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Abstract

We provide a mathematical analysis of the effective viscosity of suspensions of
spherical particles in a Stokes flow, at low solid volume fraction φ. Our objective is
to go beyondEinstein’s approximationμe f f = (1+ 5

2φ)μ. Assuming a lower bound
on the minimal distance between the N particles, we are able to identify the O(φ2)

correction to the effective viscosity, which involves pairwise particle interactions.
Applying the methodology developped over the last years on Coulomb gases, we
are able to tackle the limit N → +∞ of the O(φ2)-correction, and provide an
explicit formula for this limit when the particles centers can be described by either
periodic or stationary ergodic point processes.

1. Setting of the Problem

Our general concern is the computation of the effective viscosity generated by
a suspension of N particles in a fluid flow. We consider spherical particles of small
radius a, centered at xi,N , with N � 1 and 1 � i � N . To lighten notations, we
write xi instead of xi,N , and Bi = B(xi , a).We assume that the Reynolds number of
the fluid flow is small, so that the fluid velocity is governed by the Stokes equation.
Moreover, the particles are assumed to be force- and torque-free. IfF = R

3\(∪i Bi )

is the fluid domain, governing equations are
⎧
⎪⎨

⎪⎩

−μ�u + ∇ p = 0, x ∈ F ,

divu = 0, x ∈ F ,

u|Bi = ui + ωi × (x − xi ),

(1.1)

whereμ is the kinematic viscosity,while the constant vectorsui andωi areLagrange
multipliers associated to the constraintsˆ

∂ Bi

σμ(u, p)n ds = 0,
ˆ

∂ Bi

σμ(u, p)n × (x − xi ) ds = 0. (1.2)
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Here, σμ(u, p) := 2μD(u) − pI is the usual Cauchy stress tensor. The boundary
condition at infinity will be specified later on.

We are interested in a situation where the number of particles is large, N � 1.
We want to understand the additional viscosity created by the particles. Ideally, our
goal is to replace the viscosity coefficient μ in (1.1) by an effective viscosity tensor
μ′ that would encode the average effect induced by the particles. Note that such
replacement can only make sense in the flow region O in which the particles are
distributed in a dense way. For instance, a finite number of isolated particles will
not contribute to the effective viscosity, and should not be taken into account inO.
The selection of the flow region is formalized through the following hypothesis on
the empirical measure:

δN = 1

N

N∑

i=1

δxi −−−−−→
N→+∞ f (x)dx weakly,

support ( f ) = O, O smooth, bounded and open, f |O ∈ C1(O).

(H1)

Note that we do not ask for regularity of the limit density f over R3, but only in
restriction to O. Hence, our assumption covers the important case f = 1

|O|1O.
We investigate the classical regime of dilute suspensions, in which the solid

volume fraction

φ = 4

3
Nπa3/|O| (1.3)

is small, but independent of N . In addition to (H1), we make the separation hy-
pothesis

min
i 	= j

|xi − x j | � cN−1/3 for some constant c > 0 independent of N . (H2)

Let us stress that (H2) is compatible with (H1) only if the L∞ norm of f is small
enough (roughly less than 1/c3), which in turn forces O to be large enough.

Our hope is to replace a model of type (1.1) by a model of the form
{

−μ�u + ∇ p = 0, divu = 0, x ∈ R
3 \ O,

−2div(μ′ D(u′)) + ∇ p′ = 0, divu′ = 0, x ∈ O,
(1.4)

with the usual continuity conditions on the velocity and the stress

u = u′ at ∂O, σμ(u, p)n = σμ′(u′, p′)n at ∂O. (1.5)

A priori, μ′ could be inhomogeneous (and should be if the density f seen above
is itself non-constant over O). It could also be anisotropic, if the cloud of particles
favours some direction. With this in mind, it is natural to look for μ′ = μ′(x) as a
general 4-tensor, with σ ′ = 2μ′D(u) given in coordinates by σi j = μ′

i jkl D(u)kl .
By standard classical considerations of mechanics, μ′ should satisfy the relations

μ′
i jkl = μ′

j ikl = μ′
j ilk = μ′

lk j i ;
namely, μ′ should define a symmetric isomorphism over the space of 3 × 3 sym-
metric matrices.
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As we consider a situation in which φ is small, we may expect μ′ to be a small
perturbation of μ, and hopefully admit an expansion in powers of φ:

μ′ = μId + φμ1 + φ2μ2 + · · · + φkμk + o(φk). (1.6)

The main mathematical questions are:

• Can solutions uN of (1.1)–(1.2) be approximated by solutions ue f f = 1R3\Ou+
1Ou′ of (1.4)–(1.5), for an appropriate choice ofμ′ and an appropriate topology
?

• If so, does μ′ admit an expansion of type (1.6), for some k ?
• If so, what are the values of the viscosity coefficients μi , 1 � i � k ?

Let us stress that, in most articles about the effective viscosity of suspensions, it is
implicitly assumed that the first two questions have a positive answer, at least for
k = 1 or 2. In other words, the existence of an effective model is taken for granted,
and the point is then to answer the third question, or at least to determine the mean
values

νi := 1

|O|
ˆ
O

μi (x)dx (1.7)

of the viscosity coefficients. As we will see in Section 2, these mean values can
be determined from the asymptotic behaviour of some integral quantities IN as
N → +∞. These integrals involve the solutions uN of (1.1)–(1.2) with condition
at infinity

lim|x |→+∞ u(x) − Sx = 0, (1.8)

where S is an arbitrary symmetric trace-free matrix.
The effective viscosity problem for dilute suspensions of spherical particles has

a long history,mostly focused on the first order correction created by the suspension,
that is k = 1 in (1.6). The pioneering work on this problem was due to Einstein
[15], not mentioning earlier contributions on the similar conductivity problem by
Maxwell [29], Clausius [11], Mossotti [32]. The celebrated Einstein’s formula,

μ′ = μ + 5

2
φμ + o(φ), (1.9)

was derived under the assumption that the particles are homogeneously and isotrop-
ically distributed, and neglecting the interactions between particles. In other words,
the correction μ1 = 5

2μ is obtained by summing N times the contribution of one
spherical particle to the effective stress. The calculation of Einstein will be seen in
Section 2. It was later extended to the case of an inhomogeneous suspension by
Almog and Brenner [1, p. 16], who found that

μ1 = 5

2
|O| f (x)μ. (1.10)

The mathematical justification of formula (1.9) came much later. As far as we
know, the first step in this direction was due to Sanchez-Palencia [38] and Levy and
Sanchez-Palencia [28], who recovered Einstein’s formula from homogenization
techniques, when the suspension is periodically distributed in a bounded domain.
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Another justification, based on variational principles, is due to Haines and Mazzu-
cato [19]. They also consider a periodic array of spherical particles in a bounded
domain 
, and define the viscosity coefficient of the suspension in terms of the
energy dissipation rate:

μN = μ

|S|2
ˆ
F

|D(uN )|2,

where uN is the solution of (1.1)–(1.2)–(1.8), replacingR3 by
. Their main result
is that

μN = μ + 5

2
φμ + O(φ3/2).

For preliminary results in the same spirit, see Keller-Rubenfeld [27]. Eventually, a
recent work [21] by the second author and Di Wu shows the validity of Einstein’s
formula under general assumptions of type (H1)–(H2). See also [33] for a similar
recent result.

Our goal in the present paper is to go beyond this famous formula, and to
study the second order correction to the effective viscosity, that is k = 2 in (1.6).
Results on this problem have split so far into two settings: periodic distributions,
and random distributions of spheres. Many different formulas have emerged in the
literature, after analytical, numerical and experimental studies. In the periodic case,
one can refer to the works [2,34,37,42], or to the more recent work [2], dedicated
to the case of spherical inclusions of another Stokes fluid with viscosity μ̃ 	= μ.
Still, in the simple case of a primitive cubic lattice, the expressions for the second
order correction differ. In the random case, the most reknowned analysis is due to
Batchelor and Green [5], who consider a homogeneous and stationary distribution
of spheres, and express the correction μ2 as an ensemble average that involves the
N -point correlation function of the process. As pointed out by Batchelor andGreen,
the natural idea when investigating the effective viscosity up to O(φ2) is to replace
the N -point correlation function by the two-point correlation function, but this leads
to a divergent integral. To overcome this difficulty, Batchelor and Green develop
what they call a renormalization technique, that was developed earlier by Batchelor
to determine the sedimentation speed of a dilute suspension. After further analysis
of the expression of the two-point correlation function of spheres in a Stokes flow
[6], completed by numerical computations, they claim that under a pure strain, the
particles induce a viscosity of the form

μ′ = μ + 5

2
φμ + 7.6φ2μ + o(φ2). (1.11)

Although the result of Batchelor and Green is generally accepted by the fluid me-
chanics community, the lack of clarity about their renormalization technique has
led to debate; see [1,22,35].

One main objective in the present paper is to give a rigorous and global math-
ematical framework for the computation of

ν2 = 1

|O|
ˆ
O

μ2(x)dx, (1.12)
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leading to explicit formula in periodic and stationary random settings.Wewill adopt
the point of view of the studies mentioned before: we will assume the validity of an
effective model of type (1.4)–(1.5)–(1.6) with k = 2, and will identify the averaged
coefficient ν2.

More precisely, our analysis is divided into two parts. The first part, conducted
in Section 2, has as its main consequence the following:

Theorem 1.1. Let (xi )1�i�N a family of points supported in a fixed compact setR3,
and satisfying (H1)–(H2). For any trace-free symmetric matrix S and any φ > 0,
let uN , resp. ue f f , the solution of (1.1)–(1.2)–(1.8) with the radius a of the balls
defined through (1.3), resp. the solution of (1.4)–(1.5)–(1.8) where μ′ obeys (1.6)
with k = 2, μ1 being given in (1.10).

If uN − uef f = o(φ2) in H−∞
loc (R3), meaning that for all of bounded open set

U, there exists s ∈ R such that

lim sup
N→+∞

‖uN − uef f ‖Hs (U ) = o(φ2), as φ → 0,

then, necessarily, the coefficient ν2 defined in (1.12) satisfies
ν2S : S = μ limN→+∞ VN where ν2 was defined in (1.12), and

VN := 75|O|
16π

⎛

⎝
1

N 2

∑

i 	= j

gS(xi − x j ) −
ˆ
R3×R3

gS(x − y) f (x) f (y)dxdy

⎞

⎠

(1.13)
with the Calderón–Zygmund kernel

gS := −D

(
S : (x ⊗ x)x

|x |5
)

: S. (1.14)

Roughly, this theorem states that if there is an effective model at order φ2, the
mean quadratic correction ν2 is given by the limit of VN , defined in (1.13). Note
that the integral at the right-hand side of (1.13) is well-defined: f ∈ L2(R3) and
f → gS � f is a Calderón–Zygmund operator, therefore continuous on L2(R3). We
insist that our result is an if theorem: the limit of (1.13) does not necessarily exist
for any configuration of particles xi = xi,N satisfying (H1)–(H2). In particular, it is
not clear that an effective model at order φ2 is available for all such configurations.

Still, the secondpart of our analysis shows that for points associated to stationary
random processes (including periodic patterns or Poisson hard core processes), the
limit of the functional does exist, and is given by an explicit formula.We shall leave
for later investigation the problem of approximating uN by uef f when the limit of
VN exists.

Our study of functional (1.13) is detailed in Sections 3 to 5. It borrows a lot from
the mathematical analysis of Coulomb gases, as developped over the last years by
Sylvia Serfaty and her coauthors [9,36,40]. Although our paper is self-contained,
we find useful to give a brief account of this analysis here. As explained in the
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lecture notes [41], one of its main goals is to understand what configurations of
points minimize Coulomb energies of the form

HN = 1

N 2

∑

i 	= j

g(xi − x j ) + 1

N

N∑

i=1

V (xi ),

where g(x) = 1
|x | is a repulsive potential of Coulomb type, and V is typically

a confining potential. It is well-known, see [41, chapter 2], that under suitable
assumptions on V , the sequence of functionals HN (seen as a functionals over
probability measures by extension by +∞ outside the set of empirical measures)
�-converges to the functional

H(λ) =
ˆ
R3×R3

g(x − y)dλ(x)dμ(y) +
ˆ
R3

V (x)dλ(x).

Hence, the empirical measure δN = 1
N

∑N
i=1 δxi associated to the minimizer

(x1, . . . , xN ) of HN converges weakly to the minimizer λ of H .
In the series of works [36,40], see also [39] on the Ginzburg-Landau model,

Serfaty and her coauthors investigate the next order term in the asymptotic expan-
sion of minx1,...,xN HN . A keypoint in these works is understanding the behaviour
of (the minimum of)

HN =
ˆ
R3×R3\Diag

g(x − y)d(δN − λ)(x)d(δN − λ)(y) (1.15)

as N → +∞. This is done through the notion of renormalized energy. Roughly,
the starting point behind this notion is the (abusive) formal identity

”
ˆ
R3×R3

g(x − y)d(δN − λ)(x)d(δN − λ)(y) = 1

4π

ˆ
R3

|∇hN |2 ”, (1.16)

where hN is the solution of �hN = 4π(δN − λ) in R
3. Of course, this identity

does not make sense, as both sides are infinite. On one hand, the left-hand side is
not well-defined: the potential g is singular at the diagonal, so that the integral with
respect to the product of the empirical measures diverges. On the other hand, the
right-hand side is not better defined: as the empirical measure does not belong to
H−1(R3), hN is not in Ḣ1(R3).

Still, as explained in [41, chapter 3], one can modify this identity, and show a
formula of the form

HN = lim
η→0

(
1

4π

ˆ
R3

|∇hη
N |2 − Ng(η)

)

, (1.17)

where hη
N is an approximation of hN obtained by regularization of the Dirac masses

at the right-hand side of the Laplace equation: �hη
N = 4π(δ

η
N −λ) in R3. Note the

removal of the term Ng(η) at the right-hand side of (1.17). This term, which goes
to infinity as the parameter η → 0, corresponds to the self-interaction of the Dirac
masses: it must be removed, consistently with the fact that the integral defining
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HN excludes the diagonal. This explains the term renormalized energy. See [41,
chapter 3] for more details.

From there (omitting to discuss the delicate commutation of the limits in N
and η !), the asymptotics of minx1,...,xN HN can be deduced from the one of
minx1,...,xN

´
R3 |∇hη

N |2, for fixed η. The next step is to show that such minimum
can be expressed as spatial averages of (minimal) microscopic energies, expressed
in terms of solutions of the so-called jellium problems: see [41, chapter 4]. These
problems, obtained through rescaling and blow-up of the equation on hη

N , are an
analogue of cell problems in homogenization. More will be said in Section 4, and
we refer to the lecture notes [41] for all necessary complements.

Thus, the main idea in the second part of our paper is to take advantage of the
analogy between the functionals VN and HN to apply the strategy just described.
Doing so, we face specific difficulties: our distribution of points is not minimizing
an energy, the potential gS is much more singular than g, the reformulation of the
functional in terms of an energy is less obvious, etc. Still, we are able to reproduce
the same kind of scheme.We introduce in Section 3 an analogue of the renormalized
energy. The analogue of the jellium problem is discussed in Section 4. Finally, in
Section 5, we are able to tackle the convergence of VN , and give explicit formula
for the limit in two cases: the case of a (properly rescaled) LZ3-periodic pattern of
M-spherical particles with centers a1, …, aM , and the case of a (properly rescaled)
hardcore stationary random process with locally integrable two points correlation
function ρ2(y, z) = ρ(y − z). In the first case, we show that

lim
N→+∞VN = 25L3

2M2

(∑

i 	= j

S∇ · GS,L(ai −a j ) + K S∇ · (GS,L − GS)(0)
)
, (1.18)

where GS and GS,L are the whole space and LZ3-periodic kernels defined respec-
tively in (3.12) and (5.18); see Proposition 5.4. In the special case of a primitive
cubic lattice, for which M = L = 1, we can push the calculation further, finding
that

ν2S : S = μ
(
α

3∑

i=1

|Sii |2 + β
∑

i 	= j

|Si j |2
)
,

with α ≈ 9.48 and β ≈ −2, 15, cf. Proposition 5.5 for precise expressions. Our
result is in agreement with [42]. In the random stationary case, if the process has
mean intensity one, we show that

lim
N

VN = 25

2
lim

L→+∞
1

L3

∑

z 	=z′∈�∩KL

S∇ · GS,L(z − z′)

= 25

2
lim

L→+∞
1

L3

ˆ
KL×KL

S∇ · GS,L(z − z′)ρ(z − z′)dzdz′. (1.19)

These formula open the road to numerical computations of the viscosity coefficients
of specific processes, and should in particular allow us to check the formula found
in the literature [5,35].
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Let us conclude this introduction by pointing out that our analysis falls into the
general scope of deriving macroscopic properties of dilute suspensions. From this
perspective, it can be related to mathematical studies on the drag or sedimentation
speed of suspensions; see [13,23–25,30] among many. See also the recent work
[14] on the conductivity problem.

2. Expansion of the Effective Viscosity

The aim of this section is to understand the origin of the functional VN in-
troduced in (1.13), and to prove Theorem 1.1. The outline is the following. We
first consider the effective model (1.4)–(1.5)–(1.6). Given S a symmetric trace-free
matrix, and a solution uef f with condition at infinity (1.8), we exhibit an integral
quantity Ie f f = Ie f f (S) that involves uef f and allows us to recover (partially) the
mean viscosity coefficient ν2. In the next paragraph, we introduce the analogue IN

of Ie f f , that involves this time the solution uN of (1.1)–(1.2) and (1.8). In brief,
we show that if uN is o(φ2) close to uef f , then IN is o(φ2) close to Ie f f . Finally,
we provide an expansion of IN , allowing us to express ν2 in terms of VN . Theorem
1.1 follows.

