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Abstract

In Liu and Zhang (Arch Ration Mech Anal 235:1405–1444, 2020), the authors
proved that as long as the one-directional derivative of the initial velocity is suf-
ficiently small in some scaling invariant spaces, then the classical Navier–Stokes
system has a global unique solution. The goal of this paper is to extend this type
of result to the 3-D anisotropic Navier–Stokes system (AN S) with only horizontal

dissipation. More precisely, given initial data u0 = (uh
0, u3

0) ∈ B0, 12 , (AN S) has a
unique global solution provided that |Dh|−1∂3u0 is sufficiently small in the scaling

invariant space B0, 12 .

1. Introduction

In this paper, we investigate the global well-posedness of the following 3-D
anisotropic Navier–Stokes system:

(AN S)

⎧
⎨

⎩

∂t u + u · ∇u − �hu = −∇ p, (t, x) ∈ R
+ × R

3,

div u = 0,
u|t=0 = u0,

where�h
def= ∂21 +∂22 , u designates the velocity of the fluid and p the scalar pressure

function which guarantees the divergence free condition of the velocity field.
Systems of this type appear in geophysical fluid dynamics (see for instance

[5,18]). In fact, meteorologists often model turbulent diffusion by using a viscosity
of the form −μh�h − μ3∂

2
3 , where μh and μ3 are empirical constants, and μ3 is

usually much smaller than μh. We refer to the book of Pedlovsky [18, Chap. 4],
for a complete discussion about this model.

Considering that system (AN S) has only horizontal dissipation, it is reasonable
to use functional spaces which distinguish horizontal derivatives from the vertical
one, for instance, the anisotropic Sobolev space defined as follows:
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Definition 1.1. For any (s, s′) in R
2, the anisotropic Sobolev space Hs,s′

(R3)

denotes the space of homogeneous tempered distribution a such that

‖a‖2
Hs,s′

def=
∫

R3
|ξh|2s |ξ3|2s′ |̂a(ξ)|2 dξ < ∞ with ξh = (ξ1, ξ2).

Mathematically,Chemin et al. [4] first studied the system (AN S). In particular,
Chemin et al. [4] and Iftimie [13] proved that (AN S) is locally well-posed with

initial data in L2∩H0, 12+ε for some ε > 0, and is globallywell-posed if, in addition,

‖u0‖ε
L2‖u0‖1−ε

H0, 12+ε
� c (1.1)

for some sufficiently small constant c.
Notice that just as the classical Navier–Stokes system

(N S)

⎧
⎨

⎩

∂t u + u · ∇u − �u = −∇ p, (t, x) ∈ R
+ × R

3,

div u = 0,
u|t=0 = u0,

the system (AN S) has the following scaling invariant property:

uλ(t, x)
def= λu(λ2t, λx) and u0,λ(x)

def= λu0(λx), (1.2)

which means that if u is a solution of (AN S) with initial data u0 on [0, T ], uλ

determined by (1.2) is also a solution of (AN S) with initial data u0,λ on [0, T/λ2].
It is easy to observe that the smallness condition (1.1) in [4] is scaling invariant

under the scaling transformation (1.2), nevertheless, the norm of the space H0, 12+ε

is not. To work (AN S) with initial data in the critical spaces, we first recall the
following anisotropic dyadic operators from [2]:

�h
ka

def= F−1(ϕ(2−k |ξh|)̂a), �v
�a

def= F−1(ϕ(2−�|ξ3|)̂a),

Sh
k a

def= F−1(χ(2−k |ξh|)̂a), Sv
� a

def= F−1(χ(2−�|ξ3|)̂a),

(1.3)

where ξh = (ξ1, ξ2), Fa or â denotes the Fourier transform of a, while F−1a
designates the inverse Fourier transform of a, χ(τ) and ϕ(τ) are smooth functions
such that

Supp ϕ ⊂
{
τ ∈ R : 3

4
� |τ | � 8

3

}
and ∀τ > 0 ,

∑

j∈Z

ϕ(2− jτ) = 1;

Supp χ ⊂
{
τ ∈ R : |τ | � 4

3

}
and ∀τ ∈ R , χ(τ ) +

∑

j�0

ϕ(2− jτ) = 1.

Definition 1.2. We define B0, 12 (R3) to be the set of homogenous tempered distri-
bution a so that

‖a‖B0, 12

def=
∑

�∈Z

2
�
2 ‖�v

�a‖L2(R3) < ∞.
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The above space was first introduced by Iftimie [12] to study the global
well-posedness of the classical 3-D Navier–Stokes system with initial data in
the anisotropic functional space. The second author [16] proved the local well-

posedness of (AN S)with any solenoidal vector field u0 ∈ B0, 12 and also the global

well-posedness with small initial data in B0, 12 . This result corresponds to Fujita–
Kato’s theorem [11] for the classical Navier–Stokes system. Moreover, the authors
[17,19] proved the global well-posedness of (AN S)with initial data u0 = (uh

0, u3
0)

satisfying that
‖uh

0‖B0, 12
exp

(
C‖u3

0‖4B0, 12

)
� c0 (1.4)

for some c0 sufficiently small.

Although the norm of B0, 12 is scaling invariant under the the scaling transfor-
mation (1.2), yet we observe that the solenoidal vector field

uε
0(x) = sin

( x1
ε

)
(0,−∂3ϕ, ∂2ϕ) (1.5)

is not small in the space B0, 12 no matter how small ε is. In order to find a space so
that the norm of uε

0(x) given by (1.5) is small in this space for small ε, Chemin
and the third author [8] introduced the following Besov–Sobolev type space with
negative index:

Definition 1.3. We define the space B− 1
2 , 12

4 to be the set of a homogenous tempered
distribution a so that

‖a‖
B− 1

2 , 12
4

def=
∑

�∈Z

2
�
2

((
∞∑

k=�−1

2−k‖�h
k�

v
�a‖2

L4
h(L2

v)

) 1
2 + ‖Sh

�−1�
v
�a‖L2

)
< ∞.

Chemin and the third author [8] proved the global well-posedness of (AN S)

with initial data being small in the space B− 1
2 , 12

4 . In particular, this result ensures
the global well-posedness of (AN S) with initial data uε

0(x) given by (1.5) as long
as ε is sufficiently small. Furthermore the second and third authors [17] proved
the global well-posedness of (AN S) provided that the initial data u0 = (uh

0, u3
0)

satisfies that
‖uh

0‖B− 1
2 , 12

4

exp
(
C‖u3

0‖4
B− 1

2 , 12
4

)
� c0 (1.6)

for some c0 sufficiently small. We remark that this result corresponds to Cannone,
Meyer and Planchon’s result in [3] for the classical Navier–Stokes system, where
the authors proved that if the initial data satisfies that

‖u0‖
Ḃ

−1+ 3
p

p,∞
� cν

for some p greater than 3 and some constant c small enough, then (N S) is globally
well-posed. The end-point result in this direction is due to Koch and Tataru [14]
for initial data in the space of ∂ B M O.
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On the other hand, motivated by the study of the global well-posedness of the
classical Navier–Stokes system with slowly varying initial data [6,7,9], the first
and third authors proved the following theorem for (N S) in [15]:

Theorem 1.1. Let δ ∈]0, 1[, u0 = (uh
0, u3

0) ∈ H
1
2 (R3)∩B

0, 12
2,1 (R3) with uh

0 belong-

ing to L2(R3)∩ L∞(Rv; H−δ(R2
h))∩ L∞(Rv; H3(R2

h)). If we assume in addition

that ∂3u0 ∈ H− 1
2 ,0, then there exists a small enough positive constant ε0 such that

if

‖∂3u0‖2
H− 1

2 ,0
exp

(
C

(
Aδ(u

h
0) + Bδ(u0)

))
� ε0, (1.7)

(N S) has a unique global solution u ∈ C
(
R

+; H
1
2
) ∩ L2

(
R

+; H
3
2
)
, where

Aδ(u
h
0)

def=
(‖∇huh

0‖2L∞
v (L2

h)
‖uh

0‖
2
δ

L∞
v (B−δ

2,∞)h

‖uh
0‖

2
δ

L∞
v (L2

h)

+ ‖uh
0‖2L∞

v (L2
h)

)

exp
(

Cδ(1 + ‖uh
0‖4L∞

v (L2
h)

)
)
,

Aδ(u
h
0)

def=
‖uh

0‖3L∞
v (L2

h)
‖∇3

huh
0‖

1
2

L∞
v (L2

h)

‖∇huh
0‖

3
2

L∞
v (L2

h)

+ Aδ(u
h
0),

(1.8)
and

Bδ(u0)
def= ‖uh

0‖
B
0, 12
2,1

exp
(
CAδ(u

h
0)

) + ‖u0‖
B
0, 12
2,1

exp
(
‖uh

0‖
B
0, 12
2,1

exp
(
CAδ(u

h
0)

))

(1.9)
are scaling invariant under the scaling transformation (1.2).

We remark that Theorem 1.1 ensures the global well-posedness of (N S) with
initial data

uε
0(x) = (vh0 + εwh

0, w
3
0)(xh, εx3) with divh vh0 = 0 = divw0 (1.10)

for ε � ε0,which was first proved in [6].Wemention that the proof of Theorem 1.1
requires a regularity criteria in [10], which can only be proved for the classical
Navier–Stokes system so far.

Motivated by [15,17,19], here we are going to study the global well-posedness
of (AN S) with initial data u0 satisfying ∂3u0 being sufficiently small in some
critical spaces.

The main result of this paper is as follows:

Theorem 1.2. Let −1
h be a Fourier multiplier with symbol |ξh|−1, let u0 ∈ B0, 12 be

a solenoidal vector field with −1
h ∂3u0 ∈ B0, 12 . Then there exist some sufficiently

small positive constant ε0 and some universal positive constants L , M, N so that
for AN

(‖uh
0‖B0, 12

)
given by (3.5) if

‖−1
h ∂3u0‖B0, 12

exp
(

L
(
1 + ‖u3

0‖4
B− 1

2 , 12
4

)
exp

(
MA4

N

(‖uh
0‖B0, 12

)))
� ε0, (1.11)

808
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(AN S) has a unique global solution u = v + et�h

(
0

u3
0,hh

)

with v ∈

C([0,∞[ ;B0, 12 ) and ∇hv ∈ L2([0,∞[ ;B0, 12 ), where u3
0,hh

def= ∑
k��−1 �h

k�
v
�u3

0.

We remark that all the norms of u0 in (1.11) is scaling invariant under the scaling
transformation (1.2). Especially for the term ‖−1

h ∂3u0‖B0, 12
,we do not know how

to propagate this regularity for the solutions of 3-D Navier–Stokes system. In the
sequel, we shall only propagate this regularity for the solutions of 2-D Navier–
Stokes system with a parameter [(see (3.4) and (3.7)]. With regular initial data, we
may write explicitly the constant AN

(‖uh
0‖B0, 12

)
. For instance, we have

Corollary 1.1. Let u0 ∈ L2 be a solenoidal vector field with ∂3u0 ∈ L2 and

−1
h ∂3u0 ∈ B0, 12 . Then there exist some sufficiently small positive constant ε0 and

some universal positive constants L , M so that if

‖−1
h ∂3u0‖B0, 12

exp
(

L
(
1 + ‖u3

0‖4
B− 1

2 , 12
4

)
exp

(
exp

(
M‖uh

0‖L2‖∂3uh
0‖L2

)))
� ε0,

(1.12)
(AN S) has a unique global solution u as in Theorem 1.2.

Remark 1.1. Several remarks are in order about Theorem 1.2:

(a) It follows from [8] that

‖u3
0‖B− 1

2 , 12
4

� ‖u3
0‖B0, 12

,

so that the smallness condition (1.11) and (1.12) can also be formulated as

‖−1
h ∂3u0‖B0, 12

exp
(

L
(
1 + ‖u3

0‖4B0, 12

)
exp

(
MA4

N

(‖uh
0‖B0, 12

)))
� ε0,

(1.13)
and

‖−1
h ∂3u0‖B0, 12

exp
(

L
(
1+‖u3

0‖4B0, 12

)
exp

(
exp

(
M‖uh

0‖L2‖∂3uh
0‖L2

)))
� ε0.

(1.14)
(b) Due to div u0 = 0, we find

‖−1
h ∂3u0‖B0, 12

= ‖(−1
h ∂3uh

0,−−1
h divh uh

0)‖B0, 12
.

Therefore the smallness condition (1.11) is of a similar type as (1.4). Yet roughly
speaking, (1.11) requires only ∂3uh

0 and divh uh
0 to be small in some scaling

invariant space, but without any restriction on curlh uh
0. Thus the smallness

condition (1.11) is weaker than (1.4).
(c) Let w0 be a smooth solenoidal vector field, we observe that the data

uε
0(x) = (

ε(− ln ε)δwh
0, (− ln ε)δw3

0

)
(xh, εx3) with δ ∈]0, 1/4[

satisies (1.4) for ε sufficiently small.
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While since our smallness condition (1.14) does not have any restriction on curl uh
0,

for any smooth vector field vh0 satisfying divh vh
0 = 0, we find

uε
0(x) = (

vh0 + ε(− ln ε)δwh
0, (− ln ε)δw3

0

)
(xh, εx3) with δ ∈]0, 1/4[ (1.15)

satisfies (1.14) for any ε sufficiently small. Therefore Theorem 1.2 ensures the
global well-posedness of (AN S) with initial data given by (1.15). Compared with
(1.10), which corresponds to δ = 0 in (1.15), this type of result is new even for the
classical Navier–Stokes system.
(d) Given φ ∈ S(R3), we deduce from Proposition 1.1 in [8] that

‖eix1/εφ(x)‖
B− 1

2 , 12
4

� Cε
1
2 .

As a result, we find that for any δ ∈]0, 1/4[, the following class of initial data:

uε
0(x) = (vh, 0)(xh, εx3) + (− ln ε)δ sin(x1/ε)

(
0,−ε

1
2 ∂3φ(xh, εx3), ε

− 1
2 ∂2φ(xh, εx3)

)
, (1.16)

satisfies the smallness condition (1.13) for small enough ε, and hence the data
given by (1.16) can also generate unique global solution of (AN S).

(e) Since all the results that work for the anisotropic Navier–Stokes system (AN S)

should automatically do for the classical Navier–Stokes system (N S), Theo-
rem 1.2 holds also for (N S).

Let us end this section with some notations that will be used throughout this
paper.
Notations: Let A, B be two operators, we denote [A; B] = AB − B A, the com-
mutator between A and B, for a � b, we means that there is a uniform con-
stant C, which may be different in each occurrence, such that a � Cb. We shall
denote by (a|b)L2 the L2(R3) inner product of a and b.

