55)

where the real valued, periodic function a; ® (p; w):= (a ) x(@; w) satisfies

3), L L
la® P < e 1R, (6.56)
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and r(§3) = r(()g) (¢, x, &; w) is a pseudo-differential symbol in S° satisfying for

any s Z so,
3),,Li Li
0PGRS <o 6 + el (6.57)

s+op
Lets) 2 soandletiy, [ be torus embeddings satisfying (6.1) with 1y = s1+o .
Then

3
181265y, 18126 sy Sorm i = 2l 4o (6.58)

3
|A120p(6 ) 0,510 St 11 = 2y 4oy
(iii) Let S > sy, Ao € N. Then there exists a constant op(Ag) > 0 so that for
anym € Sy and A, ni,ny € Nwith A < hgandny +ny+ro S M — 1, the
operator (D)™ 8(’;”1 Ry (D)™, is Lip(y)-tame with tame constant satisfying

Lip(y)
mdtﬁm (D)’”RE&)(DWZ (S) S,S,M,)Lo & + ”[”S‘H’M(AO)’ VEM g N § S (659)

Let s1 2 sy and let 11, 1y be torus embeddings satisfying (6.1) with py =

s1 + oy (Ag). Then
192 (DY ARG (DY a1y Sor.tng 11 = 2llsi oy o). (6.60)
Proof. The estimate (6.53) follows by the definition (6.52) and (6.43), (6.20). We

now provide estimates for the flow

() = exp(t 1167 (¢, x; )3 '), Yz e[-1, 11

By (2.20), Lemma2.10, and (6.53), one infers that forany s = so, |11, 6™, '[MP7)

Ss.m €+ IILIIsLjf(%). Therefore, by Lemma 2.13, there exists o3y > 0 such that, if

~

(6.1) holds with pg = oy, then, for any s > s,

sup 00 (1) —1dI5PY) < e+ el (6.61)

stop
Tel[-1,1]

The latter estimate, together with Lemma 2.18, imply (6.54).
By (6.42) and using Lemma 6.3 for the operator Qk_dlv (D; w), one has that

VL2 (@) = ., — 2 (m38] +aV8,) (@) — 0V (D; w) + R + R

where
Ry = — 2P 0prr ) (@) + 0D (w - 8,(0)7)
M
— @9 — 1)1 (Y P @a ) @)
k=1

— %c"%}(w)a;k) (@) —1a)), (©:62)
k=1

Ry = 2ORP (@) — (@ —1d )Ry (@, 04 (@)~
— Ry, Q) (@)~ —1dy).
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Note that R(()I) is a pseudo-differential operator in O P S? (cf. Lemma 2.13). More-
over, by a Lie expansion and using (6.50), one has

) (m30} +a?8,) (@)™ = m30} + a0, + ML6D 07" m3d) + a0,
1
+/ a —r)<1>(3)(r)[1'[lb(3)8;1, [nlb@)a;l,maj +a{2>3x]]q><3)(r)*1dr
0

=m38} + (af” —3m3bP)o, + R,
R = =3m3b® — m3b.07" + (M0, aP o] + (M1 — Id)bpDa; !, mydd]

XxXx-x
1
+f 1- r)q><3>(r)[mb<3>a;1, [mb<3)a;',m3aj +a{2)axﬂc1><3>(r)—‘ dr e OPS°.
0
(6.63)

Note that R(()”) is also a pseudo-differential operator in O PS° (cf. Lemma 2.13).
Hence, (6.62)—(6.63) and the choice of b in (6.52) lead to the expansion (6.55)
with R given by (6.62) and

op(ry) = =Ry + Ry (6.64)

The estimate (6.56) follows by (6.24).

The estimate (6.57) on the operator Op(ré” ) follows by the definitions (6.62),
(6.63), (6.64), by applying the estimates (6.20), (6.43), (6.44), (6.53), (6.61), (2.20),
(2.21), (2.22), (2.24), (2.26) (using the ansatz (6.1) with uo large enough). Next
we estimate the remainder Rgsl), defined in (6.62). We only consider the second
term in the definition of Rjgl), since the estimates of the first and third terms can
be obtained similarly. We recall that the operator R (Q*??: w) is ¢-independent.
Form € Sy and A, ny,ny € Nwith A < Agand ny +ny + A9 < M — 2, one has

(D)™}, (@ — 1Ry QM @) (@) ") (D) (6.65)
D Cuan(D)Y R (@) —1d )R (O @)3)2 (@)~ (D)™
A+FA2=A
= Y Cun(mop @ —1anp)™)
A+Ar=A

(DY Rur (@44 @) (D)) ((D) ™02 (@)~ (D)™).
By the estimates (2.21), (2.24), (6.61) and Lemma 2.18, one has

- L L
() o UDY ok (@) —1d (DY 15T < g e 4 )P

gjt(D)"law1 (@3 —1d (D)™™ s+op (o)’

< —np ah2 3)\— Dy™2 LlP(V) < Lip(y)
N O P (o e AT S R L ANV B i

and therefore, by Lemmata 2.16, 6.16 and using (6.1), the operator (6.65) satisfies
(6.59). The estimates (6.58), (6.60) follow by similar arguments. O
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6.5. Elimination of the ¢-Dependence of the First Order Term

The goal of this section is to remove the ¢-dependence of the coefficient af) (o)

of the Hamiltonian operator Lg ) in (6.51), (6.55). We conjugate the operator ES )
by the variable transformation ®® = &® (),

@D w) (@, x) = wlp, x +bD(p)), (@) 'h)(p, x) = hip,x —bP (),

where b¥ (¢) is asmall, real valued, periodic function, chosen in (6.67) below. Note
that ®® is the time-one flow of the transport equation 9; w = b (¢)d, w. Each
@@ (p) is a symplectic linear isomorphism of H? (T}), and hence the conjugated
operator

-1
Ligf) = ¢(4)Li$) (<I>(4)) (6.66)
is Hamiltonian.

Proposition 6.7. (Reduction of L, to constant coefficients up to order zero) Assume
that w € DC(y, T) (cf. (4.4)). Let p® (@) be the real valued, periodic function

1

P (p; )= — (w- BW)*I(aP)((p; ) —my), mp:= G

/ a’ (@ w)dy  (6.67)
TS+

and let M € N. Then there exists oy > O with the following properties:

(i) The constant my and the function b™® satisfy
I [P <pp ey 2 (6D <oy e+ GRS Vs 250 (6.68)
(ii) The Hamiltonian operator in (6.66) admits an expansion of the form
LY = w0, — (m303 + mid, +Opri?) + 0" (D; w)) + R (6.69)

where m3, given by (6.18), satisfies |m3 + 1|HP0) <, ¢ (cf (6.20)), and

ré4) = r(()4) (¢, x, &; w) is a pseudo-differential symbol in S° satisfying

4). Li Li
0p(rsMIEPY <o e+ IEPD, s = 5o (6.70)
Lets| 2 sgandletiy, 3 be torus embeddings satisfying (6.1) with iy = s1+op.
Then

4
|Ami], A1 s, Soom = llsy 1oy 671)

4
|A120P(V(() Nosro Ssvm et = 2llsy oy

(iii) Let S > sp. Then the maps (®®)E! are Lip(y)-tame operators with tame
constants satisfying

M a1 () Ssour 1+ [l B), ¥sg S5 < 6. (6.72)

s+op
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Let Lo € N. Then there exists a constant oy (Ag) > 0 so that forany A, ny, ny €
Nwith A < hgandny +ny+2rg < M — 3, the operator Bé‘m (D)”IREC,})(D)’”,
m € Sy, is Lip(y)-tame with a tame constant satisfying
L
My oy pyre ) SM0 €+ I You 5 S 5. (673)

Let sy 2 sy and let 11, 1 be two tori satisfying (6.1) with po = s1 + oy (Mo).
Then

4
192 (D)™ AR (DY | B(as1y Sorbtrg 11 = @llsi 4oy (6.74)

Proof. The estimates (6.68) are direct consequences of (6.56) and of (6.1). Note
that

Y ow- 3,0 (@) =w 8, — (0-3,6Y)d,.