2.1. Recovering the Viscosity Coefficients in the Effective Model

Let k � 2,μ′ satisfying (1.6), with viscosity coefficientsμi that may depend on
x . Let S symmetric and trace-free. We denote u0(x) = Sx . Let uef f = 1R3\Ou +
1Ou′ the weak solution in u0 + Ḣ1(R3) of (1.4)–(1.5)–(1.8). By a standard energy
estimate, one can show the expansion

uef f − u0 = φ uef f,1 + · · · + φkue f f,k + o(φk) in Ḣ1(R3),

where the system satisfied by uef f,i = 1R3\Oui + 1Ou′
i is derived by plugging the

expansion in (1.4)–(1.5) and keeping terms with power φi only. Notably, we find
that {

−μ�u1 + ∇ p1 = 0, divu1 = 0, x ∈ R
3 \ O,

−μ�u′
1 + ∇ p′

1 = 2div(μ1D(u0)) divu′
1 = 0, x ∈ O,

(2.1)

together with the conditions u1 = 0 at infinity,

u1 = u′
1 at ∂O, σμ(u1, p1)n = σμ(u′

1, p′
1)n + 2μ1D(u0)n at ∂O.

Similarly,
{

−μ�u2 + ∇ p2 = 0, divu2 = 0, x ∈ R
3 \ O,

−μ�u′
2 + ∇ p′

2 = 2div(μ2D(u0)) + 2div(μ1D(u′
1)), divu′

2 = 0, x ∈ O,

(2.2)
together with u2 = 0 at infinity,

u2 = u′
2 at ∂O, σμ(u2, p2)n

= σμ(u′
2, p′

2)n + 2μ2D(u0)n + 2μ1D(u′
1)n at ∂O.
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Now, inspired by formula (4.11.16) in [4], we define

Ie f f :=
ˆ

∂O
σμ(u − u0, pef f )n · Sxds − 2μ

ˆ
∂O

(u − u0) · Snds, (2.3)

where n refers to the outward normal. We will show that

Ie f f = 2|O|
(
φν1S : S + φ2ν2S : S

)
+ 2φ2

ˆ
O

μ1D(u′
1) : S + o(φ2). (2.4)

We first use (1.5) to write

Ie f f =
ˆ

∂O
σμ′(u′ − u0, p′)n · Sxds +

ˆ
∂O

σμ′−μ(u0, 0)n · Sxds

− 2μ
ˆ

∂O
(u′ − u0) · Snds

=
ˆ

∂O
σμ′(φu′

1 + φ2u′
2, φp1 + φ2 p2)n · Sxds

+ 2
ˆ

∂O
(φμ1 + φ2μ2)Sn · Sxds − 2μ

ˆ
∂O

(φu′
1 + φ2u′

2) · Snds + o(φ2)

=
ˆ

∂O
σμ(φu′

1 + φ2u′
2, φp1 + φ2 p2)n · Sxds + φ

ˆ
∂O

σμ1(φu′
1, 0)n · Sxds

+ 2
ˆ

∂O
(φμ1 + φ2μ2)Sn · Sxds − 2μ

ˆ
∂O

(φu′
1 + φ2u′

2) · Snds + o(φ2).

Using the equations satisfied by u′
1 and u′

2, after integration by parts, we get

ˆ
∂O

σμ(φu′
1 + φ2u′

2, φp1 + φ2 p2)n · Sxds

= −
ˆ
O
2div(φμ1S + φ2μ2S) · Sxdx −

ˆ
O
2div(φ2μ1D(u′

1)) · Sxdx

+ 2μ
ˆ
O

D(φu′
1 + φ2u′

2) : Sdx

= 2|O|(φν1S : S + φ2ν2S : S) − 2
ˆ

∂O
(φμ1 + φ2μ2)Sn · Sxds

+ 2
ˆ
O

φ2μ1D(u′
1) : S − 2

ˆ
∂O

φ2μ1D(u′
1)n · Sxds

+ 2μ
ˆ
O

(φu′
1 + φ2u′

2) · Sndx .

Plugging this last line in the expression for Ie f f yields (2.4).
We see through formula (2.4) that the expansion of Ie f f in powers of φ gives

access to ν1, and, if μ1 is known, it further gives access to ν2. On the basis of
the works [1,33] and of the recent paper [21], which considers the same setting
as ours, it is natural to assume that μ1 is given by (1.10). This implies ν1 = 5

2μ.
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With such expression of μ1, and the form of f specified in (H1), we can check that
uS = (5|O|)−1uef f,1 satisfies

−�uS +∇ p = div(S f ) = S∇ f, divuS = 0 in R
3, lim|x |→∞ uS(x) = 0. (2.5)

It follows that

Ie f f = 5φμ|O||S|2 + 2φ2|O|ν2S : S − 50μφ2|O|2
ˆ
R3

|D(uS)|2+o(φ2). (2.6)

2.2. Recovering the Viscosity Coefficients in the Model with Particles

To determine the possible value of the mean viscosity coefficient ν2, we must
now relate the functional Ie f f , based on the effective model, to a functional IN

based on the real model with spherical rigid particles. From now on, we place
ourselves under the assumptions of Theorem 1.1. Note that, thanks to hypothesis
(H2), the spherical particles do not overlap for φ small enough, so that a weak
solution uN ∈ u0 + Ḣ1(R3) of (1.1)–(1.2)–(1.8) exists and is unique.

By integration by parts, for any R such that O � BR , we have

Ie f f =
ˆ

∂ BR

σμ(uef f − u0, pef f )n · Sxds − 2μ
ˆ

∂ BR

(uef f − u0) · Snds. (2.7)

By analogy with (2.3), and as all particles remain in a fixed compact K ⊃ O
independent of N , we set for any R such that K ⊂ BR :

IN :=
ˆ

∂ BR

σμ(uN − u0, pN )n · Sxds − 2μ
ˆ

∂ BR

(uN − u0) · Snds, (2.8)

which again does not depend on our choice of R by integration by parts. Now, if
uef f and uN are o(φ2)-close in the sense of Theorem 1.1, then

lim sup
N→+∞

|IN − Ie f f | = o(φ2). (2.9)

Indeed, uN − uef f is a solution of a homogenenous Stokes equation outside K .
By elliptic regularity, we find that lim supN→+∞ ‖uef f − uN ‖Hs (K ′) = 0, for any
compact K ′ ⊂ R

3 \ K and any positive s. Relation (2.9) follows.
We now turn to the most difficult part of this section, that is expanding IN in

powers of φ. We aim to prove

Proposition 2.1. Let (xi )1�i�N , satisfying (H1)–(H2). For S trace-free and sym-
metric, for φ > 0, let uN the solution of (1.1)–(1.2)–(1.8) with the ball radius a
defined through (1.3). Let IN as in (2.8), VN as in (1.13), and uS the solution of
(2.5). One has

IN = 5φμ|O||S|2 + 2φ2μ|O|VN − 50μφ2|O|2
ˆ
R3

|D(uS)|2 + o(φ2). (2.10)
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As before, notation AN = BN + o(φ2) means lim supN |AN − BN | = o(φ2).
Obviously, Theorem 1.1 follows directly from (2.6), (2.9) and from the proposition.

To start the proof, we set vN := uN − u0. Note that vN ∈ Ḣ1(F) still satisfies
the Stokes equation outside the ball, with vN = 0 at infinity, and vN = −Sx +
ui + ωi × (x − xi ) inside Bi . Moreover, taking into account the identities

ˆ
∂ Bi

σμ(u0, 0)n ds = 2μ
ˆ

∂ Bi

Sn = 2μ
ˆ

Bi

divS = 0

and

ˆ
∂ Bi

σμ(u0, 0)n × (x − xi ) ds = 2μ
ˆ

∂ Bi

Sn × (x − xi ) ds = 2μ
ˆ

∂ Bi

S(x − xi ) × n ds

= 2μ
ˆ

Bi

curl(S(x − xi )) ds = 0, (2.11)

one has for all i that
ˆ

∂ Bi

σμ(vN , pN )n ds = 0,
ˆ

∂ Bi

σμ(vN , pN )n × (x − xi ) ds = 0.

From the definition (2.8), we can re-express IN as

IN =
N∑

i=1

ˆ
∂ Bi

σμ(vN , pN )n · Sx ds − 2μ
N∑

i=1

ˆ
∂ Bi

vN · Sn ds. (2.12)

To obtain an expansion of IN in powers of φ, we will now approximate (vN , pN )

by some explicit field (vapp, papp), inspired by the method of reflections. This
approximation involves the elementary problem

⎧
⎪⎨

⎪⎩

−μ�v + ∇ p = 0 outside B(0, a),

divv = 0 outside B(0, a),

v(x) = −Sx, x ∈ B(0, a).

(2.13)

The solution of (2.13) is explicit [18], and given by

vs[S](x) := −5

2
S : (x ⊗ x)

a3x

|x |5 − Sx
a5

|x |5 + 5

2
(S : x ⊗ x)

a5x

|x |7
= v[S] + O(a5|x |−4), (2.14)

with

v[S](x) := −5

2
S : (x ⊗ x)

a3x

|x |5 . (2.15)

The pressure is

ps[S](x) := −5μa3 S : (x ⊗ x)

|x |5 . (2.16)
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We now introduce

(vapp, papp)(x) :=
N∑

i=1

(vs[S], ps[S])(x − xi ) +
N∑

i=1

(vs[Si ], ps[Si ])(x − xi ),

(2.17)
where

Si :=
∑

j 	=i

D(v[S])(xi − x j ). (2.18)

In short, the first sum at the right-hand side of (2.17) corresponds to a superpo-
sition of N elementary solutions, meaning that the interaction between the balls
is neglected. This sum satisfies the Stokes equation outside the ball, but creates
an error at each ball Bi , whose leading term is Si x . This explains the correction
by the second sum at the right-hand side of (2.17). One could of course reiterate
the process: as the distance between particles is large compared to their radius, we
expect the interactions to be smaller and smaller. This is the principle of the method
of reflections that is investigated in [24]. From there, Proposition 2.1 will follow
from two facts. Defining

Iapp :=
N∑

i=1

ˆ
∂ Bi

σμ(vapp, papp)n · Sx ds − 2μ
N∑

i=1

ˆ
∂ Bi

vapp · Sn ds,

we will show first that

Iapp = 5φμ|S|2 + 2φ2μ|O|VN − 50μφ2|O|2
ˆ
R3

|D(uS)|2, (2.19)

and then
lim sup
N→+∞

|IN − Iapp| = o(φ2). (2.20)

Identity (2.19) follows from a calculation that we now detail. We define

Ii (v, p) :=
ˆ

∂ Bi

(
(σ (v, p)n ⊗ x) − 2μ(v ⊗ n)

)
ds.

We have

Iapp =
∑

i

Ii (v
s[S](· − xi ), ps[S](· − xi )) : S

+
∑

i

∑

j 	=i

Ii (v
s[S](· − x j ), ps[S](· − x j )) : S

+
∑

i

Ii (v
s[Si ](· − xi ), ps[Si ](· − xi )) : S

+
∑

i

∑

j 	=i

Ii (v
s[S j ](· − x j ), ps[S j ](· − x j )) : S

=: Ia + Ib + Ic + Id .
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To treat Ib and Id , we rely on the following property, which is checked easily
through integration by parts: for any (v, p) solution of Stokes in Bi , and any trace-
free symmetric matrix S, Ii (v, p) : S = 0. As for all i and all j 	= i , vs[S](· − x j )

or vs[S j ](· − x j ) is a solution of Stokes inside Bi , we deduce

Ib = Id = 0. (2.21)

As regards Ia , we use the following formula, which follows from a tedious
calculation [18]: for any traceless matrix S,

Ii (v
s[S](· − xi )) = 20π

3
μa3S. (2.22)

It follows that

Ia = N
20π

3
μa3|S|2 = 5φ|O|μ|S|2. (2.23)

This term corresponds to the famous Einstein formula for the mean effective vis-
cosity. It is coherent with the expression (1.10) for μ1, which implies ν1 = 5

2μ.
Eventually, as regards Ic, we can use (2.22) again, replacing S by Si :

Ic = 20π

3
μa3

∑

i

Si : S = 20π

3
μa3

∑

i

∑

j 	=i

D(v[S])(xi − x j ) : S

= 75|O|2
8π

μφ2 1

N 2

∑

i

∑

j 	=i

gS(xi − x j )

= 2φ2μ|O|VN + φ2 75|O|2
8π

μ

ˆ
R3×R3

gS(x − y) f (x) f (y)dxdy, (2.24)

with gS defined in (1.14). In view of (2.21)–(2.23)–(2.24), to conclude that (2.19)
holds, it is enough to prove

Lemma 2.2. For any f ∈ L2(R3),
ˆ
R3×R3

gS(x − y) f (x) f (y)dxdy = −16π

3

ˆ
R3

|D(uS)|2, (2.25)

with gS defined in (1.14), and uS ∈ Ḣ1(R3) the solution of (2.5).

Proof. Note that both sides of the identity are continuous over L2: the left-hand side
is continuous as the Calderón–Zygmund operator f → gS � f is continuous over
L2, while the right-hand side is continuous by classical elliptic estimates for the
Stokes operator. By density, this is therefore enough to assume that f ∈ C∞

c (R3).
We denote by U = (Ui j ), Q = (Q j ) the fondamental solution of the Stokes
operator. This means that for all j , the vector field U j = (Ui j )1�i�3 and the scalar
field Q j satisfy the Stokes equation

−�U j + ∇Q j = δe j , divU j = 0 in R3. (2.26)
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It is well-known, (see [16, p. 239]), that

U (x) = 1

8π

(
1

|x | I d + x ⊗ x

|x |3
)

, Q(x) = 1

4π

x

|x |3 .

From there, one candeduce the following formula, cf [16, p. 290, equation (IV.8.14)]:

σ(U j , Q j ) = − 3

4π

(x ⊗ x)x j

|x |5 .

Using the Einstein convention for summation, this implies in turn that

gS(x) = −Skl∂xk

(
S : (x ⊗ x)xl

|x |5
)

= 4π

3
S : Skl∂xk σ(Ul , Ql)(x)

= 8π

3
S : DSkl∂xk Ul = (S∇) · (Skl∂xk Ul), (2.27)

where we have used that S is trace-free to obtain the third equality. Hence,
ˆ ˆ

gS(x − y) f (x)dx f (y)dy = 8π

3

ˆ
R3

(
(S : DSkl∂xk Ul) � f

)
(y) f (y)dy

= 8π

3

ˆ
S : DSkl∂xk (Ul � f )(y) f (y)dy.

(2.28)

Note that the permutations between the derivatives and the convolution product do
not raise any difficulty, as f ∈ C∞

c (R3). Now, using Skl = Slk , and denoting by
St−1 the convolutionwith the fundamental solution (inverse of the Stokes operator),
we get

Skl∂xk

ˆ
Ul(y − x) f (x)dx = St−1(S∇ f )(y). (2.29)

Eventually,
ˆ ˆ

gS(x − y) f (x) f (y)dxdy = 8π

3

ˆ
S : ∇St−1(S∇ f )(y) f (y)dy

= −8π

3

ˆ
St−1(S∇ f )(y) · (S∇ f )(y) dy

= −16π

3

ˆ
R3

|D(uS)|2.

This concludes the proof of the lemma. ��
Remark 2.3. By polarization of the previous identity, at least for f, f̃ smooth and
decaying enough, one has
ˆ ˆ

gS(x − y) f (y) f̃ (x)dx = −8π

3

ˆ
St−1(S∇ f )(x) · (S∇ f̃ )(x) dx

= 8π

3

ˆ
(S∇) · (St−1(S∇ f )

)
(x) f̃ (x) dx . (2.30)



Analysis of the Viscosity of Dilute Suspensions Beyond Einstein’s Formula 1363

The last step in proving Proposition 2.1, hence Theorem 1.1, is to show the
bound (2.20). If w := vN − vapp, q := pN − papp,

IN − Iapp =
N∑

i=1

ˆ
∂ Bi

σμ(w, q)n · Sx ds − 2μ
N∑

i=1

ˆ
∂ Bi

w · Sn ds

Direct verifications show that vapp, hence w, satisfies the same force- and torque-
free conditions as v. This means that for any family of constant vectors ui and ωi ,
1 � i � N ,

IN − Iapp =
N∑

i=1

ˆ
∂ Bi

σμ(w, q)n · (Sx − ui − ωi × (x − xi )) ds

−2μ
N∑

i=1

ˆ
∂ Bi

w · Sn ds.

By a proper choice of ui and ωi , we find

IN − Iapp = −
N∑

i=1

ˆ
∂ Bi

σμ(w, q)n · vN ds − 2μ
N∑

i=1

ˆ
∂ Bi

w · Sn ds

= −
ˆ
F
2μD(w) : D(vN ) dx − 2μ

N∑

i=1

ˆ
Bi

D(w) : S dx

= −
N∑

i=1

ˆ
∂ Bi

σμ(vN , pN )n · w ds − 2μ
N∑

i=1

ˆ
Bi

D(w) : S dx

= −
N∑

i=1

ˆ
∂ Bi

σμ(vN , pN )n · (w + ũi + ω̃i × (x − xi )) ds

− 2μ
N∑

i=1

ˆ
Bi

D(w) : S dx (2.31)

for any family (ũi , ω̃i ), using this time that vN is force- and torque-free. Let q � 2.
By a proper choice of (ũi , ω̃i ), by Poincaré and Korn inequalities, one can ensure
that for all i ,

‖w + ũi + ω̃i × (x − xi )‖
W

1− 1
q ,q

(∂ Bi )
� C‖D(w)‖Lq (Bi ),

where

‖g‖
W

1− 1
q ,q

(∂ Bi )
= inf

{1

a
‖G‖Lq (Bi ) + ‖∇G‖Lq (Bi ), G|∂ Bi = g

}
.

Note that the factor 1
a at the right-hand side is consistentwith scaling considerations.

Moreover, by standard use of theBogovskii operator, see [16], there exists a constant
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C (depending only on the constant c in (H2)) and afieldW ∈ W 1,q(F) , zero outside
∪N

i=1B(xi , 2a) satisfying

divW = 0 in F , W |Bi = (w + ũi + ω̃i × (x − xi ))|Bi ,

‖D(W )‖q
Lq (F)

�
∑

i

‖w + ũi + ω̃i × (x − xi )‖q

W
1− 1

q ,q
(Bi )

.

