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Abstract

In Liu and Zhang (Arch Ration Mech Anal 235:1405-1444, 2020), the authors
proved that as long as the one-directional derivative of the initial velocity is suf-
ficiently small in some scaling invariant spaces, then the classical Navier—Stokes
system has a global unique solution. The goal of this paper is to extend this type
of result to the 3-D anisotropic Navier—Stokes system (AN S) with only horizontal
dissipation. More precisely, given initial data ug = (ug, ug) € BO’%, (ANS) hasa
unique global solution provided that | Dy | ~! 831 is sufficiently small in the scaling
invariant space B” 2.

1. Introduction

In this paper, we investigate the global well-posedness of the following 3-D
anisotropic Navier—Stokes system:

du—+u-Vu—Agwu=—-Vp, (t,x) e RT xR3,
(ANYS) divu =0,
ulr=0 = uo,

where Ap def 812 +02, u designates the velocity of the fluid and p the scalar pressure
function which guarantees the divergence free condition of the velocity field.

Systems of this type appear in geophysical fluid dynamics (see for instance
[5,18]). In fact, meteorologists often model turbulent diffusion by using a viscosity
of the form —up Ap — 13 832, where pp and 3 are empirical constants, and ©3 is
usually much smaller than up. We refer to the book of PEDLOVSKY [18, Chap. 4],
for a complete discussion about this model.

Considering that system (AN S) has only horizontal dissipation, it is reasonable
to use functional spaces which distinguish horizontal derivatives from the vertical
one, for instance, the anisotropic Sobolev space defined as follows:
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Definition 1.1. For any (s, s’) in R2, the anisotropic Sobolev space H“"‘/(]R})
denotes the space of homogeneous tempered distribution a such that

lal?,,.. < /R &P e @@ g < 0o with & = (61, £2).

Mathematically, CHEMIN et al. [4] first studied the system (AN S). In particular,
CHEMIN et al. [4] and IFTiMIE [13] proved that (AN S) is locally well-posed with

initial datain L2NH% 2+ for some & > 0, and is globally well-posed if, in addition,

luoll 2 ol 0 dse Sc (1.1)

for some sufficiently small constant c.
Notice that just as the classical Navier—Stokes system

du+u-Vu—Au=—Vp, (t,x) e RT xR?,
(NS) {divu=0,

uli=0 = uo,

the system (AN S) has the following scaling invariant property:

w1, ) a2, 00 and o0 & duo ), (12)

which means that if u is a solution of (AN S) with initial data ug on [0, T'], u,,
determined by (1.2) is also a solution of (AN S) with initial data u¢ ; on [0, T/Xz].

It is easy to observe that the smallness condition (1.1) in [4] is scaling invariant
under the scaling transformation (1.2), nevertheless, the norm of the space H 0.3+¢
is not. To work (AN S) with initial data in the critical spaces, we first recall the
following anisotropic dyadic operators from [2]:

Aba 1o g a), Ala © F e s, W)
sha & Fl e M ahd.  Sla E Fl (@ g )a).

where &, = (&1, &), Fa or a denotes the Fourier transform of a, while F —lg
designates the inverse Fourier transform of a, x (7) and ¢(7) are smooth functions
such that

8 .
< gl < 5} and Vr>0, Y Q@70 =1
JEZ

Supp(pc{reR:

and VreR, x(r)+ Z(p(ijt) = 1.
Jj20

4
SuppxC[reR:|t|§—

(O]
——

Definition 1.2. We define Bo’% (R3) to be the set of homogenous tempered distri-
bution a so that

def L
”a”Bo% = Zzz ||AZQ||L2(R3) < Q.
LeZ
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The above space was first introduced by IFTIMIE [12] to study the global
well-posedness of the classical 3-D Navier—Stokes system with initial data in
the anisotropic functional space. The second author [16] proved the local well-

posedness of (AN S) with any solenoidal vector field ug € BO'% and also the global

well-posedness with small initial data in B%2. This result corresponds to Fujita—
Kato’s theorem [11] for the classical Navier—Stokes system. Moreover, the authors
[17,19] proved the global well-posedness of (AN §) with initial data ug = (ug, ug)
satisfying that
h 34
IIMOIIBO,% eXP(CIIMOIIBQ%) = co (1.4)

for some ¢y sufficiently small.

Although the norm of B2 is scaling invariant under the the scaling transfor-
mation (1.2), yet we observe that the solenoidal vector field

Ut (x) = sin(xe—l) 0, =330, 9290) (1.5)

is not small in the space B%?% no matter how small & is. In order to find a space so
that the norm of u(x) given by (1.5) is small in this space for small &, Chemin
and the third author [8] introduced the following Besov—Sobolev type space with
negative index:

_11
Definition 1.3. We define the space 3, >'* to be the set of a homogenous tempered
distribution a so that

o0

def ¢ —ky AB AV 112 3 h

lall .y €3 25 (( X 2 h1aatally ,0)7 + ISE Alall2 ) < oo
4 LeZ k=t—1

Chemin and the third author [8] proved the global well-posedness of (AN S)
11

with initial data being small in the space B;j’ 2. In particular, this result ensures
the global well-posedness of (AN S) with initial data uj(x) given by (1.5) as long
as ¢ is sufficiently small. Furthermore the second and third authors [17] proved
the global well-posedness of (AN S) provided that the initial data ug = (ug, u%)
satisfies that

lug]

11 exp(Cllugll® 1) < eo (1.6)

4 B4

Bl—
Bl—

for some cq sufficiently small. We remark that this result corresponds to Cannone,
Meyer and Planchon’s result in [3] for the classical Navier—Stokes system, where
the authors proved that if the initial data satisfies that

luoll 13 < ev

P00

for some p greater than 3 and some constant ¢ small enough, then (N S) is globally
well-posed. The end-point result in this direction is due to KocH and TATARU [14]
for initial data in the space of dBMO.
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On the other hand, motivated by the study of the global well-posedness of the
classical Navier—Stokes system with slowly varying initial data [6,7,9], the first
and third authors proved the following theorem for (N .S) in [15]:

Theorem 1.1. Let§ €]0, 1[, ug = (ug, ug) € H%(R3)DBO’%(R3) with ug belong-
ing to L2R3HN LOO(RV, H™S (R )N L>®(Ry; H3(R )). If we assume in addition
that 03ug € H™ 3.0 , then there exists a small enough positive constant &y such that
if

losuol _y  exp (C(As(u) + Bs(u)) < eo. (1.7)

(NS) has a unique global solution u € C(R"’; H%) N L2 (R"’; H%), where

o (V0B 1 W s,
Asly % I gz ) exp (Col 4 Nl 2.
I3
Vaub
A N % T
As (uf) = 3 B4 As(ug),
I 12

(1.8)

and

Bsu) < bl oy exp(Cs ) + luoll oy exp(lfl , exp(Csu))

2 1 2 1 2 1
(1.9)
are scaling invariant under the scaling transformation (1.2).

We remark that Theorem 1.1 ensures the global well-posedness of (N .S) with
initial data

uf(x) = (v + ewd), wy) (xn, ex3) with divy v = 0 = div wy (1.10)

fore < g, which was first proved in [6]. We mention that the proof of Theorem 1.1
requires a regularity criteria in [10], which can only be proved for the classical
Navier—Stokes system so far.

Motivated by [15,17,19], here we are going to study the global well-posedness
of (ANS) with initial data ug satisfying d3u( being sufficiently small in some
critical spaces.

The main result of this paper is as follows:

Theorem 1.2. Let A;l be a Fourier multiplier with symbol |&,| ™", letuq € BO’% be

_ 1 . .
a solenoidal vector field with A, Y93ug € BY2. Then there exist some sufficiently
small positive constant &y and some universal positive constants L, M, N so that

for QLN(||ug||BO,%) given by (3.5) if

-1 3,4 4 h
1Ay dsuoll g 4 exp(L(1+ ||uo||B4H)exp(MmN(uuouBo.;))) <eo. (L11)
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0
(ANS) has a unique global solution u = v + ' (u3 ) with v €
0,hh

d
C(10, ool ; B4y and Vo € L2(10, ool B*4), whereud o % 3o, AbAYU3.

We remark that all the norms of «” in (1.11) is scaling invariant under the scaling
transformation (1.2). Especially for the term || A} 193u0 | e we do not know how

to propagate this regularity for the solutions of 3-D Navier—Stokes system. In the
sequel, we shall only propagate this regularity for the solutions of 2-D Navier—
Stokes system with a parameter [(see (3.4) and (3.7)]. With regular initial data, we
may write explicitly the constant 2y (||} ”BO' 1 )- For instance, we have

Corollary 1.1. Let ug € L? be a solenoidal vector field with d3ug € L? and

— 1 . . ..
Ay 183140 € BY2. Then there exist some sufficiently small positive constant gy and
some universal positive constants L, M so that if

145 suoll gy exp(L(1+ iy y) exp (exp(Mlufl 2 153]2) ) ) < eo.
(1.12)

B4 2°2
(ANS) has a unique global solution u as in Theorem 1.2.

Remark 1.1. Several remarks are in order about Theorem 1.2:

(a) It follows from [8] that
3 < 3
Il < Ml

so that the smallness condition (1.11) and (1.12) can also be formulated as

Iy dsuoll gy exp(L(1+ Il 1) exp(M2AY (Nl 1)) ) < o

(1.13)
and
Iy dsuoll gy exp(L(1+ 1, o) exp (exp(M 2 0sufl 2)) ) < eo.
(1.14)

(b) Due to divug = 0, we find
-1 -1 h —14: h
1Ay Bsmoll gy = 1A Bsuf, —A dive )] g

Therefore the smallness condition (1.11) is of a similar type as (1.4). Yet roughly
speaking, (1.11) requires only 831,{8 and divy, ug to be small in some scaling
invariant space, but without any restriction on curly ug. Thus the smallness
condition (1.11) is weaker than (1.4).