A straightforward calculation then shows that for any pseudo-differential operator
Op(a(p, x, §)),

*@0p(a(p, x.£)(®P) " = Op(alp, x + ¥ (p), £)).
Hence, by (6.55) and the definition (6.67), one obtains (6.69) with

Op(rg” (¢, %, 8)) = Op(rg” (0, x + 5P (9). £), Ry = IR (@)~
(6.75)

The estimates (6.70) for Op(r(()4)) follow from Lemma 2.1, using (6.68), (6.57), and

(6.1). The estimates (6.73) for the operator Rﬁ) ared obtained from (6.59), (6.68)
arguing as in the proof of the estimates of the remainder Ry (7, ¢) (with 8 given
by b™) at the end of the proof of Proposition 2.31. The estimates (6.72) follow by
Lemma 2.1 and (6.68). Finally, the estimates (6.71), (6.74) are obtained by similar
arguments. 0O

7. KAM Reduction of the Linearized Operator

The main result of this section is Theorem 7.11, stating that the assumptions
A-I concerning the almost-invertibility of £, in Section 5 are satisfied. The key
ingredient for its proof is Theorem 7.3, which affirms that the Hamiltonian operator
cﬁ;‘ ) in (6.69), renamed Ly in (7.1), can be brought in almost diagonal form. This
completes the diagonalization of the Hamiltonian operator L,,, defined in (6.7),
which was started in Section 6. The Hamiltonian operator Ly is diagonalized by
applying a KAM-reducibility iterative scheme, developed in [10], for perturbations
of diagonal operators which are modulo-tame (cf. Definition 2.19). In Lemma 7.1
we prove that the initial remainder R is indeed modulo-tame. We recall that the class
of modulo-tame operators is closed under the operations coming up in the KAM
reduction procedure, namely: sum and composition (Lemma 2.21); projections
(Lemma 2.23); solution of the homological equation (Lemma 7.5).
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As in Section 6, we again consider in the sequel torus embeddings i(¢) =
(¢,0,0) 4+ t(p) with ¢(-) = (- ; w), w € DC(y, 1) (cf. (4.4)), satisfying (6.1),
||L||llp(y) < 8)/_2 8)/_2 < 8(S), where po:=pno(r, S+) > s and S > g are
sufficiently large, 0 < §(S) < 1 is sufficiently small, and 0 < y < 1.

Recall that by (6.69), the operator ij‘ ) s given by w - 9y — (m3 8; + mdy +
Op(r, (4)) + Q]idl”(D; a))) + ng and acts on H7 . In view of the reduction scheme,
implemented in this section, it is useful to rename it to

Lo:=w - dy +iDp + Ro, (7.1)
where w € DC(y, 1) (cf. (4.4)) and, in view of (6.9), (3.13), (4.3),

Do :=diag;cgt (1)), w:=m3Q2mj)* —mi2nj —q;(w),
q;(®) =" (v(),0) — 27)j)’, (7.2)
Ry:= — Op(rg?) + RS} (7.3)

We recall that m3 : 2 — R is given by (6.18) and m : DC(y, ) — R by (6.67).
Furthermore, note that ;° ;= ,u(j). for any j € S*. By (3.67) we have

sup |llg; 1™, sup |jllg;I"" < 1, (7.4)
jeSt jeSt
and, by (6.20), (6.68) and 8)/_3 <1,
= uSI® Sp 17 = %1, Vi e st (7.5)

The operator Ry satisfies the tame estimates of Lemma 7.1 below. We first fix the

constants
b:=[al]4+2eN, a:=3t1+1, 11:=27t+1, (7.6)
wbd)=so+b+oy+ou® +1, M:=2(s+Db)+4, '

where [a] denotes the integer part of a and the constants oy, oy (b) are the ones
introduced in Lemma 6.7. The integer M is related to the order of smoothing of the

remainder Rg}) in (6.69) (cf. (6.73)). Note that M only depends on the number of
frequencies |S4 | and the diophantine constant 7.

Lemma 7.1. Letb and M be given as in (7.6) and S > sy; with sy given by (2.55).

(i) The operators Ry, [Ro, dx], 9, [Ro, 0x], BSO'HORO, S°+b[Ro, O], m € Sy, are

Lip(y)-tame with tame constants

MO(S) = rInIgé)i {SUIRO(S), m[Ro,ax](S)a ma;%Ro(s)’ majp{r)ﬂ [Ro,ax](s)}’ (77)

My (s, b) := ;lré%)i {Dﬁ fo+og (s) M. ;Oner[RO,BX](S)}, (7.8)
satisfying, for any sy < s S,
L
Mo (s, b) :=max(Mo(s), Mo (s, b)) s & + |00 (7.9)

Assuming that (6.1) (ansatz fort) holds with vy = sp+(b), the latter estimate
yields Mo(sp, b) Ss ey 2.
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(ii) For any torus embeddings 11, 15 satisfying (6.1), one has for any m € Sy and
any . € Nwith A <so+b

192 AvRollBremy. 135 [A1R0. d:llBemy < It — llsy-+uw)-

(7.10)
Proof. (i) Since the assertions for the various operators are proved in the same
way, we restrict ourselves to show that there are tame constants masoer[Ro ol (s),

Pm Bx

m € S4, satisfying the bound in (7.9). The two operators Op(r(g4)) and Rgé,) in
the definition (7.3) of Rg are treated separately. By Lemma 2.18, foranym € Sy,
the operator B(f,f’,fb[Op(ré4)), 31 = —Op(a0+a, ré4)) is Lip(y)-tame with a

tame constant satisfying for any so < s < S,

(231 Lip(y)
< so+b (4))
Mo 210pei).00 &) s 0p(5ur; 0,50
Lip(y)
< lop® (7.11)
Ss [Op( ) 0,5+s0+b+1,0
(6.70)

Lip(y)
Ss &Il inridoy-

Next consider, for any given m € S, the operator 8;‘,’”+b[7?,§;), dyx]. Recalling
that (D) denotes the Fourier multiplier with symbol (£), one has

a3 PIRY, 8c1 = a0 PR (D)D) o, — (D)D) PR,

Since (D)_1 0y admits a tame constant £m< D)4, (s) bounded by 1, it follows
by (6.73) that, for any sy < s < S,

L
M sy 1) s &+ el 2. (7.12)
Combining (7.11), (7.12) and recalling the definition of u(b) in (7.6) one

infers that 8é?n+b[Ro, J,] admits a tame constant Emaxo+b (s), satisfying
Pm

the claimed bound.
(i1) The estimate (7.10) follows by similar arguments using (6.71) and (6.74)
with sy =sy. 0O

[Ro,0x]

We perform the almost reducibility scheme for L along the scale
Nopi=1, Ny:=NL, v=0, x:=3/2 (7.13)

(with Ny specified in Theorem 7.2 below), assuming that at each induction step the
second order Melnikov non-resonance conditions (7.18) hold.

