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Abstract

By employing the method of moving planes in a novel way we extend some
classical symmetry and rigidity results for smooth minimal surfaces to surfaces that
have singularities of the sort typically observed in soap films.

1. Introduction

1.1. Overview

Minimal surfaces in R
3 provide the standard mathematical model of soap films

at equilibrium. Nevertheless, there is a historical mismatch between the classical
theory of minimal surfaces, which focuses on smooth immersions with vanishing
mean curvature, and the richer structures documented experimentally since the
pioneering work of Plateau [26]. Indeed, two types of singular points are observed
in soap films, called Y and T points; see Fig. 2 below.We call the surfaces described
in experiments minimal Plateau surfaces and ask:

To what extent may the classical theory of minimal surfaces be generalized to
minimal Plateau surfaces and what new conclusions may be drawn?

This paper studies this question in themodel case provided bySchoen’s rigidity
theorem for catenoids [34], a (classical) minimal surface in R

3 spanning two
parallel circles with centers on the same axis has rotational symmetry about this
axis and so is either a pair of flat disks or a subset of a catenoid. Schoen’s theorem
is an interesting model case for two reasons: (i) its extension to minimal Plateau
surfaces requires the inclusion of new cases of rigidity, given by singular catenoids;
(ii) Schoen’s proof uses Alexandrov’s method of moving planes [2], which has
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Fig. 1. Two parallel circles with same radii lying at a sufficiently small distance span exactly
three smooth minimal surfaces: a pair of disks, a “fat” catenoid (which is stable) and a
“skinny” catenoid (which is unstable). The same circles span five minimal Plateau surfaces,
the two new cases being defined by a pair of “singular” Y -catenoids

been almost exclusively applied in the smooth setting: thus its adaptation to a class
containing singular surfaces is notable. The only other application of the moving
planes method in a non-smooth setting that we are aware of is the recent work
[7,16]. However, in that work a posteriori regularity is derived from the moving
planesmethod despite allowing a priori singularities. This is unlike our applications
in which genuinely singular surfaces are symmetric examples; see Fig. 1.

This introduction is organized as follows: in Sect. 1.2 we recall the rigidity
theorems from [34]. In Sects. 1.3 and 1.4 we define Plateau surfaces and introduce
a notion of orientability for them, thatwe call the cell structure condition. In Sect. 1.5
we state our main results, which extend Schoen’s rigidity theorems to minimal
Plateau surfaces. Finally, in Sects. 1.6 and 1.7 we discuss further the physical and
mathematical motivations for Plateau surfaces and situate them within the more
general frameworks provided by geometric measure theory.

1.2. Schoen’s Rigidity Theorems

The first rigidity theorem proved in [34] states that a minimal immersion of a
compact connected surface with boundary consisting of a pair of coaxial circles in
parallel planes is, up to rigid motion and dilation, a piece of the catenoid. Here the
catenoid is the minimal surface

Cat =
{

x21 + x22 = cosh2 x3
}

.

The second rigidity theorem is more global in nature, and says that, up to rigid
motion and dilation, any complete minimal immersion that has two regular ends,
must either be a catenoid or a pair of planes. This means each end is modeled on
either a catenoidal or planar end—see Definition 4.1. In both rigidity theorems the
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hypotheses that the minimal surface be an immersion is essential, as can be seen
by the example of the Y-catenoid,

CatY =
{

x21 + x22 = cosh2(|x3| + h0)
} ⋃{

3(x21 + x22 ) ≤ 4, x3 = 0
}

(where h0 = log(3)/2 is the unique solution to sinh h0 = 1/
√
3). Indeed, CatY is

minimal both in a distributional sense (that is, as a stationary 2-dimensional varifold
in R

3) and is the prototypical example of what we call a minimal Plateau surface.

1.3. Plateau Surfaces

Let K a family of cones in R
3 with vertex the origin such that if K1, K2 ∈ K

and K1 �= K2 then K1 �= R(K2) for every isometry R of R
3, and such that

{P, H} ⊂ K,

where P = {x3 = 0} is a plane and H = {x3 = 0, x1 ≥ 0} a half-plane. In partic-
ular, if K ∈ K\{P, H}, then K is neither a plane nor a half-plane. Given U ⊂ R

3

open, a closed subset � ⊂ U is a K-surface in U if, for some α ∈ (0, 1)
and for all p ∈ � ∩ U , there are r > 0 and a C1,α-regular diffeomorphism
φ : Br (p) ⊂ U → R

3 so that φ(� ∩ Br (p)) ∈ K and Dφp ∈ O(3), i.e., Dφp is
an orthogonal linear transformation. The element of K corresponding to p ∈ � is
unique and is denoted by

T̂p� ∈ K.

The tangent cone of � at p, denoted Tp�, is defined by Dφp
(
Tp�

) = T̂p�.
Clearly, Tp� = limρ→0+(� − p)/ρ where the limit is in the pointed Hausdorff
sense.

For each K ∈ K, we let �K = {p ∈ � ∩U : T̂p� = K }. Correspondingly, we
identify the sets of interior points int(�) = �P , of boundary points ∂� = �H ,
of regular points reg(�) = int(�) ∪ ∂�, and of singular points sing(�) =
�\reg(�). By construction, an Hölder continuous vector field νco� of outer unit
conormals to � can be defined along ∂�. When sing(�) = ∅, the notion of K-
surface reduces to that of regular surface (with boundary and of class C1,α) in
U .

A (relatively) closed subset � ⊂ U , in an open subset U ⊂ R
3, is a Plateau

surface in U if: (a) � is a K-surface in U for

K = {P, H, Y, T } , (1.1)

where Y = H ∪ H120 ∪ H−120 (and Hθ is the rotation of H by θ -degrees about
the x2-axis), and T is the cone over the edges of a reference regular tetrahedron
centered at the origin, see

Figure 2; (b) each connected component of int(�) has (weak) constant mean
curvature. If int(�) has zero mean curvature, then� is a minimal Plateau surface
in U . When �T = ∅, one calls � a Y -surface.
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Fig. 2. The model Y and T cones in K. Here H = {x3 = 0, x1 ≥ 0} and Hθ is obtained by
rotating H around the x2-axis by θ -degrees

Remark 1.1. If � is a Plateau surface, then �\(∂� ∪ �T ) admits smooth (in fact
real-analytic) charts. Indeed, standard elliptic regularity ensures the smoothness of
any C1,α-graph whose mean curvature is constant in a weak sense and so int(�)

consists of smooth surfaces. Furthermore, a work of Kinderleher, Nirenberg and
Spruck [20, Theorem 5.2] implies that each component of �Y is a smooth curve.

1.4. Orientability of Plateau Surfaces

We introduce a notion of orientability in the Plateau setting that generalizes
the notion of a regular surface separating an ambient three-manifold. A Plateau
surface� defines a cell structure inU ⊂ R

3 open, if there exists a family of open,
connected sets C(�) = {

Ui : 1 ≤ i ≤ N
}
, called the cells of �, such that

∂� ⊂ ∂U , U\� =
N⋃

i=1

Ui (1.2)

and, for each p ∈ � ∩ U = �\∂� there is a ρ > 0 so Bρ(p) ⊂ U and, for each
0 < ρ′ < ρ and i = 1, . . . , N , Bρ′(p) ∩ Ui is connected (possibly empty).

Clearly, Cat defines a cell structure in R
3 with two cells while CatY defines a

cell structure in R
3 with three cells. An example of a surface not defining a cell

structure is illustrated in Fig. 3b. A connected regular surface defines a cell structure
in U when it is separating in U . Observe that the tetrahedral cone T ⊂ R

3 defines
a cell structure in R

3 but is not a flat chain mod 3.

1.5. Schoen’s Rigidity Theorems for Plateau Surfaces

Let us recall some notation and terminology from [34]. A set � ⊂ R
3 is a

graph if π |� : � → R
2 is one-to-one, where π : R

3 → R
2 is the projection

π((y, x3)) = y. We say that � is a graph of locally bounded slope if it is a
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Fig. 3. Illustrations of the definition ofminimal Plateau bi-graph: a a regularminimal Plateau
bi-graph that is not simple; b a non-simple minimal Plateau bi-graph � with non-trivial
singular set; notice that in this case
1 is not part of�, but
2 ⊂ �, with ∂
2 = sing(�) =
�Y

graph and there exists a (one- or two-dimensional) C1-submanifold σ of R
3 such

that � = σ̄ and such that Tpσ is transverse to e3 for each p ∈ σ – for example,
� = {x3 ≥ 0 , x21 + x22 + x23 = 1} and � = {x3 ≥ 0 , x2 = 0 , x21 + x23 = 1} are
both graphs of locally bounded slope.

Given an open subset 
 ⊂ R
2, let

C
 = {(y, z) : y ∈ 
} ⊂ R
3

be the cylinder over 
. A minimal Plateau bi-graph over 
 is a (not necessarily
connected) minimal Plateau surface, �, satisfying � ⊂ C̄
, ∂� = � ∩ ∂C
, and
so

�0+ = � ∩ {x3 ≥ 0} and �0− = � ∩ {x3 ≤ 0} ,

are both graphs of locally bounded slope; see
Figure 3. Clearly, such � must have �T = ∅, �Y ⊂ {x3 = 0}, and if p ∈ �Y ,

then the spine of Tp� is contained in {x3 = 0}. If, in addition, � ∩ {x3 = 0} is
empty or is the boundary of a single topological disk contained in {x3 = 0}, then�

is simple. For instance, Cat∩ C̄BR , {|x3| = 1} ∩ C̄R and CatY ∩ C̄BR are all simple
minimal Plateau bi-graphs for appropriate R. Simple minimal Plateau bi-graphs
define a cell structure in C
, but this is not necessarily the case when � is not
simple; see Fig. 3b.

Our extension of Schoen’s first rigidity result to the Plateau setting is as follows:

Theorem 1.2. Let 
 ⊂ R
2 be a bounded, open convex set with C1-boundary, and

let � be a compact, minimal Plateau surface in R
3 with

∂� = (∂
) × {1,−1}.
If � defines a cell structure in U = {|x3| < 1}, then � is a simple minimal Plateau
bi-graph, which is symmetric by reflection through {x3 = 0}. Moreover, if 
 is the
interior of a circle, then � is either a union of two disks, or, up to translation and
dilation, is a subset of Cat or of CatY .
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Remark 1.3. Unlike Schoen’s first result, our proof does not apply to arbitrary pairs
of coaxial circles. However, we expect the more general result is also true.

We also obtain an analog of Schoen’s second rigidity theorem. Namely, global
rigidity and symmetry for minimal Plateau surfaces with two regular ends that are
subject to the same orientability condition used in the previous theorem. The precise
definition of regular end is given later on in Definition 4.1.

Theorem 1.4. Let � be a minimal Plateau surface that defines a cell structure in
R
3. If there is an R0 > 0 so that �\BR0 has two regular ends, then, up to a rigid

motion and dilation, � is either a pair of planes, a catenoid or a Y -catenoid.

Remark 1.5. It is unclear whether the assumption that the minimal Plateau surfaces
define cell structures in Theorems 1.2 and 1.4 are necessary or just a technical
hypothesis needed for our proof. This point is further discussed in Sect. 5.