(c) Let wo be a smooth solenoidal vector field, we observe that the data

ub(x) = (e(=Ine)’wf, (—Ine)’wy)(xn, ex3) with 8 €10, 1/4[

satisies (1.4) for ¢ sufficiently small.



810 Y. LIU ET AL.

While since our smallness condition (1.14) does not have any restriction on curl ug,
for any smooth vector field vg satisfying divy v{)’ =0, we find

uf(x) = (v + e(—Ine)’wl, (—Ine)’wy)(xn, ex3) with 8 €10, 1/4[ (1.15)

satisfies (1.14) for any e sufficiently small. Therefore Theorem 1.2 ensures the
global well-posedness of (AN S) with initial data given by (1.15). Compared with
(1.10), which corresponds to § = 0 in (1.15), this type of result is new even for the
classical Navier—Stokes system.

(d) Given ¢ € S(R?), we deduce from Proposition 1.1 in [8] that

. 1
e e gx)| 11 £ Cez.
B 2°2
4

As aresult, we find that for any § €]0, 1/4[, the following class of initial data:

ué(x) = (vh, 0)(xp, €x3) + (—1n e;)‘S sin(x1/¢)

(0, —£2 330 (xn, £x3), &2 82 (x1, £%3))) (1.16)

satisfies the smallness condition (1.13) for small enough ¢, and hence the data
given by (1.16) can also generate unique global solution of (AN S).

(e) Since all the results that work for the anisotropic Navier—Stokes system (AN S)
should automatically do for the classical Navier—Stokes system (N S), Theo-
rem 1.2 holds also for (N S).

Let us end this section with some notations that will be used throughout this
paper.
Notations: Let A, B be two operators, we denote [A; B] = AB — BA, the com-
mutator between A and B, for a < b, we means that there is a uniform con-
stant C, which may be different in each occurrence, such that a < Cb. We shall
denote by (a|b);> the L?(R?) inner product of a and b. (d j)/ <z designates a

generic elements on the unit sphere of £!(Z), i.e. 3 jezdj=1. Finally, we denote

def
L5 (LY (LY)) the space L' ([0, T1; L Ry, xRyy; LI(Ry,))), and Vi, = (3y,, i, ),
divy = dy, + O,

2. Littlewood—Paley Theory

In this section, we shall collect some basic facts on anisotropic Littlewood—
Paley theory. We first recall the following anisotropic Bernstein inequalities from
[8,16]:

Lemma 2.1. Let By, (resp. By) a ball of Rﬁ (resp. Ry), and Cy, (resp. Cy) a ring
of]R% (resp.Ry); let 1 < py < py S ooand 1 £ qo £ g1 £ 0. Then it holds that
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. _~ k +-=
lf Sllpp acC Zth = ||8gha”Ll[;1(L31) 5 2 (lal l’l)”a”Lpz(qu),

. —~ o+l - L

if Supp @ C 2By = 8Ll i a1, <2 (P2 41>||a||Lm(qu);

if Supp a C 2*Ci, = lallm oy < 27%N sup 8%, all i g ony;
lo|=N

if Supp a c 2'C, = lallm oy < 2—4N||ax3a||L,,. Ly

Definition 2.1. For any p € [1, oo],, let us define the Chemin—Lerner type norm

def L
” ||~p(807) ZZZHAZCluLg([‘Z(RS)).
Lel

In particular, we denote

def

IIaIIBo = llal + [[Vhall -

I B2y’

We remark that the inhomogeneous version of the anisotropic Sobolev space

H%! can be continuously imbedded into B%3 . Indeed for any integer N, we deduce
from Lemma 2.1 that

£ 4
lall oy = > 221AYall2 + ) 22| Ajall 2

LEN >N
£ _t
< ) 27AYalle + ) 272 (10sAYall e
LEN >N

N _N
S27|laligz + 277 [[9zall 2.

Taking the integer N so that 2V ~ ||33a]| 12lla ||Z21 in the above inequality leads to

1
llall .1 < llal zllasallzz- 2.1

Along the same lines, we have

S ||a|| ||83a|| Y pell, ool (2.2)

LE(LY) LE(LY)

To overcome the difficulty that one can not use Gronwall’s inequality in the
Chemin-Lerner type norms, we recall the following time-weighted Chemin—Lerner
norm from [17]:

Definition 2.2. Let f(¢) € L} (R4), f(r) = 0. We define

loc

T i

def L 2 2

- = 22< H|AVal(t dt) .
”a”LZT,f(BO'%) ;ez [0 SFONIAa®ll; .
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In order to take into account functions with oscillations in the horizontal vari-
ables, we recall the following anisotropic Besov type space with negative indices
from [8]:

Definition 2.3. For any p € [1, oo], we define

1
def
lall_, 222((2 27 AL ALl Lz))) +||52_1Aza||L;(L2>).

LeZ k=0—1
In particular, we denote
def
lall 11 |Ia|| 44, + [Vha || 1
B, * () X (B, L3(B, 7' %)

11
In the sequel, fora € B, 2’2

sition:

, we shall frequently use the following decompo-

a=ap +apn with ap = ZSZ 1 a and ahh = Z AkAla (2.3)
tez k>e—1

11

Lemma 2.2. (Lemma 2.5 in [8]) For any a € 84_2’7, it holds that

e amll 11 Slall 1
847'2(00) 647‘7
Definition 2.4. Let us define
def def
lall o1 = Y 271Akal 3z and lall, o1 > 25 lAYall sz
5P iz rielt) tez

In view of the 2-D interpolation inequality that

lallzscz) S 1l g, 190l 25 g (2.4)
we find
2 1 1\2
oty y 5 (-2 1a%al 1A Vhall}, )
Lel
£ (4
< (2% 1aval ) (027 1A Vhall,2) = lall g 4 1 9hal .1
LeZ LeZ
2.5)
Similarly, we have
< ~ ~ . 2.6
||a||L( 25) lla ||Loo(807)|| ha”L,z(BO’%) (2.6)

Before preceding, let us recall Bony’s decomposition for the vertical variable
from [1]:

ab=Tyb+ R"(a,b) with T)b= S} jaA}b, R'(a,b)=) AjaS) ,b.
Lel Lel
(2.7)
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Sometimes we shall also use Bony’s decomposition for the horizontal variables.

Let us now apply the above basic facts on Littlewood—Paley theory to prove the
following proposition:

_11
Proposition 2.1. For any a € B, *'*(T), it holds that

lall . o1 Slall _11 - (2.8)
L3 (B, %) B, 2 2(T)

Proof. In view of (2.3) and Definition 2.3, we get, by applying (2.6), that

a
l 1h||24

1 1
0.1 Slamlls IIVhalhlli2
1B, IrnB2) 2

B%7)

1 1
Slal®> ,, \Ihal®
(et ™ )

Then it remains to prove (2.8) for ap. Indeed in view of Definition 2.4, we write

_ 4 v 2 %
lamll_ ( ) =D 2213 a2y
Lz| B, Lel

Applying Bony’s decomposition for the horizontal variables yields
(Ajann)* =) S} Ajann AfAjann + | Sp o Ajan Af Ajann.  (2.9)

keZ keZ
‘We observe that

=

£ h v hoev
ZZZ (Z “Sk—lAeahhAkAfahh”L%(Lﬁ([ﬂl/)))
Lel keZ

< ( :

Z L Z —kyygh AV 2 ) :
2
LeZ keZ

dl

Bl—

1

N
¢ kg Ah AV, 12 )7 :
222(22 1A e“hh”LZT(Lﬁ(L%)) )

LeZ keZ
1
N
¢ - A% 3
< 22( a—kigh AV 2 ) v 3
s <E E 1S—1 Apannllyoc a.2)) ' Vhann |~ L
LeZ keZ

3 (134 7’7>

—kpgh AV (2 O TININ 2
> 2 ISt Al gz = (D 277 27T I Ajaml gy
keZ keZ k'<k-2

Whereas we get, by using Young’s inequality, that

<N 27K Al A apy |12 :
_kEZZ IARAGanh oo 412,
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As a result, it turns out that

1

4 —ky ch v 2 >7<
Y25 (Y27 Isty Alaml e g g) = Nl ()

(ez keZ Ly

and

4 h v hav 2 <
> 25 (S Atam AL Aamll 2 20y ) S lal p1
LeZ keZ 4

Along the same lines, we can prove that the second term in (2.9) shares the same
estimate. This ensures that (2.8) holds for apn. We thus complete the proof of the
proposition. O

3. Sketch of the Proof

Motivated by the study of the global large solutions to the classical 3-D Navier—
Stokes system with slowly varying initial data in one direction [6,7,9,15], here
we are going to decompose the solution of (AN S) as a sum of a solution to the
two-dimensional Navier—Stokes system with a parameter and a solution to the
three-dimensional perturbed anisotropic Navier—Stokes system. We point out that
compared with the references [6,7,9,15], here the 3-D solution to the perturbed
anisotropic Navier—Stokes system will not be small. Indeed only its vertical com-
ponent is not small. In order to deal with this part, we are going to appeal to the
observation from [17,19], where the authors proved the global well-posedness to
3-D anisotropic Navier—Stokes system with the horizontal components of the initial
data being small [see the smallness conditions (1.4) and (1.6)].