Theorem 7.2. (Almost reducibility) There exists T :=7(t, S;+) > 0 so that for any
S > sy, there is No := No(S, b) € N, satisfying

NEMo(sp, by~ <1, (7.14)

so that the following holds: for any v € N,
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(S1),, There exists a Hamiltonian operator L, acting on H{ and defined for
w € Q) of the form

Ly:=w-3, +iDy + Ry, D, :=diagjeslu;, M; e R, (7.15)

where for any j € S*, /L‘}, also denoted by M‘]’ (w) or ,u; (w; v), is a Lip(y)-
function of the form

1 (@) = pf(@) + r} (o), (7.16)
with uj.o) defined by (7.2) and
plp = MY S C(S)ey (7.17)

Ifv = 0, the set of frequency vectors Q) is defined to be the set Q) :=DC(y, T),
and ifv 2 1,
1j* =77

Q{:Qg(L):={weQ{_l o b+t = 2y i

SV S N jl e Si}_

(7.18)

Note that sz/ﬂ c Q) for any v = 0. The operators R, and (8(/,)va are

Lip(y)-modulo-tame with modulo-tame constants
M () =MWz, (5), W (5. ) =M, o (5). (7.19)
satisfying, for some Cy(sp,0) > 0 and any s € [sy, S,

M (5) < Culsy, DIMo(s, DIN, %, ME(s, D) < Culspr, D)Mo (s, B)Ny—g
(7.20)

with Ny_1 given by (7.13). Moreover, if v 2 1 and w € QY there exists a
Hamiltonian operator W, | acting on HY, so that the corresponding symplectic
time one flow

®,o = exp(Wy_1) (7.21)
conjugates Li,_1 to

Ly = ®_1Ly_1®, . (7.22)
The operators W, _1 and (8(/,)}3\1/\,,1 are Lip(y)-modulo-tame with modulo-
tame constants satisfying, for any s € [sy, S1, (with 11, a defined in (7.6))

C(sm,b)

MG, () = NI NS0, B,

Clsm. D) .
Clom D) o N s b). (7.23)

#
m(aq})b W, (S) é
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(S2), For any j € S*, there exists a Lipschitz extension ﬁj Q2 — Rof

u‘} : QY — R where ﬁ? = m3Q2nj)? — m2nj — qj(w) (cf. (1.2)) and

my @ Q — R is a Lipschitz extension of my, satisfying i |HPY) < g2

(recall that by (6.18) m3 is defined on Q); for any v 2 1,
15— 7 MR S 9E () S Mo, BIN.

If needed, we indicate the dependence of /7; on the torus embedding by writing
ﬁ‘j{(w; L) or ﬁ‘]’.(t).

(S3), Let 1y, [ be torus embeddings satisfying (6.1) with o = sy + u(b).
Then, for all v € Q' (11) N QY (1) with y1, y» € [y/2,2y]and0 < y < 1/2,
we have

1Ry (t1) = Ro @ IBeaemy Ss Ny 2l — 2llsy+um) (7.24)
11{8p)° Ry (11) = R Bzzmy Ss No—tlltt = 2llsytuey-  (7.25)
Moreover, if v > 1, then for any j € ST, r}’, given by (7.16), satisfies

[ @) =} @) = ¢ @) =7 D] S HR@) = Ro@)lBaem)»
(7.26)

i () = rj @) Ss = @llsy+um)- (7.27)
(S4), Let i1, i be torus embeddings as in (S3), and 0 < p < y /2. Then
CON; il —llsy+pm S p = Q) S QY (). (7.28)

Before proving Theorem 7.2 in the subsequent section, we discuss the following
application. Theorem 7.2 implies that for any n > 1, the symplectic invertible
operator

n
U, =®,_10...0P), we mQK, (7.29)
v=0

almost diagonalizes Lo, meaning that (7.32) below holds. Note that since Q) c
Q)| (cf. (7.18)), one has

ey =qal. (7.30)
By the same arguments as in [10], one infers the following theorem from Theo-

rem 7.2.

Theorem 7.3. (KAM almost-reducibility) Assume the ansatz (6.1) with po = s+
w(o). Then for any S > sy there exist No:= No(S,b) > 0, 0 < 3g:=650(S) < 1,
so that if

NEey ™ < 6, (7.31)
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with T = T(t, S4) given by Theorem 7.2, the following holds: For any n € N and
win ), the operator Uy, introduced in (7.29), is well defined and L, :== U, L()Un_1
satisfies

Ly =w- 0y +iD, + Ry (7.32)

where D, and R,, are defined in (7.15) (with v = n). The operator R, is Lip(y)-
modulo-tame with a modulo-tame constant
_ Li

ML (5) Ss Ny2y(e + P02y, Yoy S s <8 (7.33)

Moreover, the operator L,, is Hamiltonian, Uy, Un_1 are symplectic, and Ufl —1d;
are Lip(y )-modulo-tame with a modulo-tame constant satisfying

_ Li
M ) S5y ING e G Yew SsES. (1.34)

Here 1d | denotes the identity operator on Li('ﬂ‘l) and 11 is defined in (7.6).

7.1. Proof of Theorem 7.2

Theorem 7.2 is proved by induction. We first prove the base case v = 0 and
then the induction step.
Base case v = 0. The items (S1), ..., (S4), are proved separately.
PRroOF OF (S1),. Properties (7.15)—(7.17) for v = 0 follow by (7.1)—(7.2) with
r9 = 0. Furthermore (7.20) holds for v = 0 in view of the following lemma, which
can be proved by the same arguments used in the proof of Lemma 7.6 in [10].

Lemma 7.4. 9005 (s), M5 (s, b) Sp Mo(s, b) where Mo (s, b) is defined in (7.9).

PRrROOF OF (S2),. For any j € S+, ,u?. is defined in (7.2). Note that m3(w) and
qj(w) are already defined on the whole parameter space 2. By the Kirszbraun
extension Theorem for Lipschitz functions (which is a particular case of the Whitney
extension Theorem as recorded in [1, Appendix B], see also Theorem 3, page 174
in [31]) and (6.68) there is an extension m; on © of m| satisfying the estimate
|71 |MPY) < g1 =2. This proves (S2),.

PROOF OF (S3)(. The estimates (7.24), (7.25) at v = 0 follow by arguing as in the
proof of (S3), in [10].

PROOF OF (S4). By the definition of Qg one has Qg (t1) = DC(y, t) € DC(y —
p,0) =9 ")

Induction step. In this paragraph, we describe how to define ¥,,, @, L, etc., at
the iterative step. To simplify notation we drop the index v and write + instead of
v+ 1. So, for example we write L for L), Ly for L4, W for ¥,,, N for N, imﬁ(s)
for 9:n§ (s), etc. We conjugate L by the symplectic time one flow map

D := exp(V) (7.35)
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generated by a Hamiltonian vector field W acting in /. By a Lie expansion we
get

L0 = d(w-d, +iD)O ! + PRO!

1
=w-0y+1D—w-dp¥ —i[D, W]+ TINyR + HﬁR — / exp(tV)[R, V]exp(—t¥)dr
0

1
+/ (- r)exp(r\ll)[a) -9, +i[D, W1, \I—']exp(—r\l/)dt
0
(7.36)

where the projector 1y is defined in (2.15) and Hﬁ = Id; — I1y. We want to
solve the homological equation

—w-0,¥ —i[D, W]+ [IyR =[R] where [R] :=diagj€§LR§(O). (7.37)
The solution of (7.37) is
j/
R} (0)

7
w5 (0) == (w- €+ pj—pujr)
0 otherwise.

VL, j, j) # O, ). ), WEN, j,j eSt

(7.38)

Note that the denominators in (7.38) do not vanish for w € Qz 4 (cf. (7.18)).

Lemma 7.5. (Homological equations) (i) The solution \V of the homological equa-
tion (7.37), given by (7.38) for w € Ql)j-'rl’ is a Lip(y)-modulo-tame operator with
a modulo-tame constant satisfying

MG () S Ny ' MEGs), M, 1y, () SNy M), (739)

where 11 :=2t + 1. Moreover ¥V is Hamiltonian.
(ii) Let [y, 12 be torus embeddings and define A1pV =W (13) — V(). If y/2 <
V1. v2 £ 2y < Lthen, forany o € Q) (1)) N Q)% (12),

ALY smE=w) S CNZTYy 2 (IIR@IIB@mn 10 — 2llsy+uem + HARRIB@EE), (7.40)
11(8)° A2 W1l Beazony So N2y 2 (1100) PR Berroay 111 — 2l s 4oy + 1180} A12RIl Beazony )-
(7.41)

Proof. Since R is Hamiltonian, one infers from Definition 2.5 and Lemma 2.6-(iii)
that the operator W defined in (7.38) is Hamiltonian as well. We now prove (7.39).