We deduce, with p � 2 the conjugate exponent of q, that

∣
∣

N∑

i=1

ˆ
∂ Bi

σμ(vN , pN )n · (w + ũi + ω̃i × (x − xi )) ds
∣
∣ = 2μ

∣
∣
ˆ
F

D(vN ) : D(W )
∣
∣

� 2μ‖D(vN )‖L p(∪B(xi ,2a))‖D(W )‖Lq (F)

� Cφ1/p−1/2‖D(vN )‖L2(R3)

( ∑

i

‖D(w)‖q
Lq (Bi )

)1/q
.

Bywell-known variational properties of the Stokes solution, ‖D(vN )‖L2 minimizes
‖D(v)‖L2 over the set of all v in Ḣ1(R3) satisfying a boundary condition of the
form v|Bi = −Sx + ui + ωi × (x − xi ) for all i . By the same considerations as
before, based on the Bogovski operator, we infer that

‖D(vN )‖2L2(R3)
� C

N∑

i=1

‖D(−Sx)‖2L2(Bi )
� C ′φ,

so that

∣
∣

N∑

i=1

ˆ
∂ Bi

σμ(vN , pN )n · (w + ũi + ω̃i × (x − xi )) ds
∣
∣

� Cφ1/p(
∑

i

‖D(w)‖q
Lq (Bi )

)1/q
.

Using this inequality with the first term in (2.31) and applying the Hölder inequality
to the second term, we end up with

|IN − Iapp| � Cφ1/p(
∑

i

‖D(w)‖q
Lq (Bi )

)1/q
. (2.32)

To deduce (2.20), it is now enough to prove that for all q > 1, there exists a constant
C independent of N or φ such that

∑

i

‖D(w)‖q
Lq (Bi )

� C(φ
1+ 2q

p + φ1+ 4q
3 ). (2.33)

Indeed, taking q > 2, meaning p < 2, and combining this inequality with (2.32)
yields (2.20), more precisely

|IN − Iapp| � C(φ
1+ 2

p + φ
7
3 ).
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In order to show the bound (2.33), we must write down the expression for w|Bi =
vN |Bi − vapp|Bi , where vapp was introduced in (2.17). A little calculation, using
Taylor’s formula with an integral remainder, shows that

w|Bi (x) = wr
i (x) − Di (x − xi ) − Ei (x − xi ) − Fi |x (x − xi , x − xi ), (2.34)

with wr
i being a rigid vector field (that disappears when taking the symmetric

gradient), with

Di :=
∑

j 	=i

D(v[S j ])(xi − x j ), Ei :=
∑

j 	=i

D(vs[S + S j ] − v[S + S j ])(xi − x j )

and with the bilinear application

Fi |x :=
∑

j 	=i

ˆ 1

0
(1 − t)∇2vs[S + S j ](t (x − xi ) + xi − x j ) dt.

We remind that vs[S] and v[S] were introduced in (2.14) and (2.15), while the
matrices S j are defined in (2.18). Note that the matrices Di and Si have the same
kind of structure. More precisely, we can define for a collection (A1, . . . , AN ) of
N symmetric matrices, an application

A : (A1, . . . , AN ) → (A′
1, . . . , A′

N ), A′
i =

∑

j 	=i

D(v[A j ])(xi − x j ).

Then, (S1, . . . , SN ) = A(S, . . . , S) and (D1, . . . , DN ) = A(S1, . . . , SN ) =
A2(S, . . . , S). Note that for anymatrix A, the kernel D(v[A]), homogeneous of de-
gree−3, is of Calderón–Zygmund type. Using this property, we are able to prove in
the appendix the following lemma, which is an adaptation of a result by the second
author and Di Wu [21]:

Lemma 2.4. For all 1 < q < +∞, there exists a constant C, depending on q and
on the constant c in (H2), such that, if (A′

1, . . . , A′
N ) = A(A1, . . . , AN ), then

N∑

i=1

|A′
i |q � Cφ

q
p

N∑

i=1

|Ai |q .

We can now proceed to the proof of (2.33). Denoting w1
i := Di (x − xi ), we

find by the lemma that

∑

i

‖D(w1
i )‖q

Lq (Bi )
� Ca3

∑

i

|Di |q � C ′a3φ
q
p

N∑

i=1

|Si |q

� C ′′a3φ
2q
p

N∑

i=1

|S|q � Cφ
1+ 2q

p .
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Then, we notice that for any matrix A, |D(vs[A] − v[A])(x)| = O(a5|x |−5). This
implies that w2

i := Ei (x − xi ) satisfies

∑

i

‖D(w2
i )‖q

Lq (Bi )
� Ca3

∑

i

|Ei |q � C ′a3a5q
∑

i

(∑

j 	=i

|S j | + |S|
|xi − x j |5

)q
.

By assumption (H2), the points yi := N 1/3xi satisfy, for all i 	= j , that

|yi − y j | � 1

2
(c + |yi − y j |) � c.

In particular,

∑

i

‖D(w2
i )‖q

Lq (Bi )
� Ca3φ5q/3

∑

i

(∑

j

|S| + |S j |
(c + |yi − y j |)5

)q
.

We then make use of the following easy generalization of Young’s convolution
inequality: ∀q � 1,

∑

i

(
∑

j

|ai j b j |)q � max
(
sup

i

∑

j

|ai j |, sup
j

∑

i

|ai j |
)q ∑

i

|bi |q . (2.35)

Applied with ai j = 1
(c+|yi −y j |)5 and b j = |S|+ |S j |, together with Lemma 2.4, this

yields

∑

i

‖D(w2
i )‖q

Lq (Bi )
� Ca3φ5q/3(

∑

j

|S|q + |S j |q
)

� C ′a3φ5q/3(1 + φ
q
p )N � Cφ1+ 5q

3 .

It remains to bound the symmetric gradient of w3
i := Fi |x (x − xi , x − xi ). By

the expression of vs , we get that, in Bi

|D(w3
i )| � C

∑

j 	=i

(
a5

|xi − x j |5 + a4

|xi − x j |4
)

(|S| + |S j |).

Proceeding as above, we find

∑

i

‖D(w3
i )‖q

Lq (Bi )
� Ca3(φ5q/3 + φ4q/3)(1 + φ

q
p )N � C ′φ1+ 4q

3 .

As D(w) = D(w1
i ) + D(w2

i ) + D(w3
i ), cf. (2.34), the previous estimates yield

(2.33). This concludes the proof of Proposition 2.1, and therefore the proof of
Theorem 1.1.
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3. The φ2 Correction VN as a Renormalized Energy

We start in this section the asymptotic analysis of the viscosity coefficient

VN = 75|O|
16π

( 1

N 2

∑

i 	= j

gS(xi − x j ) −
ˆ
R3×R3

gS(x − y) f (x) f (y)dxdy
)
.

As a preliminary step, we will show that there is no loss of generality in assuming

∀i ∈ {1, . . . , N }, dist(xi ,Oc) � 1

ln N
. (3.1)

We introduce the set

IN ,ext = {
1 � i � N , dist(xi ,Oc) � 1

ln N

}
, and Next = Next (N ) := |IN ,ext |.

By (H1)–(H2), it is easily seen that Next = o(N ) as N → +∞. We now show

Lemma 3.1. VN is uniformly bounded in N, and

VN ,ext := VN − 75|O|
16π

( 1

(N − Next )2

∑

i 	= j
i, j /∈IN ,ext

gS(xi − x j )

−
ˆ
R3×R3

gS(x − y) f (x) f (y)dxdy
)

goes to zero as N → +∞.

Proof: For any open set U , we denote
ffl

U = 1
|U |

´
U .

Let d := c
4 N−1/3 � mini 	= j

|xi −x j |
4 by (H2). We write

1

N 2

∑

i 	= j

gS(xi − x j ) = 1

N 2

∑

i 	= j

(

gS(xi − x j ) −
 

B(x j ,d)

gS(xi − y)dy

)

+ 1

N 2

∑

i 	= j

( 
B(x j ,d)

gS(xi − y)dy −
 

B(xi ,d)

 
B(x j ,d)

gS(x − y)dxdy

)

+ 1

N 2

∑

i 	= j

 
B(xi ,d)

 
B(x j ,d)

gS(x − y)dxdy := I + I I + I I I.

For the first term, with yi := N 1/3xi and with (H2) in mind, that is |yi − y j | � c
for i 	= j , we get that

∣
∣gS(xi − x j ) −

 
B(x j ,d)

gS(xi − y)dy
∣
∣ �

 
B(x j ,d)

sup
z∈[x j ,y]

|∇gS|(xi − z)||x j − y|dy

� C N 4/3 d

(c + |yi − y j |)4 ;
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see (1.14). This yields, by a discrete convolution inequality,

|I | � C N 7/3

N 2 d sup
i

∑

j

1

(c + |yi − y j |)4 � C ′N 1/3d � C,

where we have used that
∑N

j=1
1

(c+|yi −y j |)4 is uniformly bounded in N and in the

index i thanks to the separation assumption. By similar arguments, |I I | � C. As
regards the last term, we notice that

|I I I | � 1

N 2d6

∣
∣
ˆ
R3×R3

gS(x − y)FN (x)FN (y)dy

−
N∑

i=1

ˆ
R3×R3

gS(x − y)1B(xi ,d)(x)1B(xi ,d)(y)dxdy
∣
∣,

where FN = ∑N
i=1 1B(xi ,d). The operator T F(x) = ´

gS(x − y)F(y)dy is a
Calderón–Zygmund operator, and therefore continuous over L2. As F2

N = FN (the
balls are disjoint), we find that the L2 norm of FN is (Nd3)1/2 and

∣
∣
ˆ
R3×R3

gS(x − y)FN (x)FN (y)dy
∣
∣ � ‖T ‖‖FN ‖2L2 � ‖T ‖Nd3.

Similarly,

N∑

i=1

∣
∣
ˆ
R3×R3

gS(x − y)1B(xi ,η)(x)1B(xi ,η)(y)dxdy
∣
∣ � N‖T ‖d3.

It follows that |I I I | � C
Nd3 . With our choice of d, the first part of the lemma is

proved.
From there, to prove that VN ,ext goes to zero, as Next = o(N ), it is enough to

show that

1

N 2

(∑

i 	= j

gS(xi − x j ) −
∑

i 	= j,
i, j /∈IN ,ext

gS(xi − x j )
) → 0.

By symmetry, it is enough that

1

N 2

∑

i 	= j,
i∈IN ,ext

gS(xi − x j ) → 0.



Analysis of the Viscosity of Dilute Suspensions Beyond Einstein’s Formula 1369

This can be shown by a similar decomposition as the previous one. Namely,

1

N 2

∑

i 	= j

gS(xi − x j ) = 1

N 2

∑

i 	= j
i∈IN ,ext

(

gS(xi − x j ) −
 

B(x j ,d)

gS(xi − y)dy

)

+ 1

N 2

∑

i 	= j
i∈IN ,ext

( 
B(x j ,d)

gS(xi − y)dy −
 

B(xi ,d)

 
B(x j ,d)

gS(x − y)dxdy

)

+ 1

N 2

∑

i 	= j
i∈IN ,ext

 
B(xi ,d)

 
B(x j ,d)

gS(x − y)dxdy := Iext + I Iext + I I Iext .

Proceeding as above, we find this time that

|Iext | + |I Iext | + |I I Iext | � C Next

N
→ 0 as N → +∞,

which concludes the proof. ��
Remark 3.2. By Lemma 3.1, there is no restriction assuming (3.1) when studying
the asymptotic behaviour of VN . Therefore, we make from now on the assumption
(3.1).

As explained in the introduction, the analysis of VN will rely on the mathemat-
ical methods introduced over the last years for Coulomb gases, the core problem
being the analysis of a functional of the form (1.15). We shall first reexpress VN in
a similar form. More precisely, we will show

Proposition 3.3. Denoting

WN := 75|O|
16π

ˆ
R3×R3\Diag

gS(x − y)
(
dδN (x) − f (x)dx

)(
dδN (y) − f (y)dy

)
,

we have VN = WN + ε(N ) where ε(N ) → 0 as N → ∞.

Remark 3.4. In the definition of WN , the integrals of the formˆ
R3×R3\Diag

gS(x − y)dδN (x) f (y)dy,

ˆ
R3×R3\Diag

gS(x − y) f (x)dxdδN (y),

which appear when expanding the product, are understood as

ˆ
R3×R3\Diag

gS(x − y)dδN (x) f (y)dy = 8π

3

1

N

N∑

i=1

S∇ · St−1S∇ f (xi ),

ˆ
R3×R3\Diag

gS(x − y) f (x)dxdδN (y) = 8π

3

1

N

N∑

i=1

S∇ · St−1S∇ f (xi ),

where St is the Stokes operator; see (2.30) and the proof below for an explanation.
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Proof. Clearly,

VN = 75|O|
16π

ˆ
R3×R3\Diag

gS(x − y)
(
dδN (x)dδN (y) − f (x) f (y)dxdy

)
,

so that, formally,

VN = WN + 75|O|
16π

ˆ
R3×R3\Diag

gS(x − y)(dδN (x) − f (x)dx) f (y)dy

+ 75|O|
16π

ˆ
R3×R3\Diag

gS(x − y) f (x)dx(dδN (y) − f (y)dy).

Note that it is not obvious that this formal decomposition makes sense, because all
three quantities at the right-hand side involve integrals of gS(x − y) against product
measures of the form dδN (x) f (y)dy (or the symmetric one), which may fail to
converge because of the singularity of gS . To solve this issue, a rigorous path consists
in approximating, at fixed N , each Dirac mass δxi by a (compactly suppported)
approximation of unity ρη(x − xi ), where η > 0 is the approximation parameter
and goes to zero. One can then set, for each η, δ

η
N (x) := 1

N

∑N
i=1 ρη(x − xi ),

leading to the rigorous decomposition

Vη
N = Wη

N + 75|O|
16π

ˆ
R3×R3\Diag

gS(x − y)(δ
η
N (x)d(x) − f (x)dx) f (y)dy

+ 75|O|
16π

ˆ
R3×R3\Diag

gS(x − y) f (x)dx(δ
η
N (y)dy − f (y)dy),

where Vη
N , W

η
N are deduced from VN , WN replacing the empirical measure by its

regularization. It is easy to show that limη→0 Vη
N = VN . To conclude the proof, we

shall establish the following: first,

lim
η→0

ˆ
R3×R3\Diag

gS(x − y)δ
η
N (x)dx f (y)dy = 8π

3

1

N

N∑

i=1

S∇St−1S∇ f (xi );
(3.2)

the same limit holding for the symmetric term. In particular, (3.2) will show that
WN = limη→0 Wη

N exists, in the sense given in Remark 3.4. Then, we will prove

lim
N→+∞

8π

3

1

N

N∑

i=1

S∇St−1S∇ f (xi ) =
ˆ
R3×R3\Diag

gS(x − y) f (x) f (y)dxdy,

(3.3)
which, together with (3.2), will complete the proof of the proposition.

The limit (3.2) follows from identity (2.30). Indeed, for η > 0, this formula
yields
ˆ
R3×R3\Diag

gS(x − y)δ
η
N (x)dx f (y)dy = −8π

3

ˆ
R3

St−1(S∇ f )(x) · S∇δ
η
N (x)dx .
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Now, we remark that due to our assumptions on f , by elliptic regularity, h =
St−1(S∇ f )(x) isC1 insideO. Moreover, in virtue of Remark (3.2), we can assume
(3.1). Hence, as η → 0,

−8π

3

ˆ
R3

h(x) · S∇δ
η
N (x)dx → −8π

3
〈S∇δN , h〉 = 8π

3

1

N

N∑

i=1

S∇ · h(xi ).

It remains to prove (3.3). In the special case where f ∈ Cr (R3) for some
r ∈ (0, 1) (implying that it vanishes at ∂O), classical results onCalderón–Zygmund
operators yield that the function

´
R3 gS(x − y) f (x)dx = 8π

3 S∇ · h(y) is a contin-
uous (even Hölder) bounded function, so (H1) implies straightforwardly that

ˆ
(R3×R3)\Diag

gS(x − y) f (x)dx(dδN (y) − f (y)dy)

=
ˆ
R3

8π

3
S∇ · h(y)(dδN (y) − f (y)dy) → 0.

In the general case where f is discontinuous across ∂O, the proof is a bit more
involved. The difficulty lies in the fact that some points xi get closer to the boundary
as N → +∞.

Let ε > 0. Under (H2), there exists c′ > 0 (depending on c only) such that for
N−1/3 � ε,

∣
∣{i, xi belongs to the c′ε neighborhood of ∂O}∣∣ � εN . (3.4)

Letχε : R3 → [0, 1]be a smooth function such thatχε = 1 in a c′ε/4neighborhood
of ∂O, χε = 0 outside a c′ε/2 neighborhood of ∂O. We write

ˆ
(R3×R3)\Diag

gS(x − y) f (x)dx(dδN (y) − f (y)dy)

=
ˆ

(R3×R3)\Diag
gS(x − y)(χε f )(x)dx(dδN (y) − f (y)dy)

+
ˆ

(R3×R3)\Diag
gS(x − y)((1 − χε) f )(x)dx(dδN (y) − f (y)dy).

By formula (2.30), the second term reads as

ˆ
(R3×R3)\Diag

gS(x − y)(1 − χε f )(x)dx(dδN (y) − f (y)dy)

= 8π

3

ˆ
R3

S∇ · uε(y) (dδN (y) − f (y)dy),

with uε = St−1S∇((1−χε) f ). The source term (1−χε) f beingC1 and compactly
supported, S∇ · uε is Hölder and bounded, so that, as N → +∞, the integral goes
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to zero by the weak convergence assumption (H1), for any fixed ε > 0. As regards
the first term, we split it again into

ˆ
(R3×R3)\Diag

gS(x − y)(χε f )(x)dx(dδN (y) − f (y)dy)

=
ˆ

(R3×R3)\Diag
gS(x − y)(χε f )(x)dxχε(y)(dδN (y) − f (y)dy)

+
ˆ

(R3×R3)\Diag
gS(x − y)(χε f )(x)dx(1 − χε)(y)(dδN (y) − f (y)dy)

= 8π

3

ˆ
R3

S∇ · vε(y)χε(y)(dδN (y) − f (y)dy)

+ 8π

3

ˆ
R3

S∇ · vε(y)(1 − χε)(y)(dδN (y) − f (y)dy),

where vε is this time the solution of the Stokes equation with source S∇(χε f ). It
is Hölder away from ∂O, so that the last term at the right-hand side goes again to
zero as N → +∞, by assumption (H1).