1.6. Physical and Mathematical Motivation

The physical motivation for the notion of Plateau surface proposed in this paper
lies in the celebrated Plateau’s laws, which are empirical observations about the
geometric structure of soap films. Plateau’s laws state that soap films at equilibrium
are arranged into smooth surfaces with constant mean curvature, meeting in threes
along edges at 120◦ degrees angles; and that these edges meet in four at vertex
points, and they do so at the angles defined by the skeleton of a regular tetrahedron.
The definition given in Sect. 1.3 simply captures, in exact mathematical terms,
all the features listed in Plateau’s laws—as explained in Remark 1.1, the C1,α-
regularity requirement is purely technical. Thus Plateau surfaces match Plateau’s
description of soap films arising in clusters of soap bubbles, while minimal Plateau
surfaces correspond to soap films spanning a fixed “wire frame".

The mathematical justification for our definition of Plateau surface is given
by Taylor’s theorem [40]. Indeed, Taylor proved that if U ⊂ R

3 is open, � is a
relatively compact and rectifiable set in U , � = U ∩ spt(H2��), and, for some
α > 2,

H2(�) ≤ H2(ϕ(�)) + C rα (1.3)

whenever {ϕ �= id} ⊂ Br (x) ⊂⊂ U , x ∈ � and Lipϕ < ∞, then, in our
terminology, � is a K-surface without boundary in U where K is as in (1.1).
Moreover, when C = 0, � is a minimal Plateau surface.

The significance of Taylor’s theorem is that it explains the (interior) singular-
ities observed by Plateau solely in terms of the geometric calculus of variations.
Various “non-distributional approaches to Plateau’s problem” have been proposed
to show the existence of compact sets � satisfying (1.3) with C = 0 and with U
given by the complement of a compact “wire frame”: these include, at least, Reifen-
berg’s approach of homological spanning conditions, the Harrison-Pugh approach
of homotopic spanning conditions, and David’s notion of sliding minimizers; see
[8–10,13,15,18,19,29–31] and other related papers. These approaches provide rig-
orous constructions ofmanyminimal Plateau surfaces—-though care has to be taken
at the boundary; see below.
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1.7. Rigidity Theorems in More General Non-smooth Settings

Plateau surfaces provide an interesting “semi-classical” setting for extending
the theory of minimal surfaces. The same goal could however be pursued in even
more general settings—specifically those provided by geometric measure theory
(GMT). There are two major motivations for this.

First of all, the two-dimensional area minimizing surfaces in R
3 constructed

by the non-distributional approaches to Plateau’s problem mentioned above (e.g.,
[8,10,18,29]), as well as those found in distributional approaches (e.g., flat chains
modulo 3 [39]), may possess boundary singularities. This is not a purely theoretical
issue as boundary singularities are also observed in physical soap films. Thus, it
is natural to consider a more general notion of Plateau surface where boundary
behavior is not modeled only by the half-plane H , but by more general cones. In
particular, Plateau surfaces as introduced here should be properly understood as
“Plateau surfaces with regular boundary”. A list of possible boundary singularities
is described in [21, Section 5.2 and Figure 5.3], although not all the examples in
that list are likely to be locally area minimizing (i.e., physical), and so it is unclear
what the correct modification of the definition adopted in this paper should be. By
working in the language of GMT one sidesteps this difficulty by working in a class
large enough to encompass all possible boundary singularities.

Secondly, GMT provides powerful compactness theorems which, in turn, allow
one to turn rigidity theorems like Theorem 1.2 into interesting perturbative results.
For instance, in the case of the volume-preservingmean curvature flow, a characteri-
zation of equilibrium states requires the generalization of the classical Alexandrov’s
theorem (smooth boundarieswith constantmean curvature enclosing finite volumes
are spheres [2]) to the class of sets of finite perimeter and finite volume with con-
stant distributional mean curvature; see [11]. In a similar vein, Theorem 1.2 could
be used to understand the long time behavior of (singular) mean curvature flows
with fixed boundary given by two parallel convex curves; see [37].

With these motivations in mind, in the follow-up paper [5] we extend the reach
of our rigidity theorems from minimal Plateau surfaces to an appropriate class of
stationary varifolds.

1.8. Organization of the Paper

In Sect. 2 we present the key technical statement of the paper, Theorem 2.5.
Sections 3 and 4 contain, respectively, the proofs of Theorems 1.2 and 1.4, while
in Sect. 5 we collect some open questions.

2. Moving Planes for Minimal Plateau Surfaces in a Cylinder

In Sect. 2.1 we prove a removable singularity result and a unique continuation
principle for minimal Plateau surfaces and record a simple observation about the
infinitesimal structure of cellular surfaces. In Sect. 2.2 we provide conditions so
an infinitesimal reflection symmetry in a minimal Plateau surface propagates to a
global symmetry. Finally, in Sect. 2.3 we present themainmoving planes argument.



1184 J. Bernstein, F. Maggi

For future extensions to varifolds—see [5]—the results of this section will
be proved for a more general class of surfaces than minimal Plateau surfaces.
Specifically, we consider a closed set, �, that is a minimal Plateau surface away
from a discrete set, Q, of potentially exotic singularities. We show that, under
certain natural conditions on these singularities, neither they nor T -points occur in
the region in which the moving planes method applies – i.e., � is a Y -surface in
this region. More precisely, we require that, at the points of Q,� has upper density
strictly less than 2. Here the upper density of � at p is defined to be

̄(�, p) = lim sup
r→0+

H2(� ∩ Br (p))

πr2
.

When the usual limit exists, we denote it by (�, p) and call it the density of �

at p. If � is a minimal Plateau surface in a neighborhood of p, then ̄(�, p) < 2
as

(�, p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1/2 , ifp ∈ ∂� ,

1 , ifp ∈ int(�) ,

3/2 , ifp ∈ �Y ,

6

2π
arccos

(
− 1/3

)
≈ 1.82 , if p ∈ �T .

(2.1)

2.1. Removable Singularities and Unique Continuation

We first prove a removable singularities result for minimal Plateau surfaces, see
Lemma 2.1. The starting point is the observation that, if � is a minimal Plateau
surface in U , then, for any X ∈ C1

c (U ; R
3),

∫

reg(�)

div � X dH2 =
∫

∂�

X · νco� dH1. (2.2)

In particular, the multiplicity one rectifiable varifold V� defined by � is stationary
in U\∂�.

To prove (2.2), we notice that if S is a connected component of int(�), then
S is a surface with boundary in the open set U\�T , with int(S) = S and ∂S =
[S ∩ �Y ] ∪ [S ∩ ∂�]. Moreover, at each p ∈ S ∩ �T , S is locally diffeomorphic to
a planar angular sector (isometric to one of the six angular sectors forming T ), so
that the classical proof of the tangential divergence theorem can be easily adapted
to S. We thus have that, for every X ∈ C1

c (U ; R
3),

∫

S
div S X dH2 =

∫

∂S
X · νco

S
dH1 =

∫

�Y ∩∂S
X · νco

S
dH1 +

∫

∂�∩∂S
X · νco

S
dH1.

Since int(�) has locally inU finitelymany connected components, the familyS(X)

of those components S of int(�) such that S ∩ sptX �= ∅ is finite. We thus find

∑
S∈S(X)

∫

S
div S X dH2 =

∫

int(�)

div � X dH2 =
∫

reg(�)

div � X dH2 ,
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∑
S∈S(X)

∫

∂�∩∂S
X · νco

S
dH1 =

∫

∂�

X · νco� dH1 ,

where in the first identity we have used that div S X = div � X on each S, while in
the second identity we have used the observation that for each p ∈ ∂� there exists
exactly one S ∈ S(X) such that p ∈ S ∩ ∂� and νco

S
(p) = νco� (p). We are left to

show that

∑
S∈S(X)

∫

�Y ∩S
X · νco

S
dH1 = 0.

The reason for this is that for each p ∈ spt(X) ∩ �Y there are r > 0 and three
distinct S1, S2, S3 ∈ S(X) such that � ∩ Br (p) = (S1 ∪ S2 ∪ S3) ∩ Br (p) ⊂⊂ U ,
p ∈ S1 ∩ S2 ∩ S3 and

νco
S1

(p) + νco
S2

(p) + νco
S3

(p) = 0 ,

since � ∩ Br (p) is diffeomorphic to Y through a map whose differential is an
isometry at p. In particular

∑
S∈S(X) νco

S
= 0 on �Y ∩ sptX , and therefore

∑
S∈S(X)

∫

�Y ∩S
X · νco

S
dH1 =

∫

�Y ∩sptX
X ·

( ∑
S∈S(X)

νco
S

)
dH1 = 0.

This proves (2.2).

Lemma 2.1. (Removable singularities for minimal Plateau surfaces) Let � be a
closed subset of BR = BR(0) without isolated points so that �\ {0} is a minimal
Plateau surface without boundary in BR\ {0}. If ̄(�, 0) < 2 and � ∩ {x3 ≥ 0}
is a graph of locally bounded slope, then � is a minimal Plateau surface in BR.
If 0 ∈ �, then 0 ∈ int(�) ∪ �Y ; and if 0 ∈ �Y , then the spine of T0� lies on
{x3 = 0}.
Proof. Since � is closed in BR , if 0 �∈ �, then Br ∩ � = ∅ for some r > 0, and
thus the fact that � is a minimal Plateau surface in BR\ {0} implies that � is a
minimal Plateau surface in BR . We can thus assume that 0 ∈ �.
Step one: We first prove that

∫

reg(�)

div � X = 0 ∀X ∈ C∞
c (BR; R

3) , (2.3)

that is, the rectifiable varifold V� defined by � is stationary in BR . As (2.2) holds
for� in BR\ {0}, we have ∫

reg(�)
div�Y dH2 = 0 for everyY ∈ C∞

c (BR\ {0} ; R
3).