(
d j

)

j∈Z
designates a

generic elements on the unit sphere of �1(Z), i.e.
∑

j∈Z
d j = 1. Finally, we denote

Lr
T (L p

h (Lq
v)) the space Lr ([0, T ]; L p(Rx1×Rx2; Lq(Rx3))), and∇h

def= (∂x1, ∂x2),

div h = ∂x1 + ∂x2 .

2. Littlewood–Paley Theory

In this section, we shall collect some basic facts on anisotropic Littlewood–
Paley theory. We first recall the following anisotropic Bernstein inequalities from
[8,16]:

Lemma 2.1. Let Bh (resp. Bv) a ball of R
2
h (resp. Rv), and Ch (resp. Cv) a ring

of R
2
h (resp. Rv); let 1 � p2 � p1 � ∞ and 1 � q2 � q1 � ∞. Then it holds that
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if Supp â ⊂ 2kBh ⇒ ‖∂α
xha‖L

p1
h (L

q1
v )

� 2
k
(
|α|+ 2

p2
− 2

p1

)

‖a‖L
p2
h (L

q1
v )

;

if Supp â ⊂ 2�Bv ⇒ ‖∂β
x3a‖L

p1
h (L

q1
v )

� 2
�
(
β+ 1

q2
− 1

q1

)

‖a‖L
p1
h (L

q2
v )

;
if Supp â ⊂ 2kCh ⇒ ‖a‖L

p1
h (L

q1
v )

� 2−k N sup
|α|=N

‖∂α
xha‖L

p1
h (L

q1
v )

;

if Supp â ⊂ 2�Cv ⇒ ‖a‖L
p1
h (L

q1
v )

� 2−�N ‖∂ N
x3a‖L

p1
h (L

q1
v )

.

Definition 2.1. For any p ∈ [1,∞],, let us define the Chemin–Lerner type norm

‖a‖
L̃ p

T (B0, 12 )

def=
∑

�∈Z

2
�
2 ‖�v

�a‖L p
T (L2(R3)).

In particular, we denote

‖a‖B0, 12 (T )

def= ‖a‖
L̃∞

T (B0, 12 )
+ ‖∇ha‖

L̃2
T (B0, 12 )

.

We remark that the inhomogeneous version of the anisotropic Sobolev space

H0,1 can be continuously imbedded intoB0, 12 . Indeed for any integer N , we deduce
from Lemma 2.1 that

‖a‖B0, 12
=

∑

��N

2
�
2 ‖�v

�a‖L2 +
∑

�>N

2
�
2 ‖�v

�a‖L2

�
∑

��N

2
�
2 ‖�v

�a‖L2 +
∑

�>N

2− �
2 ‖∂3�v

�a‖L2

� 2
N
2 ‖a‖L2 + 2− N

2 ‖∂3a‖L2 .

Taking the integer N so that 2N ∼ ‖∂3a‖L2‖a‖−1
L2 in the above inequality leads to

‖a‖B0, 12
� ‖a‖

1
2
L2‖∂3a‖

1
2
L2 . (2.1)

Along the same lines, we have

‖a‖
L̃ p

T (B0, 12 )
� ‖a‖

1
2

L p
T (L2)

‖∂3a‖
1
2

L p
T (L2)

∀ p ∈ [1,∞]. (2.2)

To overcome the difficulty that one can not use Gronwall’s inequality in the
Chemin–Lerner type norms, we recall the following time-weightedChemin–Lerner
norm from [17]:

Definition 2.2. Let f (t) ∈ L1
loc(R+), f (t) � 0. We define

‖a‖
L̃2

T, f (B0, 12 )

def=
∑

�∈Z

2
�
2

(∫ T

0
f (t)‖�v

�a(t)‖2L2 dt
) 1

2
.
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In order to take into account functions with oscillations in the horizontal vari-
ables, we recall the following anisotropic Besov type space with negative indices
from [8]:

Definition 2.3. For any p ∈ [1,∞], we define

‖a‖
L̃ p(B− 1

2 , 12
4 )

def=
∑

�∈Z

2
�
2

(( ∞∑

k=�−1

2−k‖�h
k�

v
�a‖2

L p
T (L4

h(L2
v))

) 1
2 +‖Sh

�−1�
v
�a‖L p

T (L2)

)

.

In particular, we denote

‖a‖
B− 1

2 , 12
4 (T )

def= ‖a‖
L̃∞

T (B− 1
2 , 12

4 )
+ ‖∇ha‖

L̃2
T (B− 1

2 , 12
4 )

.

In the sequel, for a ∈ B− 1
2 , 12

4 , we shall frequently use the following decompo-
sition:

a = alh + ahh with alh
def=

∑

�∈Z

Sh
�−1�

v
�a and ahh

def=
∑

k��−1

�h
k�

v
�a. (2.3)

Lemma 2.2. (Lemma 2.5 in [8]) For any a ∈ B− 1
2 , 12

4 , it holds that

‖et�hahh‖B− 1
2 , 12

4 (∞)
� ‖a‖

B− 1
2 , 12

4

.

Definition 2.4. Let us define

‖a‖
B0, 12
4

def=
∑

�∈Z

2
�
2 ‖�v

�a‖L4
h(L2

v)
and ‖a‖

L̃4
t (B

0, 12
4 )

def=
∑

�∈Z

2
�
2 ‖�v

�a‖L4
t (L4

h(L2
v))

.

In view of the 2-D interpolation inequality that

‖a‖L4(R2) � ‖a‖
1
2
L2(R2)

‖∇ha‖
1
2
L2(R2)

, (2.4)

we find

‖a‖2
B0, 12
4

�
(∑

�∈Z

2
�
2 ‖�v

�a‖
1
2
L2‖�v

�∇ha‖
1
2
L2

)2

�
(∑

�∈Z

2
�
2 ‖�v

�a‖L2

)(∑

�∈Z

2
�
2 ‖�v

�∇ha‖L2

)
= ‖a‖B0, 12

‖∇ha‖B0, 12
.

(2.5)
Similarly, we have

‖a‖2
L̃4

t (B
0, 12
4 )

� ‖a‖
L̃∞

t (B0, 12 )
‖∇ha‖

L̃2
t

(
B0, 12

). (2.6)

Before preceding, let us recall Bony’s decomposition for the vertical variable
from [1]:

ab = T v
a b + Rv(a, b) with T v

a b =
∑

�∈Z

Sv�−1a�v
�b, Rv(a, b) =

∑

�∈Z

�v
�aSv�+2b.

(2.7)
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Sometimes we shall also use Bony’s decomposition for the horizontal variables.
Let us now apply the above basic facts on Littlewood–Paley theory to prove the

following proposition:

Proposition 2.1. For any a ∈ B− 1
2 , 12

4 (T ), it holds that

‖a‖
L̃4

T (B0, 12
4 )

� ‖a‖
B− 1

2 , 12
4 (T )

. (2.8)

Proof. In view of (2.3) and Definition 2.3, we get, by applying (2.6), that

‖alh‖
L̃4

T (B0, 12
4 )

� ‖alh‖
1
2

L̃∞
T (B0, 12 )

‖∇halh‖
1
2

L̃2
T (B0, 12 )

� ‖a‖
1
2

L̃∞
T

(

B− 1
2 , 12

4

)‖∇ha‖
1
2

L̃2
T

(

B− 1
2 , 12

4

).

Then it remains to prove (2.8) for ahh. Indeed in view of Definition 2.4, we write

‖ahh‖
L̃4

T

(

B0, 12
4

) =
∑

�∈Z

2
�
2 ‖(�v

�ahh)
2‖

1
2

L2
T (L2

h(L1
v))

.

Applying Bony’s decomposition for the horizontal variables yields

(�v
�ahh)

2 =
∑

k∈Z

Sh
k−1�

v
�ahh�

h
k�

v
�ahh +

∑

k∈Z

Sh
k+2�

v
�ahh�

h
k�

v
�ahh. (2.9)

We observe that

∑

�∈Z

2
�
2

(∑

k∈Z

‖Sh
k−1�

v
�ahh�

h
k�

v
�ahh‖L2

T (L2
h(L1

v))

) 1
2

�
(∑

�∈Z

2
�
2

(∑

k∈Z

2−k‖Sh
k−1�

v
�ahh‖2L∞

T (L4
h(L2

v))

) 1
2
) 1

2

×
(∑

�∈Z

2
�
2

(∑

k∈Z

2k‖�h
k�

v
�ahh‖2L2

T (L4
h(L2

v))

) 1
2
) 1

2

�
(∑

�∈Z

2
�
2

(∑

k∈Z

2−k‖Sh
k−1�

v
�ahh‖2L∞

T (L4
h(L2

v))

) 1
2
) 1

2 ‖∇hahh‖
1
2

L̃2
T

(

B− 1
2 , 12

4

).

Whereas we get, by using Young’s inequality, that

∑

k∈Z

2−k‖Shk−1�
v
�ahh‖2L∞

T (L4
h(L2

v))
=

∑

k∈Z

( ∑

k′�k−2

2− k−k′
2 2− k′

2 ‖�h
k′�v

�ahh‖L∞
T (L4

h(L2
v))

)2

�
∑

k∈Z

2−k‖�h
k�v

�ahh‖2L∞
T (L4

h(L2
v))

.
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As a result, it turns out that

∑

�∈Z

2
�
2

(∑

k∈Z

2−k‖Sh
k−1�

v
�ahh‖2L∞

T (L4
h(L2

v))

) 1
2 � ‖a‖

L̃∞
T

(

B− 1
2 , 12

4

),

and

∑

�∈Z

2
�
2

(∑

k∈Z

‖Sh
k−1�

v
�ahh�

h
k�

v
�ahh‖L2

T (L2
h(L1

v))

) 1
2 � ‖a‖

B− 1
2 , 12

4 (T )
.

Along the same lines, we can prove that the second term in (2.9) shares the same
estimate. This ensures that (2.8) holds for ahh. We thus complete the proof of the
proposition. �

3. Sketch of the Proof

Motivated by the study of the global large solutions to the classical 3-D Navier–
Stokes system with slowly varying initial data in one direction [6,7,9,15], here
we are going to decompose the solution of (AN S) as a sum of a solution to the
two-dimensional Navier–Stokes system with a parameter and a solution to the
three-dimensional perturbed anisotropic Navier–Stokes system. We point out that
compared with the references [6,7,9,15], here the 3-D solution to the perturbed
anisotropic Navier–Stokes system will not be small. Indeed only its vertical com-
ponent is not small. In order to deal with this part, we are going to appeal to the
observation from [17,19], where the authors proved the global well-posedness to
3-D anisotropic Navier–Stokes systemwith the horizontal components of the initial
data being small [see the smallness conditions (1.4) and (1.6)].

For uh = (u1, u2), we first recall the two-dimensional Biot–Savart’s law:

uh = uh
curl + uh

div with uh
curl

def= ∇⊥
h �−1

h (curlh uh) and uh
div

def= ∇h�
−1
h (divh uh),

(3.1)

where curlh uh def= ∂1u2 − ∂2u1 and divh uh def= ∂1u1 + ∂2u2.

In particular, let us decompose the horizontal components uh
0 of the initial

velocity u0 of (AN S) as the sum of uh
0,curl and uh

0,div, and let us consider the
following 2-D Navier–Stokes system with a parameter:

⎧
⎨

⎩

∂t ū
h + ūh · ∇hūh − �hūh = −∇h p̄, (t, x) ∈ R

+ × R
3,

divh ūh = 0,
ūh|t=0 = ūh

0 = uh
0,curl.

(3.2)

Concerning the system (3.2), we have the following a priori estimates:

Proposition 3.1. Let ūh
0 ∈ B0, 12 with −1

h ∂3ūh
0 ∈ B0, 12 . Then (3.2) has a unique

global solution so that for any time t > 0, it holds that

‖ūh‖
L∞

t

(
B0, 12

) + ‖∇hūh‖
L2

t

(
B0, 12

) � CAN
(‖ūh

0‖B0, 12

)
, (3.3)
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and

‖−1
h ∂3ūh‖

L̃∞
t (B0, 12 )

+ ‖∂3ūh‖
L̃2

t (B0, 12 )
� C‖−1

h ∂3ūh
0‖B0, 12

exp
(

CA4
N

(‖ūh
0‖B0, 12

))
,

(3.4)
where

ūh
0,N

def= F−1(1|ξ3|� 1
N or|ξ3|�NF(ūh

0)
)

and

AN
(‖ūh

0‖B0, 12

) def= N
1
2 ‖ūh

0‖B0, 12
exp

(
C‖ūh

0‖2B0, 12

)

+ ∥
∥ūh

0,N

∥
∥
B0, 12

exp

(

N 2 exp
(
C‖ūh

0‖2B0, 12

)
)

,

(3.5)

and N is taken so large that
∥
∥ūh

0,N

∥
∥
B0, 12

is sufficiently small.

The proof of Proposition 3.1 will be presented in Section 4.

Remark 3.1. Under the assumptions that ūh
0 ∈ L2 with ∂3ūh

0 ∈ L2 and−1
h ∂3ūh

0 ∈
B0, 12 , we have the following alternative estimates for (3.3) and (3.4):

‖ūh‖
L̃∞

t (B0, 12 )
+ ‖∇hūh‖

L̃2
t (B0, 12 )

� ‖ūh
0‖

1
2
L2‖∂3ūh

0‖
1
2
L2 exp

(
C‖ūh

0‖L2‖∂3ūh
0‖L2

)
,

(3.6)
and

‖−1
h ∂3ūh‖

L̃∞
t (B0, 12 )

+ ‖∂3ūh‖
L̃2

t (B0, 12 )
� ‖−1

h ∂3ūh
0‖B0, 12

exp
(
exp

(
C‖ūh

0‖L2‖∂3ūh
0‖L2

))
.

(3.7)
We shall present the proof right after (4.7).

We notice that

v0
def= u0 − (

uh
0,curl, 0

) = (
uh
0,div, u3

0

)
, (3.8)

which satisfies div v0 = 0, and yet v0 is not small according to our smallness
condition (1.11).

Before proceeding, let us recall the main idea of the proof to Theorem 1.1 in
[15]. The authors [15] first constructed (ūh, p̄) via the system (3.2). Then in order to
get rid of the large part of the initial data v0, given by (3.8), the authors introduced
a correction velocity, ũ, through the system

⎧
⎨

⎩

∂t ũ + ūh · ∇hũ − �ũ = −∇ p̃,

div ũ = 0,
ũh|t=0 = ũh

0 = −∇h�
−1
h (∂3u3

0), ũ3|t=0 = ũ3
0 = u3

0.