It remains to handle the first term at the right-hand side. We shall show below
that for a proper choice of χε one has

‖∇vε‖L∞ � C, C independent of ε. (3.5)

Taking advantage of this fact, we write
∣
∣
∣
∣
8π

3

ˆ
R3

S∇ · vε(y)χε(y)(dδN (y) − f (y)dy)

∣
∣
∣
∣

� 8π

3
‖S · ∇vε‖L∞(R3)

(
1

N
|{i, χε(xi ) > 0}| + ‖χε f ‖L1

)

� Cε,

where we used property (3.4) to obtain the last inequality. With this bound and the
convergence to zero of the other terms for fixed ε and N → +∞, the limit (3.3)
follows.

We still have to show that∇vε is uniformly bounded in L∞ for a good choice of
χε. We borrow here to the analysis of vortex patches in the Euler equation, initiated
by Chemin in 2-d [10], extended by Gamblin and Saint-Raymond in 3-d [17]. First,
as O is smooth, one can find a family of five smooth divergence-free vector fields
w1, . . . , w5, tangent at ∂O and non-degenerate in the sense that

inf
x∈R3

∑

i 	= j

|wi × w j | > 0;

see [17, Proposition 3.2]. We take χε in the form χ(t/ε), for a coordinate t trans-
verse to the boundary, meaning that ∂t is normal at ∂O. With this choice and the
assumptions on f , one checks easily that χε f is bounded uniformly in ε in L∞(R3)

and that for all i , wi · ∇(χε f ) is bounded uniformly in ε in C0(R3) ⊂ Cr−1(R3)

for all r ∈ (0, 1). Hence, the norm ‖χε f ‖r,W introduced in [17, p. 395], where
W = (w1, . . . , w5), is bounded uniformly in ε.
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We then split the Stokes system

−�vε + ∇ pε = S∇(χε f ), divvε = 0

into the equations

curlvε = 
ε, divvε = 0

and

−�
ε = curlS∇(χε f ).

Let us show that ∂i∂ j�
−1(χε f ) is bounded uniformly in ε in L∞. Letχ ∈ C∞

c (R3),
χ � 0, χ = 1 near zero. Let for all m ∈ R, �m(ξ) := (χ(ξ)+|ξ |2)m/2. It is easily
seen through the Fourier transform that, for all s ∈ N,

‖∂i∂ jχ(D)�−2(D)�−1(χε f )‖Hs � Cs‖χε f ‖L2 � C ′
s . (3.6)

Moreover, by the calculations in [17, p. 401], replacing ω with χε f , we get

‖∂i∂ j�
−2(D)(χε f )‖L∞ � C‖χε f ‖L∞ ln(2 + ‖χε f ‖r,W

‖χε f ‖L∞
) � C ′

r , ∀0 < r < 1.

(3.7)
Combining (3.6) and (3.7), we find that

∂i∂ j�
−1(χε f )=∂i∂ j

(
χ(D)�−2(D)�−1+�−2(D)

)
(χε f )

is bounded uniformly in ε in L∞, and consequently that

‖
ε‖L∞ � C.

Also, by continuity of Riesz transforms over L p, we have

∀1 < p < ∞, ‖
ε‖L2 � C p‖χε f ‖L p � C ′
p.

Now, applying wk · ∇ to the equation satisfied by 
ε, we obtain for all 1 � k � 5,

−�(wk · ∇
ε) = curlS∇(wk · ∇(χε f )) + [wk · ∇, curlS∇](χε f ) + [wk · ∇,�]
ε

=
∑

i, j

∂i∂ j Fi, j,ε +
∑

i

∂i Gi,ε + Hε, (3.8)

where Fi, j,ε, Gi,ε and Hε are combinations of 
ε, χε f and wk · ∇(χε f ). In par-
ticular, they are bounded uniformly in ε in L∞ ∩ L p, for any 1 < p < ∞.

For the first term at the r.h.s., we write, with the same cut-off function χ as
before,

(−�)−1
∑

i, j

∂i∂ j Fi, j,ε=χ(D)(−�)−1
∑

i, j

∂i∂ j Fi, j,ε+(1 − χ(D))
∑

i, j

∂i∂ j Fi, j,ε.

By continuity of (−�)−1∂i∂ j over L2, the first term, with low frequencies, belongs
to Hs for any s,with uniformbound in ε. By the continuity of (1−χ(D))(−�)−1∂i∂ j
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over Hölder spaces (Coifman-Meyer theorem), the second term, with high frequen-
cies, is uniformly bounded in ε in Cr−1(R3), for any 0 < r < 1.

For the second and third terms in (3.8), we claim that

‖(−�)−1
∑

i

∂i Gi,ε‖L∞ � C, ‖(−�)−1Hε‖L∞ � C.

This can be easily seen by expressing these fields as
∑

i ∂i�� Gi,ε and�� Hε with
� the fundamental solution, and by using the uniform L p bounds on Gi,ε and Hε.
Eventually, we find that

‖wk · ∇
ε‖Cr−1 � Cr , ∀1 � k � 5, ∀0 < r < 1.

We conclude by [17, Proposition 3.3] that ∇vε is bounded in L∞(R3) uniformly
in ε. ��

3.1. Smoothing

By Proposition 3.3, we are left with understanding the asymptotic behaviour of

WN := 75|O|
16π

ˆ
R3×R3\Diag

gS(x − y)
(
dδN (x) − f (x)dx

)(
dδN (y) − f (y)dy

)
.

(3.9)
The following field will play a crucial role: for U, Q defined in (2.26), we set

GS(x) := Skl∂kUl(x), pS(x) = Skl∂k Ql(x). (3.10)

From (2.27), we have gS = 8π
3 (S∇) · GS , and that GS solves, in the sense of

distributions,
−�GS + ∇ pS = S∇δ, divGS = 0 in R

3. (3.11)

Moreover, from the explicit expression

Ul(x) = 1

8π

(
1

|x |el + xl

|x |3 x

)

, Ql(x) = 1

4π

xl

|x |3 ,

and taking into account the fact that S is symmetric and trace-free, we get

GS(x) = − 3

8π
Skl xl xk

x

|x |5 = − 3

8π
(Sx · x)

x

|x |5 , pS(x) = − 3

4π

(Sx · x)

|x |5 .

(3.12)
Let us note that GS is called a point stresslet in the literature, see [18]. It can be
interpreted as the velocity field created in a fluid of viscosity 1 by a point particle
whose resistance to a strain is given by −S.

We now come back to the analysis of (3.9). Formal replacement of the function
f in Lemma 2.2 by δN − f yields the formula

′′
ˆ
R3×R3

gS(x−y)
(
dδN (x)− f (x)dx

)(
dδN (y)− f (y)dy

) = − 16π

3N 2

ˆ
R3

|D(hN )|2′′
,

(3.13)
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where

hN (x) :=
N∑

i=1

GS(x − xi ) − NSt−1(S∇ f )

=
N∑

i=1

GS(x − xi ) − N
ˆ
R3

GS(x − y) f (y)dy (3.14)

satisfies

−�hN + ∇qN = S∇
∑

i

δxi − N S∇ f, divhN = 0 in R3. (3.15)

The formula (3.13) is similar to the formula (1.16), and is as much abusive, as
both sides are infinite. Still, by an appropriate regularization of the source term
S∇ ∑

i δxi , we shall be able in the end to obtain a rigorous formula, convenient for
the study ofWN . This regularization process is the purpose of the present paragraph.

For any η > 0, we denote Bη = B(0, η), and define Gη
S by

Gη
S = GS, pη

S = pS outside Bη, (3.16)

−�Gη
S + ∇ pη

S = 0, divGη
S = 0, Gη

S|∂ Bη = GS|∂ Bη in Bη. (3.17)

Note that, by homogeneity,

Gη
S(x) = 1

η2
G1

S(x/η). (3.18)

The field Gη
S belongs to Ḣ1(R3), and solves

−�Gη
S + ∇ pη

S = Sη, (3.19)

where Sη is the measure on the sphere defined by

Sη := − [
2D(Gη

S)n − pη
Sn

]
sη = − [

∂nGη
S − pη

Sn
]

sη, (3.20)

with n = x
|x | the unit normal vector pointing outward Bη, [F] := F |∂ B+

η
− F |∂ B−

η

the jump at ∂ Bη (with ∂ B+
η , resp. ∂ B−

η , the outer, resp. inner boundary of the ball),
and sη the standard surface measure on ∂ Bη. We claim the following:

Lemma 3.5. For all η > 0, Sη = div�η in R
3, where

�η := 3

πη5

(

Sx ⊗ x + x ⊗ Sx − 5
|x |2
2

S + 5

4
η2S

)

− 2D(Gη
S)(x) + pη

S(x)Id, x ∈ Bη,

�η := 0 outside. (3.21)

Moreover, �η → Sδ in the sense of distributions as η → 0, so that Sη → S∇δ.
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Proof of the lemma.. From the explicit formula (3.12) for GS and pS , we find

2D(GS) = − 3

4π

Sx ⊗ x + x ⊗ Sx

|x |5 + 15

4π

(Sx · x)x ⊗ x

|x |7 − 3

4π

Sx · x

|x |5 Id.,

so that

(2D(Gη
S)n − pη

Sn)|∂ B+
η

= (2D(GS)n − pSn)|∂ B+
η

= 3

4π |η|3 (4(Sn · n)n − Sn) .

(3.22)

Using that S is trace-free, one can check from definition (3.21) that div�η = 0 in
the complement of ∂ Bη, while

[�ηn] = −�ηn|∂ B−
η

= 3

πη3

(
(Sn ⊗ n)n + (n ⊗ Sn)n − 5

4
Sn

)
− (2D(Gη

S)n + pη
Sn)|∂ B−

η

= (2D(Gη
S)n − pη

Sn)|∂ B+
η

− (2D(Gη
S)n + pη

Sn)|∂ B−
η
,

where the last equality comes from (3.22). Together with (3.20), this implies the
first claim of the lemma.

To compute the limit of �η as η → 0, we write �η = �
η
1 + �

η
2 , with

�
η
1 = 3

πη5

(

Sx ⊗ x + x ⊗ Sx − 5
|x |2
2

S + 5

4
η2S

)

,

�
η
2 = −2D(Gη

S)(x) + pη
S(x)Id..

Let ϕ ∈ C∞
c (R3) be a test function.We canwrite 〈�η

1 , ϕ〉 = 〈�η
1 , ϕ(0)〉+〈�η

1 , ϕ−
ϕ(0)〉. The second term is O(η), while the first term can be computed using the
elementary formula

´
B1

xi x jdx = 4π
15 δi j . We find

lim
η→0

〈�η
1 , ϕ〉 = 3

5
Sϕ(0) = 〈3

5
Sδ, ϕ〉. (3.23)

For the second term, using thehomogeneity (3.18),wefindagain that limη〈�η
2 , ϕ〉 =

〈�1
2 , ϕ(0)〉. Note that the pressure p1S is defined up to a constant, so that we can

always select the one with zero average. With this choice, we find

〈�1
2 , ϕ(0)〉 =

ˆ
Bη

( − 2D(Gη
S) + pη

SId
)
ϕ(0) = −2

ˆ
B1

D(G1
S) ϕ(0)

= −
ˆ

∂ B1

(n ⊗ G1
S + G1

S ⊗ n) ϕ(0) = −
ˆ

∂ B1

(n ⊗ GS + GS ⊗ n) ϕ(0)

= 3

4π

ˆ
∂ B1

(Sn · n)n ⊗ n ϕ(0) = 2

5
Sϕ(0) = 〈2

5
Sδ, ϕ〉, (3.24)

where the sixth equality comes from the elementary formula
´
∂ B1

ni n j nknlds1 =
4π
15 (δi jδkl + δikδ jl + δilδ jk). The result follows. ��
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For later purposes, we also prove here

Lemma 3.6.ˆ
∂ Bη

Gη
Sd Sη =

ˆ
∂ Bη

GSd Sη = 1

η3

(ˆ
B1

|∇G1
S|2 + 3

10π
|S|2

)

.

Proof.
ˆ

∂ Bη

Gη
Sd Sη =

ˆ
∂ Bη

Gη
S

(
∂nGη

S − pSn
) |∂ B−

η
dsη −

ˆ
∂ Bη

Gη
S

(
∂nGη

S − pSn
) |∂ B+

η
dsη

=
ˆ

Bη

|∇Gη
S |2dx −

ˆ
∂ Bη

GS (∂r GS − pSer ) |∂ Bηdsη.

By (3.18),
´

Bη
|∇Gη

S|2dx = 1
η3

´
B1

|∇G1
S|2dx . The second term can be computed

with (3.12):
ˆ

∂ Bη

GS (∂r GS − pSer ) |∂ Bηdsη =
ˆ

∂ Bη

(

− 3

8πη2
(Sn · n)n

) (
3

2πη3
(Sn · n)n

)

dsη

= − 9

16π2η3

ˆ
∂ B1

(Sn · n)2ds1 = − 3

10π
|S|2.

��

3.2. The Renormalized Energy

Thanks to the regularization of S∇δ introduced in the previous paragraph, cf.
Lemma 3.5, we shall be able to set a rigorous alternative to the abusive formula
(3.13). Specifically, we shall state an identity involving WN , defined in (3.9), and
the energy of the function

hη
N (x) :=

N∑

i=1

Gη
S(x − xi ) + NSt−1(S∇ f )

=
N∑

i=1

Gη
S(x − xi ) − N

ˆ
R3

GS(x − y) f (y)dy. (3.25)

This function solves

−�hη
N + ∇ pη

N =
N∑

i=1

Sη(x − xi ) − N S∇ f, divhη
N = 0, (3.26)

and is a regularization of hN , cf. (3.14)–(3.15).
The main result of this section is

Proposition 3.7.

WN = −25|O|
2N 2 lim

η→0

(ˆ
R3

|∇hη
N |2 − N

η3
(

ˆ
B1

|∇G1
S|2 + 3

10π
|S|2)

)

. (3.27)
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Proof. We assume that η is small enough so that 2η < mini 	= j |xi − x j |. From the
explicit expressions (3.14), (3.25), we find that hN , hη

N = O(|x |−2),∇(hN , hη
N ) =

O(|x |−3) and pN , pη
N = O(|x |−3) at infinity.As these quantities decay fast enough,

we can perform an integration by parts to find
ˆ
R3

|∇hη
N |2 = 〈−�hη

N , hη
N 〉 = 〈−�hη

N + ∇ pη
N , hη

N 〉

= 〈
∑

i

Sη(x − xi ) − N S∇ f, hN 〉

+ 〈
∑

i

Sη(x − xi ) − N S∇ f, hη
N − hN 〉

=
∑

i

〈Sη(x − xi ), hi
N 〉 +

∑

i

〈Sη(x − xi ), GS(x − xi )〉 − 〈N S∇ f, hN 〉

+ 〈
∑

i

Sη(x − xi ) − N S∇ f, hη
N − hN 〉 =: a + b + c + d,

where we defined hi
N := hN − GS(x − xi ).

As hi
N is smooth over the support of Sη(· − xi ), we can apply Lemma 3.5 to

obtain

lim
η→0

a = −
∑

i

S∇ · hi
N (xi ).

We can then apply Lemma 3.6 to obtain

b = N

η3
(

ˆ
B1

|∇G1
S|2 + 3

10π
|S|2).

As regards the fourth term, we notice that by our definition (3.16)–(3.17) of Gη
S ,

and the fact that the balls B(xi , η) are disjoint, the function hN −hη
N = ∑

i (GS(x −
xi )− Gη

S(x − xi )) is zero over ∪i∂ B(xi , η), which is the support of
∑

i Sη(x − xi ).
It follows that

d = −N 〈S∇ f, hη
N − hN 〉 = N

∑

i

ˆ
B(xi ,η)

S∇ · Gη
S(x − xi ) ( f (x) − f (xi )) dx

− N
∑

i

ˆ
B(xi ,η)

S∇ · GS(x − xi ) ( f (x) − f (xi )) dx,

where we integrated by parts, using that GS − Gη
S is zero outside the balls. Let us

notice that the second integral at the right-hand side converges despite the singularity
of S∇ · GS , using the smoothness of f near xi (by assumption (3.1) and Remark
3.2). Moreover, it goes to zero as η → 0. Using the homogeneity and smoothness
properties of Gη

S inside Bη, we also find that the first sum goes to zero with η,
resulting in

lim
η→0

d = 0.
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We end up with

lim
η→0

(ˆ
R3

|∇hη
N |2 − N

η3
(

ˆ
B1

|∇G1
S|2 + 3

10π
|S|2)

)

= −
∑

i

S∇ · hi
N (xi ) − 〈N S∇ f, hN 〉

It remains to rewrite properly the right-hand side. We first get

−
∑

i

S∇ · hi
N (xi ) = −

∑

i 	= j

S∇ · GS(xi − x j ) + N
∑

i

ˆ
R3

S∇ · GS(xi − y) f (y)dy

= −3N 2

8π

ˆ
R3×R3\Diag

gS(x − y)dδN (x)(dδN (y) − f (y)dy),

and, integrating by parts,

−〈N S∇ f, hN 〉 = N
ˆ
R3

S∇ · hN (x) f (x)dx

= N
ˆ
R3

(
∑

i

S∇ · GS(x − xi ) − N
ˆ
R3

S∇ · GS(x − y) f (y)dy

)

f (x)dx

= 3N 2

8π

ˆ
R3×R3

gS(x − y) f (x)dx(dδN (y) − f (y)dy)dx .