Setting Y = ηε X for X ∈ C∞
c (BR; R

3) and ηε a smooth cutoff with ηε = 1 on
R
3\Bε and ηε = 0 on Bε/2, we thus find

∫

reg(�)

ηε div
� X = −

∫

reg(�)

X · ∇ηε.
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Choosing ηε so that ηε → 1 on R
3\ {0} and |∇ηε| ≤ 1Bε\Bε/2 C/ε, we have

∣∣∣
∫

reg(�)

div � X
∣∣∣ ≤ C ‖X‖C0 lim sup

ε→0+

H2(� ∩ Bε)

ε
= 0 ,

where we have used ̄(�, 0) < ∞ to deduceH2(� ∩ Bε) = o(ε) as ε → 0+. We
have thus proved that (2.3) holds.
Step two: We show that (�, 0) exists and belongs to [1, 2). By (2.3) and the
monotonicity formula for stationary varifolds [35, Section 17], (�, p) exists at
every p ∈ BR and defines an upper semicontinuous function on BR . As� contains
no isolated points and 0 ∈ �, there are p j → 0 as j → ∞ with p j ∈ �\{0}. By
upper semicontinuity of (�, ·) in BR we have

(�, 0) ≥ lim sup
j→∞

(�, p j ) ≥ 1 ,

where we have used (2.1) and the assumption that � has no boundary points in
BR\{0} to obtain (�, p j ) ≥ 1 for every j . Hence, 1 ≤ (�, 0) ≤ ̄(�, 0) < 2.
Step three: We show that every varifold blow-up limit C of V� at 0 has multiplicity
one and satisfies

C = VK , C�{x3 ≥ 0} =
N∑

i=1

VHi , (2.4)

where K = sptC is a cone with vertex at 0, Hi ⊂ {x3 ≥ 0} are half-planes with
∂ Hi = � ⊂ {x3 = 0} for 1 ≤ i ≤ N , � is a line in {x3 = 0}, and where VK and
VHi are the multiplicity one varifolds associated to K and Hi , respectively. Indeed,
given a sequence of radii ρi → 0+, up to extracting a subsequence, the multiplicity
one varifolds V�/ρi have a varifold limit C which is an integer stationary varifold
in R

3 supported on a cone K with vertex at 0. If θ denotes the multiplicity of C and
q is a Lebesgue point of θ with θ ≥ 2, then 2 ≤ (C, q) = (C, t q) for every
t > 0, thus leading to (C, 0) ≥ 2 by upper semicontinuity of (C, ·) on R

3.
Since (C, 0) = (�, 0) ∈ [1, 2), we deduce that θ = 1 ‖C‖-a.e., and thus that
C = VK . Concerning the second identity in (2.4), we notice that since�∩{x3 ≥ 0}
is a graph of locally bounded slope and � is a minimal Plateau surface without
boundary in BR\{0}, it follows that � ∩ {x3 > 0} is a smooth, stable minimal
surface in BR ∩ {x3 > 0}. (Notice that it is possible for � ∩ {x3 > 0} to be empty!)
Hence, for q ∈ � ∩ {x3 > 0} ∩ BR/2, � is a stable minimal surface in Bx3(q)(q),
and thus, by the curvature estimates of Fischer-Colbrie and Schoen [14],

|A�(q)| ≤ C

x3(q)
, ∀q ∈ � ∩ BR/2 ∩ {x3 > 0}, (2.5)

where C > 0 is a universal constant. Since (2.5) implies

|A�/ρi (q)| ≤ C

x3(q)
, ∀q ∈ �/ρi ∩ BR/2ρi ∩ {x3 > 0},

we deduce that K ∩ {x3 > 0} is a smooth minimal surface. Since K ∩ {x3 > 0} is a
cone with respect to 0 we deduce that K ∩ {x3 > 0} is a finite union of half-spaces
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bounded by a same line � contained in {x3 = 0}. This also implies that K ∩{x3 = 0}
is either equal to �, or to {x3 = 0}, or to one of the two half-spaces bounded by �

in {x3 = 0}. Since θ = 1 ‖C‖-a.e. on K we complete the proof of (2.4).
Step four: We complete the proof. Since C = VK is a stationary multiplicity one
conical varifold, K ∩ ∂ B1 induces a one-dimensional, multiplicity one station-
ary varifold on ∂ B1. A result of Allard and Almgren [1] implies that, for every
p ∈ K ∩ ∂ B1, there is r > 0 such that Br (p) ∩ K ∩ ∂ B1 is a finite union of
geodesic arcs originating from p along directions {v j (p)}m(p)

j=1 ⊂ Tp(∂ B1) such

that
∑m(p)

j=1 v j (p) = 0. Thus, in the terminology of “5” A, we find that

� = K ∩ ∂ B1 is a geodesic net in ∂ B1,

with m(p) ∈ {2, 3} for every p ∈ � (2.6)

(here m(p) = # I (p) for I (p) as in the “5”). Indeed, m(p) ∈ {2, 3} follows
immediately from the upper semicontinuity of (C, ·), from (C, 0) ∈ [1, 2), and

(C, t p) = (C, p) ≥ m(p)

2
, ∀t > 0 ,∀p ∈ �.

If we now have that K ∩ {x3 < 0} = ∅, then 0 ∈ � implies K = {x3 = 0} by a
standard first variation argument (see, e.g., [11, Lemma 3]), and thus� is a smooth
minimal surface in a neighborhood of 0 by Allard’s regularity theorem [3]. We can
therefore assume that K ∩ {x3 < 0} �= ∅, and thus, since K is a cone, that

∃ p1 ∈ � ∩ {x3 < 0}.
We claim that the existence of p1 ensures that, if {p0,−p0} = � ∩ ∂ B1 ⊂ �, then

v j (p0) · e3 > 0 for some j = 1, . . . , m(p0). (2.7)

Indeed, � ∩ {x3 ≥ 0} consists of equatorial half-circles with ±p0 as end-points;
at the same time � is connected (as a consequence of the stationarity of C = VK );
therefore the only way to connect a point in �∩{x3 < 0} to, say, p0 is the existence
of a geodesic arc whose interior is entirely contained in {x3 < 0} and having one
endpoint at either p0 or −p0. Therefore up to exchange the roles of p0 and −p0,
we can assert (2.7). (Notice that (2.7) must hold at both endpoints of � ∩ ∂ B1, but
we shall not need this fact). By (2.4) and (2.7) we deduce that

m(p0) = N + #
{

j : v j (p0) · e3 > 0
}

> N . (2.8)

A first consequence of (2.8) is that N ≥ 3 would imply m(p0) ≥ 4, contradicting
(2.6): hence N ∈ {1, 2}. If N = 1 and m(p0) = m(−p0) = 2, then � is a geodesic
net which agrees with an equatorial circle on {x3 > −ε} for some ε > 0, therefore
� is an equatorial circle by Lemma A.1 in “5” A, K is a plane, and � is a smooth
minimal surface near 0. If N = 1 and m(p0) = m(−p0) = 3, then � is a geodesic
net which agrees with a Y -net on {x3 > −ε} for some ε > 0: therefore � is a Y -net
by Lemma A.1, (C, 0) = 3/2 and by [36, Corollary 3 in Section 1, Remark 2
in Section 7] � is a Y -surface in a neighborhood of 0. If N = 2, then, again by



1188 J. Bernstein, F. Maggi

{x∗
3 = 0}

∗

{x3 = 0}

H1 H1

0

−p∗
0

p∗
0

0

−p0
p0

Fig. 4. Step three of the proof of Lemma 2.1, the case when N = 1 (i.e., K ∩{x3 ≥ 0} = H1
with � = H1∩{x3 = 0}),m(p0) = 3 andm(−p0) = 2, where p0 and−p0 are the endpoints
of � ∩ B1. The fact that m(−p0) = 2 implies that K ∩ ∂ B1 coincides with H1 ∩ ∂ B1 near
−p0, while m(p0) = 3 means p0 is a Y -point and one of three arcs emanating from p0 is
given by H ∩ ∂ B1 ∩ {x3 ≥ 0}. In this situation we tilt e3 into a new vector e∗

3 and shrink
ε > 0 so � ∩ {x∗

3 > −ε} = H1 ∩ {x∗
3 > −ε}. Clearly, if �∗ = H1 ∩ {x∗

3 = 0} and ±p∗
0 are

the endpoints of �∗ ∩ ∂ B1, then m(±p∗
0) = 2

(2.8), m(p0) = m(−p0) = 1 and so � agrees with a Y -net on {x3 > −ε} for some
ε > 0, and we conclude as before. The remaining situation is N = 1, m(p0) = 3
and m(−p0) = 2. In this case, by slightly tilting the vector e3 into a new unit vector
e∗
3, see

Figure 4, we find that, for some ε > 0, � ∩ {x∗
3 > −ε} is a great circle: hence

� must be an equatorial circle by Lemma A.1, contradicting m(p0) = 3. ��
We next prove a kind of unique continuation result for minimal Plateau surfaces

lying on one side of a regular minimal surface. This is slightly subtle as the usual
unique continuation principle does not directly hold for minimal Plateau surfaces.

Lemma 2.2. (Unique continuation for minimal Plateau surfaces) Let U ⊂ R
3 be

open, Q = {q1, . . . , qN } be a finite set of points in U, �1 be a connected, (rela-
tively) closed set in U and assume that �1\Q is a minimal Plateau surface without
boundary in U\Q with ̄(�1, q) < 2 for each q ∈ Q. Suppose there is an open
subset V ⊂ U so that �2 ⊂ U ∩∂V is a regular minimal surface without boundary.
If V ∩�1 = ∅ and there is a point p0 ∈ �1∩�2, then �1 ⊂ �2. If �2 is connected,
then �1 = �2.

Proof. By throwing out points of Q if needed, we may assume �1 is not a regular
minimal surface in a neighborhood of any point of Q. Set � = �1 ∩ �2. We claim

(Q ∪ sing(�1\Q)) ∩ � = ∅. (2.9)

Indeed, as in step one of the proof of Lemma 2.1, the multiplicity one varifold V�1

defined by �1 is stationary in U . If q ∈ �, then as �2 is smooth and �2 ⊂ ∂V ,
there is an open half-space H so Tq�2 = P = ∂ H = Tq V . As �1 ∩ V = ∅,
any tangent cone, C, to V�1 at q has support disjoint from H and, because �1
is connected, (�, q) ≥ 1 and so C is non-trivial. As C is a stationary integer
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multiplicity cone with density strictly less than 2, this implies that C = VP , Hence,
by Allard’s theorem [3], q is a regular point of V�1 , and so q �∈ Q ∪ sing(�1\Q).

In particular, by (2.9), �2 ∩ int(�1\Q) = �. Hence, for any q ∈ � there is an
r > 0 so �′

1 = Br (q) ∩ �1 and �′
2 = Br (q) ∩ �2 are connected regular minimal

surfaces with �′
1 lying on one side of �′

2 and q ∈ �′
1 ∩ �′

2. The strong maximum
principle immediately implies �′

1 = �′
2 ⊂ �, i.e., � is an open subset of �1. As �

is also clearly a closed subset of �1 and p0 ∈ �, the connectedness of �1 implies
�1 = � ⊂ �2. Likewise, �1 = � is an open and closed subset of �2, proving the
last claim. ��

Finally, we observe that there is an injective map from the cells of the tangent
cone at a non-boundary point of a cellular minimal Plateau surface to its own cells.

Lemma 2.3. Let U ⊂ R
3 be open and � ⊂ U be minimal Plateau surface without

boundary in U that is cellular in U. For each p ∈ �, Tp� is cellular in R
3.

Moreover, there is a well defined injective map

Ip : C(Tp�) =
{

W j
}M

j=1
→ C(�) = {Ui }N

i=1,

defined by Ip(W j ) = Ui j when and only when

W j = lim
ρ→0

ρ−1(Ui j − p),

where the convergence occurs in L1
loc(R

3) for the corresponding indicator func-
tions.

