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Abstract

We study the dynamics of a system of N interacting bosons in a disc-shaped
trap, which is realised by an external potential that confines the bosons in one spatial
dimension to an interval of length of order ¢. The interaction is non-negative and
scaled in such a way that its scattering length is of order ¢/N, while its range
is proportional to (¢/N)? with scaling parameter 8 € (0, 1]. We consider the
simultaneous limit (N, ¢) — (00, 0) and assume that the system initially exhibits
Bose-Einstein condensation. We prove that condensation is preserved by the N-
body dynamics, where the time-evolved condensate wave function is the solution of
a two-dimensional non-linear equation. The strength of the non-linearity depends
on the scaling parameter 8. For 8 € (0, 1), we obtain a cubic defocusing non-
linear Schrodinger equation, while the choice 8 = 1 yields a Gross—Pitaevskii
equation featuring the scattering length of the interaction. In both cases, the coupling
parameter depends on the confining potential.

1. Introduction

For two decades, it has been experimentally possible to realise quasi-two di-
mensional Bose gases in disc-shaped traps [21,44,46]. The study of such sys-
tems is of particular physical interest since they permit the detection of inherently
two-dimensional effects and serve as models for different statistical physics phe-
nomena [24,25,50]. In this article, our aim is to contribute to the mathematically
rigorous understanding of such systems. We consider a Bose-Einstein condensate
of N identical, non-relativistic, interacting bosons in a disc-shaped trap, which ef-
fectively confines the particles in one spatial direction to an interval of length ¢.
We study the dynamics of this system in the simultaneous limit (N, &) — (o0, 0),
where the Bose gas becomes quasi two-dimensional. To describe the N bosons, we
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use the coordinates
7= (x,y) e R*,

where x denotes the two longitudinal dimensions and y is the transverse dimension.
The confinement in the y-direction is modelled by the scaled potential glz vt (%)
for0 < ¢ <« 1 and some VL : R — R. In units such that 4 = 1 and m = %, the
Hamiltonian is given by

N

H,Mg(t)=Z<—Aj+glzv¢(%)+vl(t,zj))+ 37w -z,

j=1 1<5i<j<N
(1)

where A denotes the Laplace operator on R3 and VIl : R x R? — Ris an additional
external potential, which may depend on time. The interaction w, g between the
particles is purely repulsive and scaled in dependence of the parameters N and ¢. In
this paper, we consider two fundamentally different scaling regimes, corresponding
to different choices of the scaling parameter 8 € R: B € (0, 1) yields the non-linear
Schrodinger (NLS) regime, while 8 = 1 is known as the Gross—Pitaevskii regime.
Making use of the parameter

the Gross—Pitaevskii regime is realised by scaling an interaction w : R — R,
which is compactly supported, spherically symmetric and non-negative, as

Z

1
(@) = (ﬁ) . @)

For the NLS regime, we will consider a more generic form of the interaction (see
Definition 2.2). For the length of this introduction, let us focus on the special case

wup@) = pn' P w (uPz) 3)

with 8 € (0, 1). Clearly, (2) equals (3) with the choice 8 = 1. Both scaling regimes
describe very dilute gases, and we comment on their physical relevance below.

The N-body wave function wN*S(t) € L%F(RW) = ®£§mL2(R3) attimet € R
is determined by the Schrodinger equation

{i%ww(r) = Hy, p()yN4 (1) @

YN 0) = e,

with initial datum 1//6\7 € e L%r (R3N). We assume that this initial state exhibits Bose—

Einstein condensation, i.e., that the one-particle reduced density matrix y]/(lll\z,g of

N 0
,€
vt
1
y]j,NL = Tra NIV ) W e, (5)
0
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converges to a projection onto the so-called condensate wave function ¢ € L2(R3).
At low energies, the strong confinement in the transverse direction causes the con-
densate wave function to factorise in the limit ¢ — 0 into a longitudinal part
@y € L%(R?) and a transverse part x¢ € L3(R),

@5 (z) = Po(x) x*(y)

(see Remark 2.2b). The transverse part x° is given by the normalised ground state
2 ) . .
of —;7 + S%VJ‘(%), which is defined by

d? 1yl (- E
(i + 2V (G)) 0 = B

.. . 2
Here, E( denotes the minimal eigenvalue of the unscaled operator —;7 + v,
corresponding to the normalised ground state x. The relation of x¢ and y is

X0 =z (3) (©)

By [22, Theorem 1], x ¢ is exponentially localised on a scale of order ¢ for suitable
confining potentials V-, such as harmonic potentials or smooth, bounded potentials
that admit at least one bound state below the essential spectrum.

In this paper, we derive an effective description of the many-body dynamics
¥N¢(1). We show that if the system initially forms a Bose—Einstein condensate
with factorised condensate wave function, then the dynamics generated by H,, (1)
preserve this property. Under the assumption that

1
v e = leb)eil| =0,

lim Tr L2 (R3) "
0

(N,g)—(00,0)

where the limit (N, ¢) — (00, 0) is taken along a suitable sequence, we show that

1
Trgagen [Vt — 19 O) @ 0l =0,

lim
(N,&)—(00,0)

with time-evolved condensate wave function ¢°(t) = @ (¢) x . While the transverse
part of the condensate wave function remains in the ground state, merely undergoing
phase oscillations, the longitudinal part is subject to a non-trivial time evolution. We
show that this evolution is determined by the two-dimensional non-linear equation

:i%@(r, x) = (—Ax + VI, (x,0)) + bg| (2, x)|?) D(t, x) =: hg()D(t, x)

®(0) = .
@)

The coupling parameter bg in (7) depends on the scaling regime and is given by
||w||L‘(R3)/ x(Itdy  for e (0, 1),
R

bﬁ =
8 /ﬂé X ()l*dy for = 1,
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where a denotes the scattering length of w (see Section 3.2 for a definition). The
evolution equation (7) provides an effective description of the dynamics. Since the
N bosons interact, it contains an effective one-body potential, which is given by the
probability density N |®(z)|? times the two-body scattering process times a factor
fR |x¢(y)[*dy from the confinement. At low energies, the scattering is to leading
order described by the s-wave scattering length a, g of the interaction w, g, which
scalesas a, g ~ u for the whole parameter range 8 € (0, 1] (see [18, Lemma A.1])
and characterises the length scale of the inter-particle correlations.

For the regime B € (0, 1), we find a, g < ,uﬁ, i.e., the scattering length is
negligible compared to the range of the interaction in the limit (N, &) — (o0, 0).
In this situation, the first order Born approximation 87ay, g ~ [p3 wy g(z)dz is a
valid description of the scattering length and yields above coupling parameter bg
for B € (0, 1).

In the scaling regime 8 = 1, the first order Born approximation breaks down
since a,1 ~ w, which implies that the correlations are visible on the length scale
w of the interaction even in the limit (N, ) — (oo, 0). Consequently, the coupling
parameter by contains the full scattering length, which makes (7) a Gross—Pitaevskii
equation.

Physically, the scaling 8 = 1 is relevant because it corresponds to an (N, ¢)-
independent interaction via a suitable coordinate transformation. In the Gross—
Pitaevskii regime, the kinetic energy per particle (in the longitudinal directions)
is of the same order as the total energy per particle (without counting the energy
from the confinement or the external potential). For N bosons which interact via
a potential with scattering length A in a trap with longitudinal extension L and
transverse size gL, the former scales as Eyj, ~ L~2. The latter can be computed
as Ewra ~ Aozg ~ AN/ (L38), where 034 denotes the particle density. Both
quantities being of the same order implies the scaling condition A/L ~ ¢/N.

The choice A ~ 1 entails L ~ N /¢ and corresponds to an (N, ¢)-independent
interaction potential. Hence, to capture N bosons in a strongly asymmetric trap
while remaining in the Gross—Pitaevskii regime, one must increase the longitudinal
length scale of the trap as N /e and the transverse scale as N. For our analysis, we
choose to work instead in a setting where L ~ 1, thus we consider interactions with
scattering length A ~ ¢/N. Both choices are related by the coordinate transform
z — (g/N)z, which comes with the time rescaling r — (g/N)?t in the N-body
Schrodinger equation (4).

For the scaling regime 8 € (0, 1), there is no such coordinate transform relating
wy, g to a physically relevant (N, ¢)-independent interaction. We consider this case
mainly because the derivation of the Gross—Pitaevskii equation for § = 1 relies
on the corresponding result for § € (0, 1). The central idea of the proof is to
approximate the interaction w, by an appropriate potential with softer scaling
behaviour covered by the result for 8 € (0, 1), and to control the remainders
from this substitution. We follow the approach developed by Pickl in [43], which
was adapted to the problem with strong confinement in [9] and [10], where an
effectively one-dimensional NLS resp. Gross—Pitaevskii equation was derived for
three-dimensional bosons in a cigar-shaped trap. The model considered in [9,10]
is analogous to our model (1) but with a two-dimensional confinement, i.e., where
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(x,y) € R'*2. Since many estimates are sensitive to the dimension and need to
be reconsidered, the adaptation to our problem with one-dimensional confinement
is non-trivial. A detailed account of the new difficulties is given in Remarks 3.1
and 3.2.

To the best of our knowledge, the only existing derivation of a two-dimensional
evolution equation from the three-dimensional N-body dynamics is by Chen and
Holmer in [13]. Their analysis is restricted to the range 8 € (0, %), which in
particular does not include the physically relevant Gross—Pitaevskii case. In this
paper, we extend their result to the full regime 8 € (0, 1] and include a larger
class of confining traps as well as a possibly time-dependent external potential. We
impose different conditions on the parameters N and &, which are stronger than in
[13] for small B but much less restrictive for larger 8 (see Remark 2.3). Related
results for a cigar-shaped confinement were obtained in [9,10,14,31].