(3.9)

With ūh and ũ being determined respectively by the systems (3.2) and (3.9), the
authors [15] decompose the solution (u, p) to the classical Navier–Stokes system
(N S) as

u =
(

ūh

0

)

+ ũ + v, p = p̄ + p̃ + q. (3.10)

The key estimate for v is as follows:
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Proposition 3.2. Let u = (uh, u3) ∈ C([0, T ∗[; H
1
2 ) ∩ L2(]0, T ∗[; H

3
2 ) be a

Fujita–Kato solution of (N S). We denote ω
def= ∂1v

2 − ∂2v
1 and

M(t)
def= ‖∇v3(t)‖2

H− 1
2 ,0

+ ‖ω(t)‖2
H− 1

2 ,0
, N (t)

def= ‖∇2v3(t)‖2
H− 1

2 ,0
+ ‖∇ω(t)‖2

H− 1
2 ,0

.

(3.11)
Then under the assumption (1.7), there exists some positive constant η such that

sup
t∈[0,T ∗[

(
M(t) +

∫ t

0
N (t ′) dt ′

)
� η. (3.12)

Then in order to complete the proof of Theorem 1.1, the authors [15] invoked
the following regularity criteria for the classical Navier–Stokes system:

Theorem 3.1. (Theorem 1.5 of [10]) Let u ∈ C([0, T ∗[; H
1
2 ) ∩ L2(]0, T ∗[; H

3
2 )

be a solution of (N S). If the maximal existence time T ∗ is finite, then for any (pi, j )

in ]1,∞[9, one has

∑

1�i, j�3

∫ T ∗

0
‖∂i u

j (t)‖pi, j

B
−2+ 2

pi, j∞,∞

dt = ∞. (3.13)

We remark that Theorem 3.1 only works for the classical 3-D Navier–Stokes
system. Therefore the above procedure to prove Theorem 1.1 cannot be applied to
construct the global solutions to the 3-D anisotropic Navier–Stokes system.

On the other hand, we remark that the main observation in [17,19] is that: by
using div u = 0, (AN S) can be equivalently reformulated as

(AN S)

⎧
⎪⎪⎨

⎪⎪⎩

∂t u
h + uh · ∇huh + u3∂3uh − �huh = −∇h p, (t, x) ∈ R

+ × R
3,

∂t u
3 + uh · ∇3uh − u3divh uh − �hu3 = −∂3 p,

div u = 0,
u|t=0 = (uh

0, u3
0),

so that at least, seemingly, the u3 equation is a linear one; this explains why there
is no size restriction for u3

0 in (1.4) and (1.6).
Motivated by [17,19], for ūh being determined by the systems (3.2), we decom-

pose the solution u of (AN S) as u =
(

ūh

0

)

+v. It is easy to verify that the remainder

term v satisfies
⎧
⎪⎪⎨

⎪⎪⎩

∂tv
h + v · ∇vh + ūh · ∇hv

h + v · ∇ūh − �hv
h = −∇h p + ∇h p̄,

∂tv
3 + vh · ∇hv

3 − v3divh vh + ūh · ∇hv
3 − �hv

3 = −∂3 p,

div v = 0,
v|t=0 = v0 = (−∇h�

−1
h (∂3u3

0), u3
0

)
.

(3.14)

We notice that under the smallness condition (1.11), the horizontal components, vh0 ,

are small in the critical space B0, 12 . Then the crucial ingredient used in the proof of
Theorem 1.2 is that the horizontal components vh of the remainder velocity keeps
small for any positive time.
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Due to the additional difficulty caused by the fact that u3
0 belongs to the Sobolev–

Besov type space with negative index, as in [8], we further decompose v3 as

v3 = vF + w, where vF (t)
def= et�hu3

0,hh and u3
0,hh

def=
∑

k��−1

�h
k�

v
�u3

0.

(3.15)
Then w solves

⎧
⎨

⎩

∂tw − �hw + v · ∇v3 + ūh · ∇hv
3 = −∂3 p,

w|t=0 = u3
0,lh

def=
∑

�∈Z

Sh
�−1�

v
�u3

0.
(3.16)

Proposition 3.3. Let v be a smooth enough solution of (3.14) on [0, T ∗[. Then
there exists some positive constant C so that for any t ∈]0, T ∗[, we have

‖vh‖
L̃∞

t

(
B0, 12

) + (5

4
− C‖vh‖

1
2

L̃∞
t

(
B0, 12

)
)‖∇hv

h‖
L̃2

t

(
B0, 12

) �
(‖vh0‖B0, 12

+ ‖∂3ūh‖
L̃2

t

(
B0, 12

)
)

× exp
(

C
∫ t

0

(‖w(t ′)‖2
B0, 12

‖∇hw(t ′)‖2
B0, 12

+ ‖ūh(t ′)‖4
B0, 12
4

+ ‖vF (t ′)‖4
B0, 12
4

)
dt ′

)
,

(3.17)
and
(5

6
− C

(‖vh‖
1
2

B0, 12 (t)
+ ‖∂3ūh‖

1
2

L̃2
t

(
B0, 12

)
))‖w‖B0, 12 (t)

� ‖u3
0‖B− 1

2 , 12
4

+ C
(
‖vh‖B0, 12 (t)

+ ‖∂3ūh‖
L̃2

t

(
B0, 12

) + ‖vh‖2
B0, 12 (t)

+ (
1 + ‖vh‖B0, 12 (t)

+ ‖∂3ūh‖
L̃2

t

(
B0, 12

)
)‖vF‖

B− 1
2 , 12

4 (t)

)
exp

(
C‖ūh‖4

L4
t (B

0, 12
4 )

)
.

(3.18)

The proof of the estimates (3.17) and (3.18) will be presented respectively in
Sections 5 and 6. Now let us admit the above Propositions 3.1 and 3.3 temporarily,
and continue our proof of Theorem 1.2.

Proof of Theorem 1.2. It is well-known that the existence of global solutions to
a nonlinear partial differential equations can be obtained by first constructing the
approximate solutions, and then performing uniform estimates and finally passing
to the limit to such approximate solutions. For simplicity, here we just present the
a priori estimates for smooth enough solutions of (AN S).

Let u be a smooth enough solution of (AN S) on [0, T ∗[ with T ∗ being the
maximal time of existence. Let ūh and v be determined by (3.2) and (3.14), respec-
tively. Thanks to (3.1) and Proposition 3.1, we first take L , M, N large enough and
ε0 small enough in (1.11) so that

‖−1
h ∂3ūh‖

L̃∞
t (B0, 12 )

+ ‖∂3ūh‖
L̃2

t (B0, 12 )
� C‖−1

h ∂3uh
0‖B0, 12

exp
(

CA4
N

(‖uh
0‖B0, 12

))

� 1

16
for any t > 0.

(3.19)
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We now define

T � def= sup
{

t < T ∗, C‖vh‖B0, 12 (t)
� 1

16

}
. (3.20)

Then, thanks to (3.19) and Proposition 3.3, for t � T �, we find

‖vh‖B0, 12 (t)
�

(‖−1
h ∂3u3

0‖B0, 12
+ ‖∂3ūh‖

L̃2
t

(
B0, 12

)
)

× exp
(

C
∫ t

0

(‖w(t ′)‖2
B0, 12

‖∇hw(t ′)‖2
B0, 12

+ ‖ūh(t ′)‖4
B0, 12
4

+ ‖vF (t ′)‖4
B0, 12
4

)
dt ′

)
,

(3.21)
and

1

3
‖w‖B0, 12 (t)

� ‖u3
0‖B− 1

2 , 12
4

+ C
(
1 + ‖vF‖

B− 1
2 , 12

4 (t)

)
exp

(
C‖ūh‖4

L4
t (B

0, 12
4 )

)
.

(3.22)
It follows from Lemma 2.2 and Proposition 2.1 that

‖vF‖
L4

t (B
0, 12
4 )

� ‖vF‖
B− 1

2 , 12
4 (t)

� ‖u3
0‖B− 1

2 , 12
4

,

whereas we deduce from (2.6) and Proposition 3.1 that

‖ūh‖4
L̃4

t (B
0, 12
4 )

� C‖ūh‖2
L̃∞

t (B0, 12 )
‖∇hūh‖2

L̃2
t (B0, 12 )

� CA4
N

(‖uh
0‖B0, 12

)
.

By inserting the above two inequalities to (3.22) and using (3.3), we obtain that,
for t � T �,

1

3
‖w‖B0, 12 (t)

� C
(
1 + ‖u3

0‖B− 1
2 , 12

4

)
exp

(
CA4

N

(‖uh
0‖B0, 12

))
. (3.23)

Then we deduce that for t � T �,

∫ t

0

(‖w(t ′)‖2
B0, 12

‖∇hw(t ′)‖2
B0, 12

+ ‖ūh(t ′)‖4
B0, 12
4

+ ‖vF (t ′)‖4
B0, 12
4

)
dt ′

� ‖w‖2
L∞

t (B0, 12 )
‖∇hw‖2

L2
t (B0, 12 )

+ ‖ūh‖4
L4

t (B
0, 12
4 )

+ ‖vF‖4
L4

t (B
0, 12
4 )

� C
(
1 + ‖u3

0‖4
B− 1

2 , 12
4

)
exp

(
CA4

N

(‖uh
0‖B0, 12

))
.

Inserting the above estimates into (3.21) gives

‖vh‖B0, 12 (t)
� ‖−1

h ∂3u0‖B0, 12
exp

(
C

(
1 + ‖u3

0‖4
B− 1

2 , 12
4

)
exp

(
CA4

N

(‖uh
0‖B0, 12

)))

(3.24)
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for t � T �. Therefore, if we take L , M, N large enough and ε0 small enough in
(1.11), we deduce from (3.24) that

C‖vh‖B0, 12 (t)
� 1

32
for t � T �. (3.25)

(3.25) contradicts (3.20). This in turn shows that T � = T ∗. (3.23) along with (3.25)

shows that T ∗ = ∞.Moreover, thanks to (3.15), we have v
def= u −et�h

(
0

u3
0,hh

)

∈
C([0,∞[ ;B0, 12 ) with ∇hv ∈ L2([0,∞[ ;B0, 12 ). This completes the proof of our
Theorem 1.2. �

Proof of Corollary 1.1. Under the assumptions that uh
0 ∈ L2 with ∂3uh

0 ∈ L2 and

−1
h ∂3uh

0 ∈ B0, 12 , we deduce from (3.1), (3.4) and (3.7) that

‖ūh‖
L̃∞

t (B0, 12 )
+ ‖∇hūh‖

L̃2
t (B0, 12 )

� ‖uh
0‖

1
2
L2‖∂3uh

0‖
1
2
L2 exp

(
C‖uh

0‖L2‖∂3uh
0‖L2

)
,

‖−1
h ∂3ūh‖

L̃∞
t (B0, 12 )

+ ‖∂3ūh‖
L̃2

t (B0, 12 )
� ‖−1

h ∂3uh
0‖B0, 12

exp
(
exp

(
C‖uh

0‖L2‖∂3uh
0‖L2

))
.

Then by repeating the argument from (3.19) to (3.24), we conclude the proof of
Corollary 1.1. �

4. Estimates of the 2-D Solution ūhūhūh

The goal of this section is to present the proof of Proposition 3.1. Let us start
the proof with the following lemma, which is in the spirit of Lemma 3.1 of [6]:

Lemma 4.1. Let ah = (a1, a2) be a smooth enough solution of

⎧
⎨

⎩

∂t a
h + ah · ∇hah − �hah = −∇hπ, (t, x) ∈ R

+ × R
3,

divh ah = 0,
ah|t=0 = ah

0 .

(4.1)

Then for any t > 0 and any fixed x3 ∈ R, it holds that

‖ah(t, ·, x3)‖2L2
h
+ 2

∫ t

0
‖∇hah(t ′, ·, x3)‖2L2

h
dt ′ = ‖ah

0(·, x3)‖2L2
h
, (4.2)

and

‖∂3ah(t, ·, x3)‖2L2
h
+

∫ t

0
‖∇h∂3ah(t ′, ·, x3)‖2L2

h
dt ′

� ‖∂3ah
0(·, x3)‖2L2

h
exp

(
C‖ah

0‖2L∞
v (L2

h)

)
. (4.3)
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Proof. By taking L2
h inn-product of (4.1) with ah and using divh ah = 0,we obtain

(4.2).
While by applying ∂3 to (4.1) and then taking L2

h inner product of the resulting
equation with ∂3ah, we find

1

2

d

dt
‖∂3ah(t, ·, x3)‖2L2

h
+ ‖∇h∂3ah(t, ·, x3)‖2L2

h

= −(
∂3(a

h · ∇hah)(t, ·, x3)
∣
∣∂3ah(t, ·, x3)

)

L2
h
.

(4.4)

Due to divh ah = 0, we get, by applying (2.4), that
∣
∣
(
∂3(a

h · ∇hah)(t, ·, x3)|∂3ah(t, ·, x3)
)

L2
h

∣
∣

= ∣
∣
(
(∂3ah · ∇hah)(t, ·, x3)|∂3ah(t, ·, x3)

)

L2
h

∣
∣

� ‖∇hah(t, ·, x3)‖L2
h
‖∂3ah(t, ·, x3)‖2L4

h

� C‖∇hah(t, ·, x3)‖L2
h
‖∂3ah(t, ·, x3)‖L2

h
‖∇h∂3ah(t, ·, x3)‖L2

h
.

Applying Young’s inequality yields
∣
∣
(
∂3(a

h · ∇hah)(t, ·, x3)|∂3ah(t, ·, x3)
)

L2
h

∣
∣

� 1

2
‖∇h∂3ah(t, ·, x3)‖2L2

h
+ C‖∇hah(t, ·, x3)‖2L2

h
‖∂3ah(t, ·, x3)‖2L2

h
.

Inserting the above estimate into (4.4) gives

d

dt
‖∂3ah(t, ·, x3)‖2L2

h
+ ‖∇h∂3ah(t, ·, x3)‖2L2

h

� C‖∇hah(t, ·, x3)‖2L2
h
‖∂3ah(t, ·, x3)‖2L2

h
.