Proof. By inspection, P, Y and T are cellular in R
3 with two, three, and four

cells respectively. Hence, each Tp� is cellular in R
3. By the definition of minimal

Plateau surface, there exist an r > 0 and a C1,α-diffeomorphism φ : Br (p) → R
3

such that φ(p) = 0, Dφp = I , the identity map and φ(Br (p) ∩ �) = Tp�. In
particular, there is a 0 < r1 < r so for 0 < r ′ < r1, B 1

2 r ′(0) ⊂ φ(Br ′(p)) ⊂
B2r ′(0). Moreover, one has Ip(W j ) = Ui j if and only if, for any 0 < r ′ < r ,
W j ∩ B 1

2 r ′(0) ⊂ φ(Ui j ∩ Br ′(p)).
It remains only to show Ip is injective. As � defines a cell structure in U , there

is a ρ > 0 so that Bρ(p) ⊂ U and, for every 0 < ρ′ < ρ, Bρ′(p)∩Ui is connected.
Let r2 = 1

2 min {r1, ρ}. Now suppose Ip(W j ) = Ui j = Ip(W k). As observed, this
means (W j ∪ W k) ∩ B 1

2 r2
(0) ⊂ φ(Ui j ∩ Br2(p)). As Ui j ∩ Br2(p) is connected,

so is φ(Ui j ∩ Br2(p)) ⊂ R
3\Tp� and so it must be that W j = W k and so Ip is

injective. ��

2.2. Reflection Symmetry

An important technical consequenceof theunique continuation result, Lemma2.2,
and the Hopf maximum principle is that, under suitably hypotheses, an infinitesi-
mal symmetry of a minimal Plateau surface (assumption (4) in Lemma 2.4 below)
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extends to a global symmetry (the conclusion R0(�
+) ⊂ � in the same lemma).

In order to state this precisely, it is helpful to recall some additional notation from
[34]. First let Rt denote the reflection map through {x3 = t}, so that

Rt (y, x3) = (y, 2 t − x3).

If � ⊂ R
3 and t ∈ R, we let

�t+ = � ∩ {x3 ≥ t} and �◦
t+ = � ∩ {x3 > t} .

Similarly, let

�t− = � ∩ {x3 ≤ t} and �◦
t− = � ∩ {x3 < t} .

Observe that, due to the possible presence of a floating disk in {x3 = t}, one may
have �◦

t± � �̄◦
t± � �t± , where �̄◦

t+ is the closure of �◦
t+ .

Lemma 2.4. Let U be an open set so that R0(U ) ⊂ U and let Q ⊂ U ∩ {x3 < 0}
be a finite set of points. Suppose � ⊂ U is a closed set so �\Q is a minimal
Plateau surface without boundary in U and ̄(�, q) < 2 for all q ∈ Q. If �+ is
a component of �◦

0+ and V is an open subset of U ∩ {x3 > 0} so that:

(1) �+ is a connected regular minimal surface in {x3 > 0};
(2) �+ ⊂ ∂V in U ∩ {x3 > 0};
(3) R0(V ) ∩ � = ∅;
(4) There is a p ∈ {x3 = 0} ∩ �̄+ so that R0(Tp�) = Tp� and Tp� �= {x3 = 0},
then R0(�

+) ⊂ �.

Proof. First observe that if � is regular at p, then (4) implies that Tp� is a plane
orthogonal to {x3 = 0}, i.e., a vertical plane. Likewise, if p is a singular point, then
Tp� is a Y whose spine, �, lies in {x3 = 0} and so that one of the half-planesmaking
up Y\� is contained in {x3 = 0}. Hence, up to rotating around the x3-axis, which
leaves all hypotheses unchanged, we may assume Tp� is {x1 = 0} in the regular
case, or Tp� = H0 ∪ H120 ∪ H−120 in the singular case. We first prove that � is
locally symmetric near p. That is, there is a R > 0 so that R0(�

+) ∩ BR(p) ⊂ �.
Local symmetry in the regular case: As Tp� = {x1 = 0}, there is a radius r > 0 so
that B2r (p) ∩ � is a smooth surface and there is a solution to the minimal surface
equation u : Dr = {

(0, s, t) : s2 + t2 < r2
} → R so that u(0) = 0, ∇u(0) = 0

and

� ∩ Br/2(p) ⊂ {(x1(p) + u(s, t), x2(p) + s, x3(p) + t) : (s, t) ∈ Dr }
⊂ � ∩ B2r (p).

Let V− = Dr ∩ {x3 ≤ 0} be the closed half-disk. Set v− = u|V− and v+ =
(u ◦ R0)|V− . Clearly, v± satisfy the minimal surface equation on V−, v±(0) = 0
and ∇v±(0) = 0. Up to rotation around the x3-axis by 180◦, condition (2) and (3)
imply that v+ ≥ v− on V−. In particular, up to shrinking r , w = v+ − v− is a
non-negative solution to a uniformly elliptic equation on V− with w(0) = 0 and
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x1

x3

(u+(0, t), 0, t)

(u−(0, t), 0, t)

{x2 = 0}

Dr

V−

η

x1

x2

x3

V+

(a) (b)

Fig. 5. A visualization of the case Tp� = H0 ∪ H120 ∪ H−120. In a neighborhood of p, �
contains two minimal graphs in the x1-direction, defined over complementary subdomains
V ± of a disk. The graphsmeet along aC1,α-curve, and form a 120◦ angle at p: a the domains
of the two graphs which are subsets of a disk Dr ⊂ {x1 = 0} centered at 0; b a cross section
by {x2 = 0} stresses the angle condition

∇w(0) = 0 and so, by the Hopf maximum principle, v ≡ 0. That is v− ≡ v+ on
V− and so claim holds with R = r/2.
Local symmetry in the singular case: In this case Tp� = H0 ∪ H120 ∪ H−120
and there exist r > 0, so that � ∩ B2r (p) is a Y -surface. Indeed, by taking r
small enough there are two C1,α-domains with boundary V± ⊂ Dr = {(0, s, t) :
s2 + t2 < r} ⊂ {x1 = 0} so that Dr = V+ ∪ V− and

{
(0, 0,±t); t ∈ (0, r)

} ⊂ V± , η = Dr ∩ ∂V+ ∩ ∂V− is a C1,αcurve ,

and two smooth solutions to the minimal surface equation u± : V± → R so

u±(0) = 0 , u+|η = u−|η , ∇u±(0) = (0,∓√
3) (2.10)

and

� ∩ Br/2(p) ⊂
{
(x1(p) + u±(s, t), x2(p) + s, x3(p) + t) : (s, t) ∈ V±

}
⊂ � ;

see
Figure 5. By hypothesis (1), � is regular in {x3 > 0} and so V− ⊂ R0(V+) and

so v+ = (u+ ◦ R0)|V− is defined on the same domain, V−, as v− = u−.
Clearly, (2) and (3) imply either that v+ ≥ v− on V− or v− ≥ v+. Indeed, the

former occurs if
{
(x1(p) + z, x2(p) + s, x3(p) + t) : (s, t) ∈ V+, u+(s, t) < z

}
∩ Br (p) ⊂ V,

and the later occurs when
{
(x1(p) + z, x2(p) + s, x3(p) + t) : (s, t) ∈ V+, u+(s, t) > z

}
∩ Br (p) ⊂ V .

We assume v+ ≥ v−, the proof is the same in the other case. Observe (2.10) implies
v+(0) = v−(0) = 0 and∇v+(0) = ∇v−(0). As v− and v+ both satisfy theminimal
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surface equation on V−, up to shrinking r , w = v+ − v− ≥ 0 satisfies a uniformly
elliptic equation on V−. Asw(0) = 0 and∇w(0) = 0, theHopfmaximumprinciple
for C1,α domains—see [33]—implies w ≡ 0, that is, u+ ◦ R0 = u− on V−. Hence,
the claim holds with R = r/2.
Propagating the symmetry: Finally, we apply Lemma 2.2 to propagate the inclusion
R0(�+) ∩ BR(p) ⊂ � to R0(�

+) ⊂ �. Let �1 be the component of �◦
0− whose

closure contains p – such a component exists and is unique as Tp� ∩ {x3 < 0}
is connected and non-empty. Set �2 = R0(�

+ ∩ {x3 > 0}), so that, in U ′ =
U ∩ {x3 < 0},

�2 = R0(�
+) ⊂ ∂

(
R0(V )

)
,

and, by hypothesis (3), R0(V ) ∩ �1 = ∅. As BR(p) ∩ �1 = BR(p) ∩ �2 and both
�1 and �2 are connected, Lemma 2.2 implies R0(�

+) = �2 = �1 ⊂ �. ��

2.3. The Moving Planes Argument

We now prove the key technical result of the paper: Let � be a minimal Plateau
surface in a convex cylinder C
 whose boundary B is contained in the boundary
of the cylinder. If B0+ is a graph of locally bounded slope and B is “ordered by
reflection with respect to the plane {x3 = 0}” (assumption (b) below), then the
same holds for �, i.e., �0+ is a graph of locally bounded slope, and � is ordered
by reflection, see conclusions (i) and (ii) of Theorem 2.5.

In order to state this result concisely we recall the following partial order from
[34]. For subsets A, B ⊂ R

3 we write

A ≤ B

if π(A) = π(B), and if (y, t) ∈ π−1(y) ∩ A and (y, t ′) ∈ π−1(y) ∩ B implies
t ≤ t ′. Here, as in the previous section, π(y, t) = y for every (y, t) ∈ R

3.

Theorem 2.5. Let 
 ⊂ R
2 be a bounded, open convex set with C1-boundary, and

let the open cylinder over 
 be denoted by

C
 = {(y, x3) : y ∈ 
} .

Let � ⊂ R
3 be a compact set without isolated points and let B ⊂ ∂C
 be a closed,

non-empty, one-dimensional C1-submanifold (not necessarily connected). Suppose
that B and � satisfy the following:

(a) B0+ is a graph of locally bounded slope and Tp B is not vertical for any p ∈
B ∩ {x3 > 0};

(b) B0− ≤ R0(B0+);
(c) (∂C
)0+\B0+ has two connected components, denoted by V 0 and V 1;
(d) �\Q is a minimal Plateau surface in R

3\Q, where Q = {q1, . . . , qM } is a
finite subset of C
 and, for every i , ̄(�, qi ) < 2;

(e) ∂(�\Q) = B and �\B ⊂ C
;
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B∗
0+

B0−

V 1

V 0

CΩ

B0+

Ω

Fig. 6. The situation in Theorem 2.5. We consider a C1-boundary data B contained in
∂C
 = (∂
) × R. The “upper part” B0+ of B is a graph with bounded slope over ∂
, and,
after reflection by {x3 = 0}, it lies above the “lower part” B0− of B (which is not required
to be a graph). The upper part of ∂C
 is divided by B0+ into two components V 0 and V 1.
We consider a minimal Plateau surface with boundary �. If ∂� is bounded by B in such a
way that V 0 and V 1 corresponds to the boundaries of the cells U0 and U1 defined by � in
C
, then the theorem ensures that properties (a) and (b) of B are “transferred” to �, see (i)
and (ii)

(f) �\Q defines a cell structure {Ui }N
i=0 in C
\Q, and for i = 0, 1 we have

V̄ i = ∂Ui ∩ (∂C
)0+ ;
see Fig. 6. Then

(i) �0+ is a graph with locally bounded slope;
(ii) �0− ≤ R0(�0+);

(iii) there is ε > 0 so that � ∩ {x3 > −ε} is a minimal Plateau surface in
{x3 > −ε}.

Theorem 2.5, whose proof is presented below, has the following corollary:

Corollary 2.6. Let 
, B, and � satisfy the assumptions in Theorem 2.5, but replace
assumptions (b), (c) and (f) with

(b’) B0− = R0(B0+);
(c’) (∂C
)0±\B0± has two connected components, denoted by V 0,± and V 1,±;
(f’) �\Q defines a cell structure C = {Ui }N

i=0 in C
\Q and there are cells
Ui,± ∈ C so that

V̄ i,± = ∂Ui,± ∩ (∂C
)0± , i = 0, 1 ,

here Ui,+ and Ui,− are not necessarily distinct elements of C.