For u" = (u', u?), we first recall the two-dimensional Biot—Savart’s law:

b A Gl AT curly ™) and ), B v, A divy ),

3.1

h_ h h :
u' =gy +ug, with u

where curly, u? déf 91u? — dou! and divy, ud déf dul + u’.

In particular, let us decompose the horizontal components ug of the initial
velocity ug of (ANS) as the sum of ugycuﬂ and ug,div, and let us consider the
following 2-D Navier—Stokes system with a parameter:

Qi 4+ i - Vi — Api" = =Vhp,  (r,x) e RY x R?,
divy " = 0, (3.2)
”_th|t=0 = ﬁg = ug,curl'

Concerning the system (3.2), we have the following a priori estimates:

Proposition 3.1. Ler 128 e B2 with A;183ﬁ8 € B%2. Then (3.2) has a unique

global solution so that for any time t > 0, it holds that

~h ~h ~h
104y + 0 g4y < O (151 (3.3)
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and

—14 -h _h —1q = 4 (y=h
AR 95 g+ 02N oy S CIAG D51y exp (C (1140))

(3.4)
where def
—h ¢ 1 ~h
oy = F (g <L orezn 7 (o)) and
_ def 1. _ _
A (ol ) = N2 ligl o4 exp(CHAGI, 1) (35)

~h 2 ~h)2
[l g1 exp (N esplC1I, 1) ).
and N is taken so large that Hﬁ]O" N ”BO* 1 is sufficiently small.
The proof of Proposition 3.1 will be presented in Section 4.

Remark 3.1. Under the assumptions that ﬁg € L% with 83&10‘ e L%and Aglagﬁg €
BO’%, we have the following alternative estimates for (3.3) and (3.4):

1

1
~h ~h < 7hy2 ~h) 2 —h ~h
llu ”Z,w(zso-%) + [['Vhut ”Z?(BO% < llagl 7, 19sigl 7, exp(Cllagl 211934 .2).
(3.6)
and
—14.-h —h —14 -h h h
Ay, 030 ”Z?“(BO’%) + 1193 ”Z%(BO'%) = Ay, dsitgll 0,1 €XP (exp(Cllagll 2 1935l .2)) -
(3.7)
We shall present the proof right after (4.7).
We notice that
def h h 3
vo = 1o — (ugcunts 0) = (0 aiv+ #p)+ (3.8)

which satisfies divvg = 0, and yet vg is not small according to our smallness
condition (1.11).

Before proceeding, let us recall the main idea of the proof to Theorem 1.1 in
[15]. The authors [15] first constructed (i, p) via the system (3.2). Then in order to
get rid of the large part of the initial data vy, given by (3.8), the authors introduced
a correction velocity, i, through the system

Qd+a - Vpil — Al = —VP,

divii =0, (3.9)
~h ~h —1 3 ~3 ~3 3
u |[=() =Uy = —VhAh (83140), u |t=0 = Uy = Ug-

With #" and % being determined respectively by the systems (3.2) and (3.9), the
authors [15] decompose the solution (u, p) to the classical Navier—Stokes system
(NS) as

~h
u=<bz)>+i7+v, p=p+pP+gq. (3.10)

The key estimate for v is as follows:
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Proposition 3.2. Ler u = (', u3) e C([0, T*[; H>) N L2(10, T*[; H?) be a
dof
Fujita—Kato solution of (N S). We denote w éf 9102 — dv! and

de de
M(t) =f||Vv3<z>||2_l0+||w(r>||2_l0, N(@) =f||vzv3<z)||2_l0+||Vw(r>||2
H 2 H 2 H 2 H 2

(3.11)
Then under the assumption (1.7), there exists some positive constant n such that

t
sup (M(t)+/ N(t’)dt’) <. (3.12)
t€[0,T*[ 0

Then in order to complete the proof of Theorem 1.1, the authors [15] invoked
the following regularity criteria for the classical Navier—Stokes system:

Theorem 3.1. (Theorem 1.5 of [10]) Let u € C([0, T*[; H>) N L>(10, T*[; H?)
be a solution of (N S). If the maximal existence time T* is finite, then for any (p; ;)
in 11, oo[?, one has
T* . ..
> ||al-ul(z)||”’j2+i dt = oo. (3.13)
15i,j<3 Boo,ocpi"i

We remark that Theorem 3.1 only works for the classical 3-D Navier—Stokes
system. Therefore the above procedure to prove Theorem 1.1 cannot be applied to
construct the global solutions to the 3-D anisotropic Navier—Stokes system.

On the other hand, we remark that the main observation in [17,19] is that: by
using divu = 0, (AN S) can be equivalently reformulated as

Bluh +ul. thh + u383uh — Ahuh = —Vup, (t,x) € RT x R3,
8,u3 +ul. Vguh — u3divh ul — Ahu3 = —-Np,
divu =0,

h 3
uli=0 = (ug, uy),

(ANS)

so that at least, seemingly, the u> equation is a linear one; this explains why there
is no size restriction for ug in (1.4) and (1.6).

Motivated by [17,19], for " being determined by the systems (3.2), we decom-
~h
pose the solution u of (AN S) asu = (u

0 ) +v. Itis easy to verify that the remainder

term v satisfies

v Vol + i v + v Vi — At = —Vip + Wi p,

3> + v Vpo? — v3divp 0" + @ v — Ap? = —03p,
. (3.14)
divv =0,
vlizo = v0 = (= VA, (B3u3), ).
h

We notice that under the smallness condition (1.11), the horizontal components, v,
are small in the critical space 8% 2. Then the crucial ingredient used in the proof of
Theorem 1.2 is that the horizontal components v of the remainder velocity keeps
small for any positive time.
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Due to the additional difficulty caused by the fact that ug belongs to the Sobolev—

Besov type space with negative index, as in [8], we further decompose v* as
v¥=vr +w, where vp(r) def e"Mhud y and ug def Z AMAY.
k=e—1
(3.15)

Then w solves

oyw — Apw + v - vl + an . th3 = —0p,

def
wl=o = ug gy = ) S Ajup. (3.16)

LeT

Proposition 3.3. Let v be a smooth enough solution of (3.14) on [0, T*[. Then
there exists some positive constant C so that for any t €10, T*[, we have

§_ hyz h < h ~h
L?O(Bo,z)+(4 Cllv ||Z?C(BO‘%))||V11U Iy = (oGl go,1 + ll0sie ”z,z(sa%))

t
x exp(C/ (w12, 1 IV @)IZ, o + 17O+ e, l)dr’),
0 B2 B2 B, 2 B, 2

4

3.17)
and
C-cnmi, iz, ))iwl,,
6 B%% (1) 2 (8%2) B2 1)
< 11,3 ( h ~h hy 2
Sy g+ C (10 gy + 18y 4y + IR,
T R 1 LY TN | L I )ex(Cﬁh4 )
(L 1+ 0052 g Doy Joo(COE
(3.18)

The proof of the estimates (3.17) and (3.18) will be presented respectively in
Sections 5 and 6. Now let us admit the above Propositions 3.1 and 3.3 temporarily,
and continue our proof of Theorem 1.2.

Proof of Theorem 1.2. 1t is well-known that the existence of global solutions to
a nonlinear partial differential equations can be obtained by first constructing the
approximate solutions, and then performing uniform estimates and finally passing
to the limit to such approximate solutions. For simplicity, here we just present the
a priori estimates for smooth enough solutions of (AN S).

Let u be a smooth enough solution of (ANS) on [0, T*[ with T* being the
maximal time of existence. Let " and v be determined by (3.2) and (3.14), respec-
tively. Thanks to (3.1) and Proposition 3.1, we first take L, M, N large enough and
&o small enough in (1.11) so that

—1q =h ~h -1 h 4 h
AR 05 ot 1058 0t S CIAG Bl 1 exp(C (1l 1))

)

1
— forany t > 0.
16

[IA

(3.19)
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‘We now define
def h 1
& {: T*, < — } 3.20
supy t < Cllv IIBO,%(I) =16 (3.20)

Then, thanks to (3.19) and Proposition 3.3, for t < T*, we find

< (185 050l g + 105" 1)

xexp( /(||w<r>||201||vhw(t>||201+||uh<r>||“01+||vF(t>||4 L)d )

4

(3.21)
and
Sl gy Sl g+ CO Il gy Jexp(ClE* )
3 B2 = 8;7'7 5;2*7(0 L¢(32'7>
(3.22)
It follows from Lemma 2.2 and Proposition 2.1 that
lorll |, o1 Shvrll 1y Slugl 1y
(822) B2 2@ 0 B, 2?2

whereas we deduce from (2.6) and Proposition 3.1 that
it < Clla)? Vhil
llu ”L 15 2% l ”Z?"(BO‘%)” ||~2 B" 1)
4 (., h
< Oy (gl o 4)-

By inserting the above two inequalities to (3.22) and using (3.3), we obtain that,
fort < T*,

1 3 4 h
Flwley, SCO+Il _yy)esp(CA (Il o). (23)

22
B,

Then we deduce that for t < T*,

t
/ (@ 1M, 4 + 1O, +or @I, ) dr
, , , 0
4

4

4
A YIS T Y

= ||w|| 0} [Vhw|?
©(B%2 4B, ) LB, ?)

1
L2(B8%2)

<c(1+ ||u(3)||;4%‘%)exp(CQl‘}V(HuOHBOVé)).