Applying Gronwall’s inequality and using (4.2), we achieve

‖∂3ah(t, ·, x3)‖2L2
h
+

∫ t

0
‖∇h∂3ah(t ′, ·, x3)‖2L2

h
dt ′

� ‖∂3ah
0(·, x3)‖2L2

h
exp

(
C

∫ t

0
‖∇hah(t ′, ·, x3)‖2L2

h
dt ′

)

� ‖∂3ah
0(·, x3)‖2L2

h
exp

(
C‖ah

0(·, x3)‖2L2
h

)
,

which leads to (4.3). This completes the proof of this lemma. �
Let us now present the proof of Proposition 3.1.

Proof of Proposition 3.1. For any positive integer N , and ūh
0,N being given by (3.5),

we split the solution ūh to (3.2) as

ūh = ūh
1 + ūh

2, (4.5)
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with ūh
1 and ūh

2 being determined, respectively, by
⎧
⎪⎨

⎪⎩

∂t ū
h
1 + ūh

1 · ∇hūh
1 − �hūh

1 = −∇h p̄(1), (t, x) ∈ R
+ × R

3,

divh ūh
1 = 0,

ūh
1|t=0 = ūh

1,0
def= ūh

0 − ūh
0,N ,

(4.6)

and
⎧
⎨

⎩

∂t ū
h
2 + divh

(
ūh
2 ⊗ ūh

2 + ūh
1 ⊗ ūh

2 + ūh
2 ⊗ ūh

1

) − �hūh
2 = −∇h p̄(2),

divh ūh
2 = 0,

ūh
2|t=0 = ūh

2,0 = ūh
0,N .

(4.7)

Indeed for smoother initial data ūh
0, we may write explicitly the constant

AN
(‖ūh

0‖B0, 12

)
in (3.3). For instance, if ūh

0 ∈ L2 with ∂3ūh
0 ∈ L2 and −1

h ∂3ūh
0 ∈

B0, 12 , we deduce from Lemma 4.1 that

‖ūh(t)‖2L2 + 2
∫ t

0
‖∇hūh(t ′)‖2L2dt ′ = ‖ūh

0‖2L2 , and

‖∂3ūh(t)‖2L2 +
∫ t

0
‖∇h∂3ūh(t ′)‖2L2 dt ′ � ‖∂3ūh

0‖2L2 exp
(
C‖ūh

0‖2L∞
v (L2)

)
,

which, together with (2.2) and

‖ūh
0‖2L∞

v (L2
h)

� ‖ūh
0‖2L2

h(L∞
v )

� ‖uh
0‖2B0, 12

� ‖uh
0‖L2‖∂3uh

0‖L2 ,

ensures (3.6). By virtue of (3.6) and (4.22), we deduce (3.7).
In general, we first deduce from Lemma 4.1 that

‖ūh
1(t)‖2L2 + 2

∫ t

0
‖∇hūh

1(t
′)‖2L2dt ′ = ‖ūh

1,0‖2L2 � N‖ūh
0‖2B0, 12

, and

‖∂3ūh
1(t)‖2L2 +

∫ t

0
‖∇h∂3ūh

1(t
′)‖2L2 dt ′ � ‖∂3ūh

1,0‖2L2 exp
(
C‖ūh

1,0‖2L∞
v (L2)

)

� N‖ūh
0‖2B0, 12

exp
(
C‖ūh

0‖2B0, 12

)
,

which, together with (2.2), ensures that

‖ūh
1‖L̃∞

t (B0, 12 )
+ ‖∇hūh

1‖L̃2
t (B0, 12 )

� C N
1
2 ‖ūh

0‖B0, 12
exp

(
C‖ūh

0‖2B0, 12

)
. (4.8)

Next we handle the estimate of ūh
2. To do this, for any κ > 0, we denote

f h(t)
def= ‖ūh

1(t)‖2B0, 12
‖∇hūh

1(t)‖2B0, 12
and ūh

2,κ (t)
def= ūh

2(t) exp
(
−κ

∫ t

0
f h(t ′) dt ′

)
.

(4.9)

Then by multiplying exp
(
−κ

∫ t
0 f h(t ′) dt ′

)
to the ūh

2 equation in (4.7), we write

∂t ū
h
2,κ + κ f h(t)ūh

2,κ − �hūh
2,κ + divh (ūh

2 ⊗ ūh
2,κ + ūh

1 ⊗ ūh
2,κ

+ūh
2,κ ⊗ ūh

1) = −∇h p̄(2)
κ .
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Applying the operator �v
� to the above equation and taking L2 inner product of the

resulting equation with �v
� ūh

2,κ , and then using integration by parts, we get

1

2

d

dt
‖�v

� ūh
2,κ (t)‖2L2 + κ f h(t)‖�v

� ūh
2,κ (t)‖2L2 + ‖�v

�∇hūh
2,κ‖2L2

= −(
�v

�(ū
h
2 · ∇hūh

2,κ )
∣
∣�v

� ūh
2,κ

)

L2 + (
�v

�(ū
h
1 ⊗ ūh

2,κ + ūh
2,κ ⊗ ūh

1)
∣
∣�v

�∇hūh
2,κ

)

L2 .

(4.10)
�

The estimate of the second line of (4.10) relies on the following lemma, whose
proof will be postponed until the “Appendix A”:

Lemma 4.2. Let a, b, c ∈ B0, 12 (T ) and f(t)
def= ‖a(t)‖4

B0, 12
4

. Then for any smooth

homogeneous Fourier multiplier, A(D), of degree zero and any � ∈ Z, it holds that
∫ T

0

∣
∣
(
�v

� A(D)(a ⊗ b)
∣
∣�v

�c
)

L2

∣
∣ dt � d2

� 2
−�‖b‖

L̃2
T

(
B0, 12

)‖c‖
1
2

L̃2
T,f

(
B0, 12

)‖∇hc‖
1
2

L̃2
T

(
B0, 12

),

(4.11)
∫ T

0

∣
∣
(
�v

� A(D)(a ⊗ b)
∣
∣�v

�c
)

L2

∣
∣ dt � d2

� 2
−�‖b‖

1
2

L̃2
T,f

(
B0, 12

)‖∇hb‖
1
2

L̃2
T

(
B0, 12

)‖c‖
L̃2

T

(
B0, 12

).

(4.12)

Moreover, for non-negative function g ∈ L∞(0, T ), one has
∫ T

0

∣
∣
(
�v

� A(D)(a ⊗ b)
∣
∣�v

�c
)

L2

∣
∣ · g2 dt � d2

� 2
−�‖a‖

1
2

L̃∞
T

(
B0, 12

)‖g∇ha‖
1
2

L̃2
T

(
B0, 12

)

× ‖gb‖
L̃2

T

(
B0, 12

)‖c‖
1
2

L̃∞
T

(
B0, 12

)‖g∇hc‖
1
2

L̃2
T

(
B0, 12

).

(4.13)

Byapplying (4.13)witha = c = ūh
2,b = ∇hūh

2 andg = exp
(
−κ

∫ t
0 f h(t ′) dt ′

)
,

we get
∫ t

0

∣
∣
(
�v

�(ū
h
2 · ∇hūh

2,κ )
∣
∣�v

� ūh
2,κ

)

L2

∣
∣ dt ′ � d2

� 2
−�‖ūh

2‖L̃∞
t (B0, 12 )

‖∇hūh
2,κ‖2

L̃2
t (B0, 12 )

.

(4.14)
Whereas due to (2.5), one has

‖ūh
1(t)‖4

B0, 12
4

� ‖ūh
1(t)‖2B0, 12

‖∇hūh
1(t)‖2B0, 12

.

By applying (4.12) with a = ūh
1, b = ūh

2,κ , c = ∇hūh
2,κ , we infer

∫ t

0

∣
∣
(
�v

�(ū
h
1 ⊗ ūh

2,κ + ūh
2,κ ⊗ ūh

1)
∣
∣�v

�∇hūh
2,κ

)

L2

∣
∣ dt ′

� d2
� 2

−�‖ūh
2,κ‖

1
2

L̃2
t, f h

(B0, 12 )
‖∇hūh

2,κ‖
3
2

L̃2
t (B0, 12 )

.

(4.15)
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Then we get, by first integrating (4.10) over [0, t] and inserting (4.14) and (4.15)
into the resulting inequality, that

‖�v
� ūh

2,κ (t)‖2L2 + 2κ
∫ t

0
f h(t ′)‖�v

� ūh
2,κ (t ′)‖2L2 dt ′ + 2‖�v

�∇hūh
2,κ‖2

L2
t (L2)

� ‖�v
� ūh

0,N ‖2L2 + Cd2
� 2

−�
(
‖ūh

2‖L̃∞
t (B0, 12 )

‖∇hūh
2,κ‖2

L̃2
t (B0, 12 )

+ ‖ūh
2,κ‖

1
2

L̃2
t, f h

(B0, 12 )
‖∇hūh

2,κ‖
3
2

L̃2
t (B0, 12 )

)
.

Multiplying the above inequality by 2� and taking square root of the resulting
inequality, and then summing up the inequalities for � ∈ Z, we arrive at

‖ūh
2,κ‖

L̃∞
t (B0, 12 )

+ √
2κ‖ūh

2,κ‖
L̃2

t, f h
(B0, 12 )

+ √
2‖∇h ūh

2,κ‖
L̃2

t (B0, 12 )

� ‖ūh
0,N ‖

B0, 12
+ C

(
‖ūh

2‖
1
2

L̃∞
t (B0, 12 )

‖∇h ūh
2,κ‖

L̃2
t (B0, 12 )

+ ‖ūh
2,κ‖

1
4

L̃2
t, f h

(B0, 12 )
‖∇hūh

2,κ‖
3
4

L̃2
t (B0, 12 )

)

� ‖ūh
0,N ‖

B0, 12
+ (√

2 − 1 + C‖ūh
2‖

1
2

L̃∞
t (B0, 12 )

)‖∇h ūh
2,κ‖

L̃2
t (B0, 12 )

+ C‖ūh
2,κ‖

L̃2
t, f h

(B0, 12 )
.

In particular, taking 2κ = C2 in the above inequality gives

‖ūh
2,κ‖

L̃∞
t (B0, 12 )

+ (
1 − C‖ūh

2‖
1
2

L̃∞
t (B0, 12 )

)‖∇hūh
2,κ‖

L̃2
t (B0, 12 )

� ‖ūh
0,N ‖B0, 12

. (4.16)

On the other hand, in view of (3.5), we can take N so large that

C‖ūh
0,N ‖

1
2

B0, 12
� 1

2
. (4.17)

Then a standard continuity argument shows that, for any time t > 0, it holds that

‖ūh
2,κ‖

L̃∞
t (B0, 12 )

+ 1

2
‖∇hūh

2,κ‖
L̃2

t (B0, 12 )
� ‖ūh

0,N ‖B0, 12
. (4.18)

Due to the definition of ūh
2,λ given by (4.9), one has

(‖ūh
2‖L̃∞

t (B0, 12 )
+ ‖∇hūh

2‖L̃2
t (B0, 12 )

)
exp

(
−κ

∫ t

0
f h(t ′) dt ′

)

� ‖ūh
2,κ‖

L̃∞
t (B0, 12 )

+ ‖∇hūh
2,κ‖

L̃2
t (B0, 12 )

,

which, together with (4.8) and (4.18), implies that

‖ūh
2‖L̃∞

t (B0, 12 )
+ ‖∇hūh

2‖L̃2
t (B0, 12 )

� 2‖ūh
0,N ‖B0, 12

exp
(
κ

∫ t

0
f h(t ′) dt ′

)

� 2‖ūh
0,N ‖B0, 12

exp

(

N 2 exp
(
C‖ūh

0‖2B0, 12

)
)

,

(4.19)
By combining (4.8) with (4.19), we obtain (3.3).

823



Y. Liu et al.

It remains to prove (3.4). In order to do, this for any γ > 0, we denote

gh(t)
def= ‖ūh(t)‖2

B0, 12
‖∇hūh(t)‖2

B0, 12
and ūh

γ (t)
def= ūh(t) exp

(
−γ

∫ t

0
gh(t ′) dt ′

)
.

(4.20)

Then, by multiplying exp
(
−γ

∫ t
0 gh(t ′) dt ′

)
to the ūh equation in (3.2), we write

∂t ū
h
γ + γ gh(t)ūh

γ − �hūh
γ + ūh · ∇hūh

γ = −∇h p̄γ .

Applying the operator �v
�

−1
h ∂3 to the above equation and then taking L2 inner

product of the resulting equation with �v
�

−1
h ∂3ūh

γ , we get

1

2

d

dt
‖�v

�
−1
h ∂3ūh

γ (t)‖2L2 + γ gh(t)‖�v
�

−1
h ∂3ūh

γ (t)‖2L2 + ‖�v
�∇h

−1
h ∂3ūh

γ ‖2L2

= −(
�v

�
−1
h ∂3(ū

h · ∇hūh
γ )

∣
∣�v

�
−1
h ∂3ūh

γ

)

L2

= −(
�v

�
−1
h divh (ūh ⊗ ∂3ūh

γ + ∂3ūh
γ ⊗ ūh)

∣
∣�v

�
−1
h ∂3ūh

γ

)

L2 .

(4.21)
Noting that −1

h divh is a bounded Fourier multiplier, we get, by using (4.11) with
a = ūh, b = ∂3ūh

γ and c = −1
h ∂3ūh

γ , that

∫ t

0

∣
∣
(
�v

�
−1
h divh (ūh ⊗ ∂3ūh

γ + ∂3ūh
γ ⊗ ūh)

∣
∣�v

�
−1
h ∂3ūh

γ

)

L2

∣
∣ dt ′

� d2
� 2

−�‖∂3ūh
γ ‖

3
2

L̃2
t (B0, 12 )

‖−1
h ∂3ūh

γ ‖
1
2

L̃2
t,gh

(B0, 12 )
.

By integrating (4.21) over [0, t] and then inserting the above estimate into the
resulting inequality, we find

‖�v
�

−1
h ∂3ūh

γ (t)‖2L2 + 2γ
∫ t

0
gh(t ′)‖�v

�
−1
h ∂3ūh

γ (t ′)‖2L2 dt ′ + 2‖�v
�∂3ūh

γ ‖2
L2

t (L2)

� ‖�v
�

−1
h ∂3ūh

0‖2L2 + Cd2
� 2

−�‖∂3ūh
γ ‖

3
2

L̃2
t (B0, 12 )

‖−1
h ∂3ūh

γ ‖
1
2

L̃2
t,gh

(B0, 12 )
.