Regarding the situation without strong confinement, the first mathematically
rigorous justification of a three-dimensional NLS equation from the quantum many-
body dynamics of three-dimensional bosons with repulsive interactions was by
Erd6s, Schlein and Yau in [18], who extended their analysis to the Gross-Pitaevskii
regime in [19]. With a different approach, Pickl derived effective evolution equa-
tions for both regimes [43], providing also estimates of the rate of convergence.
Benedikter, De Oliveira and Schlein proposed a third and again different strategy
in [5], which was then adapted by Brennecke and Schlein in [11] to yield the op-
timal rate of convergence. For two-dimensional bosons, effective NLS dynamics
of repulsively interacting bosons were first derived by Kirkpatrick, Schlein and
Staffilani in [32]. This result was extended to more singular scalings of the interac-
tion, including the Gross—Pitaevskii regime, by Leopold, Jeblick and Pickl in [28],
and two-dimensional attractive interactions were covered in [15,30,34]. Further
results concerning the derivation of effective dynamics for interacting bosons were
obtained, e.g., in [1,3,16,29,33,39,40,48].

The dimensional reduction of non-linear one-body equations was studied in [4]
by Ben Abdallah, Méhats, Schmeiser and Weishidupl, who consider an n + d-
dimensional NLS equation with a d-dimensional quadratic confining potential. In
the limit where the diameter of this confinement converges to zero, they obtain an
effective n-dimensional NLS equation. A similar problem for a cubic NLS equation
in a quantum waveguide, resulting in a limiting one-dimensional equation, was
covered by Méhats and Raymond in [38], and the corresponding problem for the
linear Schrodinger equation was studied, e.g., in [17,49].

The remainder of the paper is structured as follows: in Section 2, we state
our assumptions and present the main result. The strategy of proof for the NLS
scaling is explained in Section 3.1, while the Gross—Pitaevskii scaling is covered
in Section 3.2. Section 3.3 contains the proof of our main result, which depends
on five propositions. Section 4 collects some auxiliary estimates, which are used in
Sections 5 and 6 to prove the propositions for 8 € (0, 1) and B = 1, respectively.

Notation. We use the notations ASB, A2 B and A ~ B to indicate that there exists
a constant C > 0 independent of ¢, N, ¢, wév’s, ®g such that A < CB,A > CB
or A = CB, respectively. This constant may, however, depend on the quantities
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fixed by the model, such as VL, x and VI, In addition, we will exclusively use the
symbol = to denote the weighted many-body operators from Definition 3.1 and use
the abbreviations

<<', >> =(, ‘)LZ(RW) o = 2 sy and ||-llop := Il 22 any)-

Finally, we write x* and x ~ to denote (x+0) and (x —o ) for any fixed o > 0, which
is to be understood in the following sense: let the sequence (N, €,)nen — (00, 0).
Then
f(N,&) SN :& foranyo >0, f(Np,en) < N,l_x+° for sufficiently large n,
f(N,e) <e¥ & foranyo >0, f(Np,en) < ey~ for sufficiently large n,
F(N,&) S o foranyo >0, f(Np,en) < k™9 for sufficiently large n.
Note that these statements concern fixed o in the limit (N, &) — (o0, 0) and do in

general not hold uniformly as 0 — 0. In particular, the implicit constants in the
notation < may depend on o.

2. Main Result

Our aim is to derive an effective description of the dynamics "¢ (¢) in the
simultaneous limit (N, ) — (00, 0). To this end, we consider families of initial
data w(z)v ** along sequences (N,,, ,) with the following two properties:

Definition 2.1. Let {(Ny, €x)},en € N x (0, 1) such that lim,— 00 (Np, €,) =
(00, 0), and let u, := &,/N,. The sequence is called

e (®-)admissible, if

c®
lim = = N,e®~! =0,
n—o0 I,Ln

o (I'-)moderately confining, if

Our result holds for sequences (N, ¢) that are (0, I') g-admissible with param-
eters

1 3
- =T'<®<-= Be),
l<IF<®<3 B =1
The admissibility condition implies that £#©/# <« 1. Hence, by imposing this

condition, we ensure that the diameter ¢ of the confining potential does not shrink
too slowly compared to the range 1# of the interaction. Consequently, the energy
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gap above the transverse ground state, which scales as £ 72, is always large enough
to sufficiently suppress transverse excitations. Clearly, it is necessary to choose
® > 1, and the condition is weaker for larger ®.

In the proof, we require the admissibility condition to control the orthogonal ex-
citations in the transverse direction (see Remark 3.1), which results in the respective
upper bound for ©. The threshold ® = 3% admits N ~ ¢~2, which has a physical
implication: if the confinement is realised by a harmonic trap V1 (y) = w?y?, the
frequency w, of the rescaled oscillator =2V 1 (y/e) scales as w, = ws~2. Hence,
© = 3% means that the frequency of the confining trap grows proportionally to N.

The moderate confinement condition implies that, for sufficiently large N and
small ¢,

B
B <1 pew
—=N"dT <1l & e )

ir<<1 g =1l.
&

Moderate confinement means that & does not shrink too fast compared to u”. For
B € (0, 1), it implies that the interaction is always supported well within the
trap. This is automatically true for f = 1 because j/e = N~', but we require a
somewhat stronger condition to handle the Gross—Pitaevskii scaling (see Remark
3.2). This leads to the additional moderate confinement condition for § = 1 with
parameter ' > 1, which is clearly a weaker restriction for smaller I', and we expect
this to be a purely technical condition (see Remark 2.3d). The upper bound I' <
® is necessary to ensure the mutual compatibility of admissibility and moderate
confinement.

From a technical point of view, the moderate confinement condition allows us
to compensate for certain powers of ¢! in terms of powers of N~!, while the
admissibility condition admits the control of powers of N by powers of ¢.

To visualise the restrictions due to admissibility and moderate confinement, we
plot in Fig. 1 the largest possible subset of the parameter space N x [0, 1] which
can be covered by our analysis. A sequence (N, ¢) — (00, 0) passes through this
space from the top right to the bottom left corner. The two boundaries correspond
to the two-stage limits where first N — oo at constant ¢ and subsequently ¢ — 0,
and vice versa. The edge cases are not contained in our model.

The sequences (N, ¢) — (oo, 0) within the dark grey region in Fig. 1 are cov-
ered by our analysis and yield an NLS or Gross—Pitaevskii equation, respectively.
Naturally, these restrictions are meaningful only for sufficiently large N and small
&, which implies that mainly the section of the plot around the bottom left corner is
of importance. The white region in figures (a) to (c) is excluded from our analysis
by the admissibility condition. In figure (d), there is an additional prohibited region
due to moderate confinement. Note that Chen and Holmer impose constraints which
are weaker for small 8 and stronger for larger 8 € (O, %), which are discussed in
Remark 2.3 and plotted in Fig. 2.

The light grey region in Fig. 1, which is present for 8 € (0, 1), is not contained
in Theorem 1 as a consequence of the moderate confinement condition. We expect
the dynamics in this region to be described by an effective equation with coupling
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N1 1 N1

(©p=35 @p=1
Fig. 1. Best possible coverage of the parameter space N x [0, 1] for some exemplary choices
of B € (0, 1) andfor B = 1. We chose the least restrictive conditions satisfying Definition 2.1,
ie, (©,Ig = (%_, %) and (©,T); = (3,17). To make the moderate confinement
condition ' = 17T for B = 1 visible, we implemented it as ' = 1.01. Theorem 1 applies
in the dark grey area, while the white region is excluded from our analysis. In the light grey

part, we expect the dynamics to be effectively described by a free evolution equation. Plotted
with Matplotlib [26]

parameter bg = 0 since it corresponds to the condition ¢/ uf <« 1, implying
that the confinement shrinks much faster than the interaction. Consequently, the
interaction is predominantly supported in a region that is essentially inaccessible to
the bosons, which results in a free evolution equation. For 8 < % and a cigar-shaped
confinement by Dirichlet boundary conditions, this was shown in [31].

As mentioned above, we will consider interactions in the NLS scaling regime
B € (0, 1) which are of a more generic form than (3).

Definition 2.2. Let 8 € (0, 1) and n > 0. Define the set g ;, as the set containing
all families

wyp:(0,1) — L®(R3 R), W= Wy B,
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such that for any u € (0, 1)

@) lNwppllpoegs S u'3F,

(b) wy,pg is non-negative and spherically symmetric,
(¢) op := diam(suppw, g) ~ u?,

d i b ~ lim b —0,

D oSt [PpNr8) = oy M) ﬁ’N’g(w”’ﬁ)‘

where

b,B,N,s(wMﬂ)ZZN/U)M,ﬁ(Z)dZ/|X€(y)|4dy=,u*1‘/wu,ﬂ(z)dz\/b((y)ﬁdy.
R3 R R3 R

In the sequel, we will abbreviate bg y (W, 8) = bg N e

Condition (d) in Definition 2.2 regulates how fast the (V, ¢)-dependent coupling
parameter bg y . converges toits limitas (N, €) — (oo, 0). For the special case (3),
we find that bg v e = w1 (g3 fR Ix () [*dy is independent of N and &, hence
this interaction is contained in W, for any choice of n > 0.

Throughout the paper, we will use two notions of one-particle energies:

e The “renormalised” energy per particle: for € D(Hﬂ,ﬁ(t)%),
Ey (0= <<vf Hﬂ,ﬁ(rw» -2, (10)

where E( denotes the lowest eigenvalue of —;}% + Vl(y).

e The effective energy per particle: for & € H'(R?) and b € R,

(1) == (cp, (—Ax + v, (x,0)) + §|c1>|2) c1>> (11

L2(R2)
We can now state our assumptions:

Al Interaction potential.

e Be€(0,1): Letwy g€ Wg, forsomen > 0.
e B =1:Letw, be given by (2) with w € L*®(R3, R) spherically symmetric,
non-negative and with suppw C {z € R3 : |z] £ 1}.

