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Abstract

In this paper we prove the persistence of space periodic multi-solitons of arbi-
trary size under any quasi-linear Hamiltonian perturbation, which is smooth and
sufficiently small. This answers positively a longstanding question ofwhetherKAM
techniques can be further developed to prove the existence of quasi-periodic solu-
tions of arbitrary size of strongly nonlinear perturbations of integrable PDEs.
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1. Introduction

The Korteweg–de Vries (KdV) equation

∂t u = −∂3x u + 6u∂xu (1.1)

is one of the most important model equations for dispersive phenomena with
numerous applications in physics. The seminal discovery in the late sixties that
(1.1) admits infinitely many conservation laws [28,30], and the development of
the inverse scattering transform method [18], led to the modern theory of infinite
dimensional integrable systems (for example [13,16] and references therein).

One of the most distinguished features of (1.1) is the existence of sharply
localized travelingwaves of arbitrarily large amplitudes and particle like properties.
Kruskal and Zabusky, who discovered them in numerical experiments in the early
sixties, both on the real line and in the periodic setup (cf. [24]), coined the name
solitons for them. More generally, they found solutions, which are localized near
finitely many points in space. In the periodic setup, these solutions are referred
to as periodic multi-solitons or finite gap solutions. Due to their importance in
applications, various stability aspects, in particular long time asymptotics, have
been extensively studied. A major question concerns the persistence of the multi-
solitons under perturbations. In the last thirty years, KAM methods pioneered by
Kolmogorov, Arnold, and Moser to treat perturbations of integrable systems of
finite dimension, were developed for PDEs. Most of the work focused on small
amplitude solutions or semilinear perturbations. It has been a longstanding question
from experts in PDEs and in infinite dimensional dynamical systemswhether KAM
results hold also for solutions of arbitrary size under quasi-linear perturbations,
called strongly nonlinear in [26], of integrable PDEs.

The aim of this paper is to prove the first persistence result of periodic multi-
solitons of KdV of arbitrary size under strongly nonlinear perturbations—see The-
orem 1.1 below. Note that in this case, it was not even known if there exist solutions
of the perturbed equation which are global in time.

To describe the class of perturbations of the KdV equation considered, we
recall that (1.1), with space periodic variable x in T1 :=R/Z, can be written in
Hamiltonian form

∂t u = ∂x∇Hkdv(u), Hkdv(u) :=
∫
T1

1

2
(∂xu)

2(x)+ u3(x) dx, (1.2)

where ∇Hkdv denotes the L2-gradient of Hkdv and ∂x is the Poisson struc-
ture, corresponding to the Poisson bracket, defined for functionals F,G by
{F,G} := ∫

T1
∇F ∂x∇G dx .
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We consider quasi-linear perturbations of (1.1) of the form

∂t u = −∂3x u + 6u∂xu + εa(x, u(x), ∂xu(x))∂
3
x u + · · · , (1.3)

where 0 < ε < 1 is a small parameter and · · · comprises terms which are ε-small
and contain x-derivatives of u up to second order. We assume that the perturbation
is Hamiltonian, namely εa∂3x u + · · · = ε∂x∇P , where ∇P is the L2-gradient of a
functional of the form

P(u) :=
∫
T1

f (x, u(x), ∂xu(x)) dx, f : T1 × R× R→ R C∞-smooth. (1.4)

Note that the nonlinear vector field

∂x∇P(u) = −(∂2ux f )(x, u(x), ∂xu(x))∂3x u + · · · , ux := ∂xu (1.5)

has the same order as the linear one ∂3x u in (1.1). When written as a Hamiltonian
PDE, (1.3) takes the form

∂t u = ∂x∇Hε(u) (1.6)

with Hamiltonian

Hε(u) := Hkdv(u)+ εP(u). (1.7)

To state our main result, we first need to introduce some more notation. Note that
the mean u �→ ∫

T1
u(x) dx is a prime integral for (1.6). We restrict our attention to

functions with zero average (cf. Remark (R1) below) and choose as phase spaces
for (1.6) the scale of Sobolev spaces Hs

0 (T1), s ≥ 0,

Hs
0 (T1) :=

{
u ∈ Hs(T1) :

∫
T1

u(x) dx = 0
}
, L2

0(T1) ≡ H0
0 (T1),

where

Hs (T1) :=
{
u(x) =

∑
n∈Z

une
i2πnx : ‖u‖Hs

x
:=
(∑
n∈Z
〈n〉2s |un |2

) 1
2

<∞, u−n = un ∀n ∈ Z

}
(1.8)

and 〈n〉 :=max{1, |n|} for any n ∈ Z. We also write L2(T1) for H0(T1). The
symplectic form on L2

0(T1) is given by

WL2
0
(u, v) :=

∫
T1

(∂−1x u)v dx, ∂−1x u =
∑
n 
=0

1

in
une

i2πnx , ∀u, v ∈ L2
0(T1) (1.9)

Note that the Hamiltonian vector field XH (u) = ∂x∇H(u), associated with a
Hamiltonian H , is determined by dH(u)[·] =WL2

0
(XH , ·).

S+-gap potentials According to [21], the KdV equation (1.1) on T1 is an inte-
grable PDE in the strongest possible sense, meaning that it admits globally defined
canonical coordinates on H0

0 (T1), so that (1.1) can be solved by quadrature, see
Theorem 3.1 in Section 3 for a precise statement. These coordinates, referred to as
Birkhoff coordinates, are particularly suited to describe the finite gap solutions of



1398 M. Berti, T. Kappeler & R. Montalto

KdV. Each of these solutions is contained in a finite dimensional integrable subsys-
tem MS+ , of dimension 2|S+|, with S+ being a finite subset of N+ := {1, 2, . . .}.
The integrable subsystem MS+ can be described in terms of action angle coordi-
nates θ := (θn)n∈S+ , I := (In)n∈S+ as follows: there exists a real analytic, canonical
diffeomorphism

	S+ : TS+× R
S+
>0 →MS+ , (θ, I ) �→ q(θ, ·; I ), T

S+ := (R/2πZ)S+ , (1.10)

(cf. (3.5)) so that the pull-back of the KdV Hamiltonian, Hkdv ◦ 	S+ , is a real
analytic function of the actions I alone. Elements in MS+ are referred to as S+-
gap potentials. The function q(θ, x) ≡ q(θ, x; I ) is real analytic. In action angle
coordinates, any solution of (1.1) on MS+ is given by

θ(t) = θ(0) − ωkdv(ν)t, I (t) = ν,

where θ(0) ∈ T
S+ denotes the initial angles, ν ∈ R

S+
>0 the initial actions, andω

kdv(ν)

the frequency vector

ωkdv(ν) := ∂I (H
kdv ◦	S+)(0, ν) ∈ R

S+ . (1.11)

(Cf. Section 3.1 for more details.) The corresponding finite-gap solution of (1.1)
on MS+ is then given by

t �→ q
(
θ(0) − ωkdv(ν)t, x; ν) (1.12)

and hence is quasi-periodic in time. The map

R
S+
>0 → R

S+ , ν �→ ωkdv(ν), (1.13)

is a local diffeomorphism (see Remark 3.10). In the entire paper, � ⊂ R
S+
>0

will always denote an open, nonempty set with the property that the map � →
R
S+ , ν �→ ωkdv(ν), defined by (1.11), is a diffeomorphism onto its image and that

its closure is a compact subset of RS+
>0. Then, for some δ > 0 small enough,

� + BS+(δ) ⊆ R
S+
>0, (1.14)

where BS+(δ) denotes the ball inR
S+ of radius δ, centered at the origin. Furthermore

we introduce the Sobolev spaces of periodic, real valued functions Hs ≡ Hs(TS+×
T1,R),

Hs :=
{
g =

∑
(
, j)∈ZS+×Z

g
, j e
i(
·ϕ+2π j x) : g
, j = g−(
, j), ∀ (
, j) ∈ Z

S+ × Z,

‖g‖s :=
( ∑
(
, j)∈ZS+×Z

|g
, j |2〈
, j〉2s
)1/2

< +∞ , 〈
, j〉 := max{1, |
|, | j |}
}
.

(1.15)

Note that by the Sobolev embedding theorem, Hs ⊂ C0(TS+ × T1,R) for any
s > (|S+|+ 1)/2 where C0(TS+ ×T1,R) denotes the Banach space of continuous
functions endowed with the supremum norm.
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The main result of this paper is Theorem 1.1 below. It says that for ε small
enough and for ν in a subset �ε of � of asymptotically full Lebesgue measure,
there is a quasi-periodic solution of equation (1.6) close to the finite gap solution
q(−ωkdv(ν)t, x; ν) of (1.1). More precisely, the following holds:

Theorem 1.1. Let f be a function in C∞(T1×R×R,R), S+ a finite subset ofN+,
and b a real number in (0, 1). Then there exist s̄ > (|S+| + 1)/2, and 0 < ε0 < 1
so that the following holds: there exists a decreasing family of measurable subsets
�ε ⊆ �, 0 < ε ≤ ε0, with asymptotically full measure, that is

lim
ε→0

|� \�ε| = 0, (1.16)

with the property that for any ν ∈ �ε, the perturbed KdV equation (1.6) admits
a quasi-periodic solution t �→ uε(ωε(ν)t, x; ν) with frequency vector ωε(ν) =
−ωkdv(ν) ∈ R

S+ , where uε(·, · ; ν) ∈ Hs̄(TS+ × T1,R) and

‖uε(·, · ; ν)− q(·, · ; ν)‖s̄ � ε1−b. (1.17)

Here, q(θ, x; ν), θ ∈ T
S+ , is the S+-gap potential in MS+ , defined in (1.10). The

quasi-periodic solution t �→ uε(ωε(ν)t, x; ν) is linearly stable.
We make the following remarks:

(R0) Since the Hamiltonian vector field in (1.6) is autonomous, any translate
uε(ωε(ν)t + θ(0), x; ν), θ(0) ∈ T

S+ , of uε(ωε(ν)t, x; ν) is also a solution of
the perturbed KdV equation (1.6).

(R1) The result of Theorem 1.1 holds for any density f in Cs∗(T1 × R × R,R)

with s∗ large enough and for any family of S+-gap solutions of KdV with
average c (cf. [21, page 112]). We assume in this paper that f is C∞ and
c = 0 merely to simplify the exposition.

(R2) The methods developed to prove Theorem 1.1 are quite general. We expect
that analogous results can also be proved for equations in the KdV hierarchy
as well as for the defocusing NLS and equations in the NLS hierarchy such
as the defocusing mKdV equation.

Theorem 1.1 is proved at the end of the paper in Section 8.3. It is deduced from
Theorem 4.1 (Section 4), which is proved by applying a Nash–Moser iteration
scheme (Section 8.1) and by establishing the measure estimates of Section 8.2.
Before describing the main ideas of the proof in detail, we first comment on the
novelty of our result.

1. The first KAM results for (1.1) were proved by Kuksin [25] (cf. also [26]) and
Kappeler–Pöschel [21] for finite gap solutions of arbitrary size for semilinear
perturbations of the KdV equation. This means that the density f of (1.4) does
notdependonux , andhence ∂x∇P(u) = ∂2u f (x, u(x))ux+· · · depends only on
u and ux . (Note that in addition, the dependence on ux is linear.) Subsequently,
Liu–Yuan [29] provedKAM results for semilinear perturbations of small ampli-
tude solutions of the derivative NLS and the Benjamin–Ono equations whereas
Zhang–Gao–Yuan [32] proved analogous results for the reversible derivative
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NLS equation. More recently, Berti–Biasco–Procesi [6]–[7] proved existence
of small quasi-periodic solutions of derivative Klein-Gordon equations. For the
NLS and the beam equations in higher space dimension, KAM results were
obtained by Eliasson–Kuksin [15] and, respectively, Eliasson-Grébert–Kuksin
[14]. In all of these works, the perturbations are required to be semilinear.
On the other hand, the results in Baldi–Berti–Montalto [3,4], for quasi-linear
perturbations of the KdV and mKdV equations concern only small amplitude
solutions. The proofs of these results make use of pseudo-differential calcu-
lus and rely in a decisive manner on the differential nature of these equations.
The latter property cannot be read off in the action-angle coordinates outside
a neighborhood of the origin. Furthermore, also the results of Giuliani [19]
for the generalized KdV equation, the ones of Feola–Procesi [17] for the NLS
equation, and the ones of Berti–Montalto [10] and Baldi–Berti–Haus–Montalto
[1] for water waves concern small amplitude solutions.
Thus the challenging problem of the persistence of the finite gap solutions of
(1.1) of arbitrary size under strongly nonlinear perturbations (1.5) remained
completely open.

2. In [9], we used the “one-smoothing property” of the Birkhoff coordinates of
the defocusing NLS equation on T1, established in [23], to prove a KAM result
for semilinear perturbations. This property is used to deal with the difficulties
related to the double “asymptotic multiplicity” of the frequencies. For the KdV
equation, a “one-smoothing property” has been proved near the equilibrium in
[27] and then in general in [22], however it is not sufficient for dealing with the
quasi-linear perturbations (1.5).

3. The proof of Theorem 1.1 uses the canonical coordinates constructed in [20]
near any given compact family of S+-gap potentials inMS+ , reviewed in Sec-
tion 3.2. These coordinates admit an expansion in terms of pseudo-differential
operators up to a remainder of arbitrary negative order. Due to its length, this
part of the proof of Theorem 1.1 has been published in a separate paper [20].
In Section 3.3 we show that the linearization of the Hamiltonian vector field
XHε , when expressed in these coordinates, admits an expansion in terms of
pseudo-differential operators. This property is one of the key ingredients for
implementing the Nash–Moser iteration scheme as explained in the subsequent
paragraph.

Ideas of the Proof Theorem 1.1 is proved by means of a Nash–Moser iterative
scheme to construct, for any ν belonging to a suitable subset �ε of �, a quasi-
periodic solution of (1.6) with frequency vector ω = −ωkdv(ν) near the S+-gap
solution t �→ q

( − ωkdv(ν)t, x; ν) of the KdV equation (1.1) (cf. (1.12)), which
evolves on the torus Tν :=	S+(T

S+ × {ν}) (cf. (1.10), (3.5)). The subset �ε is
obtained by imposing along the iterative scheme suitable non-resonance conditions.
In particular we will always assume ω to be diophantine, meaning that there exist
positive constants 0 < γ < 1 and τ > |S+| − 1 so that |ω · 
| � γ |
|−τ for any

 ∈ Z

S+ \ {0}.
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The starting point of our proof is to express the perturbed KdV equation (1.6)
in the canonical coordinates (θ, y, w) ∈ T

S+ ×R
S+ × L2⊥(T1), constructed in [20],

in a neighborhood of a torus Tν . Here

L2⊥(T1) :=
{
w =

∑
n∈S⊥

wne
i2πnx ∈ L2

0(T1)
}
, S

⊥ :=Z \ (S+ ∪ (−S+) ∪ {0}). (1.18)

To be more precise, denote by B⊥(δ) the open ball in L2⊥(T1), centered at 0, of
radius δ, and by BS+(δ) the one in R

S+ (cf. (1.14)). According to [20], for ν ∈ �

and 0 < δ < 1 sufficiently small, there exists a canonical coordinate chart

	ν : V(δ)→ L2
0(T1), (θ, y, w) �→ 	ν(θ, y, w), V(δ) :=T

S+ × BS+ (δ)× B⊥(δ),

so that the following key properties hold (cf. Theorem 3.2):

(P1) 	ν(θ, y, 0) = 	S+(θ, ν + y) for any (θ, y) ∈ T
S+ × BS+(δ) (with 	S+ as

in (1.10), (3.5));
(P2) 	ν(θ, y, w) ∈ Hs

0 (T1) for any (θ, y, w) ∈ T
S+×BS+(δ)×

(
B⊥(δ)∩Hs(T1)

)
and s ∈ N;

(P3) equation (1.6) takes the form (θ̇ , ẏ, ẇ) = XHε
where the Hamiltonian vector

field XHε
is given by

XHε
= (−∇yHε,∇θHε, ∂x∇wHε), Hε := Hε ◦	ν;

for ε = 0, the manifold {w = 0} is invariant for the constant vector field
XH0 = (−ωkdv(ν), 0, 0);

(P4) 	ν admits an expansion in terms of pseudo-differential operators, up to regu-
larizing operators satisfying tame estimates, as stated in Theorem 3.2-(AE1)
(note that in the estimates Theorem 3.2-(Est1), the dependence with respect
to the highest Sobolev norm is linear);

(P5) the linearization of (θ̇ , ẏ, ẇ) = XH0 along the manifold {y = 0, w = 0}
is in diagonal form with coefficients depending only on ν; more specifically
∂t θ̂ = −�kdv

S+ (ν)ŷ, ∂t ŷ = 0, ∂t ŵ = ∂x�
kdv(D; ν)ŵ, (cf. the normal form

Hamiltonian (3.12)).

As a consequence of (P1)–(P3), for ε = 0, the curve t �→ (−ωkdv(ν)t, 0, 0) is
a solution of (θ̇ , ẏ, ẇ) = XH0 , evolving on the torus TS+ × {0} × {0}, which is
invariant under theflowof XH0 .We look for a quasi-periodic solutionof (θ̇ , ẏ, ẇ) =
XHε

near the torus TS+ × {0} × {0}, with frequency vector ω = −ωkdv(ν), of the
form ῐ(ωt) where

ῐ : RS+ → R
S+ × R

S+ × Hs⊥(T1), Hs⊥(T1) := Hs(T1) ∩ L2⊥(T1),

with s sufficiently large, is the lift

ῐ(ϕ) = (ϕ, 0, 0)+ ι(ϕ), ι(ϕ) = (θ(ϕ)− ϕ, y(ϕ),w(ϕ))

of a torus embedding and ι is (2πZ)S+ -periodic. Thus the unknown function ι

satisfies (cf. (4.6))

Fω(ι) = 0, Fω(ι) :=ω · ∂ϕῐ(ϕ)− XHε
(ῐ(ϕ))
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and the map t �→ 	ν(ῐ(ωt)) ∈ Hs
0 (T1) is a quasi-periodic solution of (1.6). The

equation Fω(ι) = 0 is solved by a Nash–Moser iteration scheme. The core of
this scheme is the construction of an approximate right inverse of the linearized
operator dFω at an embedding ῐ(ϕ) = (θ(ϕ), y(ϕ),w(ϕ)), near ῐ0(ϕ) = (ϕ, 0, 0),
and the proof that it satisfies suitable tame estimates, cf. Theorem 5.7. One of the
main issues is to construct an approximate inverse of the linear operator, acting on
L2⊥(T1),

L(0)
ω = ω · ∂ϕ − ∂xd⊥∇wHε(ῐ(ϕ)) ,

whered⊥ denotes the differentialwith respect tow.Weachieve this goal by reducing
L(0)
ω to a linear diagonal operator with constant coefficients. Using properties (P4)

and (P5) we prove that

(P6) the linearized Hamiltonian operator ∂xd⊥∇wHε in a neighborhood of a S+-
gap potential is close to ∂x�kdv(D; ν) (acting in Hs⊥(T1)) and it admits an
expansion in terms of classical pseudo-differential operators, up to smoothing
remainderswhich satisfy tameestimates in Hs⊥(T1)– seeLemmata 3.5 and3.7
in Section 3.3.

Property (P6) allows us to use pseudo-differential techniques, developed in [1,3,
10], to reduce L(0)

ω to a diagonal one with constant coefficients up to smoothing
remainders. Actually, using (P6) we prove that the operator L(0)

ω has the form (cf.
Lemma 6.2)

L(0)
ω = ω · ∂ϕ −�⊥

(
a(0)3 ∂3x + 2(a(0)3 )x∂

2
x + a(0)1 ∂x +

M∑
k=0

a(0)−k∂
−k
x + Qkdv−1 (D;ω)

)
+R(0)

M ,

(1.19)

where�⊥ is the L2-orthogonal projector onto the subspace L2⊥(T1), the coefficients

a(0)−k (ϕ, x), k = −3, . . . ,M , are real valued functions, a(0)3 ∼ −1, and R(0)
M is a

ϕ-dependent regularizing operator which satisfies tame estimates in the Sobolev
spaces Hs(T

S+
ϕ × T1). The order M of regularization has to be sufficiently large

to ensure the convergence of the KAM iterative reducibility scheme, carried out in
Section 7; M is fixed in (7.6) and depends on the cardinality |S+| of S+ and on
the diophantine exponent τ of the frequency vector ω. We point out that the term
Qkdv−1 (D;ω) in (1.19) is not ε-small, since the finite gap solutions considered might
have large amplitudes. More precisely, Qkdv−1 (D;ω) is the Fourier multiplier, acting
on L2⊥(T1), with symbol ωkdv

n − (2πn)3 (cf. (3.62)), which takes into account the
difference between the KdV-frequencies and the frequencies (2πn)3, n ∈ Z, of the
Airy equation ∂tv = −∂3x v. We also mention that the pseudo-differential operator∑M

k=0 a
(0)
−k∂−kx is not present in [3], since in the latter paper only small amplitude

finite gap solutions are considered.
In order to show that the regularizing operatorR(0)

M in (1.19) is tame (which is
a key property for the convergence of a Nash–Moser iterative scheme), we prove
in Section 3.2 novel results of independent interest concerning the extensions of
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the differential of the canonical coordinates of [20] to Sobolev spaces Hs(T1), of
negative order s < 0 (cf. Corollaries 3.3 and 3.4).

The special form (1.19) allows to find preliminary transformations which diag-
onalize L(0)

ω up to a pseudo-differential operator of order zero plus a regularizing
remainder (see Section 6). More precisely we conjugate L(0)

ω to the Hamiltonian
operator (cf. (6.69))

L(4)
ω = ω · ∂ϕ −

(
m3∂

3
x + m1∂x + Op(r (4)0 )+ Qkdv−1 (D;ω)

)+R(4)
M , (1.20)

where m3 + 1 and m1 are real constants, which are ε-small, Op(r (4)0 ) is a pseudo-

differential operator of order 0 and R(4)
M is a regularizing operator satisfying tame

estimates. The map which conjugates L(0)
ω to L(4)

ω is obtained by the composi-
tion of the transformations introduced in Sections 6.2–6.5. These transformations,
inspired by [3], are Fourier integral operators given by symplectic flows of linear
Hamiltonian transport PDEs or pseudo-differential maps. In particular, we point out
that in order to conjugate the pseudo-differential terms a(0)−k∂−kx under the transport
flow used in Section 6.3, we need a quantitative version of the Egorov theorem,
which is stated and proved in Section 2.5. We remark that in contrast to [3], we
implement in Section 6.2 the time-quasi-periodic reparametrization before the con-
jugation with the transport flow to avoid a technical difficulty in the conjugation
of the remainders obtained in the Egorov theorem. Furthermore, we mention that
related transformations have been developed in [5] for proving upper bounds for
the growth of Sobolev norms for certain classes of PDEs.

At this point, using properties of the KdV frequencies that are recorded in Sec-
tion 3.4, we are able to perform in Section 7 aKAMreducibility scheme to complete
the diagonalization of the operator L(4)

ω in (1.20) for most values of ν. Since the
variable coefficients term −Op(r (4)0 ) + R(4)

M in (1.20) (which is renamed R0 in
(7.3)) is proven to satisfy the tame estimates of Lemma 7.1, such a KAM reducibil-
ity scheme can be implemented along the lines developed in Berti-Montalto [10].
See Theorem 7.3 for details.

Finally in Section 8 we implement a standard Nash–Moser iterative scheme to
construct a solution of Fω(ι) = 0 for all frequency vectors ω satisfying “Melnikov
nonresonance conditions”, cf. (8.37). By the results of Section 8.2, using properties
of the KdV frequencies, we prove that the set of such non-resonant frequencies has
asymptotically full measure as ε→ 0.
Notation. We denote by N := {0, 1, 2, . . .} the natural numbers and set
N+ := {1, 2, . . .}. Given a Banach space X with norm ‖ · ‖X , we denote by
Hs
ϕX = Hs(TS+ , X), s ∈ N, the Sobolev space of functions f : TS+ → X

equipped with the norm

‖ f ‖Hs
ϕ X := ‖ f ‖L2

ϕX
+ max|β|=s ‖∂

β
ϕ f ‖L2

ϕX
.

In case s = 0, we often write L2
ϕX instead of H0

ϕ X . Occasionally, we denote the
Sobolev space Hs(T1) ≡ Hs(T1,R) in (1.8) by Hs

x and write L2
x for H0

x . The
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space L2
x is endowed with the standard L2-inner product

(
f, g
)
L2
x
given by

(
f, g
)
L2
x
:=
∫
T1

f (x)g(x) dx . (1.21)

Note that the Sobolev space Hs ≡ Hs(TS+ ×T1,R) defined in (1.15) is an algebra
for the product of functions if s ≥ s0 where throughout the paper, s0 is defined as

s0 :=
[ |S+| + 1

2

]
+ 1, (1.22)

where [ ] denotes the integer part. For any s � 0, denote by hs0 the sequence space

hs0 :=
{
z = (zn)n∈Z ∈ hs : z0 = 0

}
,

hs := {
z = (zn)n∈Z, zn ∈ C : ‖z‖2s <∞, zn = z−n, ∀n ∈ Z

}
, (1.23)

where ‖z‖2s :=
∑

n∈Z〈n〉2s |zn|2 < ∞. By F we denote the Fourier transform,
F : L2(T1)→ h0, u �→ (un)n∈Z, where un :=

∫
T1

u(x)e−i2πnx dx for any n ∈ Z

and by F−1 : h0 → L2(T1) its inverse. Furthermore, we denote by �⊥0 the L2-
orthogonal projector onto the subspace of functions with zero average L2

0(T1). We
set

Hs⊥(T1) := Hs(T1) ∩ L2⊥(T1),

Hs⊥ ≡ Hs⊥(TS+ × T1) :=
{
u ∈ Hs(TS+ × T1) : u(ϕ, ·) ∈ L2⊥(T1)

}
(1.24)

where L2⊥(T1) is defined in (1.18). Often we write L2⊥ for H0⊥. The space H0⊥(T1)

is also denoted by L2⊥(T1). By �⊥ we denote the L2-orthogonal projector onto
L2⊥(T1), �⊥ : L2(T1)→ L2⊥(T1). Let

Es := T
S+ × R

S+ × Hs⊥(T1), E ≡ E0,
Es := R

S+ × R
S+ × Hs⊥(T1), E ≡ E0. (1.25)

Elements of E are denoted by x = (θ, y, w) and the ones of its tangent space E by
x̂ = (θ̂ , ŷ, ŵ). For s < 0, we consider the Sobolev space Hs⊥(T1) of distributions,
and the spacesEs and Es are defined in a similarway as in (1.25).Note that H−s⊥ (T1)

is the dual space of Hs⊥(T1). On E , we denote by 〈·, ·〉 the inner product, defined
by

〈
(θ̂1, ŷ1, ŵ1), (θ̂2, ŷ2, ŵ2)

〉 := θ̂1 · θ̂2 + ŷ1 · ŷ2 +
(
ŵ1, ŵ2

)
L2
x
. (1.26)

By a slight abuse of notation, �⊥ also denotes the projector of Es onto its third
component, �⊥ : Es → Hs⊥(T1), (θ̂ , ŷ, ŵ) �→ ŵ. Furthermore, we denote by d⊥
the differential with respect to w of any map, defined on an open set of Es , taking
values in some Banach space.

For any 0 < δ < 1, we denote BS+(δ) the open ball inR
S+ of radius δ centered

at 0 and by Bs⊥(δ), s ≥ 0, the corresponding one in Hs⊥(T1) where we also write
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B⊥(δ) for B0⊥(δ). These balls are used to define the following open neighborhoods
in Es , s ∈ N,

Vs(δ) :=T
S+
1 × BS+(δ)× Bs⊥(δ), V(δ) ≡ V0(δ), 0 < δ < 1 . (1.27)

The space of bounded linear operators betweenBanach spaces X1, X2 is denoted by
B(X1, X2) and endowed with the operator norm. For two linear operators A, B we
denote by [A, B] their commutator, [A, B] := AB − BA and for a linear operator
A, acting on an Hilbert space H , by A� the transpose of A with respect to the
scalar product of H . In case A is invertible, the transpose of the inverse A−1 of A
is denoted by A−�.
Throughout the paper, � ⊆ R

S+ denotes a parameter set of frequency vectors.
Given any function f : � → X , we denote by �ω f the difference function
�ω f : �×�→ X , (ω1, ω2) �→ f (ω1)− f (ω2).

2. Preliminaries

The goal of this section is to record analytical tools used throughout the paper.
In Section 2.1 we introduce function spaces of functions of the variables ϕ, x ,
depending on a parameter ω in a Lipschitz continuous way, and state their main
properties. In addition, we introduce the classes of ϕ-dependent linear operators
used in the paper, and the subclasses of Hamiltonian and of symplectic ones. In
Section 2.2 we review the notion of periodic pseudo-differential operators and basic
elements of their calculus. They are a key tool in Section 6, for the reduction of
the linearized operators obtained along the Nash–Moser iteration, to operators with
constant coefficients, up to smoothing remainders. In Section 2.3 we discuss the
notion of tame and modulo-tame operators, introduced in [10] as a technical tool
in order to facilitate the derivations of tame estimates, mainly needed to setup the
KAM reducibility scheme in Section 7. The results of Sections 2.4 and 2.5 are
new. In Section 2.4 we prove tame estimates for compositions of functions and
operators with a torus embedding ῐ : TS+ → T

S+ × R
S+ × Hs⊥(T1), acting in

spaces of functions of the variables (ϕ, x) ∈ T
S+ × T1. These tame estimates are

at the heart of the convergence of the KAM reducibility scheme, proved in Section
7 and of the Nash–Moser iteration, proved in Section 8.1. In Section 2.5, we prove
a version of the Egorov theorem with quantitative tame estimates needed in the
reduction step of Section 6.3.

2.1. Function Spaces and Linear Operators

In the paper we consider real or complex functions u(ϕ, x;ω), (ϕ, x) ∈ T
S+ ×

T1, which are Lipschitz continuous with respect to the parameter ω ∈ �, where �
is a subset of RS+ . In the sequel, we will often suppress ω in u(ϕ, x;ω) to make
notation lighter. Given 0 < γ < 1 and s ≥ 0, we define the norm

‖u‖Lip(γ )s := ‖u‖Lip(γ )s,� := ‖u‖sups + γ ‖u‖lips ,

‖u‖sup := sup
ω∈�

‖u(ω)‖s, ‖u‖lips := sup
ω1,ω2∈�,ω1 
=ω2

‖u(ω1)− u(ω2)‖s
|ω1 − ω2| ,

(2.1)
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where ‖ ‖s is the norm of the Sobolev space Hs , defined in (1.15), and u(ω1) =
u(·, ·;ω1). For a function u : � → C, the sup norm and the Lipschitz semi-
norm are denoted by |u|sup and, respectively, |u|lip. Correpondingly, we write
|u|Lip(γ ) := |u|sup + γ |u|lip.

By �N , N ∈ N+, we denote by �N the smoothing operators on Hs ,

(�Nu)(ϕ, x) :=
∑

|(
, j)|�N

u
, j e
i(
·ϕ+2π j x),

u
, j = 1

(2π)|S+|

∫
T
S+×T1

u(ϕ, x)e−i(
·ϕ+2π j x)dϕdx, (2.2)

and let �⊥N := Id − �N . For any α � 0 and s ∈ R, the operators �N and �⊥N
satisfy the standard estimates

‖�Nu‖Lip(γ )s � Nα‖u‖Lip(γ )s−α , ‖�⊥Nu‖Lip(γ )s � N−α‖u‖Lip(γ )s+α . (2.3)

Furthermore, the following interpolation inequalities hold: for any 0 ≤ s1 < s2 and
0 < θ < 1,

‖u‖Lip(γ )θs1+(1−θ)s2 � 2(‖u‖Lip(γ )s1 )θ (‖u‖Lip(γ )s2 )1−θ . (2.4)

Multiplication and composition with Sobolev functions satisfy the following tame
estimates:

Lemma 2.1. (Product and composition)

(i) For any s � s0 = [(|S+| + 1)/2] + 1 (cf. (1.22)),

‖uv‖Lip(γ )s � C(s)‖u‖Lip(γ )s ‖v‖Lip(γ )s0 + C(s0)‖u‖Lip(γ )s0 ‖v‖Lip(γ )s . (2.5)

(ii) Let β(·, ·;ω) : TS+ × T1 → R with ‖β‖Lip(γ )2s0+2 � δ(s0) small enough. Then
the composition operator B : u �→ Bu, (Bu)(ϕ, x) := u(ϕ, x + β(ϕ, x))
satisfies, for any s � s0 + 1,

‖Bu‖Lip(γ )s �s ‖u‖Lip(γ )s+1 + ‖β‖Lip(γ )s ‖u‖Lip(γ )s0+2 . (2.6)

The function β̆, obtained by solving y = x +β(ϕ, x) for x, x = y+ β̆(ϕ, y),
satisfies

‖β̆‖Lip(γ )s �s ‖β‖Lip(γ )s+1 , ∀s � s0. (2.7)

(iii) Let α(·;ω) : TS+ → R with ‖α‖Lip(γ )2s0+2 � δ(s0) small enough. Then the
composition operatorA : u �→ Au, (Au)(ϕ, x) := u(ϕ+α(ϕ)ω, x) satisfies,
for any s � s0 + 1,

‖Au‖Lip(γ )s �s ‖u‖Lip(γ )s+1 + ‖α‖Lip(γ )s ‖u‖Lip(γ )s0+2 . (2.8)

The function ᾰ, obtained by solving ϑ = ϕ + α(ϕ)ω for ϕ, ϕ = ϑ + ᾰ(ϑ)ω,
satisfies

‖ᾰ‖Lip(γ )s �s ‖α‖Lip(γ )s+1 , ∀s � s0. (2.9)
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Remark 2.2. Note that for s > s0, the bound C(s)‖u‖Lip(γ )s ‖v‖Lip(γ )s0

+C(s0)‖u‖Lip(γ )s0 ‖v‖Lip(γ )s of‖uv‖Lip(γ )s in (2.5) is linear in‖u‖Lip(γ )s and‖v‖Lip(γ )s .
It is this property of the estimate which is referred to as “tame”.

Proof. Item (i) follows from (2.72) in [10] and (ii)–(iii) follow from [10, Lemma
2.30]. ��

If the vectorω ∈ R
S+ is diophantine, that is |ω·
| � γ /|
|τ for any 
 ∈ Z

S+\{0},
the equation ω · ∂ϕv = u with u(ϕ, x) satisfying u0, j = 0 for any j ∈ Z, has the
periodic solution

v = (ω · ∂ϕ)−1u =
∑

j∈Z,
∈ZS+\{0}

u
, j
iω · 
e

i(
·ϕ+2π j x),

and it satisfies the standard estimate (cf. [9, Lemma 2.2])

‖(ω · ∂ϕ)−1u‖Lip(γ )s � Cγ−1‖u‖Lip(γ )s+2τ+1. (2.10)

We also record Moser’s tame estimate for the nonlinear composition operator

u(ϕ, x) �→ f(u)(ϕ, x) := f (ϕ, x, u(ϕ, x)).

Since the variables ϕ and x play the same role, we state it for the Sobolev space
Hs(Td).

Lemma 2.3. (Composition operator, [10, Lemma 2.31]) Let f ∈ C∞(Td×R
n,C).

If v(·;ω) ∈ Hs(Td ,Rn), ω ∈ �, is a family of Sobolev functions satisfying
‖v‖Lip(γ )s0(d)

� 1 where s0(d) > d/2, then, for any s � s0(d),

‖f(v)‖Lip(γ )s � C(s, f )(1+ ‖v‖Lip(γ )s ). (2.11)

Moreover, if f (ϕ, x, 0) = 0, then ‖f(v)‖Lip(γ )s � C(s, f )‖v‖Lip(γ )s .

Next we discuss classes of linear operators used in this paper. Throughout
the paper we consider ϕ-dependent families of linear operators A : T

S+ →
L(L2(T1,C)), ϕ �→ A(ϕ), acting on complex valued functions u(x) of the space
variable x . We also let A act on functions u(ϕ, x) of space-time. In this way we get
an element in L(L2(TS+ × T1,C)), again denoted by A, which is defined by

A[u](ϕ, x) ≡ (Au)(ϕ, x) := (A(ϕ)u(ϕ, ·))(x). (2.12)

We say that the linear operator A is real if it maps real valued functions to real
valued functions. When u in (2.12) is expanded in its Fourier series,

u(ϕ, x) =
∑
j∈Z

u j (ϕ)e
2π i j x =

∑
j∈Z,
∈ZS+

u
, j e
i(
·ϕ+2π j x), (2.13)

one obtains

(Au)(ϕ, x) =
∑
j, j ′∈Z

A j ′
j (ϕ)u j ′(ϕ)e

i2π j x
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=
∑

j∈Z,
∈ZS+

∑
j ′∈Z,
′∈ZS+

A j ′
j (
− 
′)u
′, j ′ei(
·ϕ+2π j x). (2.14)

We shall identify an operator A with the matrix
(
A j ′
j (
− 
′)

)
j, j ′∈Z,
,
′∈ZS+ .

Definition 2.4. Given a linear operator A as in (2.14) we define the following
operators:

1. |A| (majorant operator) whose matrix elements are |A j ′
j (
− 
′)|.

2. �N A, N ∈ N+, (smoothed operator) whose matrix elements are

(�N A) j
′
j (
− 
′) :=

{
A j ′
j (
− 
′) if 〈
− 
′〉 � N

0 otherwise.
(2.15)

3. 〈∂ϕ〉b A, b ∈ R, whose matrix elements are 〈
− 
′〉b A j ′
j (
− 
′).

4. ∂ϕm A(ϕ) = [∂ϕm , A] (differentiated operator) whose matrix elements are

i(
m − 
′m)A
j ′
j (
− 
′).

Hamiltonian and symplectic operators will play an important role in the reduc-
tion procedure of linearized operators, implemented in Sections 6 and 7. They are
defined as follows.

Definition 2.5. (Hamiltonian and symplectic operators)

(i) A ϕ-dependent family of linear operators X (ϕ), ϕ ∈ T
S+ , densely defined in

L2
0(T1), isHamiltonian if X (ϕ) = ∂xG(ϕ) for some real linear operatorG(ϕ)

which is self-adjoint with respect to the L2-inner product. By a slight abuse of
terminology, ω · ∂ϕ − ∂xG(ϕ) is also said to be a Hamiltonian operator.

(ii) A ϕ-dependent family of linear operators A(ϕ) : L2
0(T1) → L2

0(T1), ∀ϕ ∈
T
S+ , is symplectic if

WL2
0
(A(ϕ)u, A(ϕ)v) =WL2

0
(u, v), ∀u, v ∈ L2

0(T1),

where the symplectic 2-form WL2
0
is the one defined in (1.9).

Under a ϕ-dependent family of symplectic transformations�(ϕ), ϕ ∈ T
S+ , the

linear Hamiltonian operator ω · ∂ϕ − ∂xG(ϕ) transforms into one which is again
Hamiltonian. Self-adjoint operators and real ones are characterized in terms of their
matrix elements as follows:

Lemma 2.6. A family of linear operators R(ϕ), ϕ ∈ T
S+ with Fourier series

R(ϕ) =∑
∈ZS+ R(
)ei
·ϕ , is

(i) self-adjoint if and only if R j ′
j (
) = R j

j ′(−
), ∀ j, j ′ ∈ Z, 
, 
′ ∈ Z
S+ ;

(ii) real if and only if R j
j ′(
) = R− j

− j ′(−
), ∀ j, j ′ ∈ Z, 
, 
′ ∈ Z
S+ ;

(iii) Realand self-adjoint if andonly if R j ′
j (
)= R− j

− j ′ (
),∀ j, j ′ ∈Z, 
, 
′ ∈ZS+ .
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The next lemma describes the structure of specific linear Hamiltonian operators
(cf. Definition 2.5), and will be used in Lemmata 6.2 and 6.5.

Lemma 2.7. Let X : Hs+3
0 (T1) → Hs

0 (T1) be a linear Hamiltonian vector field
of the form

X = a3(x)∂
3
x + a2(x)∂

2
x + a1(x)∂x + bounded operator (2.16)

where a3, a2, a1 ∈ C∞(T1,R). Then a2 = 2(a3)x .

Proof. Since X is a linear Hamiltonian vector field it has the form X = ∂xAwhere
A is a densely defined operator on L2

0(T1) satisfying A = A�. Since by (2.16),
A = ∂−1x X = a3(x)∂xx +

( − (a3)x + a2
)
∂x + . . . and A� = −X�∂−1x =

a3(x)∂xx +
(
3(a3)x − a2

)
∂x + . . ., the identity A = A� implies that a2 =

2(a3)x . ��

2.2. Pseudo-differential Operators

In this section we introduce the class of pseudo-differential operators, acting
on functions on T1, which are used in this paper, and discuss their basic calculus,
following [10]. (Note however that in [10], the space variable x is in R/(2πZ)
whereas in this paper it is in T1.)

Definition 2.8. (Pseudo-differential operators, symbols)We say that a : T1×R→
C is a symbol of order m ∈ R if, for any α, β ∈ N,

∣∣∂αx ∂βξ a(x, ξ)
∣∣ � Cα,β〈ξ 〉m−β, ∀(x, ξ) ∈ T1 × R. (2.17)

The set of such symbols is denoted by Sm . Given a ∈ Sm, we denote by A the
operator, which maps a one periodic function u(x) =∑ j∈Z u j ei2π j x to

A[u](x) ≡ (Au)(x) :=
∑

j∈Za(x, j)u j e
i2π j x .

The operator A is referred to as the pseudo-differential operator (	DO) of
order m, associated to the symbol a, and is also denoted by Op(a) or a(x, D)
where D = 1

i ∂x . Furthermore we denote by OPSm the set of pseudo-differential
operators a(x, D) with a(x, ξ) ∈ Sm and set OPS−∞ := ∩m∈R OPSm .