Multiplying the above inequality by 2� and taking square root of the resulting
inequality, and then summing up the inequalities for � ∈ Z, we arrive at

‖−1
h ∂3ūh

γ ‖
L̃∞

t (B0, 12 )
+ √

2γ ‖−1
h ∂3ūh

λ‖L̃2
t, f h

(B0, 12 )
+ √

2‖∂3ūh
γ ‖

L̃2
t (B0, 12 )

� ‖−1
h ∂3ūh

0‖B0, 12
+ C‖∂3ūh

γ ‖
3
4

L̃2
t (B0, 12 )

‖−1
h ∂3ūh

γ ‖
1
4

L̃2
t,gh

(B0, 12 )

� ‖−1
h ∂3ūh

0‖B0, 12
+ (

√
2 − 1)‖∂3ūh

γ ‖
L̃2

t (B0, 12 )
+ C‖−1

h ∂3ūh
γ ‖

L̃2
t,gh

(B0, 12 )
.

In particular, taking 2γ = C2 in the above inequality gives

‖−1
h ∂3ūh

γ ‖
L̃∞

t (B0, 12 )
+ ‖∂3ūh

γ ‖
L̃2

t (B0, 12 )
� ‖−1

h ∂3ūh
0‖B0, 12

.
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Then a similar derivation from (4.18) to (4.19) leads to

‖−1
h ∂3ūh‖

L̃∞
t (B0, 12 )

+ ‖∂3ūh‖
L̃2

t (B0, 12 )
� ‖−1

h ∂3ūh
0‖B0, 12

exp
(
γ

∫ t

0
gh(t ′) dt ′

)
,

(4.22)
which together with (3.3), ensures (3.4). This completes the proof of this proposi-
tion. �

5. The Estimate of the Horizontal Components vhvhvh

The goal of this section is to present the proof of (3.17), namely, we are going
to deal with the estimate to the horizontal components of the remainder velocity
determined by (3.14).

In order to do this, let u be a smooth enough solution of (AN S) on [0, T ∗[,
let ūh, vF and w be determined respectively by (3.2), (3.15) and (3.16), for any
constant λ > 0, we denote

vhλ(t)
def= vh(t) exp

(
−λ

∫ t

0
f (t ′) dt ′

)
with

f (t)
def= ‖w(t)‖2

B0, 12
‖∇hw(t)‖2

B0, 12
+ ‖ūh(t)‖4

B0, 12
4

+ ‖vF (t)‖4
B0, 12
4

,

(5.1)

and similar notations for ūh
λ, pλ, p̄λ and vhλ/2.

By multiplying exp
(
−λ

∫ t
0 f (t ′) dt ′

)
to the vh equation of (3.14), we get

∂tv
h
λ + λ f (t)vhλ + v · ∇vhλ + ūh · ∇hv

h
λ + vλ · ∇ūh − �hv

h
λ = −∇h pλ + ∇h p̄λ.

Applying �v
� to the above equation and taking L2 inner product of the resulting

equation with �v
�v

h
λ, and then integrating the equality over [0, t], we obtain

1

2
‖�v

�v
h
λ(t)‖2L2 + λ

∫ t

0
f (t ′)‖�v

�v
h
λ‖2L2 dt ′

+
∫ t

0
‖∇h�

v
�v

h
λ‖2L2 dt ′ = 1

2
‖�v

�v
h
0‖2L2 −

6∑

i=1

Ii , (5.2)

where

I1
def=

∫ t

0

(
�v

�(ū
h · ∇hv

h
λ)

∣
∣ �v

�v
h
λ

)

L2 dt ′, I2
def=

∫ t

0

(
�v

�(v
h · ∇hv

h
λ)

∣
∣�v

�v
h
λ

)

L2 dt ′,

I3
def=

∫ t

0

(
�v

�(v
h
λ · ∇hūh)

∣
∣ �v

�v
h
λ

)

L2 dt ′, I4
def=

∫ t

0

(
�v

�(v
3∂3ūh

λ)
∣
∣�v

�v
h
λ

)

L2 dt ′,

I5
def=

∫ t

0

(
�v

�(v
3∂3v

h
λ)

∣
∣ �v

�v
h
λ

)

L2 dt ′, I6
def=

∫ t

0

(
�v

�∇h(pλ − p̄λ)
∣
∣ �v

�v
h
λ

)

L2 dt ′.
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We mention that since our system (3.14) has only horizontal dissipation, it is rea-
sonable to distinguish the terms above with horizontal derivatives from the ones
with vertical derivative. Next let us handle the above term by term.
• The estimates of I1 to I4.

We first get, by using (4.11) with a = ūh, b = ∇hv
h
λ and c = vhλ, that

|I1| � d2
� 2

−�‖vhλ‖
1
2

L̃2
t, f

(
B0, 12

)‖∇hv
h
λ‖

3
2

L̃2
t

(
B0, 12

). (5.3)

Applying (4.13) with a = vh, b = ∇hv
h, c = vh and g(t) = exp

(−λ
∫ t
0 f (t ′) dt ′

)

yields
|I2| � d2

� 2
−�‖vh‖

L̃∞
t

(
B0, 12

)‖∇hv
h
λ‖2

L̃2
t

(
B0, 12

). (5.4)

To handle I3, by using integration by parts, we write

I3 = −
∫ t

0

(
�v

�(divh vhλ · ūh)
∣
∣�v

�v
h
λ

)

L2 dt ′ −
∫ t

0

(
�v

�(ū
h ⊗ vhλ)

∣
∣�v

�∇hv
h
λ

)

L2 dt ′.

Applying (4.11) with a = ūh, b = divh vhλ and c = vhλ gives

∣
∣
∣

∫ t

0

(
�v

�(divh vhλ · ūh)
∣
∣�v

�v
h
λ

)

L2 dt ′
∣
∣
∣ � d2

� 2
−�‖vhλ‖

1
2

L̃2
t, f

(
B0, 12

)‖∇hv
h
λ‖

3
2

L̃2
t

(
B0, 12

).

Whereas applying (4.12) with a = ūh, b = vhλ and c = ∇hv
h
λ yields

∣
∣
∣

∫ t

0

(
�v

�(ū
h ⊗ vhλ)

∣
∣�v

�∇hv
h
λ

)

L2 dt ′
∣
∣
∣ � d2

� 2
−�‖vhλ‖

1
2

L̃2
t, f

(
B0, 12

)‖∇hv
h
λ‖

3
2

L̃2
t

(
B0, 12

).

As a result, it turns out that

|I3| � d2
� 2

−�‖vhλ‖
1
2

L̃2
t, f

(
B0, 12

)‖∇hv
h
λ‖

3
2

L̃2
t

(
B0, 12

). (5.5)

While by applying (4.11) with a = v3, b = ∂3ūh
λ, c = vhλ, and using the fact

that

‖v3(t)‖
B0, 12
4

� ‖vF (t)‖
B0, 12
4

+ ‖w(t)‖
1
2

B0, 12
‖∇hw(t)‖

1
2

B0, 12
,

we find

|I4| � d2
� 2

−�‖vhλ‖
1
2

L̃2
t, f

(
B0, 12

)‖∇hv
h
λ‖

1
2

L̃2
t

(
B0, 12

)‖∂3ūh
λ‖L̃2

t

(
B0, 12

). (5.6)

• The estimates of I5.
The estimate of I5 is much more complicated, since there is no vertical dissipa-

tion in (AN S). To overcome this difficulty, we first use Bony’s decomposition in
vertical variable (2.7) to write

I5 =
∫ t

0

(
�v

�

(
T v

v3
∂3v

h
λ + Rv(v3, ∂3v

h
λ)

) ∣
∣�v

�v
h
λ

)

L2 dt ′ def= IT5 + IR
5 .
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Following [8,16], we get, by using a standard commutator’s process, that

IT5 =
∑

|�′−�|�5

(∫ t

0

([�v
�; Sv

�′−1v
3]�v

�′∂3v
h
λ

∣
∣�v

�v
h
λ

)

L2 dt ′

+
∫ t

0

(
(Sv

�′−1v
3 − Sv

�−1v
3)�v

��
v
�′∂3v

h
λ

∣
∣�v

�v
h
λ

)

L2 dt ′
)

+
∫ t

0

(
Sv
�−1v

3�v
�∂3v

h
λ

∣
∣�v

�v
h
λ

)

L2 dt ′ def= IT,1
5 + IT,2

5 + IT,3
5 .

By applying the commutator’s estimate (see Lemma 2.97 in [2]), we find
∣
∣IT,1
5

∣
∣ �

∑

|�′−�|�5

‖[�v
�; Sv

�′−1v
3
λ]�v

�′∂3v
h
λ/2‖

L
4
3
t (L

4
3
h (L2

v))
‖�v

�v
h
λ/2‖L4

t (L4
h(L2

v))

�
∑

|�′−�|�5

2−�‖∂3Sv
�′−1v

3
λ‖L2

t (L2
h(L∞

v ))‖�v
�′∂3v

h
λ/2‖L4

t (L4
h(L2

v))
‖�v

�v
h
λ/2‖L4

t (L4
h(L2

v))
.

Due to ∂3v
3 = −divh vh, we get, by applying (2.4), that

∣
∣IT,1
5

∣
∣ �

∑

|�′−�|�5

2−�‖Sv
�′−1divh vhλ‖L2

t (L2
h(L∞

v ))2
�′ ‖�v

�′vhλ/2‖L4
t (L4

h(L2
v))

‖�v
�v

h
λ/2‖L4

t (L4
h(L2

v))

�
∑

|�′−�|�5

‖∇hv
h
λ‖

L̃2
t

(
B0, 12

)‖�v
�′vh‖

1
2
L∞

t (L2)
‖∇h�

v
�′vhλ‖

1
2

L2
t (L2)

× ‖�v
�v

h‖
1
2
L∞

t (L2)
‖∇h�

v
�v

h
λ‖

1
2

L2
t (L2)

� d2
� 2

−�‖vh‖
L̃∞

t

(
B0, 12

)‖∇hv
h
λ‖2

L̃2
t

(
B0, 12

).

Next, since the support to the Fourier transform of
∑

|�′−�|�5(Sv
�′−1v

3 − Sv
�−1v

3)

is contained in R
2 × ∪|�′−�|�52

�′Cv, we get, by applying Lemma 2.1, that
∣
∣IT,2
5

∣
∣ �

∑

|�′−�|�5

2−�‖∂3(Sv
�′−1v

3
λ − Sv

�−1v
3
λ)‖L2

t (L2
h(L∞

v ))

‖�v
�′∂3v

h
λ/2‖L4

t (L4
h(L2

v))
‖�v

�v
h
λ/2‖L4

t (L4
h(L2

v))
,

from which we infer
∣
∣IT,2
5

∣
∣ � d2

� 2
−�‖vh‖

L̃∞
t

(
B0, 12

)‖∇hv
h
λ‖2

L̃2
t

(
B0, 12

).

Finally, by using integration by parts and ∂3v
3 = −divh vh again, we find that

∣
∣IT,3
5

∣
∣ = 1

2

∣
∣
∣

∫ t

0

∫

R3
Sv
�−1∂3v

3
λ · ∣

∣�v
�v

h
λ/2

∣
∣2 dxdt ′

∣
∣
∣

� ‖Sv
�−1divh vhλ‖L2

t (L2
h(L∞

v ))‖�v
�v

h
λ/2‖2L4

t (L4
h(L2

v))

� d2
� 2

−�‖vh‖
L̃∞

t

(
B0, 12

)‖∇hv
h
λ‖2

L̃2
t

(
B0, 12

).

As a result, it turns out that
∣
∣IT5

∣
∣ � d2

� 2
−�‖vh‖

L̃∞
t

(
B0, 12

)‖∇hv
h
λ‖2

L̃2
t

(
B0, 12

). (5.7)
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On the other hand, by applying Lemma 2.1 once again, we find that
∣
∣IR
5

∣
∣ �

∑

�′��−4

‖�v
�′v3λ‖L2

t (L2)2
�′ ‖Sv

�′+2v
h
λ/2‖L4

t (L4
h(L∞

v ))‖�v
�v

h
λ/2‖L4

t (L4
h(L2

v))

�
∑

�′��−4

‖∂3�v
�′v3λ‖L2

t (L2)‖Sv
�′+2v

h
λ/2‖L4

t (L4
h(L∞

v ))‖�v
�v

h
λ/2‖L4

t (L4
h(L2

v))
.

Observing that

‖∂3�v
�′v3λ‖L2

t (L2) � d�′2− �′
2 ‖divh vhλ‖

L̃2
t

(
B0, 12

),

‖Sv
�′+2v

h
λ/2‖L4

t (L4
h(L∞

v )) � ‖vh‖
1
2

L̃∞
t

(
B0, 12

)‖∇hv
h
λ‖

1
2

L̃2
t

(
B0, 12

),

we infer ∣
∣IR
5

∣
∣ � d2

� 2
−�‖vh‖

L̃∞
t

(
B0, 12

)‖∇hv
h
λ‖2

L̃2
t

(
B0, 12

),

which, together with (5.7), ensures that

|I5| � d2
� 2

−�‖vh‖
L̃∞

t

(
B0, 12

)‖∇hv
h
λ‖2

L̃2
t

(
B0, 12

). (5.8)

• The estimates of I6.
We first get, by taking the space divergence operators, div and divh , to (AN S)

and (3.2) respectively, that

−�p = div (u · ∇u) and − �h p̄ = divh (ū · ∇hū), (5.9)

so that thanks to the fact that

u = (uh, u3) = (ūh, 0) + (vh, v3),

we write

∇h p − ∇h p̄ = ∇h(−�)−1divh (v · ∇uh + ūh · ∇hv
h)

+ ∇h(−�)−1∂3(u · ∇v3)

+ ∇h
(
(−�)−1 − (−�h)

−1)divh divh
(
ūh ⊗ ūh).

Accordingly, we decompose I6 as

I6 = I6,1 + I6,2 + I6,3 + I6,4,

where

I6,1 =
∫ t

0

(
�v

�∇h(−�)−1divh
(
ūh · ∇hv

h
λ + vh · ∇hv

h
λ + vλ · ∇ūh) ∣

∣�v
�v

h
λ

)

L2 dt ′,

I6,2 =
∫ t

0

(
�v

�∇h(−�)−1divh (v3∂3v
h
λ)

∣
∣�v

�v
h
λ

)

L2 dt ′,

I6,3 =
∫ t

0

(
�v

�∇h(−�)−1∂3
(
vλ · ∇v3 + ūh · ∇hv

3
λ

) ∣
∣�v

�v
h
λ

)

L2 dt ′,

I6,4 =
2∑

i=1

2∑

j=1

∫ t

0

(
�v

�∇h
(
(−�)−1 − (−�h)

−1)∂i∂ j (ū
i ū j

λ)
∣
∣ �v

�v
h
λ

)

L2 dt ′.
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Noticing that ∇h(−�)−1divh is a bounded Fourier multiplier. Then along the
same line to the estimate of I1 to I4, we achieve

|I6,1| � d2
� 2

−�
(
‖vh‖

L̃∞
t

(
B0, 12

)‖∇hv
h
λ‖2

L̃2
t

(
B0, 12

)

+ ‖vhλ‖
1
2

L̃2
t, f

(
B0, 12

)‖∇hv
h
λ‖

1
2

L̃2
t

(
B0, 12

)
(‖∇hv

h
λ‖

L̃2
t

(
B0, 12

) + ‖∂3ūh
λ‖L̃2

t

(
B0, 12

)
))

.