Then R0(�0+) = �0− and � is a minimal Plateau bi-graph.

Proof. Thanks to assumptions (b’), (c’) and (f’), we can apply Theorem 2.5 to
both � and R0(�), and so, by conclusion (i), it is true that �0+ and (R0(�))0+ =
R0(�0−) are graphs of locally bounded slope. Furthermore, conclusion (ii) implies

�0− ≤ R0(�0+) and R0(�0+) = (R0(�))0− ≤ R0
(
(R0(�))0+

) = �0− .
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Hence, R0(�0+) = �0− and so � = R0(�). By conclusion (iii) of Theorem 2.5,
� and R0(�) are both minimal Plateau surfaces in {x3 > −ε} for some ε > 0,
and so � is a minimal Plateau surface in R

3. Finally, as �0− = R0(�0+) and �0+
are both graphs of locally bounded slope and sing(�) ⊂ {x3 = 0}, � is a minimal
Plateau bi-graph. ��
Proof of Theorem 2.5. First observe that, by deleting points from Q, we may
assume that � is not a minimal Plateau surface in a neighborhood of any q ∈ Q.
That is, the points of Q are essential singularities of �. We define

sing(�) = sing(�\Q) ∪ Q ,

where sing(�\Q) is the singular set of�\Q as aminimal Plateau surface inC
\Q.
Similarly, let

reg(�) = �\sing(�) , int(�) = �\(B ∪ sing(�)).

Step one: We establish some elementary facts. First, we claim,

T+ = max {x3(p) : p ∈ B} > 0 > T− = min {x3(p) : p ∈ B} .

Indeed, as B is non-empty, either B0+ or B0− is non-empty. Furthermore,
R0(B0+) ≥ B0− requires that π(B0+) = π(B0−) and so both B0+ and B0− are non-
empty. In particular, both T+ and T− are finite. Clearly, T+ ≥ 0. If T+ = 0, then
(∂C
)0+\B0+ has one connected component in (∂C
)0+ , contradicting assumption
(c) and so T+ > 0, and because assumption (b) implies T− ≤ −T+ we conclude
that T− < 0.

Secondly, by the same argument used in step one of the proof of Lemma 2.1,
the multiplicity one varifold V� defined by � is stationary in R

3\B. Hence, the
convex hull property of V� and the properties of B imply

� ⊂ C
 ∩ {T− ≤ x3 ≤ T+}. (2.11)

Finally,we reviewassumption (f):�\Q defines a cell structureC(�) = {Ui }N
i=0

in C
\Q, so that the sets Ui are open and connected, with

∂(�\Q) ⊂ ∂(C
\Q) , C
\(� ∪ Q) = (C
\Q)\(�\Q) =
N⋃

i=0

Ui , (2.12)

and ∂Ui ∩ ∂C
 = V̄ i for i = 0, 1. As � is compact and C
 has two components
at infinity, corresponding to x3 → ±∞ there is exactly one unbounded component
of C(�) that contains points p with x3(p) > T+. Up to a swapping V 0 and V 1, we
may assume U 1 is this component and so V 1 is unbounded.
Step two: We verify that the theorem holds in the “trivial case”, where


 × {T+} is a connected component of �. (2.13)

Indeed, if this occurs, than the definition of minimal Plateau surface implies that
there is a δ > 0 so that � = 
 × {T+} in the slab {T+ − δ < x3 < T+ + δ}. In
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(a) CΩ

R0(B0−)

B0+

B0+

R0(B0−)

(b) {x3 = T+}
{x3 = t}

U0

Rt(A0
t+) ∩ {x3 < t}

{x3 = 0}
U0

Fig. 7. a An illustration of (P4): The set Rt (A0
t+) ∩ {x3 < t}, depicted in grey, is contained

in U0. b An illustration of (P5): Only U0 and U1 intersect {x3 = t}

particular, ∂� = ∂
 × {T+} in this slab. As ∂
 × {T+} is a graph, assumption (a)
implies B0+ = ∂
×{T+}. Hence, as� cannot have a connected componentwithout
boundary points (indeed, by the convex hull principle every such component, being
contained in the convex envelope of its boundary points, would be empty; see [35,
Theorem 19.2]), we conclude that

�0+ = 
 × {T+}. (2.14)

Conclusion (i) is thus immediate. By assumption (e) we have

(∂
) × {T+} = (∂�) ∩ {x3 > 0} = B ∩ {x3 > 0} = B0+ ∩ {x3 > 0}
so that assumption (b) gives B0− ≤ (∂
)×{−T+}. In particular, �0− is a minimal
Plateau surface without boundary in {x3 > −T+} \Q and so the varifold V�0−
defined by �0− is stationary in R

3\B0− . Hence, the convex hull property implies,

�0− ⊂ 
 × (−∞,−T+] ,

which implies conclusion (ii). Finally, by (ii) and (2.14) it follows that � ∩ {x3 >

−T+} = 
×{T+}, so that conclusion (iii) holds. Having proved the theorem when
(2.13) holds, we will henceforth assume that (2.13)does not hold.
Step three: Begin the moving planes argument. For t ∈ (0, T+) and Ui ∈ C(�), let

Ai = Ui ∩ {x3 < T+}
see

Figure 7. Let us consider the set of heights

G = {t ∈ (0, T+) : properties (P1)–(P5) hold for t} ,

where the properties defining G are as follows:

(P1) � ∩ {x3 = t} is a subset of reg(�);
(P2) |∇�x3| < 1 on � ∩ {x3 = t};
(P3) Rt (�t+) and �t+ are graphs with locally bounded slope over 
t = π(�t+);

(P4) Rt (A0
t+) ∩ {x3 < t} ∩ C
 ⊂ U 0;



1196 J. Bernstein, F. Maggi

(P5) The only cells of C whose closures meet {x3 = t} are U 0 and U 1.

We claim that G = (0, T+). To prove this, we show that

∃ t0 ∈ (0, T+) such that (t0, T+) ⊂ G , (2.15)

and then prove that one may take t0 = 0.
First of all, keeping in mind we excluded the trivial case (2.13), one has

∃ t0 ∈ (0, T+) such that

{
(P1) holds for all t ∈ [t0, T+), and

0 < |∇�x3| < 1 on �t+0
(2.16)

To see this we first observe that

{x3 = T+} ∩ � ∩ C
 = ∅. (2.17)

Indeed, let p ∈ {x3 = T+} ∩ � ∩ C
, set U = C
, V = C
 ∩ {x3 > T+},
�2 = 
×{T+} and denote by �1 the component of � ∩C
 containing p. Lemma
2.2 and (2.11) imply that p ∈ �1 ∩ �2 and so �1 = �2 = 
 × {T+}. That is,
(2.13) holds, contradicting the assumption made in step two.

By (2.17),�∩{x3 = T+} ⊂ B and, by definition,� is regular in a neighborhood
of B, thus, for t0 closed enough to T+, (P1) holds for every t ∈ [t0, T+). In particular,

Q ∩ {t0 ≤ x3} = ∅. (2.18)

Now, let p ∈ � ∩ {x3 = T+} ⊂ B. If |∇�x3|(p) = 0, then (2.11) and the
Hopf maximum principle applied to � and 
 × {T+} imply there is a connected
neighborhood, �p, of p in � so �p ⊂ � ∩ {x3 = T+}. If �1 is the component of
� ∩ C
 containing �p and �2 = 
 × {T+}, then �1 ∩ �2 �= ∅ and so, arguing
as above, (2.13) holds, and a contradiction is reached. Therefore |∇�x3| > 0 on
� ∩ {x3 = T+}, and so (2.16) holds for t0 near enough to T+ by continuity.

Again, by continuity, to show |∇�x3| < 1 on �t+0
for t0 near to T+ it is enough

to show |∇�x3| < 1 on � ∩ {x3 = T+} ⊂ B. To show this last fact, let H be a
supporting closed half-space to C
 at p (H is unique as ∂
 is C1 regular), and set
� = ∂ H . By (2.11),� ⊂ H . Consider the half-space Tp�. By the Hopf maximum
principle, if Tp� ⊂ �, then there is a neighborhood �′ of p in� with�′ ⊂ �. As
� ∩ C
 = ∅, contradicts assumption (e), i.e., that �\B ⊂ C
. Hence, Tp� � �,
while B ⊂ ∂C
 implies Tp B ⊂ �. Since Tp B is not vertical (either by assumption
(a), or because, in this specific case, it is actually contained into {x3 = T+}, and
thus is horizontal), we conclude that |∇�x3|(p) < 1 and so (2.16) holds. In fact,
as we will use later, this argument implies

|∇�x3| < 1 for any p ∈ B ∩ {x3 > 0} . (2.19)

We now show that, after possibly moving t0 toward T+, (P1)-(P5) hold for
t ∈ (t0, T+). Indeed, (2.16), immediately gives a t0 so (P1) and (P2) hold for every
t ∈ (t0, T+). Up to moving t0, this implies (P3) holds for t ∈ (t0, T+). In particular,

� ∩ {x3 > t0} = graph of a smooth function over π(� ∩ {x3 > t0}). (2.20)
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By (2.12) and (2.18), we have that

{x3 > t0} ∩ (C
\�) = {x3 > t0} ∩
N⋃

i=0

Ui . (2.21)

By the convex hull property, each component of {x3 > t0}∩(C̄
\�)must intersect
∂C
. Hence, it follows from assumptions (c) and (f) that {x3 > t0} ∩ (C
\�) =
{x3 > t0}∩

(
U 0 ∪ U 1

)
. Hence, as (2.13) does not hold and� defines a cell structure

in C
 ∩ {x3 > t0},

�t+ = ∂ A0
t+ ∩ ∂ A1

t+ ,

{T+ > x3 > t} ∩ C̄
 = {T+ > x3 > t} ∩
(
�t+ ∪ A0

t+ ∪ A1
t+

)

for every t ∈ (t0, T+). This immediately implies, that after moving t0 toward T+
by any amount, (P5) holds for t ∈ (t0, T+). Moreover, combining this with (2.16)
implies that, possibly up to further moving t0 toward T+, (P4) hold for t ∈ (t0, T+)

; see Fig. 7.
Step five : We show that G = (0, T+). Suppose instead that

t1 = sup {t < T+ : t �∈ G} > 0.

We prove that t1 �∈ G by showing that [t1, T+) ⊂ G implies the existence of δ > 0
such that (t1 − δ, T+) ⊂ G. By continuity, it is clear that if (P1) and (P2) hold
at t = t1, then they hold whenever |t − t1| < δ for some δ > 0. The implicit
function theorem, the validity of (P1) and (P2) for |t − t1| < δ and the fact that
(P3) already holds for t ∈ [t1, T+), together imply that, up to decreasing, δ, (P3)
holds for t ∈ (t1 − δ, T ). Finally, the argument used above to deduce that (P4) and
(P5) hold on (t0, T+) from the fact that (P1), (P2) and (P3) hold on (t0, T+) can be
repeated verbatim with (t1 − δ, T+) in place of (t0, T+).