Inserting the above estimates into (3.21) gives

h —1 34 4 h
19101, S 15 Bl gy exp(C(1 11y ) exp(Ch (Il 1))
4
(3.24)
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for t < T*. Therefore, if we take L, M, N large enough and gy small enough in
(1.11), we deduce from (3.24) that

for t < T*. (3.25)

(3.25) contradicts (3.20). This in turn shows that 7* = T*. (3.23) along with (3.25)

0
shows that T* = co. Moreover, thanks to (3.15), we have v d§f u—eldn (u3 ) €
0,hh

C ([0, oo ; BO'%) with Vyo € L2([0, oo ; BO'%). This completes the proof of our
Theorem 1.2. 0O

Proof of Corollary 1.1. Under the assumptions that ug € L? with 83u8 € L? and
A7 '03ul € B2, we deduce from (3.1), (3.4) and (3.7) that

h h h
= IIMOII 2 H33uolle exp(Cllugll 2 183ull 2),

< AR "0sugl o 4 exp (exp(Cllugl 210315l 2))

~h
180 g, IV N ot

ah
Il

A, s oy, + 1057

B T2(B%7)

Then by repeating the argument from (3.19) to (3.24), we conclude the proof of
Corollary 1.1. O

4. Estimates of the 2-D Solution iz"

The goal of this section is to present the proof of Proposition 3.1. Let us start
the proof with the following lemma, which is in the spirit of Lemma 3.1 of [6]:

Lemma 4.1. Let a" = (a', a?) be a smooth enough solution of

8a" +a - Vha® — Apa" = =V, (1, x) e RT x R?,
divy @™ = 0, 4.1
ahI,:o = ag.

Then for any t > 0 and any fixed x3 € R, it holds that

t
lah(t, - x)I?2 +2 | Ve (@, -, x3)[12,dt" = llab (-, x3)[12,, (4.2)
L 0 Ly Ly
and

t
lsa™(r. -, x3) 17 + / I Vhdsa® (@', - x3) 7, di’

< 1930 ¢ x3) 113 exp(Cllag 2. 43)
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Proof. By taking Lﬁ inn-product of (4.1) with a" and using divy, a" = 0, we obtain
4.2).

While by applying 93 to (4.1) and then taking Lﬁ inner product of the resulting
equation with 934", we find

1d h 2 h 2
5 g 103 (s x3)l 7 + [Vadza™ (@, - x3)ll

= _(83(ah : Vhah)(tv ’7 x3)|a3ah(t5 y x?’))Lﬁ'

“4.4)

Due to divy, a" = 0, we get, by applying (2.4), that
|(B3@" - Vha) (1. -, x3)|B3a" 2. -, 33)) 12|
= [((@sa" - Vaa") (1. -, x3)[030" (1. -, x3)) 12|
< Ve @, - x)ll 2 193" (1, -, x3) 14
< C||Vha"(t, - d3al(z, - Vnoza(t, -
< ClIVna™ (1, -, x3) 12 133a" 1, - x3) 2 Vadsa (2, -, x3) 2.
Applying Young’s inequality yields
|(83(a" - Vna")(t. -, x3)[83a" (2. -, x3)) |
1
< S [IVidsa® (1, - x3) 172 + Cl Vaa" (¢, -, x3) 113, 193a" (2, - x3) |17
2 h h h
Inserting the above estimate into (4.4) gives
L osah (1, 1)1, + [ 9ndsa (1, - x) 2
dt 3 5 5 A3 L% h03 5 5 A3 L%
< ClIVaa™ (@, -, x3)lI 72 193" (1, 3)17.

Applying Gronwall’s inequality and using (4.2), we achieve
'
fonat, -l + [ IVuna )2 0
h 0 h

< llasaf (. x3) 13 exp(C /0 IV el )
< 193ag.(, x3) 172 exp(Cllag -, x3)1 7).
which leads to (4.3). This completes the proof of this lemma. O
Let us now present the proof of Proposition 3.1.

Proof of Proposition 3.1. For any positive integer N, and 123  being given by (3.5),
we split the solution " to (3.2) as

ah = a4 b, 4.5)
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with zle‘ and ﬁg being determined, respectively, by

Jit + it - Vhith — Apitt = —VapV,  (1,x) e RT x RY,
divy it =0, 4.6)
- —h  def _ _
=0 = ulfo = ip - MB N>
and

dyits + divy (i1} @ ith + i ® i + i) ® it}) — Anith = — Vi p?
divy ity = 0, 4.7)
ﬁgh:o = L_‘g,o = ﬁg,N'

Indeed for smoother initial data 128, we may write explicitly the constant
Q[N(HIZBHBO’%) in (3.3). For instance, if i) € L? with i}y € L? and A} ' 930t} €

BO- %, we deduce from Lemma 4.1 that
t
@17, +2 /0 [Vhit" (¢)[|7dt" = [|ig]l7,. and

t
“hooy 2 _h 2 _h)2 _h )2
s (0)117> + /0 IVadsa" ()1172 di" < 1335172 exp(C 17 < ,2)):
which, together with (2.2) and
_h 2 —h 2 h
PN R T R 2 PRV R

ensures (3.6). By virtue of (3.6) and (4.22), we deduce (3.7).
In general, we first deduce from Lemma 4.1 that

1
“hy 2 - 2 “h 2
[ () 1172 +2/ [Vhie} (¢)1I72dt" = llie} pll7> S Nlluoll and
0

13
1952} (1)1 72 + /0 IVadsa} ()17 di” < (|95} o175 exp(cna*f,onimz))
< N2 exp(C ik (12 ,
S NN, y exp(ClEgl, 4 )
which, together with (2.2), ensures that

sl + [I'Vhiep |l < CNE b 0 eXP(Clluoll ) (4.8)

OO(B() 1 L2(807) =

Next we handle the estimate of ﬁg To do this, for any k > 0, we denote
o O, Ao, e @0 S does(— [ o)
uy BO’% 1 BO’% 2,k 2

4.9)
Then by multiplying exp(—/c f(; fhahdr ) to the @) equation in (4.7), we write

Byt . + kfM(O)ith « — Anith . + divy (@) ® ity  + i} @ il ,
+ith @ it) = —VhpP.
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Applying the operator Aj to the above equation and taking L? inner product of the
resulting equation with AZﬁg .- and then using integration by parts, we get

1d - -
z—nAVuS O+ Kf OIALE (D2 + 1AL In3 172
(Ae(uz Vhith K)|AV”2 ) (Ae(ul ® ”2 T ’42 « ® ”1)|szh”2 B
(4.10)
O

The estimate of the second line of (4.10) relies on the following lemma, whose
proof will be postponed until the “Appendix A”:

Lemmad4.2. Let a, b, c € BO 2(T) and f(t) = ||cz(t)||4 Thenfor any smooth

homogeneous Fourier multiplier, A(D), of degree zero and any £ € 7, it holds that

1
v < —t 2 7
/ [(ATA(D) @ @ b)|AYe) -] dr S d72 llb“Z;(B"%)”C”zzﬂ(go l)llvthZZT(B iy
4.11)
T 1 1
AYA(D by|Aye), | dt < ai2~t b2 Vb2 - .
fo [(AFAD)@ @ b ALC) o] dr S F2EWN, () IFWPI, 4 Bl o
(4.12)
Moreover, for non-negative function g € L°°(0, T), one has
T| v | v | 2 27—L % %
AyA(D)(a ® b)|Ayc sgodt Sd27 a2 lgVhal *
/o (af )iz -0 ¢ L?C(BO’%) g L%(BO-%)
1 1
x lgbll~, /o1y lell2 lgVhell> :
7 64) Vi )97V 0
(4.13)

By applying (4.13) witha = ¢ = i, b = Vi andg = exp(—/c fé fhah dt/>,
we get

/|Az(”2 Vhith | AYES ) ot SdF27 Nasl - o1 ([ Vhil 2,C||N

L>®B”2) 2B 07)
(4.14)
Whereas due to (2.5), one has
“hooy 4 “hoy 2 “hoy 2
t < t Vhity (¢ .
IO,y S IO, (IO,
By applying (4.12) witha = L_’T’ b= 1215’,(, c= Vhﬁlz",(, we infer
t
/ Ay} @ ith , +ith @ )| Ay Vaidh ), | di’
0 . (4.15)

1
2n—C=h |2 _h
Sdp2 " iy I 2 y IVhity I |
T2 B 2B
tfh t
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Then we get, by first integrating (4.10) over [0, #] and inserting (4.14) and (4.15)
into the resulting inequality, that

|AYES (O3, + 2 / PROONATE (2, A+ 21 A7V 12 o,

< v=-h 27—
s ||Aguo,N||Lz + Cd;2 (lluzllm(Bo, | Vhu 2,(||~2 JEs
hoy2 ho3
+ |l Vil )
” 2’K||foh(80*%)” 2“”2?(8‘*%)

Multiplying the above inequality by 2¢ and taking square root of the resulting
inequality, and then summing up the inequalities for £ € Z, we arrive at

||M2K\|z(x(60;)+~/2KHuzKII~ (50%)+fllvh”“”z 2504

3

_h _h2 _h o3 _ho7
< 1l .4 +C(\|u2||;w(50, nvhuzknﬁ(go‘%)+||u2,K\|;2 (BO%)||vhu2,K||;7(BO%))