The last equality was deduced from the identity gS = 8π
3 (S∇) · GS , see the line

after (3.10). The proposition follows: ��
We can refine the previous proposition as follows:

Proposition 3.8. Let c > 0 the constant in (H2). There exists C > 0 such that: for
all α < η < c

2 N−1/3,

∣
∣
∣

ˆ
R3

|∇hη
N |2 −

ˆ
R3

|∇hα
N |2 − N

(
1

η3
− 1

α3

)

(

ˆ
B1

|∇G1
S|2 + 3

10π
|S|2)

∣
∣
∣ � C N 2η.

Proof. One has from (3.25) that

hη
N = hα

N +
N∑

i=1

(Gη
S − Gα

S)(x − xi ).

It follows that
ˆ
R3

|∇hη
N |2 −

ˆ
R3

|∇hα
N |2 =

∑

i, j

ˆ
R3

∇(Gη
S − Gα

S)(x − xi ) : ∇(Gη
S − Gα

S)(x − x j )

+ 2
∑

i

ˆ
R3

∇hα
N : ∇(Gη

S − Gα
S)(x − xi ).
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After integration by parts,
ˆ
R3

∇(Gη
S − Gα

S)(· − xi ) : ∇(Gη
S − Gα

S)(· − x j )

= 〈(Sη − Sα)(· − xi ), (G
η
S − Gα

S)(· − x j )〉,
while
ˆ
R3

∇hα
N : ∇(Gη

S − Gα
S)(x − xi ) = 〈

∑

j

Sα(· − xi ) − N S∇ f, (Gη
S − Gα

S)(· − xi )〉.

We get
ˆ
R3

|∇hη
N |2 −

ˆ
R3

|∇hα
N |2 =

∑

i 	= j

〈(Sα + Sη)(· − xi ), (G
η
S − Gα

S)(· − x j )〉

− 2
∑

i

N 〈S∇ f, (Gη
S − Gα

S)(· − xi )〉

+ N 〈(Sα + Sη), (Gη
S − Gα

S)〉 =: a + b + c. (3.28)

We note that Gη
S − Gα

S is zero outside Bη, while Sα + Sη is supported in Bη.
Moreover, thanks to (H2), for α < η < c

2 , the balls B(xi , η) are disjoint. We
deduce: a = 0.

After integration by parts, taking into account that Gη
S − Gα

S vanishes outside
Bη, we can write b = bη − bα with

bα := 2
∑

i

N
ˆ

B(xi ,η)

S∇ · Gα
S(· − xi ) ( f − f (xi ))

bη := 2
∑

i

N
ˆ

B(xi ,η)

S∇ · Gη
S(· − xi ) ( f − f (xi )).

By assumption (3.1), for N large enough, for all 1 � i � N and all η � c
2 N−1/3,

B(xi , η) is included in O. Hence, f is C1 in B(xi , η), and

∣
∣
ˆ

B(xi ,η)

S∇ · Gη
S(· − xi ) ( f − f (xi )

∣
∣ � C

η3
‖∇ f |O‖∞

ˆ
B(xi ,η)

|x − xi |dx � Cη.

This results in bη � C N 2η.

Similarly, decomposing B(xi , η) = B(xi , α) ∪
(

B(xi , η) \ B(xi , α)
)
, we find

that

∣
∣
ˆ

B(xi ,η)

S∇ · Gα
S(· − xi ) ( f − f (xi ))

∣
∣ � C

(

α +
ˆ

B(xi ,η)

1

|x − xi |2 dx

)

� C ′η,

using again that f is Lipschitz over B(xi , η). We end up with bα � C N 2η, and
finally b � C N 2η.



Analysis of the Viscosity of Dilute Suspensions Beyond Einstein’s Formula 1381

For the last term c in (3.28), we first notice that as Gη
S − Gα

S is zero outside Bη:

〈(Sα + Sη), (Gη
S − Gα

S)〉 = 〈Sα, (Gη
S − Gα

S)〉
= 〈Sα, Gη

S〉 − 〈Sα, GS〉
= 〈Sα, Gη

S〉 − 1

α3

(ˆ
B1

|∇G1
S|2 + 3

10π
|S|2

)

, (3.29)

where we used Lemma 3.6 in the last line. By the definition of Sα , the remaining
term splits into

〈Sα, Gη
S〉 = −

ˆ
∂ B+

α

(∂r GS − pSer ) · Gη
Sdsα +

ˆ
∂ B−

α

(
∂r Gα

S − pα
S er

) · Gη
Sdsα.

By integration by parts, applied in Bη \ Bα for the first term and in Bα for the second
term, we get

〈Sα, Gη
S〉 = −

ˆ
∂ B−

η

(∂r GS − pSer ) · Gη
Sdsη +

ˆ
Bη\Bα

∇GS : ∇Gη
S

+
ˆ

Bα

∇Gα
S : ∇Gη

S

= −
ˆ

∂ Bη

(∂r GS − pSer ) · Gη
Sdsη +

ˆ
Bη

∇Gα
S · ∇Gη

S

= −
ˆ

∂ Bη

(∂r GS − pSer ) · Gη
Sdsη +

ˆ
∂ B−

η

Gα
S · (

∂r Gη
S − pη

Ser
)

= 〈Sη, GS〉 = 1

η3

(ˆ
B1

|∇G1
S|2 + 3

10π
|S|2

)

.

From there, the conclusion follows easily. ��
If we let α → 0 in Proposition 3.8, combining with Propositions 3.27 and 3.3,

we find

Corollary 3.9. For all η < c
2 N−1/3,

∣
∣
∣VN + 25|O|

2N 2

(ˆ
R3

|∇hη
N |2 − N

η3
(

ˆ
B1

|∇G1
S|2 + 3

10π
|S|2)

)∣
∣
∣ � ε(N ),

where ε(N ) → 0 as N → +∞.

This corollary shows that to understand the limit of VN , it is enough to study
the limit of

25|O|
2N 2

(ˆ
R3

|∇hηN
N |2 − N

η3N
(

ˆ
B1

|∇G1
S|2 + 3

10π
|S|2)

)

for ηN := ηN−1/3, η < c
2 fixed. For periodic and more general stationary point

processes, this will be possible through a homogenization approach. This homog-
enization approach involves an analogue of a cell equation, called jellium in the
literature on Coulomb gases. We will motivate and introduce this system in the next
section.
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4. Blown-up System

Formula (3.27) suggests to understand at first the behaviour of
´
R3 |∇hη

N |2 at
fixed η, when N → +∞. To analyze the system (3.26), a useful intuition can be
taken from classical homogenization problems of the form

− �hε + ∇ pε = S∇
(

1

ε3
F(x, x/ε) − 1

ε3
F(x)

)

, divhε

= 0 in a domain 
, hε|∂
 = 0, (4.1)

with F(x, y) periodic in variable y, and F(x) := ´
T

F(x, y)dy. Roughly,
would
be likeO, the small scale ε like N−1/3, the term 1

ε3
F(x, x/ε) would correspond to

the sum of (regularized) Dirac masses, while the term 1
ε3

F would be an analogue

of N f . The factor 1
ε3

in front of F is put consistently with the fact that
∑

i δxi

has mass N . The dependence on x of the source term in (4.1) mimics the possible
macroscopic inhomogeneity of the point distribution {xi }.

In the much simpler model (4.1), standard arguments show that hε behaves like

hε(x) ≈ 1

ε2
H(x, x/ε), (4.2)

where H(x, y) satisfies the cell problem

−�y H(x, ·) + ∇y P(x, ·) = S∇y F(x, ·), divy H(x, ·) = 0, y ∈ T
3.

Let us stress that substracting the term 1
ε3

F(x) in the source term of (4.1) is crucial
for the asymptotics (4.2) to hold. It follows that

ε6
ˆ




|∇hε|2 ≈
ˆ




|∇y H(x, x/ε)|2dx −−→
ε→0

ˆ



ˆ
T3

|∇y H(x, y)|2dydx .

Note that the factor ε6 in front of the left-hand side is coherent with the factor 1
N2

at the right-hand side of (3.27). Note also that

ˆ
T3

|∇y H(x, y)|2dy = lim
R→+∞

1

R3

ˆ
(−R,R)3

|∇y H(x, y)|2dy.

Such average over larger and larger boxes may be still meaningful in more general
settings, typically in stochastic homogenization.

Inspired by those remarks, and back to system (3.26), the hope is that some
homogenization process may take place, at least locally near each x ∈ O. More
precisely, we hope to recover limN WN by summing over x ∈ O somemicroscopic
energy, locally averaged around x . This microscopic energy will be deduced from
an analogue of the cell problem, called a jellium in the literature on the Ginzburg-
Landau model and Coulomb gases.
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4.1. Setting of the Problem

We will call point distribution a locally finite subset of R3. Given a point
distribution �, we consider the following problem in R3:

−�H + ∇ P =
∑

z∈�

S∇δ−z

divH = 0. (4.3)

Given a solution H = H(y), P = P(y), we introduce, for any η > 0,

Hη := H +
∑

z∈�

(Gη
S − GS)(· + z), (4.4)

which satisfies, by (3.11), (3.19), that

−�Hη + ∇ Pη =
∑

z∈�

Sη(· + z)

divHη = 0. (4.5)

We remark that, the set � being locally finite, the sum at the right-hand side of
(4.3) or (4.5) is well-defined as a distribution. Also, the sum at the right-hand side
of (4.4) is well-defined pointwise, because Gη

S − GS is supported in Bη.
As discussed at the beginning of Section 4, we expect the limit of

´
R3 |∇hη

N |2
to be described in terms of quantities of the form

lim
R→+∞

1

R3

ˆ
K R

|∇Hη(y)|2 dy,

where K R := (− R
2 , R

2 )3, for various � and solutions Hη of (4.5). Broadly, the
energy concentrated locally around a point x should be understood from a blow-up
of the original system (3.26), zooming at scale N−1/3 around x . Let x ∈ O (the
center of the blow-up), and ηN := ηN−1/3, for a fixed η > 0. If we introduce

Hη
N (y) := N−2/3hηN

N (x + N−1/3y), Pη
N (y) := N−1 pηN

N (x + N−1/3y),

zi,N := N 1/3(x − xi,N ) (4.6)

we find that

−�Hη
N + ∇ Pη

N =
N∑

i=1

Sη(· + zi,N ) − N−1/3S∇x f (x + N−1/3y), divHη
N = 0.

(4.7)
System (4.5) corresponds to a formal asymptotics where one replaces

∑N
i=1 δzi,N

by
∑∞

i=1 δzi , with � = {zi } a point distribution. Note that, under (H2), we expect
this point distribution to be well-separated, meaning that there is c > 0 such that:
for all z′ 	= z ∈ �, |z′ − z| � c. Still, we insist that this asymptotics is purely
formal and requires much more to be made rigorous. Such rigorous asymptotics
will be carried in Section 5 for various classes of point configurations.

We now collect several general remarks on the blown-up system (4.3). We start
by defining a renormalized energy. For any L > 0, we denote KL := (− L

2 , L
2 )3.
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Definition 4.1. Given a point distribution �, we say that a solution H of (4.3) is
admissible if for all η > 0, the field Hη defined by (4.4) satisfies∇Hη ∈ L2

loc(R
3).

Given an admissible solution H and η > 0, we say that Hη is of finite renor-
malized energy if

Wη(∇ H) := − lim
R→+∞

1

R3

(ˆ
K R

|∇ Hη|2 − 1

η3
|� ∩ K R |

(ˆ
B1

|∇G1
S |2 + 3

10π
|S|2

))

exists in R. We say that H is of finite renormalized energy if Hη is for all η, and

W(∇H) := lim
η→0

Wη(∇H)

exists in R.

Remark 4.2. From formula (4.4), it is easily seen that H is admissible if and only
if there exists one η > 0 with ∇Hη ∈ L2

loc(R
3).

Proposition 4.3. If H1 and H2 are admissible solutions of (4.3) satisfying, for some
η > 0, that

lim sup
R→+∞

1

R3

ˆ
K R

|∇Hη
1 |2 < +∞, lim sup

R→+∞
1

R3

ˆ
K R

|∇Hη
2 |2 < +∞,

then ∇H1 and ∇H2 differ from a constant matrix.

Proof. We set H := H1 − H2 = Hη
1 − Hη

2 . It is a solution of the homogeneous
Stokes equation with

lim sup
R→+∞

1

R3

ˆ
K R

|∇H |2 < +∞.

By standard elliptic regularity, any solution v of the Stokes equation in the unit ball

−�v + ∇ p = 0, divv = 0 in B(0, 1)

satisfies, for some absolute constant C ,

|∇2v(0)| � C‖∇v‖L2(B(0,1)).

We apply this inequality to v(x) = H(x0 + Rx), x0 arbitrary. After rescaling, we
find that

|∇2H(x0)| � C

R

( 1

R3/2 ‖∇H(x0 + ·)‖L2(B(0,R))

)
.

As R → +∞, the right hand-side goes to zero, which concludes the proof. ��
Proposition 4.4. Let � be a well-separated point distribution, meaning there exists
c > 0 such that for all z′ 	= z ∈ �, |z′ − z| � c. Let 0 < α < η <

min(c,1)
4 . Let

H be an admissible solution of (4.3) such that Hη is of finite renormalized energy.
Then, Hα is also of finite renormalized energy, and

Wα(∇H) = Wη(∇H).

In particular, H is of finite renormalized energy as soon as Hη is for some η ∈
(0, c

4 ), and W(∇H) = Wη(∇H) for all η <
min(c,1)

4 .
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Proof. Let R > 0. As � is well-separated,

|� ∩ (K R+2 \ K R−2)| � C R2. (4.8)

From this and the fact that the limitWη(∇H) exists (in R), it follows that

lim
R→+∞

1

R3

ˆ
K R+2\K R−2

|∇Hη|2 = 0. (4.9)

Let 
R be an open set such that K R−1 ⊂ 
R ⊂ K R and such that

dist
(
∂
R , ∪z∈� B(−z, η)

)
� c′ > 0, (4.10)

where c′ depends on c only. This implies that Gη(· + z), Gα(· + z) are smooth at
∂
R for all z ∈ �, and that Hη, Hα are smooth at ∂
R .

We now proceed as in the proof of Proposition 3.8. We write

Hη = Hα +
∑

z∈�

(Gη
S − Gα

S)(· + z),

ˆ

R

|∇Hη|2 =
ˆ


R

|∇Hα|2 + 2
∑

z∈�

ˆ

R

∇Hα : ∇(Gη
S − Gα

S)(· + z)

+
∑

z,z′∈�

ˆ

R

∇(Gη
S − Gα

S)(· + z) : ∇(Gη
S − Gα

S)(· + z′).

After integration by parts, and manipulations similar to those used to show Propo-
sition 3.8, we end up with

ˆ

R

|∇Hη|2 −
ˆ


R

|∇Hα|2 =
∑

z∈�

ˆ

R

(Gη
S − Gα

S)(· + z)d Sα(· + z). (4.11)

Let us emphasize that the contribution of the boundary terms at ∂
R is zero: indeed,
thanks to (4.10), (Gη

S − Gα
S)(· + z) is zero at ∂
R for any z ∈ �. Similarly,

∑

z∈�

ˆ

R

(Gη
S − Gα

S)(· + z)d Sα(· + z) =
∑

z∈�∩
R

ˆ

R

(Gη
S − Gα

S)(· + z)d Sα(· + z)

=
∑

z∈�∩
R

ˆ
R3

(Gη
S − Gα

S)(· + z)d Sα(· + z).

The integral in the right-hand side was computed above, (see (3.29) and the lines
after):

∑

z∈�∩
R

ˆ
R3

(Gη
S − Gα

S)(· + z)d Sα(· + z)

= |� ∩ 
R |
(

1

η3
− 1

α3

) (ˆ
B1

|∇G1
S|2 + 3

10π
|S|2

)

.



1386 D. Gérard-Varet, M. Hillairet

Back to (4.11), we find that
ˆ


R

|∇Hη|2 −
ˆ


R

|∇Hα|2 = |� ∩ 
R |
(

1

η3
− 1

α3

)(ˆ
B1

|∇G1
S|2 + 3

10π
|S|2

)

.

We deduce from this identity, (4.8) and (4.9) that

lim
R→+∞

1

R3

(ˆ

R

|∇Hα|2 − |� ∩ K R |
α3

(ˆ
B1

|∇G1
S|2 + 3

10π
|S|2

))

= Wη(∇H),

and replacing R by R + 1,

lim
R→+∞

1

R3

(ˆ

R+1

|∇Hα|2 − |� ∩ K R |
α3

(ˆ
B1

|∇G1
S|2 + 3

10π
|S|2

))

= Wη(∇H).

As 
R ⊂ K R ⊂ 
R+1, the result follows. ��

4.2. Resolution of the Blown-up System for Stationary Point Processes

As pointed out several times, we follow the strategy described in [41] for the
treatment of minimizers and minima of Coulomb energies, but in our effective
viscosity problem, the points xi,N do notminimize the analogueVN of the Coulomb
energy HN . Actually, although we consider the steady Stokes equation, our point
distributionmay be time dependent. More precisely, in many settings, the dynamics
of the suspension evolves on a timescale associated with viscous transport (scaling
like a2, with a the radius of the particle), which is much smaller than the convective
time scale (scaling like a). This allows us to neglect the time derivative in the Stokes
equation: system (1.1)–(1.2) corresponds then to a snapshot of the flow at a given
time t . Even when one is interested in the long time behaviour, the existence of
an equilibrium measure for the system of particles is a very difficult problem. To
bypass this issue, a usual point of view in the physics literature is to assume that
the distribution of points is given by a stationary random process (whose refined
description is an issue per se).

We will follow this point of view here, and introduce a class of random point
processes for which we can solve (4.3). Let X = R or X = TL := R/(LZ) for
some L > 0. We denote by PointX the set of point distributions in X3: an element
of PointX is a locally finite subset of X3, in particular a finite subset when X = TL .
We endow PointX with the smallest σ -algebra PX which makes measurable all
the mappings

PointX → N, ω → |A ∩ ω|, A borelian bounded subset of X.

Given a probability space (
,A, P), a random point process�with values in X3 is
a measurable map from 
 to PointX , see [12]. By pushing forward the probability
P with �, we can always assume that the process is in canonical form, that is

 = PointX , A = PX , and �(ω) = ω.