Letw € Q]v/+l‘ By (7.18), and the definition of W in (7.38), it follows that for any

(L, j, j') € Z5+ x St x S+, with [¢] £ N, (¢, j, j) # (0, j, ),
w0 S 07y IR (0] (7.42)
and

AWR) (0)

3gjjr (1)

Awdyjjr

AWl (0) = —_—
@ 80jj (@1)8¢jj (02)

— R (€ w))
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5@']/(60) =i(w- L+ nj— /Lj/).

By (7.5), (7.16), (7.17) one gets |Aude;y| < ((6) +1j° — jDlwr — wnl, and
therefore, using also (7.18), we deduce that

18097 (O] S (0 YT AR (O] + (07 Ty 2R (6 w)l|wr — .
(7.43)

Recalling the definitions (2.33), (7.19), using (7.42), (7.43), and arguing as in the
proof of the estimates (7.61) in [10, Lemma 7.7], one then deduces (7.39). The
estimates (7.40)—(7.41) can be obtained similarly. O

By (7.36)—(7.37) one has
Ly =®LO ' =w- 3, +iD}y + Ry
which proves (7.22) and (7.15) at the step v + 1, with
iD, :=iD + [R],

1
Ry = HiR — /0 exp(t¥)[R, Y]exp(—tV¥)dr (7.44)

1
+/ (1 — D)exp(tW)[TIyR — [R], ¥]exp(—7 W) dr.
0

The operator Ly has the same form as L. More precisely, D is diagonal and Ry is
the sum of an operator supported on high frequencies and one which is quadratic
in ¥ and R. The new normal form D4 has the following properties:

Lemma 7.6. (New diagonal part) (i) The new normal form is
Dy =D —i[R], Dy:=diagjegip],
ph=pj+rjeR, rj=—ir}(0), VjeS" (7.45)
with
who=—utd I = MY =) < 9 (s).
(ii) For any tori [} (), I»(w) and any w € Q' (11) N QY (12), one has
lrj() —rj)| S IARRIIBEHSM)- (7.46)

Proof. By the definition (7.19) of M¥(sp7) and using (2.30) (with 537 = s1) we
have that |u;r — py|HPO) < |R'j’. (0)|MPW) < 90 (s ). Since R(g) is Hamiltonian,
Lemma 2.6 implies thatr; = —iRi: 0),j e St are odd in Jj and real. The estimate

(7.46) is proved in the same way by using |A]2R§ 0)] = ClllARR|IBEsM). O
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Induction step. Assuming that (S1),—(S4),, are true for a given v = 0, we show in
this paragraph that each of the statements (S1),.+1, (S2)y+1, (S3)y+1, and (S4), 41
hold.
PrROOF OF (S1),41. By Lemma 7.5, for any w € Qg_H, the solution W, of the
homological equation (7.37), defined in (7.38), is well defined and that by (7.39),
(7.20), it satisfies the estimates (7.23) at v + 1. In particular, the estimate (7.23) for
v+ 1, s = sy together with (7.6), (7.14) imply that

M, (s) So NIN 2y~ Mo (sp. b) < 1. (7.47)

v—1
By Lemma 2.22 and using again Lemma 7.5 one infers that
miil(gM) S

M gt 630) S 1+, 1wy, (500) S 1+ Ny ™' (o, ),

Wiﬂ (s) S1+ sz], (5) So 1+ NIy~ (s), (7.48)

M gyt (O S 1Dy oy, () + Dy (DI ey, (S0,
(7.14),(7.20),(7.39)
< 1+ Ny~ (s, o) + NZUN, 1o (s).

By Lemma 7.6, by the estimate (7.20) and Lemma 7.1, the operator D, is diagonal

and its eigenvalues ;L';.“ : QL/+1 — R satisfy (7.17) at v 4 1.
Next we estimate the remainder R, defined in (7.44).

Lemma 7.7. (Nash—Moser iterative scheme) The operator R, 1 is Lip(y)-modulo-
tame with a modulo-tame constant satisfying

ME, | (5) < NP (s, b) + NIy~ ()00 (s). (7.49)

The operator (8(,,)va+1 is Lip(y)-modulo-tame with a modulo-tame constant sat-
isfying
M, (5. b) Sp M (5. b) + N7y~ 19 (5, )M (51)
+NIy I (500, YD (). (7.50)

Proof. We treat each of the three terms in the definition (7.44) of R,,1| separately.
By Lemma 2.23 and the definition (7.19) of E)JTE (s, b), we have

DT(I;_[# R = N"_bm?&p)bm () = N, P2 (5. ).
o j” < ot " (7.51)
(3, )°T1%, £ (s) = E)ﬁ(aw)bRu(s) =M (s, b).
‘We now estimate the second term G, := — fol exp(tW))[Ry, ¥, Jexp(—tW¥,)dT in
(7.44). By applying (7.39), together with the composition Lemma 2.21, one obtains
that
mﬁ

[Ro,

#
im(&,z)

v, () S Ny O () (s,

7.52
(8) S Ny 1O (5, D)L (501) + D (5. b)zmﬁm).( )

PRy, W]
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Note that the estimates (7.48) also hold for the maps exp(£tW¥,), uniformly in
Tt € [—1, 1]. Therefore, taking into account (7.52) and (7.48), Lemma 2.21, the
induction hypothesis for the estimate (7.20), the smallness condition (7.14) (with
T large enough) and (7.6), Ny, 193?5 (s M);/_1 < 1, one concludes that

ME (5) S NIy L ()90 (s),

7.53
My o, () S N1y~ (I (s, DI (s + DN (51, DY (s)). (729
() n

The estimate of the third term in (7.44) is obtained in a similar way. Together with
(7.51) and (7.53) it yields (7.49)—(7.50). O

The estimates (7.49), (7.50), and (7.6), now allow us to prove that (7.20) holds
at the step v + 1.

Lemma 7.8. M’ (s) < Cy (s, 0)Mo(s, )N, and M

v+1(s, b) g C*(EM, b)
Mo (s, b)N,.

Proof. By (7.49), the induction hypothesis for the estimate (7.20) we get

ME () < Culspr, DIN;PN,_1M(5, b) + CCulspr, D) NIy~ Mo (s, )Mo (531, L)N; 23
< Cy(50. )N, 2 Mo (s, b)

where for the latter inequality we used the definition (7.6) of the constants and the
bound (7.14) with T and Ny := Ny(S, b) > 0 large enough. Similarly, by (7.50),
(7.20),

M?, | (5,b) < Culso, DYN,—1Mo (s, B) + CCuuls0, D) NI N =5y~ 190y (s, )Mo (s, b)
< Cy(s0, D)N Mo (s, b)

where for the latter inequality, we again used (7.6) and (7.14) with Ny := Ny (S, b) >
0 large enough. O

PROOF OF (S2),1. By Lemma 7.6, for any j € S+, u‘}“ = ,u; + r; where

|z |MP() < Mg (spr, )N, 2. Then (S2),11 follows by defining ﬁj“ =Y+ Y
where f; : € — R is a Lipschitz extension of r; (using again the Kirszbraun
extension theorem).