,‘fh t

S gl oy + (V2= 1+ Cllad]|

: IVhis ey o1+ Clis -
Z ‘(BO'%)) 2,k L,Z(BO'T) 2,k 2

szh(BoA%)'
In particular, taking 2« = C? in the above inequality gives
1
~h ~h2 ~h ~h
~ 1-C V] ~ < . (4.16
I3 e gty + (1= CUTBIZ oy W0l oy, S Wl - €416)
On the other hand, in view of (3.5), we can take N so large that

C”“o N”2 §

(4.17)

o—
=

Then a standard continuity argument shows that, for any time ¢ > 0, it holds that

L c SR ¥ P PR CRL)

Due to the definition of L"t}z" 5, given by (4.9), one has

t
180 gt + 190y Jexp(— [ 7 ar)
( 2 BO 2 280 0

_” 2/(||~ (BO%)-’_” h 2K||~

)

}B"2)
which, together with (4.8) and (4.18), implies that

(. + [ Vnish |

< 20l .4 exp(x /f (i dr')

2807)7

< 2||128’N||BO,% exp <N2 exp(c||a3||;0,%)) :
(4.19)

[ )

By combining (4.8) with (4.19), we obtain (3.3).
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It remains to prove (3.4). In order to do, this for any y > 0, we denote

def _ _ L ohn gy
g") E a2, IV ()%, , and h(r) Pty exp( f gt dr )
B2 B2 0
(4.20)
Then, by multiplying exp (—y f(; g () dt’) to the " equation in (3.2), we write

i, + yg" ()i — Anith, + " - Vpilh = — Vi .
Applying the operator AjA, 195 to the above equation and then taking L? inner
product of the resulting equation with AyA 195 ﬁ';,, we get
d e e - -
T Lozt (1172 + g O AT AL d3ih, (D172 + | A) Ve Ay sitly 17
—(AYA; B (" - Vi) | Ay AL 93
—(AYA; divy (" ® 312}, + dsitl, @ ") |AY AL 3itl )

(4.21)
Noting that Afldivk1 is a bounded Fourier multiplier, we get, by using (4.11) with

a=iu", b= 83u andc = Ap 183uh that

t
/ [(AY A} divy (1" @ 831, + 03, @ ") |AY A 93id) | i
0

3 1
< 220—Lyq,7h 2 —1q =h2
S NBIN, oy WA B,
t tg

By integrating (4.21) over [0, ¢] and then inserting the above estimate into the
resulting inequality, we find

t
—1a =h 2 h ~1g =h
Ay A, 33uy(t)||Lz+2)/f0 g W) Ay AL 035 ()17, At + 2] Ay dsit, ||L2(L2)

3 1

< NAYA B3l )12, + CdZ2 9zl |2 A oz |2

= 12 3Uplly2 0 3 ~ 1 3 ~
h L 1 S 4 L

B2)’

Multiplying the above inequality by 2¢ and taking square root of the resulting
inequality, and then summing up the inequalities for £ € Z, we arrive at

1q - -1
||A os3u }/”~ BO%)-F\/ ||A 33M)L||~ (30£)+\/_” 3uU 7’”~(802)
3 1
—1q - ~h 3 —1q_ -h 3
< 1Ay daigll g +C||a3u‘;||;2(80,%)||z\h iy I, &
t ,th
< Ay 9l gy + (V2= D3 ||~2302)+C||A‘183u Iz nan

In particular, taking 2y = C? in the above inequality gives

1 —1q =h
IAG 5T o) IS oy S AT 31
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Then a similar derivation from (4.18) to (4.19) leads to

t
—14 -h ~1a -h h/
o A L T I fo ghar'),
(4.22)
which together with (3.3), ensures (3.4). This completes the proof of this proposi-

tion. 0O

2@t =

5. The Estimate of the Horizontal Components v?

The goal of this section is to present the proof of (3.17), namely, we are going
to deal with the estimate to the horizontal components of the remainder velocity
determined by (3.14).

In order to do this, let u be a smooth enough solution of (AN S) on [0, T*[,
let @, vy and w be determined respectively by (3.2), (3.15) and (3.16), for any
constant A > 0, we denote

t
W1 (r) défvh(z)exp(—x / f(t’)dt’) with

O E w2, IOl | + 17 O] ! HIEOIY

4

5.1)

and similar notations for IZR, Dy, paand v? 2
By multiplying exp(—k fot F@) dt’) to the v" equation of (3.14), we get
Btvil + )»f(t)vi‘ +v- Vvi‘ +at. thil + v, - vl — Ahvkk1 = —Vhpir + Vhpa.

Applying A} to the above equation and taking L? inner product of the resulting
equation w1th AVUA, and then integrating the equality over [0, ¢], we obtain

1 t
SIAT O + 4 / FEN AV L7, e’
0

t ] 6
- /O IVa APV A" = S A7l — > L (5.2)
i=1

where

I dﬁf/o (Ay@" - Vau) | AJv}) 2 dr’s T dﬁf/ (AFQ" - Vav) [ Ajv) o d,

def [ . def i,
;= / (Ay@I - V") | AYOY) L dr, L= / (Ay a3}y | Ayl , dr,
0 0

t
Is déf/O (AY@Pasl) | AV, de, T dzef/ (AL Va(ps — ) | AYD) , dr.
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‘We mention that since our system (3.14) has only horizontal dissipation, it is rea-
sonable to distinguish the terms above with horizontal derivatives from the ones
with vertical derivative. Next let us handle the above term by term.

o The estimates of I} to I4.

We first get, by using (4.11) witha = i, b = thA and ¢ = vk, that

3
T1 ] §d 274l I|2 IIthhlli . (5.3)
e () (80)

Applying (4.13) witha = v", b = Vo, ¢ = vPand g(r) = exp(—k f(; f() dt/)
yields
L] < d22 b Vil |2 . 5.4
2| < dg2 " |lv IIL;,O(BO,%)II hvk”Zf(Bo‘%) (5.4)
To handle I3, by using integration by parts, we write
t t
I = _/ (A divy vl - d™) |AYE) dt’—f (AYGE" @ vl Ay ViUl dr.
0

Applying (4.11) with a = i®, b = divy, vA and ¢ = v)\ gives

3
.
VAR

2(8°2)

1
—Ly,,h) 2
o2

Lz, (8" %)

Whereas applying (4.12) witha = i", b = v;} and c = Vy v&‘ yields

V A} (divy v - i) AYE) 5 dtf

t 1 3
v/=h hy| AV h / 24—y, h) 2 hy 2
(" @ v)|AyVhyy), o dt 272 NN N
Vo( ¢ [ )i 2 ,(8%2) £3(8%2)
As a result, it turns out that
3
—L 2 hp2
| < df2~tl) 2 NSNS I (5.5)
L2 ,(5%2) L3(5%2)

While by applying (4.11) witha = v3, b = 83[{}){, c= vi‘, and using the fact
that

1 1
3 1 1
7O o1 = Tvr@I o1 + TwOI  IVawOI
B,? B,? B2 B2

4 4

we find

1
-
Ly S d727) AII2 Vil

31t || ~ 5.6
22, (8"3) n(eh)” Wty OO

o The estimates of Is.

The estimate of I5 is much more complicated, since there is no vertical dissipa-
tion in (AN S). To overcome this difficulty, we first use Bony’s decomposition in
vertical variable (2.7) to write

t
Is :/ (AY(TS 050" + RV, dzuly) | Ayol) e’ €T 18,
0
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Following [8, 16], we get, by using a standard commutator’s process, that

Z / [AZ’ SZ/_1U3]A£/83U)" ‘ AZU}»)LZ dt
|e— Z|<5

+/ ((Sy_yv* = S;_ v AjAy B3] | AWl dﬂ)

def
+/ (Syov’ayasel [ ap) o df S I 192 4157
0

By applying the commutator’s estimate (see Lemma 2.97 in [2]), we find

T.1 . 3 h h
|Is | = Z Ay SZ’—I”A]AZ’BWA/ZHL% L% L2 ”AZUA/2||L,4(L§(L3))
l—e<s ¢ (Ly (L)

827

—¢ 3 h h
Z 2771938y _y vyl L2(LE(L)) 1A} 83 V2l LH(LEL2)) A} vl LH(LE(L2)):

[¢/—¢|<5

Due to 3303 = —divy, v", we get, by applying (2.4), that

T.1 —t P 4 h h
5] < Z 2700y dive vl 22 o 2 1AR Y pll sty 1AV 2 st 2y

<

1 1
h 2 v o hy2
5 § ||thx‘|zr2( )”Aefv ||L?C(Lz)”VhAe'U)\”L'z(Lz)
[e—|<5

1 1
hy 2 h) 2
XNAT e ) IV AT} o)

25—y h
Sdp27 v

I (8"?)

hy2
VaoyIIZ

L%(Bog)-

Next, since the support to the Fourier transform of Z|z/—z|§5(sv/_1v3 -8/ v3)

is contained in R? x U, g,_ZISSZZ/CV, we get, by applying Lemma 2.1, that

T2 —¢
|15 ’5 Z 277 103(Sp - 1”A Sy 1”A)||L2(L2(L°°))
le/—e|<5

h h
1A}03 v 2l LILEL2) I AZ”A/Z I LHLELY)
from which we infer

L2 S a2~ 1M oy IVRVRI2,
| 5 | ¢ L§’°(B°'7) A L,Z(BO’%)
Finally, by using integration by parts and d3v°> = —divy, v" again, we find that

1 t
S = 3| [ St ol dnar

v . h v, h 2
5 ||Sz_1d1Vh v)t”L?(Lﬁ(Lﬁo))”AZU)L/ZHLj‘(Lﬁ(L%))

<d22—l h - V hp2
Sdip2 v IIL?O(BO,%)II hop Il

2(8"1)

As a result, it turns out that

T 25—L,,h h2
“”5@2mwmw%ﬂwm%@%y

(5.7)
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On the other hand, by applying Lemma 2.1 once again, we find that

R v.3 2 v h v.h
|Is | S Z ||A£’vk||L,z(L2)2 ||SZ/+2U,\/2||L;‘(Lﬁ(LeO))||Aev,\/2||L;‘(L§(L3))
0>0—4

v.3 v h v..h
S DN TN PR DA PR VR Esene
v>0—4

Observing that

/ . h
”83Ag/vx”L2(L2) < dp2™ 2 l|divy v}‘||~2(80’%)’

1S5 1203 2l s ooy S 10" ||2 1902 :
O4+25% 20 LE (L (LE®)) Is (B ) X LI(BO.%)
we infer
IR <2274 | thh 2 ,
1515 4227100 1 A )
which, together with (5.7), ensures that
Is| < d22 bl NN ) (5.8
[Is| < di27"| ”L,oo(zg°~z)” A”L,Z(B"-%) )

e The estimates of Ig.