A2 Confining potential. Let V+ : R — R such that — % + V- is self-adjoint and

has a non-degenerate ground state y with energy Eg < inf oess(—Ay + v,
Assume that the negative part of V< is bounded and that X € Cg (R),i.e., x is
bounded and twice continuously differentiable with bounded derivatives. We
choose x normalised and real.

A3 External field. Let VI R x R3 — R such that for ﬁxed; eR3 Vi, 7 e
C'(R). Further, assume that foreach fixedr € R, VI (z, ), VI(z, -) € L2 RN
C'(R3) and 3, VI, ), 3,VI@, ) € L¥R?).
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A4 Initial data. Let (N, e) — (00, 0) be admissible and moderately confining
with parameters (®, I')g satisfying (8). Assume that the family of initial
data y)"* € D(H,5(0)) N LLR*N) with [y ° 1> = 1, is close to a con-
densate with condensate wave function ¢j = ®gx* for some normalised
®g € H*(R?), i.e.,

. (1) 3 e
T T — | Do x®) (D ‘ —0. 12
oo o) TLEED |V N |Pox ") (Pox”| (12)
Further, let
. 1// D
1 o (0 E00)| =0. 13
wem wﬂﬂ( ) =&, ( )‘ (13)

In our main result, we prove the persistence of condensation in the state ¢°(¢) =
@ (1) x € forinitial data 1//6\7 ** from A4. Naturally, we are interested in times for which
the condensate wave function ®(¢) exists, and, moreover, we require H 4(R?)-
regularity of ®(¢) for the proof. Let us therefore introduce the maximal time of
H*(R?)-existence,

TS -

o = sup {r € RY @ ()| g2y < 00} . (14

where ® () is the solution of (7) with initial datum ®( from A4.

Remark 2.1. The regularity of the initial data is for many choices of V!l propagated
by the evolution (7). For several classes of external potentials, global existence in
H*(R?)-sense and explicit bounds on the growth of || ®(7)]| m4(r2) are known:

e The case without external field, V! = 0, was covered in [47, Corollary 1.3]:
for initial data ®y € H¥(R?) with k > 0, there exists C; > 0 depending on
|| CD() ”Hk (RZ) such that

4+
D) | ey < Ce(X+ 11D 75 Dol e w2

for all + € R. If the initial data are further restricted to the set

= {f e L’ : I fllse = Y 1x%0f fllpame < oo} c H'R?),

lo|+1B1=k

the bound is even uniform in ¢ € R. This is, for &g € >k there exists C > 0
such that

PO g2y < €

forall + € R [12, Section 1.2].

e For time-dependent external potentials VI, (x,0)) that are at most quadratic
in x uniformly in time, global existence of H*(R?)-solutions with double ex-
ponential growth was shown in [12, Corollary 1.4] for initial data &y € £*:
Assume that VII(-, (-, 0)) € Ly (R x R?) is real-valued such that the map
x = VI, (x,0))is C®°(R?), the map x — V (1, (x, 0)) is C*°(R?) for almost
all t € R, and the map ¢ — SUP| (< VI, (x,0))] is L (R). Moreover, let
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VI, (-,0)) € L¥R x R?) for all @ € N? with |a| = 2. Let &y € X¥(R?)
with k 2 2. Then there exists a constant C > 0 such that

C
1D @) g gey < Ce

for all + € R. In case of a time-independent harmonic potential and initial data
®( € X, this can be improved to an exponential rather than double exponen-
tial bound. Note, however, that unbounded potentials 14 (t, z) are excluded by
assumption A3.

Theorem 1. Let 8 € (0, 1] and assume that the potentials w, g, VL and VI satisfy
Al —A3. Let w(j)v’s be a family of initial data satisfying A4, let Yy * (t) denote the
solution of (4) with initial datum 1,0(])\]’5 o

, and let y denote its one-particle

YD)
reduced density matrix as in (5). Then forany 0 < T < T;’ﬁ,
: (1) P €
lim sup Tr eon — | D) D (1) =0, (15)
(N,a)—)(oo,O) [e[()’pT] J/v/N(t) | X >< X |
. N.,e 0]
lim sup |ES 00 - 00| =0, (16)
(N,8)—>(00,0) te[o,pT] Wb bs

where the limits are taken along the sequence from A4. Here, ®(t) is the solution
of (7) with initial datum ®(0) = ®¢ from A4 and with coupling parameter

lim b e (0,1),
N6y 00,0) B,N,& for B € (0,1)

— (17)
Sna/R|x(y)|4dy for B =1,

bg

with bg n ¢ from Definition 2.2 and with a the scattering length of w as defined in
(40).

Remark 2.2. (a) Due to assumptions A/-A3, the Hamiltonian H,, g(¢) is for any
t € R self-adjoint on its time-independent domain D(H, g). Since we as-
sume continuity of  — V() € L£(L*(R3)), [23] implies that the family
{ H, p(t) } ;g generates a unique, strongly continuous, unitary time evolution
that leaves D(H,, g) invariant. By imposing the further assumptions on vi,
we can control the growth of the one-particle energies and the interactions of
the particles with the external potential. Note that it is physically important to
include time-dependent external traps, since this admits non-trivial dynamics
even if the system is initially prepared in an eigenstate.

(b) Assumption A4 states that the system is initially a Bose—Einstein condensate
which factorises in a longitudinal and a transverse part. In [45, Theorems 1.1
and 1.3], Schnee and Yngvason prove that both parts of the assumption are
fulfilled by the ground state of H, 4(0) for 8 = 1 and V! (0, z) = V(x) with
V locally bounded and diverging as |x| — oo.
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(¢) Our proof yields an estimate of the rate of the convergence (15), which is of the

form
1
Ty = 190X < (A0 + Rg.o.ra (N, 0)) e/
with
N.,e %
A0 ¢=‘ E 4 (0) =& 2;0(0)‘+(Tr Vﬁ.g—l%xs)(@oxsl‘) ,
0

O\ "3

& n4
Rpory(N.&) S N7 4™+ (‘) +(ir)

2 e

for some ny, ...,nq4 > 0 and some function f : R — R which is bounded
uniformly in both N and e. The coefficients n| to n4 can be recovered from
the bounds in Propositions 3.6 and 3.11 by optimising (57) and (58) over the
free parameters and making use of Lemma 3.4. We do not expect this rate to be
optimal.

Remark 2.3. The sequences (N, €) — (00, 0) covered by Theorem 1 are restricted
by admissibility and moderate confinement condition (Definition 2.1 and (8)). To
conclude this section, let us discuss these constraints:

(a) By (8), the weakest possible constraints are given by (©,I')g = (%_, %) for
B € (0,1)and (®,I'); = (3,17) for B = 1. Instead of choosing these least
restrictive values, we present Theorem 1 and all estimates in explicit dependence
of the parameters ® and I, making it more transparent where the conditions
enter the proof. Moreover, the rate of convergence improves for more restrictive
choices of the parameters I" and ®.

(b) In [13], Chen and Holmer prove Theorem 1 for the regime g € (0, %) under

different assumptions on the sequence (N, ¢). The subset of the parameter range
N x [0, 1] covered by their analysis is visualised in Fig. 2.
While no admissibility condition is required for their proof, they impose a
moderate confinement condition which is equivalent to our condition for 8 €
O, %]. For larger 8 € (13—1, %), they restrict the parameter range much more
strongly, and their condition becomes so restrictive with increasing 8 that it
delimitates the range of scaling parameters to 8 € (0, %).1

I More precisely, Chen and Holmer consider sequences (N, ¢) such that N > e=2v(B),

where v(8) i= max | 15, BA2 BASJ6 EHB N For the regime p € (0, 1, this

implies v(8) = Tﬁﬁ’ which is equivalent to the choice I' = % and thus exactly our moderate

confinement condition. For 8 € (%, %], one obtains v(f) = ﬁlt;{;, which corresponds

to the choice I' = ﬁ > %, and for 8 € (%7 %), one concludes v(8) = %’

corresponding to I" = ﬁ > % Since the moderate confinement condition is weaker for

smaller I', we conclude that our condition is weaker for 8 > %
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(c) No restriction comparable to the admissibility condition is needed for the
ground state problem in [45]. Given the work [38] where the strong confine-
ment limit of the three-dimensional NLS equation is taken, this suggests
that our result should hold without any such restriction. However, for the
present proof, the condition is indispensable (see Remarks 3.1 and 3.2).

(d) As argued above, the moderate confinement condition for 8 € (0, 1) is
optimal, in the sense that we expect a free evolution equation if # /& — oco.
For B = 1, we require that /e’ — 0 for I' > 1. Note that the choice
I' = 1 would mean no restriction at all because /e = N~!. Our proof
works for I that are arbitrarily close to 1. However, since the estimates
are not uniform in I', the case I' = 1 is excluded. To our understanding,
the constraint ' > 1 is purely technical. Note that such a restriction is
neither required for the ground state problem in [45], nor in [10], where the
dynamics for cigar-shaped case with strong confinement in two directions
is studied.

(e) Although no moderate confinement condition appears the cigar-shaped
problem [10], our analysis covers a considerably larger subset of the param-
eter space N x [0, 1] than is included in [10]. In that work, the admissibility

e 2= C . .
condition is given as Ne5 — 0, which is much more restrictive than our
condition.