(5.10)
However, I6,2 can not be handled along the same line to that of I5, since the

symbol of the operator∇h(−�)−1divh depends not only on ξ3, but also on ξh,which
makes it impossible for us to deal with the commutator’s estimate. Fortunately, the
appearance of the operator (−�)−1 can absorb the vertical derivative. Indeed, by
using integration by parts, and the divergence-free condition of v, we write

I6,2 =
∫ t

0

(
�v

�∇h(−�)−1divh
(
∂3(v

3vhλ) − ∂3v
3 · vhλ

) ∣
∣
∣�

v
�v

h
λ

)

L2
dt ′

= −
∫ t

0

(
�v

�∇h(−�)−1∂3(v
3vhλ)

∣
∣�v

�∇hv
h
λ

)

L2 dt ′

+
∫ t

0

(
�v

�∇h(−�)−1divh (divh vh · vhλ)
∣
∣�v

�v
h
λ

)

L2 dt ′.

Since both ∇h(−�)−1∂3 and ∇h(−�)−1divh are bounded Fourier multiplier, we
get, by applying Lemma 4.2, that

|I6,2| � d2
� 2

−�
(‖vhλ‖

1
2

L̃2
t, f

(
B0, 12

)‖∇hv
h
λ‖

3
2

L̃2
t

(
B0, 12

) + ‖vh‖
L̃∞

t

(
B0, 12

)‖∇hv
h
λ‖2

L̃2
t

(
B0, 12

)
)
.

(5.11)
To handle I6,3, we use div v = divh ūh = 0 to write

I6,3 =
∫ t

0

(
�v

�∇h(−�)−1∂3div (vλv
3) + �v

�∇h(−�)−1∂3divh (ūhv3λ)
∣
∣ �v

�v
h
λ

)

L2 dt ′

=
∫ t

0

(∇h(−�)−1�v
�

(
divh (v3∂3v

h
λ + vh∂3v

3
λ) + 2∂3(v

3∂3v
3
λ)

) ∣
∣ �v

�v
h
λ

)

L2 dt ′

+
∫ t

0

(∇h(−�)−1divh �v
�

(
v3∂3ūh

λ + ūh∂3v
3
λ

) ∣
∣ �v

�v
h
λ

)

L2 dt ′

=
∫ t

0

(
∇h(−�)−1�v

�

(
divh (v3∂3v

h
λ − vhdivh vhλ) − 2∂3(v

3divh vhλ)
) ∣
∣ �v

�v
h
λ

)

L2
dt ′

+
∫ t

0

(
∇h(−�)−1divh �v

�

(
v3∂3ūh

λ − ūhdivh vhλ
) ∣
∣ �v

�v
h
λ

)

L2
dt ′.

Applying (4.11) with A(D) = ∇h(−�)−1∂3, a = v3, b = divh vhλ and c = vhλ
yields

∫ t

0

∣
∣
(∇h(−�)−1∂3�

v
�(v

3divh vhλ)
∣
∣ �v

�v
h
λ

)

L2

∣
∣ dt ′

� d2
� 2

−�‖vhλ‖
1
2

L̃2
t, f

(
B0, 12

)‖∇hv
h
λ‖

3
2

L̃2
t

(
B0, 12

).
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The remaining terms in I6,3 can be handled along the same lines as to those of I6,1
and I6,2. As a consequence, we obtain

|I6,3| � d2
� 2

−�
(
‖vh‖

L̃∞
t

(
B0, 12

)‖∇hv
h
λ‖2

L̃2
t

(
B0, 12

)

+ ‖vhλ‖
1
2

L̃2
t, f

(
B0, 12

)‖∇hv
h
λ‖

1
2

L̃2
t

(
B0, 12

)
(‖∇hv

h
λ‖

L̃2
t

(
B0, 12

) + ‖∂3ūh
λ‖L̃2

t

(
B0, 12

)
))

.

(5.12)
To deal with I6,4, it is crucial to observe that

�v
�∇h

(
(−�)−1 − (−�h)

−1)∂i∂ j (ū
i ū j

λ) = �v
�∇h∂

2
3 (−�)−1(−�h)

−1∂i∂ j (ū
i ū j

λ).

Then due to the fact that
∑2

i, j=1 ∇h∂3(−�)−1(−�h)
−1∂i∂ j is a bounded Fourier

multiplier, we get, by applying (4.11) with a = ūh, b = ∂3ūh
λ, c = vhλ, that

|I6,4| � 2
2∑

i=1

3∑

j=1

∫ t

0

∣
∣
(
�v

�∇h∂3(−�)−1(−�h)
−1∂i∂ j (ū

i∂3ū j
λ)

∣
∣�v

�v
h
λ

)

L2

∣
∣ dt ′

� d2
� 2

−�‖vhλ‖
1
2

L̃2
t, f

(
B0, 12

)‖∇hv
h
λ‖

1
2

L̃2
t

(
B0, 12

)‖∂3ūh
λ‖L̃2

t

(
B0, 12

).

(5.13)
By summing up (5.10–5.13), we arrive at

|I6| � d2
� 2

−�
(
‖vh‖

L̃∞
t

(
B0, 12

)‖∇hv
h
λ‖2

L̃2
t

(
B0, 12

)

+ ‖vhλ‖
1
2

L̃2
t, f

(
B0, 12

)‖∇hv
h
λ‖

1
2

L̃2
t

(
B0, 12

)
(‖∇hv

h
λ‖

L̃2
t

(
B0, 12

) + ‖∂3ūh
λ‖L̃2

t

(
B0, 12

)
))

.

(5.14)
Now we are in a position to complete the proof of (3.17).

Proof of (3.17). By inserting the estimates (5.3–5.6), (5.8) and (5.14) into (5.2),
we achieve

1

2
‖�v

�v
h
λ(t)‖2L2 + λ

∫ t

0
f (t ′)‖�v

�v
h
λ(t ′)‖2L2 dt ′ +

∫ t

0
‖∇h�

v
�v

h
λ(t ′)‖2L2 dt ′

� 1

2
‖�v

�v
h
0‖2L2 + Cd2

� 2
−�

(
‖vh‖

L̃∞
t

(
B0, 12

)‖∇hv
h
λ‖2

L̃2
t

(
B0, 12

)

+ ‖vhλ‖
1
2

L̃2
t, f

(
B0, 12

)
(‖∇hv

h
λ‖

3
2

L̃2
t

(
B0, 12

) + ‖∂3ūh
λ‖

3
2

L̃2
t

(
B0, 12

)
))

.

Multiplying the above inequality by 2�+1 and taking square root of the resulting
inequality, and then summing up the inequalities over Z, we find that

‖vhλ‖
L̃∞

t

(
B0, 12

) + √
2λ‖vhλ‖

L̃2
t, f

(
B0, 12

) + √
2‖∇hv

h
λ‖

L̃2
t

(
B0, 12

)

� ‖vh0‖B0, 12
+ C‖vh‖

1
2

L̃∞
t

(
B0, 12

)‖∇hv
h
λ‖

L̃2
t

(
B0, 12

)

+ C‖vhλ‖
1
4

L̃2
t, f

(
B0, 12

)
(‖∇hv

h
λ‖

3
4

L̃2
t

(
B0, 12

) + ‖∂3ūh
λ‖

3
4

L̃2
t

(
B0, 12

)
)
.

(5.15)
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It follows from Young’s inequality that

C‖vhλ‖
1
4

L̃2
t, f

(
B0, 12

)
(‖∇hv

h
λ‖

3
4

L̃2
t

(
B0, 12

) + ‖∂3ūh
λ‖

3
4

L̃2
t

(
B0, 12

)
)

� 1

10
‖∇hv

h
λ‖

L̃2
t

(
B0, 12

) + ‖∂3ūh
λ‖L̃2

t

(
B0, 12

) + C‖vhλ‖
L̃2

t, f

(
B0, 12

).

Inserting the above inequality into (5.15) and taking λ so that
√
2λ = C , we obtain

‖vhλ‖
L̃∞

t

(
B0, 12

) + 5

4
‖∇hv

h
λ‖

L̃2
t

(
B0, 12

) � ‖vh0‖B0, 12
+ ‖∂3ūh

λ‖L̃2
t

(
B0, 12

)

+ C‖vh‖
1
2

L̃∞
t

(
B0, 12

)‖∇hv
h
λ‖

L̃2
t

(
B0, 12

),

which, together with the following consequence of (5.1):

‖a‖
L̃ p

t (B0, 12 )
exp

(
−λ

∫ t

0
f (t ′) dt ′

)
� ‖aλ‖

L̃ p
t (B0, 12 )

for p = 2 or ∞,

gives rise to (3.17). �

6. The Estimate of the Vertical Component v3v3v3

The purpose of this section is to present the proof of (3.18). Comparedwith [17],
where the third component of the velocity field can be estimated in the standard
Besov spaces, here, due to the additional terms like ūh · ∇hv that appears in (3.14),
we will have to use the weighted Chemin–Lerner norms once again. Indeed for any
constant μ > 0, we denote

wμ(t)
def= w(t)ḡ(t) with ḡ(t)

def= exp
(
−μ

∫ t

0
�(t ′) dt ′

)
and �(t)

def= ‖ūh(t)‖4
B0, 12
4

,

(6.1)
and similar notations for vμ, ūh

μ, and pμ.
By multiplying ḡ(t) to (3.16), we write

∂twμ + μ�(t)wμ − �hwμ + v · ∇v3μ + ūh · ∇hv
3
μ = −∂3 pμ.

By applying �v
� to the above equation and taking L2 inner product of the

resulting equation with �v
�wμ, and then integrating the equality over [0, t], we

obtain

1

2
‖�v

�wμ(t)‖2L2+μ‖√��v
�wμ‖2

L2
t (L2)

+‖∇h�
v
�wμ‖2

L2
t (L2)

= 1

2
‖�v

�u3
0,lh‖2L2−

6∑

i=1

IIi , (6.2)

where

II1
def=

∫ t

0

(
�v

�(ū
h · ∇hwμ)

∣
∣ �v

�wμ

)

L2 dt ′, II2
def=

∫ t

0

(
�v

�(v
h · ∇hwμ)

∣
∣ �v

�wμ

)

L2 dt ′,
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II3
def=

∫ t

0

(
�v

�(v
h
μ · ∇hvF )

∣
∣ �v

�wμ

)

L2 dt ′, II4
def=

∫ t

0

(
�v

�(ū
h
μ · ∇hvF )

∣
∣ �v

�wμ

)

L2 dt ′,

II5
def=

∫ t

0

(
�v

�(v
3∂3v

3
μ)

∣
∣ �v

�wμ

)

L2 dt ′, II6
def=

∫ t

0

(
�v

�∂3 pμ

∣
∣ �v

�wμ

)

L2 dt ′.

Let us handle the above term by term.
• The estimates of II1 and II2

We first get, by applying (4.11) with a = ūh, b = ∇hwμ and c = wμ, that

|II1| � d2
� 2

−�‖wμ‖
1
2

L̃2
t,�

(
B0, 12

)‖∇hwμ‖
3
2

L̃2
t

(
B0, 12

), (6.3)

whereas by applying amodified version of (4.13)witha = vh, b = ∇hwμ, c = wμ

and g(t) = exp
(−μ

∫ t
0 �(t ′) dt ′

)
, we find

|II2| � d2
� 2

−�‖vh‖
1
2

L̃∞
t

(
B0, 12

)‖∇hv
h‖

1
2

L̃2
t

(
B0, 12

)‖wμ‖
1
2

L̃∞
t

(
B0, 12

)‖∇hwμ‖
3
2

L̃2
t

(
B0, 12

).

(6.4)
• The estimate of II3

The estimate of II3 relies on the following lemma, the proof of which will be
postponed until the “Appendix A”:

Lemma 6.1. Let a, c ∈ B0, 12 (T ) and b ∈ B− 1
2 , 12

4 (T ). Then for any smooth homo-
geneous Fourier multiplier, A(D), of degree zero and any � ∈ Z, it holds that

∫ T

0

∣
∣
(

A(D)�v
�(a⊗b)

∣
∣�v

�c
)

L2

∣
∣ dt ′ � d2

� 2
−�‖a‖

L̃4
T (B0, 12

4 )
‖b‖

B− 1
2 , 12

4 (T )
‖c‖

L̃2
T

(
B0, 12

),

(6.5)
and

∫ T

0

∣
∣
(

A(D)�v
�(a ⊗ b)

∣
∣�v

�c
)

L2

∣
∣ dt ′ � d2

� 2
−�‖a‖

L̃2
T

(
B0, 12

)‖b‖
B− 1

2 , 12
4 (T )

‖c‖B0, 12 (T )
.

(6.6)

Remark 6.1. Indeed the proof of Lemma 6.1 shows that ‖b‖
B− 1

2 , 12
4 (T )

in (6.5) and

(6.6) can be replaced by ‖b‖B0, 12 (T )
.

Let us admit this lemma temporarily, and continue our estimate of II3. By using
integration by parts, we write

II3 = −
∫ t

0

(
�v

�(divh vhμ · vF )
∣
∣�v

�wμ

)

L2 dt ′ −
∫ t

0

(
�v

�(v
h
μ ⊗ vF )

∣
∣�v

�∇hwμ

)

L2 dt ′.
(6.7)

Applying (6.6) with a = divh vhμ, b = vF and c = wμ yields
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∣
∣
∣

∫ t

0

(
�v

�(divh vhμ · vF )
∣
∣�v

�wμ

)

L2 dt ′
∣
∣
∣

� d2
� 2

−�‖∇hv
h
μ‖

L̃2
t

(
B0, 12

)‖vF‖
B− 1

2 , 12
4 (t)

‖wμ‖B0, 12 (t)
, (6.8)

whereas by applying (6.5) with a = vhμ, b = vF and c = ∇hwμ, we obtain

∣
∣
∣

∫ t

0

(
�v

�(v
h
μ ⊗ vF )

∣
∣�v

�∇hwμ

)

L2 dt ′
∣
∣
∣

� d2
� 2

−�‖vhμ‖
L̃4

t (B
0, 12
4 )

‖vF‖
B− 1

2 , 12
4 (t)

‖∇hwμ‖
L̃2

t

(
B0, 12

).