We first get, byaking the space divergence operators, div and divy, , to (AN S)
and (3.2) respectively, that

—Ap =div(u-Vu) and — App = divy (i - Vpit), (5.9

so that thanks to the fact that

u= ", u?) = @", 0+ " v?),
we write

Vhp — Vap = Va(—=A) " 'divy (v - Vu + " - Vo)

+ Vi (=2) 193 - Vo)

+ Vi ((=2) 7" = (=Ap)!)divy divy (" @ i").
Accordingly, we decompose Ig as

Is =161+ 162+ 163 + 164,

where

t
lo1 = / (AYVi(=A) " divy (@ - Vol + 0" Vol + vy - Vi) | Ajol) ,, df
0
t
Is.2 :/ (AZVh( A~ iy (0 Bgvk) | Alvk)Lz dr’,
0

t
I 3 :/ (AYVa(=A) "33 (vs - VO + i - Viog) | YD) 5 dr,
0

164_22/ (AJVR((=2) 7" = (—An) ") 30, (@' );)|AZU§»])L2dt/'

i=1 j=1
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Noticing that Vi (=A)~ldivy, is a bounded Fourier multiplier. Then along the
same line to the estimate of I to I4, we achieve

I <d22—‘~’( Sl T AVl
o1l S d; [ HL?"(BO’?)” h AHZ%(BO-%)

hy 3 hy 3 h )
+ ||UA||Zz (BO'%)”th'\”Z%(BO*%)(”thknzg( ) + ||33uk||~ 72 (5" 1))

f,
! (5.10)
However, Ig 2 can not be handled along the same line to that of Is, since the
symbol of the operator V,(—A) ™~ !divy, depends not only on &3, but also on &,, which
makes it impossible for us to deal with the commutator’s estimate. Fortunately, the
appearance of the operator (—A)~! can absorb the vertical derivative. Indeed, by
using integration by parts, and the divergence-free condition of v, we write

t
I :/ (AZVh(—A)_ldivh (B30 — 307 - o) ‘ sz‘;)Lz dr'
0
t
— _/ (AYVa(=A) '3 v)) | AYVRol) ,, dtf
0
t
+ / (AZVh(—A)*ldivh (divy oP UA) | Alvk)Lz dr’.

0

Since both V,(—A)~'93 and Vi, (—A)~!divy, are bounded Fourier multiplier, we
get, by applying Lemma 4.2, that

1 3
2~7—1 h;2 2 h h2
6.2l < di2~ (Ilvll2 IIthAIIN oI o VRO ).
B ) ) T ) e )
(5.11)
To handle Is 3, we use div v = divy " = 0 to write
t
Is3 =f (A)Vi(—A) " d3div (v0°) + AY Vi (—A) ' dzdivy (@"v)) | AJY),, dif
0
t
:/ (Va(—=A) 7" A} (dive (033300 + v"9303) + 2030 830)) | AjE) i’
0
t
+/ (Va(=a)""dive A} (V05 + a"9307) | Ajvy) 1 dif
0
t
-1 : 3 h h 4. h 34 h h
= /0 (Vh(—A) A‘é(dlvh (v’ 3v; — v'divy v}) — 293(v divy Ux)) ‘ AZU}‘)LZ dr’

t
+/ (Vi)™ diva A} (v*0a8} — idivi of) | A}2}) | di.
0

Applying (4.11) with A(D) = Vih(—A)"183,a = v3,b = divy v and ¢ = P
yields

./|Vh( Ao A (0 dive v) | AYvy) | e’

< @22t IVl 12
~ Ao 1 hUy |l 1y
¢ 2, (8°2) £ (8"2)
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The remaining terms in I 3 can be handled along the same lines as to those of I¢ 1
and I ». As a consequence, we obtain

I <d22—‘3( S T AVl
63| < dp I ”LfO(BO'?)H h A”Z?(BO-%)

hy s hy 3 h _h )
+ HU)L”Z[ZJ(BO-%)”v}lvknzg(lgov%)(”th)L”Z,Z(BO’%) + ”83’4)\”2,2(60’%)) .

(5.12)
To deal with I 4, it is crucial to observe that

AYVA((=A) " = (—An) )38 @) = AY VRO (—A) T (= An) 180, @ ).

Then due to the fact that szzl Vs (=A) (A 1o; d; is a bounded Fourier
multiplier, we get, by applying (4.11) witha = i", b = 83&1;, c= v;‘, that

2 3 o
ol 233 [ 187 %htn=)™ w0, i) | ol s o
i=1 j=1

1
2h—L .0 2
S ARz,

Iz, (8" %)

By summing up (5.10-5.13), we arrive at

el < d727 ("1

1
-
Vo2,

Lt

(5.13)

hj2
?"(BO’%) ”th”Z%(BO’%)

h 3 h 3 h ~h
I, gty T oy (008l gy + 120 40.4)))

(5.14)
Now we are in a position to complete the proof of (3.17).

Proof of (3.17). By inserting the estimates (5.3-5.6), (5.8) and (5.14) into (5.2),
we achieve

1 t t
SIATR O + 4 / LA 7, d’ + / IVh AR ()17, dt’
0 0

1

< AV Cd22_‘3< by Vi oh 12

= 2” gv0||L2+ 7 llv ”L?O(BO%)” hU)L”ZtZ(BOq%)
3

1 3
T VALY ETPN T )
”UA”ZE_f(B"*%)(H hvk”ztz(go‘%) I 3MAHZ,2(B"*%))

Multiplying the above inequality by 2¢+! and taking square root of the resulting
inequality, and then summing up the inequalities over Z, we find that

h h h
h g by T VAL () + V20V )

1
h hy2 h
< I0Blpg + CMIE o) 19 o (5.15)

1 3 4
L Cfh? AVAITE: + |10z * .
||vx||ztz’f(80,%)(n Wl gty T 3uk||ztz(80,%))
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It follows from Young’s inequality that
1

3 3
C h, % \V/ h,7 + 8 - 4
COAIN (L GRS LL T

1
E” h )‘HNZ(BO )+ ”83”A”~ (BO 1) +C”v)‘”NM(B 7)-

)

<
Inserting the above inequality into (5.15) and taking A so that ~/2) = C, we obtain
108l 04 + vahvi‘nztz(g 04y S 1By + 10570 01
+ cnvhn;m(B )uvthnN (&)
which, together with the following consequence of (5.1):

el o1, 0~ /f(t)dt><||ax||~p( .y, for p=2orco,

givesrise to (3.17). O

6. The Estimate of the Vertical Component v3

The purpose of this section is to present the proof of (3.18). Compared with [17],
where the third component of the velocity field can be estimated in the standard
Besov spaces, here, due to the additional terms like i2" - Vv that appears in (3.14),
we will have to use the weighted Chemin-Lerner norms once again. Indeed for any
constant > 0, we denote

t
a0 E s wit 50 Lexp(—e [ rar) and no €y O,y
‘©.1)
and similar notations for v, b_‘?u and p,.
By multiplying g(#) to (3.16), we write

rwy + ph(tw, — Aqywy, +v - Vvi + - thi =—03ppu.

By applying A} to the above equation and taking L? inner product of the
resulting equation with Ajw,,, and then integrating the equality over [0, 7], we
obtain

6
HIVa A wull}2) = ||Azu3,lh||iz—zni, (6.2)

i=1

||Aun<t>||Lz+u||f AYwull7a )

where

t
I deff (AY@" - Vaw,) | AYwy) . dr’, I dﬁffo (AY " - Vhw,) | AYw,) 2 dr',
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def def [' _
II; = / (AZ(U - Vhvr) | AZwM)LZ dr’, Ty = f (A;(“TL * VhvF) | AZwM)LZ dr’,
0

1l dEf/ (A} (W0303) | Ajwy) . dt', T def/ (AYd3pu | Ajwy), 2 dr’.