When the symbol a is independent of ξ , the operator A = Op(a) is the mul-
tiplication operator by the function a(x), that is, A : u(x) �→ a(x)u(x) and we
also write a for A. If a is independent of x , the operator A = Op(a) is referred to
as Fourier multiplier. In particular, 〈D〉 denotes the Fourier multiplier with symbol
〈ξ 〉 := max{1, |ξ |}

More generally, we consider symbols a(ϕ, x, ξ ;ω), depending in addition on
the variable ϕ ∈ T

S+ and the parameter ω ∈ �, where a is C∞ in ϕ and Lipschitz
continuous with respect to ω. By a slight abuse of notation, we denote the class
of such symbols of order m also by Sm . Alternatively, we denote A by A(ϕ),
Op(a(ϕ, ·)), or a(ϕ, x, D;ω).
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Given an even cut-off function χ0 ∈ C∞(R,R), satisfying

0 � χ0 � 1, χ0(ξ) = 0, ∀|ξ | < 1

2
, χ0(ξ) = 1 , ∀|ξ | � 2

3
, (2.18)

we define, for any m ∈ Z, ∂mx = Op(χ0(ξ)(i2πξ)m), so that

∂mx [ei2π j x ] = (i2π j)mei2π j x , j ∈ Z \ {0}, ∂mx [1] = 0. (2.19)

Note that ∂0x [u](x) = u(x)− u0, hence ∂0x is not the identity operator.
Following [10, Definition 2.11], we introduce for any s ≥ 0 the norm of a

symbol a(ϕ, x, ξ ;ω) in Sm , which controls the regularity in (ϕ, x) and the decay
in ξ of a and its derivatives ∂βξ a ∈ Sm−β , 0 � β � α, in the Sobolev norm ‖ ‖s .
By a slight abuse of terminology, we refer to it as the norm of the corresponding
pseudo-differential operator. Unlike as in [10], we consider the difference quotient
instead of the derivative with respect to ω, and write | |Lip(γ )m,s,α instead of | |1,γm,s,α .

Definition 2.9. (Normof pseudo-differential operators)Let A(ω) := a(ϕ, x, D;ω) ∈
OPSm be a family of pseudo-differential operators with symbols a(ϕ, x, ξ ;ω) ∈
Sm of order m ∈ R. For γ ∈ (0, 1), α ∈ N, s � 0, we define the weighted 	do
norm of A as

|A|Lip(γ )m,s,α := sup
ω∈�

|A(ω)|m,s,α + γ sup
ω1,ω2∈�
ω1 
=ω2

|A(ω1)− A(ω2)|m,s,α
|ω1 − ω2|

where |A(ω)|m,s,α := max0�β�α supξ∈R ‖∂βξ a(·, ·, ξ ;ω)‖s〈ξ 〉−m+β .

The pseudo-differential norm |·|Lip(γ )m,s,α satisfies the following elementary properties:
for any s � s′, α � α′, and m � m′,

| · |Lip(γ )m,s,α � | · |Lip(γ )m,s′,α, | · |Lip(γ )m,s,α � | · |Lip(γ )m,s,α′ , | · |Lip(γ )m′,s,α � | · |Lip(γ )m,s,α . (2.20)

For a Fourier multiplier g(D;ω) with symbol g ∈ Sm , one has

|Op(g)|Lip(γ )m,s,α = |Op(g)|Lip(γ )m,0,α � C(m, α, g), ∀s � 0, (2.21)

and for a function a(ϕ, x;ω),
|Op(a)|Lip(γ )0,s,α = |Op(a)|Lip(γ )0,s,0 � ‖a‖Lip(γ )s . (2.22)

Composition. If A = a(ϕ, x, D;ω) ∈ OPSm , B = b(ϕ, x, D;ω) ∈ OPSm
′
,

then the composition AB := A ◦ B is a pseudo-differential operator with a symbol
σAB(ϕ, x, ξ ;ω) in Sm+m′ which, for any N � 0, admits the asymptotic expansion

σAB(ϕ, x, ξ ;ω) =
N∑

β=0

1

iββ!∂
β
ξ a(ϕ, x, ξ ;ω) ∂βx b(ϕ, x, ξ ;ω)+ rN (ϕ, x, ξ ;ω) (2.23)

with remainder rN ∈ Sm+m′−N−1. We record the following tame estimate for the
composition of two pseudo-differential operators, proved in [10, Lemma 2.13]:
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Lemma 2.10. (Composition) Let A = a(ϕ, x, D;ω), B = b(ϕ, x, D;ω) be
pseudo-differential operators with symbols a(ϕ, x, ξ ;ω) ∈ Sm, b(ϕ, x, ξ ;ω) ∈
Sm

′
, m,m′ ∈ R. Then A ◦ B is the pseudo-differential operator of order m + m′,

associated to the symbol σAB(ϕ, x, ξ ;ω) which satisfies, for any α ∈ N, s � s0,

|AB|Lip(γ )m+m′,s,α �m,α C(s)|A|Lip(γ )m,s,α |B|Lip(γ )m′,s0+α+|m|,α
+C(s0)|A|Lip(γ )m,s0,α|B|Lip(γ )m′,s+α+|m|,α. (2.24)

Moreover, for any integer N � 1, the remainder RN :=Op(rN )with rN as in (2.23)
satisfies

|RN |Lip(γ )m+m′−N−1,s,α �m,N ,α C(s)|A|Lip(γ )m,s,N+1+α|B|Lip(γ )m′,s0+2(N+1)+|m|+α,α
+C(s0)|A|Lip(γ )m,s0,N+1+α|B|

Lip(γ )
m′,s+2(N+1)+|m|+α,α. (2.25)

By (2.23) the commutator [A, B]of A = a(x, D) ∈ OPSm and B = b(x, D) ∈
OPSm

′
is a pseudo-differential operator of order m + m′ − 1, and Lemma 2.10

yields (cf. [10, Lemma 2.15]).

Lemma 2.11. (Commutator) If A = a(ϕ, x, D;ω) ∈ OPSm and B =
b(ϕ, x, D;ω) ∈ OPSm

′
, m,m′ ∈ R, then the commutator [A, B] := AB − BA

is the pseudo-differential operator of order m + m′ − 1 associated to the symbol
σAB(ϕ, x, ξ ;ω) − σBA(ϕ, x, ξ ;ω) ∈ Sm+m′−1 which for any α ∈ N and s � s0
satisfies

|[A, B]|Lip(γ )m+m′−1,s,α �m,m′,α C(s)|A|Lip(γ )m,s+2+|m′|+α,α+1|B|Lip(γ )m′,s0+2+|m|+α,α+1
+ C(s0)|A|Lip(γ )m,s0+2+|m′|+α,α+1|B|

Lip(γ )
m′,s+2+|m|+α,α+1.

(2.26)

In the case of operators of the special form a∂mx , Lemmas 2.10 and 2.11 simplify
as follows:

Lemma 2.12. (Composition and commutator of homogeneous symbols) Let A =
a∂mx , B = b∂m

′
x where m,m′ ∈ Z and a(ϕ, x;ω), b(ϕ, x;ω) are C∞-smooth

functionswith respect to (ϕ, x) and Lipschitz with respect toω ∈ �. Then there exist
combinatorial constants Kn,m ∈ R, 0 ≤ n ≤ N, with K0,m = 1 and K1,m = m so
that the following holds:

(i) For any N ∈ N, the composition A◦B is in OPSm+m′ andadmits the asymptotic
expansion

A ◦ B =
N∑

n=0
Kn,m a (∂nx b)∂

m+m′−n
x +RN (a, b)

where the remainder RN (a, b) is in OPSm+m′−N−1. Furthermore there is a
constant σN (m) > 0 so that, for any s � s0, α ∈ N,

|RN (a, b)|Lip(γ )m+m′−N−1,s,α �m,m′,s,N ,α ‖a‖Lip(γ )s+σN (m)‖b‖
Lip(γ )
s0+σN (m)

+‖a‖Lip(γ )s0+σN (m)‖b‖
Lip(γ )
s+σN (m).
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(ii) For any N ∈ N+, the commutator [A, B] is in OPSm+m′−1 and admits the
asymptotic expansion

[A, B] =
N∑

n=1

(
Kn,ma(∂

n
x b)− Kn,m′(∂

n
x a)b

)
∂m+m′−nx +QN (a, b)

where the remainder QN (a, b) is in OPSm+m′−N−1. Furthermore, there is a
constant σN (m,m′) > 0 so that, for any s � s0, α ∈ N,

|QN (a, b)|Lip(γ )m+m′−N−1,s,α �m,m′,s,N ,α ‖a‖Lip(γ )s+σN (m,m′)‖b‖
Lip(γ )
s0+σN (m,m′)

+‖a‖Lip(γ )s0+σN (m,m′)‖b‖
Lip(γ )
s+σN (m,m′).

Proof. The results follow from the asymptotic expansion formula (2.23) and
Lemma 2.10. ��

Finally we give the following result on the exponential of a pseudo-differential
operator of order 0.

Lemma 2.13. (Exponential map) If A :=Op(a(ϕ, x, ξ ;ω)) is in OPS0, then∑
k≥0 1

k!σAk (ϕ, x, ξ ;ω) is a symbol of order0 andhence the corresponding pseudo-
differential operator, denoted by � = exp(A), is in OPS0. Furthermore, for any
s � s0, α ∈ N, there is a constant C(s, α) > 0 so that

|�− Id|Lip(γ )0,s,α � |A|Lip(γ )0,s+α,αexp
(
C(s, α)|A|Lip(γ )0,s0+α,α

)
. (2.27)

Proof. Iterating (2.24), for any s � s0, α ∈ N, there is a constant C(s, α) > 0
such that

|Ak |Lip(γ )0,s,α � C(s, α)k−1(|A|Lip(γ )0,s0+α,α)
k−1|A|Lip(γ )0,s+α,α, ∀k � 1. (2.28)

Therefore

|�− Id|Lip(γ )0,s,α �
∑
k�1

1

k! |A
k |Lip(γ )0,s,α

(2.28)
� |A|Lip(γ )0,s+α,α

∑
k�1

1

k!C(s, α)
k−1(|A|Lip(γ )0,s0+α,α)

k−1

� |A|Lip(γ )0,s+α,αexp
(
C(s, α)|A|Lip(γ )0,s0+α,α

)
.

This shows that
∑

k≥0 1
k!σAk (ϕ, x, ξ ;ω) is a symbol in S0 and that the estimate

(2.27) holds. ��

2.3. Lip(γ )-Tame and Modulo-Tame Operators

In this section we review the notions and the main properties of Lip(γ )-σ -tame
and Lip(γ )-modulo-tame operators, introduced in [10, Section 2.2]. (Again, unlike
[10], we consider difference quotients instead of first order derivatives with respect
to ω.)
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Definition 2.14. (Lip(γ )-σ -tame) Let σ ≥ 0 and 0 < γ < 1. A linear operator
A = A(ω) as in (2.12) is said to be Lip(γ )-σ -tame if there exist numbers s1, S with
s0 ≤ s1 < S and a non-decreasing function [s1, S] → [0,+∞), s �→ MA(s), so
that, for any s1 � s � S and u ∈ Hs+σ ,

sup
ω∈�

‖A(ω)u‖s + γ sup
ω1,ω2∈�
ω1 
=ω2

∥∥∥ A(ω1)− A(ω2)

|ω1 − ω2| u
∥∥∥
s

� MA(s1)‖u‖s+σ +MA(s)‖u‖s1+σ . (2.29)

When σ is zero, we simply write Lip(γ )-tame instead of Lip(γ )-0-tame. We say
thatMA(s) is a tame constant of the operator A. Note thatMA(s) is not uniquely
determined and that it may also depend on σ , referred to as loss of derivatives. We
will not explicitly record this dependence.

Remark 2.15. In the sequel, often we will not explicitly record the domain of
definition [s1, S] of the Lip(γ )-σ -tame constantMA(s) in order to make the state-
ments lighter. Similarly, we will always assume that 0 < γ < 1, without stating it
explicitly.

Representing the operator A by its matrix elements
(
A j ′
j (
− 
′)

)

,
′∈ZS+ , j, j ′∈Z

as in (2.14), we have, for any j ′ ∈ Z, 
′ ∈ Z
S+ and any ω1, ω2 ∈ �, ω1 
= ω2,

∑

, j
〈
, j〉2s1

(∣∣A j ′
j (
− 
′)

∣∣2 + γ 2
∣∣∣�ωA

j ′
j (
− 
′)

|ω1 − ω2|
∣∣∣2
)

�
(
MA(s1)

)2〈
′, j ′〉2(s1+σ)
(2.30)

where we recall that �ω f = f (ω1)− f (ω2).

Lemma 2.16. (Composition, [10,Lemma2.20])Let A, B beaLip(γ )-σA-tameand
respectively, a Lip(γ )-σB-tame operator with tame constants MA(s) and MB(s).
Then the composition A ◦ B is Lip(γ )-(σA + σB)-tame with a tame constant sat-
isfying

MAB(s) � MA(s)MB(s1 + σA)+MA(s1)MB(s + σA).

We now discuss the action of a Lip(γ )-σ -tame operator A(ω) on a family of
Sobolev functions u(ω) ∈ Hs .

Lemma 2.17. (Action on Hs, [10, Lemma 2.22]) Let A := A(ω) be a Lip(γ )-σ -
tame operator with tame constantMA(s). Then for any s ∈ [s1, S], for any family
of Sobolev functions u := u(ω) ∈ Hs+σ , Lipschitz continuous with respect to ω,
the following tame estimates hold:

‖Au‖Lip(γ )s � MA(s1)‖u‖Lip(γ )s+σ +MA(s)‖u‖Lip(γ )s1+σ .

Pseudo-differential operators are tame operators. We will use, in particular, the
following lemma:
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Lemma 2.18. Let a(ϕ, x, ξ ;ω) ∈ S0 be a family of symbols that are Lipschitz
continuous with respect to ω. If A = a(ϕ, x, D;ω) satisfies |A|Lip(γ )0,s,0 < +∞ for
any s � s0, then A is Lip(γ )-tame with a tame constant satisfying

MA(s) � C(s)|A|Lip(γ )0,s,0 . (2.31)

As a consequence, for any s ≥ s0,

‖Au‖Lip(γ )s � C(s0)|A|Lip(γ )0,s0,0
‖u‖Lip(γ )s + C(s)|A|Lip(γ )0,s,0 ‖u‖Lip(γ )s0 . (2.32)

Proof. See [10, Lemma 2.21] for the proof of (2.31). The estimate (2.32) then
follows from Lemma 2.17. ��

In the KAM reducibility scheme of Section 7, we need to consider Lip(γ )-tame
operators A which satisfy a stronger condition, referred to Lip(γ )-modulo-tame.

Definition 2.19. (Lip(γ )-modulo-tame) A linear operator A := A(ω) as in (2.12) is
Lip(γ )-modulo-tame if there exist numbers s1, S with Let s0 ≤ s1 < S and a non-
decreasing function [s1, S] → [0,+∞), s �→M

�
A(s), so that for any s1 � s � S

and u ∈ Hs ,

sup
ω∈�

‖ |A(ω)| u‖s + γ sup
ω1,ω2∈�
ω1 
=ω2

∥∥∥ |A(ω1)− A(ω2)|
|ω1 − ω2| u

∥∥∥
s

� M
�
A(s1)‖u‖s +M

�
A(s)‖u‖s1 . (2.33)

The constant M�
A(s) is called a modulo-tame constant of the operator A.

Similarly as mentioned in Remark 2.15, the domain of definition ofM�
A(s)will

often not be explicitly recorded. By Definition 2.19, if B is a Lip(γ )-modulo-tame

operator and A is a linear operator satisfying |A j ′
j (
)| � |B j ′

j (
)|, then A is Lip(γ )-

modulo-tame with a modulo-tame constant M�
A(s) satisfying M

�
A(s) � M

�
B(s).

Moreover, by comparing Definitions 2.19 and 2.14 (for σ = 0) one deduces the
following lemma (cf. [10, Lemma 2.24] for details):

Lemma 2.20. An operator A which isLip(γ )-modulo-tamewithmodulo-tame con-
stant M�

A(s) is also Lip(γ )-tame and M
�
A(s) is a tame constant for A.

The class of Lip(γ )-modulo-tame operators (Definition 2.19) is closed under
the operations coming up in the KAM reduction procedure, namely: sum and com-
position (Lemma 2.21); projections (Lemma 2.23); solution of the homological
equation (Lemma 7.5). Let us give the precise statement of the first property.

Lemma 2.21. (Sum and composition [10, Lemma 2.25]) Let A, B be Lip(γ )-
modulo-tame operators with modulo-tame constants M

�
A(s) and, respectively ,

M
�
B(s). Then A+B isLip(γ )-modulo-tamewith amodulo-tame constantM�

A+B(s)
satisfying

M
�
A+B(s) � M

�
A(s)+M

�
B(s). (2.34)
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The composed operator A◦B isLip(γ )-modulo-tame with a modulo-tame constant
satisfying, for some C ≥ 1,

M
�
AB(s) � C

(
M

�
A(s)M

�
B(s1)+M

�
A(s1)M

�
B(s)

)
. (2.35)

Assume in addition that 〈∂ϕ〉bA, 〈∂ϕ〉bB (see Definition 2.4) are Lip(γ )-modulo-

tame with modulo-tame constantsM�

〈∂ϕ〉bA(s) and, respectively,M
�

〈∂ϕ〉bB(s). Then
〈∂ϕ〉b(AB) is Lip(γ )-modulo-tame with a modulo-tame constant M�

〈∂ϕ〉b(AB)(s),
bounded for some C(b) � 1 by

C(b)
(
M

�

〈∂ϕ 〉bA(s)M
�
B(s1)+M

�

〈∂ϕ 〉bA(s1)M
�
B(s)+M

�
A(s)M

�

〈∂ϕ 〉bB(s1)+M
�
A(s1)M

�

〈∂ϕ 〉bB(s)
)
.

(2.36)

Iterating the tame estimates (2.35) and (2.36) for the composition of operators
we get that, for any n � 2,

M
�
An (s) �

(
2CM

�
A(s1)

)n−1
M

�
A(s), (2.37)

and

M
�

〈∂ϕ〉bAn (s) � (4C(b)C)n−1
(
M

�

〈∂ϕ〉bA(s)
[
M

�
A(s1)

]n−1 (2.38)

+M�

〈∂ϕ〉bA(s1)M
�
A(s)

[
M

�
A(s1)

]n−2)
.

As an application of (2.37)–(2.38) we obtain the following:

Lemma 2.22. (Exponential map) Let A and 〈∂ϕ〉bA be Lip(γ )-modulo-tame oper-

ators and assume that M�
A : [s1, S] → [0,+∞) is a modulo-tame constant satis-

fying

M
�
A(s1) � 1. (2.39)

Then the operators�±1 := exp(±A),�±1− Id, and 〈∂ϕ〉b(�±1− Id) are Lip(γ )-
modulo-tame with modulo-tame constants satisfying, for any s1 � s � S,

M
�

�±1−Id(s)� M
�
A(s),

M
�

〈∂ϕ〉b(�±1−Id)(s) �b M
�

〈∂ϕ〉bA(s)+M
�
A(s)M

�

〈∂ϕ〉bA(s1). (2.40)

Proof. In view of the identity�±1− Id =∑n�1
(±A)n

n! and the assumption (2.39)
the claimed estimates follow by (2.37)–(2.38). ��

Along the KAM reducibility scheme of Section 7.1 we need the following
estimates for the operator�⊥N A := A−�N Awhere�N A is the smoothed operator,
defined in (2.15):
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Lemma 2.23. (Smoothing, [10, Lemma 2.27]) Suppose that 〈∂ϕ〉bA, b � 0,
is Lip(γ )-modulo-tame. Then the operator �⊥N A (cf. Definition 2.4) is Lip(γ )-
modulo-tame with a modulo-tame constant satisfying

M
�

�⊥N A
(s) � N−bM�

〈∂ϕ〉bA(s), M
�

�⊥N A
(s) � M

�
A(s). (2.41)

We will also encounter linear operators of the form h �→ (a2, h)L2
x
a1 where

a1, a2 are smooth functions. According to the next lemma, such operators are
modulo-tame regularizing. Recall that 〈D〉 denotes the Fourier multiplier with sym-
bol 〈ξ 〉.

Lemma 2.24. Let a1(·;ω), a2(·;ω) be functions in C∞(TS+ × T1,C) and ω ∈ �.
Consider the linear operator R : L2

x → L2
x , h �→ (a2, h)L2

x
a1. Then for any

λ ∈ N
S+ and n1, n2 � 0, the operator 〈D〉n1∂λϕR〈D〉n2 is Lip(γ )-tame with a tame

constant satisfying, for some σ ≡ σ(n1, n2, λ) > 0 and, for any s ≥ s0,

M〈D〉n1∂λϕR〈D〉n2 (s) �s,n1,n2,λ (maxi=1,2‖ai‖s+σ ) · (maxi=1,2‖ai‖s0+σ ).

Proof. For any n1, n2 � 0, λ ∈ N
S+ , h ∈ L2

x , one has that, for some combinatorial
constants cλ1,λ2 ,

〈D〉n1∂λϕR〈D〉n2h =
∑

λ1+λ2=λ
cλ1,λ2〈D〉n1[∂λ1ϕ a1]

(〈D〉n2 [∂λ2ϕ a2], h
)
L2
x
,

where we used that the operator 〈D〉 is self-adjoint. The lemma then follows by
(2.5). ��

2.4. Tame Estimates

In this section we record tame estimates for compositions of functions and
operators with the lift ῐ of a torus embedding T

S+ → Es (cf. (1.25)) of the form

ῐ(ϕ) = (ϕ, 0, 0)+ ι(ϕ) where ι(ϕ) = (�(ϕ), y(ϕ),w(ϕ)) is (2πZ)S+ -periodic,

endowed with the norm ‖ι‖Lip(γ )s := ‖�‖Lip(γ )Hs
ϕ

+‖y‖Lip(γ )Hs
ϕ

+‖w‖Lip(γ )s . The main

results are Lemmas 2.25 and 2.26, whose relevance is described in Remark 2.27.
Note that the norm ‖ ·‖s of the Sobolev space Hs = Hs(TS+ ×T1), introduced

in (1.15), is equivalent to

‖ ‖s = ‖ ‖Hs
ϕ,x
∼s ‖ ‖Hs

ϕL
2
x
+ ‖ ‖L2

ϕH
s
x

(2.42)

and that by interpolation estimates (which are proved using Young’s inequality),
one has

‖w‖Hs
ϕH

σ
x

� ‖w‖Hs+σ
ϕ L2

x
+ ‖w‖L2

ϕH
s+σ
x

�s,σ ‖w‖s+σ . (2.43)
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Given a Banach space X with norm ‖ ‖X and s ∈ N, we denote by Cs(TS+ , X) the
Banach space of Cs-smooth maps f : TS+ → X , equipped with the norm

‖ f ‖Cs
ϕX :=

∑
0�|α|�s

‖∂αϕ f ‖supX , ‖∂αϕ f ‖supX := sup
ϕ∈TS+

‖∂αϕ f (ϕ)‖X . (2.44)

If X is a Banach space and H a Hilbert space, the following Sobolev embedding
results hold: for any s1 ∈ N,

Hs+s1(TS+ , X) ↪→ Cs1(TS+ , X), ∀s > |S+|,
Hs+s1(TS+ , H) ↪→ Cs1(TS+ , H), ∀s > |S+|/2. (2.45)

For the convenience of the reader, let us prove the two cases for s1 = 0. To see that
Hs(TS+ , X) ↪→ C0(TS+ , X) for s > |S+|, consider for any given u ∈ Hs(TS+ , X)
its Fourier expansion u(ϕ) = ∑
∈ZS+ u
ei
·ϕ , u
 ∈ X . Integrating by parts, one
has

‖u
‖X =
∥∥∥ 1

(2π)|S+|

∫
T
S+

u(ϕ)e−i
·ϕ dϕ
∥∥∥
X

�s 〈
〉−s‖u‖Hs
ϕ X , ∀ 
 ∈ Z

S+ .

The claimed embedding then follows, since s > |S+|:
‖u‖C0

ϕ X
�
∑

∈ZS+

‖u
‖X �s ‖u‖Hs
ϕ X

∑

∈ZS+

〈
〉−s �s ‖u‖Hs
ϕ X .

To see that Hs(TS+ , H) ↪→ C0(TS+ , H) for s > |S+|/2, use Plancherel’s identity
‖u‖2Hs

ϕ X
∼s
∑


∈ZS+ ‖u
‖2X 〈
〉2s to conclude that∑

∈ZS+ ‖u
‖X � (

∑

∈ZS+ ‖u
‖2X 〈
〉2s)1/2(

∑

∈ZS+ 〈
〉−2s)1/2 �s ‖u‖Hs

ϕ X .

On the Banach spaces Cs(TS+ , X) the following interpolation inequalities hold:
for any integer 0 � k � s,

‖ f ‖Ck
ϕX

�s ‖ f ‖1−
k
s

C0
ϕX
‖ f ‖

k
s
Cs
ϕ X
. (2.46)

In the next lemma, we assume the tame estimates (2.47) for the function x =
(θ, y, w) �→ a(x) in the x-variable only, and we deduce tame estimates for the
composed function a(ῐ(ϕ)) in the variables (ϕ, x). Recall that Es, Es are defined
in (1.25) and Vs(δ) in (1.27). Let � be an open bounded subset of RS+ . In more
detail, the following holds:

Lemma 2.25. (Tame estimates for functions) Let σ > 0 and assume that, for
any s � 0, the map a : (Vσ (δ) ∩ Es+σ ) × � → Hs(T1) is C∞ with respect to
x = (θ, y, w), C1 with respect toω, and satisfies for any x ∈ Vσ (δ)∩Es+σ , α ∈ N

S+

with |α| � 1, and l � 1, the tame estimates

‖∂αωa(x;ω)‖Hs
x

�s 1+ ‖w‖Hs+σ
x

,

‖dl∂αωa(x;ω)[̂x1, . . . , x̂l ]‖Hs
x

�s,l,α

l∑
j=1

(
‖̂x j‖Es+σ

∏
n 
= j

‖̂xn‖Eσ
)

(2.47)
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+ ‖w‖Hs+σ
x

l∏
j=1
‖̂x j‖Eσ .

Then for any torus embedding ῐ with ‖ι‖Lip(γ )s0+σ � δ and any maps ι̂, ι̂1, ι̂2 : TS+ →
Es+s0+σ , the following tame estimates hold for any s � 0:

(i) ‖a(ῐ)‖Lip(γ )s �s 1+ ‖ι‖Lip(γ )s+s0+σ ,

‖da(ῐ)[̂ι]‖Lip(γ )s �s ‖̂ι‖Lip(γ )s+s0+σ + ‖ι‖Lip(γ )s+s0+σ ‖̂ι‖Lip(γ )s0+σ ,

‖d2a(ῐ)[̂ι1, ι̂2]‖Lip(γ )s �s ‖̂ι1‖Lip(γ )s+s0+σ ‖̂ι2‖s0+σ
+ ‖̂ι1‖Lip(γ )s0+σ ‖̂ι2‖Lip(γ )s+s0+σ + ‖ι‖Lip(γ )s+s0+σ ‖̂ι1‖Lip(γ )s0+σ ‖̂ι2‖Lip(γ )s0+σ .

(2.48)

(ii) If in addition a(θ, 0, 0;ω) = 0, then ‖a(ῐ)‖Lip(γ )s �s ‖ι‖Lip(γ )s+s0+σ .
(iii) If in addition a(θ, 0, 0;ω) = 0, ∂ya(θ, 0, 0;ω) = 0, and ∂wa(θ, 0, 0;ω) =

0, then

‖a(ῐ)‖Lip(γ )s �s ‖ι‖Lip(γ )s+s0+σ‖ι‖Lip(γ )s0+σ ,

‖da(ῐ)[̂ι]‖Lip(γ )s �s ‖ι‖Lip(γ )s0+σ ‖̂ι‖Lip(γ )s+s0+σ + ‖ι‖Lip(γ )s+s0+σ ‖̂ι‖Lip(γ )s0+σ .

Proof. (i) It suffices to prove the estimates for‖d2a(ῐ)[̂ι1, ι̂2]‖s and‖d2a(ῐ)[̂ι1, ι̂2]‖lips
in (2.48) since the ones for a(ῐ) and da(ῐ) then follow by Taylor expansions. By
the hypothesis (2.47) with l = 2, α = 0, we have, for any ϕ ∈ T

S+ , s � 0,

‖d2a(ῐ(ϕ))[̂ι1(ϕ), ι̂2(ϕ)]‖Hs
x

�s ‖̂ι1(ϕ)‖Es+σ ‖̂ι2(ϕ)‖Eσ + ‖̂ι1(ϕ)‖Eσ ‖̂ι2(ϕ)‖Es+σ
+‖ι(ϕ)‖Es+σ ‖̂ι1(ϕ)‖Eσ ‖̂ι2(ϕ)‖Eσ . (2.49)

Squaring the expressions on the left and right hand side of (2.49) and then integrat-
ing them with respect to ϕ, one concludes, using (2.42), (2.43), and the Sobolev
embedding (2.45), that

‖d2a(ῐ)[̂ι1, ι̂2]‖L2
ϕH

s
x

�s ‖̂ι1‖s+σ ‖̂ι2‖s0+σ
+‖̂ι1‖s0+σ ‖̂ι2‖s+σ + ‖ι‖s+σ ‖̂ι1‖s0+σ ‖̂ι2‖s0+σ . (2.50)

In order to estimate ‖d2a(ῐ)[̂ι1, ι̂2]‖Hs
ϕL

2
x
, we estimate ‖d2a(ῐ)[̂ι1, ι̂2]‖Cs

ϕL
2
x
. We

claim that

‖d2a(ῐ)[̂ι1, ι̂2]‖Cs
ϕL

2
x

�s ‖̂ι1‖s0+σ ‖̂ι2‖s+s0+σ
+ ‖̂ι1‖s+s0+σ ‖̂ι2‖s0+σ + ‖ι‖s+s0+σ ‖̂ι1‖s0+σ ‖̂ι2‖s0+σ ,

(2.51)

so that the estimate for ‖d2a(ῐ)[̂ι1, ι̂2]‖s stated in (2.48) follows by (2.50), (2.51),
and (2.42). The bound for ‖d2a(ῐ)[̂ι1, ι̂2]‖lips is obtained in the same fashion.
Proof of (2.51). By the Leibnitz rule, for any β ∈ N

S+ , 0 � |β| � s,

∂βϕ

(
d2a(ῐ(ϕ))[̂ι1(ϕ), ι̂2(ϕ)]

)
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=
∑

β1+β2+β3=β
cβ1,β2,β3∂

β1
ϕ (d2a(ῐ(ϕ)))

[
∂β2ϕ ι̂1(ϕ), ∂

β3
ϕ ι̂2(ϕ)

]
, (2.52)

where cβ1,β2,β3 are combinatorial constants. Each term in the latter sum is estimated
individually. For 1 � |β1| � s, we have

∂β1ϕ (d2a(ῐ(ϕ)))
[
∂β2ϕ ι̂1(ϕ), ∂

β3
ϕ ι̂2(ϕ)

]
=

∑
1�m�|β1|

α1+···+αm=β1

cα1,··· ,αm dm+2a(ῐ(ϕ))
[
∂α1ϕ ῐ(ϕ), · · · , ∂αmϕ ῐ(ϕ), ∂β2ϕ ι̂1(ϕ), ∂

β3
ϕ ι̂2(ϕ)

]

for suitable combinatorial constants cα1,··· ,αm . Then, by (2.47) with l = m + 2,
α = 0, we have the bound

‖∂β1ϕ (d2a(ῐ))[∂β2ϕ ι̂1, ∂
β3
ϕ ι̂2]‖C0

ϕL
2
x

(2.53)

�β

∑
1�m�|β1|

α1+···+αm=β1

(1+ ‖ι‖C|α1|ϕ Eσ
) · · · (1+ ‖ι‖C|αm |ϕ Eσ

)‖̂ι1‖C|β2 |ϕ Eσ
‖̂ι2‖C|β3|ϕ Eσ

.

Arguing as in the proof of the formula (75) in [9], for any j = 1, . . . ,m, we have

(1+ ‖ι‖C|α j |ϕ Eσ
) �β (1+ ‖ι‖C0

ϕEσ
)
1− |α j ||β| (1+ ‖ι‖C|β|ϕ Eσ

)
|α j |
|β| ,

and, using the interpolation estimate (2.46), we get

(1+ ‖ι‖C|α1 |ϕ Eσ
) · · · (1+ ‖ι‖C|αm |ϕ Eσ

)‖̂ι1‖C|β2 |ϕ Eσ
‖̂ι2‖C|β3 |ϕ Eσ

(2.54)

�s ‖̂ι1‖1−
|β2 ||β|

C0
ϕ Eσ

‖̂ι1‖
|β2 ||β|
C|β|ϕ Eσ

‖̂ι2‖1−
|β3 ||β|

C0
ϕ Eσ

‖̂ι2‖
|β3 ||β|
C|β|ϕ Eσ

m∏
j=1

(1+ ‖ι‖C0
ϕ Eσ

)
1− |α j ||β| (1+ ‖ι‖C|β|ϕ Eσ

)
|α j |
|β|

�s ‖̂ι1‖1−
|β2 ||β|

C0
ϕ Eσ

‖̂ι1‖
|β2 ||β|
C|β|ϕ Eσ

‖̂ι2‖1−
|β3 ||β|

C0
ϕ Eσ

‖̂ι2‖
|β3 ||β|
C|β|ϕ Eσ

(1+ ‖ι‖C0
ϕ Eσ

)
m−∑m

j=1
|α j |
|β| (1+ ‖ι‖C|β|ϕ Eσ

)
∑m

j=1
|α j |
|β| .

By (2.45), (2.43), (1 + ‖ι‖C0
ϕEσ

)m−1 � (1 + ‖ι‖s0+σ )m−1 � (1 + δ)m−1 and∑m
j=1 |α j |
|β| = |β1|

|β| = 1− |β2|
|β| − |β3|

|β| , so that

(2.54) �s ‖̂ι1‖
|β1 |+|β3 ||β|
C0
ϕEσ

‖̂ι1‖
|β2 ||β|
Cs
ϕEσ
‖̂ι2‖

|β1 |+|β2 ||β|
C0
ϕEσ

‖̂ι2‖
|β3 ||β|
Cs
ϕEσ

(1+ ‖ι‖C0
ϕEσ

)
|β2 |+|β3 ||β| (1+ ‖ι‖Cs

ϕEσ )
|β1 ||β|

�s

(
‖̂ι1‖C0

ϕEσ
‖̂ι2‖C0

ϕEσ
(1+ ‖ι‖Cs

ϕ Eσ )
) |β1 ||β| (‖̂ι1‖Cs

ϕEσ ‖̂ι2‖C0
ϕEσ

(1+ ‖ι‖C0
ϕEσ

)
) |β2 ||β|

×
(
‖̂ι1‖C0

ϕEσ
‖̂ι2‖Cs

ϕEσ (1+ ‖ι‖C0
ϕEσ

)
) |β3 ||β|

and, by the iterated Young inequality with exponents |β|/|β1|, |β|/|β2|, |β|/|β3|,
we conclude that the expression on the line (2.54) is bounded by

‖̂ι1‖C0
ϕEσ
‖̂ι2‖C0

ϕEσ
(1+ ‖ι‖Cs

ϕEσ )+ ‖̂ι1‖Cs
ϕEσ ‖̂ι2‖C0

ϕEσ
(1+ ‖ι‖C0

ϕEσ
)

+ ‖̂ι1‖C0
ϕEσ
‖̂ι2‖Cs

ϕEσ (1+ ‖ι‖C0
ϕEσ

)

(2.45),(2.43)
�s ‖ι‖s+s0+σ ‖̂ι1‖s0+σ ‖̂ι2‖s0+σ
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+ ‖̂ι1‖s+s0+σ ‖̂ι2‖s0+σ + ‖̂ι1‖s0+σ ‖̂ι2‖s+s0+σ .
Clearly, the term (2.53) satisfies the same type of bound as (2.54). The left hand
side in (2.52) with β1 = 0 is estimated in the same way and thus (2.51) is proved.
Proof (ii)–(iii). Let ϕ �→ ῐ(ϕ) = (θ(ϕ), y(ϕ),w(ϕ)) be a torus embedding.
If a(θ, 0, 0) = 0, one has by the mean value theorem a(ῐ) = ∫ 1

0 da(ῐt )[̂ι] dt
with ῐt := (1 − t)(θ(ϕ), 0, 0) + t ῐ(ϕ) and ι̂ := (0, y(ϕ),w(ϕ)). If a(θ, 0, 0),
∂ya(θ, 0, 0), ∂wa(θ, 0, 0) vanish, we write a(ῐ) =

∫ 1
0 (1− t)d2a(ῐt )[̂ι, ι̂] dt .

Items (ii)–(iii) follow by (i), noting that ‖̂ι‖Lip(γ )s = ‖(0, y(·), w(·))‖Lip(γ )s �
‖ι‖Lip(γ )s for any s � 0. ��

Given M ∈ N, we define the constant

sM :=max{s0,M + 1}. (2.55)

Lemma 2.26. (Tame estimates for smoothing operators) Assume that, for any M �
0, there is σM � 0 so that the following holds:

• Assumption A. For any s ≥ 0, the map

R : (VσM (δ) ∩ Es+σM )×�→ B(Hs(T1), H
s+M+1(T1))

is C∞ with respect to x, C1 with respect to ω and, for any x ∈ VσM (δ)∩ Es+σM ,
α ∈ N

S+ with |α| � 1,

‖∂αωR(x;ω)[ŵ]‖Hs+M+1
x

�s,M ‖ŵ‖Hs
x
+ ‖w‖

H
s+σM
x

‖ŵ‖L2
x
,

and, for any l � 1,

‖dl∂αωR(x;ω)[ŵ][̂x1, . . . , x̂l ]‖Hs+M+1
x

�s,M,l ‖ŵ‖Hs
x

l∏
j=1
‖̂x j‖EσM

+‖ŵ‖L2
x

(
‖w‖

H
s+σM
x

l∏
j=1
‖̂x j‖EσM +

l∑
j=1

(‖̂x j‖Es+σM

∏
n 
= j

‖̂xn‖EσM
))
.

• Assumption B. For any −M − 1 � s � 0, the map

R : VσM (δ)×�→ B(Hs(T1), H
s+M+1(T1))

is C∞ with respect to x, C1 with respect to ω and, for any x ∈ VσM (δ), α ∈ N
S+

with |α| � 1, and l � 1,

‖∂αωR(x;ω)[ŵ]‖Hs+M+1
x

�s,M ‖ŵ‖Hs
x
,

‖dl∂αωR(x;ω)[ŵ][̂x1, . . . , x̂l ]‖Hs+M+1
x

�s,M,l ‖ŵ‖Hs
x

l∏
j=1
‖̂x j‖EσM .

Then for any S ≥ sM and λ ∈ N
S+ , there is a constant σM (λ) > 0, so that for

any ῐ(ϕ) = (ϕ, 0, 0) + ι(ϕ) with ‖ι‖Lip(γ )s0+σM (λ) � δ and any n1, n2 ∈ N satisfying
n1 + n2 � M + 1, the following holds:
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(i) The operator 〈D〉n1∂λϕ(R ◦ ῐ)〈D〉n2 is Lip(γ )-tame with a tame constant satis-
fying, for any sM � s � S,

M〈D〉n1∂λϕ (R◦ῐ)〈D〉n2 (s) �S,M,λ 1+ ‖ι‖Lip(γ )s+σM (λ).

(ii) The operator 〈D〉n1∂λϕ(dR(ῐ)[̂ι])〈D〉n2 is Lip(γ )-tame with a tame constant
satisfying, for any sM � s � S,

M〈D〉n1∂λϕ (dR(ῐ)[̂ι])〈D〉n2 (s) �S,M,λ ‖̂ι‖Lip(γ )s+σM (λ) + ‖ι‖
Lip(γ )
s+σM (λ)‖̂ι‖

Lip(γ )
s0+σM (λ).

(iii) If in addition R(θ, 0, 0;ω) = 0, then the operator 〈D〉n1∂λϕ(R ◦ ῐ)〈D〉n2 is
Lip(γ )-tame with a tame constant satisfying, for any sM � s � S,

M〈D〉n1∂λϕ (R◦ῐ)〈D〉n2 (s) �S,M,λ ‖ι‖Lip(γ )s+σM (λ).

Remark 2.27. Let us comment on Lemma 2.26 and its applications. Under the
above assumptions A and B for the operator valued map x = (θ, y, w) �→ R(x),
with R(x) acting on spaces of functions of the x-variable only, we obtained tame
estimates for the composed operator R(ῐ(ϕ)), acting on spaces of functions in the
variables (ϕ, x). Assumption B regarding the action of R(x) on negative Sobolev
spaces is used to prove that also 〈D〉n1R(ῐ(ϕ))〈D〉n2 with n1 + n2 � M + 1 is
a modulo-tame operator. Lemma 2.26 will be used in the proof of Lemma 6.4 to
show that the remainder R(1)

M in the expansion (6.23) is a tame operator satisfying

(6.31). The verification thatR(1)
M satisfies the assumptions A and B of Lemma 2.26

is proved by applying Lemmata 3.5 and 3.7.

Proof. Since items (i) and (ii) can be proved in a similar way, we only prove (ii). For
any given n1, n2 ∈ N with n1+ n2 � M + 1, setQ := 〈D〉n1R〈D〉n2 . Assumption
A implies that for any s � M + 1 and any x ∈ VσM (δ) ∩ Es+σM , the operatorQ(x)
is in B(Hs

x ) and for any x̂1, . . . , x̂l ∈ Es+σM with l � 1, and ŵ ∈ Hs
x ,

‖Q(x)[ŵ]‖Hs
x

�s,M ‖ŵ‖Hs
x
+ ‖w‖

H
s+σM
x

‖ŵ‖HM+1
x

,

‖dl(Q(x)[ŵ])[̂x1, . . . , x̂l ]‖Hs
x

�s,M,l ‖ŵ‖Hs
x

l∏
j=1
‖̂x j‖EσM

+ ‖ŵ‖HM+1
x

(
‖x‖Es+σM

l∏
j=1
‖̂x j‖EσM +

l∑
j=1
‖̂x j‖Es+σM

∏
n 
= j

‖̂xn‖EσM
)
.