We shall consider processes that, once in canonical form, are
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(P1) stationary: the probability P on 
 is invariant by the shifts

τy : 
 → 
, ω → y + ω, y ∈ X3.

(P2) ergodic: if A ∈ A satisfies τy(A) = A for all y, then P(A) = 0 or
P(A) = 1.
(P3) uniformly well-separated: wemean that there exists c > 0 such that almost
surely, |z − z′| � c for all z 	= z′ in ω.

These properties are satisfied in two important contexts:

Example 4.5. (Periodic point distributions). Namely, for L > 0, a1, . . . , aM in
KL , we introduce the set �0 := {a1, . . . , aM } + LZd . We can of course identify
�0 with a point distribution in X3 with X = TL . We then take 
 = T

3
L , P the

normalized Lebesgue measure onT3
L , and set�(ω) := �0+ω. It is easily checked

that this random process satisfies all assumptions. Moreover, a realization of this
process is a translate of the initial periodic point distribution �0. By translation,
the almost sure results that we will show below (well-posedness of the blown-up
system, convergence of WN ) will actually yield results for �0 itself.

Example 4.6. (Poisson hard core processes). These processes are obtained from
Poisson point processes, by removing balls in order to guarantee the hypothesis
(P3). For instance, given c > 0, one can remove from the Poisson process all points
z which are not alone in B(z, c). This leads to the so-called Matérn I hard-core
process. To increase the density of points while keeping (P3), one can refine the
removal process in the following way: for each point z of the Poisson process, one
associates an “age” uz , with (uz) a family of i.i.d. variables, uniform over (0, 1).
Then, one retains only the points z that are (strictly) the “oldest” in B(z, c). This
leads to the so-called Matérn II hard-core process. Obviously, these two processes
satisfy (P1) by stationarity of the Poisson process, and satisfy (P2) because they
have only short range of correlations. For much more on hard core processes, we
refer to [8].

The point is now to solve almost surely the blown-up system (4.3) for point
processes with properties (P1)–(P2)–(P3). We first state

Proposition 4.7. Let � = �(ω) a random point process with properties (P1)–
(P2)–(P3). Let η > 0. For almost every ω, there exists a solution Hη(ω, ·) of (4.5)
in H1

loc(X3) such that

∇Hη(ω, y) = Dη
H(τyω),

where Dη
H ∈ L2(
) is the unique solution of the variational formulation (4.12)

below.

Remark 4.8. In the case X = TL , point distributions and solutions Hη over X3

can be identified with LZ3-periodic point distributions and LZ3-periodic solutions
defined on R

3. This identification is implicit here and in all that follows.
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Proof. We treat the case X = R, the case X = TL follows the same approach.
We remind that the process is in canonical form: 
 = PointR, A = PR, �(ω) =
ω. The idea is to associate to (4.5) a probabilistic variational formulation. This
approach is inspired byworks ofKozlov [7,26], see also [3]. Prior to the statement of
this variational formulation, we introduce some vocabulary and functional spaces.
First, for any R

d -valued measurable φ = φ(ω), we call a realization of φ an
application

Rω[φ](y) := φ(τyω), ω ∈ 
.

For p ∈ [1,+∞), φ ∈ L p(
), as τy is measure preserving, we have for all R > 0
thatE

´
K R

|Rω[φ]|p = R3
E|φ|p. Hence, almost surely, Rω[φ] is in L p

loc(R
3). Also,

for φ ∈ L∞(
), one finds that almost surely Rω[φ] ∈ L∞
loc(R

3). It is a consequence
of Fatou’s lemma: for all R > 0,

E‖Rω[φ]‖L∞(K R) = E lim inf
p→+∞ ‖Rω[φ]‖L p(K R) � lim inf

p→+∞E‖Rω[φ]‖L p(K R)

� lim inf
p→+∞

(
E‖Rω[φ]‖p

L p(K R)

)1/p

= lim inf
p→+∞

(
E|φ|p)1/p = ‖φ‖L∞(
).

We say that φ is smooth if, almost surely, Rω[φ] is. For a smooth function φ, we
can define its stochastic gradient ∇ωφ by the formula

∇ωφ(ω) := ∇ Rω[φ]|y=0,

where here and below, ∇ = ∇y refers to the usual gradient (in space). Note that
∇ωφ(τyω) = ∇ Rω[φ](y). One can define similarly the stochastic divergence, curl,
etc, and reiterate to define partial stochastic derivatives ∂α

ω .
Starting from a function V ∈ L p(
), p ∈ [1,+∞] one can build smooth

functions through convolution. Namely, for ρ ∈ C∞
c (R3), one can define

ρ � V (ω) :=
ˆ
R3

ρ(y)V (τyω)dy,

which is easily seen to be in L p(
), as

E|ρ � V (ω)|p � E

(ˆ
R3

|ρ(y)|dy

)p−1 (ˆ
R3

|ρ(y)||V (τyω)|pdy

)

=
(ˆ

R3
|ρ(y)|dy

)p

E|V (ω)|p,

using that τy is measure-preserving. Moreover, it is smooth: we leave to the reader
to check

Rω[ρ � V ] = ρ̌ � Rω[V ], ∇ω(ρ � V ) = ∇ρ̌ � V, ρ̌(y) := ρ̌(−y).
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We are now ready to introduce the functional spaces we need. We set

Dσ := {φ : 
 → R
3 smooth, ∂α

ωφ ∈ L2(
) ∀α, ∇ω · φ = 0},
Vσ := the closure of {∇ωφ, φ ∈ Dσ } in L2(
).

We remind that Sη = div�η, with �η defined in (3.21). We introduce

�η(ω) :=
∑

z∈ω

�η(z)

Note that it is well-defined, as �η is supported in Bη and ω is a discrete subset. It
is measurable: indeed, �η is the pointwise limit of a sequence of simple functions
of the form

∑
i αi1Ai , where Ai are Borel subsets of R3. As

ω →
∑

z∈ω

∑

i

αi1Ai (z) =
∑

i

αi |Ai ∩ ω|

is measurable by definition of the σ -algebraA, we find that �η is. Moreover, as �

is uniformly well-separated, one has |�η(ω)| � C‖�η‖L∞ for a constant C that
does not depend on ω, so that �η belongs to L∞(
).

We now introduce the variational formulation: find Dη
H ∈ Vσ such that for all

Dφ ∈ Vσ ,
E Dη

H : Dφ = −E�η : Dφ. (4.12)

As Vσ is a closed subspace of L2(
), existence and uniqueness of a solution comes
from the Riesz theorem.

It remains to build a solution of (4.5) almost surely, based on Dη
H. Let φk =

φk(ω) a sequence in Dσ such that ∇ωφk converges to Dη
H in L2(
). Let ρ ∈

C∞
c (R3). It is easily seen that ρ � φk also belongs to Dσ and that ∂α

ω∇ω(ρ � φk) =
∂α
ω(ρ � ∇ωφk) converges to the smooth function ∂α

ω(ρ � Dη
H) in L2(
), for all α. In

particular, as ∇ω × ∇ω(ρ � φk) = 0, we find that ∇ω × (ρ � Dη
H) = 0. Applying

the realization operator Rω, we deduce that

∇ × (ρ̌ � Rω[Dη
H]) = ρ̌ � ∇ × Rω[Dη

H] = 0.

We recall that Rω[Dη
H] belongs almost surely to L2

loc(R
3), so that ∇ × Rω[Dη

H]
is well-defined in H−1

loc (R3). Taking ρ = ρn an approximation of the identity, and
sending n to infinity, we end up with ∇ × Rω[Dη

H] = 0 in R
3. As curl-free vector

fields onR3 are gradients, it follows that almost surely, there existsHη = Hη(ω, y)

with

∇Hη(ω, y) = Rω[Dη
H](y) = Dη

H(τy(ω)), ∀y ∈ R
3.

In the case X = TL , one can show that the mean of Rω[Dη
H] is almost surely zero,

so that the same result holds. In addition, because the matrices ∇ωφ, φ ∈ Dσ , have
zero trace, the same holds for Dη

H. Hence,

divHη(ω, y) = trace(∇Hη(ω, y)) = trace(Dη
H)(τy(ω)) = 0.
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One still has to prove that the first equation of (4.5) is satisfied. Therefore, we use
(4.12) with test function Dφ = ∇ωφ, where the smooth function φ is of the form

φ = ρ � (∇ω × ϕ), ϕ : 
 → R
3 a smooth function.

Note that for smooth functions ϕ, ϕ̃, a stochastic integration by parts formula holds:

E ∂ i
ωϕ ϕ̃ = E

ˆ
K1

∂i Rω[ϕ] Rω[ϕ̃] = −E

ˆ
K1

Rω[ϕ] ∂i Rω[ϕ̃]

+ E

ˆ
∂K1

ni Rω[ϕ] Rω[ϕ̃]

= −E

ˆ
K1

Rω[ϕ] ∂i Rω[ϕ̃] = −Eϕ ∂ω,i ϕ̃.

Thanks to this formula, we may write

E Dη
H : ∇ω(ρ � (∇ω × ϕ)) = E ρ̌ � Dη

H : ∇ω(∇ω × ϕ)

= −E∇ω × (∇ω · (ρ̌ � Dη
H)) · ϕ.

Similarly, we find

−E�η : ∇ω(ρ � ∇ω × ϕ) = E∇ω × (∇ω · (ρ̌ � �η)) · ϕ.

As this identity is valid for all smooth test fields ϕ, we end up with

−∇ω × (∇ω · (ρ̌ � Dη
H)) = ∇ω × (∇ω · (ρ̌ � �η)).

Proceeding as above, we find that, almost surely,

−∇ × divRω[Dη
H] = ∇ × divRω[�η],

which can be written as

∇ × (−�Hη) = ∇ × div
∑

z∈


�η(· + z).

It follows that there exists Pη = Pη(ω, y) such that

−�Hη + ∇Pη = div
∑

z∈ω

�η(· + z) =
∑

z∈ω

Sη(· + z),

which concludes the proof of the proposition. ��
Corollary 4.9. For random point processes with properties (P1)–(P2)–(P3), there
exists almost surely a solution H of (4.3) with finite renormalized energy and such
that for all η > 0, the gradient field ∇Hη, where Hη is given by (4.4), coincides
with the gradient field ∇Hη of Proposition 4.7. Moreover,

W(∇H) = − lim
η→0

(

E

ˆ
K1

|∇Hη|2 − m

η3

(ˆ
B1

|∇G1
S|2 + 3

10π
|S|2

))

,

where m := E|� ∩ K1| is the mean intensity of the point process, the expression
at the right-hand side being actually constant for η small enough.
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Proof. By the definition of the mean intensity and by property (P2), which allows
us to apply the ergodic theorem (cf. [12, Corollary 12.2.V]), we have, almost surely,
that

lim
R→∞

|� ∩ K R |
R3 = m. (4.13)

Let η0 <
min(c,1)

4 fixed, and Hη0 given by the previous proposition. We set

H(ω, y) := Hη0(ω, y) +
∑

z∈ω

(GS − Gη0
S )(y + z). (4.14)

It is clearly an admissible solution of (4.3). By Proposition 4.4, in order to show
that H has almost surely finite renormalized energy, it is enough to show that for
one η <

min(c,1)
4 , almost surely, the function Hη given by (4.4), namely,

Hη(ω, y) := H(ω, y) +
∑

z∈ω

(Gη
S − GS)(y + z)

= Hη0(ω, y) +
∑

z∈ω

(Gη
S − Gη0

S )(y + z),

has finite renormalized energy. This holds for η = η0, as Hη0 = Hη0 and the
ergodic theorem applies. We then notice that

∇Hη(ω, y) = Dη
H (τy(ω)), Dη

H (ω) := Dη0
H (ω) +

∑

z∈ω

∇(Gη
S − Gη0

S )(z). (4.15)

We remark that Gη
S − Gη0

S = 0 outside Bmax(η,η0), so that the sum at the r.h.s.
has only a finite number of non-zero terms. In the same way as we proved that
the function �η belongs to L∞(
), we get that

∑
z∈ω ∇(Gη

S − Gη0
S )(z) defines an

element of L∞(
). Hence, by the ergodic theorem, we have, almost surely, that

lim
R→+∞

1

R3

ˆ
K R

|∇Hη|2 → E

ˆ
K1

|∇Hη|2.

Combining this with (4.13) and Proposition 4.4, we obtain the formula forW(∇H).
The last step is to prove that for all η > 0, ∇Hη = ∇Hη almost surely. As a

consequence of the ergodic theorem, one has, almost surely, that

lim sup
R→+∞

1

R3

ˆ
K R

|∇Hη|2 < +∞, lim sup
R→+∞

1

R3

ˆ
K R

|∇Hη|2 < +∞.

Reasoning as in the proof of Proposition 4.3, we find that their gradients differ by
a constant:

∇Hη(ω, y) = ∇Hη(ω, y) + C(ω).

Applying again the ergodic theorem, we get that almost surely EDη
H = EDη

H +
C(ω). As Dη

H belongs to Vσ , its expectation is easily seen to be zero. To conclude, it
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remains to prove that EDη
H = E

∑
z∈ω ∇(Gη

S − Gη0
S )(z) is zero. Using stationarity,

we write, for all R > 0,

E

∑

z∈ω

∇(Gη
S − Gη0

S )(z) = 1

R3E
∑

z∈ω

ˆ
K R

∇(Gη
S − Gη0

S )(z + y)dy.

We remark that for all z outside a max(η, η0)-neighborhood of ∂K R ,
´

K R
∇(Gη

S −
Gη0

S )(z + ·) = ´
∂K R

n ⊗ (Gη
S − Gη0

S )(z + ·) = 0. It follows from the separation

assumption and the L∞ bound on ∇(Gη
S − Gη0

S ) that

1

R3E
∑

z∈ω

ˆ
K R

∇(Gη
S − Gη0

S )(z + y)dy = O(1/R) → 0 as R → +∞.

��

5. Convergence of VN

This section concludes our analysis of the quadratic correction to the effective
viscosity. From Theorem 1.1, we know that this quadratic correction should be
given by the limit of VN as N goes to infinity, where VN was introduced in (1.13).
We show here that the functional VN has indeed a limit, when the particles are given
by the kind of stationary point processes seen in Section 4.

5.1. Proof of Convergence

Let ε > 0 a small parameter, and � = �(ω) a random point process with
properties (P1)–(P2)–(P3): stationarity, ergodicity, and uniform separation. As seen
in Examples 4.5 and 4.6, this setting covers the case of periodic patterns of points
as well as classical hard core processes. We set N = N (ε) the cardinal of the set

{x ∈ ε�̌, B(x, ε) ⊂ O} = {x1,N , . . . , xN ,N },

where �̌ := −� and where we label the elements arbitrarily. Note that N depends
on ω, although it does not appear explicitly. From the fact that � is uniformly
well-separated and from the ergodic theorem (cf. [12, Corollary 12.2.V]), we can
deduce that, almost surely,

lim
ε→0

N (ε)ε3 = lim
ε→0

|ε�̌(ω) ∩ O| ε3 = lim
ε→0

|�̌(ω) ∩ ε−1O|
ε−3|O| |O| = m|O|, (5.1)

so thatwe shall note indifferently limε→0 or limN→+∞. Note that, strictly speaking,
N = N (ε) does not necessarily cover all integer values when ε → 0, but this is no
difficulty.
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More generally, for all ϕ smooth and compactly supported in R
3, ergodicity

implies

lim
N→+∞

1

N

N∑

i=1

ϕ(xi ) = lim
N→+∞

1

N

∑

xi ∈O
ϕ(xi )

= lim
N→+∞

1

ε3N
m
ˆ
O

ϕ(x)dx = 1

|O|
ˆ
O

ϕ(x)dx,

which shows that (H1) is satisfied with f = 1
|O|1O. The hypothesis (H2) is also

trivially satisfied, as well as (3.1). Our main theorem is

Theorem 5.1. Almost surely,

lim
N→+∞VN = 25

2m2W(∇H),

with m the mean intensity of the process, and H the solution of (4.3) given in
Corollary 4.9.

The rest of the paragraph is dedicated to the proof of this theorem.
Let η satisfying η <

min(c,1)
4 and η < c

2 (m|O|)−1/3. By (5.1), it follows that,
almost surely, for ε small enough, εη < c

2 N−1/3. By Corollary 3.9,

lim
N→+∞ VN + 25|O|

2N 2

(ˆ
R3

|∇hηε
N |2 − N

(ηε)3

(
ˆ

B1
|∇G1

S|2 + 3

10π
|S|2)

)
= 0.

(5.2)
We denote hη

ε := hηε
N , see (3.25)–(3.26). Let H be the solution of the blown-up

system (4.3) provided by Corollary 4.9, Hη given in (4.4), and Pη as in (4.5). We
define new fields h̄η

ε , p̄η
ε by the following conditions: h̄η

ε ∈ Ḣ1(R3),

h̄η
ε (ω, x) = 1

ε2
Hη

( x

ε

) −
 
O

1

ε2
Hη

( ·
ε

)
, x ∈ O

pη
ε (ω, x) = 1

ε3
Pη

( x

ε

) −
 
O

1

ε3
Pη

( ·
ε

)
, x ∈ O

− �h̄η
ε + ∇ p̄η

ε = 0, div h̄η
ε = 0 in extO.

We omit indication of the dependence in ω to lighten notations. We claim

Proposition 5.2.

lim
ε→0

− 1

N 2

(
ˆ
R3

|∇h̄η
ε |2 − N

(ηε)3
(

ˆ
B1

|∇G1
S|2 + 3

10π
|S|2)) = 1

m2|O|W
η(∇H).

Proposition 5.3.

lim
ε→0

ε6
ˆ
R3

|∇(hη
ε − h̄η

ε )|2 = 0.

Note that, by Proposition 4.4 and our choice of η, Wη(∇H) = W(∇H). The-
orem 5.1 follows directly from this fact, (5.2), and the propositions.
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Proof of Proposition 5.2.. We know from Corollary 4.9 that

Wη(∇H) = −
(
E

ˆ
K1

|∇Hη|2 − m

η3

(
ˆ

B1
|∇G1

S|2 + 3

10π
|S|2)

)
.