PrROOF OF (83),+1. The proof follows by induction arguing as in the proof of

(S2)y+1.
PrOOF OF (S4),+1. The proof is the same as that of (S3),+; in
[2, Theorem 4.2]. O

7.2. Almost-Invertibility of L.,

By (7.32), for any w € Q). we have that Lo = Un_lL,, U, where U, is defined
in (7.29) and thus

Lo=V "LV, V=0, Y ...00, (7.54)

where L, is the operator introduced in (5.26) and ®W . @ are the transfor-
mations constructed in Lemmas 6.4, 6.5, 6.6, and respectively, Proposition 6.7.
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Lemma 7.9. There exists 0 = o(t,Sy) > 0 such that, if (7.31) and (6.1) with
wo = sy + u(o) + o hold, then the operators V,j“ satisfy forany syy < s < S the
estimate

+1, ,,Lip(y) Lip(y) —1y, 1 Lir(») Lip(y)
IVERITPY <s AN + NGy~ R0 IklER ). (7.55)

Proof. The claimed estimates follow from the estimates (6.30), (6.46), (6.54),
(6.72), and (7.34) together with the Lemmata 2.16, 2.17,2.20. O

We now decompose the operator L, = w - dp + 1D, + Ry, in (7.32) as
Ly = £ +Ry + Ry (7.56)

with

Ly =Tk, (0, +iDy) g, + Mg, Ry :=Tg (-3, +iD,) Mg, — Mg .

n

(7.57)

where the diagonal operator D, is defined in (7.15) (with v = n), K, = Kgn
is the scale of the nonlinear Nash—Moser iterative scheme introduced in (5.28),
and HJIEH = Id| — Ik, with Ik, denoting the projector in (2.2). The diagonal
constant coefficient operator £ can be inverted assuming the following standard
non-resonance conditions:

Lemma 7.10. (First order Melnikov non-resonance conditions) Let n > 0. Then
forany w in
A=A 0 ={oeQlo- L+ T Z2y1j )77, VIt|SK,, jeSt],
(7.58)

the operator £ in (7.57) is invertible and

— Li — Li
e gl <y Mgl B (7.59)
By (7.54), (7.56), Theorem 7.3, estimates (7.59), (7.60), (7.55), and using that,

forallb > 0,

Li — Li Li Li
IR Al < K PIRIERY) 50 IRERIS™Y) < IRIESY, (7.60)

we deduce the following theorem, stating the assumption A-I on the almost-
invertibility of £, in Section 5:
Theorem 7.11. (Almost-invertibility of L) Assume the ansatz (6.1) with g =
sy + u(b). Let a,b, M as in (7.6), and S > sy;. There exists 0 = o(7,S4) > 0
so that, if (7.31) and (6.1) hold with g = sy + u(b) + o, then, for anyn > 0
and any

weQ =2 0= ONA_ O (7.61)

(see (7.18), (7.58)), the operator L, defined in (5.26), can be decomposed as

Lo=L5+Re+RE L5:=V,"&Vu, Ru:=V, 'RV, RE:=V, 'R}V,
(7.62)

where L is invertible and satisfies (5.32) and the operators R, and ’R,j; satisfy
(5.30)—(5.31).
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8. Proof of Theorem 1.1

The goal of this section is to prove Theorem 1.1. In Section 8.3 we deduce
Theorem 1.1 from Theorem 4.1. The proof of the latter theorem is also given
in Section 8.3, relying on the Nash—Moser Theorem 8.1 and its Corollary 8.4 in
Section 8.1, and the measure estimate of Proposition 8.7 in Section 8.2.

8.1. The Nash—Moser Iteration

The main result of this section is Theorem 8.1 which implements a Nash—
Moser iteration scheme by providing a sequence of better and better approximate
solutions of the equation F, (¢, {) = 0 (cf. (4.6)) under the assumption that
satisfies nonresonance conditions, that is w belongs to the sets G, defined in (8.10).
A key ingredient into its proof is Theorem 5.7, concerning the existence of an
approximate right inverse of d,  F,, (¢, ¢).

To describe the iteration scheme, first recall that Lé, = Lé (TS+, RS+) (cf. (4.9))

and Li = L%(TS+, Li(']I‘l)) (cf. (1.24)). We then introduce finite-dimensional
subspaces of Lé X Lé X Lf_, defined for any n € N as

By i={up) = (©,y, w)(g), ©=T1,0, y =T,y, w=M,w}

where, by a slight abuse of notation, IT,, : Li — Ny>oH7] denotes the projector
[Tk, , introduced in (2.2),

n’
M, : w= Z w&jel(hp—}—anx) = Tw:= Z wzije1(£-(p+2ﬂjx)’
(e7Pr jest €DIZK,

8.1

with K, = K())(n, n > 1, (cf. (5.28)) and K¢ > 1 a constant chosen in Theorem 8.1
below. We also denote by IT,, the L?— orthogonal projector on L2, Lé — Ny=0HZ,

V=D veelt? > I, (v) = ng&l veett?. The projectors I1,, n > 0, are
smoothing operators on the Sobolev spaces H} (and H(;), meaning that IT, and
1'[,% :=1d — I, satisfy the smoothing properties (2.3).

For the Nash—Moser Theorem 8.1, stated below, we introduce the constants

o :=max{oy,0n}, b:=[al+2, a=3n+1, rn=2t+1, x=3/2,
(8.2)
ar:=max{12c + 13, pt +3 4+ x(u(b) +20)}, az ::)(_lal — u) — 20,
(8.3)
2
bi:=a;+ul) +30c+4+ 3“1’ m1:=3(umd)+20+2)+1, S:=sy+by,
(8.4)
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where o7 is defined in Lemma 4.3, o, in Theorem 5.7, a, i (b) in (7.6) , and s, in
(2.55). The number p is the exponent in (5.27) and is requested to satisfy

x=3/2 1

pa>(x—-—D-ai+x-(0+4 §a1+%(5+4). (8.5)

In view of the definition (8.3) of a1, we can define p := p(z, S;) as

. 126 4+ 17 + x - (u(b) + 25)
= - .

(8.6)

We denote by ||W||1“ip<y) = max{||t||£ip(y), |¢|MPX)} the norm of a map
Wi=(,0):Q— (H(; X H; X Hj_) xRS, @ W) = ((0), Z(w)).

Theorem 8.1. (Nash—Moser) There exist 0 < 89 < 1 (small) and Cy > 0 (large)
so that if

1
n=max{pT +3, 40 +4+a1}, y:=¢", O0O<a<—,
17
Ko:i=y™', eKy?=¢'"""2 <4, (8.7)

where T :=T(t, S4) is defined as in Theorem 7.2, then the following holds: for any
neN

(P1),, (ESTIMATES IN LOW NORMS) Let Wy := (0, 0). Ifn > 1, then there exists
a Lip(y)-function

Wy i RS = Byt X R, 0 > Wy (@) 1= (@, &),
satisfying

~ Li _
IWall s Y e S 772 (8.8)

Let 0,, =Upy + Wn where Uy := (¢, 0, 0, 0). The difference I:I,, = Un — ljn_l

satisfies
LI s Sev™ =1, IR s Sev 2K, S 2 2),
(8.9)
where K, = K& (cf. (5.28)).
(P2),, Define
Go:=9, Gp:=Gu1N R ({@u—1) Yn>1, (8.10)
where Q) (i,_1) is defined in (7.61). Then for any € G,
IFu @50 < CueKy®, Kop:i=1. (8.11)

(P3), (ESTIMATES IN HIGH NORMS) ||W,,||L‘j£$’gl < C*sK,’fll, Yo € G,.
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Proof. The theorem can be proved in a by now standard way (cf. [1,10]). We
argue by induction. To simplify notation, we write within this proof || - || instead of
| - ||Lip(y)_

STEP 1: PROOF OF (P1)g, (P2)o, (P3)o. Note that (P1)g and (P3) are trivially
satisfied and hence it remains to verify (8.11) forn = 0. By (4.6), (4.13), (4.3), and
Lemma 4.3, there exists C,. > 0 large enough so that ||F,,(Up) ||L‘E(V) < eCy.
STEP 2: PROOF OF INDUCTION STEP. Assuming that (P1),, (P2),, (P3), hold for
some n = 0, it is to prove that (P1),+1, (P2),+1, (P3),+1 hold. We are going to
define the approximation U, 1| by a modified Nash—-Moser scheme. To this end,
we prove the almost-approximate invertibility of the linearized operator