3. Proof of the Main Result

The proof of Theorem 1, both for the NLS scaling 8 € (0, 1) and the Gross—
Pitaevskii case 8 = 1, follows the approach developed by Pickl in [43]. The main
idea is to avoid a direct estimate of the differences in (15) and (16), but instead to
define a functional

ap R X L2 RNy x L2(R%) — RT,
€YV, ¢ 0) > g YD), 95(0)
in such a way that

M s yNVE@), 9° (1) =0 <« (15) A (16).
Physically, the functional o Dup pr0V1des a measure of the relative number of par-
ticles that remain outside the condensed phase ¢°(¢), and is therefore also referred
to as a counting functional. The index w), g indicates that the evolutions of ¥V ¢ (¢)
and ¢°(¢) are generated by H, g(¢) and hg(t), which depend, directly or indirectly,
on the interaction wy, g. To define the functional o, , we recall the projectors
onto the condensate wave function that were 1ntr0duced in [31,42].

Definition 3.1. Let ¢® (1) = ®(¢) x ¢, where ®(¢) is the solution of the NLS equation
(7) with initial datum ®( from A4 and with x¢ as in (6). Let

Sl A ONHGI
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0 N1 1 0 N1 1

(@d=20=3% by d=26=3

0 Y 1 0 N-L 1

(©d=2p=14 dd=2,p=2

Fig. 2. Coverage of the parameter space N x [0, 1] for some exemplary choices of 8 € (0, %).
In [13], Chen and Holmer cover sequences within the dark grey region, while the white and
light grey area are excluded. In comparison, Theorem 1 applies to all sequences enclosed
between the black dashed line and the black dotted line, where the dashed line corresponds
to the admissibility and the dotted line to the moderate confinement condition. Limiting
sequences within the light grey region are expected to yield a free effective evolution equation.
Plotted with Matplotlib [26]

where we drop the 7- and ¢ -dependence of p in the notation. For j € {1, ..., N},
define the projection operators on L(R3V)

pi=1® - -®1®pR1®---®1 and g;:=1- p;.
J—1 N—j
Further, define the orthogonal projections on L?(R3)
PP = 10ONOMI® Tp2my, g% = 1p2gs — p%,

P =10, ® X)L ¢ =1 - pX,
and define p;.b, q;b, p}(s and qfs on L?(R3M) analogously to p; and ¢;. Finally,
for 0 < k < N, define the many-body projections

P = (611'~'Qkpk+1"'PN)sym = Z H%’sz

JC{l,...N}jel I¢J
|J|=k
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and Py = 0 for k < O and k > N. Further, for any function f : No — R* and
d € Z, define the operators f, fs € £ (L*(R*V)) by

N N—d
F=Y f®P. Ji= ) fG+adP;. (18)
k=0 j=—d

Clearly, Z,](vzo Py = 1. Besides, note the useful relations p = pchXg, q9%q =q°,
g% q =q* and g = ¢*" +q®p*" = ¢® + p®¢*". In the sequel, we will make
use of the following weight functions:

Definition 3.2. Define
n:No— R, k> nk) :=\/%,
and, for some & € (0, %),

n(k) fork > N'=%

m:N—= R mk) =
0 % (N_H’Ek + N_5> else.

Further, define the weight functions mt Ny — RT, tefa,b,c,d, e, f},by

mék) :=mk) —mk + 1), mbk) := mk) —mk +2),
mek) == mk) —m(k + 1), mk) = m*(k) — m(k +2), (19)
mé(k) == mP k) —mPlk +1), m’ k) := mb(k) — mP(k +2).

The corresponding weighted many-body operators in the sense of (18) are denoted
by m*. Finally, define

7Fi=m’pipa + M (prg2 + q1p2).

Note that m equals n with a smooth, £-dependent cut-off. This modification of
the weight n is a technical trick that enables us to estimate expressions of the
form || f — fallop for f4 asin (18), which appear at many points in the proof. The
difference f — fy can be understood as operator that is weighted, in the sense of
(18), with the derivative d{ For the choice f(k) = n(k), this derivative diverges
as k — 0, whereas the cut-off & softens this singularity for small k& such that one
finds ||m — mallop S N1+ for the choice f (k) = m(k) (Lemma 4.2b).

Definition 3.3. For 8 € (0, 1), define
a;;t,ﬁ (t) = a'ju,ﬂ (t’ wN’E(t)v ‘ps(t))
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The expression <<1pN (1), myrNoE (t)>> is a suitably weighted sum of the expecta-

tion values of Pcyr™+¢(¢). As m(0) ~ 0 and m is increasing, the parts of ¥V ¢ (¢)
with more particles outside ¢°(¢) contribute more to 0‘5,1 ﬁ(t). It is well known

that <<1//N’€(t), fn\wN'g(t)>> — 0 is equivalent to the convergence (15) of the one-

particle reduced density matrix, hence o, (t) — (s equivalent to (15) and (16).
The relation between the respective rates of convergence is stated in the following
lemma, whose proof is given in [9, Lemma 3.6]:

Lemma 3.4. Foranyt € [0, T“;’ﬁ) it holds that

T |y — 0 O O] £ fBag, o),

@, = |ELTO0 - 00| + \/Tr\yﬁ,g(,)—|¢8<t)><¢8(r>| +inE

3.1. The NLS Case B € (0, 1)

The strategy of our proofis to derive a bound for | %“Eu 5 (#)|, which leads to an
estimate of o b () by means of Gronwall’s inequality. The first step is therefore
to compute thls derivative.

Proposition 3.5. Assume Al — Ad for B € (0, 1). Let
(lﬂ =wy p(z1 —22) and Zf;z) fj? — N—’S (|<I>(t X2 +|D(t, x2)| )

and define
L= {Nn’i“_l, Nfﬁ’iz} (20)

for m® | and fn\]iz as defined in (18) and (19). Then

Sy O] = [ra-O] + 17|

for almost every t € [0, T;’ﬁ) where

Va<(t) = \<<¢N*€(r), via, 21)10N'€(t)>> ~(em Vi@ oopew) , | @)
_m«wm), m g (VI 2 = via, (o, 0>))p1wN’€<z)>>, (22)
Vo,<(t) i= =N(N — 1)3<<w’“<z), Z,S%w“(z)»

=y L0+ v 2O + v 0 + vy (@), (23)

with
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75 20)] = N max <<wN-8<z>,qu’pfpzzgl”plpzw”g(z)»‘, (24)
2O = N max o )‘«w“(n gl ulw!% pim w“m»‘ (25)
N max <<wN*S<z),qfqzle?mq2 w”fm»‘ (26)
+N max <<¢N’E<z>,q2 af p{ Tw ) praf 1//”‘€<t>>>‘ (27)

+N max <<1//N5(t) af af w3 pip} 48 w”sm» (28)

lel

720 = N max

<<W“(t), @f af ! +al a3 P w3 pipS qépr'E(t)»‘ @

+erp€al):( <<1//N‘5(l),q?q;)pfspgslwgé)pqu I/JN’E(I)>> s 30)
4) ._ N,e @, 07, x" px,(02) N,e 31
b’b<(’)| = NIIPEaZ‘ V0. qr g2 Lpy Py wy g pip2¥ (D) (€20)
+N max <<1/f“(t) aa ol p¥ w3 pipf ¢f 1/f’“(f)>>‘ (32)

€
+bp max <<1//N’S(f),qlqzﬂ‘b(hxl)lzplqzlﬁN’g(T)m. (33)

The term y,,, - summarises all contributions from interactions between the particles
and the external field VI, while ¥p.< collects all contributions from the mutual
interactions between the bosons. The latter can be subdivided into four parts:
. yb(ll and y(4) contain the quasi two-dimensional interaction w,,_g(x; — x2)
resulting from integrating out the transverse degrees of freedom in w,, g, which
is given as

Pl pY wu gz —z2)pf pf = Wapxi —x2)pf pS

(see Definition 5.4). Hence, y(l) andy, ) can be understood as two-dimensional

analogue of the correspondlng expressmns in the three-dimensional problem
without confinement [43, Lemma A.4], and the estimates are inspired by [43].
Note that yb(_li contains the difference between the quasi two-dimensional in-

teraction potential w,, g and the effective one-body potential bg|P () |2, which
means that it vanishes in the limit (N, ) — (00, 0) only if (7) with coupling

parameter bg is the correct effective equation. The last line (33) of yb( ) con-

tains merely the effective interaction potential 19,3|<I>(t)|2 instead of the pair
interaction wy, g, hence, it is easily controlled.
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° yb(zl and yb(Si are remainders from the replacement w,, g — Wy, g, hence they
have no three-dimensional equivalent. They are comparable to the expression

)/b(z) in [9] from the analogous replacement of the originally three-dimensional
interaction by its quasi one-dimensional counterpart.

The second step is to control y, < to yb(ﬂ in terms of aljﬂ_ 5 (t) and by expressions
that vanish in the limit (N, €) — (00, 0). To write the estimates in a more compact
form, let us define the function eg : [0, ‘%) — [1, 00) as

N.e .
G0 =IO o, + 1 Eve, O + 1E4°(0)] + / IVI(5) oo 3y ds

(34)
+ sup 99}V Loora)s
i,jel0,1}
where ®(¢) denotes the solution of (7) with initial datum ®( from A4. Note that

eg(t) is bounded uniformly in N and € because the only (N, £)-dependent quantity

N,e
ig 5 (0) converges to &, 0(0) as (N, &) — (00,0) by A4. The function eg is

particularly useful since

ELT OO0 G0 -1 and g7 0)] £ @) -1

Wy, B

for any ¢ € [0, T“;’ﬁ) by the fundamental theorem of calculus. Note that for a time-

independent external field VI, e% (t) < 1 as a consequence of Remark 2.1, hence

Egﬂ p - (t) and 8 *0) () are in this case bounded uniformly in ¢ € [0, T;’ﬁ

Recall that by assumptlon A4, we consider sequences (N, ¢) that are (0, I')g-
admissible with I'g = 1/8 and ®g € (1/8,3/B). To make a clear distinction
between the cases § € (0, 1) and 8 = 1, let us define

§:=pOg e (1,3),
i.e., we consider sequences with
©.1)5 = (§, p)-

Proposition 3.6. Ler § € (0, 1) and assume Al — A4 with parameters B and 1 in
Al and (©,T)g = (%, %) in A4. Let

0<§<min[ LB g zﬂ((;_‘;;] 0<a<min{%,ﬁ—s}.