(2.56)

Furthermore, Assumption B implies that for any x ∈ VσM (δ), the operator Q(x) is
in B(L2

x ) and for any x̂1, . . . , x̂l ∈ EσM , l � 1,

‖Q(x)‖B(L2
x )

�M 1, ‖dlQ(x)[̂x1, . . . , x̂l ]‖B(L2
x )

�M,l

l∏
j=1
‖̂x j‖EσM . (2.57)
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One computes by Leibniz’s rule that

∂λϕ
(
dQ(ῐ(ϕ))[̂ι(ϕ)]) = ∑

0�k�|λ|
λ1+...+λk+1=λ

cλ1,...,λk+1d
k+1Q(ῐ(ϕ))[∂λ1ϕ ῐ(ϕ), . . . , ∂λkϕ ῐ(ϕ), ∂

λk+1
ϕ ι̂(ϕ)],

(2.58)

where cλ1,...,λk+1 are combinatorial constants.
Estimate of ‖∂λϕ

(
dQ(ῐ(ϕ))[̂ι(ϕ)])[ŵ]‖L2

ϕH
s
x
. By (2.56), we have, for s � M + 1,

‖dk+1Q(ῐ(ϕ))[∂λ1ϕ ῐ(ϕ), . . . , ∂λkϕ ῐ(ϕ), ∂
λk+1
ϕ ι̂(ϕ)][ŵ(ϕ)]‖Hs

x
(2.59)

�s,M,k ‖ŵ(ϕ)‖Hs
x
‖∂λk+1ϕ ι̂(ϕ)‖EσM

k∏
n=1
‖∂λnϕ ῐ(ϕ)‖EσM

+ ‖ŵ(ϕ)‖HM+1
x

(
‖ι(ϕ)‖Es+σM ‖∂

λk+1
ϕ ι̂(ϕ)‖EσM

k∏
n=1
‖∂λnϕ ῐ(ϕ)‖EσM

+
k∑
j=1
‖∂λ j

ϕ ῐ(ϕ)‖Es+σM
( ∏
n 
= j

‖∂λnϕ ῐ(ϕ)‖EσM
)‖∂λk+1ϕ ι̂(ϕ)‖EσM

+ ‖∂λk+1ϕ ι̂(ϕ)‖Es+σM

k∏
n=1
‖∂λnϕ ῐ(ϕ)‖EσM

)
.

Note that by the Sobolev embedding and (2.43), for any s � 0, μ ∈ N
S+ ,

‖∂μϕ ῐ(ϕ)‖Es � 1+ ‖∂μϕ ι‖C0
ϕEs

� 1+ ‖ι‖s+s0+|μ|. (2.60)

Hence (2.58)–(2.59) and ‖·‖L2
ϕH

s
x

� ‖·‖s imply that for any ῐwith ‖ι‖Lip(γ )s0+σM (λ) � δ

and any s � M + 1,

‖∂λϕ
(
dQ(ῐ(ϕ))[̂ι(ϕ)])[ŵ(ϕ)]‖L2

ϕH
s
x

(2.61)

�s,M,λ ‖ŵ‖s ‖̂ι‖s0+σM (λ) + ‖ŵ‖M+1
(‖ι‖s+σM (λ)‖̂ι‖s0+σM (λ) + ‖̂ι‖s+σM (λ))

for some constant σM (λ) > 0.
Estimate of ‖∂λϕ

(
dQ(ῐ(ϕ))[̂ι(ϕ)])‖Hs

ϕB(L2
x )
. For any s ∈ N, β ∈ N

S+ , |β| � s, we

need to estimate ‖∂β+λϕ

(
dQ(ῐ(ϕ))[̂ι(ϕ)])‖L2

ϕB(L2
x )
. As in (2.58) we have

∂β+λϕ

(
dQ(ῐ(ϕ))[̂ι(ϕ)])

=
∑

0�k�|β|+|λ|
α1+...+αk+1=β+λ

cα1,...,αk+1d
k+1Q(ῐ(ϕ))[∂α1ϕ ῐ(ϕ), . . . , ∂αkϕ ῐ(ϕ), ∂

αk+1
ϕ ι̂(ϕ)] (2.62)

where cα1,...,αk+1 are combinatorial constants. By (2.57) and (2.60) one obtains that

‖dk+1Q(ῐ(ϕ))[∂α1ϕ ῐ(ϕ), . . . , ∂αkϕ ῐ(ϕ), ∂
αk+1
ϕ ι̂(ϕ)]‖L2

ϕB(L2
x )



Large KAM Tori for Quasi-linear Perturbations of KdV 1423

�β,λ

k∏
j=1

(1+ ‖ι‖|α j |+ηM )‖̂ι‖|αk+1|+ηM (2.63)

for some ηM > 0. Using the interpolation inequality (2.4), and arguing as in the
proof of the formula (75) in [9], we have, for any ῐ with ‖ι‖ηM � 1 and any
j = 1, . . . , k,

1+ ‖ι‖|α j |+ηM � (1+ ‖ι‖ηM )1−
|α j |
|β+λ| (1+ ‖ι‖|β+λ|+ηM )

|α j |
|β+λ|

‖ι‖ηM �1

� (1+ ‖ι‖|β+λ|+ηM )
|α j |
|β+λ| ,

‖̂ι‖|αk+1|+ηM � ‖̂ι‖1−
|αk+1|
|β+λ|

ηM ‖̂ι‖
|αk+1|
|β+λ|
|β+λ|+ηM .

Then by (2.63) and since
∑k

j=1 |α j | + |αk+1| = |β + λ|, it follows that
‖dk+1Q(ῐ(ϕ))[∂α1ϕ ῐ(ϕ), . . . , ∂αkϕ ῐ(ϕ), ∂

αk+1
ϕ ι̂(ϕ)]‖L2

ϕB(L2
x )

�s,λ (1+ ‖ι‖|β+λ|+ηM )
∑k

j=1 |α j |
|β+λ| ‖̂ι‖1−

|αk+1|
|β+λ|

ηM ‖̂ι‖
|αk+1|
|β+λ|
|β+λ|+ηM

�s,λ

(
(1+ ‖ι‖|β+λ|+ηM )‖̂ι‖ηM

)∑k
j=1 |α j |
|β+λ| ‖̂ι‖

|αk+1|
|β+λ|
|β+λ|+ηM

�s,λ ‖̂ι‖|β+λ|+ηM + ‖ι‖|β+λ|+ηM ‖̂ι‖ηM (2.64)

where for the latter inequality we used Young’s inequality with exponents
|β+λ|∑k
j=1 |α j | ,

|β+λ|
|αk+1| . Combining (2.62) and (2.64) we obtain

‖∂λϕ(dQ(ῐ)[̂ι])‖Hs
ϕB(L2

x )
�s,M,λ ‖̂ι‖s+|λ|+ηM + ‖ι‖s+|λ|+ηM ‖̂ι‖ηM . (2.65)

Estimate of ‖∂λϕ(dQ(ῐ)[̂ι])[ŵ]‖Hs
ϕL

2
x
. Using that

( ∑

∈ZS+

‖ Â(
)‖2B(L2
x )
〈
〉2s

)1/2
�s0 ‖A‖Hs+s0

ϕ B(L2
x )

one deduces from [9, Lemma 2.12] that for any ῐ with ‖ι‖2s0+|λ|+ηM � 1 and any
s � s0,

‖∂λϕ (dQ(ῐ)[̂ι])[ŵ]‖Hs
ϕ L

2
x

�s ‖∂λϕ (dQ(ῐ)[̂ι])‖
H

2s0
ϕ B(L2

x )
‖ŵ‖Hs

ϕ L
2
x

+ ‖∂λϕ (dQ(ῐ)[̂ι])‖
H

s+s0
ϕ B(L2

x )
‖ŵ‖Hs0

ϕ L2
x

(2.66)

(2.65)
�s,M ‖ŵ‖s ‖̂ι‖2s0+|λ|+ηM
+ ‖ŵ‖s0

(‖̂ι‖s+s0+|λ|+ηM + ‖ι‖s+s0+|λ|+ηM ‖̂ι‖2s0+|λ|+ηM ).
Increasing the constant σM (λ) in (2.61) if needed, one infers from the estimates
(2.61), (2.66) that for any s � sM = max{s0,M + 1}, ∂λϕ(dQ(ῐ)[̂ι]) satisfies
‖∂λϕ(dQ(ῐ)[̂ι])[ŵ]‖s �s,M,λ ‖ŵ‖s ‖̂ι‖s0+σM (λ)
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+‖ŵ‖sM
(‖̂ι‖s+σM (λ) + ‖ι‖s+σM (λ)‖̂ι‖s0+σM (λ)). (2.67)

Furthermore, arguing similarly, one can show that for any ω1, ω2 ∈ �, ω1 
= ω2,
the operator ∂λϕ�ω(dQ(ῐ)[̂ι]) satisfies the estimate, for any s � sM

γ
‖∂λϕ�ω(dQ(ῐ)[̂ι])[ŵ]‖s

|ω1 − ω2| �s,M,λ ‖ŵ‖s ‖̂ι‖Lip(γ )s0+σM (λ)

+ ‖ŵ‖sM
(‖̂ι‖Lip(γ )s+σM (λ) + ‖ι‖

Lip(γ )
s+σM (λ)‖̂ι‖

Lip(γ )
s0+σM (λ)

)
.

(2.68)

It then follows from (2.67) and (2.68) that there exists a tame constant
M∂λϕ (dQ(ῐ)[̂ι])(s) for ∂λϕ(dQ(ῐ)[̂ι]) satisfying the estimate stated in item (ii).
(iii) Since R(θ, 0, 0) = 0, one has by the mean value theorem R(ῐ) =∫ 1
0 dR(ῐt )[̂ι] dt with ῐt = (1 − t)(θ(ϕ), 0, 0) + t ῐ(ϕ) and ι̂(ϕ) := (0, y(ϕ),w(ϕ)).
Since ‖̂ι‖s � ‖ι‖s for any s � 0, item (iii) is thus a direct consequence of (ii). ��

2.5. Egorov Type Theorems

In this section we investigate operators obtained by conjugating a pseudo-
differential operator of the form a(ϕ, x)∂mx , m ∈ Z, by the flow map of a transport
equation. The main result is an Egorov type theorem, stated in Proposition 2.31,
saying that such a conjugated operator is again a pseudo-differential operator, up
to a smoothing remainder; it is used in Section 6.3.

Let �(τ0, τ, ϕ) denote the flow of the transport equation

∂τ�(τ0, τ, ϕ) = B(τ, ϕ)�(τ0, τ, ϕ), �(τ0, τ0, ϕ) = Id, (2.69)

where B(τ, ϕ) is the transport operator, given by

B(τ, ϕ) :=�⊥
(
b(τ, ϕ, x)∂x + bx (τ, ϕ, x)

)
,

b ≡ b(τ, ϕ, x) := β(ϕ, x)

1+ τβx (ϕ, x)
,

(2.70)

�⊥ is the L2
x -orthogonal projector L2

x → L2⊥(T1), and β(ϕ, x) ≡ β(ϕ, x;ω)
is a real valued function, which is C∞ with respect to the variables (ϕ, x) and
Lipschitz continuous with respect to the parameter ω ∈ �. For brevity we set
�(τ, ϕ) :=�(0, τ, ϕ) and �(ϕ) :=�(0, 1, ϕ). Note that �(ϕ)−1 = �(1, 0, ϕ)
and that

�(τ0, τ, ϕ) = �(τ, ϕ) ◦�(τ0, ϕ)−1. (2.71)

By standard hyperbolic estimates, equation (2.69) is well-posed. The flow
�(τ0, τ, ϕ) has the following properties:

Lemma 2.28. (Transport flow) Let λ0 ∈ N, S > s0. For any λ ∈ N with λ � λ0,
any n1, n2 ∈ R with n1 + n2 = −λ − 1, and any s � s0, there exist constants
σ(λ0, n1, n2) > 0 and δ ≡ δ(S, λ0, n1, n2) ∈ (0, 1) so that the following holds: if
β(ϕ, x)) satisfies

‖β‖Lip(γ )s0+σ(λ0,n1,n2) � δ, (2.72)
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then for any m ∈ S+, 〈D〉n1∂λϕm�(τ0, τ, ϕ)〈D〉n2 is a Lip(γ )-tame operator with a
tame constant satisfying

M〈D〉n1∂λϕm�(τ0,τ,ϕ)〈D〉n2 (s) �S,λ0,n1,n2 1+ ‖β‖Lip(γ )s+σ(λ0,n1,n2),
∀s0 � s � S, ∀τ0, τ ∈ [0, 1]. (2.73)

In addition, if n1+n2 = −λ−2, then 〈D〉n1∂λϕm (�(τ0, τ, ϕ)− Id)〈D〉n2 is Lip(γ )-
tame with a tame constant satisfying

M〈D〉n1∂λϕm (�(τ0,τ,ϕ)−Id)〈D〉n2 (s) �S,λ0,n1,n2 ‖β‖Lip(γ )s+σ(λ0,n1,n2),
∀s0 � s � S, ∀τ0, τ ∈ [0, 1]. (2.74)

Furthermore, let s0 < s1 < S, n1, n2 ∈ R, λ0 ∈ N, λ � λ0 with n1+n2 = −λ−1,
m ∈ S+. If β1 and β2 satisfy ‖βi‖s1+σ(n1,n2) � δ for some σ(n1, n2) > 0, and
δ ∈ (0, 1) small enough, then

‖〈D〉n1∂λϕm�12�(τ0, τ, ϕ)〈D〉n2‖B(Hs1 )

�s1,λ0,n1,n2 ‖�12β‖s1+σ(n1,n2), ∀ τ0, τ ∈ [0, 1], (2.75)

where �12β :=β2 − β1 and �12�(τ0, τ, ϕ) :=�(τ0, τ, ϕ;β2)−�(τ0, τ, ϕ;β1).
Proof. The proof of (2.73) is similar to the one of Propositions A.7, A.10 and
A.11 in [10] and hence we omit it. (Essentially the only difference is that the vector
field (2.70) is of order 1, whereas the vector field considered in [10] is of order
1
2 .) Using (2.73) we now prove (2.74). By (2.69), one has that �(τ0, τ, ϕ)− Id =∫ τ
τ0
B(t, ϕ)�(τ0, t, ϕ) dt . Then, for any λ ∈ N with λ � λ0 and any n1, n2 ∈ R

with n1 + n2 = −λ− 2, one has, by Leibniz’ rule that,

〈D〉n1∂λϕm (�(τ0, τ, ϕ)− Id)〈D〉n2

=
∑

λ1+λ2=λ
cλ1,λ2

∫ τ

τ0

(〈D〉n1∂λ1ϕm B(t, ϕ)〈D〉n2+λ2+1)(〈D〉−n2−λ2−1∂λ2ϕm�(τ0, t, ϕ)〈D〉n2
)
dt

=
∑

λ1+λ2=λ
cλ1,λ2

∫ τ

τ0

(〈D〉n1∂λ1ϕm B(t, ϕ)〈D〉−1−n1−λ1 )(〈D〉−n2−λ2−1∂λ2ϕm�(τ0, t, ϕ)〈D〉n2
)
dt,

where cλ1,λ2 are combinatorial constants and we used that n2 + λ2 + 1 = −1 −
n1 − λ1. Recalling the definition (2.70) of B, using Lemmata 2.10, 2.18, 2.30-(i),
and (2.73), one has that for any s � s0,

M〈D〉n1 ∂λ1ϕm B〈D〉−1−n1−λ1 (s) �s |〈D〉n1 B〈D〉−1−n1−λ1 |Lip(γ )0,s+λ1,0 �s,λ1,n1 ‖β‖Lip(γ )s+σ(λ1,n1),

M〈D〉−1−n2−λ2 ∂λ2ϕm�(τ0,t,ϕ)〈D〉n2 (s) �s,λ2,n1,n2 1+ ‖β‖Lip(γ )s+σ(λ2,n1,n2). (2.76)

Then (2.74) follows by (2.76), Lemma 2.16 and (2.72). The estimate (2.75) follows
by similar arguments. ��

For what follows we need to study the solutions of the characteristic ODE
∂τ x = −b(τ, ϕ, x) associated with the transport operator defined in (2.70).
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Lemma 2.29. (Characteristic flow) The characteristic flow γ τ0,τ (ϕ, x) defined by

∂τ γ
τ0,τ (ϕ, x) = −b(τ, ϕ, γ τ0,τ (ϕ, x)), γ τ0,τ0(ϕ, x) = x, (2.77)

is given by

γ τ0,τ (ϕ, x) = x + τ0β(ϕ, x)+ β̆(τ, ϕ, x + τ0β(ϕ, x)), (2.78)

where y �→ y+ β̆(τ, ϕ, y) is the inverse of the diffeomorphism x �→ x + τβ(ϕ, x).

Proof. A direct computation proves that γ 0,τ (y) = y + β̆(τ, ϕ, y) and therefore
γ τ,0(x) = x + τβ(ϕ, x). By the composition rule of the flow γ τ0,τ = γ 0,τ ◦ γ τ0,0
we deduce (2.78). ��
Lemma 2.30. There are constants σ and δ > 0 so that the following holds: if
‖β‖Lip(γ )s0+σ � δ, then

(i) ‖b‖Lip(γ )s �s ‖β‖Lip(γ )s+σ for any s � s0;

(ii) ‖γ τ0,τ (ϕ, x)− x‖Lip(γ )s �s ‖β‖Lip(γ )s+σ for any τ0, τ ∈ [0, 1] and s � s0;
(iii) for any ‖β j‖s1+σ ≤ δ, j = 1, 2 with s1 > s0, �12b := b(·;β2) − b(·;β1)

and �12γ
τ0,τ := γ τ0,τ (·;β2) − γ τ0,τ (·;β1) can be estimated in terms of

�12β :=β2 − β1 as

‖�12b‖s1 �s1 ‖�12β‖s1+σ , ‖�12γ
τ0,τ‖s1 �s1 ‖�12β‖s1+σ .

Proof. Item (i) follows from the definition of b in (2.70) and Lemma 2.3. Item
(ii) can be deduced from Lemma 2.1 and (2.78) and item (iii) follows by similar
arguments. ��

The main result of this section is the Egorov type theorem below, saying that
the operator obtained by conjugating a(ϕ, x)∂mx , m ∈ Z, with the time one flow
�(ϕ) = �(0, 1, ϕ) of the transport equation (2.69), remains a pseudo-differential
operator with a homogenous asymptotic expansion up to a regularizing remainder
satisfying the quantitative tame estimate (2.83).

Proposition 2.31. (Egorov) Let N, λ0 ∈ N and S > s0 be given and assume that
β(·, ·;ω) and a(·, ·;ω) are in C∞(TS+ ×T1) and Lipschitz continuous with respect
to ω ∈ �. Then there exist constants σN (λ0), σN > 0, δ(S, N , λ0) ∈ (0, 1), and
C0 > 0 so that the following holds: if

‖β‖Lip(γ )s0+σN (λ0) � δ, ‖a‖Lip(γ )s0+σN (λ0) � C0, (2.79)

then for any m ∈ Z, the conjugated operator

P(ϕ) :=�(ϕ)P0(ϕ)�(ϕ)
−1, P0 := a(ϕ, x;ω)∂mx ,

is a pseudo-differential operator of order m with an expansion of the form

P(ϕ) =
N∑
i=0

pm−i (ϕ, x;ω)∂m−ix +RN (ϕ) (2.80)

with the following properties:
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1. The principal symbol pm of P is given by

pm(ϕ, x;ω) =
(
(1+ β̆y(ϕ, y;ω))ma(ϕ, y;ω)

)
|y=x+β(ϕ,x;ω) (2.81)

where y �→ y + β̆(ϕ, y;ω) denotes the inverse of the diffeomorphism x �→
x + β(ϕ, x;ω).

2. For any s � s0 and i = 1, . . . , N,

‖pm − a‖Lip(γ )s , ‖pm−i‖Lip(γ )s �s,N ‖β‖Lip(γ )s+σN + ‖a‖Lip(γ )s+σN ‖β‖Lip(γ )s0+σN .
(2.82)

3. For any k ∈ S+, anyλ ∈ Nwithλ � λ0, and any n1, n2 ∈ Nwith n1+n2+λ0 �
N − 1−m, the pseudo-differential operator 〈D〉n1∂λϕkRN (ϕ)〈D〉n2 is Lip(γ )-
tame with a tame constant satisfying

M〈D〉n1∂λϕkRN (ϕ)〈D〉n2 (s) �S,N ,λ0 ‖β‖Lip(γ )s+σN (λ0) + ‖a‖
Lip(γ )
s+σN (λ0)‖β‖

Lip(γ )
s0+σN (λ0),

∀s0 � s � S. (2.83)

4. Let s1 > s0 and assume that ‖β j‖s1+σN (λ0) � δ and ‖a j‖s1+σN (λ0) � C0,
j = 1, 2. Then

‖�12 pm−i‖s1 �s1,N ‖�12a‖s1+σN + ‖�12β‖s1+σN , i = 0, . . . , N ,

and for any k ∈ S+, any λ � λ0, and any n1, n2 ∈ N with n1 + n2 + λ0 �
N − 1− m,

‖〈D〉n1∂λϕk�12RN (ϕ)〈D〉n2‖B(Hs1 ) �s1,N ,n1,n2 ‖�12a‖s1+σN (λ0) + ‖�12β‖s1+σN (λ0)

where �12a = a2 − a1, �12β = β2 − β1, and �12RN = R(2)
N − R(1)

N with

R( j)
N denoting the remainder in (2.80), corresponding to a j , β j for j = 1, 2.

Proof. The L2
x -orthogonal projector �⊥ : L2(T1)→ L2⊥(T1) is a Fourier multi-

plier of order 0,�⊥ = Op(χ⊥(ξ)), where χ⊥ is a C∞(R,R) cut-off function which
is equal to 1 on a neighborhood of S⊥ and vanishes in a neighborhood of S ∪ {0}.
We then decompose the operator B(τ, ϕ) = �⊥(b(τ, ϕ, x)∂x + bx (τ, ϕ, x)) as
B(τ, ϕ) = B1(τ, ϕ)+ B∞(τ, ϕ) with

B1(τ, ϕ) := b(τ, ϕ, x)∂x + bx (τ, ϕ, x),

B∞(τ, ϕ) := Op(b∞(τ, ϕ, x, ξ)) ∈ OPS−∞ (2.84)

swhere for some σ > 0, B∞ satisfies for any s,m � 0 and α ∈ N the estimate

|B∞|Lip(γ )−m,s,α �m,s,α ‖β‖Lip(γ )s+σ . (2.85)

The conjugated operator P(τ, ϕ) :=�(τ, ϕ)P0(ϕ)�(τ, ϕ)
−1 solves the Heisen-

berg equation

∂τP(τ, ϕ) = [B(τ, ϕ),P(τ, ϕ)], P(0, ϕ) = P0(ϕ) = a(ϕ, x;ω)∂mx . (2.86)
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Indeed, one has

∂τP(τ, ϕ) = ∂τ�(τ, ϕ)P0(ϕ)�(τ, ϕ)
−1 +�(τ, ϕ)P0(ϕ)∂τ

(
�(τ, ϕ)−1

)

= ∂τ�(τ, ϕ)P0(ϕ)�(τ, ϕ)
−1 −�(τ, ϕ)P0(ϕ)�(τ, ϕ)

−1∂τ�(τ, ϕ)�(τ, ϕ)−1

(2.69)= B(τ, ϕ)�(τ, ϕ)P0(ϕ)�(τ, ϕ)
−1

−�(τ, ϕ)P0(ϕ)�(τ, ϕ)
−1B(τ, ϕ)�(τ, ϕ)�(τ, ϕ)−1

= [B(τ, ϕ),P(τ, ϕ)]. (2.87)

We look for an approximate solution of (2.86) of the form

PN (τ, ϕ) :=
N∑
i=0

pm−i (τ, ϕ, x)∂m−ix (2.88)

for suitable functions pm−i (τ, ϕ, x) to be determined. By (2.84)

[B(τ, ϕ),PN (τ, ϕ)] = [B1(τ, ϕ),PN (τ, ϕ)] + [B∞(τ, ϕ),PN (τ, ϕ)], (2.89)
where [B∞(τ, ϕ),PN (τ, ϕ)] is inOPS−∞, and [B1(τ, ϕ),PN (τ, ϕ)] =∑N

i=0
[
b∂x+

bx , pm−i∂m−ix

]
. By Lemma 2.12, one has for any i = 0, . . . , N ,

[
b∂x + bx , pm−i∂m−ix

] = (b(pm−i )x − (m − i)bx pm−i
)
∂m−ix

+
N−i∑
j=1

g j (b, pm−i )∂m−i− j
x +RN (b, pm−i ),

where the functions g j (b, pm−i )(τ, ϕ, x), j = 0, . . . , N − i , and the remainders
RN (b, pm−i ) can be estimated as follows: there exists σN := σN (m) > 0 so that
for any s � s0, (cf. Lemma 2.30-(i))

‖g j (b, pm−i )‖Lip(γ )s �m,N ,s ‖β‖Lip(γ )s+σN ‖pm−i‖Lip(γ )s0+σN
+‖β‖Lip(γ )s0+σN ‖pm−i‖Lip(γ )s+σN , (2.90)

and for any s � s0 and α ∈ N (cf. Lemma 2.12-(ii))

|RN (b, pm−i )|Lip(γ )m−N−1,s,α �m,N ,s,α ‖β‖Lip(γ )s+σN ‖pm−i‖Lip(γ )s0+σN
+‖β‖Lip(γ )s0+σN ‖pm−i‖Lip(γ )s+σN . (2.91)

Adding up the expansions for
[
b∂x + bx , pm−i∂m−ix

]
, 0 ≤ i ≤ N , yields

[
B1(τ, ϕ),PN (τ, ϕ)

] =
N∑
i=0

(
b(pm−i )x − (m − i)bx pm−i

)
∂m−ix

+
N∑
i=0

N−i∑
j=1

g j (b, pm−i )∂m−i− j
x +

N∑
i=0

RN (b, pm−i )
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=
N∑
i=0

(
b(pm−i )x − (m − i)bx pm−i

)
∂m−ix

+
N∑

k=1

k∑
j=1

g j (b, pm−k+ j )∂
m−k
x +

N∑
i=0

RN (b, pm−i )

= (b(pm)x − mbx pm
)
∂mx

+
N∑
i=1

(
b(pm−i )x − (m − i)bx pm−i + g̃i

)
∂m−ix +QN ,

(2.92)

where

QN :=
N∑
i=0

RN (b, pm−i ) ∈ OPSm−N−1, g̃i :=
i∑

j=1
g j (b, pm−i+ j ), ∀1 ≤ i ≤ N .

(2.93)

Defining for any s � 0 and 1 ≤ i ≤ N ,

M<i (s) :=max{‖pm−k‖Lip(γ )s , k = 0, . . . , i − 1},
M(s) :=max{‖pm−i‖Lip(γ )s , i = 0, . . . , N }, (2.94)

we deduce from (2.90) and (2.91) that for any s � s0, α ∈ N, i = 0, . . . , N ,

‖g̃i‖Lip(γ )s �s,N M<i (s + σN )‖β‖Lip(γ )s0+σN + M<i (s0 + σN )‖β‖Lip(γ )s+σN
|QN |Lip(γ )m−N−1,s,α �s,N M(s + σN )‖β‖Lip(γ )s0+σN + M(s0 + σN )‖β‖Lip(γ )s+σN .

(2.95)

By (2.88), (2.89), and (2.92) the operatorPN (τ, ϕ) solves the approximatedHeisen-
berg equation

∂τPN (τ, ϕ) = [B(τ, ϕ),PN (τ, ϕ)] + OPSm−N−1,

if the functions pm−i solve the transport equations

∂τ pm = b(pm)x − mbx pm,

∂τ pm−i = b(pm−i )x − (m − i)bx pm−i + g̃i , ∀ i = 1, . . . , N .
(2.96)

Note that, since g̃i only depends on pm−i+1, . . . , pm , we can solve (2.96) induc-
tively.
Determination of pm . We solve the first equation in (2.96),

∂τ pm(τ, ϕ, x) = b(τ, ϕ, x)∂x pm(τ, ϕ, x)− mbx (τ, ϕ, x)pm(τ, ϕ, x),

pm(0, ϕ, x) = a(ϕ, x).

By the method of characteristics we deduce that

pm(τ, ϕ, γ
0,τ (ϕ, x)) = exp

(
− m

∫ τ

0
bx (t, ϕ, γ

0,t (ϕ, x)) dt
)
a(ϕ, x) (2.97)
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where γ 0,τ (ϕ, x) is given by (2.78). Differentiating the equation (2.77) with respect
to the initial datum x , we get

∂τ (∂xγ
τ0,τ (x)) = −bx (τ, ϕ, γ τ0,τ (x))∂xγ τ0,τ (x), ∂xγ

τ0,τ0(x) = 1,

implying that

∂xγ
τ0,τ (ϕ, x) = exp

(
−
∫ τ

τ0

bx (t, ϕ, γ
τ0,t (ϕ, x)) dt

)
. (2.98)

From (2.97) and (2.98) we infer that

pm(τ, ϕ, y) =
((
∂xγ

0,τ (ϕ, x)
)m

a(ϕ, x)
)
|x=γ τ,0(ϕ,y). (2.99)

Evaluating the latter identity at τ = 1 and using (2.78), we obtain (2.81).
Inductive determination of pm−i . For i = 1, . . . , N , we solve the inhomoge-
neous transport equation,

∂τ pm−i = b∂x pm−i − (m − i)bx pm−i + g̃i , pm−i (0, ϕ, x) = 0.

By the method of characteristics one has

pm−i (τ, ϕ, y) =
∫ τ

0
exp
(
− (m − i)

∫ τ

t
bx (s, ϕ, γ

τ,s (ϕ, y)) ds
)
g̃i (t, ϕ, γ

τ,t (ϕ, y)) dt.

(2.100)

The functions pm−i (ϕ, y) in the expansion (2.80) are then given by pm−i (ϕ, y) :=
pm−i (1, ϕ, y). Next we prove the estimates for pm−i stated in (2.82). They follow
from the following

Lemma 2.32. There exist σ (N )N > σ
(N−1)
N > · · · > σ

(0)
N > 0 so that for any

i ∈ {1, . . . , N }, τ ∈ [0, 1], and s � s0,

‖pm(τ, ·)− a‖Lip(γ )s �s ‖β‖Lip(γ )
s+σ (0)N

+ ‖a‖Lip(γ )
s+σ (0)N

‖β‖Lip(γ )
s0+σ (0)N

,

‖pm−i (τ, ·)‖Lip(γ )s �s ‖β‖Lip(γ )
s+σ (i)N

+ ‖a‖Lip(γ )
s+σ (i)N

‖β‖
s0+σ (i)N

.
(2.101)

Proof of Lemma 2.32. We argue by induction. First we prove the claimed esti-
mate for pm − a with pm given by (2.99). Recall that γ 0,τ (ϕ, x) = x + β̆(τ, ϕ, x)
and γ τ,0(ϕ, y) = y + τβ(ϕ, y) (cf. (2.78)). Since a(ϕ, y + τβ(ϕ, y))− a(ϕ, y) =∫ τ
0 ax (ϕ, y+tβ(ϕ, y))β(ϕ, y)dt , the claimed estimate for pm then follows by Lem-
mata 2.1, 2.30 and assumption (2.79). Now assume that for any k ∈ {1, . . . , i − 1},
1 ≤ i ≤ N , the function pm−k , given by (2.100), satisfies the estimates (2.101).
The ones for pm−i then follow by Lemmata 2.1, 2.3, 2.30, (2.95), (2.94),
and (2.79). ��
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Continuing the proof of Proposition 2.31, note that in view of the definition
(2.88) of PN (τ, ϕ), it follows from (2.101), Lemma 2.10, (2.22) and (2.21) that for
any α ∈ N, τ ∈ [0, 1], and s � s0,

|PN (τ, ϕ)|Lip(γ )m,s,α �m,s,N ,α ‖a‖Lip(γ )s + ‖β‖Lip(γ )
s+σ (N )N

+ ‖a‖Lip(γ )
s+σ (N )N

‖β‖Lip(γ )
s0+σ (N )N

.

(2.102)

By (2.89), (2.92), and (2.96) we deduce that PN (τ, ϕ) solves

∂τPN (τ, ϕ) = [B(τ, ϕ),PN (τ, ϕ)] −Q(1)
N (τ, ϕ), PN (0, ϕ) = a∂mx ,

Q(1)
N (τ, ϕ) :=QN (τ, ϕ)+ [B∞(τ, ϕ),PN (τ, ϕ)] ∈ OPSm−N−1,

(2.103)

where QN is defined in (2.93).
Next we estimate the difference between PN (τ ) and P(τ ). First we establish

the following formula:

Lemma 2.33. The operator RN (τ, ϕ) :=P(τ, ϕ)− PN (τ, ϕ) is given by

RN (τ, ϕ) =
∫ τ

0
�(η, τ, ϕ)Q(1)

N (η, ϕ)�(τ, η, ϕ) dη. (2.104)

Proof of Lemma 2.33. Writing PN (τ, ϕ)− P(τ, ϕ) as

PN (τ, ϕ)− P(τ, ϕ) = VN (τ, ϕ)�(τ, ϕ)
−1,

VN (τ, ϕ) :=PN (τ, ϕ)�(τ, ϕ)−�(τ, ϕ)P0(ϕ), (2.105)

one verifies by a straightforward calculation that VN (τ ) solves

∂τVN (τ, ϕ) = B(τ, ϕ)VN (τ, ϕ)−Q(1)
N (τ, ϕ)�(τ, ϕ), VN (0, ϕ) = 0,

where Q(1)
N is given in (2.103). By the variation of the constants formula,

VN (τ, ϕ) = −
∫ τ

0
�(τ, ϕ)�(η, ϕ)−1Q(1)

N (η, ϕ)�(η, ϕ) dη

and, by (2.105) and (2.71), we deduce (2.104). ��
Using formula (2.104) we now prove the estimate forRN (τ, ϕ) stated in (2.83)

of Proposition 2.31. First we estimateQ(1)
N = QN (τ, ϕ)+[B∞(τ, ϕ),PN (τ, ϕ)] ∈

OPSm−N−1 (cf. (2.103)). The estimate of QN , obtained from (2.95), (2.94),
(2.101), and the one of [B∞(τ, ϕ),PN (τ, ϕ)], obtained from (2.85), (2.102),
Lemma 2.11, imply that there exists a constant ℵN > 0 so that for any s � s0,
α ∈ N,

|Q(1)
N (η, ϕ)|Lip(γ )m−N−1,s,α �m,s,α,N ‖β‖Lip(γ )s+ℵN + ‖a‖

Lip(γ )
s+ℵN ‖β‖

Lip(γ )
s0+ℵN . (2.106)

Let k ∈ S+, λ0 with λ � λ0, and n1, n2 ∈ N with n1 + n2 + λ0 + m �
N − 1. In view of the formula (2.104) of RN (τ, ϕ), the claimed estimate of
〈D〉n1∂λϕkRN (τ, ϕ)〈D〉n2 follows from corresponding ones of

〈D〉n1∂λ1ϕk�(η, τ, ϕ)∂λ2ϕk Q(1)
N (η, ϕ)∂λ3ϕk�(τ, η, ϕ)〈D〉n2
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(τ, η ∈ [0, 1] and λ1 + λ2 + λ3 = λ) which we write as
(
〈D〉n1∂λ1ϕk�(η, τ, ϕ)〈D〉−n1−λ1−1

)(
〈D〉n1+λ1+1∂λ2ϕk Q(1)

N (η, ϕ)〈D〉n2+λ3+1
)

(
〈D〉−n2−λ3−1∂λ3ϕk�(τ, η, ϕ)〈D〉n2

)
.

By Lemma 2.28, one obtains tame constants for the operators

〈D〉n1∂λ1ϕk�(η, τ, ϕ)〈D〉−n1−λ1−1, 〈D〉−n2−λ3−1∂λ3ϕk�(τ, η, ϕ)〈D〉n2 ,
and by the estimates (2.106), (2.21), and Lemmata 2.10, 2.18 a tame constant for

〈D〉n1+λ1+1∂λ2ϕk Q(1)
N (η, ϕ)〈D〉n2+λ3+1,

allowing us to deduce that the composition of these three operators satisfies the
bound (2.83) (using also Lemma 2.16 together with the assumption (2.79)). This
proves the bound (2.83) forRN .

Item 4. of Proposition 2.31 can be shown by similar arguments. ��
In the sequel we also need to study the operator obtained by conjugating ω · ∂ϕ

with the time one flow �(ϕ) = �(0, 1, ϕ) of the transport equation (2.69). A
straightforward calculation shows that

�(ϕ) ◦ (ω · ∂ϕ) ◦�(ϕ)−1 = ω · ∂ϕ +�(ϕ) ◦ ω · ∂ϕ(�(ϕ)−1),
where, according toDefinition 2.4-4, for anyϕ-dependent family of linear operators
A(ϕ), the operator ω · ∂ϕ A(ϕ) is defined as

ω · ∂ϕ A(ϕ) =
∑
m∈S+

ωm∂ϕm A(ϕ) =
∑
m∈S+

ωm[∂ϕm , A(ϕ)].

We now show that the operator�(ϕ)◦ω ·∂ϕ(�(ϕ)−1) is a pseudo-differential oper-
ator of order one, admitting an expansion in decreasing symbols. More precisely,
the following holds:

Proposition 2.34. (Conjugation of ω · ∂ϕ) Let N, λ0 ∈ N and S > s0 and assume
that β(·, ·;ω) is in C∞(TS+ ×T1) and Lipschitz continuous with respect to ω ∈ �.
Then there exist constants σN (λ0), σN > 0, δ(S, N , λ0) ∈ (0, 1), and C0 > 0 so
that the following holds: if

‖β‖Lip(γ )s0+σN (λ0) � δ, (2.107)

then 	(ϕ) :=�(ϕ) ◦ ω · ∂ϕ(�(ϕ)−1) is a pseudo-differential operator of order 1
with an expansion of the form

	(ϕ) =
N∑
i=0

p1−i (ϕ, x;ω)∂1−ix +RN (ϕ) (2.108)

with the following properties:
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1. For any i = 0, . . . , N and s � s0, ‖p1−i‖Lip(γ )s �s,N ‖β‖Lip(γ )s+σN .
2. For any k ∈ S+, anyλ ∈ Nwithλ � λ0, and any n1, n2 ∈ Nwith n1+n2+λ0 �

N − 1−m, the pseudo-differential operator 〈D〉n1∂λϕkRN (ϕ)〈D〉n2 is Lip(γ )-
tame with a tame constant satisfying

M〈D〉n1∂λϕkRN (ϕ)〈D〉n2 (s) �S,N ,λ0 ‖β‖Lip(γ )s+σN (λ0), ∀ s0 � s � S.

3. Let s0 < s1 < S and assume that ‖β j‖s1+σN (λ0) � δ, j = 1, 2. Then

‖�12 p1−i‖s1 �s1,N ‖�12β‖s1+σN , i = 0, . . . , N ,

and, for any λ � λ0, n1, n2 ∈ N with n1 + n2 + λ0 � N − 2, and k ∈ S+

‖〈D〉n1∂λϕk�12RN (ϕ)〈D〉n2‖B(Hs1 ) �s1,N ,n1,n2 ‖�12β‖s1+σN (λ0)

where�12β = β2−β1,�12 p1−i = p(2)1−i − p(1)1−i , and�12RN = R(2)
N −R(1)

N .

Here p( j)1−i and R( j)
N denote the coefficient pm−i and the remainder RN in the

expansion (2.108), corresponding to β j for j = 1, 2.

Proof. Wehave that	(ϕ) = 	(1, ϕ)where	(τ, ϕ) :=�(τ, ϕ)◦ω·∂ϕ(�(τ, ϕ)−1).
Arguing as in (2.87), one sees that the operator	(τ, ϕ) solves the inhomogeneous
Heisenberg equation

∂τ	(τ, ϕ) = [B(τ, ϕ),	(τ, ϕ))] − ω · ∂ϕ(B(τ, ϕ)), 	(0, ϕ) = 0.

The latter equation can be solved in a similar way as (2.86) by looking for approx-
imate solutions of the form of a pseudo-differential operator of order 1, admitting
an expansion of the form (2.108) (cf. (2.88)). The proof then proceeds in the same
way as the one for Proposition 2.31 and hence is omitted. ��

Wefinish this section by the following application of Proposition 2.31 to Fourier
multipliers.

Lemma 2.35. Let N, λ0 ∈ N, m ∈ Z, and S > s0 and assume thatQ is a Lipschitz
family of Fourier multipliers with an expansion of the form

Q =
N∑
i=0

cm−i (ω)∂m−ix +QN (ω), QN (ω) ∈ B(Hs , Hs+N+1−m), ∀s � 0.

(2.109)

Then there existσN (λ0),σN > 0, and δ = δ(S, N , λ0) ∈ (0, 1) so that the following
holds: if

‖β‖Lip(γ )s0+σN (λ0) � δ, (2.110)

then �(ϕ)Q�(ϕ)−1 is an operator of the form Q + Q�(ϕ) + RN (ϕ) with the
following properties:
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1. Q�(ϕ) =∑N
i=0 αm−i (ϕ, x;ω)∂m−ix where for any s � s0,

‖αm−i‖Lip(γ )s �s,N ‖β‖Lip(γ )s+σN , i = 0, . . . , N . (2.111)

2. For any k ∈ S+, λ ∈ N with λ � λ0, and n1, n2 ∈ N with n1 + n2 + λ0 �
N−m−2, the operator 〈D〉n1∂λϕkRN 〈D〉n2 isLip(γ )-tamewith a tame constant
satisfying

M〈D〉n1∂λϕkRN 〈D〉n2 (s) �S,N ,λ0 ‖β‖Lip(γ )s+σN (λ0), ∀s0 � s � S. (2.112)

3. Let s0 < s1 < S and assume that ‖β j‖s1+σN (λ0) � δ, j = 1, 2. Then

‖�12αm−i‖s1 �s1,N ‖�12β‖s1+σN , i = 0, . . . , N ,

and, for any k ∈ S+, λ � λ0, and n1, n2 ∈ N with n1+ n2+λ0 � N −m− 2,

‖〈D〉n1∂λϕk�12RN (ϕ)〈D〉n2‖B(Hs1 ) �s1,N ,n1,n2 ‖�12β‖s1+σN (λ0)
where�12β = β2−β1,�12αm−i = α

(2)
m−i−α(1)m−i , and�12RN = R(2)

N −R(1)
N .

Here α( j)m−i and R( j)
N denote the coefficient αm−i and, respectively, remainder

RN , corresponding to β j for j = 1, 2.

Proof. Applying Proposition 2.31 to�(ϕ)∂m−ix �(ϕ)−1 for i = 0, . . . , N , we get

�(ϕ)
( N∑

i=0
cm−i (ω)∂m−ix

)
�(ϕ)−1 =

N∑
i=0

cm−i (ω)∂m−ix +Q�(ϕ)+R(1)
N (ϕ)

where Q�(ϕ) = ∑N
i=0 αm−i (ϕ, x;ω)∂m−ix with αm−i satisfying (2.111) and the

remainder R(1)
N (ϕ) satisfying (2.112). Next we write �(ϕ)QN�(ϕ)

−1 = QN +
R(2)

N (ϕ) where

R(2)
N (ϕ) := (�(ϕ)− Id

)
QN�(ϕ)

−1 +QN
(
�(ϕ)−1 − Id

)
.