From this and relation (5.1), we see that the proposition amounts to the statement

lim
ε→0

ε6

|O|
ˆ
R3

|∇h̄η
ε |2 = E

ˆ
K1

|∇Hη|2.

A simple application of the ergodic theorem shows that, almost surely,

ε6

|O|
ˆ
O

|∇h̄η
ε |2 = 1

|O|
ˆ
O

|∇y Hη
( x

ε

)|2dy → E

ˆ
K1

|∇Hη|2.

It remains to show that

lim
ε→0

ε6
ˆ
extO

|∇h̄η
ε |2 = 0. (5.3)

It will be deduced from the well-known fact that the Stokes solution h̄η
ε minimizesˆ

extO
|∇h̄|2

among divergence-free fields h̄ in extO satisfying the Dirichlet condition h̄|∂O =
h̄η

ε |∂O.
First, we prove that the H1/2(∂O)-normof ε3h̄η

ε goes to zero. In this perspective,
we introduce for all δ > 0 a function χδ with χδ = 1 in a δ

2 -neighborhood of ∂O,
χδ = 0 outside a δ-neighborhood of ∂O. We write

‖ε3h̄η
ε‖H1/2(∂O) = ‖ε3h̄η

εχδ‖H1/2(∂O)

� C
(
‖ε3h̄η

εχδ‖L2(O) + ‖ε3∇ h̄η
εχδ‖L2(O) + ‖ε3h̄η

ε∇χδ‖L2(O)

)
.

By the ergodic theorem and Corollary 4.9, ε3∇h̄η
ε = ∇y Hη( ·

ε
) converges almost

surely weakly in L2(O) to EDHη = 0. Let ϕ ∈ L2(O). By standard results on
the divergence operator, cf [16], there exists v ∈ H1

0 (O) with divv = ϕ − ffl
O ϕ,

‖v‖H1(O) � CO‖ϕ‖L2(O). As by definition h̄η
ε has zero mean over O, it follows

that ˆ
O

ε3h̄η
εϕ =

ˆ
O

ε3h̄η
ε (ϕ −

 
O

ϕ) = −
ˆ
O

ε3∇h̄η
ε v → 0 as ε → 0.

Hence, ε3h̄η
ε converges weakly to zero in H1(O) and therefore strongly in L2(O).

It follows that, for any given δ,

‖ε3h̄η
εχδ‖L2(O) → 0, ‖ε3h̄η

ε∇χδ‖L2(O) → 0 as ε → 0.

To conclude, it is enough to show that lim supε→0 ‖ε3∇h̄η
εχδ‖L2(O) goes to zero

as δ → 0. This comes from

‖ε3∇h̄η
εχδ‖2L2(O)

=
ˆ
O

|∇Hη(·/ε)|2 χ2
δ −−→

ε→0
E|Dη

H|2
ˆ
O

χ2
δ � Cδ. (5.4)
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Finally, ‖ε3h̄η
ε‖H1/2(∂O) = o(1). To conclude that (5.3) holds, we notice that

ˆ
∂O

h̄η
ε · n =

ˆ
O
div h̄η

ε = 0.

By classical results on the right inverse of the divergence operator, see [16], one
can find for R such that O � B(0, R) a solution h̄ of the equation

divh̄ = 0 in extO ∩ B(0, R), h̄|∂O = h̄η
ε |∂O, h̄|∂ B(0,R) = 0,

and such that

‖h̄‖H1(extO∩B(0,R)) � C‖h̄η
ε‖H1/2(∂O) = o(ε−3).

Extending h̄ by zero outside B(0, R), we find
ˆ
extO

|∇ h̄η
ε |2 �

ˆ
extO

|∇h̄|2 = o(ε−6). (5.5)

This concludes the proof of the proposition. ��
Proof of Proposition 5.3.. Let h := hη

ε − h̄η
ε . It satisfies an equation of the form

−�h + ∇ p = R1 + R2 + R3, divh = 0 in R
3,

where the various source terms will now be defined. First,

R1 := σ(h̄η
ε , p̄η

ε )n|∂(extO) s∂ .

Here, the value of the stress is taken from extO, n refers to the normal vector
pointing outward O and s∂ refers to the surface measure on ∂O. We remind that
h̄η

ε ∈ Ḣ1(R3) does not jump at the boundary, but its derivatives do, so that one
must specify from which side the stress is considered. Then,

R2 := −σ(h̄η
ε , p̄η

ε )n|∂O s∂ = − 1

ε3
σ
(

Hη, Pη −
 
O

Pη(ω, ·/ε)
)( ·

ε

)|∂On s∂ ,

with the value of the stress taken from O, and n as before. Noticing that S∇ f =
− 1

|O| Sn s∂ , we finally set

R3 := −1O
∑

i∈I η
ε

Sηε(x − xi ) + N

|O| Sn s∂ ,

where

I η
ε = {i, B(xi , ε) 	⊂ O, B(xi , ηε) ∩ O 	= ∅}.

Note that the term R3 is supported in pieces of spheres. From (3.20), we know that
for all η > 0, ˆ

R3
Sη =

ˆ
R3

(−�Gη
S + ∇ pη

S

) = 0. (5.6)
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This allows us to show that the integral of R2 + R3 is zero. Indeed,ˆ
R3

R2 = 1

ε4

ˆ
O

(−�Hη + ∇ Pη)(·/ε) =
ˆ
O

∑

i,B(xi ,ηε)∩O 	=∅
Sηε(· − xi )

=
∑

i∈I η
ε

ˆ
O

Sηε(· − xi ),

so that ˆ
R3

(R2 + R3) = N

|O|
ˆ

∂O
Sn ds∂ = 0. (5.7)

The point is now to prove that ε3‖∇h‖L2(R3) → 0 as ε → 0. From a simple energy
estimate, and taking (5.7) into account, we find

‖∇h‖2L2(R3)
= 〈R1, h〉 + 〈R2, h −

 
O

h〉 + 〈R3, h −
 
O

h〉. (5.8)

As (h̄η
ε , p̄η

ε ) is a solution of a homogeneous Stokes equation in extO, we get, from
an integration by parts, that

〈R1, h〉 =
ˆ
extO

∇ h̄η
ε ·∇h � ν(ε)ε−3‖∇h‖L2(R3), ν(ε) → 0 as ε → 0, (5.9)

using the Cauchy–Schwarz inequality and the bound (5.5).
We now wish to show that

〈(R2 + R3), h −
 
O

h〉 � ν(ε)ε−3‖∇h‖L2(R3) (5.10)

for some ν(ε) going to zero with ε. More precisely, we will prove that for any
divergence-free ϕ ∈ Ḣ1(R3),

〈(R2 + R3), ϕ〉 � ν(ε)ε−3(‖∇ϕ‖L2(R3) + ‖ϕ‖H1(O)), ν(ε) → 0 as ε → 0,
(5.11)

which implies (5.10), by Poincaré inequality. We first notice that

〈R2, ϕ〉 = 1

ε3
〈 n · Fε

2 , ϕ 〉〈H−1/2(∂O),H1/2(∂O)〉, (5.12)

where

Fε
2 := ε3

(
2D(h̄η

ε ) − pη
ε Id

) = 2D(Hη)(ω, ·/ε) +
(

Pη(ω, ·/ε) −
 
O

Pη(ω, ·/ε)
)

Id.

(5.13)
Then, we use the relation Sη = div�η, cf. Lemma 3.5 and integrate by parts to get

〈R3, ϕ〉 = 1

ε3

∑

i∈I ε
η

(

−
ˆ

∂O
n · �η

(
x − xi

ε

)

· ϕ(x)ds∂ (x)

+
ˆ
O

�η

(
x − xi

ε

)

: ∇ϕ(x)dx

)

+ N

|O|
ˆ

∂O
Sn(x) · ϕ(x) ds∂ (x).
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For a fixed η, there is a constant C (depending on η) such that

∑

i∈I ε
η

ˆ
O

�η

(
x − xi

ε

)

: ∇ϕ(x)dx

� C
∑

i∈I ε
η

ˆ
B(xi ,ηε)∩O

|∇ϕ|(x)dx � C | ∪i∈I η
ε

B(xi , ηε)|1/2‖∇ϕ‖L2(R3)

� Cε1/2‖∇ϕ‖L2(R3).

For the last inequality, we have used that all xi ’s with i ∈ I η
ε belong to an ε-

neighborhood of ∂O, so that |I η
ε | = O(ε−2). Hence,

〈R3, ϕ〉 � 1

ε3

∑

i∈I ε
η

−
ˆ

∂O
n · �η

(
x − xi

ε

)

· ϕ(x)ds∂ (x)

+ N

|O|
ˆ

∂O
Sn(x) · ϕ(x) ds∂ (x) + ν(ε)ε−5/2‖∇ϕ‖L2(O). (5.14)

Let
F3(ω) := −

∑

z∈�

�η(z) + mS, Fε
3 (x) := F3(τx/ε(ω)). (5.15)

We claim that E
´

K1
F3 = 0. Indeed, by stationarity, for all R > 0

E

∑

z∈�

�η(z) = 1

R3E
∑

z∈�

ˆ
K R

�η(y + z)dy

= 1

R3E
∑

z∈�,
K R⊃B(−z,η)

ˆ
K R

�η(y + z)dy

+ 1

R3E
∑

z∈�,
∂K R∩B(−z,η) 	=∅

ˆ
K R

�η(y + z)dy

+ 1

R3E
∑

z∈�,
K R∩B(−z,η)=∅

ˆ
K R

�η(y + z)dy

= 1

R3E
∑

z∈�,
K R⊃B(−z,η)

ˆ
K R

�η(y + z)dy

+ 1

R3E
∑

z∈�,
∂K R∩B(−z,η) 	=∅

ˆ
K R

�η(y + z)dy

= 1

R3E
∣
∣{z, K R ⊃ B(0, η) − z}∣∣

ˆ
B(0,η)

�η(y)dy + O
( 1

R

)
, R � 1.

We have used crucially the fact that �η is supported in B(0, η). The O( 1
R )-term is

associated to the points z ∈ � which lie in a δ-neighborhood of ∂K R : see the end
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of the proof of Corollary 4.9 for similar reasoning. By sending R to infinity, we
find that, almost surely,

EF3 = −m
ˆ

B(0,η)

�η + mS.

The last step is to compute
´

B(0,η)
�η, which is independent of η by homogeneity.

It is in particular equal to limη→0〈�η, 1〉, a limit that was already computed in the
proof of Lemma 3.5, cf. (3.23)–(3.24). We get

´
B(0,η)

�η = S, which shows that
EF3 = 0.

By the definition of Fε
3 , we can write

1

ε3

∑

i∈I ε
η

ˆ
∂O∩B(xi ,ηε)

−n · �η

(
x − xi

ε

)

· ϕ(x)ds∂ (x)

+ N

|O|
ˆ

∂O
Sn(x) · ϕ(x) ds∂ (x)

= 1

ε3

ˆ
∂O

n(x) · Fε
3 (x) · ϕ(x)ds∂ (x) +

(
N

|O| − m

ε3

) ˆ
∂O

Sn · ϕ

� 1

ε3

ˆ
∂O

n(x) · Fε
3 (x) · ϕ(x)ds∂ (x) + ν(ε)ε−3‖ϕ‖H1(O), ν(ε) −−→

ε→0
0,

where the last inequality follows from (5.1). Plugging this inequality in (5.14), and
combining with (5.12), we see that to derive (5.11), it remains to show that almost
surely, for all divergence-free fields ϕ ∈ H1(O),

|〈n · Fε, ϕ〉〈H−1/2(∂O),H1/2(∂O)〉| � ν(ε)‖ϕ‖H1(O), ν(ε) → 0 as ε → 0, (5.16)

where Fε := Fε
2 + Fε

3 . Notice that div (Fε
2 + Fε

3 ) = 0. We introduce again the
functions χδ , δ > 0, seen above. We get

〈n · Fε, ϕ〉〈H−1/2(∂O),H1/2(∂O)〉 = 〈n · χδ Fε, ϕ〉〈H−1/2(∂O),H1/2(∂O)〉

=
ˆ
O

(∇χδ · Fε) · ϕ −
ˆ
O

χδ Fε · ∇ϕ

For the last term, we take into account that ϕ is divergence-free, so that the pressure
disappears. We find that

|
ˆ
O

χδ Fε · ∇ϕ| �
(‖2χδ D(H)(·/ε)‖L2(O) + ‖χδ F3(·/ε)‖L2(O)

) ‖ϕ‖H1(O).

As seen in (5.4), we have

lim
ε→0

‖2χδ D(H)(·/ε)‖2L2(O)
� Cδ,

and similarly,

lim
ε→0

‖χδ Fε
3 ‖2L2(O)

� Cδ.
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For the first term, we write
ˆ
O

(∇χδ · Fε) · ϕ = 2
ˆ
O

∇χδ · ε3D(h̄η
ε ) · ϕ

−
ˆ
O

(∇χδ ε3 pη
ε ) · ϕ +

ˆ
O

(∇χδ · Fε
3 ) · ϕ.

We know that ε3D(h̄η
ε ) goes weakly to zero in L2(O), so that it converges strongly

to zero in H−1(O). As ∇χδ ⊗ ϕ belongs to H1
0 (O), we find that, for a fixed δ,

|2
ˆ
O

∇χδ · ε3D(h̄η
ε ) · ϕ| � C‖ε3D(h̄η

ε )‖H−1(O)‖∇χδϕ‖H1(O) � ν(ε)‖ϕ‖H1(O).

Similarly, as EF3 = 0, Fε
3 converges weakly to zero in L2(O) and we get

|
ˆ
O

(∇χδ · Fε
3 ) · ϕ| � ν(ε)‖ϕ‖H1(O).

The last step is to prove that ε3 pη
ε converges weakly to zero in L2(O), which will

yield

|
ˆ
O

(∇χδ ε3 pη
ε ) · ϕ| � ν(ε)‖ϕ‖H1(O).

As above, for φ ∈ L2(O), we introduce v ∈ H1
0 (O) such that divv = φ − ffl

O φ,
‖v‖H1(O) � CO‖φ‖L2(O). Then, using the equation satisfied by pη

ε in O,

−�ε3h̄η
ε + ∇ε3 pη

ε = divFε
3 ,

we find, after integration by parts, that
ˆ
O

ε3 pη
εφ =

ˆ
O

ε3 pη
ε (φ −

 
O

φ) =
ˆ
O

ε3∇ h̄η
ε : ∇v +

ˆ
O

Fε
3 : ∇v −−→

ε→0
0.

This concludes the proof of (5.16), of Proposition 5.3 and of the theorem. ��

5.2. Formula for Periodic Point Distributions

Theorem 5.1 gives the limit of VN for properly rescaled stationary and ergodic
point processes, under uniform separation of the points. Such setting includes pe-
riodic point distributions, as well as Poisson hard core processes. We focus here
on the periodic case, for which further explicit formula can be given. For L > 0,
we consider distinct points a1, . . . , aM in KL , and set �0 := {a1, . . . , aM }+ LZd ,
which can be seen as a subset of T3

L . In Example 4.5, we explained how to build a
process on T

3
L out of �0, with �(ω) = �0 + ω, ω ∈ T

3
L . By a simple translation,

the results above, that are valid for �0 + ω for almost everywhere ω, are still valid
for ω = 0. Thus, for � = �0, we deduce from Proposition 4.7 the existence of an
LZ3-periodic solutionHη of (4.5) with ∇Hη ∈ L2

loc. If we further assume that Hη



1400 D. Gérard-Varet, M. Hillairet

is mean-free, it is clearly unique. Then, following Corollary 4.9 and Theorem 5.1,
there exists an LZ3-periodic solution H of (4.3), such that

lim
N→+∞VN = 25L6

2M2 W(∇H), W(∇H) = lim
η→0

Wη(∇H),

Wη(∇H) = −
( 

KL

|∇Hη|2 − M

L3η3

(ˆ
B1

|∇G1
S|2 + 3

10π
|S|2

))

, (5.17)

where Hη is associated to H by (4.4). We have used that in the periodic case, the
intensity of the process is m = M

L3 , while the expectation is simply the average over
KL .

To make things more explicit, we introduce the periodic Green function GS,L :
R
3 → R

3, satisfying

−�GS,L + ∇ pS,L = S∇δ0 , divGS,L = 0 in KL , GS,L LZ3-periodic,
ˆ

KL

GS,L = 0.

(5.18)
The Green function GS,L is easily expressed in Fourier series. If we write

GS,L(y) =
∑

k∈Z3∗

e
2iπk

L ·y ĜS,L(k),

a straightforward calculation shows that, for all k ∈ Z
3∗,

ĜS,L(k) = i

2π L2|k|
(

S
k

|k| − Sk · k

|k|2
k

|k|
)

= i

2π L2|k|2π⊥
k Sk,

where π⊥
k denotes the projection orthogonally to the line Rk. Note that the Fourier

series for GS,L converges, for instance, in the quadratic sense as follows:
Proposition 5.4.

lim
N→+∞VN = 25L3

2M2

⎛

⎝
∑

i 	= j∈{1,...,M}
S∇ · GS,L (ai − a j ) + M lim

y→0
S∇ · (GS,L (y) − GS(y))

⎞

⎠ .

Proof. Clearly, the LZ3-periodic field defined on KL by H̃(y) := ∑M
i=1 GS,L(y +

ai ) is a solution of (4.3), and by Proposition 4.3∇ H̃ and∇H differ from a constant
matrix. As ∇(H̃ − H) = ∇(H̃η − Hη) is the gradient of a periodic function, we
have eventually ∇ H̃ = ∇H . Up to adding a constant field to H , we can assume
that

H(y) =
M∑

i=1

GS,L(y + ai ).