Then, for sufficiently small p, the terms y, < to yb(ﬁ from Proposition 3.5 are
bounded by

Va, <] S (1) e +ep(0) <<w”f(z>, ﬁwN’S(t>>>,

yyb(‘i(t)|<eﬂ(t)( FNT +u)
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2ol sao((5) e,

ol =0 () ()« () 7).

1
4 B 3\2 _ 1-8
)| < eh( ey (1) + h(0) <’“‘T+ (W) SN e )

Remark 3.1. (a) The estimates of y,;, <, yb(,ll and yb(?i work analogously to the cor-

responding bounds in [9] and are briefly summarised in Sections 5.2.1 and 5.2.2.
While y, - is easily bounded since it contains only one-body contributions, the

key for the estimate of yb(}i is that for sufficiently large N and small ¢,

N/dyz|x8(yz>|2/dznw%zlnzwﬂ,ﬂ(zl )

~ N ( / dyz|x8<yz)|4> lwpepll L1 ey | P2 1> = g, .| P (x2)]?

due to sufficient regularity of ¢* and since the support of w,, g shrinks as ub.
For this argument, it is crucial that the sequence (N, €) is moderately confining.
The main idea to control yb(’zl is an integration by parts, exploiting that the
antiderivative of w,, g is less singular than wy, g and that V;¢"+¢(¢) can be

controlled in terms of the energy £ :ff : ; ® (). To this end, we define the function
h as the solution of the equation Ak, = wy, g on a three-dimensional ball with
radius ¢ and Dirichlet boundary conditions and integrate by parts on that ball.
To prevent contributions from the boundary, we insert a smoothed step function
whose derivative can be controlled (Definition 5.1). To make up for the factors

¢~ ! from the derivative, one observes that all expressions in yb(zi contain at

least one projection qXS. Since ||qf(€1pN'8(t)|| = O(¢e) (Lemma 4.9a), which
follows since the spectral gap between ground state and excitation spectrum
grows proportionally to £ 2, the projections ¢** provide the missing factors &.
The second main ingredient is the admissibility condition, which allows us to
cancel small powers of N by powers of ¢ gained from ¢* .

(b) For Vb(.Si’ this strategy of a three-dimensional integration by parts does not

work: whereas g X~ cancels the factor e ~! from the derivative, we do not gain
sufficient powers of ¢ to compensate for all positive powers of N. Note that
this problem did not occur in [9], where the ratio of N and ¢ was different.
2

2

In the 3d — 1d case [9], the range of the interaction scales as “fd = (82/N)/3, besides

de y) = 571X1d(y/s), and the admissibility condition reads sz/pcllsd — 0. These slightly

B
different formulas lead to the estimate ||(V1h;d(z1 — zz))plldllop < N3P while
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To cope with ybai ,note that both (29) and (30) contain the expression pf ’ wﬁ? pf ’ ,

which, analogously to ﬁ, defines a function w, g(x1 — X2, y2) where one
of the y-variables is integrated out (Definition 5.4). We integrate by parts only
in the x-variable, which has the advantages that V, does not generate factors
¢~ ! and that the x-antiderivative of Wy, g(-, y) diverges only logarithmically in
/L_l (Lemma 5.6b). Due to admissibility and moderate confinement condition,
this can be cancelled by any positive power of ¢ or N~!. In distinction to yh(zi,
we do not integrate by parts on a ball with Dirichlet boundary conditions but
instead add and subtract suitable counter-terms as in [43] and integrate over
R?. Note that one would obtain the same result when integrating by parts on a
ball as in y,fi, but in this way the estimates are easily transferable to Vb(,ﬂ (see
below).

More precisely, we construct v,(-, y) such that [w, g, Vpiwrey =
v, (-, y)||L1(Rz> and that suppv, (-, y) scales as p € (Mﬂ, 1] (Definition 5.4).
As a consequence of Newton’s theorem, the solution EQ[,, o of Axﬁgﬂ, o =
Wy, — Vp is supported within a two-dimensional ball with radius p. We then
write Wy, g(-, y) = Axi_zgﬁ‘p(g y) +V,(:, ), integrate the first term by parts
in x, and choose p sufficiently large that the contributions from v, can be
controlled. The full argument is given in Sections 5.2.3 and 5.2.4.

(c) Finally, to estimate @ (Section 5.2.5), we define w, g as above and integrate
y Vb, < w.pB g

by parts in x, using an auxiliary potential 5,) analogously to v, (Definition 5.4).
To cope with the logarithmic divergences from the two-dimensional Green’s
function, we integrate by parts twice, following an idea from [43]. This is the

reason why we defined /1, , and %, , on R? and not on a ball, which would
require the use of a smoothed step function. While the results are the same when
integrating by parts only once, it turns out that the additional factors p~! from
a second derivative hitting the step function cannot be controlled sufficiently
well.

For (32), the bound ||Vxl1ﬂN’S([)||2 < 1 from a priori energy estimates is
insufficient, comparable to the situation in [43] and [9]. Instead, we require an
improved bound on the kinetic energy of the part of ¥ (¢) with at least one
particle orthogonal to @ (¢), given by || Vy, qu ¥N-2(1)||?. Essentially, one shows
that

|E¢N.E(t) _ gl?;(t)(t)|

Wy, p
2NV N EO 12 = IV D) 1? — o(1)
2V g YN O + 1V pPY N0 17 — IV D (1)) — o(1)

B 1-8
we obtain in our case || (V] h,glz))pl lop S NTIt7.2" (Lemma 5.2). Following the same
path as in yb(z, e.g., for (29) (corresponding to (21) in [9]), we obtain in the 1d problem the
B 1
estimate ~ N2gl=8 = (¢2/ ,u’ls 4)2» which can be controlled by the respective admissibility

. . . B 1B 1
condition. As opposed to this, we compute in our case that (29) ~ N2¢72 = (¢/ ;/JB )2,
which diverges due to moderate confinement.
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> [V g v M e — VL @ ()] <<wN’8<t>, ﬁx/f’“(n» —o(l),

which implies
Vgt vV O S a0 +0(1).

The rigorous proof of this bound (Lemma 5.7) is an adaptation of the corre-
sponding Lemma 4.21 in [9] and requires the new strategies described above,
as well as both moderate confinement and admissibility condition.

3.2. The Gross—Pitaevskii Case f = 1

For an interaction w,, in the Gross—Pitaevskii scaling regime, the previous
strategy, i.e., deriving an estimate of the form |%a,j} o < oz,ju (t) + o(1), cannot

work. To understand this, let us analyse the term yb(ﬁli, which contains the difference
between the quasi two-dimensional interaction ﬁ and the effective potential
bi|® (@))% As pointed out in Remark 3.1a, the basic idea here is to expand |¢®(z] —
22)|? around z», which can be made rigorous for sufficiently regular ¢ and yields

N/dyzlxa(yz)lz/d11|<p8(21)|2wu(Z1 )

~ N (/ dYIXS(y)I4> w1 g3y | Ce2) . (35)

Whereas this equals (at least asymptotically) the coupling parameter bg for g €
(0, 1), the situation is now different since b; = 8wa f | x (y)|4dy. In order to see
that (35) and b are not asymptotically equal, but actually differ by an error of O(1),
let us briefly recall the definition of the scattering length and its scaling properties.

The three-dimensional zero energy scattering equation for the interaction w,, =
w2w(-/p) is

{(—A + %wu(Z)) ju,(Z) =0 fOI' |Z| < 00, (36)
ju@) — 1 as |z| — oo.

By [37, Theorems C.1 and C.2], the unique solution j, € CH(R?) of (36) is spher-
ically symmetric, non-negative and non-decreasing in |z|, and satisfies

ju@=1-7% forlz| > p,

. . 67
Ju@ 21— else,

where a;, € R is called the scattering length of w,,. Equivalently,
8mwa, = / wy (2) ju(2)dz. (38)

R3
From the scaling behaviour of (36), it is obvious that j,(z) = ju=1(z/p) and that

a, = pa, (39)
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where a denotes the scattering length of the unscaled interaction w = w,—1, i.e.,

8ma ZZ/W(Z)j/,L:l(Z)dZ. (40)
R3

Returning to the original question, this implies that

by = 87a / X'y = N / X° ) 1*dy / () j(2)dz,
R R

R3

and consequently,
(35) — b1|®(x2) |
= N|d>(xz>|2/ |x€(y)|4dy/wu<z><1 — ju(@)
R

R3

> M_1|®(X2)|2/ Xy (1= () lwpell 1 g3y =O(1),
R

where we have used that [|wy, |11 ®3) = p#llwll1 g3y and that j,(z) is continuous
and non-decreasing, hence j,(z) < j,.(u) for z € suppw, and 1 — j, (1) ~ a.

In conclusion, the contribution from yb(li does not vanish if by is the coupling

parameter in [9]. Naturally, one could amend this by taking f Lx O [*dylw| LIR3)
instead of by as parameter in the non-linear equation. However, for this choice, the
contributions from yb(’zi to 3’17(,41 would not vanish in the limit (N, €) — (00, 0), as
can easily be seen by setting 8 = 1 in Proposition 3.6.