We then argue as in the proof of the estimate of the remainderRN (τ, ϕ) in Propo-
sition 2.31. Using Lemma 2.28 and the assumption that QN is a Fourier multi-
plier in B(Hs, Hs+N+1−m) we get that R(2)

N (ϕ) satisfies (2.112), and RN (ϕ) =
R(1)

N (ϕ)+R(2)
N (ϕ) satisfies (2.112) as well. Item 3. follows by similar arguments.

��

3. Integrable Features of KdV

In this section we discuss the canonical coordinates which are used to prove
the existence of quasi-periodic solutions of the perturbed KdV equation (1.6) close
to the finite gap manifold MS+ , cf. (1.10), via a Nash–Moser iterative scheme.
These coordinates were constructed in [20] specifically for this purpose. Their
main properties were described in broad terms in the Introduction (cf. (P1)–(P6)).
We discuss their features in detail in Sections 3.2–3.3. In Section 3.4 we record
properties of the KdV-frequencies, which will be needed in particular to derive the
measure estimates of Section 8.2.
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3.1. Birkhoff Coordinates

According to [21], the KdV equation (1.1) on the torus admits global canonical
coordinates, called Birkhoff coordinates, so that equation (1.1) can be solved by
quadrature, cf. Theorem 3.1.We use them to describe the S+-gap potentials. Unfor-
tunately they are not suited for implementing a Nash–Moser iteration scheme for
the search of quasi-periodic solutions of (1.6), since they do not seem to possess
an expansion in terms of pseudo-differential operators.

The Birkhoff coordinates zk , k 
= 0, take values in the sequence space h00 (cf.
(1.23)), which we endow with the standard Poisson bracket defined by {zn, zk} =
i2πn δk,−n for any n, k ∈ Z \ {0}.
Theorem 3.1. (Birkhoff coordinates, [21]) There exists a real analytic diffeomor-
phism 	kdv : h00 → H0

0 (T1) so that the following holds:

(i) for any s ∈ Z�0, 	
kdv(hs0) ⊆ Hs

0 (T1) and 	kdv : hs0 → Hs
0 (T1) is a real

analytic symplectic diffeomorphism.
(ii) Hkdv◦	kdv : h10 → R is a real analytic function of the actions Ik := 1

2πk zk z−k ,
k ≥ 1. The KdV Hamiltonian, viewed as a function of the actions (Ik)k≥1, is
denoted by Hkdv

o .
(iii) 	kdv(0) = 0 and the differential d0	kdv of 	kdv at 0 is the inverse Fourier

transform F−1.

By Theorem 3.1, the KdV equation, expressed in the Birkhoff coordinates
(zn)n 
=0, reads

∂t zn = iωkdv
n ((Ik)k≥1)zn, ∀n ∈ Z \ {0}, ωkdv±m ((Ik)k≥1) := ±∂ImHkdv

o ((Ik)k≥1), ∀m ≥ 1,

and its solutions are given by z(t) := (zn(t))n 
=0 where

zn(t) = zn(0)exp
(
iωkdv

n

(
(I (0)k )k≥1

)
t
)
, ∀n ∈ Z \ {0}, I (0)k := 1

2πk
zk(0)z−k(0), ∀k ≥ 1.

Let us consider a finite set S+ ⊂ N+ = {1, 2, . . .} and define

S := S+ ∪ (−S+), S
⊥+ :=N+ \ S+, S

⊥ := S
⊥+ ∪ (−S⊥+) ⊂ Z \ {0}.

In Birkhoff coordinates, a S+−gap solution of the KdV equation, also referred to
as S+−gap solution, is a solution of the form

zn(t) = exp
(
iωkdv

n (ν, 0)t
)
zn(0), zn(0) 
= 0, ∀n ∈ S, zn(t) = 0, ∀n ∈ S

⊥,
(3.1)

where ν := (I (0)k )k∈S+ ∈ R
S+
>0 and, by a slight abuse of notation, we write

ωkdv
n (I, (Ik)k∈S⊥+) = ωkdv

n ((Ik)k�1), I := (Ik)k∈S+ ∈ R
S+
>0. (3.2)

Such solutions are quasi-periodic in time with frequency vector (cf. (1.11))

ωkdv(ν) = (ωkdv
n (ν, 0)

)
n∈S+ ∈ R

S+ , (3.3)



1436 M. Berti, T. Kappeler & R. Montalto

parametrized by ν ∈ R
S+
>0. The map ν �→ ωkdv(ν) is a local analytic diffeomor-

phism, see Remark 3.10.
Whenwritten in action-angle coordinates θ = (θn)n∈S+ ∈ T

S+ , I = (In)n∈S+ ∈
R
S+
>0, which are related to the complex Birkhoff coordinates zn = zn(θ, I ), n 
= 0

by

z±n(θ, I ) :=
√
2πnIne

∓iθn , ∀ n ∈ S+, zn(θ, I ) = 0, ∀n ∈ S
⊥, (3.4)

the S+-gap solution (3.1) reads

θ(t) = θ(0) − ωkdv(ν)t, I (t) = ν, zn(t) = 0, ∀n ∈ S
⊥.

Furthermore, we introduce the map 	S+ : TS+ × R
S+ → MS+ ⊂ ∩s≥0Hs

0 (T1),
which coordinatizes the manifold MS+ of S+-gap potentials (cf. (1.10)),

	S+(θ, I ) :=	kdv((zn(θ, I ))n∈Z\{0}) (3.5)

where zn(θ, I ), n 
= 0, are given by (3.4).

3.2. Normal Form Coordinates for the KdV Equation

Theorem 3.2 below rephrases Theorem 1.1 in [20], in a form taylored to our
needs. A key property of the normal form coordinates is stated in Theorem 3.2-
(AE1), saying that they admit an expansion in terms of pseudo-differential opera-
tors. This property, together with the additional Corollaries 3.3 and 3.4 below, allow
to prove, in Section 3.3, that the linearized Hamiltonian vector field ∂xd⊥∇wHε

admits an expansion in terms of classical pseudo-differential operators, up to
smoothing remainders which satisfy tame estimates. These key results are needed
for implementing our diagonalization procedure of the linearized operator carried
out in Sections 6–7.

We consider an open bounded set� ⊂ R
S+
>0 so that (1.14) holds for some δ > 0.

Recall that Vs(δ) ⊂ Es , V(δ) = V0(δ), are defined in (1.27) and the spaces Es and
Es are given by (1.25). The elements in Es are denoted by x = (θ, y, w)whereas the
ones in Es by x̂ = (θ̂ , ŷ, ŵ). The space V(δ) ∩ Es is endowed with the symplectic
form

W :=
(∑

j∈S+dy j ∧ dθ j
)
⊕W⊥, (3.6)

whereW⊥ is the restriction to L2⊥(T1) of the symplectic formWL2
0
defined in (1.9).

The Poisson structure J corresponding to W , defined by the identity {F,G} =
W(XF , XG) =

〈∇F, J∇G〉, is the unbounded operator

J : Es → Es, (θ̂ , ŷ, ŵ) �→ (−ŷ, θ̂ , ∂x ŵ), (3.7)

where 〈, 〉 is the inner product (1.26).
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Theorem 3.2. (Normal form KdV coordinates with pseudo-differential expansion,
[20]) Let S+ ⊆ N be finite, � an open bounded subset of RS+

>0 so that (1.14) holds
for some δ > 0. Then, for δ > 0 sufficiently small, there exists a canonical C∞
family of diffeomorphisms 	ν : V(δ) → 	ν(V(δ)) ⊆ L2

0(T1), (θ, y, w) �→ q,
ν ∈ �, with the property that 	ν extends 	S+ , introduced in (3.5), namely

	ν(θ, y, 0) = 	S+(θ, ν + y), ∀(θ, y, 0) ∈ V(δ), ∀ν ∈ �, (3.8)

and is compatible with the scale of Sobolev spaces Hs
0 (T1), s ∈ N, in the sense

that 	ν

(
V(δ) ∩ Es

) ⊆ Hs
0 (T1) and that 	ν : V(δ) ∩ Es → Hs

0 (T1) is a
C∞−diffeomorphism onto its image, so that the following holds:

(AE1) (Asymptotic expansion of 	ν) For any integer M ≥ 1, ν ∈ �, x =
(θ, y, w) ∈ V(δ), 	ν(x) admits an asymptotic expansion of the form

	ν(θ, y, w) = 	S+(θ, ν + y)+ w +
M∑
k=1

a	−k(x; ν) ∂−kx w +R	
M (x; ν)

(3.9)

where R	
M (θ, y, 0; ν) = 0 and, for any s ∈ N and 1 ≤ k ≤ M, the functions

V(δ)×�→ Hs(T1), (x, ν) �→ a	−k(x; ν),
(V(δ) ∩ Es)×�→ Hs+M+1(T1), (x, ν) �→ R	

M (x; ν),

are C∞.
(AE2) (Asymptotic expansion of d	�ν ) For any x ∈ V1(δ) (cf. definition (1.27)),
ν ∈ �, the transpose d	ν(x)

� of the differential d	ν(x) : E1 → H1
0 (T1) is a

bounded linear operator d	ν(x)
� : H1

0 (T1)→ E1, and, for any q̂ ∈ H1
0 (T1)

and integer M ≥ 1, d	ν(x)
�[̂q] admits an expansion of the form

d	ν(x)
�[̂q] =

(
0, 0, �⊥q̂ +�⊥

M∑
k=1

ad	
�

−k (x; ν)∂−kx q̂ +�⊥
M∑
k=1

(∂−kx w)Ad	�−k (x; ν)[̂q]
)

+Rd	�
M (x; ν)[̂q] (3.10)

where, for any s ≥ 1 and 1 ≤ k ≤ M,

V1(δ)×�→ Hs(T1), (x, ν) �→ ad	
�

−k (x; ν),
V1(δ)×�→ B(H1

0 (T1), H
s(T1)), (x, ν) �→ Ad	�

−k (x; ν),
(V1(δ) ∩ Es)×�→ B(Hs

0 (T1), Es+M+1), (x, ν) �→ Rd	�
M (x; ν),

are C∞. Furthermore,

ad	
�

−1 (x; ν) = −a	−1(x; ν). (3.11)
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(AE3) (Normal form) For any ν ∈ �, the Hamiltonian Hkdv(· ; ν) := Hkdv ◦
	ν : V1(δ) → R (cf. definition (1.27)) is in normal form up to order three,
meaning that

Hkdv(θ, y, w; ν) = ωkdv(ν) · y + 1

2

(
�kdv(D; ν)w,w)L2

x

+1

2
�kdv

S+ (ν)[y] · y +Rkdv(θ, y, w; ν) (3.12)

where ωkdv(ν) = (ωkdv
n (ν, 0))n∈S+ ,

�kdv
S+ (ν) := (∂I jω

kdv
k (ν, 0)) j,k∈S+ , �kdv(D; ν)w :=

∑
n∈S⊥

�kdv
n (ν)wne

i2πnx ,

�kdv
n (ν) := 1

2πn
ωkdv
n (ν, 0), ∀n ∈ S

⊥, w =
∑
n∈S⊥

wne
i2πnx ,

(3.13)

and Rkdv : V1(δ)×�→ R is a C∞ map satisfying

Rkdv(θ, y, w; ν) = O
(
(‖y‖ + ‖w‖H1

x
)3
)
, (3.14)

and has the property that, for any s ≥ 1, its L2−gradient
(V1(δ) ∩ Es)×�→ Es , (x, ν) �→ ∇Rkdv(x; ν) = (∇θRkdv(x; ν),∇yRkdv(x; ν),∇wRkdv(x; ν))

is a C∞ map as well. As a consequence

∇Rkdv(θ, 0, 0; ν) = 0, d⊥∇Rkdv(θ, 0, 0; ν) = 0, ∂y∇Rkdv(θ, 0, 0; ν) = 0.

(3.15)

(Est1) For any ν ∈ �, α ∈ N
S+ , x ∈ V(δ), 1 ≤ k ≤ M, x̂1, . . . , x̂l ∈ E0, s ∈ N,

‖∂αν a	−k(x; ν)‖Hs
x

�s,k,α 1, ‖dl∂αν a	−k(x; ν)[̂x1, . . . , x̂l ]‖Hs
x

�s,k,l,α

l∏
j=1
‖̂x j‖E0 .

Similarly, for any ν ∈ �, α ∈ N
S+ , x ∈ V(δ) ∩ Es , x̂1, . . . , x̂l ∈ Es, s ∈ N,

‖∂αν R	
M (x; ν)‖Hs+M+1

x
�s,M,α ‖w‖Hs

x
,

‖dl∂αν R	
M (x; ν)[̂x1, . . . , x̂l ]‖Hs+M+1

x
�s,M,l,α

l∑
j=1

(
‖̂x j‖Es

∏
i 
= j

‖̂xi‖E0

)

+ ‖w‖Hs
x

l∏
j=1
‖̂x j‖E0 .

(Est2) For any ν ∈ �, α ∈ N
S+ , x ∈ V1(δ), 1 ≤ k ≤ M, x̂1, . . . , x̂l ∈ E1,

s ≥ 1,

‖∂αν ad	
�

−k (x; ν)‖Hs
x

�s,k,α 1, ‖dl∂αν ad	
�

−k (x; ν)[̂x1, . . . , x̂l ]‖Hs
x

�s,k,l,α

l∏
j=1
‖̂x j‖E1 ,

‖∂αν Ad	�−k (x; ν)‖B(H1
0 ,H

s
x )

�s,k,α 1,

‖dl∂αν Ad	�
−k (x; ν)[̂x1, . . . , x̂l ]‖B(H1

0 ,H
s
x )

�s,k,l,α

l∏
j=1
‖̂x j‖E1 .
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Similarly, for any ν ∈ �, α ∈ N
S+ , x ∈ V1(δ) ∩ Es , x̂1, . . . , x̂l ∈ Es, q̂ ∈ Hs

0 ,
s ≥ 1,

‖∂αν Rd	�
M (x; ν)[̂q]‖Es+M+1 �s,M,α ‖q̂‖Hs

x
+ ‖w‖Hs

x
‖q̂‖H1

x
,

‖dl(∂αν Rd	�
M (x; ν)[̂q])[̂x1, . . . , x̂l ]‖Es+M+1 �s,M,l,α ‖q̂‖Hs

x

l∏
j=1
‖̂x j‖E1

+ ‖q̂‖H1
x

l∑
j=1

(
‖̂x j‖Es

∏
i 
= j

‖̂xi‖E1

)
+ ‖q̂‖H1

x
‖w‖Hs

x

l∏
j=1
‖̂x j‖E1 .

We now apply Theorem 3.2 to obtain in the two corollaries below novel results
concerning the extensions of d	ν(x)

� and d	ν(x) to Sobolev spaces of negative
order. These results will be used to deduce Lemmata 3.5 and 3.7, which allow to
verify the assumptions A and B of Lemma 2.26 for the remainders, as explained in
Remark 2.27. The spaces Es , Es for negative s are defined as in (1.25).

Corollary 3.3. (Extension of d	ν(x)
� and its asymptotic expansion) Let M � 1.

There exists σM > 0 so that for any x ∈ VσM (δ) and ν ∈ �, the operator d	ν(x)
�

extends to a bounded linear operator d	ν(x)
� : H−M−1

0 (T1)→ E−M−1 and for
any q̂ ∈ H−M−1

0 (T1), d	ν(x)
�[̂q] admits an expansion of the form

d	ν(x)
�[̂q] =

(
0, 0,�⊥q̂ +�⊥

M∑
k=1

aext−k (x; ν; d	�)∂−kx q̂
)

+Rext
M (x; ν; d	�)[̂q] (3.16)

with the following properties:

(i) For any s � 0, the maps

VσM (δ)×�→ Hs(T1), (x, ν) �→ aext−k (x; ν; d	�), 1 ≤ k ≤ M,

are C∞. They satisfy aext−1 (x; ν; d	�) = ad	
�

−1 (x; ν) (cf. Theorem 3.2-(AE2))
and for any α ∈ N

S+ , x̂1, . . . , x̂l ∈ EσM , and (x, ν) ∈ VσM (δ)×�,

‖∂αν aext−k (x; ν; d	�)‖Hs
x

�s,M,α 1,

‖∂αν dlaext−k (x; ν; d	�)[̂x1, . . . , x̂l ]‖Hs
x

�s,M,l,α

l∏
j=1
‖̂x j‖EσM .

(3.17)

(ii) For any −1 � s � M + 1, the map

Rext
M (·; ·; d	�) : VσM (δ)×�→ B(H−s0 (T1), EM+1−s)

is C∞ and satisfies for any α ∈ N
S+ , x̂1, . . . , x̂l ∈ EσM , q̂ ∈ H−s0 (T1), and

(x, ν) ∈ VσM (δ)×�,

‖∂αν Rext
M (x; ν; d	�)[̂q]‖EM+1−s �M,α ‖q̂‖H−sx

,

‖∂αν dlRext
M (x; ν; d	�)[̂x1, . . . , x̂l ][̂q]‖EM+1−s �s,M,l,α ‖q̂‖H−sx

l∏
j=1
‖̂x j‖EσM .



1440 M. Berti, T. Kappeler & R. Montalto

(3.18)

(iii) For any s � 1, the map

Rext
M (·; ·; d	�) : (VσM (δ) ∩ Es+σM

)×�→ B(Hs
0 (T1), Es+M+1)

is C∞ and satisfies for any α ∈ N
S+ , x̂1, . . . , x̂l ∈ Es+σM , q̂ ∈ Hs

0 (T1), and
(x, ν) ∈ (VσM (δ) ∩ Es+σM

)×�,

‖∂αν Rext
M (x; ν; d	�)[̂q]‖EM+1+s �s,M,α ‖q̂‖Hs

x
+ ‖x‖s+σM ‖q̂‖H1

x
,

‖∂αν dlRext
M (x; ν; d	�)[̂x1, . . . , x̂l ][̂q]‖EM+1+s �s,M,l,α ‖q̂‖Hs

x

l∏
j=1
‖̂x j‖EσM

+ ‖q̂‖H1
x

( l∑
j=1
‖̂x j‖Es+σM

∏
i 
= j

‖̂xi‖EσM + ‖x‖Es+σM

l∏
j=1
‖̂x j‖EσM

)
.

(3.19)

Proof. By Theorem 3.2, for any (x, ν) ∈ V(δ)×�, the differential d	ν(x) : E0 →
L2
0(T1) is bounded and, for any M � 1, differentiating (3.9), d	ν(x)[̂x] admits the

expansion for any x̂ = (θ̂ , ŷ, ŵ) ∈ E0 of the form

d	ν(x)[̂x] = ŵ +
M∑
k=1

a	−k(x; ν)∂−kx ŵ +R(1)
M (x; ν)[̂x], (3.20)

R(1)
M (x; ν)[̂x] :=

M∑
k=1

(∂−kx w)da	−k(x; ν)[̂x] + dR	
M (x; ν)[̂x] + dθ,y	S+ (θ, ν + y)[θ̂ , ŷ].

For σM � M , the map R(1)
M : VσM (δ) × � → B(E0, HM+1(T1)) is C∞ and

satisfies, by Theorem 3.2-(Est1), for any α ∈ N
S+ , l � 1,

‖∂αν R(1)
M (x; ν)[̂x]‖HM+1

x
�M,α ‖̂x‖E0 ,

‖∂αν dlR(1)
M (x; ν)[̂x1, . . . , x̂l ][̂x]‖HM+1

x
�M,l,α ‖̂x‖E0

l∏
j=1
‖̂x j‖EσM .

(3.21)

Now consider the transpose operator d	ν(x)
� : L2

0(T1)→ E0. By (3.20), for any
q̂ ∈ L2

0(T1), one has

d	ν(x)
�[̂q] =

(
0, 0,�⊥q̂ +�⊥

M∑
k=1

(−1)k∂−kx

(
a	−k(x; ν) q̂

))+R(1)
M (x; ν)�[̂q].

(3.22)

Since each function a	−k(x; ν) is C∞ and R(1)
M (x; ν)� : H−M−1(T1) →

E0 is bounded, the right hand side of (3.22) defines a linear operator in
B(H−M−1

0 (T1), E−M−1), which we also denote by d	ν(x)
�. By (2.12), the expan-

sion (3.22) yields one of the form (3.16) where by (3.21) and Theorem 3.2-(Est1),
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the remainder Rext
M (x; ν; d	�) satisfies for any α ∈ N

S+ , x̂1, . . . , x̂l ∈ EσM , and
q̂ ∈ H−M−1

0 (T1)

‖∂αν Rext
M (x; ν; d	�)[̂q]‖E0 �M,α ‖q̂‖H−M−1

x
,

‖∂αν dlRext
M (x; ν; d	�)[̂x1, . . . , x̂l ][̂q]‖E0 �M,l,α ‖q̂‖H−M−1

x

l∏
j=1
‖̂x j‖EσM .

(3.23)

The restriction of the operator d	ν(x)
� : H−M−1

0 (T1) → E−M−1 to H1
0 (T1)

coincides with (3.10) and, by the uniqueness of an expansion of this form,

aext−k (x; ν; d	�) = ad	
�

−k (x; ν), k = 1, . . . ,M,

Rext
M (x; ν; d	�)[̂q] =

M∑
k=1

(∂−kx w)Ad	�−k (x; ν)[̂q] +Rd	�
M (x; ν)[̂q], ∀q̂ ∈ H1

0 (T1).

The claimed estimates (3.17) and (3.19) then follow by Theorem 3.2-(Est2). In
particular we have, for any α ∈ N

S+ , x̂1, . . . , x̂l ∈ EσM , q̂ ∈ H1
0 (T1),

‖∂αν Rext
M (x; ν; d	�)[̂q]‖EM+2 �M,α ‖q̂‖H1

x
,

‖∂αν dlRext
M (x; ν; d	�)[̂x1, . . . , x̂l ][̂q]‖EM+2 �M,l,α ‖q̂‖H1

x

l∏
j=1
‖̂x j‖EσM .

(3.24)

Finally the estimates (3.18) follow by interpolation between (3.23) and (3.24). ��
Corollary 3.4. (Extension of d⊥	ν(x) and its asymptotic expansion) Let M � 1.
There exists σM > 0 so that for any x ∈ VσM (δ) and ν ∈ �, the operator d⊥	ν(x)
extends to a bounded linear operator, d⊥	ν(x) : H−M−2

⊥ (T1) → H−M−2
0 (T1),

and for any ŵ ∈ H−M−2
⊥ (T1), d⊥	ν(x)[ŵ] admits an expansion

d⊥	ν(x)[ŵ] = ŵ +
M∑
k=1

aext−k (x; ν; d⊥	)∂−kx ŵ +Rext
M (x; ν; d⊥	)[ŵ] (3.25)

with the following properties:

(i) For any s � 0, the maps

VσM (δ)×�→ Hs(T1), (x, ν) �→ aext−k (x; ν; d⊥	), 1 ≤ k ≤ M,

are C∞. They satisfy aext−1 (x; ν; d⊥	) = a	−1(x; ν) (cf. Theorem 3.2-(AE1)) and
for any α ∈ N

S+ , x̂1, . . . , x̂l ∈ EσM , and (x, ν) ∈ VσM (δ)×�,

‖∂αν aext−k (x; ν; d⊥	)‖Hs
x

�s,M,α 1,

‖∂αν dlaext−k (x; ν; d⊥	)[̂x1, . . . , x̂l ]‖Hs
x

�s,M,l,α

l∏
j=1
‖̂x j‖EσM .

(3.26)
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(ii) For any 0 � s � M + 2, the map

Rext
M (·, ·; d⊥	) : VσM (δ)×�→ B(H−s⊥ (T1), H

M+1−s(T1))

is C∞ and satisfies, for any α ∈ N
S+ , x̂1, . . . , x̂l ∈ EσM , ŵ ∈ H−s⊥ (T1), and

(x, ν) ∈ VσM (δ)×�,

‖∂αν Rext
M (x; ν; d⊥	)[ŵ]‖HM+1−s

x
�M,α ‖ŵ‖H−sx

,

‖∂αν dlRext
M (x; ν; d⊥	)[̂x1, . . . , x̂l ][ŵ]‖HM+1−s

x
�s,M,l,α ‖ŵ‖H−sx

l∏
j=1
‖̂x j‖EσM .

(3.27)

(iii) For any s � 0, the map

Rext
M (·, ·; d⊥	) :

(
VσM (δ) ∩ Es+σM

)×�→ B(Hs⊥(T1), H
M+1+s(T1))

is C∞ and satisfies for any α ∈ N
S+ , x̂1, . . . , x̂l ∈ Es+σM , ŵ ∈ Hs⊥(T1), and

(x, ν) ∈ (VσM (δ) ∩ Es+σM
)×�,

‖∂αν Rext
M (x; ν; d⊥	)[ŵ]‖HM+1+s

x
�s,M,α ‖ŵ‖Hs

x
+ ‖x‖Es+σM ‖ŵ‖L2

x
,

‖∂αν dl
(Rext

M (x; ν; d⊥	)[ŵ]
)[̂x1, . . . , x̂l ]‖HM+1+s

x
�s,M,l,α ‖ŵ‖Hs

x

l∏
j=1
‖̂x j‖EσM

+ ‖ŵ‖L2
x

( l∑
j=1
‖̂x j‖Es+σM

∏
i 
= j

‖̂xi‖EσM + ‖x‖Es+σM

l∏
j=1
‖̂x j‖EσM

)
.

(3.28)

Proof. By Theorem 3.2-(AE2), for any (x, ν) ∈ V1(δ) × �, the operator
d⊥	ν(x)

� : H1
0 (T1)→ H1⊥(T1) is bounded and for any M � 1 and q̂ ∈ H1

0 (T1),
d⊥	ν(x)

�[̂q ] admits the expansion of the form

d⊥	ν(x)
�[̂q ] = �⊥q̂ +�⊥

M∑
k=1

ad	
�

−k (x; ν)∂−kx q̂ +R(2)
M (x; ν)[̂q ],

R(2)
M (x; ν)[̂q ] :=�⊥

M∑
k=1

(∂−kx w)Ad	�
−k (x; ν)[̂q] +Rd	�

M (x; ν)[̂q ].
(3.29)

For σM � M + 1, the map R(2)
M : VσM (δ)× �→ B(H1

0 (T1), H
M+2
⊥ (T1)) is C∞

and by Theorem 3.2-(Est2), satisfies for any α ∈ N
S+ and x̂1, . . . , x̂l ∈ EσM

‖∂αν R(2)
M (x; ν)[̂q]‖HM+2

x
�M,α ‖q̂‖H1

x
,

‖∂αν dlR(2)
M (x; ν)[̂x1, . . . , x̂l ][̂q]‖HM+2

x
�M,l,α ‖q̂‖H1

x

l∏
j=1
‖̂x j‖EσM .

(3.30)
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Now consider the transpose operator
(
d⊥	ν(x)

�)� : H−1⊥ (T1) → H−10 (T1). It
defines an extension of d⊥	ν(x) to H−1⊥ (T1), which we denote again by d⊥	ν(x).
By (3.29), for any ŵ ∈ H−1⊥ (T1), one has

d⊥	ν(x)[ŵ] = ŵ +
M∑
k=1

(−1)k∂−kx

(
ad	

�
−k (x; ν)ŵ)+R(2)

M (x; ν)�[ŵ]. (3.31)

Since each functionad	
�

−k (x; ν) isC∞ and theoperatorR(2)
M (x; ν)� : H−M−2

⊥ (T1)→
H−10 (T1) is bounded, the right hand side of (3.31) defines a linear operator in
B(H−M−2

0 (T1), E−M−2), which we also denote by d	ν(x). By (2.12), the expan-
sion (3.31) yields one of the form (3.25) where by (3.30) and Theorem 3.2-(Est2),
the remainder Rext

M (x; ν; d	�) satisfies for any α ∈ N
S+ , x̂1, . . . , x̂l ∈ EσM , and

ŵ ∈ H−M−2
0 (T1)

‖∂αν Rext
M (x; ν; d⊥	)[ŵ]‖H−1x

�M,α ‖ŵ‖H−M−2
x

,

‖∂αν dlRext
M (x; ν; d⊥	)[̂x1, . . . , x̂l ][ŵ]‖H−1x

�M,l,α ‖ŵ‖H−M−2
x

l∏
j=1
‖̂x j‖EσM .

(3.32)

The restriction of the expansion (3.31) to L2⊥(T1) coincides with the one of
d⊥	ν(x)[ŵ], obtained by differentiating (3.9) (see (3.20)). It then follows from
the uniqueness of an expansion of this form that

aext−k (x; ν; d⊥	) = a	−k(x; ν), k = 1, . . . ,M,

Rext
M (x; ν; d⊥	)[ŵ] =

M∑
k=1

(∂−kx w)d⊥a	−k(x; ν)[ŵ] + d⊥R	
M (x; ν)[ŵ], ∀ŵ ∈ L2⊥(T1).

The claimed estimates (3.26) and (3.28) thus follow by Theorem 3.2-(Est1). In
particular, for any α ∈ N

S+ , x̂1, . . . , x̂l ∈ EσM , and ŵ ∈ L2⊥(T1),

‖∂αν Rext
M (x; ν; d⊥	)[ŵ]‖HM+1

x
�M,α ‖ŵ‖L2

x
,

‖∂αν dlRext
M (x; ν; d⊥	)[̂x1, . . . , x̂l ][ŵ]‖HM+1

x
�M,l,α ‖ŵ‖L2

x

l∏
j=1
‖̂x j‖EσM .

(3.33)

The claimed estimates (3.27) are then obtained by interpolating between (3.32) and
(3.33). ��

3.3. Expansions of Linearized Hamiltonian Vector Fields

In this section, we apply Theorem 3.2 and Corollaries 3.3–3.4, to obtain
asymptotic expansions of the linearized Hamiltonian vector fields ∂xd⊥∇wP and
∂xd⊥∇wHkdv . These expansions are key for implementing the KAM reduction
procedure of Sections 6–7 to obtain an approximate right inverse of ω ·∂ϕ−dXHε

.
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For any Hamiltonian of the form P(u) = ∫
T1

f (x, u(x), ux (x)) dx with a C∞-
smooth density

f : T1 × R× R �→ R, (x, ζ0, ζ1) �→ f (x, ζ0, ζ1), (3.34)

define

P := P ◦	ν, P(x; ν) := P(	ν(x)), x = (θ, y, w), (3.35)

where 	ν is the coordinate transformation of Theorem 3.2. As a first result, we
provide an expansion of the linearized Hamiltonian vector field ∂xd⊥∇wP .

Lemma 3.5. (Expansion of ∂xd⊥∇wP) Let P(u) = ∫
T1

f (x, u, ux ) dx with f ∈
C∞(T1×R×R). For any M ∈ N there is σM ≥ M+1 so that for any x ∈ VσM (δ)

and ν ∈ �, the operator ∂xd⊥∇wP(x; ν) admits an expansion of the form

∂xd⊥∇wP(x; ν)[·] = �⊥
M+3∑
k=0

a3−k(x; ν; ∂xd⊥∇wP) ∂3−kx [·]

+RM (x; ν; ∂xd⊥∇wP)[·] (3.36)

with the following properties:

1. For any s � 0, the maps

(VσM (δ) ∩ Es+σM )×�→ Hs(T1), (x; ν) �→ a3−k(x; ν; ∂xd⊥∇wP),
0 ≤ k ≤ M + 3,

are C∞, and satisfy for any α ∈ N
S+ , x̂1, . . . , x̂l ∈ Es+σM , and (x, ν) ∈(

VσM (δ) ∩ Es+σM
)×�,

‖∂αν a3−k(x; ν; ∂xd⊥∇wP)‖Hs
x

�s,M,α 1+ ‖w‖
H

s+σM
x

, (3.37)

‖∂αν dla3−k(x; ν; ∂xd⊥∇wP)[̂x1, . . . , x̂l ]‖Hs
x

�s,M,l,α

l∑
j=1

(‖̂x j‖Es+σM

∏
n 
= j

‖̂xn‖EσM
)

+ ‖w‖
H

s+σM
x

l∏
j=1
‖̂x j‖EσM .

2. For any 0 � s � M + 1, the map

VσM (δ)×�→ B(H−s(T1), H
M+1−s
⊥ (T1)), (x, ν) �→ RM (x; ν; ∂xd⊥∇wP),

is C∞ and satisfies for any α ∈ N
S+ , x̂1, . . . , x̂l ∈ EσM , (x, ν) ∈ VσM (δ) × �,

and ŵ ∈ H−s⊥ (T1),

‖∂αν RM (x; ν; ∂xd⊥∇wP)[ŵ]‖HM+1−s
x

�s,M,α ‖ŵ‖H−sx
, (3.38)

‖∂αν dl
(RM (x; ν; ∂xd⊥∇wP)[ŵ]

)[̂x1, . . . , x̂l ]‖HM+1−s
x

�s,M,l,α ‖ŵ‖H−sx

l∏
j=1
‖̂x j‖EσM .
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3. For any s � 0, the map

(VσM (δ) ∩ Es+σM )×�→ B(Hs(T1), H
s+M+1
⊥ (T1)), (x, ν) �→ RM (x; ν; ∂xd⊥∇wP),

is C∞ and satisfies for any α ∈ N
S+ , x̂1, . . . , x̂l ∈ Es+σM , (x, ν) ∈ (VσM (δ) ∩

Es+σM )×�, and ŵ ∈ Hs⊥(T1),

‖∂αν RM (x; ν; ∂x d⊥∇wP)[ŵ]‖Hs+M+1
x

�s,M,α ‖ŵ‖Hs
x
+ ‖w‖

H
s+σM
x

‖ŵ‖L2x ,
‖∂αν dl

(RM (x; ν; ∂x d⊥∇wP)[ŵ]
)[̂x1, . . . , x̂l ]‖Hs+M+1

x
�s,M,l,α ‖ŵ‖Hs

x

∏l
j=1 ‖̂x j‖EσM

+‖ŵ‖L2x
(‖w‖

H
s+σM
x

∏l
j=1 ‖̂x j‖EσM +∑l

j=1 ‖̂x j‖Es+σM
∏

i 
= j ‖̂xi‖EσM
)
. (3.39)

Remark 3.6. Thecoefficienta3 in (3.36) canbe computed asa3(x; ν; ∂xd⊥∇wP) =
−(∂2ζ1 f )(x, u, ux )

∣∣
u=	ν(x)

.

Proof. Differentiating (3.35) we have that

∇P(x; ν) = (d	ν(x))
�[∇P(	ν(x))

]
, (3.40)

where by (3.34),

∇P(u) = �⊥0
[
(∂ζ0 f )(x, u, ux )−

(
(∂ζ1 f )(x, u, ux )

)
x

]
(3.41)

and �⊥0 is the L2-orthogonal projector of L2(T1) onto L2
0(T1). By (3.40), the

w−component ∇wP(x; ν) of ∇P(x; ν) equals (d⊥	ν(x))
�[∇P(	ν(x))

]
. Differ-

entiating it with respect to w in direction ŵ then yields

d⊥∇wP(x; ν)[ŵ] = (d⊥	ν(x))
�[d∇P(	ν(x))

[
d⊥	ν(x)[ŵ]

]]
+(d⊥(d⊥	ν(x))

�[ŵ])[∇P(	ν(x))
]
. (3.42)

Analysis of the first term on the right hand side of (3.42): Evaluating the differential
d∇P(u) of (3.41) at u = 	ν(x), one gets

d(∇P)(	ν(x))[h] = �⊥0
(
b2(x; ν)∂2x h + b1(x; ν)∂xh + b0(x; ν)h

)
,

b2(x; ν) := − ∂2ζ1 f (x, u, ux )
∣∣∣
u=	ν(x)

, b1(x; ν) := (b2(x; ν))x ,
b0(x; ν) :=

(
(∂2ζ0 f )(x, u, ux )−

(
(∂2ζ0ζ1 f )(x, u, ux )

)
x

)∣∣
u=	ν(x)

.

(3.43)

By Lemma 2.3 and Theorem 3.2 one infers that for any s � 0, the maps

(V3(δ) ∩ Es+3)×�→ Hs
x , (x; ν) �→ bi (x; ν), i = 0, 1, 2,

are C∞ and satisfy for any α ∈ N
S+ , x̂1, . . . , x̂l ∈ Es+3, and (x, ν) ∈

(
V3(δ) ∩

Es+3
)×�,

‖∂αν bi (x; ν)‖Hs
x

�s,α 1+ ‖w‖Hs+3
x

, (3.44)

‖∂αν dlbi (x; ν)[̂x1, . . . , x̂l ]‖Hs
x

�s,l,α
∑l

j=1 ‖̂x j‖Es+3
∏

i 
= j ‖̂xi‖E3 + ‖w‖Hs+3
x

∏l
j=1 ‖̂x j‖E3 .
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By Corollary 3.3 (expansion of (d⊥	ν)
�), Corollary 3.4 (expansion of d⊥	ν),

(3.44) (estimates of bi ), (3.43) (formula for d(∇P)(	ν(x))), and Lemma 2.12
(composition), one obtains the expansion

∂x (d⊥	ν(x))
�[d∇P(	ν(x))

[
d⊥	ν(x)[·]

]]

= �⊥
M+3∑
k=0

a(1)3−k(x; ν)∂3−kx + R1(x; ν), (3.45)

where a(1)3 (x; ν) = b2(x; ν), the functions a(1)3−k(x; ν), k = 0, . . . ,M + 3, and the
remainder R1(x; ν) satisfy the claimed properties 1–3 of the lemma, in particular
(3.37)–(3.39).
Analysis of the second term on the right hand side of (3.42): Since d	ν(x) is
symplectic, d	ν(x)

� = J −1d	ν(x)
−1∂x where J is the Poisson operator defined

in (3.7), implying that for any ŵ ∈ H1⊥(T1),

d⊥
(
d	ν(x)

�)[ŵ] = −J −1d	ν(x)
−1(d⊥d	ν(x)[ŵ]

)
d	ν(x)

−1∂x
= −d	ν(x)

�∂−1x d
(
d⊥	ν(x)[ŵ]

)[
J d	ν(x)

� · ].
By this identity we get

∂x
(
d⊥(d⊥	ν(x))

�[·])[∇P(	ν(x))
]

(3.46)

= −∂xd	ν(x)
�∂−1x d

(
d⊥	ν(x)[·]

)[
J d	ν(x)

�∇P(	ν(x))
]
.

Arguing as for the first term on the right hand side of (3.42) (cf. (3.45)) one gets
an expansion of the form

∂x
(
d⊥(d⊥	ν(x))

�[·])[∇P(	ν(x))
] = �⊥

M+3∑
k=3

a(2)3−k(x; ν)∂3−kx + R2(x; ν),

(3.47)

where the functions a(2)3−k(x; ν), k = 3, . . . ,M + 3, and the remainder R2(x; ν)
satisfy the claimed properties 1-3 of the lemma, in particular (3.37)–(3.39).
Conclusion: By (3.42) and the above analysis of the expansions (3.45) and (3.47),
the lemma and Remark 3.6 follow. ��

As a second result of this section we derive an expansion for the linearized
Hamiltonian vector field ∂xd⊥∇wHkdv where Hkdv(x; ν) = Hkdv(	ν(x)) (cf.
Theorem 3.2-(AE3)). We recall that the family of Fourier multipliers �kdv(D; ν),
ν ∈ �, is defined in (3.13).

Lemma 3.7. (Expansion of ∂xd⊥∇wHkdv) For any M ∈ N there is σM ≥ M + 1
so that, for any (x, ν) ∈ VσM (δ) × �, the operator ∂xd⊥∇wHkdv(x; ν) admits an
expansion of the form

∂xd⊥∇wHkdv(x; ν)[·] = ∂x�
kdv(D; ν)[·] + ∂xd⊥∇wRkdv(x; ν)[·],

∂xd⊥∇wRkdv(x; ν)[·] = �⊥
M+1∑
k=0

a1−k(x; ν; ∂xd⊥∇wRkdv) ∂1−kx [·]

+RM (x; ν; ∂xd⊥∇wRkdv)[·],

(3.48)
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with the following properties:

1. For any s � 0, the maps

(VσM (δ) ∩ Es+σM )×�→ Hs(T1), (x, ν) �→ a1−k(x; ν; ∂xd⊥∇wRkdv),

0 ≤ k ≤ M + 1,

are C∞ and satisfy for any α ∈ N
S+ , x̂1, . . . , x̂l ∈ Es+σM , and (x, ν) ∈

(VσM (δ) ∩ Es+σM )×�,

‖∂αν a1−k (x; ν; ∂x d⊥∇wRkdv)‖Hs
x

�s,k,α ‖y‖ + ‖w‖Hs+σM
x

,

‖dl∂αν a1−k (x; ν; ∂x d⊥∇wRkdv)[̂x1, . . . , x̂l ]‖Hs
x

�s,k,l,α
∑l

j=1
(‖̂x j‖Es+σM

∏
n 
= j ‖̂xn‖EσM

)

+(‖y‖ + ‖w‖
H
s+σM
x

)
∏l

j=1 ‖̂x j‖EσM . (3.49)

2. For any 0 � s � M + 1, the map

RM (·; ·; ∂xd⊥∇wRkdv) : VσM (δ)×�→ B(H−s⊥ (T1), H
M+1−s
⊥ (T1))

is C∞ and satisfies for any α ∈ N
S+ , x̂1, . . . , x̂l ∈ EσM , (x, ν) ∈ VσM (δ) × �,

and ŵ ∈ H−s⊥ (T1),

‖∂αν RM (x; ν; ∂x d⊥∇Rkdv)[ŵ]‖HM+1−s
x

�s,M,α (‖y‖ + ‖w‖HσM
x

)‖ŵ‖H−sx
, (3.50)

‖dl∂αν RM (x; ν; ∂x d⊥∇Rkdv)[ŵ][̂x1, . . . , x̂l ]‖HM+1−s
x

�s,M,l,α ‖ŵ‖H−sx

l∏
j=1
‖̂x j‖EσM .

(3.51)

3. For any s � 0, the map

RM (·; ·; ∂xd⊥∇wRkdv) : (VσM (δ) ∩ Es+σM )×�→ B(Hs⊥(T1), H
s+M+1
⊥ (T1)),

is C∞ and satisfies for any α ∈ N
S+ , x̂1, . . . , x̂l ∈ Es+σM , (x, ν) ∈ (Es+σM ∩

VσM (δ))×�, and ŵ ∈ Hs⊥(T1),

‖∂αν RM (x; ν; ∂x d⊥∇Rkdv)[ŵ]‖Hs+M+1
x

�s,M,α (‖y‖ + ‖w‖Hs+σM
x

)‖ŵ‖L2
x
+ (‖y‖ + ‖w‖HσM

x
)‖ŵ‖Hs

x
, (3.52)

‖dl∂αν RM (x; ν; ∂x d⊥∇Rkdv)[ŵ][̂x1, . . . , x̂l ]‖Hs+M+1
x

�s,M,l,α ‖ŵ‖Hs
x

l∏
j=1
‖̂x j‖EσM

+ ‖ŵ‖L2
x

l∑
j=1

(
‖̂x j‖Es+σM

∏
n 
= j

‖̂xn‖EσM
)
+ ‖ŵ‖L2

x
‖w‖

H
s+σM
x

l∏
j=1
‖̂x j‖EσM .