L, =L,(w) ::dt,g‘]:w(zn(w)) (8.12)

by applying Theorem 5.7 to L,(w). To prove that the assumptions (5.29)—(5.32)
in Theorem 5.7 hold, we apply Theorem 7.11 with ¢ = 7,,. By choosing & small
enough it follows from (8.7) that No = K! = y =P = & P% and the smallness
condition (7.31) required in Theorem 7.11 holds. In addition, (6.1) holds by (8.9).
Therefore Theorem 7.11 applies, and we deduce that (5.29)—(5.32) hold for all @
in the set SZZ +1(tn), defined in (7.61). Now we apply Theorem 5.7 to the linearized
operator L, (w) with Q, = SZZH(Z,,) and § = sy + by (cf. (8.4)). It implies that
there exists an almost-approximate inverse T, := T, (w, I, (w)) satisfying

ITuglls Seuor ¥ > (Igllssa + Koy~ allstumysalgloy+s), Vom <5 < sm+bi,

(8.13)

where we used thata = o7 (cf. (8.2)), o7 is the loss of regularity constant appearing
in the estimate (5.45), and Ng = Kg . Furthermore, by (8.7)—(8.8), one obtains

Ko "y T MWallsy+umy+s < 1, (8.14)
and hence, for the special value s = s, (8.13) becomes
ITuglisy Sor ¥ 2l8llsy+o- (8.15)
Forallw € G,41 =G, N AZH (1) (cf. (8.10)), we define

Un+1 = lN]n + Hn+la Hn+1 = @1+h?n+l) = HnTnnn]:w(f]n) € Ey X RSJra
(8.16)

where II,, is defined by (cf. (8.1))
0,0, )= (M, 0), T, 0)i= (50, 0), V(e Q). (8.17)
To show that the iterative scheme in (8.16) is rapidly converging, we write
FoUns1) = Fo(Un) + LyHpi1 + O, (8.18)

where L, :=dt,;.7-'w(l~]n) and Q, is defined by (8.18). Then, by the definition of
H, 41 in (8.16), and by taking into account (8.17), one has
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FolUn1) = Fu(Uy) — Ly T, T, 11, Foy (Uy) + Qn
= Fu(Uy) — Ly T, 1, F(Uy) + Ly T, 11, F, (Uy) + Oy
=7, (U,) + Ry + Qn + Py (8.19)

where
Rn = LnH;J{Tn nn]:w(f]n)a Pn == (LnTn - Id)nn]:w(f/n)~ (820)

We first note that for any w € €2 and any s = s); one has, by (4.6), Lemma 4.3,
and (8.2) and (8.8) and using the triangle inequality,

1o @) ls S5 1FoU)lls + 1Fu(Un) — FoUo)lls S & + | Walls17 (8.21)
and, by (8.8), (8.7), (8.11),

Koy T Fu@)llsy < 1. (8.22)

To conclude, we first need to prove the following inductive estimates of Nash—
Moser type:

Lemma 8.2. Let uy := u(b) + 30 + 3. Then for any € G4 1,

1FwUntDllsy Sspapr KE2P1(E + [ Wallsyin) + Ki? T FuOlZ,
+eK, PRI Fu U lsy (8.23)
”W1“5M+b1 §5M+b1 K(%Es

IWastlsy4br Septbr KEOT 206 4+ [Wyllsyin), n 21 (8.24)

Proof of Lemma 8.2. We first estimate H, 1, defined in (8.16).
ESTIMATES OF H, 1. By (8.16) and (2.3), (8.13), (8.8), we get

—2( 1T 7 25 17 7
I Hutt sy 401 Ssutor ¥ 2 (KN For O syt + KL 2Ky ™ Tl gy, 1F0 (Tn) sy )

(8.21),(8.22) Py . 2 .
Seuaor KOy 2 (e 4 | Wallsyy4n,)
4 I_KO Kn b)+25+2 7
Sew+br KEOTTH2 (o 4 W llspy 4 ) (8.25)
(8.15) - 5
| Hyt1llsy Sopbr ¥ 2K I Fu @) llsy - (8.26)

Next we estimate the terms Q,, in (8.18) and P,, R, in (8.20) in || ||s,, norm.
ESTIMATE OF Q. By (8.8), (8.16), (2.3), (8. 26) (8.11), and since x20 —a; < 0
(see (8.3)), we infer that || Wy, + 1 Hy41lsy+5 < ey 2K2° forall ¢ € [0, 1]. Since
¥y~ = Ko, by (8.7) we can apply Lemma 4.3 and by Taylor s formula, using (8.18),
(4.6), (8.26), (2.3), and y‘l = Ko £ K,;, we get

2 45 +4 M2
1Qnllsy Ssy+or 1Hnt1lls,, 15 Ssu+br Kot 1FoUn)lls,, - (8.27)

ESTIMATE OF P,. By (5.46), L,,T, —Id = P(i;) + Py (1) + Pj; (tn). Accordingly,
we decompose P, in (8.20) as P, = —P(]) Prow— Pt

> Where



1492 M. BERrTI, T. KAPPELER & R. MONTALTO

PV =T, PO Fu(Un),  Puw:=TaPuin) 1y Fo(Un),
Pty =T, P ) 1, Fo (U).
By (2.3),
1o Ollsy+7 = 1T Fo () sy 4z + 1T Fo(U)llsy+
< Ky (1F0 @ llsy + Ky P I Fo (U llsp+01)-
By (5.47), (8.14), (8.28), and using (8.21), (8.22), and y‘l = Ko < K,, one obtains

(8.28)

1P sy Ssntor ¥ > K21 Fo@)llsys (1Fw @)1y + K >V 1 For @) sy 450)
Soptbr K23 NFo @) sy (1Fo @) sy + K2 (e + | Wallsy+51))
Sootbr K BNFL @112, + Ka® 7P (e + 1 Wallsy41,)- (8.29)
By (5.48), (8.14), (8.8), (2.3), we have

Yy '=Ko<K,

I Puwllsy Seytor €7 N KN FoUllsy  Ssotpr Ny A KN Fu (@) llsy s
(8.30)

with a given as in (8.2). By (5.49), (2.3), (8.4), (8.11), (8.22) and by using (8.21),
Yy~ =Ko £ K,, we get

iR 20— -2 7 T
1P llsy Seytoy KT P10y =2(| Fy(Un) s 401 + €W llspy+01)

Seu+br Ki 726 4 | Wollsyy4m,)- 8.31)
ESTIMATE OF R,. Since L, = d, ;Fu,(n(w)) (cf. (8.12)), d,  Fo(t, {)EE] =

- 30— d, X3, (D[] — (0.7, 0) (cf. (5.1)), and He = N + P, one has that for
any U = (1, ¢),

LnU = w- 35T~ d, X3¢, (9. 0,0) + 1) [T — (0,2, 0)

4.13 —~ - - ~
CL a7 — d XA (9. 0, 0) + 1)1 — d Xp, ((9,0,0) + 1)1 — (0, Z,0)

(8.32)

where by (4.13),d, Xar((¢, 0, 0)+7,)[T] = (—szgfv(u)m, 0, 3, Q% (D; v)[W)).
By the estimate of d, Xp, of Lemma 4.3, one then obtains ||Lnl7||5M < l7||5M+5.
Using (8.20), (8.13), (8.8), (2.3) and then (8.14), (8.21), (8.22), y ' = Ko < K,,,
we get

IRullsy Septor KEETTF2P1 e 4 I Wllsyy400)- (8.33)

ESTIMATE OF F,, (U, +1)- By (8.19),(2.3), (8.21),(8.27), (8.29)—(8.31), (8.33), (8.8),
we get (8.23). ESTIMATE OF Wi = H;. By (8.16) and (8.13) one has