Let us handle the above term by term.
o The estimates of II; and Il
We first get, by applying (4.11) with a = ", b = Vhw, and ¢ = wy,, that

1 3
| < dF2™ w2 Vw2 (6.3)

i2,(52) 2(5°2)

whereas by applying a modified version of (4.13) witha = v", b = Vhwy, ¢ =wy
and g(1) = exp(—u fé h(t')dt’), we find

1 1 1

2A—L..h) 2 hy2 2
| < df2=“(lv")12 IVao™ 12 Jwell2
¢ I (8%2) (1) e (s02)

e The estimate of 113
The estimate of II3 relies on the following lemma, the proof of which will be
postponed until the “Appendix A”:

3
Vhwy 2 :
"2 (03

(6.4)

_11
Lemma 6.1. Leta, ¢ € B3 (T) and b € B, >'*(T). Then for any smooth homo-
geneous Fourier multiplier, A(D), of degree zero and any £ € 7, it holds that

24—t
/ [(A(D)AJ(a®b)|Ajc) o dl’ < dj2 IIaII Bo,%)llbll 1 lell-

(6.5)

and

’ 2n—t
A(D)AY(a @ b)|A)c),,|dt’ <di27all. b c .
/0 (AP} @ |aTe) 2] 0 S B2 Nl oy I g el
(6.6)
Remark 6.1. Indeed the proof of Lemma 6.1 shows that ||b] _ 11 in (6.5) and
B, *'*(T)

(6.6) can be replaced by [Ib]] , 1 .

Let us admit this lemma temporarily, and continue our estimate of II3. By using
integration by parts, we write

t t
I3 = —/ (A} (divy v}, - vp)|Ajwy) o df’ —/ (AY () ® vp)|A)Vhwy) . .
0 0
6.7)
Applying (6.6) with a = divy, v , b=vrand c = w, yields
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‘
’/0 (A} (divy v2 . vp)|AZwM)L2 dt/’

< 422 vt v
Sdi277 [V “”Z,Z(BO-%)” Fl _i1 Jw

6.8
B, 22 “”802() ©8)

whereas by applying (6.5) with a = vg, b = v and ¢ = Vyw,,, we obtain

t
)/0 (AY @ ® vP)| A Vhwy) 2 dt"

2~A—4£,.h
Sdp2 HUM”Z“(BO 1)||UF||B, o
+ (By 4 !

I\-)\
o=

Vhw, ||~ (B() )

Inserting the above two estimates into (6.7) and using (2.6), we achieve

2~—L
sl S dp27 llvrll _1 1wyl

B,22() B3 ( B”‘%a)' 6.9)

o The estimate of Il4
Due to divy, i" = 0, by using integration by parts, we write

Iy = /0 I(A‘édivh @vp) | Ajwy),»5(t') dr’
=— fOI(Az(ﬁth) | A Vhwy) 8" dr'.
By applying Bony’s decomposition (2.7), we get
Iy =- /OI(AX(TEV,IUF + R (@@", vp)) | AZVth)LZQ(t’) dr’.
We first observe that
/t|(A;(RV(ah, ve)) | AYVawy) 2 |a@") df’

S ) / SN AYE ) 112 IS 2vF () ey 1A} Viwy ()] 2 A
€/>€ No

s Yo / A RN W o VPO o 18} w (]2 0t
4 4

Z’>Z No

’ t
_t - -
S E dp2™?2 / GO o1 I0EEI o 1 1AY Vi, ()] g2 dE’,
0 B, B,
and applying Holder’s inequality and Proposition 2.1 gives

1
/0 [(AV(RY ", vp)) | AYVhwy) |8 df’
1

/ 1 1
- 4 Ny=hn 4 7\ 4 \%
> dv2 (fo BONON,  a) Nl oy 187 Thwnlz

0'2>0—Ny 4 e
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1
S umadi2 el :
~ 2 8;7 70) L2B"7)

Along the same lines, we find
/ |(AY(THvr) | AYVaw,), |5 di’

S > / BUNNSY 8 O 100 1A VF (W) 2 12 | AF Vi ()] 2
|£/ —£|<5

s Y / gl @l 0 IATF @Ol 18TVl 8

IZ/ £S5
—4
< > / )" >|| ol dr) IAYOFl L3 2822) | AYVhwpll 212

|13' 05
S uotd2 ur | IV, |
~ M VF|l . 1 hw 1.

¢ 452 ")
As a result, it turns out that
—1 04—
Myl S ™ 3di27 lvrll 11 IVawgll~y o1y - (6.10)
¢ B, 22 ) H L,Z(Bo*z)
o The estimates of II5

Due to 83v3 = —divy v? and v3 = w + vp, we write

t
IIs = / (A (—v*divy o)) [ Ajwy,) . df’
0
t
= _/ (A} (vpdivy vﬂ + wy,divy oM } Azwu)Lz
0

Then applying (6.6) gives rise to

< g2H—t
Ws| S 72" IVl @by 1P o Tl JIenlo g

< 29—y, h
S Py (Irl

1+ lwyll
B, 73 s

b1l
(6.11)
o The estimates of Ilg
The estimate of Il¢ can be handled similarly as Is. Indeed in view of (5.9), we
write

d3p = 33(—A) " divy (V" Vpo + " - Vo + o Vi + i - vy
+ 030" + v3930") + 93 (—A) T (v - VO + i - Vio?).

Accordingly, we have the decomposition Il = 215: 1 Ig,; with

t
I, = / (A3 (—A)divy (V" Vool + " Vool + v, - Vi) | Ajwy) o dY,
0
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t
116,2:/ (Ay3(—A) ' divy (30301 | Ajwy) o dF,
0
t
g 3 =/ (AY03(—A)"divy (v d3i") | Ajwy),» dt’,
0

t
g4 = f (AYO3 (=) T Vol +i" - Vho) [ Afwy) . Y

1165_22/ (2AY (=) "0;0; (' 03id]) | Ajwy) - dt'.

i=1 j=I

It is easy to observe from the estimate of I¢ | that

1
IVhwyl 2

2 (8"2)

3 1
- 3 hy 2 2
Mg | < d22 (||U I () V00 1 ) 2 2 8

1
1 1 I
”wﬂ” ” ;hw/LHN ” ;hv ”~ 1 )
[,2(60'1) 12 ltz(BO,z)

L2, (8" t )
(6.12)
Mean while, by using 3303 = —divy, v" and integration by parts, we write

t
g 2 :f (Aya3(—A) " divy [03(v7v) — v} 8307 | Ajwy,) . df’
0

t
= —/0 (A;(—A)*‘ag(v%l‘;) | Ay Vhwy),» dt’

t
+f (AYd3(—A) " divy, W divy o") | AYw,,) ., d’ € 1g, 4112 .
0
It follows from (6.5) and v3 = v + w that
IIa < d22—€ h ,
] < 427 1y (orl gy ol Doy
whereas by using a modified version of (4.13), we infer
| < a2 3 hy 3 3 7
g | S dp27 [lvll - Vo[l lwpll 2 [Vaw, |l - :
R I ) T ) ) )
Therefore, we obtain
< 125—£). h h
Me2| < di27 " [lv ”zsov%(z)(”UF”B;H(,) + v ”BO'%(r) + IIwullBo,%m)llwuIIBO,%O),
(6.13)

whereas applying (6.6) with a = 33", b = UZ and ¢ = w, leads to

1I < d22 ¢ iu ||~ VF =+ ||lw w .
| 6,3' ~ Y ” 3 ”L%(BO%) (” || ;4—%,%([) ” M”BO'%O))” M”BOY%([)
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On the other hand, again due to div v = 0, we write

t
g4 = / (A} (=) (V" Vhwy, + V) - Vavr + 07 030),
0
+i" - Vowy + @ Viur) | Ajwy),, dr'.

Noticing that (—A)~! 832 is a bounded Fourier operator, we observe that Il 4 shares
the same estimate as Zle II; given before, that is,

1 3
Woal S 227 (0% gy 0l )+ w2 lwyll?
¢ B2 B3 ) B

_1 h )
v 4 v
+ 1l FIIB;%_%(Z)(M + |l ,LIIBO_%(O)II u”Bo Yo

N\

(6.15)

Finally since ( A)719;9; J is a bounded Fourier operator, we get, by applying
(4.11) witha = ™, b = 83u , ¢ = wy, that

1
g 5| < ; \V 2 - 1
W) < dF2 " w2 [h(BO‘%)II hwu”Z’z( )II 3l || (301) (6.16)

By summing (6.12-6.16), we arrive at

1 1
|Hs|§d22*‘( 10" g+ 1938y 04y + ] gy Mllwll lwll?
(G ra(od) F Il Il gyl oy

B*% ()

h
+ (1 L Hf?suull~ 72 (50} 1) + v IIBO%(O)IIvFII |

h ~h hy2
el ~
(N g g + 1098 o Ml y 10"

w 1 .
B%% ) B %(o” “”Bo’f(t))

(6.17)
Let us now complete the proof of (3.18).
Proof of (3.18). By inserting the estimates (6.3), (6.4), (6.9-6.11) and (6.17) into
(6.2), and then multiplying 2¢*! to the resulting inequality, and finally taking square
root and then summing up the resulting inequalities over Z, we obtain

”wullg(x%(t) +\/2/'LHWM||~2 ( 0.{7)

1
C(llv 2 dzih || 2 w
Huom\l Iy 1+ (|| H Yo + 1l 3M,t\|~2( O_%))H /I.HB()A%(”

R (G R EU R L o a))””F“iﬁ%)“"’“”ZO»%(,>
C(””h“i&%m + ||83ﬁh||;r2(80%) + IIw,LH;%([))llw,LH;ﬁ(Bo_%) ||Vhwu|\io b,
Applying Young’s inequality gives
(Pl g, + (et + 101, b +||asﬁh||;(80‘%))nvp||i;%%)nwﬂnlo.
< énwﬂngog(,)w(u‘% 10 o g )+ 105" 22 (s 2))||vF||B4| 1, TCI "Wt
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and
ek hyt E Y wl ¢
CUNZ o A ldsu 2wl ) lwgll? o well”
B2 (1) ) e’ U, (802) B