(3.53)

Proof. Differentiating Hkdv(x; ν) = Hkdv(	ν(x)), we get

∇wHkdv(x; ν) = (d⊥	ν(x))
�[∇Hkdv(	ν(x))

]
(3.54)
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where by (1.2),

∇Hkdv(u) = �⊥0 (3u2 − uxx
)

(3.55)

and where �⊥0 is the L2-orthogonal projector onto L2
0(T1). Differentiating (3.54)

with respect to w in direction ŵ we get

d⊥∇wHkdv(x; ν)[ŵ] = (d⊥	ν(x))
�[d∇Hkdv(	ν(x))[d⊥	ν(x)[ŵ]]

]
+ (d⊥(d⊥	ν(x))

�[ŵ])[∇Hkdv(	ν(x))
]
. (3.56)

On the other hand, by (3.12)

d⊥∇wHkdv(x; ν) = �kdv(D; ν)+ d⊥∇wRkdv(x; ν)
and by (3.15) d⊥∇wRkdv(θ, 0, 0; ν) = 0, implying that

d⊥∇wHkdv(θ, 0, 0; ν) = �kdv(D; ν),
d⊥∇wRkdv(x; ν) = d⊥∇wHkdv(θ, y, w; ν)− d⊥∇wHkdv(θ, 0, 0; ν). (3.57)

In order to obtain the expansion (3.48) it thus suffices to expand d⊥∇w
Hkdv(θ, y, w; ν))[ŵ] and then subtract from it the expansion of d⊥∇wHkdv

(θ, 0, 0; ν))[ŵ]. We analyze separately the two terms in (3.56).
Analysis of the first term on the right hand side of (3.56): Evaluating the differential
d∇Hkdv(u) at u = 	ν(x), one gets

d(∇Hkdv)(	ν(x))[h] = �⊥0
(− ∂2x h + b0(x; ν)h

)
, b0(x; ν) := 6	ν(x). (3.58)

By Theorem 3.2-(AE1) and the estimates (Est1), the function b0(x; ν) satisfies, for
any s � 0,

‖∂αν b0(x; ν)‖Hs
x

�s,α 1+ ‖w‖Hs+1
x

, (3.59)

‖∂αν dlb0(x; ν)[̂x1, . . . , x̂l ]‖Hs
x

�s,l,α

l∑
j=1
‖̂x j‖Es+1

∏
i 
= j

‖̂xi‖E1 + ‖w‖Hs+1
x

l∏
j=1
‖̂x j‖E1 .

By Corollary 3.3 (expansion of (d⊥	ν)
�), Corollary 3.4 (expansion of d⊥	ν),

(3.59) (estimates of b0), (3.58)
(
formula for d(∇Hkdv)(	ν(x))

)
, and Lemma 2.12

(composition), one obtains the expansion

∂x (d⊥	ν(x))
�[d∇Hkdv(	ν(x))

[
d⊥	ν(x)[·]

]]

= �⊥
(− ∂3x − (a	−1(x; ν)+ ad	

�
−1 (x; ν))∂2x +

M+1∑
k=0

a(1)1−k(x; ν)∂1−kx

)+ R1(x; ν)

(3.11)= �⊥
(− ∂3x +

M+1∑
k=0

a(1)1−k(x; ν)∂1−kx

)+ R1(x; ν), (3.60)

where the functions a(1)1−k(x; ν), k = 0, . . . ,M + 1 and the remainder R1(x; ν)
satisfy the properties 1–3 stated in Lemma 3.5, in particular (3.37)–(3.39).
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Analysis of the second term on the right hand side of (3.56): By (3.46) one has

∂x
(
d⊥(d⊥	ν(x))

�[·])[∇Hkdv(	ν(x))
] = −∂xd	ν(x)

�∂−1x d
(
d⊥	ν(x)[·]

)
[
J d	ν(x)

�∇Hkdv(	ν(x))
]
.

Arguing as for the first termon the right hand side of (3.56) one obtains an expansion
of the form

∂x
(
d⊥(d⊥	ν(x))

�[·])[∇Hkdv(	ν(x))
] = �⊥

M+1∑
k=0

a(2)1−k(x; ν)∂1−kx + R2(x; ν),

(3.61)

where a(2)1 (x; ν) = 0 (cf. (3.16)) and where the functions a(2)1−k(x; ν), k =
1, . . . ,M + 1 and the remainder R2(x; ν) satisfy the properties 1-3 of Lemma 3.5,
in particular (3.37)–(3.39).
Conclusion: Combining (3.56), (3.57), (3.60), and (3.61) one obtains the claimed
expansion (3.48) with

a1−k(x; ν; ∂x d⊥∇wRkdv) := a(1)1−k(x; ν)− a(1)1−k(θ, 0, 0; ν)+ a(2)1−k(x; ν)− a(2)1−k(θ, 0, 0; ν)
RM (x; ν; ∂x d⊥∇Rkdv) := R1(x; ν)− R1(θ, 0, 0; ν)+ R2(x; ν)− R2(θ, 0, 0; ν).

Since a(1)1−k(x; ν), R1(x; ν), and a(2)1−k(x; ν), R2(x; ν) satisfy properties 1-3 of
Lemma 3.5, in particular (3.37)–(3.39), the claimed estimates (3.49)–(3.53) then
follow by the mean value theorem. ��

3.4. Frequencies of KdV

In this section we record properties of the KdV frequencies ωkdv
n , used in

particular for the measure estimates in Section 8.2, and discuss an expansion of
∂x�

kdv(D; ν) (cf. (3.13)) needed in Section 6.
Recall that the family of operators�kdv(D; ν), introduced in (3.13), is defined

for ν ∈ � ⊂ R
S+
>0. Actually, it is defined on all of RS+

>0 (cf. (3.2)) and according to
[20, Lemma 4.1], ∂x�kdv(D; I ) can be written as

∂x�
kdv(D; I ) = −∂3x + Qkdv−1 (D; I ), (3.62)

where Qkdv−1 (D; I ) is a family of Fourier multiplier operators of order −1 with an
expansion in homogeneous components up to any order.

Lemma 3.8. For any M ∈ N and I ∈ R
S+
>0, Qkdv−1 (D; I ) admits an expansion of

the form

Qkdv−1 (D; I ) = �kdv−1 (D; I )+RM (D; I ; Qkdv−1 ),

�kdv−1 (ξ ; I ) =
M∑
k=1

a−k(I ;�kdv−1 )χ0(ξ)(i2πξ)−k, (3.63)
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where the functions a−k(I ;�kdv−1 ) are real analytic and bounded on compact subsets
of RS+

>0 and vanish identially for k even, and where RM (D; I ; Qkdv−1 ) is a Fourier
multiplier operator with multipliers

RM (n; I ; Qkdv−1 ) =
Rωn

M (I )

(2πn)M+1
, RM (−n; I ; Qkdv−1 ) = −RM (n; I ; Qkdv−1 ), ∀n ∈ S

⊥+,

(3.64)

where the functions I �→ Rωn
M (I ) are real analytic and satisfy, for any j ∈ S+,

β ∈ N,

sup
n∈S⊥

|Rωn
M (I )| � CM , sup

n∈S⊥
|∂βI jR

ωn
M (I )| � CM,β , (3.65)

uniformly on compact subsets of RS+
>0.

Proof. The result follows from [20, Lemma C.7]. ��
Lemma 3.9. (Non-degeneracy of KdV frequencies, [21, Proposition 15.5])For any
finite subset S+ ⊂ N the following holds on R

S+
>0:

(i) The map I �→ det
(
(∂Ikω

kdv
n (I, 0))k,n∈S+

)
is real analytic and does not vanish

identically.
(ii) For any 
 ∈ Z

S+and j, k ∈ S
⊥ with (
, j, k) 
= (0, j, j), the following func-

tions are real analytic and do not vanish identically:
∑
n∈S+


nω
kdv
n + ωkdv

j 
= 0,
∑
n∈S+


nω
kdv
n + ωkdv

j − ωkdv
k 
= 0. (3.66)

Remark 3.10. Itwas shown in [12] that for any I ∈ R
S+
>0, det

(
(∂Ikω

kdv
n (I, 0))k,n∈S+

)

= 0.

Finally, we record the following asymptotics of the KdV frequencies, used in
Section 7,

ωkdv
n (I, 0)− (2πn)3 = O(n−1), n ∂Iω

kdv
n (I, 0) = O(1), (3.67)

uniformly on compact sets of actions I ∈ R
S+
>0 (cf. for example [22, Proposition

8.1]).

4. Nash–Moser Theorem

The purpose of this short section is to state Theorem 4.1 which reformulates
Theorem 1.1 in the canonical coordinates described in the previous section. In
Section 8.3, we derive Theorem 1.1 from Theorem 4.1.

In the canonical coordinates x = (θ, y, w) ∈ V(δ)∩Es , defined byTheorem3.2,
with symplectic 2-form given by (3.6), the Hamiltonian equation (1.6) reads as

∂tθ = −∇yHε, ∂t y = ∇θHε, ∂tw = ∂x∇wHε, (4.1)
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where Hε := Hε ◦	ν and Hε is given by (1.7). More explicitly,

Hε(x; ν) = Hkdv(x; ν)+ εP(x; ν),
Hkdv = Hkdv ◦	ν, P = P ◦	ν, ν ∈ �, (4.2)

where Hkdv(x; ν) has the normal form expansion (3.12). We denote by XHε
the

Hamiltonian vector field associated toHε. For ε = 0, the Hamiltonian system (4.1)
possesses, for any value of the parameter ν ∈ �, the invariant torusTS+ ×{0}×{0},
filled by quasi-periodic finite gap solutions of the KdV equation with frequency
vector ωkdv(ν) := (ωkdv

n (ν, 0))n∈S+ introduced in (1.11).
By our choice of �, the map −ωkdv : �→ � := − ωkdv(�) is a real analytic

diffeomorphism. In the sequel, we consider ν as a function of the parameter ω ∈ �,
namely

ν ≡ ν(ω) := (ωkdv)−1(−ω) . (4.3)

To keep the notation simpler, we often will not record the dependence of the Hamil-
tonian Hε on ν = (ωkdv)−1(−ω). Consider the set of diophantine frequencies in
�,

DC(γ, τ ) :=
{
ω ∈ � : |ω · 
| � γ

〈
〉τ , ∀
 ∈ Z
S+ \ {0}

}
. (4.4)

For any torus embedding TS+ → V(δ)∩ Es , ϕ �→ (θ(ϕ), y(ϕ),w(ϕ)), close to the
identity, consider its lift

ῐ : RS+ → R
S+ × R

S+ × Hs⊥(T1), ῐ(ϕ) = (ϕ, 0, 0)+ ι(ϕ), (4.5)

where ι(ϕ) = (�(ϕ), y(ϕ),w(ϕ)) and where �(ϕ) := θ(ϕ)− ϕ is (2πZ)S+ peri-
odic. Often we will refer to the torus embedding ῐ simply as torus. We look for a
torus embedding ῐ such that Fω(ι, ζ ) = 0 where

Fω(ι, ζ ) :=
⎛
⎜⎝
ω · ∂ϕθ(ϕ)+ (∇yHε)(ῐ(ϕ))

ω · ∂ϕ y(ϕ)− (∇θHε)(ῐ(ϕ))− ζ

ω · ∂ϕw(ϕ)− ∂x (∇wHε)(ῐ(ϕ))

⎞
⎟⎠ . (4.6)

The additional variable ζ ∈ R
S+ is introduced in order to control the average of the

y-component of the linearized Hamiltonian equations – see Section 5, in particular
(5.35). Actually any invariant torus for XHε,ζ

= XHε
+ (0, ζ, 0) with modified

Hamiltonian

Hε,ζ (θ, y, w) :=Hε(θ, y, w)+ ζ · θ, ζ ∈ R
S+ , (4.7)

is invariant for XHε
due to (5.5). Note that Hε,ζ is not periodic in θ , but that

its Hamiltonian vector field is. The Lipschitz Sobolev norm of the periodic part
ι(ϕ) = (�(ϕ), y(ϕ),w(ϕ)) of the embedded torus (4.5) is defined by

‖ι‖Lip(γ )s := ‖�‖Lip(γ )s + ‖y‖Lip(γ )s + ‖w‖Lip(γ )s (4.8)

where ‖w‖Lip(γ )s is the Lipschitz Sobolev norm introduced in (2.1) and

‖�‖Lip(γ )s ≡ ‖�‖Lip(γ )Hs
ϕ

:= ‖�‖Lip(γ )
Hs (TS+ ,RS+ ), ‖y‖Lip(γ )s ≡ ‖y‖Lip(γ )Hs

ϕ
:= ‖y‖Lip(γ )

Hs (TS+ ,RS+ ).

(4.9)
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Theorem 4.1. There exist s̄ > (|S+|+1)/2 and ε0 > 0 so that for any 0 < ε � ε0,
there is a measurable subset �ε ⊆ � satisfying

lim
ε→0

meas(�ε)

meas(�)
= 1 (4.10)

and for any ω ∈ �ε, there exists a torus embedding with lift ῐω : RS+ → R
S+ ×

R
S+ × Hs̄⊥(T1) (cf. (4.5)) which satisfies the estimate

‖ῐω − (ϕ, 0, 0)‖Lip(γ )s̄ = O(εγ−2), γ = εa, 0 < a" 1, (4.11)

and solves

ω · ∂ϕῐω(ϕ)− XHε(·;ν)(ῐω(ϕ)) = 0, ν = (ωkdv)−1(−ω). (4.12)

As a consequence, the embedded torus ῐω(TS+) is invariant under the flow of the
Hamiltonian vector field XHε(·;ν) and is filled by quasi-periodic solutions of (4.1)
with frequency vector ω ∈ �ε. Furthermore, the quasi-periodic solution ῐω(ωt) =
(ωt, 0, 0)+ ιω(ωt) is linearly stable.

Remark 4.2. Up to the end of Section 7, γ ∈ (0, 1) is assumed to be a constant
independent of ε with εγ−3 " 1. Only in Section 8, γ and ε are required to be
related by γ = εa for some 0 < a" 1.

Theorem 4.1 is proved in Section 8 and is applied to deduce Theorem 1.1 (cf.
Section 8.3 for details). At the core of the proof of Theorem 4.1 is the construc-
tion of an approximate right inverse of the linearized operator dι,ζFω(ι, ζ ) at an
approximate solution. This construction is carried out in Sections 5–7.

Along the proof we shall use the following tame estimates of the Hamiltonian
vector field XHε

with respect to the norm ‖ · ‖Lip(γ )s in (4.8). Using the expansion
(3.12) provided in Theorem 3.2, and the definition of P in (3.35), we decompose
the Hamiltonian Hε, defined in (4.2), as

Hε = N + Pε where

N (y, w; ν) := ωkdv(ν) · y + 1

2
�kdv

S+ (ν)[y] · y + 1

2

(
�kdv(D; ν)w, w)L2

x
,

Pε := Rkdv + εP. (4.13)

The Hamiltonian vector field of Pε and Hε satisfy the following tame estimates:

Lemma 4.3. There exists σ1 = σ1(S+) > 0 so that for any s ≥ 0, any torus
embedding ῐ of the form (4.5)with‖ι‖Lip(γ )s0+σ1 � δ, and anymaps ι̂, ι̂1, ι̂2 : TS+ → Es,
the following tame estimates hold:

‖XPε
(ῐ)‖Lip(γ )s �s ε(1+ ‖ι‖Lip(γ )s+σ1 )+ ‖ι‖Lip(γ )s0+σ1 ‖ι‖Lip(γ )s+σ1 ,

‖dXPε
(ῐ)[̂ι]‖Lip(γ )s �s (ε + ‖ι‖Lip(γ )s0+σ1 )‖̂ι‖Lip(γ )s+σ1 + ‖ι‖Lip(γ )s+σ1 ‖̂ι‖Lip(γ )s0+σ1 ,

‖d2XHε
(ῐ)[̂ι1, ι̂2]‖Lip(γ )s �s ‖̂ι1‖Lip(γ )s+σ1 ‖̂ι2‖Lip(γ )s0+σ1 + ‖̂ι1‖Lip(γ )s0+σ1 ‖̂ι2‖Lip(γ )s+σ1

+ ‖ι‖Lip(γ )s+σ1 (‖̂ι1‖Lip(γ )s0+σ1 ‖̂ι2‖Lip(γ )s0+σ1 .
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Proof. By (4.13), one has XPε
= εXP + XRkdv and d2XHε

= d2XN +
d2XPε

. The claimed estimate for dXPε
(ῐ)[̂ι] follows noting that, by Lem-

mata 3.5, 2.25, 2.26, ‖dXP (ῐ)[̂ι]‖Lip(γ )s �s ‖̂ι‖Lip(γ )s+σ1 + ‖ι‖Lip(γ )s+σ1 ‖̂ι‖Lip(γ )s0+σ1 and, by
Lemmata 3.7, 2.25, 2.26,

‖dXRkdv (ῐ)[̂ι]‖Lip(γ )s �s ‖ι‖Lip(γ )s0+σ1 ‖̂ι‖Lip(γ )s+σ1 + ‖ι‖Lip(γ )s+σ1 ‖̂ι‖Lip(γ )s0+σ1 .

The one for ‖XPε
(ῐ)‖Lip(γ )s is obtained by the mean value theorem. Indeed,

one has ‖XP (ῐ)‖Lip(γ )s �s 1 + (‖ι‖Lip(γ )s+σ1 + ‖ι‖Lip(γ )s0+σ1 ‖ι‖Lip(γ )s+σ1 ), and taking into

account (3.15), ‖XRkdv (ῐ)‖Lip(γ )s �s ‖ι‖Lip(γ )s0+σ1 ‖ι‖Lip(γ )s+σ1 . Finally, the estimate for
d2XHε

(ῐ)[̂ι1, ι̂2] is verified using again Lemmata 3.5, 3.7, 2.25, 2.26. ��

5. Approximate Inverse

In order to prove Theorem 4.1 we implement a Nash–Moser iteration scheme
that leads to a solution of Fω(ι, ζ ) = 0 (cf. (4.6)). For this purpose we construct
an almost-approximate right inverse of the linearized operator

dι,ζFω(ι, ζ )[̂ι, ζ̂ ] = ω · ∂ϕ̂ι− dιXHε
(ῐ)[̂ι] − (0, ζ̂ , 0), (5.1)

where Hε = N + Pε is the Hamiltonian in (4.13). Note that the perturbation Pε

and the differential dι,ζFω(ι, ζ ) are independent of ζ . Thus, in the sequel, we often
write dι,ζFω(ι) instead of dι,ζFω(ι, ζ ). The construction of an almost-approximate
right inverse of dι,ζFω(ι) is the main result of this section, stated in Theorem 5.7.
It is proved under the assumption A-I, introduced below (cf. (5.29)–(5.32)). In
Theorem 7.11, these assumptions are stated as a theorem, and its proof is given in
Section 7.2.

Throughout this section we assume that the following ansatz holds:

• Ansatz. The maps ω �→ ι(ω) := ῐ(ϕ;ω) − (ϕ, 0, 0), and ω �→ ζ(ω) are Lips-
chitz continuous with respect to ω ∈ �, and for 0 < γ < 1

‖ι‖Lip(γ )μ0 � εγ−2, ‖Z‖Lip(γ )s0 � ε, (5.2)

where Z , referred to as error function, is defined by

Z(ϕ) :=Fω(ι, ζ )(ϕ) = ω · ∂ϕῐ(ϕ)− XHε
(ῐ(ϕ))− (0, ζ, 0). (5.3)

We already mention that at each step of the Nash–Moser scheme of Theorem 8.1,
the above ’Ansatz’ is shown to hold, with the constantμ0 specified in Theorem 5.7,
depending on |S+| and τ (given in Section 8).

Let us first give an outline of the proof of Theorem 5.7. Since the θ -, y-, and
w-components of the linear operator dιXHε

(ῐ) form a coupled system, it turns out
to be difficult to invert the operator dι,ζFω(ι) in (5.1). To overcome this difficulty,
we use the approach developed in [3,8–10], consisting in transforming dι,ζFω(ι)

into approximately triangular form, see (5.33). Let us describe in broad terms how
to achieve this: If the error function Z , defined in (5.3), vanishes, then the torus ῐ is
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invariant for the Hamiltonian Hε,ζ defined in (4.7). Furthermore, by (5.5) below,
also ζ vanishes in this case, implying that ῐ is invariant for the Hamiltonian Hε.
Hence the invariant torus ῐ is isotropic (cf. [8]) (where ῐ being isotropic means
that the pullback of the symplectic form by ῐ vanishes) and there exist symplectic
coordinates in a neighborhood of this torus (cf. (5.16)) so that when expressed in
these coordinates, the linearized equations form a triangular system as described in
(5.33). In general, the torus ῐ is only “approximately” invariant up to order O(Z)
and the linearized equations can only be approximately conjugated to a triangular
system as in (5.33). Taking all this into account, we proceed as follows: given
an approximately invariant torus ῐ(ϕ) = (θ(ϕ), y(ϕ),w(ϕ)) satisfying (5.2), we
first construct an isotropic torus ῐδ(ϕ) = (θ(ϕ), yδ(ϕ),w(ϕ)) which is close to ῐ
(cf. Lemma 5.4). Note that by (5.13), F(ῐδ, ζ ) is also of the order O(Z). Since
ῐδ is isotropic, the diffeomorphism (φ, η, v) �→ (θ, y, w) = Gδ(φ, η, v) defined
in (5.16) is symplectic. In these coordinates, the torus ῐδ reads ϕ �→ (φ, η, v) =
(ϕ, 0, 0), and the transformed Hamiltonian K :=Hε,ζ ◦ Gδ takes the form (5.18),
where the terms ∂φK00, K10 + ω, and K01 are of the order O(Z) (cf. Lemma 5.5).
Neglecting terms of the order O(Z), the problem of finding an approximate right
inverse of the operator dι,ζFω(ι) is reduced to the task of inverting the operator D
in (5.33). The system (5.34) is solved in a triangular fashion as follows. First we
solve the second equation in the system (5.34), cf. (5.35)–(5.36). Then we solve the
third equation in (5.34) using the assumption A-I, cf. (5.37). Finally, to determine
φ̂, we solve the equation (5.38), cf. (5.41)–(5.42). In conclusion, we prove that the
operator (5.44) is an almost-approximate right inverse of the operator dι,ζFω(ι)

which satisfies tame estimates – see Theorem 5.7 for details.
We start our construction by noting that the 2-formW given by (3.6) is exact:

W =
(∑

j∈S+dy j ∧ dθ j
)
⊕W⊥ = d!,

where ! is the Liouville 1-form

!(θ,y,w)[θ̂ , ŷ, ŵ] :=
∑

j∈S+ y j θ̂ j +
1

2

(
∂−1x w, ŵ

)
L2
x
. (5.4)

The pullbacks ῐ∗! and ῐ∗W of ! and respectively W by a torus embedding ῐ are
related by ῐ∗W = d ῐ∗!. Recall that the embedding ῐ is said to be isotropic if
ῐ∗W = 0.

First, we provide an estimate of ζ in terms of the error function Z(ϕ) defined in
(5.3). We recall that by the ansatz (5.2), Z(ϕ) and ζ are Lipschitz continuous with
respect to the parameter ω ∈ �.

Lemma 5.1. One has

|ζ |Lip(γ ) � ‖Z‖Lip(γ )s0 . (5.5)

Proof. We follow the arguments in [8, Lemma 3] and [3, Lemma 6.1]. Since the
Hamiltonian Hε is autonomous, the “restricted” action functional

G : TS+ → R, ψ �→ G(ψ) :=
∫
T
S+

(
−!ῐ(ψ)(ω · ∂ϕῐ(ψ)(ϕ))−Hε(ῐ

(ψ)(ϕ))
)
dϕ
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is constant, where ῐ(ψ)(ϕ) := ῐ(ψ + ϕ) and !ῐ(ψ+ϕ) is the canonical one form !

defined in (5.4), evaluated at ῐ(ψ+ϕ). Using that ∂ψG(0) = 0, a direct calculation
shows that ζ can be expressed in terms of Z(ϕ) = (Zθ (ϕ), Zy(ϕ), Zw(ϕ)) as

ζ = 1

(2π)|S+|
∫
T
S+

(
[∂ϕ y(ϕ)]�Zθ (ϕ)− [∂ϕθ(ϕ)]�Zy(ϕ)− [∂ϕw(ϕ)]�∂−1x Zw(ϕ)

)
dϕ.

The latter formula together with the tame estimates (2.5) and the ansatz (5.2) imply
(5.5). ��

For an approximately invariant torus embedding ῐ = (θ(ϕ), y(ϕ),w(ϕ)), the
1-form

ῐ∗! =
∑

k∈S+ak(ϕ)dϕk , ak(ϕ) := [∂ϕθ(ϕ)]�y(ϕ) · ek +
1

2
(∂−1x w(ϕ), ∂ϕkw(ϕ))L2

x
,

(5.6)

is only “approximately closed”, in the sense that

ῐ∗W = d ῐ∗! =
∑

k, j∈S+
k< j

Ak j (ϕ)dϕk ∧ dϕ j , Akj (ϕ) := ∂ϕk a j (ϕ)− ∂ϕ j ak(ϕ),

(5.7)

is of the order O(Z). Here ek , k ∈ S+, denotes the standard basis of RS+ . More
precisely, the following lemma holds:

Lemma 5.2. Let ω ∈ DC(γ, τ ) (cf. (4.4)). Then for any k, j ∈ S+, the coefficient
Ak j in (5.7) satisfies, for some σ = σ(τ,S+) > 0, ∀ s ≥ s0,

‖Akj‖Lip(γ )s �s γ
−1(‖Z‖Lip(γ )s+σ + ‖Z‖Lip(γ )s0+σ ‖ι‖Lip(γ )s+σ

)
. (5.8)

Remark 5.3. In the sequel the constant σ = σ(τ,S+), referred to as loss of deriva-
tives, will be tacitly increased in the course of our arguments if needed.

Proof. For any j, k ∈ S+, the coefficient Akj satisfies the identity ω · ∂ϕ Akj =
W
(
∂ϕZ(ϕ)ek, ∂ϕ ῐ(ϕ)e j

)+W
(
∂ϕῐ(ϕ)ek, ∂ϕZ(ϕ)e j

)
(cf. [8, Lemma 5]). The esti-

mate (5.8) then follows by (5.2) and (2.10). ��
As in [3,8] we first modify the approximate torus ῐ to obtain an isotropic torus

ῐδ which is still approximately invariant. Let �ϕ := ∑k∈S+ ∂
2
ϕk
.

Lemma 5.4. (Isotropic torus) Let ω ∈ DC(γ, τ ). The torus ῐδ(ϕ) :=
(θ(ϕ), yδ(ϕ),w(ϕ)) defined by

yδ(ϕ) := y(ϕ)− [∂ϕθ(ϕ)]−�ρ(ϕ), ρ(ϕ) = (ρ j (ϕ)) j∈S+ , ρ j (ϕ) :=�−1ϕ
∑

k∈S+∂ϕk Ak j (ϕ),

(5.9)

is isotropic and there exists σ = σ(τ,S+) > 0 so that for any s � s0,

‖yδ − y‖Lip(γ )s �s ‖ι‖Lip(γ )s+σ , (5.10)

‖yδ − y‖Lip(γ )s �s γ
−1(‖Z‖Lip(γ )s+σ + ‖ι‖Lip(γ )s+σ ‖Z‖Lip(γ )s0+σ

)
, (5.11)

‖dιιδ [̂ι]‖Lip(γ )s �s ‖̂ι‖Lip(γ )s+σ + ‖ι‖Lip(γ )s+σ ‖̂ι‖Lip(γ )s0 , (5.12)

‖Fω(ιδ, ζ )‖Lip(γ )s �s γ
−1(‖Z‖Lip(γ )s+σ + ‖ι‖Lip(γ )s+σ ‖Z‖Lip(γ )s0+σ

)
. (5.13)
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Proof. The isotropy of the modified torus ῐδ is proved in [8]. By a standard Neu-
mann series argument and using the ansatz (5.2), it follows that for any s � s0,
there is a constant C(s) > 0 so that

‖[∂ϕθ ]−� − Id‖Lip(γ )s � C(s)‖ι‖Lip(γ )s+1 , ‖[∂ϕθ]−�‖Lip(γ )s � 1+ C(s)‖ι‖Lip(γ )s+1 .

(5.14)

Furthermore, by the estimate (5.8) for the coefficients Akj and the definition (5.9)
of ρ, one gets

‖ρ‖Lip(γ )s �s γ
−1(‖Z‖Lip(γ )s+σ + ‖Z‖Lip(γ )s0+σ ‖ι‖Lip(γ )s+σ

)
. (5.15)

The estimates (5.10), (5.11) then follow by using (5.14), (5.15), the interpolation
estimate (2.5), the ansatz (5.2), εγ−2 " 1, and the definition of ak , k ∈ S+, in
(5.6). The estimate (5.12) follows by similar arguments. To prove (5.13), it suffices
to estimate Fω(ιδ, ζ )− Fω(ι, ζ ). One computes

Fω(ιδ, ζ )− Fω(ι, ζ ) =
⎛
⎝�S+(ν)[yδ − y]
ω · ∂ϕ(yδ − y0)

0

⎞
⎠ + XPε

(ιδ)− XPε
(ι).

The estimate (5.13) then follows by using the mean value theorem to bound
XPε

(ιδ) − XPε
(ι), together with Lemma 4.3 and by applying the estimate (5.11)

on yδ − y (using also the ansatz (5.2)). ��
In order to find an approximate inverse of the linearized operator dι,ζFω(ιδ),

we introduce the symplectic diffeomorphism Gδ : (φ, η, v) �→ (θ, y, w) of the
phase space TS+ × R

S+ × L2⊥(T1), defined by

⎛
⎝θy
w

⎞
⎠ :=Gδ

⎛
⎝φη
v

⎞
⎠ :=

θ(φ)

yδ(φ)+ [∂φθ(φ)]−�η −
[
(∂θ w̃)(θ(φ))

]�
(∂−1x v)

w(φ)+ v

(5.16)

where w̃ :=w ◦ θ−1. Since ῐδ is an isotropic torus embedding (cf. Lemma 5.4), Gδ

is symplectic by [8, Lemma 2]. In the new coordinates, ῐδ is the trivial embedded
torus ϕ �→ (φ, η, v) = (ϕ, 0, 0) and the Hamiltonian vector field XHε,ζ

(withHε,ζ

defined in (4.7)) is given by

XK = (dGδ)
−1XHε,ζ

◦ Gδ, K ≡ Kε,ζ :=Hε,ζ ◦ Gδ. (5.17)

The Taylor expansion of K in η, v at the trivial torus ϕ �→ (φ, η, v) = (ϕ, 0, 0) is
of the form

K(φ, η, v, ζ ) = θ(φ) · ζ +K00(φ)+K10(φ) · η + (K01(φ), v)L2
x
+ 1

2
K20(φ)η · η

+ (K11(φ)η, v
)
L2
x
+ 1

2

(K02(φ)v, v
)
L2
x
+K�3(φ, η, v) (5.18)

where K�3 comprises all the terms which are at least cubic in the variables (η, v),

and whereK00(φ) ∈ R,K10(φ) ∈ R
S+ ,K01(φ) ∈ L2⊥(T1),K20(φ) is a |S+|×|S+|
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real matrix, K02(φ) : L2⊥(T1) → L2⊥(T1) is a linear self-adjoint operator, and
K11(φ) : RS+ → L2⊥(T1) is a linear operator of finite rank. At an exact solution of
Fω(ι, ζ ) = 0 one has Z = 0 and K00 = const, K10 = −ω, K01 = 0.

Denote by Id⊥ the identity operator on L2⊥(T1). The linear transformation
dGδ|(ϕ,0,0) ≡ dGδ(ϕ, 0, 0) then reads

dGδ|(ϕ,0,0)
⎛
⎝φ̂η̂
v̂

⎞
⎠ :=

⎛
⎝ ∂φθ(ϕ) 0 0
∂φ yδ(ϕ) [∂φθ(ϕ)]−� −[(∂θ w̃)(θ(ϕ))]�∂−1x
∂φw(ϕ) 0 Id⊥

⎞
⎠
⎛
⎝φ̂η̂
v̂

⎞
⎠ .

(5.19)

It approximately transforms the linearized operator dι,ζFω(ιδ) (see the proof of
Theorem 5.7) into the one obtainedwhen theHamiltonian systemwithHamiltonian
Kε,ζ (cf. (5.17)) is linearized at (φ, η, v) = (ϕ, 0, 0), differentiated alsowith respect
to ζ , and ∂t is replaced by ω · ∂ϕ ,
⎛
⎜⎜⎜⎜⎝

φ̂

η̂

v̂

ζ̂

⎞
⎟⎟⎟⎟⎠ �→

⎛
⎜⎜⎝

ω · ∂ϕ φ̂ + ∂φK10(ϕ)[φ̂ ] +K20(ϕ)̂η +K�11(ϕ)̂v
ω · ∂ϕ η̂ −

(
∂φθ(ϕ)

)�[̂ζ ] − ∂φ
(
∂φθ(ϕ)

�[ζ ])[φ̂] − ∂φφK00(ϕ)[φ̂] − [∂φK10(ϕ)]�η̂ − [∂φK01(ϕ)]�v̂
ω · ∂ϕ v̂ − ∂x {∂φK01(ϕ)[φ̂] +K11(ϕ)̂η +K02(ϕ)̂v}

⎞
⎟⎟⎠ .

(5.20)

Using (5.2) and (5.10), one shows as in [3] that the operator ι̂ = (φ̂, η̂, v̂) �→ dGδ [̂ι]
satisfies for any s ≥ s0

‖dGδ(ϕ, 0, 0)[̂ι]‖Lip(γ )s , ‖dGδ(ϕ, 0, 0)
−1 [̂ι]‖Lip(γ )s

�s ‖̂ι‖Lip(γ )s + ‖ι‖Lip(γ )s+σ ‖̂ι‖Lip(γ )s0 , (5.21)

‖d2Gδ(ϕ, 0, 0)[̂ι1, ι̂2]‖Lip(γ )s (5.22)
�s ‖̂ι1‖Lip(γ )s ‖̂ι2‖Lip(γ )s0 + ‖̂ι1‖Lip(γ )s0 ‖̂ι2‖Lip(γ )s + ‖ι‖Lip(γ )s+σ ‖̂ι1‖Lip(γ )s0 ‖̂ι2‖Lip(γ )s0 .

The next lemma provides estimates for the coefficients of the Taylor expansion
(5.18) of the Hamiltonian K.

Lemma 5.5. There exists σ := σ(τ,S+) > 0 so that for any s ≥ s0

‖∂φK00‖Lip(γ )s + ‖K10 + ω‖Lip(γ )s + ‖K01‖Lip(γ )s �s γ
−1(‖Z‖Lip(γ )s+σ + ‖ι‖Lip(γ )s+σ ‖Z‖Lip(γ )s0+σ

)
.

‖K20 −�kdv
S+ (ν)‖Lip(γ )s �s ε + ‖ι‖Lip(γ )s+σ ,

‖K11η‖Lip(γ )s �s εγ
−2‖η‖Lip(γ )s+σ + ‖ι‖Lip(γ )s+σ ‖η‖Lip(γ )s0+σ ,

‖K�11v‖Lip(γ )s �s εγ
−2‖v‖Lip(γ )s+σ + ‖ι‖Lip(γ )s+σ ‖v‖Lip(γ )s0+σ .

(5.23)

Proof. First we prove the claimed estimates for K00,K10,K01 and then the ones
for K20,K11,K�11.
Estimates ofK00,K10,K01: TheHamiltonian vector field associated to theHamil-
tonian K in (5.17) is given by XK := (−∇ηK, ∇φK + (∂φθ)

�ζ, ∂x∇vK). Fur-
thermore, since ῐδ(ϕ) = Gδ(ϕ, 0, 0), the directional derivative ω · ∂ϕῐδ(ϕ) equals
dGδ(ϕ, 0, 0)[(ω, 0, 0)]. Using the transformation law of vector fields we get that

Fω(ιδ, ζ )(ϕ) = ω · ∂ϕ ῐδ(ϕ)− XHε,ζ (ῐδ(ϕ))

= dGδ(ϕ, 0, 0)[(ω, 0, 0)] − dGδ(ϕ, 0, 0)XK(ϕ, 0, 0),
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or

XK(ϕ, 0, 0) = (ω, 0, 0)− (dGδ(ϕ, 0, 0))
−1Fω(ιδ, ζ ). (5.24)

Furthermore, by (5.18), one computes

XK(ϕ, 0, 0) =
(−K10(ϕ), ∂ϕθ(ϕ)[ζ ] + ∇ϕK00(ϕ), ∂xK01(ϕ)

)
. (5.25)

By comparing the two expressions (5.24) and (5.25), and by using the estimate
(5.5) of ζ , the estimate (5.13) of Fω(ιδ, ζ ), the estimate (5.21) of dGδ , the ansatz
(5.2) and that ‖[∂ϕθ ]�‖Lip(γ )s � 1 + C(s)‖ι‖Lip(γ )s , one gets the first estimate in
(5.23).
Estimates of K20,K11,K�11: We prove the claimed bound for K20 and K11. The
estimate for K�11 can be proved arguing similarly. By (5.18), one has K20(ϕ) =
∂η∇ηK(ϕ, 0, 0) and K11(ϕ) = ∂η∇vK(ϕ, 0, 0). Furthermore, taking into account
the formulae (4.7), (5.16), (5.17), one then infers that

K20(ϕ) = [∂ϕθ(ϕ)]−1∂y∇yHε(ῐ(ϕ))[∂ϕθ(ϕ)]−�
(4.13)= [∂ϕθ(ϕ)]−1�kdv

S+ (ν)[∂ϕθ(ϕ)]−� + [∂ϕθ(ϕ)]−1∂y∇yPε(ῐ(ϕ))[∂ϕθ(ϕ)]−�,
K11(ϕ) = −[(∂θ w̃)(θ(ϕ))]∂y∇yHε(ῐδ(ϕ))[∂ϕθ(ϕ)]−� + ∂y∇wHε(ῐδ(ϕ))[∂ϕθ(ϕ)]−�

(4.13)= −[(∂θ w̃)(θ(ϕ))]�kdv
S+ (ν)[∂ϕθ(ϕ)]−� − [(∂θ w̃)(θ(ϕ))]∂y∇yPε(ῐδ(ϕ))[∂ϕθ(ϕ)]−�

+ ∂y∇wPε(ῐδ(ϕ))[∂ϕθ(ϕ)]−�.

By ‖[∂ϕθ(ϕ)]−1 − Id‖Lip(γ )s + ‖[∂ϕθ(ϕ)]−� − Id‖Lip(γ )s �s ‖ι‖Lip(γ )s+1 (cf. (5.14)),
the estimates for ∂y∇yPε(ῐδ), ∂y∇wPε(ῐδ) of Lemma 4.3, the interpolation estimate
(2.5), and (5.2), one obtains the claimed bounds. ��

In order to construct an almost-approximate right inverse of (5.20), we need
that

Lω :=�⊥
(
ω · ∂ϕ − ∂xK02(ϕ)

)
|L2⊥

(5.26)

is “almost-invertible”, that is invertible up to a remainder of order O(N−an−1), where

Nn := K p
n , ∀n � 0, (5.27)

and

Kn := K χn

0 , χ := 3/2, (5.28)

are the scales used in the nonlinear Nash–Moser iteration in Section 8.1. The con-
stants a, K0 are given in the almost-invertibility assumption A-I below.

Based on results obtained in Sections 6–7, the almost invertibility of Lω is
proved in Theorem 7.11, but here it is stated as an assumption to avoid the involved
definition of the subset �o of the set � of frequency vectors ω, for which Lω can
be shown to admit an almost-approximate right inverse. Recall that DC(γ, τ ) is the
set of diophantine frequencies in �, defined in (4.4).
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A-I Almost-invertibility of Lω. There exists a subset �o ⊂ DC(γ, τ ) such
that, for all ω ∈ �o, the operator Lω in (5.26) admits a decomposition

Lω = L<
ω +Rω +R⊥ω (5.29)

with the following properties: there exist constants K0, N0, σ , τ1, μ(b), a, p,
sM > 0, so that for any S > sM , sM � s � S and ω ∈ �o the following holds:
(i) The operators Rω,R⊥ω satisfy the estimates

‖Rωh‖Lip(γ )s �S εγ
−2N−an−1

(‖h‖Lip(γ )s+σ + N τ1
0 γ−1‖ι‖Lip(γ )s+μ(b)+σ ‖h‖Lip(γ )sM+σ

)
, (5.30)

‖R⊥ω h‖Lip(γ )sM �S,b K−bn

(‖h‖Lip(γ )sM+b+σ + N τ1
0 γ−1‖ι‖Lip(γ )sM+μ(b)+σ+b‖h‖

Lip(γ )
sM+σ

)
, ∀b > 0.