Then, if η is small enough so that B(ai , η) ⊂ KL for all i , Hη is the L-periodic
field given on KL by

Hη(y) =
M∑

i=1

(
GS,L(y + ai ) + (Gη

S − GS)(y + ai )
)
.
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We integrate by parts to find

1

L3

ˆ
KL

|∇Hη|2 = 1

L3

ˆ
KL

M∑

i=1

HηdSη(· + ai )

= 1

L3

ˆ
KL

∑

i, j

GS,L(· + a j )dSη(· + ai )

+ 1

L3

ˆ
KL

∑

i, j

(Gη
S − GS)(· + a j )dSη(· + ai )

= 1

L3

∑

i 	= j

ˆ
KL

GS,L(· + a j )dSη(· + ai )

+ 1

L3

∑

i

ˆ
KL

GS,L(· + ai )dSη(· + ai ),

where we have used that the last term of the second line vanishes identically. We
then write GS,L = GS + φS,L with φS,L smooth near 0 to obtain

1

L3

ˆ
KL

|∇Hη|2 =
∑

i 	= j

1

L3

ˆ
KL

GS,L(· + a j )dSη(· + ai )

+ 1

L3

∑

i

ˆ
KL

φS,L(· + ai )dSη(· + ai ) + M

L3

ˆ
R3

GSdSη.

Combining this with Lemma 3.6 and (5.17), we get

lim
N→∞VN = −25L6

2M2 lim
η→0

( ∑

i 	= j

1

L3

ˆ
KL

GS,L(· + a j )dSη(· + ai )

+ 1

L3

∑

i

ˆ
KL

φS,L(· + ai )dSη(· + ai )
)
.

We conclude by the last point of Lemma 3.5 that

lim
N→∞VN = 25L3

2M2

( ∑

i 	= j

S∇ · GS,L(ai − a j ) + M S∇ · φS,L(0)
)
.

��
Proposition 5.5. (Simple cubic lattice). In the special case where L = M = 1, we
find

lim
N→∞VN = α

∑

i

S2
i i + β

∑

i 	= j

S2
i j ,

with α = 5
2 (1 − 60a), β = 5

2 (1 + 40a), and a ≈ −0, 04655 is defined in (5.19).
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Proof. When M = L = 1, the formula from the last proposition simplifies into
limN VN = 25

2 S∇ · φS,1(0), with φS,1 = GS,1 − GS . The periodic Green function
GS,1 was computed using the Fourier series in the last paragraph. We found

GS,1(y) =
∑

k∈Z3∗

i

2π |k|
(

S
k

|k| − Sk · k

|k|2
k

|k|
)

e2iπk·y

= S∇
⎛

⎝
∑

k∈Z3∗

1

4π2|k|2 e2iπk·y
⎞

⎠ +S : (∇ ⊗ ∇)∇
⎛

⎝
∑

k∈Z3∗

1

16π4|k|4 e2iπk·y
⎞

⎠ .

We use formulas from [20], (see also [42, Eqs. (64)–(65)]) to get

∑ 1

4π2|k|2 e2iπk·y = 1

4π

(
1

|y| − c1 + 2π

3
|y|2 + O(|y|4)

)

and
∑ 1

16π4|k|4 e2iπk·y = − 1

4π

( |y|
2

− c2 − c1
6

|y|2 + π

30
|y|4 + a P(y) + O(|y|6)

)

,

(5.19)
where c1 and c2 are constants, and

P(y) = 4π

3

(5

8
(y41 + y42 + y43) − 15

4
(y21 y22 + y21 y23 + y22 y23 ) + 3

8
|y|4

)
.

Note that the formula (5.19) defines implicitly a. A numerical computation was
carried in [42], see also [34], giving a ≈ −0, 04655.

Inserting in the expression for GS,1, we find, after a tedious calculation, that

S∇ · GS,1(y) = S∇ · ( − 3

8π

(Sy · y)y

|y|5
)

+1

5
|S|2 − 12a

∑

i

S2
i i + 8a

∑

i 	= j

|Si j |2 + O(|y|).

Note that to carry out this calculation, we used the fact that S is trace-free, which
leads to the identity

0 =
(

∑

i

Sii

)2

=
∑

i

S2
i i +

∑

i 	= j

Sii S j j .

Moreover, we know from (3.12) that

GS(y) = − 3

8π

(Sy · y)y

|y|5 .

We end up with

S∇ · φS,1(0) = 1

5
|S|2 − 12a

∑

i

S2
i i + 8a

∑

i 	= j

|Si j |2,

and the right formula for limN VN . ��
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5.3. Formula in the Stationary Case with the 2-Point Correlation Function

We consider here the case of random point processes in R
3 (X = R), such

that (P1)–(P2)–(P3) hold. We further assume that the mean density is m = 1. We
assume moreover that this point process admits a 2-point correlation function, that
is a function ρ2 = ρ2(x, y) ∈ L1

loc(R
3 × R

3) such that for all bounded sets K and
all smooth F in a neighborhood of K ,

E

∑

z 	=z′∈K

F(z, z′) =
ˆ

K×K
F(x, y)ρ2(x, y)dxdy.

As the process is stationary, one can write ρ2(x, y) = ρ(x − y). Our goal is to
prove the following formula:

Proposition 5.6. Almost surely,

lim
N

VN = 25

2
lim

L→+∞
1

L3

∑

z 	=z′∈�∩KL−1

S∇ · GS,L(z − z′)

= 25

2
lim

L→+∞
1

L3

ˆ
KL−1×KL−1

S∇ · GS,L(z − z′)ρ(z − z′)dzdz′,

where GS,L refers to the LZ3-periodic Green function introduced in (5.18).

Remark 5.7. We remind the reader that the periodic Green function GS,L has singu-
larities at each point of LZd . But as the sum is restricted to points z, z′ in�∩ KL−1,
z − z′ is always away from this set of singularities. In the same way, the integral
over KL−1×KL−1 in the second equality is well-defined. Under further assumption
on the two-point correlation function ρ, one could make sense of the integral over
KL × KL and replace the former by the latter.

Proof. Let η small enough so that Proposition 4.4 holds. We have

W(∇H) = Wη(∇H) = −
(

E

ˆ
K1

|∇Hη|2 − 1

η3

(ˆ
B1

|∇G1
S|2 + 3

10π
|S|2

))

.

Let HL = ∑M
i=1 GS,L(· + ai ), where {a1, . . . , aM } = � ∩ KL−1. Note that HL is

associated to the point process �L obtained by LZd -periodization of � ∩ KL−1.
We shall prove below that

E

ˆ
K1

|∇Hη|2 = lim
L→+∞

1

L3

ˆ
KL

|∇Hη
L |2, almost surely. (5.20)

As M
L3 = |�∩KL |

L3 → 1 as L → +∞, it follows from (5.20) that

W(∇H) = lim
L→+∞ −

(
1

L3

ˆ
KL

|∇Hη
L |2 − M

(ηL)3

(ˆ
B1

|∇G1
S|2 + 3

10π
|S|2

))

,

= lim
L→+∞Wη(∇HL) = lim

L→+∞W(∇HL), (5.21)
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where the last equality comes from Proposition 4.4. One can apply such proposition
because the LZd -periodized network �L has a minimal distance between points
that is independent of L . This is the reason why we used KL−1 instead of KL in
the definition of �L . Eventually, by Proposition 5.4,

lim
L→+∞W(∇ HL )

= lim
L→+∞

( 1

L3

∑

i 	= j∈{1,...,M}
S∇ · GS,L (ai − a j ) + M

L3 lim
y→0

S∇ · (GS,L (y) − GS(y))
)
.

Using that

GS,L(y) = 1

L2 GS,1

( ·
L

)
, GS(y) = 1

L2 GS

( ·
L

)
,

we get that

M

L3

∣
∣
∣ lim

y→0
S∇ · (GS,L − GS)(y)

∣
∣
∣ � C

∣
∣
∣ lim

y→0
S∇ · (GS,L − GS)(y)

∣
∣
∣

� C ′

L3

∣
∣
∣ lim

y→0
S∇ · (GS,1 − GS)(y/L)

∣
∣
∣ = O(L−3).

We obtain

W(∇H) = lim
L→+∞

1

L3

∑

i 	= j∈{1,...,M}
S∇ · GS,L(ai − a j ). (5.22)

This is the first formula of the proposition. To prove the second one, one can go
back to formula (5.21) and take the expectation of both sides. The left-hand side,
which is deterministic, is of course unchanged. As regards the r.h.s., one can swap
the limit in L and the expectation by invoking the dominated convergence theorem.

Indeed, both terms 1
L3

´
KL

|∇Hη
L |2 and M

(ηL)3

(´
B1 |∇G1

S|2+ 3
10π |S|2

)
are bounded

uniformly in n and in the random parameter ω (but not uniformly on η): the first
term is bounded through a simple energy estimate, while the second one is bounded
thanks to the almost sure separation assumption.

The final step is to prove (5.20), almost surely. We set ε := 1
L , and introduce,

for all x ∈ K1,

hη
ε (x) = 1

ε2
Hη

L (
x

ε
), pη

ε (x) = 1

ε3
pη

L(
x

ε
),

and similarly, for all x ∈ K1,

h̄η
ε (x) = 1

ε2
Hη(

x

ε
) −

 
K1

1

ε2
Hη(

·
ε
),

pη
ε (x) = 1

ε3
Pη(

x

ε
) −

 
K1

1

ε3
Pη(

·
ε
),

where (Hη, Pη) refers to the field built in Proposition 4.7. Clearly,

ε6
ˆ

K1

|∇hη
ε |2 = 1

L3

ˆ
KL

|∇Hη
L |2,
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while, by the ergodic theorem, one has, almost surely, that

ε6
ˆ

K1

|∇ h̄η
ε |2 = 1

L3

ˆ
KL

|∇Hη|2 −−→
ε→0

E

ˆ
K1

|∇Hη|2.

It remains to show that

ε6
ˆ

K1

|∇(h̄η
ε − hη

ε )|2 → 0 as ε → 0.

We notice that the difference hε = h̄η
ε − hη

ε satisfies the Stokes equation

−�hε + ∇ pε = 1

ε3
div(Rε − Rε,L), divhε = 0 in K1,

where

Rε :=
∑

z∈�

�η(x/ε + z), Rε,L :=
∑

z∈�L

�η(x/ε + z),

andwhere we recall that�L is obtained by LZ3-periodization of�∩KL−1. Testing
against ε6hε, we find

ε6
ˆ

K1

|∇hε|2 = −
ˆ

K1

(Rε − Rε,L)ε3∇hε

+
ˆ

∂K1

Fεn · ε3(hε −
 

K1

hε) −
ˆ

∂K1

Gεn · ε3hε, (5.23)

where

Fε(x) := ∇Hη(
x

ε
) − Pη

( x

ε

)
Id +

ˆ
K1

Pη
( ·
ε

)
Id + F̃(x),

Gε(x) := ∇Hη
L (

x

ε
) − Pη

L (
x

ε
)Id + G̃(x),

with

F̃(x) :=
∑

z∈�

�η(x/ε + z) − S, G̃(x) :=
∑

z∈�L

�η(x/ε + z) − S.

Note that both Fε and Gε are divergence-free.
To handle the first term at the right-hand side of (5.23), we notice that

|{z ∈ � � �L , KL ∩ B(−z, η) 	= ∅}| = O(L2) = O(ε−2),

resulting in
ˆ

K1

(Rε − Rε,L)ε3∇hε � C
(
ε

ˆ
R3

|�η|2
)1/2‖ε3∇hε‖L2(K1)

� Cε1/2‖ε3∇hε‖L2(K1)
.
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As regards the second term, one proceeds exactly as in Paragraph 5.1, replacingO
by K1: see the treatment of F2

ε and F3
ε , defined in (5.13) and (5.15). One gets in

this way that for all divergence-free ϕ ∈ H1(K1),

|
ˆ

∂K1

Fεn · ϕ| � ν(ε)‖∇ϕ‖L2(K1)
, ν(ε) → 0 as ε → 0.

As regards the last term, we take into account the periodicity of Hη
L and G̃ to write

ˆ
∂K1

Gεn · ε3hε =
ˆ

∂K1

Gεn · ε3h̄η
εdx .

As
´
∂K1

h̄η
ε · n = 0, we can introduce a solution �ε of

div�ε = 0 in K1, �ε|∂K1 = ε3h̄η
ε |∂K1 , ‖�ε‖H1(K1)

� C‖ε3h̄η
ε |∂K1‖H1/2(∂K1)

.

Proceeding as inParagraph5.1 (replacingO by K1), one can show that‖ε3h̄η
ε‖H1/2(∂K1)

goes to zero with ε, and so ‖�ε‖H1(K1)
goes to zero as well. Eventually, we write

|
ˆ

∂K1

Gεn · ε3h̄η
εdx | = |

ˆ
K1

Gε · ∇�ε|

= |
ˆ

K1

(
2D(Hη

L )(·/ε) + G̃
)

· ∇�ε|

� C

(
1

L3 ‖∇Hη
L‖2L2(KL )

+ ‖�η‖2L2 + 1

)1/2

‖∇�ε‖L2

� C ′‖∇�ε‖L2 .

Hence, we find

ε6
ˆ

K1

|∇h|2 � C
(
ε + ν(ε)2 + ‖∇�ε‖2L2

)
−−→
ε→0

0,

which concludes the proof. ��
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A Proof of Lemma 2.4

For any open set U , we denote
ffl

U = 1
|U |

´
U . By (H2), we have

d := c

4
N−1/3 � min

i 	= j

|xi − x j |
4

.

We write

A′
i = A′

i,1 + A′
i,2 + A′

i,3,

with

A′
i,1 =

∑

j 	=i

 
B(x j ,d)

(
D(v[A j ])(xi − x j ) − D(v[A j ])(xi − x ′)

)
dx ′,

A′
i,2 =

∑

j 	=i

 
B(x j ,d)

(
D(v[A j ])(xi − x ′) −

 
Bi

D(v[A j ])(x − x ′)dx
)
dx ′,

A′
i,3 =

∑

j 	=i

 
B(x j ,d)

 
Bi

D(v[A j ])(x − x ′)dxdx ′.

Setting yi = N−1/3xi , using that for i 	= j , |yi − y j | � 1
2 (c + |yi − y j |) � c,

|A′
i,1| � Ca3

∑

j 	=i

d

|xi − x j |4 |A j | � C ′φ
∑

j

|A j |
(c + |yi − y j |)4 .

From the inequality (2.35), appliedwithai j = 1
(c+|yi −y j |)4 and b j = A j , we deduce

∑

i

|A′
i,1|q � Cφq

∑

j

|A j |q .

Similarly,

|A′
i,2| � Ca3

∑

j 	=i

a

|xi − x j |4 |A j | � C ′φ
4
3
∑

j

|A j |
c + |yi − y j |4 .

This leads to
∑

i

|A′
i,2|q � Cφ

4q
3

∑

j

|A j |q .

The last term is the most difficult. We follow [21]. Let us remind ourselves that

v[A] = −5

2
A : (x ⊗ x)

a3x

|x |5 .
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Let χd(x) = χ(x/d) a smooth function that is 0 in B(0, d), 1 outside B(0, 2d).
Introducing the function FA = ∑

j A j1B(x j ,d), using that d � mini 	= j
|xi −x j |

4 , we
can write that

A′
i,3 = 1

d3

ˆ
Bi

ˆ
R3

χd(xi − x ′)K(x − x ′)FA(x ′)dx ′dx,

where K(x) is an endomorphism of the space of symmetric matrices, defined by

K(x)A = −5

2

(4π

3

)−2
D

(
A : (x ⊗ x)

x

|x |5
)
.

We then split A′
i,3 = Mi + Ni , with

Mi = 1

d3

ˆ
Bi

ˆ
R3

χd(x − x ′)K(x − x ′)FA(x ′)dx ′dx,

Ni = 1

d3

ˆ
Bi

ˆ
R3

(χd(xi − x ′) − χd(x − x ′))K(x − x ′)FA(x ′)dx ′dx .

By Hölder inequality,

|Mi |q � 1

d3q
a

3q
p ‖(χdK

)
� FA‖q

Lq (Bi )
,

and so
∑

i

|Mi |q � 1

d3q
a

3q
p ‖(χdK

)
� FA‖q

Lq (R3)
.

The kernel χdK enters the framework of the Calderón–Zygmund theorem, see for
instance [31, Chapters 4 and 5]: for all 1 < q < +∞, the operator

(
χdK

)
� is

continuous from Lq(R3) to Lq(R3), with

‖(χdK
)
� ‖L(Lq ,Lq ) � Cq .

We stress that the constant Cq depends only on q, and not on d, as can be seen from
the rescaling x ′ := x ′/d. It follows that

∑

i

|Mi |q � C

d3q
a

3q
p ‖FA‖q

Lq (R3)
.

As the balls B(x j , d) are disjoint, |∑ A j1B(x j ,d)|q = ∑ |A j |q1B(x j ,d), so that

‖FA‖q
Lq (R3)

= 4π
3

∑ |A j |qd3, and

∑

i

|Mi |q � C ′ (a

d

) 3q
p

∑

i

|Ai |q � Cφ
q
p
∑

i

|Ai |q .

To bound Ni , we notice that for all x ∈ Bi , the support of x ′ → χd(xi − x ′) −
χd(x − x ′) is included in
(

B(xi , 2d) ∪ B(x, 2d)
)

\
(

B(x, d) ∩ B(xi , d)
)

⊂ B(x, 2d + a) \ B(x, d − a)



Analysis of the Viscosity of Dilute Suspensions Beyond Einstein’s Formula 1409

(remark that by definition of φ, a is less than d for φ small enough). We get

|Ni |q � 1

d3q
a

3q
p ‖∣∣1B(0,2d+a)\B(0,d−a)K

∣
∣ �

∣
∣FA

∣
∣‖q

Lq (Bi )
,

so that

∑

i

|Ni |q � C

d3q
a

3q
p ‖∣∣1B(0,2d+a)\B(0,d−a)|x |−3

∣
∣ �

∣
∣FA

∣
∣‖q

Lq (R3)

� C ′

d3q
a

3q
p
∣
∣ ln

(2d + a

d − a

)∣
∣q‖FA‖q

Lq (R3)

� C ′′ (a

d

) 3q
p

∑

i

|Ai |q � Cφ
q
p
∑

i

|Ai |q ,

using that, for φ � 1, a � d and
∣
∣ ln

( 2d+a
d−a

)∣
∣ is bounded by an absolute constant.
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