Inserting the above two estimates into (6.7) and using (2.6), we achieve

|II3| � d2
� 2

−�‖vF‖
B− 1

2 , 12
4 (t)

‖wμ‖B0, 12 (t)
‖vhμ‖B0, 12 (t)

. (6.9)

• The estimate of II4
Due to divh ūh = 0, by using integration by parts, we write

II4 =
∫ t

0

(
�v

�divh (ūhvF )
∣
∣�v

�wμ

)

L2 ḡ(t
′) dt ′

= −
∫ t

0

(
�v

�(ū
hvF )

∣
∣ �v

�∇hwμ

)

L2 ḡ(t
′) dt ′.

By applying Bony’s decomposition (2.7), we get

II4 = −
∫ t

0

(
�v

�(T
v
ūhvF + Rv(ūh, vF ))

∣
∣ �v

�∇hwμ

)

L2 ḡ(t
′) dt ′.

We first observe that
∫ t

0

∣
∣
(
�v

�(Rv(ūh, vF ))
∣
∣�v

�∇hwμ

)

L2

∣
∣ḡ(t ′) dt ′

�
∑

�′��−N0

∫ t

0
ḡ(t ′)‖�v

�′ ūh(t ′)‖L4
h(L2

v)
‖Sv

�+2vF (t ′)‖L4
h(L∞

v )‖�v
�∇hwμ(t ′)‖L2 dt ′

�
∑

�′��−N0

2− �′
2

∫ t

0
d�′(t ′)ḡ(t ′)‖ūh(t ′)‖

B0, 12
4

‖vF (t ′)‖
B0, 12
4

‖�v
�∇hwμ(t ′)‖L2 dt ′

�
∑

�′��−N0

d�′2− �′
2

∫ t

0
ḡ(t ′)‖ūh(t ′)‖

B0, 12
4

‖vF (t ′)‖
B0, 12
4

‖�v
�∇hwμ(t ′)‖L2 dt ′,

and applying Hölder’s inequality and Proposition 2.1 gives
∫ t

0

∣
∣
(
�v

�(Rv(ūh, vF ))
∣
∣ �v

�∇hwμ

)

L2

∣
∣ḡ(t ′) dt ′

�
∑

�′��−N0

d�′2− �′
2

(∫ t

0
ḡ4(t ′)‖ūh(t ′)‖4

B0, 12
4

dt ′
) 1

4 ‖vF‖
L4

t (B
0, 12
4 )

‖�v
�∇hwμ‖L2

t (L2)
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� μ− 1
4 d2

� 2
−�‖vF‖

B− 1
2 , 12

4 (t)
‖∇hwμ‖

L2
t (B0, 12 )

.

Along the same lines, we find
∫ t

0

∣
∣
(
�v

�(T
v
ūhvF )

∣
∣ �v

�∇hwμ

)

L2

∣
∣ḡ(t ′) dt ′

�
∑

|�′−�|�5

∫ t

0
ḡ(t ′)‖Sv

�′−1ūh(t ′)‖L4
h(L∞

v )‖�v
�vF (t ′)‖L4

h(L2
v)

‖�v
�∇hwμ(t ′)‖L2 dt ′

�
∑

|�′−�|�5

∫ t

0
ḡ(t ′)‖ūh(t ′)‖

B0, 12
4

‖�v
�′vF (t ′)‖L4

h(L2
v)

‖�v
�∇hwμ(t ′)‖L2 dt ′

�
∑

|�′−�|�5

(∫ t

0
ḡ4(t ′)‖ūh(t ′)‖4

B0, 12
4

dt ′
) 1

4 ‖�v
�′vF‖L4

t (L4
h(L2

v))
‖�v

�∇hwμ‖L2
t (L2)

� μ− 1
4 d2

� 2
−�‖vF‖

L̃4
t (B

0, 12
4 )

‖∇hwμ‖
L2

t (B0, 12 )
.

As a result, it turns out that

|II4| � μ− 1
4 d2

� 2
−�‖vF‖

B− 1
2 , 12

4 (t)
‖∇hwμ‖

L̃2
t

(
B0, 12

). (6.10)

• The estimates of II5
Due to ∂3v

3 = −divh vh and v3 = w + vF , we write

II5 =
∫ t

0

(
�v

�(−v3divh vhμ)
∣
∣ �v

�wμ

)

L2 dt ′

= −
∫ t

0

(
�v

�(vFdivh vhμ + wμdivh vh)
∣
∣�v

�wμ

)

L2 .

Then applying (6.6) gives rise to

|II5| � d2
� 2

−�‖∇hv
h‖

L̃2
t

(
B0, 12

)
(‖vF‖

B− 1
2 , 12

4 (t)
+ ‖wμ‖B0, 12 (t)

)‖wμ‖B0, 12 (t)

� d2
� 2

−�‖vh‖B0, 12 (t)

(‖vF‖
B− 1

2 , 12
4 (t)

+ ‖wμ‖B0, 12 (t)

)‖wμ‖B0, 12 (t)
.

(6.11)
• The estimates of II6

The estimate of II6 can be handled similarly as I6. Indeed in view of (5.9), we
write

∂3 p = ∂3(−�)−1divh
(
vh · ∇hv

h + ūh · ∇hv
h + vh · ∇hūh + ūh · ∇hūh

+ v3∂3ūh + v3∂3v
h) + ∂23 (−�)−1(v · ∇v3 + ūh · ∇hv

3).

Accordingly, we have the decomposition II6 = ∑5
i=1 II6,i with

II6,1 =
∫ t

0

(
�v

�∂3(−�)−1divh
(
vh · ∇hv

h
μ + ūh · ∇hv

h
μ + vhμ · ∇hūh) ∣

∣�v
�wμ

)

L2 dt ′,
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II6,2 =
∫ t

0

(
�v

�∂3(−�)−1divh (v3∂3v
h
μ)

∣
∣�v

�wμ

)

L2 dt ′,

II6,3 =
∫ t

0

(
�v

�∂3(−�)−1divh (v3μ∂3ūh)
∣
∣�v

�wμ

)

L2 dt ′,

II6,4 =
∫ t

0

(
�v

�∂
2
3 (−�)−1(v · ∇v3μ + ūh · ∇hv

3
μ)

∣
∣ �v

�wμ

)

L2 dt ′,

II6,5 =
2∑

i=1

2∑

j=1

∫ t

0

(
2�v

�(−�)−1∂i∂ j (ū
i∂3ū j

μ)
∣
∣ �v

�wμ

)

L2 dt ′.

It is easy to observe from the estimate of I6,1 that

|II6,1| � d2
� 2

−�
(
‖vh‖

1
2

L̃∞
t

(
B0, 12

)‖∇hv
h‖

3
2

L̃2
t

(
B0, 12

)‖wμ‖
1
2

L̃∞
t

(
B0, 12

)‖∇hwμ‖
1
2

L̃2
t

(
B0, 12

)

+ ‖wμ‖
1
2

L̃2
t,�

(
B0, 12

)‖∇hwμ‖
1
2

L̃2
t

(
B0, 12

)‖∇hv
h
μ‖

L̃2
t

(
B0, 12

)
)
.

(6.12)
Mean while, by using ∂3v

3 = −divh vh and integration by parts, we write

II6,2 =
∫ t

0

(
�v

�∂3(−�)−1divh [∂3(v3vhμ) − vhμ∂3v
3] ∣

∣�v
�wμ

)

L2 dt ′

= −
∫ t

0

(
�v

�(−�)−1∂23 (v3vhμ)
∣
∣ �v

�∇hwμ

)

L2 dt ′

+
∫ t

0

(
�v

�∂3(−�)−1divh (vhμdivh vh)
∣
∣�v

�wμ

)

L2 dt ′ def= IIa6,2 + IIb6,2.

It follows from (6.5) and v3 = vF + w that
∣
∣IIa6,2

∣
∣ � d2

� 2
−�‖vh‖B0, 12 (t)

(‖vF‖
B− 1

2 , 12
4 (t)

+ ‖wμ‖B0, 12 (t)

)‖wμ‖B0, 12 (t)
,

whereas by using a modified version of (4.13), we infer

∣
∣IIb6,2

∣
∣ � d2

� 2
−�‖vh‖

1
2

L̃∞
t

(
B0, 12

)‖∇hv
h‖

3
2

L̃2
t

(
B0, 12

)‖wμ‖
1
2

L̃∞
t

(
B0, 12

)‖∇hwμ‖
1
2

L̃2
t

(
B0, 12

).

Therefore, we obtain

|II6,2| � d2
� 2

−�‖vh‖B0, 12 (t)

(‖vF‖
B− 1

2 , 12
4 (t)

+ ‖vh‖B0, 12 (t)
+ ‖wμ‖B0, 12 (t)

)‖wμ‖B0, 12 (t)
,

(6.13)

whereas applying (6.6) with a = ∂3ūh, b = v3μ and c = wμ leads to

|II6,3| � d2
� 2

−�‖∂3ūh‖
L̃2

t

(
B0, 12

)
(‖vF‖

B− 1
2 , 12

4 (t)
+ ‖wμ‖B0, 12 (t)

)‖wμ‖B0, 12 (t)
.

(6.14)
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On the other hand, again due to div v = 0, we write

II6,4 =
∫ t

0

(
�v

�∂
2
3 (−�)−1(vh · ∇hwμ + vhμ · ∇hvF + v3∂3v

3
μ

+ ūh · ∇hwμ + ūh · ∇hvF
) ∣
∣�v

�wμ

)

L2 dt ′.

Noticing that (−�)−1∂23 is a bounded Fourier operator, we observe that II6,4 shares
the same estimate as

∑5
i=1 IIi given before, that is,

|II6,4| � d2
� 2

−�
(
‖vh‖B0, 12 (t)

‖wμ‖2
B0, 12 (t)

+ ‖wμ‖
1
2

L̃2
t,�

(
B0, 12

)‖wμ‖
3
2

B0, 12 (t)

+ ‖vF‖
B− 1

2 , 12
4 (t)

(
μ− 1

4 + ‖vhμ‖B0, 12 (t)

)‖wμ‖B0, 12 (t)

)
.

(6.15)

Finally since (−�)−1∂i∂ j is a bounded Fourier operator, we get, by applying
(4.11) with a = ūh, b = ∂3ūh

μ, c = wμ, that

|II6,5| � d2
� 2

−�‖wμ‖
1
2

L̃2
t,�

(
B0, 12

)‖∇hwμ‖
1
2

L̃2
t

(
B0, 12

)‖∂3ūh
μ‖

L̃2
t

(
B0, 12

). (6.16)

By summing (6.12–6.16), we arrive at

|II6| � d2
� 2

−�
((‖vh‖B0, 12 (t)

+ ‖∂3ūh‖
L̃2

t

(
B0, 12

) + ‖wμ‖B0, 12 (t)

)‖wμ‖
1
2

L̃2
t,�

(
B0, 12

)‖wμ‖
1
2

B0, 12 (t)

+ (
μ− 1

4 + ‖∂3ūh
μ‖

L̃2
t

(
B0, 12

) + ‖vh‖B0, 12 (t)

)‖vF‖
B− 1

2 , 12
4

‖wμ‖B0, 12 (t)

+ (‖vh‖B0, 12 (t)
+ ‖∂3ūh‖

L̃2
t

(
B0, 12

)
)‖wμ‖2

B0, 12 (t)
+ ‖vh‖2

B0, 12 (t)
‖wμ‖B0, 12 (t)

)
.

(6.17)
Let us now complete the proof of (3.18).

Proof of (3.18). By inserting the estimates (6.3), (6.4), (6.9–6.11) and (6.17) into
(6.2), and thenmultiplying 2�+1 to the resulting inequality, and finally taking square
root and then summing up the resulting inequalities over Z, we obtain

‖wμ‖
B0, 12 (t)

+ √
2μ‖wμ‖

L̃2
t,�

(
B0, 12

)

� ‖u3
0,lh‖B0, 12

+ C
(‖vh‖

1
2

B0, 12 (t)
+ ‖∂3ūh

μ‖
1
2

L̃2
t

(
B0, 12

)
)‖wμ‖

B0, 12 (t)

+ C
(
‖vh‖

B0, 12 (t)
+ (

μ− 1
8 + ‖vh‖

1
2

B0, 12 (t)
+ ‖∂3ūh‖

1
2

L̃2
t

(
B0, 12

)
)‖vF ‖

1
2

B− 1
2 , 12

4

)
‖wμ‖

1
2

B0, 12 (t)

+ C
(‖vh‖

1
2

B0, 12 (t)
+ ‖∂3ūh‖

1
2

L̃2
t

(
B0, 12

) + ‖wμ‖
1
2

B0, 12 (t)

)‖wμ‖
1
4

L̃2
t,�

(
B0, 12

)‖∇hwμ‖
1
4

B0, 12 (t)
.

Applying Young’s inequality gives

C
(
‖vh‖

B0, 12 (t)
+ (

μ− 1
8 + ‖vh‖

1
2

B0, 12 (t)
+ ‖∂3ūh‖

1
2

L̃2
t

(
B0, 12

)
)‖vF‖

1
2

B− 1
2 , 12

4

)
‖wμ‖

1
2

B0, 12 (t)

� 1

12
‖wμ‖

B0, 12 (t)
+ C

(
μ− 1

4 + ‖vh‖
B0, 12 (t)

+ ‖∂3ūh‖
L̃2

t

(
B0, 12

)
)‖vF ‖

B− 1
2 , 12

4 (t)
+ C‖vh‖2

B0, 12 (t)
,
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and

C
(‖vh‖

1
2

B0, 12 (t)
+ ‖∂3ūh‖

1
2

L̃2
t

(
B0, 12

) + ‖wμ‖
1
2

B0, 12 (t)

)‖wμ‖
1
4

L̃2
t,�

(
B0, 12

)‖wμ‖
1
4

B0, 12 (t)

� 1

12
‖wμ‖B0, 12 (t)

+ C‖wμ‖
L̃2

t,�

(
B0, 12

) + C
(‖vh‖B0, 12 (t)

+ ‖∂3ūh‖
L̃2

t

(
B0, 12

)
)
.