(5.31)

(ii) The operator L<
ω admits a right inverse. More precisely, for any g ∈

Hs+σ
⊥ (TS+ × T1), there is a solution h ∈ Hs⊥(TS+ × T1) of the linear

equation L<
ω h = g, denoted by (L<

ω )
−1g, satisfying the tame estimates

‖(L<
ω )
−1g‖Lip(γ )s �S γ

−1(‖g‖Lip(γ )s+σ + N τ1
0 γ−1‖ι‖Lip(γ )s+μ(b)+σ ‖g‖Lip(γ )sM+σ

)
. (5.32)

In order to find an almost-approximate inverse of the linear operator (5.20) and
hence of dι,ζFω(ιδ), note that the remainder Lω − L<

ω = Rω +R⊥ω is small (cf.
(5.30)–(5.31) in A-I) and that by Lemma 5.5 and by the estimate (5.5) of ζ , the
terms ∂φK10, ∂φφK00, ∂φK01 and ∂φ

(
∂φθ(ϕ)

�[ζ ]) in (5.20) are of the order O(Z).
Therefore, it suffices to invert the operator

D[φ̂, η̂, v̂, ζ̂ ] :=
⎛
⎝ω · ∂ϕφ̂ +K20(ϕ)̂η +K11(ϕ)

�v̂
ω · ∂ϕη̂ − ∂φθ(ϕ)

�ζ̂
L<
ω v̂ − ∂xK11(ϕ)̂η

⎞
⎠ (5.33)

obtained by neglecting in (5.20) the terms ∂φK10, ∂φφK00, ∂φK01, ∂φ
(
∂φθ(ϕ)

�[ζ ])
and by replacing Lω by L<

ω (cf. (5.29)). We look for a right inverse of D by solving
the system

D[φ̂, η̂, v̂, ζ̂ ] =
⎛
⎝g1g2
g3

⎞
⎠ . (5.34)

We first consider the second equation in (5.34), ω · ∂ϕη̂ = g2 + ∂φθ(ϕ)
�ζ̂ . Since

∂ϕθ(ϕ) = Id + ∂ϕ�(ϕ), the average 〈∂ϕθ�〉ϕ = 1
(2π)|S+|

∫
T
S+ ∂ϕθ

�(ϕ)dϕ equals

the identity matrix Id of RS+ . We then define

ζ̂ := − 〈g2〉ϕ (5.35)

so that 〈g2 + ∂φθ(ϕ)
�ζ̂ 〉ϕ vanishes and define

η̂ := η̂0 + η̂1, η̂1 := (ω · ∂ϕ)−1
(
g2 + ∂φθ(ϕ)

�ζ̂
)
, (5.36)

where the constant vector η̂0 ∈ R
S+ will be determined in order to control the

average of the first equation in (5.34). Next we consider the third equation in (5.34),
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(L<
ω )̂v = g3+ ∂xK11(ϕ)̂η, which, by assumption (5.32) on the invertibility of L<

ω ,
has the solution

v̂ = (L<
ω )
−1(g3 + ∂xK11(ϕ)̂η1

)+ (L<
ω )
−1∂xK11(ϕ)̂η0. (5.37)

Finally, we solve the first equation in (5.34). After substituting the solutions ζ̂ , η̂
(cf. (5.35), (5.36)), and v̂ (cf. (5.37)), this equation becomes

ω · ∂ϕφ̂ = g1 + M1η̂0 + M2g2 + M3g3 − M4〈g2〉ϕ, (5.38)

where φ̂ and η̂0 are the unknowns and where Mj : ϕ �→ Mj (ϕ), 1 ≤ j ≤ 4, are
defined as

M1(ϕ) := −K20(ϕ)−K11(ϕ)
�(L<

ω )
−1∂xK11(ϕ), (5.39)

M2(ϕ) :=M1(ϕ)[ω · ∂ϕ]−1, M3(ϕ) := −K11(ϕ)
�(L<

ω )
−1, M4(ϕ) :=M2(ϕ)∂φθ(ϕ)

�.
(5.40)

In order to solve equation (5.38) we have to choose η̂0 so that the average of the right
hand side vanishes. By Lemma 5.5, by the ansatz (5.2) and by the tame estimates
(5.32), the ϕ-averaged matrix is 〈M1〉ϕ = −�kdv

S+ (ν)+ O(εγ−2). Since the matrix

�kdv
S+ (ν) = (∂Ikω

kdv
n (ν, 0))k,n∈S+ is invertible (cf. Lemma 3.9-(i), Remark 3.10),

〈M1〉ϕ is invertible for εγ−2 small enough and 〈M1〉−1ϕ = −�kdv
S+ (ν)−1+O(εγ−2).

We then define

η̂0 := − 〈M1〉−1ϕ
(
〈g1〉ϕ + 〈M2g2〉ϕ + 〈M3g3〉ϕ − 〈M4〉ϕ〈g2〉ϕ

)
. (5.41)

With this choice of η̂0, the equation (5.38) has the solution

φ̂ = (ω · ∂ϕ)−1
(
g1 + M1η̂0 + M2g2 + M3g3 − M4〈g2〉ϕ

)
. (5.42)

Altogether, we have obtained a solution (φ̂, η̂, v̂, ζ̂ ) of the linear system (5.34).

Proposition 5.6. Assume (5.2) (Ansatz) withμ0 = μ(b)+σ and that the estimates
(5.32) (item (ii) of A-I) hold. Then, for any ω ∈ �o and any g := (g1, g2, g3) with
g1, g2 ∈ Hs+σ (TS+ ,RS+), g3 ∈ Hs+σ

⊥ (TS+ × T1), and sM � s � S, the system
(5.34) has a solution (φ̂, η̂, v̂, ζ̂ ), where φ̂, η̂, v̂, ζ̂ are defined in (5.35)–(5.37),
(5.41)–(5.42). We denote (φ̂, η̂, v̂, ζ̂ ) by D−1g. It satisfies the tame estimates

‖D−1g‖Lip(γ )s �S γ
−2(‖g‖Lip(γ )s+σ + N τ1

0 γ−1‖ι‖Lip(γ )s+μ(b)+σ ‖g‖Lip(γ )sM+σ
)
. (5.43)

Proof. The proposition follows by the definitions of ζ̂ (cf. (5.35)), η̂1 (cf. (5.36)),
v̂ (cf. (5.37)), η̂0 (cf. (5.41)), φ̂ (cf. (5.42)), the definitions of Mj , 1 ≤ j ≤ 4, in
(5.39)–(5.40), by the estimates of Lemma 5.5, and the ansatz (5.2) as well as the
estimates (5.32) for (L<

ω )
−1 (item (ii) in A-I). ��
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Let G̃δ : (φ, η, v, ζ ) �→ (
Gδ(φ, η, v), ζ

)
and note that its differential

dG̃δ(φ, η, v, ζ ) is independent of ζ . In the sequel, we denote it by dG̃δ(φ, η, v) or
dG̃δ|(φ,η,v). Finally we prove that the operator

T0 = T0(ι) := dG̃δ|(ϕ,0,0) ◦ D−1 ◦
(
dGδ|(ϕ,0,0)

)−1 (5.44)

is an almost-approximate right inverse for dι,ζFω(ι) meaning that dι,ζFω(ι) ◦
T0(ι) − Id can be estimated in terms of the error function Z = Fω(ι) (’approx-
imate’, cf. (5.47)) and of terms which are small (’almost’, cf. (5.48), (5.49)). Let
‖(φ, η, v, ζ )‖Lip(γ )s := max{‖(φ, η, v)‖Lip(γ )s , |ζ |Lip(γ )}.
Theorem 5.7. (Almost-approximate inverse) Assume the almost-invertibility
assumption A-I of Lω. Then there exists σ2 = σ2(τ,S+) > 0 so that, if (5.2)
(Ansatz) holds with μ0 � sM + μ(b) + σ2, then for any ω ∈ �o and any
g = (g1, g2, g3) with g1, g2 ∈ Hs+σ (TS+ ,RS+), g3 ∈ Hs+σ

⊥ (TS+ × T1), and
sM � s � S, T0(ι)g, defined by (5.44), satisfies

‖T0(ι)g‖Lip(γ )s �S γ
−2(‖g‖Lip(γ )s+σ2 + N τ1

0 γ−1‖ι‖Lip(γ )s+μ(b)+σ2‖g‖
Lip(γ )
sM+σ2

)
. (5.45)

Moreover T0(ι) is an almost-approximate right inverse of dι,ζFω(ι). More pre-
cisely,

dι,ζFω(ι) ◦ T0(ι)− Id = P + Pω + P⊥ω , (5.46)

where the operators P , Pω, P⊥ω are defined in the course of the proof and satisfy
the following estimates:

‖Pg‖Lip(γ )sM �S γ
−3‖Fω(ι, ζ )‖Lip(γ )sM+σ2

(
1+ N τ1

0 γ−1‖ι‖Lip(γ )sM+μ(b)+σ2
)
‖g‖Lip(γ )sM+σ2 , (5.47)

‖Pωg‖Lip(γ )sM �S εγ
−4N−an−1

(
1+ N τ1

0 γ−1‖ι‖Lip(γ )sM+μ(b)+σ2
)‖g‖Lip(γ )sM+σ2 , (5.48)

‖P⊥ω g‖Lip(γ )sM �S,b γ
−2K−bn

(‖g‖Lip(γ )sM+σ2+b + N τ1
0 γ−1‖ι‖Lip(γ )sM+μ(b)+σ2+b

∥∥g‖Lip(γ )sM+σ2
)
, ∀b > 0.

(5.49)

Proof. The bound (5.45) follows from the definition of T0(ι) in (5.44), the esti-
mates (5.43) of ‖D−1g‖Lip(γ )s , and the ones of dGδ(ϕ, 0, 0) and of its inverse
in (5.21). It remains to estimate dι,ζFω(ι) ◦ T0(ι) − Id. The operators P , Pω,
P⊥ω in (5.46) are defined as follows: by the formula (5.1) for dι,ζFω(ι) and since
only the y−components of ῐδ and ῐ differ from each other (cf. (5.9)), one has
dι,ζFω(ι) = dι,ζFω(ιδ)+ E0 where, by the mean value theorem, E0 can be written
as

E0 [̂ι, ζ̂ ] =
∫ 1

0
∂y
(
dιXHε

(θ, yδ + s(y − yδ), w)[̂ι]
)
ds [y − yδ]. (5.50)

Denote by κ := (φ, η, v) the symplectic coordinates defined byGδ . Let also κ̆(ϕ) =
(ϕ, 0, 0)+ κ(ϕ) the torus embedding defined by ῐ(ϕ) = Gδ(κ̆(ϕ)) where Gδ is the
symplectic transformation given by (5.16). The nonlinear operator Fω (cf. (4.6)) is
transformed under Gδ into

Fω(ι, ζ )(ϕ) = dGδ(κ̆(ϕ))[ω · ∂ϕκ̆(ϕ)− XK(κ̆(ϕ))] (5.51)
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whereK = Hε,ζ ◦Gδ (cf. (5.17)). Differentiating (5.51) at the trivial torus κ̆0(ϕ) =
G−1δ (ῐδ)(ϕ) = (ϕ, 0, 0), we get

dι,ζFω(ιδ) = dGδ(κ̆0)
(
ω · ∂ϕ − dκ,ζ XK(κ̆0)

)
dG̃δ(κ̆0)

−1 + E1, (5.52)

E1 := d2Gδ(κ̆0)
[
dGδ(κ̆0)

−1Fω(ιδ, ζ ), dGδ(κ̆0)
−1�[ · ] ], (5.53)

where � denotes the projection � : (̂ι, ζ̂ ) �→ ι̂. Let us consider the operator
ω ·∂ϕ−dκ,ζ XK(κ̆0) in more detail. By the definition (5.33) ofD and the discussion
following it, we decompose ω · ∂ϕ − dκ,ζ XK(κ̆0) as

ω · ∂ϕ − dκ,ζ XK(κ̆0) = D+ RZ + Rω + R
⊥
ω (5.54)

where in view of (5.20),

RZ [φ̂, η̂, v̂, ζ̂ ] :=
⎛
⎝ ∂φK10(ϕ)[φ̂]
−∂φφK00(ϕ)[φ̂] − ∂φ

(
∂φθ(ϕ)

�[ζ ])[φ̂] − [∂φK10(ϕ)]�η̂ − [∂φK01(ϕ)]�v̂
−∂x

(
∂φK01(ϕ)[φ̂]

)
⎞
⎠ ,

Rω[φ̂, ŷ, ŵ, ζ̂ ] :=
⎛
⎝ 0

0
Rω[ŵ]

⎞
⎠ , R

⊥
ω [φ̂, ŷ, ŵ, ζ̂ ] :=

⎛
⎝ 0

0
R⊥

ω [ŵ]

⎞
⎠

with Rω and R⊥ω given by (5.29). By (5.50) and (5.52)–(5.54) we get the decom-
position

dι,ζFω(ι) = dGδ(κ̆0) ◦ D ◦
(
dG̃δ(κ̆0)

)−1 + E + Eω + E⊥ω (5.55)

where

E := E0 + E1 + dGδ(κ̆0)RZ
(
dG̃δ(κ̆0)

)−1
, (5.56)

Eω := dGδ(κ̆0)Rω

(
dG̃δ(κ̆0)

)−1
, E⊥ω := dGδ(κ̆0)R

⊥
ω

(
dG̃δ(κ̆0)

)−1
. (5.57)

Letting the operator T0 = T0(ι) (cf. (5.44)) act from the right to both sides of the
identity (5.55) and taking into accout that κ̆0(ϕ) = (ϕ, 0, 0), one obtains

dι,ζFω(ι) ◦ T0 − Id = P + Pω + P⊥ω , P := E ◦ T0,

Pω := Eω ◦ T0, P⊥ω := E⊥ω ◦ T0 .

To obtain the claimed estimate forP we first need to estimate E . By (5.2) (Ansatz),
(5.5) (estimate for ζ ), Lemma 5.5 (estimates of the components of RZ ), (5.10)–
(5.13) (estimates related to ιδ), and (5.21)–(5.22) (estimates of dGδ(κ̆0) and its
inverse) one infers that

‖E[ ι̂, ζ̂ ]‖Lip(γ )s �s γ
−1(‖Z‖Lip(γ )s0+σ ‖̂ι‖Lip(γ )s+σ + ‖Z‖Lip(γ )s+σ ‖̂ι‖Lip(γ )s0+σ + ‖Z‖Lip(γ )s0+σ ‖ι‖Lip(γ )s+σ ‖̂ι‖Lip(γ )s0+σ

)
,

(5.58)

for some σ > 0, where Z is the error function, Z = Fω(ι, ζ ) (cf. (5.3)). The
claimed estimate (5.47) for P then follows from (5.58), the estimate (5.45) of T0,
and the ansatz (5.2). The claimed estimates (5.48), (5.49) for Pω and, respectively,
P⊥ω follow by the estimates (5.30)–(5.31) of Rω and R⊥ω (cf. A-I), the estimate
(5.45) of T0, the estimate (5.21) of dGδ(κ̆0) and its inverse, and the ansatz (5.2).
��
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The goal of Sections 6 and 7 below is to prove that theHamiltonian operatorLω,
defined in (5.26), satisfies the almost-invertibilityA-I, including the tame estimates
(5.30)–(5.32).

6. Reduction of Lω Up to Order Zero

The goal of this section is to reduce the Hamiltonian operator Lω, defined in
(5.26), to a differential operator of order three with constant coefficients, up to
an operator of order zero – see L(4)

ω defined in (6.69). It is the starting point for
the KAM reduction scheme, implemented in Section 7, which will reduce L(4)

ω to
a diagonal operator with constant coefficients. The main result of this section is
Proposition 6.7.

In the sequel, we consider torus embeddings ῐ(ϕ) = (ϕ, 0, 0) + ι(ϕ) with
ι(·) ≡ ι(· ;ω), ω ∈ DC(γ, τ ) (cf. (4.4)), satisfying

‖ι‖Lip(γ )μ0 � εγ−2, εγ−2 � δ(S), (6.1)

where μ0 :=μ0(τ,S+) > s0 and S > μ0 are sufficiently large, 0 < δ(S) < 1 is
sufficiently small, and 0 < γ < 1. The index S of the Sobolev space HS⊥ will be
fixed in (8.4), along theNashMoser iteration scheme of Section 8.1. In the course of
the Nash–Moser iteration we will verify that (6.1) is satisfied by each approximate
solution—see the bounds (8.8).
Notation. For a quantity g(ι) ≡ g(ῐ) such as an operator, amap, or a scalar function,
depending on ῐ(ϕ) = (ϕ, 0, 0)+ ι(ϕ), we denote for any two such tori embeddings
ῐ1, ῐ2 by �12g the difference

�12g := g(ι2)− g(ι1).

6.1. Expansion of Lω

As a first step, we derive an expansion of the operator Lω = �⊥
(
ω · ∂ϕ −

∂xK02(ϕ)
)
|L2⊥

, defined in (5.26).

Lemma 6.1. The Hamiltonian operator ∂xK02(ϕ) acting on L2⊥(T1) is of the form

∂xK02(ϕ) = �⊥∂x (d⊥∇wHε)(ῐδ(ϕ))+ R(ϕ) (6.2)

where Hε is the Hamiltonian defined in (4.2) and the remainder R(ϕ) is given by

R(ϕ)[h] =
∑

j∈S+
(
h, g j

)
L2
x
χ j , ∀h ∈ L2⊥(T1), (6.3)

with functions g j , χ j ∈ Hs⊥, j ∈ S+, satisfying, for some σ := σ(τ,S+) > 0 and
any s � s0

‖g j‖Lip(γ )s + ‖χ j‖Lip(γ )s �s ε + ‖ι‖Lip(γ )s+σ . (6.4)

Let s1 � s0 and let ῐ1, ῐ2 be torus embeddings satisfying (6.1) with μ0 � s1 + σ .
Then, for any j ∈ S+,

‖�12g j‖s1 + ‖�12χ j‖s1 �s1 ‖ι2 − ι1‖s1+σ . (6.5)
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Proof. The operator K02(ϕ) is defined by K02(ϕ) = d⊥∇vK(ϕ, 0, 0) =
d⊥∇v(Hε ◦ Gδ)(ϕ, 0, 0). Differentiating the Hamiltonian (Hε ◦ Gδ)(ϕ, η, v) =
Hε

(
θ(ϕ), yδ(ϕ) + L1(ϕ)η + L2(ϕ)w,w(ϕ) + v

)
with respect to v, we get

∇v(Hε ◦Gδ)(ϕ, η, v) = L2(ϕ)
�∂yHε(Gδ(ϕ, η, v))+∇wHε(Gδ(ϕ, η, v)), where

we used that by (5.16) L1(ϕ) := [∂φθ0(ϕ)]−� and L2(ϕ) := − [∂θ w̃(θ(ϕ))]�∂−1x .
Since Gδ(ϕ, 0, 0) = ῐδ(ϕ), it then follows that

∂xd⊥∇v(Hε ◦ Gδ)(ϕ, 0, 0) = ∂xd⊥∇wHε(ῐδ(ϕ))+ R(ϕ)

where R(ϕ) := R1(ϕ)+R2(ϕ)+R3(ϕ)with R1(ϕ) := ∂x L2(ϕ)
�∂yyHε(ῐδ(ϕ))L2(φ)

and

R2(ϕ) := ∂x L2(ϕ)
�d⊥∂yHε(ῐδ(ϕ)), R3(ϕ) := ∂x∂y∇wHε(ῐδ(ϕ))L2(ϕ).

Eachof the linear operators R1, R2, R3 is of the form (6.3) since it is the composition
of linear operators, at least one of which has finite rank. For example, expressing
the linear operator L2(φ) : L2⊥(T1) → R

S+ in terms of the canonical basis e j ,

j ∈ S+, L2(φ)[h] =∑ j∈S+
(
h, L2(φ)

�[e j ]
)
L2
x
e j , ∀ h ∈ L2⊥, one obtains

R1(ϕ)[h] =
∑

j∈S+
(
h, L2(ϕ)

�[e j ]
)
L2
x
A1(ϕ)[e j ], A1(ϕ) := ∂x L2(ϕ)

�∂yyHε(ῐδ(ϕ)),

showing that it has the form (6.3). By similar arguments one concludes the same
for R2 and R3. Let us prove that R1 satisfies the estimates (6.4). By the explicit
form of L2(ϕ), Lemma 2.1-(ii) and (5.2), one gets

‖L2(ϕ)[e j ]‖Lip(γ )s , ‖L2(ϕ)
�[e j ]‖Lip(γ )s �s ‖ι‖Lip(γ )s+σ , for some σ > 0.

(6.6)

Furthermore, sinceHε = N+Pε withN andPε given by (4.13), one has ∂yyHε =
�kdv

S+ + ∂yyPε, ∂y∇wHε = ∂y∇wPε and d⊥∂yHε = d⊥∂yPε. Using the estimates

in Lemma 4.3 and (5.2), we then infer the bound ‖A1[e j ]‖Lip(γ )s �s ‖ι‖Lip(γ )s+σ for
some σ > 0, implying together with (6.6) the claimed estimate in (6.4). By similar
arguments, one obtains the ones for R2 and R3, as well as the estimate (6.5). ��

By Lemma 6.1 the linear Hamiltonian operator Lω has the form

Lω = L(0)
ω − R, L(0)

ω :=ω · ∂ϕ −�⊥∂x (d⊥∇wHε)(ῐδ(ϕ)), (6.7)

where here and in the sequel, we write ω · ∂ϕ instead of �⊥ ω · ∂ϕ |L2⊥
in order to

simplify notation. The operator Lω is defined for any ω ∈ �. In a next step we
prove in Lemmata 6.2 and 6.3 below that the Hamiltonian operator L(0)

ω , acting
on L2⊥(T1), is the sum of a pseudo-differential operator of order three, a Fourier
multiplier with ϕ−independent coefficients and a small smoothing remainder.

First note that, sinceHε = Hkdv+εP (cf. (4.2)) and ∂xd⊥∇wHkdv = ∂x�
kdv+

∂xd⊥∇wRkdv (cf. (3.12)), we have
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L(0)ω = ω · ∂ϕ + ∂3x −�⊥Qkdv−1 (D;ω)−�⊥∂xd⊥∇wRkdv(ῐδ)− ε�⊥∂xd⊥∇wP(ῐδ)
(6.8)

where we write ∂3x instead of ∂
3
x |L2⊥

and where Qkdv−1 (D;ω) is given by (cf. (3.62))

Qkdv−1 (D;ω) ≡ Qkdv−1 (D; ν(ω)) = ∂x�
kdv(D; ν(ω))+ ∂3x (6.9)

with ν(ω) defined in (4.3).

Lemma 6.2. (Asymptotic expansion of L(0)
ω ) For any M ∈ N, the Hamiltonian

operator L(0)
ω , ω ∈ �, acting on L2⊥(T1), defined in (6.7), admits an expansion of

the form

L(0)
ω :=ω · ∂ϕ −�⊥

(
a(0)3 ∂3x + 2(a(0)3 )x∂

2
x + a(0)1 ∂x + Op(r (0)0 )+ Qkdv−1 (D;ω)

)

+R(0)
M (ῐδ(ϕ);ω), (6.10)

where a(0)3 := a(0)3 (ϕ, x;ω), a(0)1 := a(0)1 (ϕ, x;ω) are real valued functions satisfy-
ing for any s ≥ s0

‖a(0)3 + 1‖Lip(γ )s �s,M ε(1+ ‖ι‖Lip(γ )s+σM ), ‖a(0)1 ‖Lip(γ )s �s,M ε + ‖ι‖Lip(γ )s+σM
(6.11)

for some σM > 0 and where the pseudo-differential symbol r (0)0 := r (0)0 (ϕ, x, ξ ;ω)
has an expansion in homogeneous components

r (0)0 (ϕ, x, ξ ;ω) =
M∑
k=0

a(0)−k (ϕ, x;ω)(i2πξ)−kχ0(ξ) (6.12)

(with χ0 defined in (2.18)) where the coefficients a(0)−k := a(0)−k (ϕ, x;ω) satisfy

sup
k=0,...,M

‖a(0)−k‖Lip(γ )s �s,M ε + ‖ι‖Lip(γ )s+σM , ∀s � s0. (6.13)

Furthermore, the remainder is defined by

R(0)
M (ῐδ(ϕ);ω) := −RM (ῐδ(ϕ); ν(ω); ∂xd⊥∇wRkdv)

−εRM (ῐδ(ϕ); ν(ω); ∂xd⊥∇wP) (6.14)

where the latter two remainders are given by (3.48) and (3.36) with ν(ω) =
(ωkdv)−1(−ω).

Finally, for any s1 � s0 and any torus embeddings ῐ1, ῐ2 satisfying (6.1) with
μ0 � s1 + σM it follows that for any 0 ≤ k ≤ M + 1,
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‖�12a
(0)
3 ‖s1 �s1,M ε‖ι1 − ι2‖s1+σM , ‖�12a

(0)
1−k‖s1 �s1,M ‖ι1 − ι2‖s1+σM .

(6.15)

Proof. By the definition (6.8) of L(0)
ω , the expansion (3.48) of ∂xd⊥∇wRkdv , the

expansion (3.36) of ∂xd⊥∇wP , and the formula for the coefficient of ∂2x , described
in Lemma 2.7, one obtains (6.10) with

a(0)3 (ϕ, x;ω) := − 1+ εa3(ῐδ(ϕ); ν(ω); ∂x d⊥∇wP),
a(0)1 (ϕ, x;ω) := a1(ῐδ(ϕ); ν(ω); ∂x d⊥∇wRkdv)+ εa1(ῐδ(ϕ); ν(ω); ∂x d⊥∇wP),
a(0)−k (ϕ, x;ω) := a−k(ῐδ(ϕ); ν(ω); ∂x d⊥∇wRkdv)+ εa−k(ῐδ(ϕ); ν(ω); ∂x d⊥∇wP), k = 0, . . . ,M,

and ν(ω) = (ωkdv)−1(−ω). By Lemma 3.7-1, the functions
a1−k(x; ν(ω); ∂xd⊥∇wRkdv), 0 ≤ k ≤ M + 1, satisfy the hypothesis of
Lemma 2.25-(ii). In view of (5.10) one then infers that for any s � s0

‖a1−k(ῐδ(ϕ); ν(ω); ∂xd⊥∇wRkdv)‖Lip(γ )s �s,M ‖ι‖Lip(γ )s+σM

for some σM > 0. Similarly, by the first item of Lemma 3.5, the functions
a3−k(ῐδ(ϕ); ν(ω); ∂xd⊥∇wP), 0 ≤ k ≤ M + 3, satisfy the hypothesis of
Lemma 2.25-(i), implying that for any s � s0,

‖a3−k(ῐδ(ϕ); ν(ω); ∂xd⊥∇wP)‖Lip(γ )s �s,M 1+ ‖ι‖Lip(γ )s+σM

for some σM > 0, proving (6.11), (6.13). The estimates (6.15) follow by similar
arguments. ��

We remark that in the finitely many steps of our reduction procedure, described
in the subsequent sections, the loss of derivatives σM = σM (τ,S+) > 0 might have
to be increased, but the notation will not be changed.

We finish this section by showing that the operator Qkdv−1 (D;ω), which is
a Fourier multiplier with ϕ−independent coefficients, admits an expansion as
described in the following lemma:

Lemma 6.3. For any M ∈ N,

Qkdv−1 (D;ω) =
M∑
k=1

ckdv−k (ω)∂
−k
x +RM (Q

kdv−1 ;ω) (6.16)

where for any 1 ≤ k ≤ M, the function � → R, ω �→ ckdv−k (ω) is Lipschitz

and where RM (Qkdv−1 ;ω) : L2⊥(T1) → L2⊥(T1) is a Lipschitz family of diagonal
operators of order−M−1. Furthermore, for any n1, n2 ∈ N, n1+n2 � M+1, the
operator 〈D〉n1RM (Qkdv−1 ;ω)〈D〉n2 is Lip(γ )-tame with a tame constant satisfying
M〈D〉n1RM (Qkdv−1 ;ω)〈D〉n2 (s) � C(s,M) for any s � s0 and C(s,M) > 0.
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Proof. By Lemma 3.8, Qkdv−1 (D;ω) = �kdv−1 (D;ω)+RM (D;ω; Qkdv−1 ) where

�kdv−1 (D;ω)h =
M∑
k=1

∑
ξ∈S⊥

a−k(ω;�kdv−1 )χ0(ξ)(i2πξ)−khξ (ϕ)ei2πxξ ,

RM (D;ω; Qkdv−1 )[h] =
∑
ξ∈S⊥

Rωξ
M (ω)

(2πξ)M+1
hξ (ϕ)e

i2πxξ .

Hence (6.16) holdswith ckdv−k (ω) := a−k(ω;�kdv−1 ), k = 1, . . . ,M andRM (Qkdv−1 ;ω)
= RM (D;ω; Qkdv−1 ). For any integer n1, n2 such that n1 + n2 � M + 1, one has
that

〈D〉n1RM (Q
kdv−1 ;ω)〈D〉n2h =

∑
ξ∈S⊥

Rωξ
M (ω)〈ξ 〉n1+n2
(2πξ)M+1

hξ (ϕ)e
i2πxξ ,

where, by (3.65),
∣∣∣R

ωξ
M (ω)〈ξ〉n1+n2
(2πξ)M+1

∣∣∣ � CM . Therefore‖〈D〉n1RM (Qkdv−1 ;ω)〈D〉n2h‖s
�M ‖h‖s for any s � 0. The correpsonding Lipschitz estimate is proved in a similar
way. ��

6.2. Quasi-periodic Reparametrization of Time

The goal of this section is to conjugate the operator Lω = L(0)
ω − R in (6.7) to

the operator L(1)
ω , defined in (6.22), which admits an expansion of the form (6.23)

with the property that its highest order coefficient a(1)3 satisfies (6.25). This property

will allow us in Section 6.3 to conjugate L(1)
ω to an operator with constant highest

order coefficient (cf. (6.42)).
The operator �(1), by which Lω is conjugated, is induced by the change of

variable ϕ, defined by the quasi-periodic reparametrization of time,

ϑ = ϕ + α(1)(ϕ)ω or equivalently ϕ = ϑ + ᾰ(1)(ϑ)ω

where α(1) : TS+ → R, is a small, real valued function chosen below (cf. (6.19)).
In more detail, �(1) and its inverse (�(1))−1 are given by

(�(1)h)(ϕ, x) := h(ϕ + α(1)(ϕ)ω, x), ((�(1))−1h)(ϑ, x) := h(ϑ + ᾰ(1)(ϑ)ω, x).

(6.17)

First recall that the coefficient a(0)3 in the expansion (6.10) satisfies a(0)3 = −1 +
O(ε) (cf. (6.11)). Hence the the cube root (a(0)3 (ϕ, x))

1
3 is smooth.

Lemma 6.4. Let m3 be the constant

m3(ω) := 1

(2π)|S+|

∫
T
S+

( ∫
T1

dx

(a(0)3 (ϑ, x;ω)) 13
)−3

dϑ, ∀ω ∈ �, (6.18)
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and define, for ω ∈ DC(γ, τ ), the function

ᾰ(1)(ϑ;ω) := (ω · ∂ϕ)−1
[ 1

m3

( ∫
T1

dx

(a(0)3 (ϑ, x;ω)) 13
)−3 − 1

]
. (6.19)

Then for any M ∈ N, there exists a constant σM > 0 so that the following holds:

(i) The constant m3 satisfies

|m3 + 1|Lip(γ ) �M ε (6.20)

and for any s � s0, α(1), ᾰ(1) satisfy

‖α(1)‖Lip(γ )s , ‖ᾰ(1)‖Lip(γ )s �s,M εγ−1(1+ ‖ι‖Lip(γ )s+σM ). (6.21)

(ii) The Hamiltonian operator

L(1)
ω := 1

ρ
�(1)Lω (�

(1))−1,

ρ(ϑ) := ,�(1)(1+ ω · ∂ϑ ᾰ(1)) = 1+�(1)(ω · ∂ϑ ᾰ(1)), (6.22)

admits an expansion of the form

L(1)
ω = ω · ∂ϑ −

(
a(1)3 ∂3x + 2(a(1)3 )x∂

2
x + a(1)1 ∂x + Op(r (1)0 )+ Qkdv−1 (D;ω)

)
+R(1)

M

(6.23)

where the coefficients a(1)3 = a(1)3 (ϑ, x;ω) and a(1)1 = a(1)1 (ϑ, x;ω) are real
valued and satisfy

‖a(1)3 + 1‖Lip(γ )s �s,M ε(1+ ‖ι‖s+σM ), ‖a(1)1 ‖Lip(γ )s �s,M ε + ‖ι‖Lip(γ )s+σM , ∀s � s0,

(6.24)

and ∫
T1

dx

(a(1)3 (ϑ, x;ω)) 13
= m

− 1
3

3 , ∀ϑ ∈ T
S+ . (6.25)

The function r (1)0 ≡ r (1)0 (ϑ, x, ξ ;ω) in (6.23) is a pseudo-differential symbol in
the symbol class S0 (cf. (2.8)) and admits an expansion of the form

r (1)0 (ϑ, x, ξ ;ω) =
M∑
k=0

a(1)−k (ϑ, x;ω)(i2πξ)−kχ0(ξ), (6.26)

where χ0 is defined in (2.18) and where for any 0 ≤ k ≤ M, s � s0,

‖a(1)−k‖Lip(γ )s �s,M ε + ‖ι‖Lip(γ )s+σM . (6.27)

Furthermore, the function ρ appearing in (6.22) satisfies

‖ρ − 1‖Lip(γ )s , ‖ρ−1 − 1‖Lip(γ )s �s,M ε + ‖ι‖Lip(γ )s+σM . (6.28)
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Let s1 � s0 and let ῐ1, ῐ2 be torus embeddings, satisfying (6.1) with μ0 �
s1 + σM. Then

|�12m3|, ‖�12α
(1)‖s1 , ‖�12ᾰ

(1)‖s1 , ‖�12a
(1)
1 ‖s1 ,

‖�12ρ
±1‖s1 �s1,M ‖ι1 − ι2‖s1+σM ,

‖�12a
(1)
−k‖s1 �s1,M ‖ι1 − ι2‖s1+σM , ∀k = 0, . . . ,M.

(6.29)

(iii) Let S > sM where sM is defined in (2.55). Then the maps (�(1))±1 are Lip(γ )-
1-tame operators with tame constants satisfying

M(�(1))±1(s) �S,M 1+ ‖ι‖Lip(γ )s+σM , ∀s0 + 1 � s � S. (6.30)

For any given λ0 ∈ N, there exists a constant σM (λ0) > 0 so that for any
m ∈ S+, λ, n1, n2 ∈ N with λ � λ0 and n1 + n2 + λ0 � M + 1, the operator
∂λϕm 〈D〉n1R(1)

M 〈D〉n2 is Lip(γ )-tame with a tame constant satisfying

M
∂λϕm 〈D〉n1R(1)

M 〈D〉n2 (s) �S,M ε + ‖ι‖Lip(γ )s+σM (λ0), ∀sM � s � S. (6.31)

If in addition, s1 � sM and ῐ1, ῐ2 are torus embeddings, satisfying (6.1) with
μ0 � s1 + σM (λ0), then

‖∂λϕm 〈D〉n1�12R(1)
M 〈D〉n2‖B(Hs1 ) �s1,M,λ0 ‖ι1 − ι2‖s1+σM (λ0). (6.32)

Proof. Writing �⊥ as Id + (�⊥ − Id), the operator L(0)
ω (cf. (6.10) ) becomes

L(0)
ω = ω · ∂ϕ −

(
a(0)3 ∂3x + 2(a(0)3 )x∂

2
x + a(0)1 ∂x + Op(r (0)0 )+ Qkdv−1 (D;ω)

)

+R(I )
M (ῐδ(ϕ);ω)+R(0)

M (ῐδ(ϕ);ω),

whereR(I )
M (ῐδ(ϕ);ω) := (Id−�⊥)

(
a(0)3 ∂3x+2(a(0)3 )x∂

2
x+a(0)1 ∂x+Op(r (0)0 )

)
. Since

(Id − �⊥)∂3x h = 0 for any h ∈ Hs⊥, the operator R
(I )
M = R(I )

M (ῐδ(ϕ);ω) can be
written as

R(I )
M = (Id −�⊥)

(
(a(0)3 + 1)∂3x + 2(a(0)3 )x∂

2
x + a(0)1 ∂x + Op(r (0)0 )

)
, (6.33)

and is a finite rank operator of the form (6.3) with functions g j , χ j ∈ Hs⊥ satisfying
(6.4) (use (6.11), (6.13)).

The estimate (6.30) follows by Lemma 2.1-(iii) and (6.21). Note that

�(1) ◦ ω · ∂ϕ ◦ (�(1))−1 = ρ(ϑ)ω · ∂ϑ , ρ :=�(1)(1+ ω · ∂ϕᾰ(1)),
and that any Fourier multiplier g(D) is left unchanged under conjugation, that is,
�(1)g(D)(�(1))−1 = g(D). Using (6.7) and (6.10), we obtain (6.23) where

a(1)3 :=�(1)
( a(0)3

1+ ω · ∂ϕᾰ(1)
)
, (6.34)
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a(1)1 := 1
ρ
�(1)(a(0)1 ), r (1)0 is of the form (6.26) with a(1)−k := 1

ρ
�(1)(a(0)−k ), and the

remainder R(1)
M is given by

R(1)
M = 1

ρ
�(1)R(I )

M (�(1))−1 + 1

ρ
�(1)R(0)

M (ῐδ(ϕ))(�
(1))−1

− 1

ρ
�(1)R(ϕ)(�(1))−1. (6.35)

We choose ᾰ(1) such that (6.25) holds, yielding (6.18), (6.19). We now verify the
estimates, stated in items (i) and (ii). Recall that we assume throughout that (6.1)
holds. The estimates (6.20)–(6.21) follow by (6.18), (6.19), (6.11), and by using
Lemma 2.1-(iii), Lemma 2.3. The estimate (6.28) on ρ follows by the definition
(6.22), (6.19), and by applying Lemma 2.1-(iii), Lemma 2.3. Hence, by Lemma 2.1
and the estimates (6.11), (6.13), and (6.28), we deduce (6.27). The estimates (6.29)
are obtained by similar arguments. Let us now prove item (iii). The estimate (6.30)
follows from Lemma 2.1-(iii). Since (�(1))±1 commutes with every Fourier mul-
tiplier, we get

1

ρ
〈D〉n1�(1)R(0)

M (ῐδ(ϕ))(�
(1))−1〈D〉n2 = 1

ρ
〈D〉n1R(0)

M (ῐδ,α(ϕ))〈D〉n2 (6.36)

where ῐδ,α(ϕ) := ῐδ(ϕ + α(1)(ϕ)ω). By Lemma 2.1, (5.10), and (6.21) one has

‖ιδ,α‖Lip(γ )s �s ‖ι‖Lip(γ )s+σM . Moreover, by (6.3), we have

1

ρ
�(1)R(ϕ)(�(1))−1h =

∑
j∈S+

(
h, (�(1)g j )

)
L2
x

1

ρ
(�(1)χ j ),∀h ∈ L2⊥, (6.37)

and by (6.33), the conjugated operator 1
ρ
�(1)R(I )

M (�(1))−1h has the same form.
The estimates (6.31) are then obtained by using (6.36), (6.14), and Lem-
mata 3.5, 3.7, 2.26 to estimate the first term on the right hand side of (6.35) and
by (6.37), (6.30), (6.4) and Lemma 2.24, to estimate the second and third term in
(6.35). The estimates (6.32) are proved by similar arguments. ��

6.3. Elimination of the (ϕ, x)-Dependence of the Highest Order Coefficient

The goal of this section is to remove the (ϕ, x)-dependence of the coefficient
a(1)3 (ϕ, x) of the Hamiltonian operator L(1)

ω , given by (6.22)–(6.23), where we
rename ϑ to ϕ. Actually this step will at the same time also remove the coefficient
of ∂2x thanks to the Hamiltonian nature of the subprincipal operator of order 2,

described in Lemma 2.7. We achieve these goals by conjugating the operator L(1)
ω

by the flow �(2)(τ, ϕ), acting on L2⊥(T1), defined by the transport equation

∂τ�
(2)(τ, ϕ) = �⊥∂x

(
b(2)(τ, ϕ, x)�(2)(τ, ϕ)

)
, �(2)(0, ϕ) = Id⊥, (6.38)

where

b(2) ≡ b(2)(τ, ϕ, x) := β(2)(ϕ, x)

1+ τβ
(2)
x (ϕ, x)

,
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and β(2)(ϕ, x) is a small, real valued periodic function chosen in (6.40) below. The
flow �(2)(τ, ϕ) is well defined for 0 ≤ τ ≤ 1 and satisfies the tame estimates
provided in Lemma 2.28. Since the vector field �⊥∂x

(
b(2)h

)
, h ∈ Hs⊥(T1), is

Hamiltonian (it is generated by the Hamiltonian 1
2

∫
T1

b(2)h2 dx), each �(2)(τ, ϕ),

0 ≤ τ ≤ 1, ϕ ∈ T
S+ is a symplectic linear isomorphism of Hs⊥(T1). Therefore the

time one conjugated operator,

L(2)
ω :=�(2)L(1)

ω

(
�(2))−1, �(2) :=�(2)(1, ϕ), (6.39)

is a Hamiltonian operator acting on Hs⊥(T1).
Given the (τ, ϕ)-dependent family of diffeomorphisms of the torus T1, x �→

y = x + τβ(2)(ϕ, x), we denote the family of its inverses by y �→ x = y +
β̆(2)(τ, ϕ, y).

Lemma 6.5. (Reduction to constant coefficients of the third order term) Let
β̆(2)(ϕ, y;ω) ≡ β̆(2)(1, ϕ, y;ω) be the real valued, periodic function

β̆(2)(ϕ, y;ω) := ∂−1y

( m1/3
3

(a(1)3 (ϕ, y;ω))1/3
− 1
)

(6.40)

(which is well defined by (6.25)) and let M ∈ N. Then there exists σM > 0 so that
the following holds:

(i) For any s � s0

‖β(2)‖Lip(γ )s , ‖β̆(2)‖Lip(γ )s �s,M ε
(
1+ ‖ι‖Lip(γ )s+σM

)
. (6.41)

(ii) The Hamiltonian operator L(2)
ω in (6.39) admits an expansion of the form

L(2)
ω = ω · ∂ϕ −

(
m3∂

3
x + a(2)1 ∂x + Op(r (2)0 )+ Qkdv−1 (D;ω)

)+R(2)
M

(6.42)

where a(2)1 := a(2)1 (ϕ, x;ω) is a real valued, periodic function, satisfying

‖a(2)1 ‖Lip(γ )s �s,M ε + ‖ι‖Lip(γ )s+σM . (6.43)

The pseudo-differential symbol r (2)0 ≡ r (2)0 (ϕ, x, ξ ;ω) is in S0 and satisfies, for
any s � s0, the estimate

|Op(r (2)0 )|Lip(γ )0,s,0 �s,M ε + ‖ι‖Lip(γ )s+σM .