We have thus proved that t1 �∈ G: in particular, (P1)–(P5) hold for every t ∈
(t1, T+), but at least one of them fails at t = t1 > 0. We now exclude these five
possibilities to reach a contradiction. This will ultimately prove that we cannot
have t1 > 0, and thus that t1 = 0 and so G = (0, T+). First, we show there is no
infinitesimal symmetry at t = t1 when t1 > 0.
Proof there is no infinitesimal symmetry at t = t1 > 0. It is true that

if t1 > 0, p ∈ � ∩ {x3 = t1} \Q and Tp� �= {x3 = 0} , then R0(Tp�) �= Tp�.

(2.22)
We argue by contradiction and suppose R0(Tp�) = Tp�. As Tp� �= {x3 = 0},
Tp� ∩ {x3 > 0} is non-empty. Hence, there is a component, �+ of �◦

t+1
so that

p ∈ �̄+. As (P1) holds for t > t1, �+ is regular in {x3 > t1} ∩ C
. Set V ′ =
U 0 ∩ {t1 < x3 < T+} ⊂ A0

t+1
so V ′ is open in C
 ∩ {x3 > t1}. As (P4) holds for

t > t1, there is a connected component V of V ′ so that�+ ⊂ ∂V inC
∩{x3 > t1}.
Moreover, as V ′ = ⋃

t>t1 A0
t+ , the fact that (P5) holds for t > t1 implies Rt1(V ′) ⊂
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x3

x1

H30

H−30

Hθ1 Hθ2

Hθ3

W 2

W 3

W 1

Fig. 8. The half-plane Hθ is defined by a rotation of H = H0 = {x3 = 0 , x1 ≥ 0} by
an angle θ around the x2 axis, with the convention that Hθ2 in this picture corresponds to
θ2 > 0

U 0 and so Rt1(V )∩� = ∅. That is, the hypotheses of Lemma 2.4 hold inU = C
.
Hence,

Rt1(�
+) ∩ C
 ⊂ � and so, as � is closed, Rt1(�

+) ⊂ �. (2.23)

By the convex hull principle for stationary varifolds, B ∩ �+ �= ∅ and so there
is a q ∈ B ∩ �+. Observe that as �+ ⊂ �◦

t1 , x3(q) > t1. By hypotheses (e),
R0(�+) ∩ ∂C
 ⊂ B and so (2.23) implies

{
q, Rt1(q)

} ⊂ π−1(π(q)) ∩ � ⊂ B.

If t1 ≥ 1
2T+ this implies q, Rt1(q) ∈ B0+ contradicting B0+ being a graph. If

t1 ∈ (0, 1
2T+), then Rt1(q) ∈ B0− and x3(Rt1(q)) > x3(R0(q)), a contradiction to

R0(B0+) ≥ B0− , i.e., (b). From this we conclude that (2.22) holds.
Proof that t1 �∈ G and t1 > 0 imply (P1) holds at t = t1. If (P1) fails at t = t1, then

∃ p ∈ sing(�) ∩ {x3 = t1}. (2.24)

As sing(�) ∩ B = ∅, t1 < T+, and Q is a finite set of points, there is R > 0 such
that � is a minimal Plateau surface without boundary in BR(p)\ {p}. Moreover,
by (P3) and (t1, T+) ⊂ G, one has that � ∩ BR ∩ {x3 > t1} is a graph of locally
bounded slope. Since ̄(�, p) < 2 and p ∈ sing(�), Lemma 2.1 implies that � is
a minimal Plateau surface in BR(p) and that p is a Y -point of �, with the spine of
the tangent Y -cone Tp� lying in the horizontal plane {x3 = 0}. Thus, up to rotating
� around the x3-axis,

Tp� = Hθ1∪Hθ2∪Hθ3 , where |θ2| ≤ 30, θ1 = θ2+120, θ3 = θ2−120; (2.25)

see
Figure 8. Let W 3 be the region of R

3\Tp� between Hθ1 and Hθ2 and likewise
let W 2 be the region between Hθ1 and Hθ3 and W 1 the region between Hθ2 and Hθ3 .
Appealing to Lemma 2.3, let C(Tp�) = {

W 1, W 2, W 3
}
and let Ui j = Ip(W j ) be
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U i2 U i3

p
θ2 ∈ [−30, 0)

{x3 = t1}
θ1 = θ2 + 120

θ3 = θ2 − 120

W 2 W 3

θ2

θ1

θ3
W 1

{x3 = 0}

Fig. 9. The situation, in a sufficiently small ball near p, when θ2 ≤ 0. The validity of
Rt (A0

t+) ∩ {x3 < t} ∩ C
 ⊂ U0 for every t ∈ (t1, T+) implies that, if Uik = U0, then

R0(W k) ∩ {x3 < 0} ⊂ W k

the cells in C(�) that correspond to W j , j = 1, 2, 3. By Lemma 2.3, Ip is injective
and so Ui j �= Uik for j �= k.

We claim θ2 = 0, θ1 = 120, θ3 = −120. Suppose θ2 > 0. In this case, Hθ1

and Hθ2 both meet {x3 > 0}, and so W 1, W 2 and W 3 all meet {x3 > 0} (this is
exactly the situation depicted in Fig. 8). As (P5) holds for t ∈ (t1, T+), this means
that

{
Ui1, Ui2 , Ui3

} = {
U 0, U 1

}
which is impossible as the three regions must be

distinct. Hence, θ2 ≤ 0, see
Figure 9. In this case, only W 2 and W 3 intersect {x3 > 0} and so, as (P5) holds

for t ∈ (t1, T+),
{
Ui2 , Ui3

} = {
U 0, U 1

}
. Thus, there are two cases:

either Ui2 = U 1 and Ui3 = U 0 , or Ui2 = U 0 and Ui3 = U 1. (2.26)

The validity of (P4) for t ∈ (t1, T+) implies that either in the first case of (2.26) that
R0(W 3)∩{x3 < 0} ⊂ W 3 and in the second that R0(W 2)∩{x3 < 0} ⊂ W 2. In the
first case, −θ1 ≥ θ2 while, by (2.25), θ2 + 120 = θ1 ≤ −θ2 and so θ2 ≤ −60. This
contradicts θ2 ∈ [−30, 0] and so does not occur. In the second case, −θ1 ≤ θ3, and
so combined with (2.25) one has 0 ≤ θ1 +θ3 = 2θ2 ≤ 0 and so 2θ2 = θ1 +θ3 = 0.
This verifies the claim that θ2 = 0, θ1 = −120, and θ3 = 120. In particular,
R0(Tp�) = Tp�, however this contradicts (2.22) and so (P1) holds at t = t1.
Proof that t1 �∈ Gand t1 > 0 imply that (P2)–(P5) holds at t = t1: If (P2) does not
hold for t = t1, then, by (2.19), there is a point p ∈ {x3 = t1} ∩ �, p �∈ B such
that |∇�x3|(p) = 1 – recall, � ∩ {x3 = t1} consists of regular points as (P1) has
already been established at t = t1. Hence, Tp� is vertical and so Tp� �= {x3 = 0}
and R0(Tp�) = Tp�. As this contradicts (2.22), (P2) must hold for t = t1. (P3)
follows immediately from (P1), (P2) and the fact that (P3) holds for t > t1.

If (P4) holds for t ∈ (t1, T+) but fails at t = t1, one must have that

Rt1

(
A0

t+1

) ∩ {x3 < t1} ∩ C
 ⊂ U
0

holds, but that

Rt1

(
A0

t+1

) ∩ {x3 < t1} ∩ C
 ⊂ U 0



1200 J. Bernstein, F. Maggi

does not. Therefore, there is p ∈ ∂U 0 ∩ ∂(Rt1(A0
t+1

)) ∩ {x3 < t1} ∩ C
. Since

∂
(
Rt1(A0

t+1
)
) ∩ {x3 < t1} ⊂ Rt1

(
�t+1

)
,

and (P1) holds for t ≥ t1, we see that p is a regular point of Rt1(�t+1
). However,

as p ∈ ∂U 0 ∩ C
, we also have p ∈ � and so applying Lemma 2.2, gives
Rt1(�t+1

) ⊂ � and this yields a contradiction as in the proof of (2.22). Hence, (P4)
holds at t = t1.

Finally, if (P5) fails for t = t1,we canfindU k with k �= 0, 1 such that Ū k∩{x3 =
t1} �= ∅. Up to relabeling, we can set k = 2, and thus consider the existence of
p ∈ Ū 2 ∩ {x3 = t1}. By assumption (c), Ū 2 ∩ (C
)0+ = ∅ and so p ∈ C
.
Moreover, the validity of (P5) for t > t1 implies that Ū 2 ⊂ {x3 ≤ t1} and so
p ∈ ∂U 2 ∩ C
 ⊂ �. In fact, as (P1) holds at t = t1, p ∈ int(�). Given that
� agrees with ∂U 2 near p, one has ∇�x3(p) = 0. Hence, the strict maximum
principle implies x3 = t1 on Br (p) ∩ � for some small r > 0. As (P1) is an
open condition, there is δ > 0 so that �1 = � ∩ {x3 > t1 − δ} is a regular
minimal surface with boundary in {x3 > t1 − δ} ∩ C̄
. In particular, we may apply
the standard unique continuation principle for smooth minimal surfaces to �1 and
the connected surface �2 = 
 × {t1} to see that �2 ⊂ �1 ⊂ �. This contradicts
(2.13) and so conclude (P5) holds at t = t1. Hence, if t1 �∈ G and t1 > 0, then
t1 ∈ G. and so t1 = t0 = 0 and G = (0, T+).
Step Six: To conclude the proof we first observe that G = (0, T+) immediately
implies (i) and (ii) hold. We are left to show conclusion (iii), namely the existence
of ε > 0 so � is a minimal Plateau surface in {x3 > −ε}. As G = (0, T+),
� ∩ {x3 > 0} is a regular minimal surface with boundary, so we need only check
that Q ∩ {|x3| < ε} = ∅ for a suitable ε > 0. As Q is a finite set contained in C
,
we only need to check that if p ∈ {x3 = 0} ∩ � ∩ C
, then p �∈ Q. Clearly, there
is an r > 0 so that � is a minimal Plateau surface without boundary in Br (p)\{p}.
Obviously ̄(�, p) < 2, and since G = (0, T+),�∩{x3 > 0} is a graph of locally
bounded slope. By Lemma 2.1, p is either a regular or a Y -point, so it does not
belong to Q, as claimed. ��

3. Rigidity for Minimal Plateau Surfaces in a Slab

In this section we prove the rigidity of minimal Plateau surfaces in a slab
with symmetric convex boundary. We begin by proving topological rigidity in
Proposition 3.1, which consists in showing that such minimal Plateau surfaces
are simple bi-graphs. Combined with the previous section and a moving planes
argument of Pyo [28] this will complete the proof Theorem 1.2. This topological
rigidity is an extension of an argument of Ros [32] to minimal Plateau surfaces.
Note that Ros’s argument uses the Lopez-Ros deformation [22] and so is special to
R
3.

Proposition 3.1. (cf. Theorem 1 of [32]) Let � ⊂ {|x3| ≤ 1} be a connected min-
imal Plateau bi-graph with ∂� = � × {±1} where � ⊂ R

2 is convex. If � is
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symmetric across {x3 = 0} and � defines a cell structure in {|x3| < 1}, then � is
simple.