(vt

1
< — C - N )
= 1l g+ CMulzy () T CO gy 105 01)

As a result, we have

<
lwll RPN +v2ullwu|\~ - (504) = Huolh\l +C||wﬂllzfzﬁ(80,%)

%
2 A =h)2 h
+(6+c(||v 1703, 1% HB(B(,,%)))nwu||Bu%m+C(||v ot

1
el PO el R (Tl IR 7 TR TR R B
£ (s"2) B3 () ( L,Z(BO‘Z)) BT

0.1
B2 X

Taking 1 in the above inequality so that /24 = C gives rise to
5 ol ol
= —=C(|"*? + oz 2 ) w
(5 -ty +1ds iy 1l

< 1,3 ( h —h hy2
< Il +C(I g0y + 07 N5 o gy + 1000,y 0 (618)

+ (1 " + 103"y o IOEN s )
U1 )+ I Iorly i

On the other hand, in view of the definition of ”(3),1h’ it holds for any ¢ € Z that

3 h 3 —£,.3
AV gl S D ISTo A%l S de2 2 lugll gy,
lj—tI=1 B

which indicates that

3 3
||140,1h||80,% S HMOHB_%’%'
4

Inserting the above estimate into (6.18) and repeating the argument from (4.18) to
(4.19), we conclude the proof of (3.18). 0O
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Appendix A. The Proof of Lemmas 4.2 and 6.1

In this section, we present the proof of Lemmas 4.2 and 6.1.

Proof of Lemma 4.2. By applying Bony’s decomposition in the vertical variable
(2.7) to a ® b, we write

T
/O (AJA(D)(a ® b)!AZc)Lz dt = Q1 + Q> with

T T
01 déffo (AZA(D)(TaVb)|AZc)L2dt=/O (AY(TYb)|A(D)AJc),» df and

T T
0, & / (AJA(D)RY(a,b)|Ajc),» dt = / (AJRY(a, b)|A(D)Ajc),, dt.
0 0
(A.1)
Considering the support properties to the Fourier transform of the terms in 7,5,
and noting that A(D) is a smooth homogeneous Fourier multiplier of degree zero,
we find

T
101l §/ IAFTD) 4
0 L7 (L

. IAD)AYell 312, dt
h

v

T 1 1
5 Z /0 ||SZ',1a||Lﬁ(Leo)||Av/b”L2 ”A(D)AZCHIZ;||VhA(D)AZCI|22 dt
|e'—€1<5

T 1 1
7 s
S ) (/0 IISZ,_la(t)Iliﬁ“sc)IIAZC(I)IIEZdt) (N2 PEIEN /YIS e
|/—£<5

It follows from Lemma 2.1 and Definition 2.4 that

ISy _1a@ll s oy S D IATaOI 1120,
jSe—-2

J
S ) 22AYal g S la (@)l -
<2 4

This together with Definition 2.2 ensures that

1 1
1011 S d72”"le])? IVhell (A2)
L3 2

T(BO’%).

bl -
a1z (s
Along the same lines, we get, by applying (2.5), that

def g Vv v 2
01,4l = A ‘(Al(Tab)‘A(D)AZC)U!g dr

1 1
S 2 IVESi i@l w80 2 a2 1AL ) 18VRALEN 5 )2
le/—£<5

1
< df2 Y al?
~ Yy Z”

T (BO‘%)

1
Vel 2 .
1%l 1)
(A3)

1 1
Vhal2 bl 2
llg ha”Z%(BO'%)”g “L%(BO.%)”CHZ,M(BO’%)
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On the other hand, once again considering the support properties to the Fourier
transform of the terms in RY(a, b), we find

T
10| §/ [AYRY(a, D)l 4 IA(D)AGellps g2 dt
0 L (L2) hA=v

T 1 1
< ) /O 1AL all 512, 1S 42b 12 1) IAMD) AVl 2L I VR A(D) AL de
U>0—Ny

/ T 1 1
_t 1 1
< > 2 / dyONla@l o1 1B 200y 1AV 2, I Vh A e (1), dr
'20—Ny 0 B, Y

T 1 1
_v i 1
S Y de2 2/ la@ll o3 16200 I1ATCOI L2 IVhAFe@)] 75 dt.
> 0 64 hi&v
' Z€—Ny

It follows from Lemma 2.1 however that

LAV
<
16123 z2aeen ;ijz 1880013 1) = 1Bl 03
(S
As aresult, by virtue of Definition 2.2, we obtain
1

7 T = 1
_ i 1
0215 Y dv2 (/0 a1, IATC@I: dr) 1Tl o) bl 01
4

2

=Ny
1
Y _t 2 _t 1
s de2™ T (A2 3 el o)) (@27 2190l 03 )) 1B, (ot
z’gm [ e I3 ,(53) e ! LZT(BO'é)) 13 (5"2)
1 1
<di2 Y el? Viel2 bl|.. :
ST 0y 1T 01 Pl (a1t
(A4)

Similarly, thanks to (2.5), one has

def [T, v v 2
02,4 = \ |(AJR"(a,b)|A(D)AJc),,|g” dt

s Z ‘l\/gAZ’a”L‘Z‘.(Lﬁ(L%))||9SZ’+2b”L:‘}(L%(Lgo))(”AEC”L%(LZ)”gthZC”L%(LZ))i
U'>0—Ny

1 1
<di27Yal? llgVhel 2 .
‘ iy 2 (8%7)

= (BO’%) %‘(B“"%)
(A.5)

Combining (A.2) with (A.4) gives (4.11), and (4.13) follows from (A.3) and (A.5).
It remains to prove (4.12). Similarly to the proof of (A.2), we write

1 1
lgVhall2 llgbll IN &
7y (e 4) 1 (0 4) 7

T
s Y /0 1S9 _1ll 1oy | AL BN 2 12 | AD) Ael 2 e
le'—£)1 <5

T 1 1
S ) / la@ll o1 1ALBMN 2 1AL VabOI I AT @] 2 di
e—e<s 0 Bs



840 Y. LIU ET AL.

2
s > / la@)ll OlnA/b(r)andr) ||Av/vhb||L2(Lz)quanzT(Lz),
|£’ LS5

from which, along with Definition 2.2, we infer

_t _ 1 1
|01 Sd272 Y de2 7l (Vb2

| wllell, oo
EES I3.4(87) B3 (5"1) " TE(8"2)
1 1 (A.6)
Sdp2t i IVabll2 ey (ot
P o) g ) e
We deduce from Definition 2.4 that
1021 S D> / 1Apal 2 152l 8 ey [AD) Afell 2 dr
Z’>Z No
7 r
S ) dp2 e / la@Il o1 162 1Al 2 dt
U26—N, 0 B,
£ r 2 2 %
S el oty X de2 5[ 10O, 10l )
/z'>e 4 4

whereas we get, by applying the triangle inequality and Lemma 2.1, that

(fo ||a(r)||20 B4, d )i

<32 / a1 b O3 b0 132 )

LelZ

sy / la o) 01||Aeb(l)||del> IVhADIE o
Lel

< 1b)1? Vb :

LA L

This in turn shows that

1 1
< g25—t 2 2
02| < d;2 ”c”ZZT(BO‘%)”b”N N

(") T n(s02)

which, together with (A.6), ensures (4.12). This completes the proof of Lemma 4.2.
O



Global Well-Posedness of 3-D Anisotropic Navier—Stokes System 841

Proof of Lemma 6.1. Let Q1 be given by (A.1). We first get, by a similar derivation
of (A.2), that

0115 Y, 1Sp_1all 2 a roon 1 ApDbI L 812 IAMDYAgell 212

le'—e|<5
Sd27r Y dp2 z||a|| b B, o1 llela, o
74 5302 72.8%2y’
1o — e|<5 ) LT(B4 ) T
which, together with Proposition 2.1, implies that
1011 S d72 " Jall p el i el 0 (A7)
¢ et BT L(B™?)

For O, given by (A.1), we get, by a similar derivation of (A.4), that

v v v
1021 S Z I Apa ”L‘}(Lﬁ(L%)) ||S€’+2b”L‘}(Lﬁ(L$°)) |A(D) A(C”L%(LZ)

020—Ny
_¢
Sdi27 Y dp2 zuan g ||b|| ,||c||~2
4B, 2y L3(B72)
U'20—Ny
from which, with Proposition 2.1, we infer
1021 Sdf27 Yall_ o1 b1 _11 llell~y 01y -
e B iay  Lp(8"2)

This, together with (A.1) and (A.7), ensures (6.5).
The inequality (6.6) can be proved similarly. As a matter of fact, we observe that

|Ql|§ Z ”SZf_]a”LZT(Lﬁ(LSO))”Avfb”y;(Lﬁ(L%))”A(D)AXCHL‘;(LE(L%))
le/—¢|<5

I lauLz(Lz(m)nAg,buﬁ(L4(Lz))||Agc||Lm(L2)||Avvhc||L2 )
le—e)<5

_t
Sdi27 Y dp2 2IIaII~2 & ||b|| 0, llell

s B"2(1)’

and

v
| 02| S, Z I AZ/a ||L2T(L2) I SZ’+2b”L‘}(Lﬁ(L$°)) ”A(D)AgC”L‘}(Lﬁ(L%))
'Z0—Np

_t
Sdi277 Y dp2 2||a||~2 JrEs ||b|| gl

B3 (1)’
220—Ny

Then (6.6) follows from Proposition 2.1. This completes the proof of this lemma.
|
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