The physical reason why the Gross—Pitaevskii scaling is fundamentally different
— and why it requires a different strategy of proof — is the fact that the length
scale a,, of the inter-particle correlations is of the same order as the range 1 of the
interaction. In contrast, for 8 € (0, 1), the relation a, g < ,uﬂ implies that j, g ~
1 on the support of w,, g, hence the first order Born approximation 8mwa, g ~
lwy.gllL1 w3y applies in this case.

Before explaining the strategy of proof for the Gross—Pitaevskii scaling, let us
introduce the auxiliary function f3 € C '(R3). This function will be defined in such
a way that it asymptotically coincides with j, on suppw, but, in contrast to j,,
satisfies fz(z) = 1 for sufficiently large |z|, which has the benefit of 1 — fz and
V fz being compactly supported. To construct fz, we define the potential U, 5
such that the scattering length of w, — U, 7 equals zero, and we define [ as the

n
solution of the corresponding zero energy scattering equation.

Definition 3.7. Let E S (%, 1). Define
,u]’ﬁa for Mﬁ < Izl < ep.

UIME(Z) =
else,
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where ¢ is the minimal value in (ME , 00] such that the scattering length of w,, —

U, g equals zero. Further, let f5 € C'(R?) be the solution of

A+ 5 (W@~ U, 5@) ) f5) =0 forlz] <o,
(o )

=1 for |z| = op.

(41)

and define

gg=1—fz

In the sequel, we will abbreviate

U;(il,]BZ = U, 5 —2)) g;]) =gpzi —zj), and f(‘/) = f3(zi —

In [10, Lemma 4.9], it is shown by explicit construction that a suitable oz exists

and that it is of order /LE . Note that Definition 3.7 implies in particular that

/ (w00~ U, 52)) f52)de = 0, “2)

R3

which is an equivalent way of expressing that the scattering length of w, — U
equals zero. Let us remark that a comparable construction was used in [11] and i in
the series of papers [6-8].3

Heuristically, one may think of the condensed N-body state as a product state
that is overlaid with a microscopic structure described by fg, i.e.,

N
Veorlt, 21, an) = [ [ 20 [ 3@ —zm)s (43)

k=1 1Si<m<N

as was first proposed by Jastrow in [27]. For 8 € (0, 1), it holds that fg ~ 1,

i.e., the condensate is approximately described by the product (¢¢)®Y — which is
precisely the state onto which the operator Py = p1, ..., pn projects. For the Gross—
Pitaevskii scaling, however, f7 is not approximately constant, and the product state
is no appropriate description of the condensed N-body wave function. The idea
in [43] is to account for this in the counting functional by replacing the projection

3 Translated to our setting, the authors consider the ground state f; of the rescaled Neu-
mann problem (—A + %wﬂ(z)> fo(2) = MfZ)L(f( (z) on the ball {|z| < ¢} for some £ ~ 1
and extend it by fy(z) = 1 outside the ball. The lowest Neumann eigenvalue scales as A, ~
(M/2)3,hence one can re-write the equation in the form (—A + % (wu (z) — U(z))) fi() =
0, where U (z) = ,uC]l‘Z|<g for some constant C. This is comparable to (42) for the choice

ﬁ = 0. Note that in contrast, we require ﬁ > max {45~ 2y , 6} (Proposition 3.11).
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Py onto the product state by the projection onto the correlated state 1/cor. In this

spirit, one substitutes the expression <<¢, r’ﬁtﬁ>> in 0‘@ 5 (r) by

<<1p, [ fﬂﬁk)n?]_[ fﬂi’%» ~ <<w mw» — N(N — D% «1// ggz)nw»,

k<l r<s

where we expanded fz =1 — 85 and kept only the terms which are at most linear
in gg. This leads to the following definition:

Definition 3.8.
o, (1) ==y (1) = N(N — DRt «w’“(z), ggz)?w~8(t)>>.

Since the convergence of oz;u (t) is equivalent to (15) and (16), an estimate of
oy, (1) is only meaningful if the correction to a,jﬂ (t) in Definition 3.8 converges to
zero as (N, ) — (00, 0). This is the reason why we defined it using the operator 7
(Definition 3.2) instead of i: as ?containsNadditional projections pp and p;, we can

1+4

use the estimate ||gl(§12)pl||0p < 5_%11« instead of ||gg||C>o < 1 (Lemma 6.2f).

In the following proposition, it is shown that this suffices for the correction term to
vanish in the limit.

Proposition 3.9. Assume Al — A4. Then

'N(N - DN <<wN’8<t>, gg%wsm}}\ Se
forallt € [0, T;’ﬁ .
By adding the correction term to aljﬂ (1), we effectively replace w, by U, 5 fz in
the time derivative of ozljﬂ (t). To explain what is meant by this statement, let us

analyse the contributions to the time derivative of ay, (1), which are collected in
the following proposition:

Proposition 3.10. Assume Al — A4 for § = 1. Then
|San, O] Z |y =O] + [ya®] + v + 1ye®] + lya®] + lye®] + lyr @)

for almost every t € [0, T“j’ﬁ), where

y<() = ‘«w“m, via, Z1)1/fN’8(t)>> (2. VI (v 0) o)

44
2®) (44)

—2NJ <<w’“(r>, g (Ve z0) = v, (o, 0>>)pu/fN~f(r)>> (45)

~N(N — 1)‘3«1&1\7’8(1‘), Z“ZWW’%)», (46)



Derivation of the 2d Gross—Pitaevskii equation 565

Va() := N*(N — 1)S<<WV ‘0,857 [VI. 2=Vt (1, 0)).7] W“(r)»,
(47)

7(1) = =N <<wN~8<r>, D@ ) + |, x2>|2>gg2>rw(n>> (48)
—N%«W*Em, (bg — b, x)* + D, xz)|2>?wN’8<t>>> (49)
~N(N — 1>S<<W(r) g“z“zm’w’“(n» (50)
Ye() := —4N(N = D3 <<W’€(r>, (Vigg?) - VMN*%)», (51)

7a(t) i= =N(N = D(N = 2)%<<W "0, 857 [0, x) 7 | w“m»
(52)
2NN — 1)<N—2)S<<w“(r) g5 [wi? A]w“(t)», (53)

ve(t) := gN(N = (N = 2)(N — 3)%<<1/f’v 0. 85wl ]w“m»,
(54)
yr(t) == —2N(N — m«w ‘0,857 |10, 22 7] w“(o». (55)

Here, we have used the abbreviations

20 = wi — o (106, 3P + 100, x) )
2(1]) = U(l])f(l]) Nf1(|cb(t»xi)|2 + |®(I,Xj)|2),
where
b= o) - d 4q
b (N,s)f%oo,o)u / U, @) f5(2) Z/|X()’)| .

R3

The proof of this proposition is given in Section 6.5. Note that the contributions to
the derivative %awu (¢) fall into two categories:

e The terms (44)—(45) in y = equal y,, < from Proposition 3.5, and (46) is exactly
¥b,< With interaction potential U,, 7 f3. Hence, estimating y = is equivalent to
estimating the functional e i3 (t), which arises from a;u (t) by replacing the

I,

interaction w, by pars Since U,plf € Wﬁyn forany n € (0,1 — E)
(Lemma 6.4), this is an interaction in the NLS scaling regime, which was
covered in the previous section. The physical idea here is that a sufficiently
distant test particle with very low energy cannot resolve the difference between
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wy,p and U, zfg ~ U, g since the scattering length of this difference is
approximately zero by construction (42).

Ya 10 ¥ can be understood as remainders from this substitution. y, collects
the contributions coming from the fact that the N-body wave function interacts
with a three-dimensional external trap VI, while only V!l evaluated on the plane
y = 0 enters in the effective equation (7). Since this is an effect of the strong
confinement, it has no equivalent in the three-dimensional problem [43], but the
same contribution occurs in the situation of a cigar-shaped confinement [10].
The terms y;, to yy are analogous to the corresponding expressions in [43]
and [10].

By assumption A4, our analysis covers sequences (N, ¢) that are (®,");-

admissible with 1 < T' < ® < 3. To emphasize the distinction from the case
B €(0,1),letuscall ® = and I'y =: y, i.e., we consider

(®s F)l = (797 7/)

Proposition 3.11. Let B = 1 and assume Al — A4 with parameters (©,1')] =

(v,

y)in A4. Let t € [0, TV”) and let

1 > . [1-8 3-vB
max{%,g}<d<ﬁ<l, 0<$<m1n[Tﬂ, 2(0_’?)}.

Then, for sufficiently small u,

SN

1 1-F
ol o, + o (<%> e ),

N\’a:z

| St (52)
0| S e,

lye@®| < el(t)<

()| < e?(r)sTE,
148

] S e

Remark 3.2. (a) To estimate y <, observe first that we have chosen ,5 such that

U,pfg € Wg, for some n, and such that assumption A4 with parame-
ters (®,'); = (9, y) makes the sequence (NN, €) at the same time admis-
sible/moderately confining with parameters (0, ')z = (/ E .1/ ,B~) for some
8 € (1, 3) (see Section 6.6.1). Consequently, Proposition 3.6 yields

PO S 0, 0+ o) = (v avte))
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+}E"’ 0 =0 0]+ o). (56)

However, this does not yet complete the estimate for y = since we need to bound

all expressions in Proposition 3.10 in terms of ozzjﬂ = <<1pN~8, ﬁlﬂN’g» +

‘ Ewu £(1) (t) — , up to contributions O(1). By construction of fz, it

follows that bﬂ = b1 (see (90) in Lemma 6.4), hence E(b(t)(t) CD(Z) (). On
the other hand, heuristic arguments indicate that £, y N}? (1) and E,, w ® (1)
differ by an error of order O(1), which implies that the rlght hand 51de of (56)
is different from otwu (t) by O(1).