Proof. Let �+ = �̄◦
0+ = � ∩ {x3 > 0}. The symmetry of � and the fact that it

is a bi-graph implies that �+ is a regular minimal surface with boundary whose
interior is a graph over {x3 = 0}. In particular, as� is connected,�+ is a connected
planar domain. One readily checks that at the points of {x3 = 0} ∩ ∂�+, � either
intersect {x3 = 0} orthogonally (if the point is a regular point of �) or intersect at
an angle of 120◦ (if the point is a Y -point of �). There must exist such points as
� is connected. In fact, as � defines a cell structure in {|x3| < 1} one must have
either {x3 = 0} ∩ � ⊂ reg(�) or {x3 = 0} ∩ � = sing(�)—see Fig. 3b. That is,
either � is regular or every component of �+ ∩ {x3 = 0} consists of Y -points and
bounds a disk in �.

If� is regular, then this means�+ solves the free boundary Plateau problem for
the data (�+, {x3 = 0}) in the sense of [32] and so is an annulus by [32, Corollary
3]. It immediately follows that � is also an annulus and so is simple.

If � is singular, then the constant contact angle with {x3 = 0}, continues to
imply that every non-null homologous loop in �+ has vertical flux. Indeed, let
σ be an (oriented) component of ∂�+ that meets {x3 = 0} at 120◦. Let νσ is the
outward conormal to σ in �+ and let nσ be the outward normal to σ in {x3 = 0}.
Clearly, νσ (p) = − 1

2nσ (p) −
√
3
2 e3, and so,

Flux(σ ) =
∫

σ

νσ dH1 = −1

2

∫

�

nσ dH1 −
√
3

2
H1(σ )e3 = −

√
3

2
H1(σ )e3,

where the last equality follows from applying the divergence theorem in {x3 = 0}.
As any closed curve in �+ is homologous to some linear combination of the com-
ponents of {x3 = 0} ∩ ∂�+, it follows that �+ has vertical flux for each closed
curve.

To complete the proof we use the Lopez-Ros deformation [22] to reduce to the
regular case. To that end consider the Weierstrass data (M, η, G) of �+. Here M
is the underlying Riemann surface structure of �+, η is the (holomorophic) height
differential (i.e., the complexification of dx3) and G is the meromorphic function
given by the stereographic projection of the Gauss map (of the outward normal).
This data produces a conformal embedding of �+ by M

F : M → �+ ⊂ R
3,

given by

F(p) = Re
∫ p0

p

(
1

2
(G−1 − G),

i

2
(G−1 + G), 1

)
η.

Let ∂+M be the component of ∂ M sent to � × {1} and let ∂−M = ∂ M\∂+M
be the components sent to �+ ∩ {x3 = 0}. As �+ meets {x3 = 0} at 120◦, one
has |G| = γ0 =

√
3
3 > 0, is constant on ∂−M . As observed by Lopez-Ros [22],

because the flux of �+ is vertical, the Weierstrass data (M, η, γ −1
0 G) produces a
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conformal immersion F′ : M → ϒ+ ⊂ R
3 of a new (possibly immersed) minimal

surface with boundary ϒ+. The properties of the Lopez-Ros deformation ensure
that ∂ϒ+ ⊂ {x3 = 1} ∪ {x3 = 0} and F(∂+M) = ∂ϒ+ ∩ {x3 = 1} is convex –
see [27, Lemma 2] while ϒ+ meets {x3 = 0} orthogonally. It follows that the set
ϒ = ϒ+ ∪ R0(ϒ+) given by taking the union of ϒ+ with its reflection across
{x3 = 0} gives a connected smooth minimal (possibly immersed) surface whose
boundaries are convex curves lying on {x3 = ±1}. By a result of Ekholm,Weinholtz
andWhite [12],ϒ is embedded and soϒ+ solves the free boundary Plateau problem
for the data (ϒ+, {x3 = 0}) in the sense of [32] and so, as before, is an annulus by
[32, Corollary 3]. Hence, �+ is an annulus and so � is also simple in the singular
case. ��

We are now in a position to prove Theorem 1.2. For brevity we use Proposi-
tion 3.1 to allow us to appeal to a result of Pyo [28] to handle the case where the
boundaries are circles, however, one could also work directly with moving planes
argument used in [28] and avoid Proposition 3.1.

Proof of Theorem 1.2. Let
 ⊂ R
2 be the convex open domain so� = ∂
.Wefirst

prove that� is a simpleminimal Plateau bi-graph, which is symmetric by reflection
through {x3 = 0}. This is immediate if � is disconnected. Indeed, in that case, by
the convex hull property we find that � ⊂ {|x3| = ±1}, and so � = 
− ∪ 
+
where 
± = 
 ± e3. We thus assume that � is connected, and claim that �

satisfies the hypotheses of Corollary 2.6 in C
 with B = �− ∪ �+ and Q = ∅.
Indeed, the only item that is not immediate is�\B ⊂ C
. but this follows from the
maximum principle of Solomon-White [38] applied to V� , the varfiold associated
to �, and appropriate catenoidal barriers. Hence, by Corollary 2.6, � is a minimal
Plateau bi-graph that is symmetric with respect to reflection across {x3 = 0}. As �

is connected we may then appeal to Proposition 3.1 to see that � is simple.
Finally, we treat the case that � is a circle. To that end, let�+ = � ∩ {x3 > 0}.

As already observed this set is a regular minimal annulus with one boundary a circle
in the plane {x3 = 1} and the other boundarymeeting {x3 = 0} in a constant contact
angle (either 90◦ or 120◦). It now follows from the main result of [28] that �+ is a
piece of a catenoid. As such, � is either a subset of Cat or of CatY depending on
its regularity. ��

4. Global Rigidity of Minimal Plateau Surfaces with Two Regular Ends

In this section we prove Theorem 1.4. To do so we first establish certain ele-
mentary properties of the ends—specifically that asymptotically they are parallel
and have equal, but opposite, logarithmic growth rate—this is entirely analogous to
what is done in the regular case. As a consequence, we may appeal to Theorem 2.5
to conclude that� is, after rotation and vertical translation, symmetric with respect
to reflection across {x3 = 0} and that �+ = � ∩ {x3 ≥ 0} is a graph of locally
bounded slope. We conclude the proof by using complex analytic arguments –
specifically a variant of the Lopez-Ros deformation [22] – to reduce to the case
already considered by Schoen [34].
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We remark that one could conclude by applying the moving planes method with
planes moving orthogonally to {x3 = 0}. Indeed, thanks to Theorem 1.2,�∩{x3 >

0} is a smooth graph which meets {x3 = 0} at a constant angle (and� ∩{x3 < 0} is
just the reflection of�∩{x3 > 0} along {x3 = 0}): therefore we can apply the same
“horizontal” moving planes arguments as in [34] and [28] to � ∩ {x3 > 0}, and
give a direct PDE proof of its rotational symmetry which entirely avoids complex
analytic methods.

Definition 4.1. Following [34], we say that a minimal Plateau surface � ⊂ R
3 has

two regular ends if there is a compact set K ⊂ R
3 so that

�\K = �1 ∪ �2,

where there are rotations S1, S2 ∈ SO(3) and a radius ρ > 0, so for i = 1, 2,

Si · �i =
{
(y, ui (y)) : y ∈ R

2\B̄ρ

}
,

and

ui (y) = ai log |y| + bi + ci · y
|y|2 + Ri (y),

where

|Ri (y)| + |y||∇ Ri (y)| ≤ C |y|−2.

Let Pi = Si ({x3 = 0}), be the planes the �i are graphs over. One readily checks
that limρ→0 ρ�i = Pi , that is, each �i is asymptotic to the plane Pi .

Lemma 4.2. One has limR→∞ H2(�∩BR)

π R2 = 2. In fact, one has P1 = P2 = P and

limρ→0 ρ� = P in C∞
loc(R

3\ {0}). If � is disconnected then � = P ′
1 ∪ P ′

2 where
P ′

i are disjoint planes parallel to P.

Proof. It is clear from the definition of regular end that limλ→0 λ� = P1 ∪ P2 in
C1(R3\ {0}). This proves the first claim. Suppose that P1 �= P2 as both P1 and P2
are planes through the origin this means that there is a point q ∈ ∂ B2 ∩ P1 ∩ P2 so
that Di = B1(q) ∩ Pi are two disks that meet transversely along a line segment.
The convergence of ρ�i to Pi as ρ → 0. Implies that for ρ very small D′

i (ρ) =
ρ�i ∩ B1(q) is a graph over Di with small C1 norm and so D′

1(ρ) meets D′
2(ρ)

transversely along a curve in small tubular neighborhood of D1 ∩ D2. This means
that ρ� is not a Plateau surface in B1 (as the infinitesimal model is the transverse
union of two planes) and so this cannot occur under the hypotheses of Theorem
1.4. Hence, P1 = P2 = P . The nature of the convergence and standard elliptic
regularity implies the convergence may be taken in C∞

loc(R
3\ {0}).

Finally, if � is disconnected, then, as there are no compact minimal Plateau
surfaces without boundary, there are exactly two connected components, �1 and
�2 of� corresponding to the ends�1 and�2. Clearly, each�i is a minimal Plateau
surface and limρ→0 ρ�i = Pi = P . By the monotonicity formula this implies each
�i is a plane that is parallel to P by definition. ��
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Proof of Theorem 1.4. If � is disconnected, then Lemma 4.2 implies � is a pair of
disjoint parallel planes andwe are done. If sing(�) = ∅, then� is a smoothminimal
surface and so [34] applies and we are also done. As such we may assume � is
connected and sing(�) �= ∅. In this, case up to an ambient rotation we may assume
the the unique tangent plane at infinity, P , given by Lemma 4.2 is P = {x3 = 0}.
Let ui be the functions with the given asymptotics for the ends �i . Note that even
though P1 = P2 = P , there is still a freedom in the choice of the rotations Si .
For concreteness, choose the same rotation for both ends. As a consequence, by
vertically translating � appropriately, we may assume b1 + b2 = 0.

It follows from standard calculations (e.g., those in [34]) that the flux of each
�i is vertical. In fact, if σi is an appropriately oriented choice of generator for the
homology of the annulus �i , then

Flux(σi ) =
∫

σi

νσi dH1 = 2πai e3.

Hence, by the balancing properties of the flux – which hold for minimal Plateau
surfaces as they follow from (2.2) – one has 2πa1 + 2πa2 = 0. Up to relabelling,
one may assume a1 ≥ 0 ≥ a2 = −a1. In fact, by the strong half-space theorem
[17], a1 > 0 > a2 = −a1.

Take R > 1 large and let �R = � ∩ C̄R be the closed cylinder of radius R
centered on the x3-axis. Our assumptions on� and the properties of the ends imply
that, for any ε > 0, there is an Rε > 0 large so that, for R > Rε , �R − εe3 satisfies
the hypotheses of Theorem 2.5. It follows that � ∩ {x3 > ε} and � ∩ {x3 < −ε}
are both graphs over the plane {x3 = 0} and each is ε close to reflection across
{x3 = 0} of the other. Taking ε → 0, it follows that �\ {x3 = 0} consists of two
graphical components and is symmetric with respect to reflection across {x3 = 0}.