=Ko
<

IWillsp+or = 1Hilsy+o1 Sewtor ¥ 1FoU) lsy+or45 Seytor €¥ > S Kge
implying the first estimate in (8.24).
ESTIMATE OF Wy,11 = W, + H, 1, n = 1. The claimed estimates for W, in
(8.24) follows by (8.25). 0O
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By Lemma 8.2 we get the following lemma, where for clarity we write || - | i‘ip(y)

instead of || - || as above:

Lemma 8.3. For any w € Gy+1, n > 0,

Li Li
1Fo U DIERY < CoeKy®, W IEP9) < €k, (8.34)
Lip(y) -2 Lip(y) -2 2
IH G2 e S €772 IHus1 gy S ey 2 KEPPTR 2 (n 2 1),

(8.35)

Proof of Lemma 8.3. First note that, by (8.10), G,+1 C G, and so for any o €
Gn+1 (8.11) and the inequality in (P3), holds. Then the first inequality in (8.34)
follows by (8.23), (P2),, (P3)n, ¥ ' = Ko < K,,, and by (8.3)—(8.6). Forn = 0
we use also (8.7). Concerning the second inequality in (8.34), note that for n = 0,
the inequality follows directly from the bound for W in (8.24) since u; = 2 (cf.
(8.4)) and C, > 0 is chosen large enough; the second inequality in (8.34) for
n 2 1 is proved inductively by taking (8.24), (P3),, and the choice of | in (8.4)
into account and by choosing Ky = ¢~ % large enough (that is, & small enough).
Since H; = Wi, the first inequality in (8.35) follows since [|Hillsy+um)+5 S
Y 2N F U lsy+nmy+25 S ey ™2 If n = 1, estimate (8.35) follows by (2.3),
(8.26) and (8.11). O

We are now in a position to finish the proof of Theorem 8.1. Denote by H,, |
the Lip(y)-extension of (Hy+1)g,,, to the whole set 2 of parameters, provided
by the Kirszbraun theorem. Then }EInJr 1 satisfies the same bound as H,,41 in (8.35)
and therefore, by the definition of a5 in (8.3), the estimate (8.9) holds at n + 1.

Finally we define Wn+1 =W, + H,,_H and U,,+1 =U, + H,,_H, which both
are defined for all w € 2. Note that

Unt1 = Uy + Wy + Hyy1 = Uy + Wit

and that for any w € G,41, Wn+1 = Wyt1, Un+1 = U,+1. Hence (P2),+1,
(P3),+1 follow from Lemma 8.3. Moreover by (8.9), which at this point has been
proved up to the step n 4 1, we have

7 Lip(y) 5 Lip(y) -2
(AT S DAY e < ey

and thus also (8.8) holds at the step n + 1. This completes the proof of
Theorem 8.1. O

Corollary 8.4. Let y = €% with a € (0, ap), ag := 1/t with 15 defined as in (8.7),
and Ko = 1/y. Then there is g > 0 so that for any 0 < & < gq the following
holds:

(1) there exists a function Use(w) = (Ioo (W), Loo(®)), w € 2, satisfying
Li _ ~ L e
oo = Uoll;™” S ey WUoo = Unlls™ < ey 2K%2, n 21,
(8.36)

where s :=spy + (o) + 0o (with sy, (o), o fixed in (2.55), (7.6), and respec-
tively, (8.2));
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(i) for any w in the set

Q= ()G =0 N 1G-n 2 don [ N Al G-n]n[ N 2l G-n).

n=0 n=l1 n>l1 n>1

(8.37)
the torus embedding 1,,(¢) solves (4.12).

Proof. For any 0 < & < ¢gp with gy small enough, the smallness condition
£K(§2 < &p in (8.7) holds and Theorem 8.1 applies. By Theorem 8.1-(P1),, the
sequence (0,1),,21 converges as n — 00 to a function Uy (w), satisfying (8.36).
By Theorem 8.1-(P2),, for any w € 2, we have that F,(Ux(w)) = 0. Formula
(5.5) implies that {0 (w) = 0 for any @ € 2, and item (ii) is proved. 0O

In order to complete the proof of Theorem 4.1 it only remains to establish the
measure estimate (4.10).

8.2. Measure Estimates

The measure estimate (4.10) of Theorem 4.1 for the subset Q; = N, >¢Gn
defined in (8.37) of nonresonant frequency vectors will be deduced from the mea-
sure estimate of Proposition 8.7, using that by Lemmas 8.5 and 8.6, the set Q2 \ 2,
is included in €2 \ QF., where QL is introduced in Lemma 8.6. The main result of
this section is Proposition 8.7. In all of this section, the assumptions of Theorem 8.1
hold with the constants given as in (8.2)—(8.7) .

In order to prove Lemmata 8.5 and 8.6, we first recall that by (8.10), Go = Q
and forn > 1, G, :=G,—1 N R} (;,—1) where R}, (1) = ) (1) N A} () (cf. (7.61),
(7.18), (7.58)).

Lemma 8.5. For any n > 0, the set

Goo =G0 N [ () @7 o) | [ ) AT (1) ] (8.38)

is contained in G,, and hence G, < ngO G-

Proof. We apply the inclusion property (7.28). By (8.36), (5.27), we have, for any
nz?2,

CEN,_lltoo = Tn-t sy oz < CHICK [ Fey ™ <y

taking ¢ small enough, by (8.7) and using a» = pt (see (8.3)). For n = 1, one
also has C(S)Ng lltoo — W0llspy+u()+5 = ¥ using the first inequality in (8.36) and
recalling that Ko = y !,y =¢%and 1 — a(3 + tp) > 0 (indeed a = 1/, where
77 is defined in (8.7) and we take T > t large enough, see Theorem 7.2). Recall
also that S = s); + b has been fixed in (8.4). Therefore (7.28) in Theorem 7.2-
(S3), gives Qiy (loo) € Q) (1,—1), Yn = 1. By similar arguments we deduce that

Aﬁy (too) € A} (i,—1), and the lemma is proved. O
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By Theorem 7.2-(S2),, it follows that for any j € S+, i —Ron=>0,is
a Cauchy sequence with respect to the norm | - [MP%). We denote its limit by u?o,

u$ = lim o). i) = Wj@iteo). jEST. (839)
n—o0o
By Theorem 7.2 one has for any j € S*,
p% == InF = )P ey NS n 2 0. (8.40)

Lemma 8.6. The set QL is contained in Goo where G is defined in (8.38) and

4)’|J _]/3| S 1 1
ng:z{wepc(4y,r):\w.e+u§° |>T VY, j, j) € 75 x St x st
- €+ ] 2 ’(’13')” V(L. z)eZS+><SJ'} (8.41)

Proof. We have to verify that Q% is contained in each subset on the right hand

side of (8.38). Since by (4. 4) DC(4)/, ) € Q one has that @4 < @ ®2V g,
Next we prove that Q% € Q27 (io0), Vn = 1. We argue by induction. Assume

that Q% C 92 (100) for some n = 1. For all w € Q% C 2 (100), by (7.16),
(8.39), (8.40), we get |(ﬁ” - ,u )(Loo) (,uj?o - ,u,;??)| < Csy‘zN,;al. Therefore,

let (¢, j, j') € Z5+ x S+ x Si, le| £ N, with (¢, j, ) # (0, j, j) (recall (8.41)).
If j = j/, then £ # 0 and since Q% € DC(4y, T) we have

- €+ (100) = W 1o0)| = |- €] Z 4y ()T

In case j # j/, one has

@ €+ 1 (o0) = i (to0)] Z |- €+ uF = uF| = Cey 2N, 5
4 — 2173 — 3
> v =’ '-Csy—zN,;f‘l > YT —J I’
(0" (0"

provided 3Cey 3N, % N} < 1 (note that since j # j’, |j> — j**| = 1). The latter
condmon is fullfilled by (7.6), (8 7), by taking T > t large enough. In conclusion

we have proved that Q%, € Qn "t 1(too)- Similarly we prove that QL c A,2,y (tso)
foralln > 1. O

In view of Lemmata 8.5 and 8.6, it suffices to estimate the Lebesgue measure
12\ Q5] of @\ QL instead of the one of 2\ (>0 G-

Proposition 8.7. (Measure estimates) Let t > |S4.| + 2. Then there is a € (0, 1)
so that for ey 3 sufficiently small, one has |Q \ Q| < y°.