By Remark 3.1c, this energy difference enters only in the estimate of (32) in

yb(4i via || Vy, q; Py N, E(t)||2 < ozU il (t)4+0(1). For the Gross—Pitaevskii scal-

ing of the interaction, || Vy, qCDwN : (1) ||2 is not asymptotically zero because the
microscopic structure described by fz lives on the same length scale as the in-
teraction and thus contributes a kinetic energy of O(1). However, as this kinetic
energy is concentrated around the scattering centres, one can show a similar
bound for the kinetic energy on a subset .4; of R*", where appropriate holes
around these centres are cut out (Definition 6.5). This is done in Section 6.3,
where we show in Lemma 6.7 that

14, Vi g O S ey (1) + O(1).

The proof of this lemma is similar to the corresponding proof in [10, Lemma
4.12], which, in turn, adjusts ideas from [43] to the problem with dimensional
reduction. However, since one key tool for the estimate is the Gagliardo—
Nirenberg—Sobolev inequality in the x-coordinates, the estimates depend in
a non-trivial way on the dimension of x. As one consequence, our estimate
requires the moderate confinement condition with parameter y > 1, where no
such restriction was needed in [10].

Finally, we adapt the estimate of (32). In distinction to the corresponding
proof in [10, Section 4.5.1], we need to integrate by parts in two steps to be
able to control the logarithmic divergences that are due to the two-dimensional
Green’s function. Inspired by an idea in [43], we introduce two auxiliary po-

tentials v ngQ and v such that ||U /3f,3||L1(R2) = ||vu’32 o me) = ||v1||L1(R2),

deﬁneﬁ s and hwez 1 as the solutions of A, h b = U,z fﬂ Mﬂ2 and

4 See [10, pp. 1019-1020]. Essentially, ~when evaluated on the
trial  function VYeor from (43), the energy difference is to lead-

() (Uu,gf,;)(“))wmr(r)»

N [ dzilgf (1, 2 [zl f@ P (we@) = Uy, @) ~ p7! [ dzgg@wp(@) f3(2)
wleg(w) [ dzwu (@) f3(2) ~ 8ra®.

2

ing  order given by <<10cor (@), (wy

v
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Axﬁuﬂz 1= ﬁﬂsz —71,and write UM,EfE = sz@g,u‘% +szuﬁ2’l+§1 . The ex-
pressions depending on vy can be controlled immediately, while we integrate the

remainders by parts in x, making use of different properties of n 05 andh w1

(Lemma 5.6b). Subsequently, we insertidentities 1 = 1 4, +1 A , where A de-

notes the complement of A;. On the one hand, this yields || 1 4, Vy, q; I/IN M,
which can be controlled by the new energy lemma (Lemma 6.7). On the other
hand, we obtain terms containing Iz, which we estimate by exploiting the

smallness of A;. The full argument is given in Section 6.6.1.

(b) The remainders y, to yy are estimated in Sections 6.6.2, and work, for the
most part, analogously to the corresponding proofs in [10, Sections 4.5.2
—4.5.7]. The only exception is Y., where the strategy from [10] produces
too many factors e ~!. Instead, we estimate the x- and y-contributions to the
scalar product (Vgg) -V = (Vi gg)- Vi7+(dyg5) 0,7 separately. To control
the y-part, we integrate by parts in y and use the moderate confinement
condition with y > 1. Again, this is different from the situation in [10],
where the corresponding term y, could be estimated without any restriction
on the sequence (N, ¢).

3.3. Proof of Theorem 1

Let0S T < T;’ﬁ For B € (0, 1), Proposition 3.6 implies that

Sap O] S G0as O+ HOR 505N, 0)

for almost every ¢ € [0, T'] and sufficiently small n, where

& 1
5\ B 3\ 2 B 1-8 _ _B
Ripsae®e) = ()" + (7)) +% +w 6T 4N 74N

with0 < o < mm{1 3¢ , B—E&}.Sincet — alju ﬂ(t) is non-negative and absolutely
continuous on [0, T, the differential version of Gronwall’s inequality (see e.g. [20,
Appendix B.2.j]) yields

t
ay (S efo ep)ds <a;% L0 + Ry g5 56N, ) /O efz,(s)ds) (57)

for all t € [0, T]. Since eg(t) is bounded uniformly in N and ¢ by (13) and
with R;ﬁ’&mg(N, g) - 0as (N,e) — (o0,0), this implies (15) and (16) by
Lemma 3.4.

For B = 1, observe first that Proposition 3.9 implies that the correction term in
oy, (1) is bounded by ¢ uniformly in 7 € [0, T'], provided w is sufficiently small.
Hence, t > oy, (1) + ¢ is non-negative and absolutely continuous and

ajﬂ(t) ,S Cw, ) +e< O(w,L(t) + Ry,ﬂ,é (N, é¢)
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for

Ty

RyoeW.e) = () + ()7 + (5) T+ 4 w043

with max{’;—';l, %} <d < ,E < %. Consequently, Proposition 3.11 yields

| & (o, (1) + ©)| S () (ctw, (1) + Ry.p.6 (N, ) (58)

for almost every ¢+ € [0, T'] and sufficiently small w, which, as before, implies
the statement of the theorem because both ¢ and R, » ¢ (N, &) converge to zero as
(N, &) = oc.

4. Preliminaries

We will from now on always assume that assumptions A/ — A4 with parameters
(®, Mg =(/B,1/B) for B € (0,1) and (O, I'); = (¥, y) for B = 1 are satisfied.

Definition 4.1. Let M C {1, ..., N}. Define H( € L*(R3*") as the subspace of
functions which are symmetric in all variables in M, i.e. for ¥ € H a4,

‘!’(Zly cecy Z]v ceny oy oees ZN) = w(Zlv ceny ey oees Z]’ () ZN) V.]s k € M

Lemmad.2. Let f : Ng — R, d € Z, p € {a,b} and v € {c,d, e, f}. Further,
let My, M1, C€{1,2,..., N} with1 € M and 1,2 € M . Then

-~ -~ PN
@ [ fllop = I fallop = I1F 213, = sup f(k),
0<k<N

®) 7P llop £ N7 [ llop S N2 and |[Fllop S N1,
N
©n’=+%Y g,
j=1
@ I fqyl* < el FavI? for v € Ha,.
o~ 2 o~
I fa1qv1*> < MVTl_l)anZW”szVW € Ha, s
a5 qryNeml S N
@ IVifarvll S I fllopllVigiv |l for ¢ € L2R3Y),
IV £l SN Fllopl Ve g2l for € L2(R3N),
D IV2f 19291 S o =1 1 Rllop I Vg2 ¥ || for ¥ € Ho,,
1V, FaPad vl £ pofimg 1 F illopll Vo g ¥l for ¥ € Hou,

Proof. [9], Lemmas 4.1 and 4.5 and Corollary 4.6 and [10], Lemma 4.1. O

Lemma 4.3. Let f, g : Ng — R(J)r be any weights and i, j € {1,..., N}.



570 L. BossMANN

(a) Fork € {0, ..., N},
feg=re=gf. fpi=vrif. faj=ajf. [fP=PS.

(b) Define Qo := pj, Q1 := q;, Qo := pipj, O1 € {piq;. qipj} and O = qiq;.
Let S be an operator acting non-trivially only on coordinate j and T;j only on
coordinates i and j. Then for i, v € {0, 1, 2}

QuijQv = Q;LSj]’C/\LﬂJQv and Q/LfTijév = é,uTijﬁvav'

(©
[Tij, f1=1[Tj, pipi (f — f2) + (pig; +qip))(f — fD]

Proof. [9], Lemma 4.2.

Lemmad4.4. Let f : Ny — Rg.

(a) The operators Py and fare continuously differentiable as functions of time,
iLe.,

P, feC'(R.L (LZ(RW)))

for 0 < k < N. Moreover,

where hfgj )(t) denotes the one-particle operator corresponding to hg(t) from
(7) acting on the j™ coordinate.
®) =02+ FVEED. T =0for1 << N.

Proof. [9], Lemma 4.3. O

Lemma 4.5. Let € Li(RM/) be normalised and [ € LOO(RZ). Then

’«w f(xl)¢>> — (D), fP1))12m2y

Sl w2 <<‘/f»ﬁl/f>>~
Proof. [9], Lemma 4.7. O

Lemma 4.6. Let I, A € L>(R3N) € H g such that j ¢ M and k,l € M with
J #k #1 # j. Let O} be an operator acting non-trivially only on coordinates
j and k, denote by ry and sy operators acting only on the k™ coordinate, and let
F:R3 x R® - R ford € N. Then

1
2
<<r, oj,kA>>‘ <y <’<<0j,kA, 0,-,1A>>‘ + M| ||0j,kA||2> .

(b) ‘<<VkF(ZjaZk)SkF, rnF(z;, Zl)s1F>>' < ||SkF(z,,',zk)rkl"||2_

(a)
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()

<<F, VkF(Zj,Zk)SkA>>‘ ST (IskF (zj, zi)reAll?

1
HIMIT U F (2, z)seAl%)?
Proof. [9], Lemma 4.8 and [10], Lemma 4.4. O

Lemma 4.7. Let t € [0, T‘?’ﬁ) Then for sufficiently small ¢,
@ 1P 2we) =1,
DO o2y S NP @2y = ep(0),
Vi@l oo m2) S NP p3w2y = ep(t),
[Ax @Ol Lo me) S NPW N a2y = ep(t),
O Ix e =1 IG5l S,
J Ity =" [1x()I*dy,
R R

1

X @ S 72 lgmxtlliew Se2,
© 9 ()l oo ) S (1),

Vs ()l Lo 3y S e,s(t)s_%

IV10f ()Pl 2oy S ep(t)e 2.