As a result, we have

‖wμ‖
B0, 12 (t)

+ √
2μ‖wμ‖

L̃2
t,�

(
B0, 12

) � ‖u3
0,lh‖B0, 12

+ C‖wμ‖
L̃2

t,�

(
B0, 12

)

+
(1

6
+ C

(‖vh‖
1
2

B0, 12 (t)
+ ‖∂3ūh‖

1
2

L̃2
t

(
B0, 12

)
))‖wμ‖

B0, 12 (t)
+ C

(
‖vh‖

B0, 12 (t)

+ ‖∂3ūh‖
L̃2

t

(
B0, 12

) + ‖vh‖2
B0, 12 (t)

+ (
μ− 1

4 + ‖vh‖
B0, 12 (t)

+ ‖∂3ūh‖
L̃2

t

(
B0, 12

)
)‖vF‖

B− 1
2 , 12

4 (t)

)
.

Taking μ in the above inequality so that
√
2μ = C gives rise to

(5

6
− C

(‖vh‖
1
2

B0, 12 (t)
+ ‖∂3ūh‖

1
2

L̃2
t

(
B0, 12

)
))‖wμ‖B0, 12 (t)

� ‖u3
0,lh‖B0, 12

+ C
(
‖vh‖B0, 12 (t)

+ ‖∂3ūh‖
L̃2

t

(
B0, 12

) + ‖vh‖2
B0, 12 (t)

+ (
1 + ‖vh‖B0, 12 (t)

+ ‖∂3ūh‖
L̃2

t

(
B0, 12

)
)‖vF‖

B− 1
2 , 12

4 (t)

)
.

(6.18)

On the other hand, in view of the definition of u3
0,lh, it holds for any � ∈ Z that

‖�v
�u3

0,lh‖L2 �
∑

| j−�|�1

‖Sh
j−1�

v
j u

3
0‖L2 � d�2

− �
2 ‖u3

0‖B− 1
2 , 12

4

,

which indicates that

‖u3
0,lh‖B0, 12

� ‖u3
0‖B− 1

2 , 12
4

.

Inserting the above estimate into (6.18) and repeating the argument from (4.18) to
(4.19), we conclude the proof of (3.18). �
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Appendix A. The Proof of Lemmas 4.2 and 6.1

In this section, we present the proof of Lemmas 4.2 and 6.1.

Proof of Lemma 4.2. By applying Bony’s decomposition in the vertical variable
(2.7) to a ⊗ b, we write
∫ T

0

(
�v

� A(D)(a ⊗ b)
∣
∣�v

�c
)

L2 dt = Q1 + Q2 with

Q1
def=

∫ T

0

(
�v

� A(D)(T v
a b)

∣
∣�v

�c
)

L2 dt =
∫ T

0

(
�v

�(T
v

a b)
∣
∣A(D)�v

�c
)

L2 dt and

Q2
def=

∫ T

0

(
�v

� A(D)Rv(a, b)
∣
∣�v

�c
)

L2 dt =
∫ T

0

(
�v

� Rv(a, b)
∣
∣A(D)�v

�c
)

L2 dt.

(A.1)
Considering the support properties to the Fourier transform of the terms in T v

a b,
and noting that A(D) is a smooth homogeneous Fourier multiplier of degree zero,
we find

|Q1| �
∫ T

0
‖�v

�(T
v

a b)‖
L

4
3
h (L2

v)
‖A(D)�v

�c‖L4
h(L2

v)
dt

�
∑

|�′−�|�5

∫ T

0
‖Sv

�′−1a‖L4
h(L∞

v )‖�v
�′ b‖L2‖A(D)�v

�c‖
1
2
L2‖∇h A(D)�v

�c‖
1
2
L2 dt

�
∑

|�′−�|�5

(∫ T

0
‖Sv

�′−1a(t)‖4
L4
h(L∞

v )
‖�v

�c(t)‖2L2 dt
) 1

4 ‖�v
�′ b‖L2

T (L2)‖∇h�
v
�c‖

1
2

L2
T (L2)

.

It follows from Lemma 2.1 and Definition 2.4 that

‖Sv
�′−1a(t)‖L4

h(L∞
v ) �

∑

j��′−2

‖�v
j a(t)‖L4

h(L∞
v )

�
∑

j��′−2

2
j
2 ‖�v

j a(t)‖L4
h(L2

v)
� ‖a(t)‖

B0, 12
4

.

This together with Definition 2.2 ensures that

|Q1| � d2
� 2

−�‖c‖
1
2

L̃2
T,f(B0, 12 )

‖b‖
L̃2

T

(
B0, 12

)‖∇hc‖
1
2

L̃2
T

(
B0, 12

). (A.2)

Along the same lines, we get, by applying (2.5), that

|Q1,g| def=
∫ T

0

∣
∣
(
�v

�(T
v

a b)
∣
∣A(D)�v

�c
)

L2

∣
∣g2 dt

�
∑

|�′−�|�5

‖√gSv
�′−1a‖L4

T (L4
h(L∞

v ))‖g�v
�′ b‖L2

T (L2)‖�v
�c‖

1
2
L∞

T (L2)
‖g∇h�

v
�c‖

1
2

L2
T (L2)

� d2
� 2

−�‖a‖
1
2

L̃∞
T

(
B0, 12

)‖g∇ha‖
1
2

L̃2
T

(
B0, 12

)‖gb‖
L̃2

T

(
B0, 12

)‖c‖
1
2

L̃∞
t

(
B0, 12

)‖g∇hc‖
1
2

L̃2
T

(
B0, 12

).

(A.3)
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On the other hand, once again considering the support properties to the Fourier
transform of the terms in Rv(a, b), we find

|Q2| �
∫ T

0
‖�v

� Rv(a, b)‖
L

4
3
h (L2

v)
‖A(D)�v

�c‖L4
h(L2

v)
dt

�
∑

�′��−N0

∫ T

0
‖�v

�′a‖L4
h(L2

v)
‖Sv

�′+2b‖L2
h(L∞

v )‖A(D)�v
�c‖

1
2
L2‖∇h A(D)�v

�c‖
1
2
L2 dt

�
∑

�′��−N0

2− �′
2

∫ T

0
d�′ (t)‖a(t)‖

B0, 12
4

‖b(t)‖L2
h(L∞

v )‖�v
�c(t)‖

1
2
L2‖∇h�

v
�c(t)‖

1
2
L2 dt

�
∑

�′��−N0

d�′2− �′
2

∫ T

0
‖a(t)‖

B0, 12
4

‖b(t)‖L2
h(L∞

v )‖�v
�c(t)‖

1
2
L2‖∇h�

v
�c(t)‖

1
2
L2 dt.

It follows from Lemma 2.1 however that

‖b‖L2
T (L2

h(L∞
v )) �

∑

�∈Z

2
�
2 ‖�v

�b‖L2
T (L2) � ‖b‖

L̃2
T

(
B0, 12

).

As a result, by virtue of Definition 2.2, we obtain

|Q2| �
∑

�′��−N0

d�′2− �′
2

(∫ T

0
‖a(t)‖4

B0, 12
4

‖�v
�c(t)‖2L2 dt

) 1
4 ‖∇h�

v
�c‖

1
2

L2
T (L2)

‖b‖
L̃2

T

(
B0, 12

)

�
∑

�′��−N0

d�′2− �′
2

(
d�2

− �
2 ‖c‖

L̃2
T,f

(
B0, 12

)
) 1

2 (
d�2

− �
2 ‖∇hc‖

L̃2
T

(
B0, 12

)
) 1
2 ‖b‖

L̃2
T

(
B0, 12

)

� d2
� 2

−�‖c‖
1
2

L̃2
T,f

(
B0, 12

)‖∇hc‖
1
2

L̃2
T

(
B0, 12

)‖b‖
L̃2

T

(
B0, 12

).

(A.4)
Similarly, thanks to (2.5), one has

|Q2,g| def=
∫ T

0

∣
∣
(
�v

� Rv(a, b)
∣
∣A(D)�v

�c
)

L2

∣
∣g2 dt

�
∑

�′��−N0

‖√g�v
�′a‖L4

T (L4
h(L2

v))
‖gSv

�′+2b‖L2
T (L2

h(L∞
v ))

(‖�v
�c‖L2

T (L2)‖g∇h�
v
�c‖L2

T (L2)

) 1
2

� d2
� 2

−�‖a‖
1
2

L̃∞
T

(
B0, 12

)‖g∇ha‖
1
2

L̃2
T

(
B0, 12

)‖gb‖
L̃2

T

(
B0, 12

)‖c‖
1
2

L̃∞
T

(
B0, 12

)‖g∇hc‖
1
2

L̃2
T

(
B0, 12

).

(A.5)
Combining (A.2) with (A.4) gives (4.11), and (4.13) follows from (A.3) and (A.5).
It remains to prove (4.12). Similarly to the proof of (A.2), we write

|Q1| �
∑

|�′−�|�5

∫ T

0
‖Sv

�′−1a‖L4
h(L∞

v )‖�v
�′b‖L4

h(L2
v)

‖A(D)�v
�c‖L2 dt

�
∑

|�′−�|�5

∫ T

0
‖a(t)‖

B0, 12
4

‖�v
�′b(t)‖

1
2
L2‖�v

�′∇hb(t)‖
1
2
L2‖�v

�c(t)‖L2 dt
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�
∑

|�′−�|�5

(∫ T

0
‖a(t)‖4

B0, 12
4

‖�v
�′b(t)‖2L2 dt

) 1
4 ‖�v

�′∇hb‖
1
2

L2
T (L2)

‖�v
�c‖L2

T (L2),

from which, along with Definition 2.2, we infer

|Q1| � d�2
− �

2
∑

|�′−�|�5

d�′2− �′
2 ‖b‖

1
2

L̃2
T,f

(
B0, 12

)‖∇hb‖
1
2

L̃2
T

(
B0, 12

)‖c‖
L̃2

T

(
B0, 12

)

� d2
� 2

−�‖b‖
1
2

L̃2
T,f

(
B0, 12

)‖∇hb‖
1
2

L̃2
T

(
B0, 12

)‖c‖
L̃2

T

(
B0, 12

).

(A.6)

We deduce from Definition 2.4 that

|Q2| �
∑

�′��−N0

∫ T

0
‖�v

�′a‖L4
h(L2

v)
‖Sv

�′+2b‖L4
h(L∞

v )‖A(D)�v
�c‖L2 dt

�
∑

�′��−N0

d�′2− �′
2

∫ T

0
‖a(t)‖

B0, 12
4

‖b(t)‖L4
h(L∞

v )‖�v
�c(t)‖L2 dt

� d�2
− �

2 ‖c‖
L̃2

T

(
B0, 12

)
∑

�′��−4

d�′2− �′
2

(∫ T

0
‖a(t)‖2

B0, 12
4

‖b(t)‖2
L4
h(L∞

v )
dt

) 1
2
,

whereas we get, by applying the triangle inequality and Lemma 2.1, that

(∫ T

0
‖a(t)‖2

B0, 12
4

‖b(t)‖2
L4
h(L∞

v )
dt

) 1
2

�
∑

�∈Z

2
�
2

(∫ T

0
‖a(t)‖2

B0, 12
4

‖��b(t)‖L2‖∇h��b(t)‖L2 dt
) 1

2

�
∑

�∈Z

2
�
2

(∫ T

0
‖a(t)‖4

B0, 12
4

‖��b(t)‖2L2 dt
) 1

4 ‖∇h��b‖
1
2

L2
T (L2)

� ‖b‖
1
2

L̃2
T,f

(
B0, 12

)‖∇hb‖
1
2

L̃2
T

(
B0, 12

).

This in turn shows that

|Q2| � d2
� 2

−�‖c‖
L̃2

T

(
B0, 12

)‖b‖
1
2

L̃2
T,f

(
B0, 12

)‖∇hb‖
1
2

L̃2
T

(
B0, 12

),

which, together with (A.6), ensures (4.12). This completes the proof of Lemma 4.2.
�
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Proof of Lemma 6.1. Let Q1 be given by (A.1). We first get, by a similar derivation
of (A.2), that

|Q1| �
∑

|�′−�|�5

‖Sv
�′−1a‖L4

T (L4
h(L∞

v ))‖�v
�′b‖L4

T (L4
h(L2

v))
‖A(D)�v

�c‖L2
t (L2)

� d�2
− �

2
∑

|�′−�|�5

d�′2− �′
2 ‖a‖

L̃4
T (B0, 12

4 )
‖b‖

L̃4
T (B0, 12

4 )
‖c‖

L̃2
T (B0, 12 )

,

which, together with Proposition 2.1, implies that

|Q1| � d2
� 2

−�‖a‖
L̃4

T (B0, 12
4 )

‖b‖
B− 1

2 , 12
4 (T )

‖c‖
L̃2

T

(
B0, 12

). (A.7)

For Q2 given by (A.1), we get, by a similar derivation of (A.4), that

|Q2| �
∑

�′��−N0

‖�v
�′a‖L4

T (L4
h(L2

v))
‖Sv

�′+2b‖L4
T (L4

h(L∞
v ))‖A(D)�v

�c‖L2
T (L2)

� d�2
− �

2
∑

�′��−N0
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2 ‖a‖

L̃4
T (B0, 12

4 )
‖b‖

L̃4
T (B0, 12

4 )
‖c‖

L̃2
T (B0, 12 )

,

from which, with Proposition 2.1, we infer

|Q2| � d2
� 2

−�‖a‖
L̃4

T (B0, 12
4 )

‖b‖
B− 1

2 , 12
4 (T )

‖c‖
L̃2

T

(
B0, 12

).

This, together with (A.1) and (A.7), ensures (6.5).
The inequality (6.6) can be proved similarly. As a matter of fact, we observe that

|Q1| �
∑

|�′−�|�5

‖Sv
�′−1a‖L2

T (L2
h(L∞

v ))‖�v
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�c‖L4
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h(L2
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�
∑
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‖Sv
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T (L2
h(L∞
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�′b‖L4

T (L4
h(L2

v))
‖�v

�c‖
1
2
L∞

T (L2)
‖�v

�∇hc‖
1
2

L2
T (L2)
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− �

2
∑
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and

|Q2| �
∑

�′��−N0

‖�v
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T (L2)‖Sv
�′+2b‖L4

T (L4
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�c‖L4

T (L4
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v))
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2
∑
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d�′2− �′
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4 )

‖c‖B0, 12 (T )
.

Then (6.6) follows from Proposition 2.1. This completes the proof of this lemma.
�
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