To complete the proof one considers�+ = � ∩ {x3 > 0}. As sing(�) �= ∅,�+
is a surface with one catenoidal end that meets {x3 = 0} along one boundary curve
with constant contact angle equal to 120◦. Observe that as�+ has a catenoidal end,
the underlying Riemann surface structure of �+ is M\ {p0} where M is a compact
Riemann surface with boundary and p0 �∈ ∂ M . Let (M\ {p0} , η, G) beWeierstrass
data for �+ so η, is the height differential, and G, the stereographic projection of
the Gauss map of the outward pointing normal. As �+ has a catenoidal end, η and
G both extend meromorphically to M with η having a simple pole at p0 and G a

simple zero. Moreover, as �+ meets {x3 = 0} at 120◦, |G| = γ0 =
√
3
3 > 0 on

∂ M . As in the proof of Proposition 3.1, the constant contact angle implies that the
flux over any closed loop in �+ is vertical. Hence, by [22], the Weierstrass data
(M\ {p0} , η, γ −1

0 G) parameterizes a new (possibly immersed) minimal surface
with boundary ϒ+ and this surface also has a regular end asymptotic to a vertical
catenoid. Moreover, ∂ϒ+ ⊂ {x3 = 0} and, as the boundary of ϒ+ is parameterized
by ∂ M , the choice of Weierstrass data ensures ϒ+ meets {x3 = 0} orthogonally. It
follows that the set ϒ = ϒ+ ∪ R0(ϒ+) given by taking the union of ϒ+ with its
reflection across {x3 = 0} gives a connected smooth minimal (possibly immersed)
surface with two regular ends. As [34] applies to immersed minimal surfaces, it
follows that ϒ is a vertical catenoid. As the Lopez-Ros deformation of a vertical
catenoid is just a reparamaterization of the original catenoid, it follows that �+ is
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also a subset of a vertical catenoid. From this one immediately concludes that � is
a Y -catenoid. ��

5. Further Remarks and Open Questions

We conclude with some further remarks and questions about minimal Plateau
surfaces in slabs. First of all, we observe how essential to the proof of Theorem 1.2
is the assumption that at each point in �± = (∂
) × {±1} the surface � is locally
diffeomorphic to half-planes. If relaxing this assumptionwemay havemore rigidity
cases (for example, the union between a catenoid bounded by two circles, and one
or both the disks bounded by the two circles, would be admissible if in the definition
of Plateau minimal surfaces we relax the notion of boundary point to the case when
the surface is locally diffeomorphic to a finite union of half-planes) and indeed our
argument immediately breaks down. This is somethingwe exploremore thoroughly
in [5], and which motivates the following question:

Question 5.1. Is it possible to find a circle � in {x3 = 0} so that if �± = � ± e3 ⊂
{x3 = ±1}, then there is a minimal Plateau surface � in R

3\�− ∪ �+ which does
not possess rotational symmetry?

A plausible candidate surface would be to desingularize the union of an appropri-
ately scaled pieces of Cat and CatY . Less clear is whether the orientability condition
is necessary. This motivates the following questions:

Question 5.2. Fix two curves �0 and �1 in parallel planes – not necessarily convex.
Is there a minimal Plateau surface � with ∂� = �0 ∪ �1 so that � does not have
an associated cell structure? Even if such examples exist for general choices of
curves, does the conclusion of Theorem 1.2 still hold? I.e., is the cell condition
unnecessary in the convex or circular case?

Theorem 1.2 applies to “unstable" minimal Plateau surfaces as well as to the
physical “stable" ones. It would be interesting to rigorously produce examples of
these sorts examples for large classes of curves. One approach would be to develop
a min–max theory in this setting.

Question 5.3. Can one produce unstable singular minimal Plateau surfaces that
span pairs of convex curves?

Alternatively, one could hope to develop a degree theory analogous to the theory
developed by Meeks and White to study the space of minimal annuli spanning a
pair of convex curves [24,25]. In particular, they show that generic pairs of convex
curves are spanned by either no minimal annulus or exactly two, one stable and
the other unstable. One may ask to what extent this generalizes to minimal Plateau
surfaces that are topologically CatY—i.e. an annulus with a disk glued in.

Question 5.4. Can one characterize the space of Plateau minimal surfaces that are
topologically CatY surfaces and span pairs of convex curves? For generic pairs
are there exactly two such surfaces, one stable and one unstable?
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The Convex Curves conjecture of Meeks [23] states that the only connected
minimal surfaces spanning two convex curves in parallel planes are topological
annuli. One may ask an analogous question in the Plateau setting.

Question 5.5. Must a singular minimal Plateau surface spanning a pair of convex
curves be topologically CatY ? What if the curves are coaxial circles?

Theorem 1.2 shows the answer is yes when the curves are vertical translations of
one another provided the surface is cellular—in the smooth setting this is a result
of Ros [32] and Schoen [34].

Finally, catenoids possess an interesting variational property. Namely in [4] the
authors show that an appropriate piece of the catenoid has the least area among
minimal annuli whose boundaries lie in two fixed parallel planes. This was gener-
alized in [6] who increased the class of competitors to a larger class of (smooth)
minimal surfaces of different topological type. One may ask the same question in
the class of singular minimal Plateau surfaces.

Question 5.6. Among minimal Plateau surfaces spanning two fixed parallel planes
what is the least area singular surface? Is it an appropriate piece of CatY ?

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Appendix A. A Rigidity Result for Geodesic Nets

In the proof of the Removable Singularity lemma for Plateau minimal surfaces, see
Lemma 2.1, we have used a rigidity lemma for geodesic nets on the unit sphere
whose statement and proof are presented in this appendix. We say that � ⊂ S

2 is
a geodesic net if � is a finite union � = ⋃M

i=1 γm of geodesic arcs γi in S
2 so that

if p ∈ �, then, setting I (p) = {i : p ∈ γi }, one has that either # I (p) = 1 and
p ∈ int γi , or # I (p) ≥ 2, p ∈ ∂γi for each i ∈ I (p) and

∑
i∈I (p)

νcoγi
(p) = 0 , (A.1)

where νcoγi
denotes the outer unit conormal to γi in S

2 at p. Of course, if #I (p) ≥ 2,
then #I (p) ≥ 3. If� is a geodesic net inS

2, then themultiplicity one, 1-dimensional
varifold V� associated to� is stationary in S

2.Moreover, a cone K inR
3 with vertex

at 0 induces a multiplicity one, 2-dimensional, stationary varifold VK in R
3 if and

only if � = K ∩ ∂ B1 is a geodesic net in S
2 ≡ ∂ B1 thanks to [1]. Of course, any

finite union of equatorial circles defines a geodesic net. Equatorial circles andY -nets
(three equatorial half-circles meeting at two common end-points at 2π/3-angles)
are examples of geodesic nets that are also locally length minimizing, in the sense
that they minimize H1 with respect to Lipschitz deformations with sufficiently
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small support. The following lemma provides a rigidity statement which allows
one to characterize these two length minimizing geodesic nets among all geodesic
nets. The proof uses moving equatorial half-circles.

Lemma A.1. (Rigidity of geodesic nets) Let � be a geodesic net in S
2, let e be a

unit vector and let ε > 0. If � agrees either with an equatorial circle or with a
Y -net in the spherical cap {x · e > −ε}, then � is either an equatorial circle or a
Y -net.

Proof. Without loss of generality let us assume that e = e3, so that � ∩ {x3 ≥ 0}
is equal to a equatorial half-circle �0 contained in {x3 ≥ 0} with endpoints p0
and −p0. In this way � ∩ {x3 > −ε} is either equal to S0 ∩ {x3 > −ε} or to
Y0 ∩ {x3 > −ε}, where S0 = �0 ∪ (−�0) is the unique equatorial circle containing
�0 and Y0 is the unique Y -net containing �0.
Let {�(t)}0≤t≤π and {�′(t)}0≤t≤π denote the two distinct one-parameter families of
equatorial half-circles obtained by rotating by t-radians �0 around the axis defined
by its endpoints ±p0 one clockwise the other counter-clockwise. In particular,
�(t) and �′(t) have the same endpoints of �0, �(0) = �′(0) = �0, and �(π) =
�′(π) = −�0 is the equatorial half-circle antipodal to �0. By assumption, there
are maximal intervals [0, δ0) and [0, δ′

0) such that

�(t) ∩ �\{±p0} = ∅ ∀t ∈ (0, δ0) , (A.2)

and such that the same holds for �′(t) in place of �(t) if t ∈ (0, δ′
0). Notice that

as � agrees with either an equatorial circle or a Y -net on {x3 > −ε}, then either δ0
or δ′

0 must be strictly larger than π/2. We assume, without loss of generality, that
δ0 > π/2.
If δ0 = π but � ∩ �(π)\{±p0} = ∅, then the validity of (A.2) for every t ∈ (0, π)

implies that � ⊂ W where W is wedge given by the intersection of two different
closed half-spaces. Therefore #I (p0) ≥ 2 but (A.1) cannot hold at p = p0. We
deduce that if δ0 = π , then � ∩�(π)\{±p0} �= ∅. As a consequence, � is touched
by �(π) at an interior point q, and locally near q � lies on one side of �(π) thanks
to (A.2) with δ0 = π : by the strict maximum principle we find that, locally near q,
� is equal to �(π). Let I be the component of � ∩ �(π) containing q. As I is the
intersection of closed sets it is closed. Moreover, for every p ∈ I , as � lies on one
side of �(π) near p one has #I (p) ≤ 2 and so � is smooth near p. Hence, we may
appeal to a unique continuation to see that I = �(π). That is, �(π) ⊂ �. We have
thus proved that

S0 ⊂ � , � ∩ H0 = ∅ ,

where H0 is one of the two open half-spaces bounded by S0. It is easily seen that
(A.1) and � ∩ H0 = ∅ imply that # I (p) = 1 for every p ∈ S0. In particular, by a
covering argument, � is equal to S0 in an open neighborhood of S0, and since � is
connected, this implies that � = S0.
We are left to discuss the casewhen δ0 ∈ (π/2, π). By the strictmaximumprinciple,
the regularity of points of � lying on a �(δ0) and the unique continuation principle
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we see that

�0 ∪ �(δ0) ⊂ � , � ∩ V = ∅ where V =
⋃

t∈(0,δ0)

�(t).

The fact that δ0 < π implies that � ∩ {x3 > −ε} = S0 ∩ {x3 > −ε} cannot
hold. Therefore it must be � ∩ {x3 > −ε} = Y0 ∩ {x3 > −ε}, which gives
δ0 = 2π/3, δ′

0 = 2π/3, and thus that Y0 ⊂ �. Now pick let V ′ denote the smaller
wedge bounded by �0 and �′(2π/3), and notice that similarly V is the smaller
wedge bounded by �0 and �(2π/3). If q is in the interior of �(2π/3), then the
fact that V ∩ � = ∅ combined with (A.1) implies that �(2π/3) is equal to � in a
neighborhood of q; similarly, V ′ ∩� = ∅ and (A.1) imply that �′(2π/3) is equal to
� in a neighborhood of each of its points. Finally,� and Y0 agree in a neighborhood
of {±p0} and in a neighborhood of�0 thanks to�∩{x3 > −ε} = Y0∩{x3 > −ε}, so
that, in conclusion, by a covering argument,� is equal toY0 in anopenneighborhood
of Y0. This proves that � = Y0, as claimed. ��
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