Proof. By (8.41), we have

Q\ QL =Q\Dbcy, 1) U U Rejj VU U
(£.7.3")€L5+ xSEXSL (€., j)#0.5.5) (. j)eZs+ xSt

(8.42)
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where Ry ; i1, Q¢ j denote the 'resonant’ sets
4r1i° = j°|

Rejj = {weDC(4)/, 7)o+ uf —pufl < () }

4y|j|3}

Q= {a) €DCMy, D) - €4 il <~

Note that Ry ; ; = @. Furthermore, it is well known that |22\ DC(4y, 7)| < .
In order to prove Proposition 8.7 we shall use the following asymptotic properties
of u‘l’.o(a)). For any w in DC(4y, ), we have ﬁ?(Loo) = /L?(Loo) (for simplicity
/,L(}(LOO) = ,u(j). (w; o)) and we write ,u?o(a)) = pL(J).(LOO) + r;?o (w), where by (7.2)
1 (too) = m$T (@) 27j)° = m(@)27) — qj(@), M3 :=m3(e0), M :=m1(iec).
On DC(4y, 1), the following estimates hold:
) (6.20) ) (6.68)
Im° 4 1[HP) < R HP0) <y 72
40 (8.43)

y 7.4) Lin( )(8 _
sup jllg; ™™, sup [jllgjI™ < 1. [r5eHR0) < ey 2,
jeSt jeSt

From the latter estimates one infers the following standard lemma see [2, Lemma
5.3]). O

Lemma 8.8. (i) If R ;v # @, then |j3 — j| < C(€) for some C > 0. In
particular one has j* + j* < C(¢).
(i) If Qr.; # O, then | jI> < C (L) for some C > 0.

Lemma 8.8 can be used to estimate [R_; ;| and | Qg ;| for |£] sufficiently large.

Lemma 8.9. (i) If Ry, ; j» # ¥, then there exists C1 > 0 with the following prop-
erty: if |€] 2 Cy, then [Re j | S v1j* = j216)~ D,

(i) If Q¢,j # W, then there exists C1 > 0 with the following property: if |£| = Ci,
then |Qq ;| < yj1*(€)~*h.

Proof of Lemma 8.9. We only prove item (i) since item (ii) can be proved in a
similar way. Assume that Ry ; i» # §. Let o such that @ - £ = 0 and introduce the
real valued function s > ¢y j r(s),

b1 (8) = fojjr(@+ S%), foj.j(@) =L+ puF (@) — 15 ().
Using that by Lemma 8.8, |j> — j3| < C(£), one infers from (8.43) that for £y —2
small enough and [¢| = C; with Cy large enough, |¢g j j/(s2) — ¢ j, j7(s1)| =
% |s2 — s1]. Since DC(4y, t) € Q is bounded one sees by standard arguments that
{seRr: c?)—i-s% € Ryt S v1i* =i 1(€) =T, The claimed estimate then
follows by applying Fubini’s theorem. O
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It remains to estimate the Lebesgue measure of the resonant sets Ry ; ;7 and
Q. for €] < Cy.

Lemma 8.10. Assume that || < Cy and that gy =3

following holds:

is small enough. Then the

() If Ry, j» # ¥, then there are constants a € (0, 1) and Cy > Osothat|j|,|j'| =
C2 and |Rg’j_’j/| 5 )/a.

(i) If Q¢,j # ¥ then there are constants a € (0, 1) and C» > 0 so that |j| < C>
and | Qe ;| Sy©.

Proof of Lemma 8.10. We only prove item (i) since item (ii) can be proved in a
similar way. If [¢| = C; and Ry ; j # ¥, Lemma 8.8-(i) implies that there is a
constant C such that |j|, |j/| < j* + j* < C,. For ey 3 small enough one sees,
using (8.43), the definition (7.2) of M(])-, and the bounds [£| < Cy, |jl, |j'| £ Ca,

that |5 — a)’j‘.d”| < gy 2 <y, implying that for some constant C3 > 0,
Rejj Cloe: o+ w(®),0) - v(w),0)] < C3y}.(844)

By Lemma 3.9, the function w +— w - £ + a)lj‘.d”(v(a)), 0) — a)lj‘.fi”(v(a)), 0) is real
analytic and not identically zero. Hence by the Weierstrass preparation theorem
(cf. the proof of Proposition 3.1 in [11]), we deduce that the measure of the set on
the right hand side of (8.44) is smaller than y® for some a € (0, 1) and y small
enough. O

We are now in position to finish the proof of Proposition 8.7. By (8.42) and
Lemmata 8.9-8.10 we have

1\ QLI Sy +y > 0" <y,
[€|ZCrLlj1. 1 1SC )

where we used the assumption that t — 2 > [S;|. O

8.3. Proofs of Theorems 4.1 and 1.1

In this section, we complete the proof of Theorem 4.1 and then derive from it
Theorem 1.1.

Proof of Theorem 4.1. In view of Corollary 8.4-(ii) for any @ € 2., the embedded
torus I, (TS+) is invariant under the flow of the Hamiltonian vector field X7, ..,
and is filled by quasi-periodic solutions with frequency @ = —w*?"(v). The bound
(4.11) follows by (8.36). The linear stability of the quasi-periodic solution i,,(wt)
follows by standard arguments as in [1,3,10] since for any w € 0,12052,}1/ (too) (cf.
(7.30)) we obtain by Theorem 7.3 the complete diagonalization of Lo (tso). It thus
remains to prove the measure estimate (4.10) of Theorem 4.1. Since by Lemma 8.5
one has Goo C 2, and by Lemma 8.6, Q% C Gu. the claimed estimates of |2\ €|
in (4.10) follow from the estimates of | \ Q% | established in Proposition 8.7. O
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Proof of Theorem 1.1. Theorem 1.1 is in fact a reformulation of Theorem 4.1.
Choose 5, €9, and Q;, 0 < & < &, as in Theorem 4.1. Using that —*?V : 8 — Q,
V> —okdv (v), is a diffeomorphism (cf. (1.13)), we define for any 0 < ¢ < g the
set

B, = {v €E:v= (") (—w), we Qg}.

By Theorem 4.1, for any v € E,, there exists a torus embedding with lift Iy -
RS+ — RS+ x RS+ x HY (Ty) of the form i,,(¢) = (¢,0,0) + t,(p) and w =
we (V) = —wk?V (v), satisfying (cf. (4.11))

ltwlls = O(ey™?), y=¢% 0<a<l, (8.45)

so that i, (wt) is a linearly stable, quasi-periodic solution of (4.1). By the measure
estimate (4.10) one has lim,_,¢ | E\ E¢| = 0, which proves (1.16). By the definition
of the symplectic diffeomorphism W, (cf. Theorem 3.2) and the one of H, (cf. (4.2)),
it then follows that

ug(wt, x;v) 1= lIlv((a)t, 0,0) + Lw(a)t)) (8.46)

is a quasi-periodic solution of the perturbed KdV equation (1.6). Furthermore, by
(3.8) in Theorem 3.2 and (3.5), the finite gap solution ¢ +— g(wt, x; v) of the KAV
equation (1.1) (cf. (1.10)) satisfies

q(wt, x;v) =¥, (wt,0,0). (8.47)

It then follows from (8.45)—(8.47) that [lus(-,-;v) — q(-,-; )|z < &!7% with
b = 2a, proving (1.17). O
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