(6.44)

Let s1 � s0 and let ῐ1, ῐ2 be torus embeddings satisfying (6.1)withμ0 � s1+σM.
Then

‖�12β
(2)‖s1 , ‖�12β̆

(2)‖s1 , ‖�12a
(2)
1 ‖s1 , |�12Op(r

(2)
0 )|0,s1,0

�s1,M ‖ι1 − ι2‖s1+σM . (6.45)
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(iii) Let S > sM. Then the symplectic maps (�(2))±1 are Lip(γ )-1 tame operators
with tame constants satisfying

M(�(2))±1(s) �S,M 1+ ‖ι‖Lip(γ )s+σM , ∀s0 + 1 � s � S. (6.46)

Let λ0 ∈ N. Then there exists a constant σM (λ0) > 0 so that for any λ, n1, n2 ∈
N with λ � λ0 and n1 + n2 + λ0 � M − 1, the operator ∂λϕm 〈D〉n1R(2)

M 〈D〉n2 ,
m ∈ S+, is Lip(γ )-tame with a tame constant satisfying

M
∂λϕm 〈D〉n1R(2)

M 〈D〉n2 (s) �S,M,λ0 ε + ‖ι‖Lip(γ )s+σM (λ0), ∀sM � s � S. (6.47)

Let s1 � sM and ῐ1, ῐ2 be torus embeddings satisfying (6.1) with μ0 � s1 +
σM (λ0). Then

‖∂λϕm 〈D〉n1�12R(2)
M 〈D〉n2‖B(Hs1 ) �s1,M,λ0 ‖ι1 − ι2‖s1+σM (λ0). (6.48)

Proof. We use the Egorov type results proved in Section 2.5. According to (6.23),
(6.26), the conjugated operator is given by

L(2)
ω = �(2)L(1)

ω (�(2))−1 (6.49)

= ω · ∂ϕ −�(2)a(1)3 ∂3x (�
(2))−1 − 2�(2)(a(1)3 )x∂

2
x (�

(2))−1 −�(2)a(1)1 ∂x (�
(2))−1

−
M∑
k=0

�(2)a(1)−k∂
−k
x (�(2))−1 −�(2)Qkdv−1 (D;ω)(�(2))−1

+�(2)R(1)
M (�(2))−1 +�(2)(ω · ∂ϕ (�(2))−1

)
.

By (6.40), (6.20), (6.24) and Lemmata 2.1, 2.3, the estimate (6.41) follows.
Using (6.1) with μ0 > 0 large enough, the estimate (6.41) implies that
‖β(2)‖Lip(γ )s0+σM (λ0) �M,λ0 εγ

−2, where the constant σM (λ0) is the constant appearing
in the smallness conditions (2.79), (2.107), (2.110). Nowwe apply Proposition 2.31
to expand the terms

�(2)a(1)3 ∂3x (�
(2))−1, 2�(2)(a(1)3 )x∂

2
x (�

(2))−1,
�(2)a(1)1−k∂

1−k
x (�(2))−1, 0 ≤ k ≤ M + 1,

Lemma 2.35 to expand the term �(2)Qkdv−1 (D;ω)(�(2))−1, and Proposition 2.34
to expand �(2)

(
ω · ∂ϕ (�(2))−1

)
. Using also the bounds (6.11), (6.13), (6.41) one

deduces (6.43), (6.44). By the choice of β̆(2) in (6.40) and Proposition 2.31, the
coefficient of the highest order term of �(2)a(1)3 ∂3x (�

(2))−1 (and hence of L(2)
ω ) is

given by

([1+ β̆(2)y (ϕ, y)]3a(1)3 (ϕ, y)
)|y=x+β(2)(ϕ,x) = m3

which is constant in (ϕ, x) by (6.25). Since�(2) is symplectic, the operator L(2)
ω is

Hamiltonian and hence by Lemma 2.7, the second order term equals 2(m3)x∂
2
x ,

which vanishes since m3 is constant. The remainder �(2)R(1)
M (�(2))−1 can be
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estimated by arguing as at the end of the proof of Proposition 2.31 (estimate of
RN (τ, ϕ)), using Lemma 2.28 to estimate �(2), (�(2))−1, the estimate (6.31) for
R(1)

M , the estimate (6.41) of β(2), β̆(2), and (6.1) with μ0 large enough. The esti-
mates (6.46) follow from (2.73) and (6.41). The bounds (6.45), (6.48) are derived
by similar arguments. ��

6.4. Elimination of the x-Dependence of the First Order Coefficient

The goal of this section is to remove the x-dependence of the coefficient
a(2)1 (ϕ, x) of the Hamiltonian operatorL(2)

ω in (6.39), (6.42). To this end, we conju-

gate the operatorL(2)
ω by the variable transformation induced by the flow�(3)(τ, ϕ),

acting on L2⊥(T1), defined by

∂τ�
(3)(τ, ϕ) = �⊥

(
b(3)(ϕ, x)∂−1x �(3)(τ, ϕ)

)
, �(3)(0) = Id⊥, (6.50)

where b(3)(ϕ, x) is a small, real valued, periodic function, chosen in (6.52) below.
Since the vector field�⊥

(
b(3)∂−1x h

)
, h ∈ Hs⊥(T1), is Hamiltonian (it is generated

by the Hamiltonian 1
2

∫
T1

b(3)(∂−1x h)2 dx), each �(3)(τ, ϕ) is a symplectic linear

isomorphism of Hs⊥ for any 0 ≤ τ ≤ 1 and ϕ ∈ T
S+ , and the time one conjugated

operator,

L(3)
ω :=�(3)L(2)

ω

(
�(3))−1, �(3) :=�(3)(1), (6.51)

is Hamiltonian.

Lemma 6.6. Let b(3)(ϕ, x;ω) be the real valued periodic function

b(3)(ϕ, x;ω) := 1

3m3
∂−1x

(
a(2)1 (ϕ, x;ω)− 〈a(2)1 〉x (ϕ;ω)

)
,

〈a(2)1 〉x (ϕ;ω) :=
∫
T1

a(2)1 (ϕ, x;ω) dx (6.52)

and let M ∈ N. Then there exists σM > 0 with the following properties:

(i) For any s � s0,

‖b(3)‖Lip(γ )s �s,M ε + ‖ι‖Lip(γ )s+σM (6.53)

and the symplectic maps (�(3))±1 are Lip(γ )-tame and with tame constants
satisfying

M(�(3))±1(s) �s,M 1+ ‖ι‖Lip(γ )s+σM . (6.54)

(ii) The Hamiltonian operator in (6.51) admits an expansion of the form

L(3)
ω = ω · ∂ϕ −

(
m3∂

3
x + a(3)1 (ϕ)∂x + Op(r (3)0 )+ Qkdv−1 (D;ω)

)+R(3)
M (6.55)

where the real valued, periodic function a(3)1 (ϕ;ω) := 〈a(2)1 〉x (ϕ;ω) satisfies
‖a(3)1 ‖Lip(γ )s �s,M ε + ‖ι‖Lip(γ )s+σM , (6.56)
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and r (3)0 := r (3)0 (ϕ, x, ξ ;ω) is a pseudo-differential symbol in S0 satisfying for
any s � s0,

|Op(r (3)0 )|Lip(γ )0,s,0 �s,M ε + ‖ι‖Lip(γ )s+σM . (6.57)

Let s1 � s0 and let ῐ1, ῐ2 be torus embeddings satisfying (6.1)withμ0 � s1+σM.
Then

‖�12b
(3)‖s1 , ‖�12a

(3)
1 ‖s1 �s1,M ‖ι1 − ι2‖s1+σM ,

|�12Op(r
(3)
0 )|0,s1,0 �s1,M ‖ι1 − ι2‖s1+σM .

(6.58)

(iii) Let S > sM, λ0 ∈ N. Then there exists a constant σM (λ0) > 0 so that for
any m ∈ S+ and λ, n1, n2 ∈ N with λ � λ0 and n1 + n2 + λ0 � M − 1, the
operator 〈D〉n1∂λϕmRM

(3)〈D〉n2 , is Lip(γ )-tame with tame constant satisfying
M

∂λϕm 〈D〉n1R(3)
M 〈D〉n2 (s) �S,M,λ0 ε + ‖ι‖Lip(γ )s+σM (λ0), ∀sM � s � S. (6.59)

Let s1 � sM and let ῐ1, ῐ2 be torus embeddings satisfying (6.1) with μ0 �
s1 + σM (λ0). Then

‖∂λϕm 〈D〉n1�12R(3)
M 〈D〉n2‖B(Hs1 ) �s1,M,λ0 ‖ι1 − ι2‖s1+σM (λ0). (6.60)

Proof. The estimate (6.53) follows by the definition (6.52) and (6.43), (6.20). We
now provide estimates for the flow

�(3)(τ ) = exp
(
τ�⊥b(3)(ϕ, x;ω)∂−1x

)
, ∀τ ∈ [−1, 1].

By (2.20),Lemma2.10, and (6.53), one infers that for any s � s0, |�⊥b(3)∂−1x |Lip(γ )−1,s,0
�s,M ε + ‖ι‖Lip(γ )s+σM . Therefore, by Lemma 2.13, there exists σM > 0 such that, if
(6.1) holds with μ0 � σM , then, for any s � s0,

sup
τ∈[−1,1]

|�(3)(τ )− Id|Lip(γ )0,s,0 �s ε + ‖ι‖Lip(γ )s+σM . (6.61)

The latter estimate, together with Lemma 2.18, imply (6.54).
By (6.42) and using Lemma 6.3 for the operator Qkdv−1 (D;ω), one has that

�(3)L(2)
ω (�(3))−1 = ω · ∂ϕ −�(3)(m3∂

3
x + a(2)1 ∂x

)
(�(3))−1 − Qkdv−1 (D; ω)+R(I )

0 +R(3)
M

where

R(I )
0 := −�(3)Op(r (2)0 )(�(3))−1 +�(3)(ω · ∂ϕ(�(3))−1

)

− (�(3) − Id⊥)�⊥
( M∑
k=1

ckdv−k (ω)∂
−k
x

)
(�(3))−1

−�⊥
( M∑
k=1

ckdv−k (ω)∂
−k
x

)(
(�(3))−1 − Id⊥

)
,

R(3)
M :=�(3)R(2)

M (�(3))−1 − (�(3) − Id⊥)RM (ω, Q
kdv−1 )(�(3))−1

−RM (ω, Q
kdv−1 )

(
(�(3))−1 − Id⊥

)
.

(6.62)
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Note thatR(I )
0 is a pseudo-differential operator in OPS0 (cf. Lemma 2.13). More-

over, by a Lie expansion and using (6.50), one has

�(3)(m3∂
3
x + a(2)1 ∂x

)
(�(3))−1 = m3∂

3
x + a(2)1 ∂x + [�⊥b(3)∂−1x , m3∂

3
x + a(2)1 ∂x ]

+
∫ 1

0
(1− τ)�(3)(τ )

[
�⊥b(3)∂−1x ,

[
�⊥b(3)∂−1x ,m3∂

3
x + a(2)1 ∂x

]]
�(3)(τ )−1 dτ

= m3∂
3
x +

(
a(2)1 − 3m3b

(3)
x

)
∂x +R(I I )

0 ,

R(I I )
0 := −3m3b

(3)
xx − m3b

(3)
xxx∂

−1
x + [�⊥b(3)∂−1x , a(2)1 ∂x ] + [(�⊥ − Id)b(3)∂−1x ,m3∂

3
x ]

+
∫ 1

0
(1− τ)�(3)(τ )

[
�⊥b(3)∂−1x ,

[
�⊥b(3)∂−1x ,m3∂

3
x + a(2)1 ∂x

]]
�(3)(τ )−1 dτ ∈ OPS0.

(6.63)

Note that R(I I )
0 is also a pseudo-differential operator in OPS0 (cf. Lemma 2.13).

Hence, (6.62)–(6.63) and the choice of b(3) in (6.52) lead to the expansion (6.55)
withR(3)

M given by (6.62) and

Op(r (3)0 ) := −R(I )
0 +R(I I )

0 . (6.64)

The estimate (6.56) follows by (6.24).

The estimate (6.57) on the operator Op(r (3)0 ) follows by the definitions (6.62),
(6.63), (6.64), by applying the estimates (6.20), (6.43), (6.44), (6.53), (6.61), (2.20),
(2.21), (2.22), (2.24), (2.26) (using the ansatz (6.1) with μ0 large enough). Next
we estimate the remainder R(3)

M , defined in (6.62). We only consider the second

term in the definition of R(3)
M , since the estimates of the first and third terms can

be obtained similarly. We recall that the operator RM (Qkdv−1 ;ω) is ϕ-independent.
For m ∈ S+ and λ, n1, n2 ∈ N with λ � λ0 and n1 + n2 + λ0 � M − 2, one has

〈D〉n1∂λϕm
(
(�(3) − Id⊥)RM (Q

kdv−1 ;ω)(�(3))−1
)
〈D〉n2 (6.65)

=
∑

λ1+λ2=λ
Cλ1,λ2〈D〉n1∂λ1ϕm (�(3) − Id⊥)RM (Q

kdv−1 ;ω)∂λ2ϕm (�(3))−1〈D〉n2

=
∑

λ1+λ2=λ
Cλ1,λ2

(
〈D〉n1∂λ1ϕm (�(3) − Id⊥)〈D〉−n1

)

(
〈D〉n1RM (Q

kdv−1 ;ω)〈D〉n2
)(
〈D〉−n2∂λ2ϕm (�(3))−1〈D〉n2

)
.

By the estimates (2.21), (2.24), (6.61) and Lemma 2.18, one has

M〈D〉n1 ∂λ1ϕm (�(3)−Id⊥)〈D〉−n1
(s) �s |〈D〉n1∂λ1ϕm (�(3) − Id⊥)〈D〉−n1 |Lip(γ )0,s,0 �s,M ε + ‖ι‖Lip(γ )s+σM (λ0)

,

M〈D〉−n2 ∂λ2ϕm (�(3))−1〈D〉n2 (s) �s |〈D〉−n2∂λ2ϕm (�(3))−1〈D〉n2 |Lip(γ )0,s,0 �s,M 1+ ‖ι‖Lip(γ )s+σM (λ0)
,

and therefore, by Lemmata 2.16, 6.16 and using (6.1), the operator (6.65) satisfies
(6.59). The estimates (6.58), (6.60) follow by similar arguments. ��



1476 M. Berti, T. Kappeler & R. Montalto

6.5. Elimination of the ϕ-Dependence of the First Order Term

The goal of this section is to remove the ϕ-dependence of the coefficient a(3)1 (ϕ)

of the Hamiltonian operator L(3)
ω in (6.51), (6.55). We conjugate the operator L(3)

ω

by the variable transformation �(4) ≡ �(4)(ϕ),

(�(4)w)(ϕ, x) = w(ϕ, x + b(4)(ϕ)), ((�(4))−1h)(ϕ, x) = h(ϕ, x − b(4)(ϕ)) ,

where b(4)(ϕ) is a small, real valued, periodic function, chosen in (6.67) below.Note
that �(4) is the time-one flow of the transport equation ∂τw = b(4)(ϕ)∂xw. Each
�(4)(ϕ) is a symplectic linear isomorphism of Hs⊥(T1), and hence the conjugated
operator

L(4)
ω :=�(4)L(3)

ω

(
�(4))−1 (6.66)

is Hamiltonian.

Proposition 6.7. (Reduction ofLω to constant coefficients up to order zero)Assume
that ω ∈ DC(γ, τ ) (cf. (4.4)). Let b(4)(ϕ) be the real valued, periodic function

b(4)(ϕ;ω) := − (ω · ∂ϕ)−1
(
a(3)1 (ϕ;ω)− m1

)
, m1 := 1

(2π)|S+|

∫
T
S+

a(3)1 (ϕ;ω) dϕ (6.67)

and let M ∈ N. Then there exists σM > 0 with the following properties:

(i) The constant m1 and the function b(4) satisfy

|m1|Lip(γ ) �M εγ−2, ‖b(4)‖Lip(γ )s �s,M γ−1
(
ε + ‖ι‖Lip(γ )s+σM ), ∀s � s0. (6.68)

(ii) The Hamiltonian operator in (6.66) admits an expansion of the form

L(4)
ω = ω · ∂ϕ −

(
m3∂

3
x + m1∂x + Op(r (4)0 )+ Qkdv−1 (D;ω)

)+R(4)
M (6.69)

where m3, given by (6.18), satisfies |m3 + 1|Lip(γ ) �M ε (cf. (6.20)), and
r (4)0 := r (4)0 (ϕ, x, ξ ;ω) is a pseudo-differential symbol in S0 satisfying

|Op(r (4)0 )|Lip(γ )0,s,0 �s,M ε + ‖ι‖Lip(γ )s+σM , ∀s � s0. (6.70)

Let s1 � s0 and let ῐ1, ῐ2 be torus embeddings satisfying (6.1)withμ0 � s1+σM.
Then

|�12m1|, ‖�12b
(4)‖s1 �s1,M ‖ι1 − ι2‖s1+σM ,

|�12Op(r
(4)
0 )|0,s1,0 �s1,M ‖ι1 − ι2‖s1+σM .

(6.71)

(iii) Let S > sM. Then the maps (�(4))±1 are Lip(γ )-tame operators with tame
constants satisfying

M(�(4))±1(s) �S,M 1+ ‖ι‖Lip(γ )s+σM , ∀s0 � s � S. (6.72)
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Let λ0 ∈ N. Then there exists a constant σM (λ0) > 0 so that for any λ, n1, n2 ∈
N with λ � λ0 and n1+ n2+ 2λ0 � M − 3, the operator ∂λϕm 〈D〉n1R(4)

M 〈D〉n2 ,
m ∈ S+, is Lip(γ )-tame with a tame constant satisfying

M
∂λϕm 〈D〉n1R(4)

M 〈D〉n2 (s) �S,M,λ0 ε + ‖ι‖Lip(γ )s+σM (λ0), ∀sM � s � S. (6.73)

Let s1 � sM and let ῐ1, ῐ2 be two tori satisfying (6.1) with μ0 � s1 + σM (λ0).
Then

‖∂λϕm 〈D〉n1�12R(4)
M 〈D〉n2‖B(Hs1 ) �s1,M,λ0 ‖ι1 − ι2‖s1+σM (λ0). (6.74)

Proof. The estimates (6.68) are direct consequences of (6.56) and of (6.1). Note
that

�(4) ◦ ω · ∂ϕ ◦ (�(4))−1 = ω · ∂ϕ −
(
ω · ∂ϕb(4)

)
∂x .

A straightforward calculation then shows that for any pseudo-differential operator
Op(a(ϕ, x, ξ)),

�(4)Op(a(ϕ, x, ξ))
(
�(4))−1 = Op(a(ϕ, x + b(4)(ϕ), ξ)).

Hence, by (6.55) and the definition (6.67), one obtains (6.69) with

Op
(
r (4)0 (ϕ, x, ξ)

) = Op
(
r (3)0 (ϕ, x + b(4)(ϕ), ξ)

)
, R(4)

M :=�(4)R(3)
M (�(4))−1.

(6.75)

The estimates (6.70) for Op(r (4)0 ) follow from Lemma 2.1, using (6.68), (6.57), and

(6.1). The estimates (6.73) for the operator R(4)
M ared obtained from (6.59), (6.68)

arguing as in the proof of the estimates of the remainder RN (τ, ϕ) (with β given
by b(4)) at the end of the proof of Proposition 2.31. The estimates (6.72) follow by
Lemma 2.1 and (6.68). Finally, the estimates (6.71), (6.74) are obtained by similar
arguments. ��

7. KAM Reduction of the Linearized Operator

The main result of this section is Theorem 7.11, stating that the assumptions
A-I concerning the almost-invertibility of Lω in Section 5 are satisfied. The key
ingredient for its proof is Theorem 7.3, which affirms that the Hamiltonian operator
L(4)
ω in (6.69), renamed L0 in (7.1), can be brought in almost diagonal form. This

completes the diagonalization of the Hamiltonian operator Lω, defined in (6.7),
which was started in Section 6. The Hamiltonian operator L0 is diagonalized by
applying a KAM-reducibility iterative scheme, developed in [10], for perturbations
of diagonal operators which are modulo-tame (cf. Definition 2.19). In Lemma 7.1
weprove that the initial remainderR0 is indeedmodulo-tame.We recall that the class
of modulo-tame operators is closed under the operations coming up in the KAM
reduction procedure, namely: sum and composition (Lemma 2.21); projections
(Lemma 2.23); solution of the homological equation (Lemma 7.5).



1478 M. Berti, T. Kappeler & R. Montalto

As in Section 6, we again consider in the sequel torus embeddings ῐ(ϕ) =
(ϕ, 0, 0) + ι(ϕ) with ι(·) ≡ ι(· ;ω), ω ∈ DC(γ, τ ) (cf. (4.4)), satisfying (6.1),
‖ι‖Lip(γ )μ0 � εγ−2, εγ−2 � δ(S), where μ0 :=μ0(τ,S+) > s0 and S > μ0 are
sufficiently large, 0 < δ(S) < 1 is sufficiently small, and 0 < γ < 1.

Recall that by (6.69), the operator L(4)
ω is given by ω · ∂ϕ −

(
m3∂

3
x + m1∂x +

Op(r (4)0 )+ Qkdv−1 (D;ω)
)+R(4)

M and acts on Hs⊥. In view of the reduction scheme,
implemented in this section, it is useful to rename it to

L0 :=ω · ∂ϕ + iD0 + R0, (7.1)

where ω ∈ DC(γ, τ ) (cf. (4.4)) and, in view of (6.9), (3.13), (4.3),

D0 := diag j∈S⊥ (μ0
j ), μ0

j :=m3(2π j)
3 − m12π j − q j (ω),

q j (ω) :=ωkdv
j

(
ν(ω), 0

)− (2π j)3, (7.2)

R0 := − Op(r (4)0 )+R(4)
M . (7.3)

We recall that m3 : �→ R is given by (6.18) and m1 : DC(γ, τ )→ R by (6.67).
Furthermore, note that μ0− j = −μ0

j for any j ∈ S
⊥. By (3.67) we have

sup
j∈S⊥

| j ||q j |sup, sup
j∈S⊥

| j ||q j |lip � 1, (7.4)

and, by (6.20), (6.68) and εγ−3 � 1,

|μ0
j − μ0

j ′ |lip �M | j3 − j ′3|, ∀ j, j ′ ∈ S
⊥. (7.5)

The operator R0 satisfies the tame estimates of Lemma 7.1 below. We first fix the
constants

b := [a] + 2 ∈ N, a := 3τ1 + 1, τ1 := 2τ + 1,

μ(b) := s0 + b+ σM + σM (b)+ 1, M := 2(s0 + b)+ 4,
(7.6)

where [a] denotes the integer part of a and the constants σM , σM (b) are the ones
introduced in Lemma 6.7. The integer M is related to the order of smoothing of the
remainder R(4)

M in (6.69) (cf. (6.73)). Note that M only depends on the number of
frequencies |S+| and the diophantine constant τ .

Lemma 7.1. Let b and M be given as in (7.6) and S > sM with sM given by (2.55).

(i) The operators R0, [R0, ∂x ], ∂s0ϕm [R0, ∂x ], ∂s0+bϕm R0, ∂
s0+b
ϕm [R0, ∂x ], m ∈ S+, are

Lip(γ )-tame with tame constants

M0(s) := max
m∈S+

{
MR0(s),M[R0,∂x ](s),M∂

s0
ϕmR0

(s),M
∂
s0
ϕm [R0,∂x ](s)

}
, (7.7)

M0(s,b) := max
m∈S+

{
M

∂
s0+b
ϕm R0

(s),M
∂
s0+b
ϕm [R0,∂x ](s)

}
, (7.8)

satisfying, for any sM � s � S,

M0(s,b) :=max{M0(s),M0(s,b)} �S ε + ‖ι‖Lip(γ )s+μ(b). (7.9)

Assuming that (6.1) (ansatz for ῐ) holdswithμ0 � sM+μ(b), the latter estimate
yields M0(sM ,b) �S εγ

−2.
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(ii) For any torus embeddings ῐ1, ῐ2 satisfying (6.1), one has for any m ∈ S+ and
any λ ∈ N with λ � s0 + b

‖∂λϕm�12R0‖B(HsM ), ‖∂λϕm [�12R0, ∂x ]‖B(HsM ) � ‖ι1 − ι2‖sM+μ(b).
(7.10)

Proof. (i) Since the assertions for the various operators are proved in the same
way,we restrict ourselves to show that there are tame constantsM

∂
s0+b
ϕm [R0,∂x ](s),

m ∈ S+, satisfying the bound in (7.9). The two operators Op(r (4)0 ) andR(4)
M in

the definition (7.3) ofR0 are treated separately.ByLemma2.18, for anym ∈ S+,
the operator ∂s0+bϕm [Op(r (4)0 ), ∂x ] = −Op

(
∂
s0+b
ϕm ∂xr

(4)
0

)
is Lip(γ )-tame with a

tame constant satisfying for any s0 � s � S,

M
∂
s0+b
ϕm [Op(r (4)0 ),∂x ](s)

(2.31)
�s

∣∣∣Op
(
∂s0+bϕm

∂xr
(4)
0

)∣∣∣Lip(γ )
0,s,0

�s

∣∣∣Op(r (4)0 )

∣∣∣Lip(γ )
0,s+s0+b+1,0

(6.70)
�s ε + ‖ι‖Lip(γ )s+s0+b+1+σM .

(7.11)

Next consider, for any given m ∈ S+, the operator ∂s0+bϕm [R(4)
M , ∂x ]. Recalling

that 〈D〉 denotes the Fourier multiplier with symbol 〈ξ 〉, one has
∂s0+bϕm

[R(4)
M , ∂x ] = ∂s0+bϕm

R(4)
M 〈D〉〈D〉−1∂x − 〈D〉−1∂x 〈D〉∂s0+bϕm

R(4)
M .

Since 〈D〉−1∂x admits a tame constant M〈D〉−1∂x (s) bounded by 1, it follows
by (6.73) that, for any sM � s � S,

M
∂
s0+b
ϕm [R(4)

M ,∂x ](s) �S ε + ‖ι‖Lip(γ )s+σM (b). (7.12)

Combining (7.11), (7.12) and recalling the definition of μ(b) in (7.6) one
infers that ∂s0+bϕm [R0, ∂x ] admits a tame constant M

∂
s0+b
ϕm [R0,∂x ](s), satisfying

the claimed bound.
(ii) The estimate (7.10) follows by similar arguments using (6.71) and (6.74)
with s1 = sM . ��
We perform the almost reducibility scheme for L0 along the scale

N−1 := 1, Nν := Nχν

0 , ν � 0, χ := 3/2 (7.13)

(with N0 specified in Theorem 7.2 below), assuming that at each induction step the
second order Melnikov non-resonance conditions (7.18) hold.

Theorem 7.2. (Almost reducibility) There exists τ := τ(τ,S+) > 0 so that for any
S > sM, there is N0 := N0(S,b) ∈ N, satisfying

N τ
0M0(sM ,b)γ

−1 � 1, (7.14)

so that the following holds: for any ν ∈ N,
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(S1)ν There exists a Hamiltonian operator Lν , acting on Hs⊥ and defined for
ω ∈ �γ

ν , of the form

Lν :=ω · ∂ϕ + iDν + Rν, Dν := diag j∈S⊥μνj , μνj ∈ R, (7.15)

where for any j ∈ S
⊥, μνj , also denoted by μνj (ω) or μ

ν
j (ω; ι), is a Lip(γ )-

function of the form

μνj (ω) :=μ0
j (ω)+ rνj (ω), (7.16)

with μ(0)j defined by (7.2) and

μν− j = −μνj , |rνj |Lip(γ ) � C(S)εγ−2. (7.17)

If ν = 0, the set of frequency vectors�γ
ν is defined to be the set�γ

0 :=DC(γ, τ ),
and if ν � 1,

�γ
ν = �γ

ν (ι) :=
{
ω ∈ �γ

ν−1 : |ω · 
+ μν−1j − μν−1j ′ | � γ
| j3 − j ′3|
〈
〉τ , ∀|
| � Nν−1, j, j ′ ∈ S

⊥}.
(7.18)

Note that �γ
ν+1 ⊆ �

γ
ν for any ν ≥ 0. The operators Rν and 〈∂ϕ〉bRν are

Lip(γ )-modulo-tame with modulo-tame constants

M�
ν(s) :=M

�
Rν (s), M�

ν(s,b) :=M
�

〈∂ϕ〉bRν (s) , (7.19)

satisfying, for some C∗(sM ,b) > 0 and any s ∈ [sM , S],
M�

ν(s) � C∗(sM ,b)M0(s,b)N
−a
ν−1, M�

ν(s,b) � C∗(sM ,b)M0(s,b)Nν−1
(7.20)

with Nν−1 given by (7.13). Moreover, if ν � 1 and ω ∈ �
γ
ν , there exists a

Hamiltonian operator	ν−1 acting on Hs⊥, so that the corresponding symplectic
time one flow

�ν−1 := exp(	ν−1) (7.21)

conjugates Lν−1 to

Lν = �ν−1Lν−1�−1ν−1. (7.22)

The operators 	ν−1 and 〈∂ϕ〉b	ν−1 are Lip(γ )-modulo-tame with modulo-
tame constants satisfying, for any s ∈ [sM , S], (with τ1, a defined in (7.6))

M
�
	ν−1(s) � C(sM ,b)

γ
N τ1
ν−1N

−a
ν−2M0(s,b),

M
�

〈∂ϕ〉b	ν−1(s) � C(sM ,b)

γ
N τ1
ν−1Nν−2M0(s,b). (7.23)
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(S2)ν For any j ∈ S
⊥, there exists a Lipschitz extension μ̃νj : � → R of

μνj : �γ
ν → R, where μ̃0

j = m3(2π j)3 − m̃12π j − q j (ω) (cf. (7.2)) and

m̃1 : � → R is a Lipschitz extension of m1, satisfying |m̃1|Lip(γ ) � εγ−2
(recall that by (6.18) m3 is defined on �); for any ν � 1,

|μ̃νj − μ̃ν−1j |Lip(γ ) � M
�
ν−1(sM ) � M0(sM ,b)N

−a
ν−1.

If needed, we indicate the dependence of μ̃νj on the torus embedding by writing
μ̃νj (ω; ι) or μ̃νj (ι).
(S3)ν Let ῐ1, ῐ2 be torus embeddings satisfying (6.1) with μ0 � sM + μ(b).
Then, for all ω ∈ �γ1

ν (ι1)∩�γ2
ν (ι2) with γ1, γ2 ∈ [γ /2, 2γ ] and 0 < γ < 1/2,

we have

‖|Rν(ι1)− Rν(ι2)|‖B(HsM ) �S N−aν−1‖ι1 − ι2‖sM+μ(b), (7.24)

‖|〈∂ϕ〉b(Rν(ι1)− Rν(ι2))|‖B(HsM ) �S Nν−1‖ι1 − ι2‖sM+μ(b). (7.25)

Moreover, if ν � 1, then for any j ∈ S
⊥, rνj , given by (7.16), satisfies

∣∣(rνj (ι1)− rνj (ι2))− (rν−1j (ι1)− rν−1j (ι2))
∣∣ � ‖|Rν(ι1)− Rν(ι2)|‖B(HsM ),

(7.26)

|rνj (ι1)− rνj (ι2)| �S ‖ι1 − ι2‖sM+μ(b). (7.27)

(S4)ν Let ῐ1, ῐ2 be torus embeddings as in (S3)ν and 0 < ρ < γ/2. Then

C(S)N τ
ν−1‖ι1 − ι2‖sM+μ(b) � ρ $⇒ �γ

ν (ι1) ⊆ �γ−ρ
ν (ι2). (7.28)

Before proving Theorem 7.2 in the subsequent section, we discuss the following
application. Theorem 7.2 implies that for any n ≥ 1, the symplectic invertible
operator

Un :=�n−1 ◦ . . . ◦�0, ω ∈
n⋂

ν=0
�γ
ν , (7.29)

almost diagonalizes L0, meaning that (7.32) below holds. Note that since �γ
ν ⊂

�
γ
ν−1 (cf. (7.18)), one has

n⋂
ν=0

�γ
ν = �

γ
n . (7.30)

By the same arguments as in [10], one infers the following theorem from Theo-
rem 7.2.

Theorem 7.3. (KAMalmost-reducibility)Assume the ansatz (6.1)withμ0 � sM+
μ(b). Then for any S > sM there exist N0 := N0(S,b) > 0, 0 < δ0 := δ0(S) < 1,
so that if

N τ
0 εγ

−3 � δ0, (7.31)
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with τ = τ(τ,S+) given by Theorem 7.2, the following holds: For any n ∈ N and
ω in�γ

n , the operator Un, introduced in (7.29), is well defined and Ln :=UnL0U−1n
satisfies

Ln = ω · ∂ϕ + iDn + Rn (7.32)

where Dn and Rn are defined in (7.15) (with ν = n). The operator Rn is Lip(γ )-
modulo-tame with a modulo-tame constant

M
�
Rn (s) �S N−an−1(ε + ‖ι‖Lip(γ )s+μ(b)), ∀sM � s � S. (7.33)

Moreover, the operator Ln is Hamiltonian, Un, U−1n are symplectic, andU±1n −Id⊥
are Lip(γ )-modulo-tame with a modulo-tame constant satisfying

M
�

U±1n −Id⊥(s) �S γ
−1N τ1

0 (ε + ‖ι‖Lip(γ )s+μ(b)), ∀sM � s � S. (7.34)

Here Id⊥ denotes the identity operator on L2⊥(T1) and τ1 is defined in (7.6).

7.1. Proof of Theorem 7.2

Theorem 7.2 is proved by induction. We first prove the base case ν = 0 and
then the induction step.
Base case ν = 0. The items (S1)0, …, (S4)0 are proved separately.
Proof of (S1)0. Properties (7.15)–(7.17) for ν = 0 follow by (7.1)–(7.2) with
r0j = 0. Furthermore (7.20) holds for ν = 0 in view of the following lemma, which
can be proved by the same arguments used in the proof of Lemma 7.6 in [10].

Lemma 7.4. M�
0(s), M

�
0(s,b) �b M0(s,b) where M0(s,b) is defined in (7.9).

Proof of (S2)0. For any j ∈ S
⊥, μ0

j is defined in (7.2). Note that m3(ω) and
q j (ω) are already defined on the whole parameter space �. By the Kirszbraun
extensionTheorem forLipschitz functions (which is a particular case of theWhitney
extension Theorem as recorded in [1, Appendix B], see also Theorem 3, page 174
in [31]) and (6.68) there is an extension m̃1 on � of m1 satisfying the estimate
|m̃1|Lip(γ ) � εγ−2. This proves (S2)0.
Proof of (S3)0. The estimates (7.24), (7.25) at ν = 0 follow by arguing as in the
proof of (S3)0 in [10].
Proof of (S4)0. By the definition of �γ

0 one has �γ
0 (ι1) = DC(γ, τ ) ⊆ DC(γ −

ρ, τ) = �
γ−ρ
0 (ι2).

Induction step. In this paragraph, we describe how to define 	ν ,�ν , Lν+1 etc., at
the iterative step. To simplify notation we drop the index ν and write + instead of
ν+ 1. So, for example we write L for Lν , L+ for Lν+1,	 for	ν , N for Nν ,M�(s)
for M�

ν(s), etc. We conjugate L by the symplectic time one flow map

� := exp(	) (7.35)
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generated by a Hamiltonian vector field 	 acting in Hs⊥. By a Lie expansion we
get

�L�−1 = �(ω · ∂ϕ + iD)�−1 +�R�−1

= ω · ∂ϕ + iD− ω · ∂ϕ	 − i[D, 	] +�NR+�⊥NR−
∫ 1

0
exp(τ	)[R, 	]exp(−τ	) dτ

+
∫ 1

0
(1− τ)exp(τ	)

[
ω · ∂ϕ	 + i[D, 	], 	

]
exp(−τ	) dτ

(7.36)

where the projector �N is defined in (2.15) and �⊥N = Id⊥ − �N . We want to
solve the homological equation

− ω · ∂ϕ	 − i[D, 	] +�NR = [R] where [R] := diag j∈S⊥R
j
j (0). (7.37)

The solution of (7.37) is

	
j ′
j (
) :=

⎧⎪⎨
⎪⎩

R j ′
j (
)

i(ω · 
+ μ j − μ j ′)
∀(
, j, j ′) 
= (0, j, j), |
| � N , j, j ′ ∈ S

⊥

0 otherwise.
(7.38)

Note that the denominators in (7.38) do not vanish for ω ∈ �γ
ν+1 (cf. (7.18)).

Lemma 7.5. (Homological equations) (i) The solution	 of the homological equa-
tion (7.37), given by (7.38) for ω ∈ �γ

ν+1, is a Lip(γ )-modulo-tame operator with
a modulo-tame constant satisfying

M
�
	(s) � N τ1γ−1M�(s), M

�

〈∂ϕ〉b	(s) � N τ1γ−1M�(s,b), (7.39)

where τ1 := 2τ + 1. Moreover 	 is Hamiltonian.
(ii) Let ῐ1, ῐ2 be torus embeddings and define �12	 :=	(ι2) − 	(ι1). If γ /2 �
γ1, γ2 � 2γ < 1 then, for any ω ∈ �γ1

ν+1(ι1) ∩�γ2
ν+1(ι2),

‖|�12	|‖B(HsM ) � CN 2τ γ−2
(‖|R(ι2)|‖B(HsM )‖ι1 − ι2‖sM+μ(b) + ‖|�12R|‖B(HsM )

)
, (7.40)

‖|〈∂ϕ〉b�12	|‖B(HsM ) �b N
2τ γ−2

(‖|〈∂ϕ〉bR(ι2)|‖B(HsM )‖ι1 − ι2‖sM+μ(b) + ‖|〈∂ϕ〉b�12R|‖B(HsM )

)
.

(7.41)

Proof. Since R is Hamiltonian, one infers from Definition 2.5 and Lemma 2.6-(iii)
that the operator 	 defined in (7.38) is Hamiltonian as well. We now prove (7.39).
Let ω ∈ �

γ
ν+1. By (7.18), and the definition of 	 in (7.38), it follows that for any

(
, j, j ′) ∈ Z
S+ × S

⊥ × S
⊥, with |
| � N , (
, j, j ′) 
= (0, j, j),

|	 j ′
j (
)| � 〈
〉τ γ−1|R j ′

j (
)| (7.42)

and

�ω	
j ′
j (
) =

�ωR
j ′
j (
)

δ
j j ′(ω1)
− R j ′

j (
;ω2)
�ωδ
j j ′

δ
j j ′(ω1)δ
j j ′(ω2)
,
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δ
j j ′(ω) := i(ω · 
+ μ j − μ j ′).

By (7.5), (7.16), (7.17) one gets |�ωδ
j j ′ | � (〈
〉 + | j3 − j ′3|)|ω1 − ω2|, and
therefore, using also (7.18), we deduce that

|�ω	
j ′
j (
)| � 〈
〉τ γ−1|�ωR

j ′
j (
)| + 〈
〉2τ+1γ−2|R j ′

j (
;ω2)||ω1 − ω2|.
(7.43)

Recalling the definitions (2.33), (7.19), using (7.42), (7.43), and arguing as in the
proof of the estimates (7.61) in [10, Lemma 7.7], one then deduces (7.39). The
estimates (7.40)–(7.41) can be obtained similarly. ��

By (7.36)–(7.37) one has

L+ = �L�−1 = ω · ∂ϕ + iD+ + R+

which proves (7.22) and (7.15) at the step ν + 1, with

iD+ := iD+ [R],

R+ = �⊥NR−
∫ 1

0
exp(τ	)[R, 	]exp(−τ	) dτ

+
∫ 1

0
(1− τ)exp(τ	)

[
�NR− [R], 	

]
exp(−τ	) dτ.

(7.44)

The operator L+ has the same form as L. More precisely, D+ is diagonal and R+ is
the sum of an operator supported on high frequencies and one which is quadratic
in 	 and R. The new normal form D+ has the following properties:

Lemma 7.6. (New diagonal part) (i) The new normal form is

D+ = D− i[R], D+ := diag j∈S⊥μ+j ,

μ+j :=μ j + r j ∈ R, r j := − iR j
j (0), ∀ j ∈ S

⊥, (7.45)

with

μ+− j = −μ+j , |μ+j − μ j |Lip(γ ) = |r j |Lip(γ ) � M�(sM ).

(ii) For any tori ῐ1(ω), ῐ2(ω) and any ω ∈ �γ1
ν (ι1) ∩�γ2

ν (ι2), one has

|r j (ι1)− r j (ι2)| � ‖|�12R|‖B(HsM ). (7.46)

Proof. By the definition (7.19) of M�(sM ) and using (2.30) (with sM = s1) we
have that |μ+j −μ j |Lip(γ ) � |R j

j (0)|Lip(γ ) � M�(sM ). Since R(ϕ) is Hamiltonian,

Lemma 2.6 implies that r j = −iR j
j (0), j ∈ S

⊥, are odd in j and real. The estimate

(7.46) is proved in the same way by using |�12R
j
j (0)| � C‖|�12R|‖B(HsM ). ��
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Induction step.Assuming that (S1)ν–(S4)ν are true for a given ν � 0, we show in
this paragraph that each of the statements (S1)ν+1, (S2)ν+1, (S3)ν+1, and (S4)ν+1
hold.
Proof of (S1)ν+1. By Lemma 7.5, for any ω ∈ �

γ
ν+1, the solution 	ν of the

homological equation (7.37), defined in (7.38), is well defined and that by (7.39),
(7.20), it satisfies the estimates (7.23) at ν+ 1. In particular, the estimate (7.23) for
ν + 1, s = sM together with (7.6), (7.14) imply that

M
�
	ν
(sM ) �b N τ1

ν N−aν−1γ
−1M0(sM ,b) � 1. (7.47)

By Lemma 2.22 and using again Lemma 7.5 one infers that

M
�

�±1ν
(sM ) � 1,

M
�

〈∂ϕ〉b�±1ν (sM ) � 1+M
�

〈∂ϕ〉b	ν
(sM ) � 1+ N τ1

ν γ
−1M�

ν(sM ,b),

M
�

�±1ν
(s) � 1+M

�
	ν
(s) �s 1+ N τ1

ν γ
−1M�

ν(s),

M
�

〈∂ϕ〉b�±1ν (s) � 1+M
�

〈∂ϕ〉b	ν
(s)+M

�
	ν
(s)M�

〈∂ϕ〉b	ν
(sM ),

(7.14),(7.20),(7.39)
� 1+ N τ1

ν γ
−1M�

ν(s,b)+ N 2τ1
ν Nν−1γ−1M�

ν(s).

(7.48)

ByLemma 7.6, by the estimate (7.20) and Lemma 7.1, the operatorDν+1 is diagonal
and its eigenvalues μν+1j : �γ

ν+1 → R satisfy (7.17) at ν + 1.
Next we estimate the remainder Rν+1 defined in (7.44).

Lemma 7.7. (Nash–Moser iterative scheme) The operatorRν+1 isLip(γ )-modulo-
tame with a modulo-tame constant satisfying

M
�
ν+1(s) � N−bν M�

ν(s,b)+ N τ1
ν γ

−1M�
ν(s)M

�
ν(sM ). (7.49)

The operator 〈∂ϕ〉bRν+1 is Lip(γ )-modulo-tame with a modulo-tame constant sat-
isfying

M
�
ν+1(s,b) �b M�

ν(s,b)+ N τ1
ν γ

−1M�
ν(s,b)M

�
ν(sM )

+N τ1
ν γ

−1M�
ν(sM ,b)M

�
ν(s). (7.50)

Proof. We treat each of the three terms in the definition (7.44) of Rν+1 separately.
By Lemma 2.23 and the definition (7.19) of M�

ν(s,b), we have

M
�

�⊥NνRν
(s) � N−bν M

�

〈∂ϕ〉bRν (s) = N−bν M�
ν(s,b),

M
�

〈∂ϕ〉b�⊥NνRν
(s) � M

�

〈∂ϕ〉bRν (s) =M�
ν(s,b).

(7.51)

We now estimate the second term Gν := −
∫ 1
0 exp(τ	ν)[Rν,	ν]exp(−τ	ν) dτ in

(7.44). By applying (7.39), together with the composition Lemma 2.21, one obtains
that

M
�
[Rν ,	ν ](s) � N τ1

ν γ
−1M�

ν(s)M
�
ν(sM ),

M
�

〈∂ϕ〉b[Rν ,	ν ](s) � N τ1
ν γ

−1(M�
ν(s,b)M

�
ν(sM )+M�

ν(sM ,b)M
�
ν(s)

)
.
(7.52)
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Note that the estimates (7.48) also hold for the maps exp(±τ	ν), uniformly in
τ ∈ [−1, 1]. Therefore, taking into account (7.52) and (7.48), Lemma 2.21, the
induction hypothesis for the estimate (7.20), the smallness condition (7.14) (with
τ̄ large enough) and (7.6), N τ1

ν M
�
ν(sM )γ

−1 � 1, one concludes that

M
�
Gn (s) � N τ1

ν γ
−1M�

ν(s)M
�
ν(sM ),

M
�

〈∂ϕ〉bGn (s) � N τ1
ν γ

−1(M�
ν(s,b)M

�
ν(sM )+M�

ν(sM ,b)M
�
ν(s)

)
.

(7.53)

The estimate of the third term in (7.44) is obtained in a similar way. Together with
(7.51) and (7.53) it yields (7.49)–(7.50). ��

The estimates (7.49), (7.50), and (7.6), now allow us to prove that (7.20) holds
at the step ν + 1.

Lemma 7.8. M�
ν+1(s) � C∗(sM ,b)M0(s,b)N−aν and M

�
ν+1(s,b) � C∗(sM ,b)

M0(s,b)Nν .

Proof. By (7.49), the induction hypothesis for the estimate (7.20) we get

M
�
ν+1(s) � C∗(sM ,b)N−bν Nν−1M0(s,b)+ CC∗(sM ,b)2N τ1

ν γ−1M0(s,b)M0(sM ,b)N
−2a
ν−1

� C∗(s0,b)N−aν M0(s,b)

where for the latter inequality we used the definition (7.6) of the constants and the
bound (7.14) with τ̄ and N0 := N0(S,b) > 0 large enough. Similarly, by (7.50),
(7.20),

M
�
ν+1(s,b) � C∗(s0,b)Nν−1M0(s,b)+ CC∗(s0,b)2N τ1

ν N 1−a
ν−1 γ

−1M0(s,b)M0(sM ,b)

� C∗(s0,b)NνM0(s,b)

where for the latter inequality,we againused (7.6) and (7.14)with N0 := N0(S,b) >
0 large enough. ��
Proof of (S2)ν+1. By Lemma 7.6, for any j ∈ S

⊥, μν+1j = μνj + rνj where

|rνj |Lip(γ ) � M0(sM ,b)N−aν . Then (S2)ν+1 follows by defining μ̃ν+1j := μ̃νj + r̃νj
where r̃νj : � → R is a Lipschitz extension of rνj (using again the Kirszbraun
extension theorem).
Proof of (S3)ν+1. The proof follows by induction arguing as in the proof of
(S2)ν+1.
Proof of (S4)ν+1. The proof is the same as that of (S3)ν+1 in
[2, Theorem 4.2]. ��

7.2. Almost-Invertibility of Lω

By (7.32), for any ω ∈ �γ
n , we have that L0 = U−1n LnUn where Un is defined

in (7.29) and thus

Lω = V−1n LnVn, Vn :=Un�
(4) · · ·�(1), (7.54)

where Lω is the operator introduced in (5.26) and �(1), …, �(4) are the transfor-
mations constructed in Lemmas 6.4, 6.5, 6.6, and respectively, Proposition 6.7.
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Lemma 7.9. There exists σ = σ(τ,S+) > 0 such that, if (7.31) and (6.1) with
μ0 � sM +μ(b)+ σ hold, then the operators V±1n satisfy for any sM � s � S the
estimate

‖V±1n h‖Lip(γ )s �S ‖h‖Lip(γ )s+σ + N τ1
0 γ−1‖ι‖Lip(γ )s+μ(b)+σ ‖h‖Lip(γ )sM+σ . (7.55)

Proof. The claimed estimates follow from the estimates (6.30), (6.46), (6.54),
(6.72), and (7.34) together with the Lemmata 2.16, 2.17, 2.20. ��

We now decompose the operator Ln = ω · ∂ϕ + iDn + Rn in (7.32) as

Ln = L<n + Rn + R⊥n (7.56)

with

L<n :=�Kn

(
ω · ∂ϕ + iDn

)
�Kn +�⊥Kn

, R⊥n :=�⊥Kn

(
ω · ∂ϕ + iDn

)
�⊥Kn

−�⊥Kn
,

(7.57)

where the diagonal operator Dn is defined in (7.15) (with ν = n), Kn = K χn

0
is the scale of the nonlinear Nash–Moser iterative scheme introduced in (5.28),
and �⊥Kn

= Id⊥ − �Kn with �Kn denoting the projector in (2.2). The diagonal
constant coefficient operator L<n can be inverted assuming the following standard
non-resonance conditions:

Lemma 7.10. (First order Melnikov non-resonance conditions) Let n ≥ 0. Then
for any ω in

!
γ
n+1 :=!

γ
n+1(ι) :=

{
ω ∈ � : |ω · 
+ μ̃n

j | � 2γ | j |3〈
〉−τ , ∀|
| � Kn, j ∈ S
⊥},

(7.58)

the operator L<n in (7.57) is invertible and

‖(L<n )−1g‖Lip(γ )s � γ−1‖g‖Lip(γ )s+2τ+1. (7.59)

By (7.54), (7.56), Theorem 7.3, estimates (7.59), (7.60), (7.55), and using that,
for all b > 0,

‖R⊥n h‖Lip(γ )sM � K−bn ‖h‖Lip(γ )sM+b+3, ‖R⊥n h‖Lip(γ )s � ‖h‖Lip(γ )s+3 , (7.60)

we deduce the following theorem, stating the assumption A-I on the almost-
invertibility of Lω in Section 5:

Theorem 7.11. (Almost-invertibility of Lω) Assume the ansatz (6.1) with μ0 �
sM + μ(b). Let a,b,M as in (7.6), and S > sM. There exists σ = σ(τ,S+) > 0
so that, if (7.31) and (6.1) hold with μ0 � sM + μ(b) + σ , then, for any n ≥ 0
and any

ω ∈ �
γ
n+1 = �

γ
n+1(ι) :=�

γ
n+1(ι) ∩!γ

n+1(ι) (7.61)

(see (7.18), (7.58)), the operator Lω, defined in (5.26), can be decomposed as

Lω = L<
ω +Rω +R⊥ω , L<

ω :=V−1n L<n Vn, Rω :=V−1n RnVn, R⊥ω :=V−1n R⊥n Vn ,

(7.62)

where L<
ω is invertible and satisfies (5.32) and the operators Rω and R⊥ω satisfy

(5.30)–(5.31).
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8. Proof of Theorem 1.1

The goal of this section is to prove Theorem 1.1. In Section 8.3 we deduce
Theorem 1.1 from Theorem 4.1. The proof of the latter theorem is also given
in Section 8.3, relying on the Nash–Moser Theorem 8.1 and its Corollary 8.4 in
Section 8.1, and the measure estimate of Proposition 8.7 in Section 8.2.

8.1. The Nash–Moser Iteration

The main result of this section is Theorem 8.1 which implements a Nash–
Moser iteration scheme by providing a sequence of better and better approximate
solutions of the equation Fω(ι, ζ ) = 0 (cf. (4.6)) under the assumption that ω
satisfies nonresonance conditions, that is ω belongs to the sets Gn defined in (8.10).
A key ingredient into its proof is Theorem 5.7, concerning the existence of an
approximate right inverse of dι,ζFω(ι, ζ ).

To describe the iteration scheme, first recall that L2
ϕ = L2

ϕ(T
S+ ,RS+) (cf. (4.9))

and L2⊥ = L2(TS+ , L2⊥(T1)) (cf. (1.24)). We then introduce finite-dimensional
subspaces of L2

ϕ × L2
ϕ × L2⊥, defined for any n ∈ N as

En :=
{
ι(ϕ) = (�, y, w)(ϕ), � = �n�, y = �n y, w = �nw

}

where, by a slight abuse of notation, �n : L2⊥ → ∩s≥0Hs⊥ denotes the projector
�Kn , introduced in (2.2),

�n : w =
∑


∈ZS+ , j∈S⊥
w
, j e

i(
·ϕ+2π j x) �→ �nw :=
∑

|(
, j)|�Kn

w
, j e
i(
·ϕ+2π j x),

(8.1)

with Kn = K χn

0 , n ≥ 1, (cf. (5.28)) and K0 > 1 a constant chosen in Theorem 8.1
below.We also denote by�n the L2− orthogonal projector on L2

ϕ, L
2
ϕ → ∩s≥0Hs

ϕ ,
v =∑
∈ZS+ v
ei
·ϕ �→ �n(v) =∑|
|�Kn

v
ei
·ϕ . The projectors �n , n ≥ 0, are
smoothing operators on the Sobolev spaces Hs⊥ (and Hs

ϕ), meaning that �n and
�⊥n := Id −�n satisfy the smoothing properties (2.3).

For the Nash–Moser Theorem 8.1, stated below, we introduce the constants

σ := max{σ1, σ2} , b := [a] + 2, a = 3τ1 + 1, τ1 = 2τ + 1, χ = 3/2,

(8.2)

a1 :=max{12σ + 13, pτ + 3+ χ(μ(b)+ 2σ)}, a2 :=χ−1a1 − μ(b)− 2σ ,
(8.3)

b1 :=a1 + μ(b)+ 3σ + 4+ 2

3
μ1, μ1 := 3(μ(b)+ 2σ + 2)+ 1, S := sM + b1,

(8.4)
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where σ1 is defined in Lemma 4.3, σ2 in Theorem 5.7, a, μ(b) in (7.6) , and sM in
(2.55). The number p is the exponent in (5.27) and is requested to satisfy

pa > (χ − 1) · a1 + χ · (σ + 4)
χ=3/2= 1

2
a1 + 3

2
(σ + 4). (8.5)

In view of the definition (8.3) of a1, we can define p := p(τ,S+) as

p := 12σ + 17+ χ · (μ(b)+ 2σ)

a
. (8.6)

We denote by ‖W‖Lip(γ )s := max{‖ι‖Lip(γ )s , |ζ |Lip(γ )} the norm of a map

W := (ι, ζ ) : �→ (
Hs
ϕ × Hs

ϕ × Hs⊥
)× R

S+ , ω �→ W (ω) = (ι(ω), ζ(ω)).

Theorem 8.1. (Nash–Moser) There exist 0 < δ0 < 1 (small) and C∗ > 0 (large)
so that if

τ2 :=max{pτ + 3, 4σ + 4+ a1}, γ := εa, 0 < a <
1

τ2
,

K0 := γ−1, εK τ2
0 = ε1−aτ2 < δ0, (8.7)

where τ := τ(τ,S+) is defined as in Theorem 7.2, then the following holds: for any
n ∈ N

(P1)n (Estimates in low norms) Let W̃0 := (0, 0). If n ≥ 1, then there exists
a Lip(γ )-function

W̃n : RS+ → En−1 × R
S+ , ω �→ W̃n(ω) := (ι̃n, ζ̃n),

satisfying

‖W̃n‖Lip(γ )sM+μ(b)+σ � εγ−2. (8.8)

Let Ũn :=U0 + W̃n where U0 := (ϕ, 0, 0, 0). The difference H̃n := Ũn − Ũn−1
satisfies

‖H̃1‖Lip(γ )sM+μ(b)+σ � εγ−2 (n = 1), ‖H̃n‖Lip(γ )sM+μ(b)+σ � εγ−2K−a2n−1 (n ≥ 2) ,

(8.9)

where Kn = K χn

0 (cf. (5.28)).
(P2)n Define

G0 :=�, Gn :=Gn−1 ∩ �
γ
n (ι̃n−1) ∀n ≥ 1, (8.10)

where �
γ
n (ι̃n−1) is defined in (7.61). Then for any ω ∈ Gn

‖Fω(Ũn)‖Lip(γ )sM � C∗εK−a1n−1 , K−1 := 1. (8.11)

(P3)n (Estimates in high norms) ‖W̃n‖Lip(γ )sM+b1 � C∗εKμ1
n−1, ∀ω ∈ Gn.
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Proof. The theorem can be proved in a by now standard way (cf. [1,10]). We
argue by induction. To simplify notation, we write within this proof ‖ · ‖ instead of
‖ · ‖Lip(γ ).
Step 1: Proof of (P1)0, (P2)0, (P3)0. Note that (P1)0 and (P3)0 are trivially
satisfied and hence it remains to verify (8.11) for n = 0. By (4.6), (4.13), (4.3), and
Lemma 4.3, there exists C∗ > 0 large enough so that ‖Fω(U0)‖Lip(γ )sM ≤ εC∗.
Step 2: Proof of induction step. Assuming that (P1)n , (P2)n , (P3)n hold for
some n � 0, it is to prove that (P1)n+1, (P2)n+1, (P3)n+1 hold. We are going to
define the approximation Ũn+1 by a modified Nash–Moser scheme. To this end,
we prove the almost-approximate invertibility of the linearized operator

Ln = Ln(ω) := dι,ζFω(ι̃n(ω)) (8.12)

by applying Theorem 5.7 to Ln(ω). To prove that the assumptions (5.29)–(5.32)
in Theorem 5.7 hold, we apply Theorem 7.11 with ι = ι̃n . By choosing ε small
enough it follows from (8.7) that N0 = K p

0 = γ−p = ε−pa and the smallness
condition (7.31) required in Theorem 7.11 holds. In addition, (6.1) holds by (8.9).
Therefore Theorem 7.11 applies, and we deduce that (5.29)–(5.32) hold for all ω
in the set �γ

n+1(ι̃n), defined in (7.61). Now we apply Theorem 5.7 to the linearized
operator Ln(ω) with �o = �

γ
n+1(ι̃n) and S = sM + b1 (cf. (8.4)). It implies that

there exists an almost-approximate inverse Tn :=Tn(ω, ι̃n(ω)) satisfying

‖Tng‖s �sM+b1 γ−2
(‖g‖s+σ + K τ1 p

0 γ−1‖ι̃n‖s+μ(b)+σ ‖g‖sM+σ
)
, ∀sM � s � sM + b1,

(8.13)

where we used that σ � σ2 (cf. (8.2)), σ2 is the loss of regularity constant appearing
in the estimate (5.45), and N0 = K p

0 . Furthermore, by (8.7)–(8.8), one obtains

K τ1 p
0 γ−1‖W̃n‖sM+μ(b)+σ � 1, (8.14)

and hence, for the special value s = sM , (8.13) becomes

‖Tng‖sM �b1 γ
−2‖g‖sM+σ . (8.15)

For all ω ∈ Gn+1 = Gn ∩�
γ
n+1(ι̃n) (cf. (8.10)), we define

Un+1 := Ũn + Hn+1, Hn+1 := (̂ιn+1, ζ̂n+1) := −�nTn�nFω(Ũn) ∈ En × R
S+ ,

(8.16)

where �n is defined by (cf. (8.1))

�n(ι, ζ ) := (�n ι, ζ ), �⊥
n (ι, ζ ) := (�⊥n ι, 0), ∀(ι, ζ ). (8.17)

To show that the iterative scheme in (8.16) is rapidly converging, we write

Fω(Un+1) = Fω(Ũn)+ LnHn+1 + Qn, (8.18)

where Ln := dι,ζFω(Ũn) and Qn is defined by (8.18). Then, by the definition of
Hn+1 in (8.16), and by taking into account (8.17), one has
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Fω(Un+1) = Fω(Ũn)− Ln�nTn�nFω(Ũn)+ Qn

= Fω(Ũn)− LnTn�nFω(Ũn)+ Ln�
⊥
n Tn�nFω(Ũn)+ Qn

= �⊥n Fω(Ũn)+ Rn + Qn + Pn (8.19)

where

Rn := Ln�
⊥
n Tn�nFω(Ũn), Pn := − (LnTn − Id)�nFω(Ũn). (8.20)

We first note that for any ω ∈ � and any s � sM one has, by (4.6), Lemma 4.3,
and (8.2) and (8.8) and using the triangle inequality,

‖Fω(Ũn)‖s �s ‖Fω(U0)‖s + ‖Fω(Ũn)− Fω(U0)‖s �s ε + ‖W̃n‖s+σ , (8.21)

and, by (8.8), (8.7), (8.11),

K τ1 p
0 γ−1‖Fω(Ũn)‖sM � 1. (8.22)

To conclude, we first need to prove the following inductive estimates of Nash–
Moser type:

Lemma 8.2. Let μ2 :=μ(b)+ 3σ + 3. Then for any ω ∈ Gn+1,

‖Fω(Un+1)‖sM �sM+b1 Kμ2−b1
n (ε + ‖W̃n‖sM+b1 )+ K 4σ+4

n ‖Fω(Ũn)‖2sM
+ εK−pa

n−1 K σ+4
n ‖Fω(Ũn)‖sM , (8.23)

‖W1‖sM+b1 �sM+b1 K 2
0 ε,

|Wn+1‖sM+b1 �sM+b1 Kμ(b)+2σ+2
n (ε + ‖W̃n‖sM+b1 ), n � 1. (8.24)

Proof of Lemma 8.2. We first estimate Hn+1, defined in (8.16).
Estimates of Hn+1. By (8.16) and (2.3), (8.13), (8.8), we get

‖Hn+1‖sM+b1 �sM+b1 γ−2
(
K σ
n ‖Fω(Ũn)‖sM+b1 + Kμ(b)+2σ

n K τ1 p
0 γ−1‖ι̃n‖sM+b1‖Fω(Ũn)‖sM

)
(8.21),(8.22)
�sM+b1 Kμ(b)+2σ

n γ−2
(
ε + ‖W̃n‖sM+b1

)
γ−1=K0�Kn

�sM+b1 Kμ(b)+2σ+2
n

(
ε + ‖W̃n‖sM+b1

)
, (8.25)

|Hn+1‖sM
(8.15)

�sM+b1 γ−2K σ
n ‖Fω(Ũn)‖sM . (8.26)

Next we estimate the terms Qn in (8.18) and Pn , Rn in (8.20) in ‖ ‖sM norm.
Estimate of Qn . By (8.8), (8.16), (2.3), (8.26), (8.11), and since χ2σ − a1 � 0
(see (8.3)), we infer that ‖W̃n + t Hn+1‖sM+σ � εγ−2K 2σ

0 for all t ∈ [0, 1]. Since
γ−1 = K0, by (8.7) we can apply Lemma 4.3 and by Taylor’s formula, using (8.18),
(4.6), (8.26), (2.3), and γ−1 = K0 � Kn , we get

‖Qn‖sM �sM+b1 ‖Hn+1‖2sM+σ �sM+b1 K 4σ+4
n ‖Fω(Ũn)‖2sM . (8.27)

Estimate of Pn . By (5.46), LnTn − Id = P(ι̃n)+Pω(ι̃n)+P⊥ω (ι̃n). Accordingly,
we decompose Pn in (8.20) as Pn = −P(1)

n − Pn,ω − P⊥n,ω, where
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P(1)
n :=�nP(ι̃n)�nFω(Ũn), Pn,ω :=�nPω(ι̃n)�nFω(Ũn),

P⊥n,ω :=�nP⊥ω (ι̃n)�nFω(Ũn).

By (2.3),

‖Fω(Ũn)‖sM+σ � ‖�nFω(Ũn)‖sM+σ + ‖�⊥n Fω(Ũn)‖sM+σ
� K σ

n (‖Fω(Ũn)‖sM + K−b1n ‖Fω(Ũn)‖sM+b1).
(8.28)

By (5.47), (8.14), (8.28), and using (8.21), (8.22), and γ−1 = K0 � Kn one obtains

‖P(1)n ‖sM �sM+b1 γ−3K 2σ
n ‖Fω(Ũn)‖sM (‖Fω(Ũn)‖sM + K−b1n ‖Fω(Ũn)‖sM+b1)

�sM+b1 K 2σ+3
n ‖Fω(Ũn)‖sM (‖Fω(Ũn)‖sM + K σ−b1

n (ε + ‖W̃n‖sM+b1))
�s0+b1 K 2σ+3

n ‖Fω(Ũn)‖2sM + K 3σ+3−b1
n (ε + ‖W̃n‖sM+b1). (8.29)

By (5.48), (8.14), (8.8), (2.3), we have

‖Pn,ω‖sM �sM+b1 εγ−4N−an−1K
σ
n ‖Fω(Ũn)‖sM

γ−1=K0�Kn

�s0+b1 εN−an−1K
σ+4
n ‖Fω(Ũn)‖sM ,

(8.30)

with a given as in (8.2). By (5.49), (2.3), (8.4), (8.11), (8.22) and by using (8.21),
γ−1 = K0 � Kn , we get

‖P⊥n,ω‖sM �sM+b1 Kμ(b)+2σ−b1
n γ−2(‖Fω(Ũn)‖sM+b1 + ε‖W̃n‖sM+b1)

�sM+b1 Kμ(b)+3σ+2−b1
n (ε + ‖W̃n‖sM+b1). (8.31)

Estimate of Rn . Since Ln = dι,ζFω(ι̃n(ω)) (cf. (8.12)), dι,ζFω(ι, ζ )[̂ι, ζ̂ ] =
ω · ∂ϕ̂ι − dιXHε

(ῐ)[̂ι] − (0, ζ̂ , 0) (cf. (5.1)), and Hε = N + Pε, one has that for
any Û = (̂ι, ζ̂ ),

LnÛ = ω · ∂ϕ̂ ι− dιXHε

(
(ϕ, 0, 0)+ ι̃n

)[̂ι] − (0, ζ̂ , 0)

(4.13)= ω · ∂ϕ̂ ι− dιXN
(
(ϕ, 0, 0)+ ι̃n

)[̂ι] − dιXPε

(
(ϕ, 0, 0)+ ι̃n

)[̂ι] − (0, ζ̂ , 0)
(8.32)

where by (4.13), dιXN
(
(ϕ, 0, 0)+ ι̃n

)[̂ι] = (−�kdv
S+ (ν)[̂y], 0, ∂x�kdv(D; ν)[ŵ]).

By the estimate of dιXPε
of Lemma 4.3, one then obtains ‖LnÛ‖sM � ‖Û‖sM+σ .

Using (8.20), (8.13), (8.8), (2.3) and then (8.14), (8.21), (8.22), γ−1 = K0 � Kn ,
we get

‖Rn‖sM �sM+b1 Kμ(b)+3σ+2−b1
n (ε + ‖W̃n‖sM+b1). (8.33)

Estimate ofFω(Un+1). By (8.19), (2.3), (8.21), (8.27), (8.29)–(8.31), (8.33), (8.8),
we get (8.23). Estimate of W1 = H1. By (8.16) and (8.13) one has

‖W1‖sM+b1 = ‖H1‖sM+b1 �sM+b1 γ−2‖Fω(U0)‖sM+b1+σ�sM+b1 εγ−2
γ−1=K0

� K 2
0 ε

implying the first estimate in (8.24).
Estimate of Wn+1 = W̃n + Hn+1, n � 1. The claimed estimates for Wn+1 in
(8.24) follows by (8.25). ��
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By Lemma 8.2 we get the following lemma, where for clarity wewrite ‖·‖Lip(γ )s
instead of ‖ · ‖s as above:
Lemma 8.3. For any ω ∈ Gn+1, n ≥ 0,

‖Fω(Un+1)‖Lip(γ )sM � C∗εK−a1n , ‖Wn+1‖Lip(γ )sM+b1 � C∗Kμ1
n ε, (8.34)

‖H1‖Lip(γ )sM+μ(b)+σ � εγ−2, ‖Hn+1‖Lip(γ )sM+μ(b)+σ � εγ−2Kμ(b)+2σ
n K−a1n−1 , (n � 1).

(8.35)

Proof of Lemma 8.3. First note that, by (8.10), Gn+1 ⊂ Gn and so for any ω ∈
Gn+1 (8.11) and the inequality in (P3)n holds. Then the first inequality in (8.34)
follows by (8.23), (P2)n , (P3)n , γ−1 = K0 � Kn , and by (8.3)–(8.6). For n = 0
we use also (8.7). Concerning the second inequality in (8.34), note that for n = 0,
the inequality follows directly from the bound for W1 in (8.24) since μ1 � 2 (cf.
(8.4)) and C∗ > 0 is chosen large enough; the second inequality in (8.34) for
n � 1 is proved inductively by taking (8.24), (P3)n , and the choice of μ1 in (8.4)
into account and by choosing K0 = ε−a large enough (that is, ε small enough).
Since H1 = W1, the first inequality in (8.35) follows since ‖H1‖sM+μ(b)+σ �
γ−2‖Fω(U0)‖sM+μ(b)+2σ � εγ−2. If n � 1, estimate (8.35) follows by (2.3),
(8.26) and (8.11). ��

We are now in a position to finish the proof of Theorem 8.1. Denote by H̃n+1
the Lip(γ )-extension of (Hn+1)|Gn+1 to the whole set � of parameters, provided
by the Kirszbraun theorem. Then H̃n+1 satisfies the same bound as Hn+1 in (8.35)
and therefore, by the definition of a2 in (8.3), the estimate (8.9) holds at n + 1.

Finally we define W̃n+1 := W̃n + H̃n+1 and Ũn+1 := Ũn + H̃n+1, which both
are defined for all ω ∈ �. Note that

Ũn+1 = U0 + W̃n + H̃n+1 = U0 + W̃n+1

and that for any ω ∈ Gn+1, W̃n+1 = Wn+1, Ũn+1 = Un+1. Hence (P2)n+1,
(P3)n+1 follow from Lemma 8.3. Moreover by (8.9), which at this point has been
proved up to the step n + 1, we have

‖W̃n+1‖Lip(γ )sM+μ(b)+σ �
∑n+1

k=1‖H̃k‖Lip(γ )sM+μ(b)+σ � C∗εγ−2

and thus also (8.8) holds at the step n + 1. This completes the proof of
Theorem 8.1. ��
Corollary 8.4. Let γ = εa with a ∈ (0, a0), a0 := 1/τ2 with τ2 defined as in (8.7),
and K0 = 1/γ . Then there is ε0 > 0 so that for any 0 < ε ≤ ε0 the following
holds:

(i) there exists a function U∞(ω) = (ῐ∞(ω), ζ∞(ω)), ω ∈ �, satisfying

‖U∞ −U0‖Lip(γ )s̄ � εγ−2, ‖U∞ − Ũn‖Lip(γ )s̄ � εγ−2K−a2n , n � 1,

(8.36)

where s̄ := sM +μ(b)+σ (with sM, μ(b), σ fixed in (2.55), (7.6), and respec-
tively, (8.2));
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(ii) for any ω in the set

�ε :=
⋂
n�0

Gn = G0 ∩
⋂
n�1

�
γ
n+1(ι̃n−1)

(7.61)= G0 ∩
[ ⋂
n�1

!
γ
n (ι̃n−1)

]
∩
[ ⋂
n�1

�
γ
n (ι̃n−1)

]
,

(8.37)

the torus embedding ῐω(ϕ) solves (4.12).

Proof. For any 0 < ε ≤ ε0 with ε0 small enough, the smallness condition
εK τ2

0 < δ0 in (8.7) holds and Theorem 8.1 applies. By Theorem 8.1-(P1)n the
sequence (Ũn)n≥1 converges as n → ∞ to a function U∞(ω), satisfying (8.36).
By Theorem 8.1-(P2)n , for any ω ∈ �ε, we have that Fω(U∞(ω)) = 0. Formula
(5.5) implies that ζ∞(ω) = 0 for any ω ∈ �ε and item (ii) is proved. ��

In order to complete the proof of Theorem 4.1 it only remains to establish the
measure estimate (4.10).

8.2. Measure Estimates

The measure estimate (4.10) of Theorem 4.1 for the subset �ε = ∩n�0Gn
defined in (8.37) of nonresonant frequency vectors will be deduced from the mea-
sure estimate of Proposition 8.7, using that by Lemmas 8.5 and 8.6, the set � \�ε

is included in � \�γ∞, where �γ∞ is introduced in Lemma 8.6. The main result of
this section is Proposition 8.7. In all of this section, the assumptions of Theorem 8.1
hold with the constants given as in (8.2)–(8.7) .

In order to prove Lemmata 8.5 and 8.6, we first recall that by (8.10), G0 = �

and for n ≥ 1, Gn :=Gn−1 ∩ �
γ
n (ι̃n−1) where �

γ
n (ι) = �

γ
n (ι) ∩!γ

n (ι) (cf. (7.61),
(7.18), (7.58)).

Lemma 8.5. For any n ≥ 0, the set

G∞ :=G0 ∩
[ ⋂
n�1

�
2γ
n (ι∞)

]
∩
[ ⋂
n�1

!
2γ
n (ι∞)

]
(8.38)

is contained in Gn and hence G∞ ⊆⋂n�0 Gn.

Proof. We apply the inclusion property (7.28). By (8.36), (5.27), we have, for any
n � 2,

C(S)N τ
n−1‖ι∞ − ι̃n−1‖sM+μ(b)+σ � C(S)CK pτ−a2

n−1 εγ−2 � γ

taking ε small enough, by (8.7) and using a2 � pτ (see (8.3)). For n = 1, one
also has C(S)N τ

0 ‖ι∞ − ι̃0‖sM+μ(b)+σ � γ using the first inequality in (8.36) and
recalling that K0 = γ−1, γ = εa and 1− a(3+ τp) > 0 (indeed a = 1/τ2 where
τ2 is defined in (8.7) and we take τ̄ > τ large enough, see Theorem 7.2). Recall
also that S = sM + b1 has been fixed in (8.4). Therefore (7.28) in Theorem 7.2-
(S3)ν gives �

2γ
n (ι∞) ⊆ �

γ
n (ι̃n−1), ∀n � 1. By similar arguments we deduce that

!
2γ
n (ι∞) ⊆ !

γ
n (ι̃n−1), and the lemma is proved. ��
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By Theorem 7.2-(S2)n , it follows that for any j ∈ S
⊥, μ̃n

j : �→ R, n ≥ 0, is

a Cauchy sequence with respect to the norm | · |Lip(γ ). We denote its limit by μ∞j ,

μ∞j := lim
n→∞ μ̃n

j (ι∞), μ̃n
j (ι∞) ≡ μ̃n

j (ω; ι∞), j ∈ S
⊥. (8.39)

By Theorem 7.2 one has for any j ∈ S
⊥,

μ∞− j = −μ∞j , |μ∞j − μ̃n
j (ι∞)|Lip(γ ) � εγ−2N−an−1, n � 0. (8.40)

Lemma 8.6. The set �γ∞ is contained in G∞ where G∞ is defined in (8.38) and

�
γ∞ :=

{
ω ∈ DC(4γ, τ) : |ω · 
+ μ∞j − μ∞j ′ | �

4γ | j3 − j ′3|
〈
〉τ , ∀(
, j, j ′) ∈ Z

S+ × S
⊥ × S

⊥,

|ω · 
+ μ∞j | �
4γ | j |3
〈
〉τ , ∀(
, j) ∈ Z

S+ × S
⊥}. (8.41)

Proof. We have to verify that �γ∞ is contained in each subset on the right hand

side of (8.38). Since by (4.4), DC(4γ, τ ) ⊆ � one has that �γ∞ ⊆ �
(8.10)= G0.

Next we prove that �γ∞ ⊆ �
2γ
n (ι∞), ∀n � 1. We argue by induction. Assume

that �γ∞ ⊆ �
2γ
n (ι∞) for some n � 1. For all ω ∈ �

γ∞ ⊆ �
2γ
n (ι∞), by (7.16),

(8.39), (8.40), we get |(μ̃n
j − μ̃n

j ′)(ι∞)− (μ∞j −μ∞j ′ )| � Cεγ−2N−an−1. Therefore,
let (
, j, j ′) ∈ Z

S+ × S
⊥ × S

⊥, |
| � Nn with (
, j, j ′) 
= (0, j, j) (recall (8.41)).
If j = j ′, then 
 
= 0 and since �γ∞ ⊆ DC(4γ, τ ) we have

|ω · 
+ μ̃n
j (ι∞)− μ̃n

j ′(ι∞)| = |ω · 
| � 4γ 〈
〉−τ .
In case j 
= j ′, one has

|ω · 
+ μ̃n
j (ι∞)− μ̃n

j ′(ι∞)| � |ω · 
+ μ∞j − μ∞j ′ | − Cεγ−2N−an−1

� 4γ | j3 − j ′3|
〈
〉τ − Cεγ−2N−an−1 � 2γ | j3 − j ′3|

〈
〉τ ,

provided 1
2Cεγ

−3N−an−1N τ
n � 1 (note that since j 
= j ′, | j3− j ′3| � 1). The latter

condition is fullfilled by (7.6), (8.7), by taking τ̄ > τ large enough. In conclusion
we have proved that �γ∞ ⊆ �

2γ
n+1(ι∞). Similarly we prove that �γ∞ ⊆ !

2γ
n (ι∞)

for all n � 1. ��
In view of Lemmata 8.5 and 8.6, it suffices to estimate the Lebesgue measure

|� \�γ∞| of � \�γ∞ instead of the one of � \⋂n�0 Gn .

Proposition 8.7. (Measure estimates) Let τ > |S+| + 2. Then there is a ∈ (0, 1)
so that for εγ−3 sufficiently small, one has |� \�γ∞| � γ a.

Proof. By (8.41), we have

� \�γ∞ = � \ DC(4γ, τ) ∪
⋃

(
, j, j ′)∈ZS+×S⊥×S⊥,(
, j, j ′) 
=(0, j, j)
R
, j, j ′ ∪

⋃
(
, j)∈ZS+×S⊥

Q
, j

(8.42)
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where R
, j, j ′ , Q
, j denote the ’resonant’ sets

R
, j, j ′ :=
{
ω ∈ DC(4γ, τ ) : |ω · 
+ μ∞j − μ∞j ′ | <

4γ | j3 − j ′3|
〈
〉τ

}
,

Q
, j :=
{
ω ∈ DC(4γ, τ ) : |ω · 
+ μ∞j | <

4γ | j |3
〈
〉τ

}
.

Note that R
, j, j = ∅. Furthermore, it is well known that |� \ DC(4γ, τ )| � γ .
In order to prove Proposition 8.7 we shall use the following asymptotic properties
of μ∞j (ω). For any ω in DC(4γ, τ ), we have μ̃0

j (ι∞) = μ0
j (ι∞) (for simplicity

μ0
j (ι∞) ≡ μ0

j (ω; ι∞)) and we write μ∞j (ω) = μ0
j (ι∞)+ r∞j (ω), where by (7.2)

μ0
j (ι∞) = m∞3 (ω)(2π j)3 − m∞1 (ω)2π j − q j (ω), m∞3 :=m3(ι∞), m∞1 :=m1(ι∞).

On DC(4γ, τ ), the following estimates hold:

|m∞3 + 1|Lip(γ )
(6.20)
� ε, |m∞1 |Lip(γ )

(6.68)
� εγ−2,

sup
j∈S⊥

| j ||q j |sup, sup
j∈S⊥

| j ||q j |lip
(7.4)
� 1, |r∞j |Lip(γ )

(8.40)
� εγ−2.

(8.43)

From the latter estimates one infers the following standard lemma see [2, Lemma
5.3]). ��
Lemma 8.8. (i) If R
, j, j ′ 
= ∅, then | j3 − j ′3| � C〈
〉 for some C > 0. In

particular one has j2 + j ′2 � C〈
〉.
(ii) If Q
, j 
= ∅, then | j |3 � C〈
〉 for some C > 0.

Lemma 8.8 can be used to estimate |R
, j, j ′ | and |Q
, j | for |
| sufficiently large.
Lemma 8.9. (i) If R
, j, j ′ 
= ∅, then there exists C1 > 0 with the following prop-

erty: if |
| � C1, then |R
, j, j ′ | � γ | j3 − j ′3|〈
〉−(τ+1).
(ii) If Q
, j 
= ∅, then there exists C1 > 0 with the following property: if |
| � C1,

then |Q
, j | � γ | j |3〈
〉−(τ+1).
Proof of Lemma 8.9. We only prove item (i) since item (ii) can be proved in a
similar way. Assume thatR
, j, j ′ 
= ∅. Let ω̄ such that ω̄ · 
 = 0 and introduce the
real valued function s �→ φ
, j,k(s),

φ
, j, j ′(s) := f
, j, j ′
(
ω̄ + s




|
|
)
, f
, j, j ′(ω) :=ω · 
+ μ∞j (ω)− μ∞j ′ (ω).

Using that by Lemma 8.8, | j3 − j ′3| � C〈
〉, one infers from (8.43) that for εγ−2
small enough and |
| � C1 with C1 large enough, |φ
, j, j ′(s2) − φ
, j, j ′(s1)| �
|
|
2 |s2 − s1|. Since DC(4γ, τ ) ⊆ � is bounded one sees by standard arguments that∣∣{s ∈ R : ω̄+ s 


|
| ∈ R
, j, j ′
}∣∣ � γ | j3− j ′3|〈
〉−(τ+1). The claimed estimate then

follows by applying Fubini’s theorem. ��
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It remains to estimate the Lebesgue measure of the resonant sets R
, j, j ′ and
Q
, j for |
| � C1.

Lemma 8.10. Assume that |
| � C1 and that εγ−3 is small enough. Then the
following holds:

(i) IfR
, j, j ′ 
= ∅, then there are constants a ∈ (0, 1) and C2 > 0 so that | j |, | j ′| �
C2 and |R
, j, j ′ | � γ a.

(ii) If Q
, j 
= ∅ then there are constants a ∈ (0, 1) and C2 > 0 so that | j | � C2
and |Q
, j | � γ a.

Proof of Lemma 8.10. We only prove item (i) since item (ii) can be proved in a
similar way. If |
| � C1 and R
, j, j ′ 
= ∅, Lemma 8.8-(i) implies that there is a
constant C2 such that | j |, | j ′| � j2 + j ′2 � C2. For εγ−3 small enough one sees,
using (8.43), the definition (7.2) of μ0

j , and the bounds |
| � C1, | j |, | j ′| � C2,

that |μ∞j − ωkdv
j | � εγ−2 � γ , implying that for some constant C3 > 0,

R
, j, j ′ ⊂
{
ω ∈ � : |ω · 
+ ωkdv

j (ν(ω), 0)− ωkdv
j ′ (ν(ω), 0)| � C3γ

}
.(8.44)

By Lemma 3.9, the function ω �→ ω · 
 + ωkdv
j (ν(ω), 0) − ωkdv

j ′ (ν(ω), 0) is real
analytic and not identically zero. Hence by the Weierstrass preparation theorem
(cf. the proof of Proposition 3.1 in [11]), we deduce that the measure of the set on
the right hand side of (8.44) is smaller than γ a for some a ∈ (0, 1) and γ small
enough. ��

We are now in position to finish the proof of Proposition 8.7. By (8.42) and
Lemmata 8.9–8.10 we have

|� \�γ∞| � γ a + γ
∑

|
|�C1,| j |,| j ′|�C〈
〉
〈
〉−τ � γ a,

where we used the assumption that τ − 2 > |S+|. ��

8.3. Proofs of Theorems 4.1 and 1.1

In this section, we complete the proof of Theorem 4.1 and then derive from it
Theorem 1.1.

Proof of Theorem 4.1. In viewofCorollary 8.4-(ii) for anyω ∈ �ε, the embedded
torus ῐω(TS+) is invariant under the flow of the Hamiltonian vector field XHε(·,ν)
and is filled by quasi-periodic solutions with frequency ω = −ωkdv(ν). The bound
(4.11) follows by (8.36). The linear stability of the quasi-periodic solution ῐω(ωt)
follows by standard arguments as in [1,3,10] since for any ω ∈ ∩n�0�

γ
n (ι∞) (cf.

(7.30)) we obtain by Theorem 7.3 the complete diagonalization of L0(ι∞). It thus
remains to prove the measure estimate (4.10) of Theorem 4.1. Since by Lemma 8.5
one has G∞ ⊂ �ε and by Lemma 8.6,�γ∞ ⊆ G∞ the claimed estimates of |�\�ε|
in (4.10) follow from the estimates of |� \�γ∞| established in Proposition 8.7. ��
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Proof of Theorem 1.1. Theorem 1.1 is in fact a reformulation of Theorem 4.1.
Choose s̄, ε0, and�ε, 0 < ε ≤ ε0, as in Theorem 4.1. Using that−ωkdv : �→ �,

ν �→ −ωkdv(ν), is a diffeomorphism (cf. (1.13)), we define for any 0 < ε ≤ ε0 the
set

�ε :=
{
ν ∈ � : ν = (ωkdv)−1(−ω), ω ∈ �ε

}
.

By Theorem 4.1, for any ν ∈ �ε, there exists a torus embedding with lift ῐω :
R
S+ → R

S+ × R
S+ × Hs̄⊥(T1) of the form ῐω(ϕ) = (ϕ, 0, 0) + ιω(ϕ) and ω ≡

ωε(ν) = −ωkdv(ν), satisfying (cf. (4.11))

‖ιω‖s̄ = O(εγ−2), γ = εa, 0 < a" 1, (8.45)

so that ῐω(ωt) is a linearly stable, quasi-periodic solution of (4.1). By the measure
estimate (4.10) one has limε→0 |�\�ε| = 0, which proves (1.16). By the definition
of the symplectic diffeomorphism	ν (cf. Theorem3.2) and the one ofHε (cf. (4.2)),
it then follows that

uε(ωt, x; ν) :=	ν

(
(ωt, 0, 0)+ ιω(ωt)

)
(8.46)

is a quasi-periodic solution of the perturbed KdV equation (1.6). Furthermore, by
(3.8) in Theorem 3.2 and (3.5), the finite gap solution t �→ q(ωt, x; ν) of the KdV
equation (1.1) (cf. (1.10)) satisfies

q(ωt, x; ν) = 	ν(ωt, 0, 0). (8.47)

It then follows from (8.45)–(8.47) that ‖uε(·, · ; ν) − q(·, · ; ν)‖s̄ � ε1−b with
b = 2a, proving (1.17). ��
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