[SI[%)

Proof. Part (a) follows from the Sobolev embedding theorem [2, Theorem 4.12,
Part IA] and by definition of eg. Part (b) is an immediate consequence of (6), and
part (c¢) is implied by (a) and (b). O

Lemma 4.8. Fix t € [0, T$}) and let j,k € {1,..,N}. Let g : R® x R* - R,
h:R2xR? > Rbe measurable functions such that |g(z, zi)| < Gz — zj) and
[h(xj, xi)l < H(xg — xj) almost everywhere for some G R’ > R H:R? > R
Lettj € {p;, ijpj} andt]‘.1> € {p;.p, ijp;.b}. Then

@ )" &(zj 20t llop S 5D Gl sy for G € LIRY),
1
) gz 2017 llop = It} 825 2)llop < €&~ 2 Gl 2
for G € L?> N L®(R3),
3
© Ig@j. 20V;pillop S ep(t)e 2 (|Gl 23 for G € L2 (RY),
@ I1h(xj, 01 llop = 1 R, xi)llop < e DI H Il 22
for H € L*> N L*®(R?).

Proof. Analogously to [9], Lemma 4.10. O
Lemma 4.9. Let ¢ be sufficiently small and fix t € [0, TSX). Then for B € (0, 1]

vl
(@) ||Vx1P1 ”op < e/fi(t) ||Ax1P1 ”op < eﬁ(t)

—1
||3y1p1 ||op s I|8y,p1 ||op<5 s

g w“(r>||<e,s<r)e IV g®Ul S epe), 10y,q° vV < eple),
IV, ¥ NVe@) < ep(), ||a}lw“(r>||<e*1, IvigNe@)) < el

(b) H\/ Ve S ep)N—2
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12 _1 1_38
© lw ZyN e S ep()N"2u~ 72,

3B
(@ IIp1 Lsuppw,, g (21 — 22)llop = I Lsuppw,, 4 (21 — 22) P1llop Segt)nze
12 —
© Ip1w, JyNem) < SN

1
2 9

Proof. Analogously to [9], Lemma 4.11 and [10], Lemma 4.7. For parts (c) and
(e), note that for g € (0, 1),

lwegllLiwsy ~ mwbgne = ulbgne —bgl+pnbsg S (59)

since wy, g € Wpp for some n > 0. For B = 1, [wyllp1w3) = mllwllpws) S @
by scaling. O

Lemma 4.10. Let f : R x R® — R such that f(t,-) € C'(R®) and d, f(t,) €

L®(R?) for anyt € [0, Tg}). Then

@ I1CF(t 20) = f( e, )l YN < elldy f Ol oo
) I(f @ 20— F (1, 1, VYN < 6 (epILF Dl oo, + 10y F Ol o)) -

Proof. Analogously to [9], Lemma 4.12. O

Lemma 4.11. Let ¢ € R. Then

@NInN <N, &hhel<e, plhp!<p,
3=B ¢~
—ke e (0, 1),
eInN <(@©—De <{ 7 pe@h
& B =1,
LN Be(1)
_ 1 1 —e l_ﬂ ) )
bB)N“Ine™" < 7N ° = Lo
N B =1,
1 —c”
_ =N B € (0,1,
N¢Inp~! <%N—C e -
FINTT B=1
S8 e
_ g€ IBG (Oa 1)’
(©)elnp™ !t <@ < ﬁ_
&€ B =1

Proof. Observe that N < ¢ ®*flande™! < N T due to admissibility and mod-
erate confinement, hence nN < (® — )Ine~!andIne™! < 5 InN. O
5. Proofs for g € (0, 1)
5.1. Proof of Proposition 3.5

The proof works analogously to the proof of Proposition 3.7 in [9] and we
provide only the main steps for convenience of the reader. From now on, we will drop
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the time dependence of ®, ¢* and ¥"V-¢ in the notation and abbreviate ¢ = 1.
The time derivative of o@# P (t) is bounded by

o)l

For the second term in (60), note that

day, 0] < sy ool ©

SIE, - &b

$(EL,, 0 -2 0)| = ‘«w Vi, m)w» (@ Vi (. 0) @)‘

for almost every ¢ € [0, T‘j”ﬁ) by [35, Theorem 6.17] because 7 — g; ( w5 (1) —

5;; (t)) is continuous due to assumption A3. The first term in (60) yields

& <<w ﬁu/f>> = —2N3 <<w it (VI z) = VI, (x1,00) P1¢>> ©1)

—2N(N — D <<vf qlpznﬁa_lzémplpzw» (62)
~N(V - D3 <<1/f qlqﬁ’izwﬁf,?plpzw» (63)
—2N(N — 1)3<<¢ q1q2m—lzﬂ P1€I21/f>>, (64)

which follows from Lemmas 4.3 and 4.4. Expanding ¢ = g*" 4+ pX'¢® in (62)
to (64) and subsequently estimating Nm® | < [ and N i , Slforl e L from (20)
concludes the proof. 0O

5.2. Proof of Proposition 3.6

In this section, we will again drop the time dependence of 1/11\’ (1), ¢°(t) and
® (1) and abbreviate V¢ = 1. Besides, we will always take [ € £ from (20),
hence Lemma 4.2 implies the bounds

Mlop S N, Nlaquyl S 1

ford € 7Z.

5.2.1. Estimate of y, -(¢) and y(l) (t) The bounds of y, () and y(l) (1) are
established analogously to [9], Sections 4.4.1 and 4.4.2, and we summarise the
main steps of the argument for convenience of the reader. With Lemmas 4.5, 4.10
and 4.2d, we obtain

Ya,<(O] S €3 (D + ep(1) <<wﬁw>>.
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By Lemmas 4.7 and 4.2d and since w,, g € Wsg 5, yb(’ll (t) can be estimated as
24)] < ‘«ﬁz?’w, Pl pp(Nw) — bﬁ,N,s|<1>(x1>|2>p1pzw>>‘
+ ‘«Tq?w, p¥ vz (bpve = 5iibs) |¢(x1)|2P1P2¢>>‘
< ‘«Tq?w, pfgng(xop?’w»‘ +e3 ) (N7 4+ 7).
where

G(x)) =N / IxE () 2dyr / 9f (21 — 2)[*wy,p(2)dz
R R3

—1¢* @ Plwu sl - (65)

Note that for any g € C°(R?), [ps 8(z1 — Dwy,p(2)dz = g@D)llwpllp1rs) +
R(z1) with

1
IR(z1)| = ‘de/Vg(m —52) - zwy, p(z)ds
RS 0

s€[0,1]

< sup IVg(z1—sz)I/dzIzlwu,;s(z)-
zeR3 R3

Since |z| < uP for z € suppw,, g and by (59), this implies ||R||22(R3) < p?ht?

||Vg||iz(R3), which, by density, extends to g = |¢° 12 € H'(R?). Hence,
]
IG1 2 @2) S NPl 2w VIO P S Srep ()

by Holder’s inequality and Lemma 4.7. Using Lemmas 4.8d and 4.2d, we obtain

@] S o) (& + N7 ).

<
parts on a ball with radius €, using a smooth cut-off function to prevent contributions

from the boundary.

5.2.2. Estimate of ylf?) (t) The key idea for the estimate )/b(zi () is to integrate by

Definition 5.1. Define 4, : R — R, z — h.(z), by

1 w,u,ﬂ(g)d _ iwu,ﬂ(é‘)d

- ¢ | for|z] <e,
he(z) = 4 47 lz — ¢l 1Z]1¢* — z|
R3 R3

0 else,



Derivation of the 2d Gross—Pitaevskii equation 575

where ¢* ;= %;. Furthermore, define H; : R3 — [0, 1], z — Hc(z), by

1 for |z| < op.
He(z) := {be(Iz]) forog < |z] <&,

0 for |z| 2 e,

where b : (0g,€) — (0,1), 7 = be(r), is a smooth, decreasing function as
in [9, Definition 4.15] with lim,_>gﬂ he(r) = 1 and lim,_. ¢ h(r) = 0. We will
abbreviate

WD = he(zi —2j),  HY = He(zi — 2)).
Lemma 5.2. Let u < ¢. Then

(@) he solves the problem Ah, = w, g with boundary condition h8||z|:£ =0in
the sense of distributions,

() [ Vhell 2y S 1'%,

© I1Hell o) S 1 I Hell 2@y S €3 IV Hell gy S &7,
IVHe 23y < €2

Proof. The proof of Lemma 5.2 works analogously to Lemmas 4.12 and 4.13 in [9]

and we briefly recall the argument for part (b) for convenience of the reader. First,
1 2 .

we define hf; )(z) = fR3 wl’;ffl)dg and hf; )(z) = fR3 %%d{. To estimate

|Vh§l)|, note that [¢]| < 0 < ub for¢ e suppw,, g. For |z| < 20g, this implies

Iz —¢| < 30p < 1P, hence VAl (2 < w72 For 205 < Iz| £ e, we find

|z = ¢1 = 3zl hence |VA ()] S plz| ™2,

For |h,(;2) |, observe that ¢ € suppw,, g implies [{*| = 829};1 , hence, for © small

enough that eggl > 2, weobtain |z] £ ¢ < %ezggl < %|§*|.Consequently, |c* —
_ S 2 _
2l Z [3e21¢| ", which yields VA" | S e 2 llwypll oo @) Suuppu, , 1617161 S

£73u1*P  Part (b) follows from this by integration over the finite range of supp/..
Part (c) is obvious. O

We now use this lemma to estimate yfl. Letty € {p2, g2, q? p%g }.As He(z1 —
72) = lforz; —z2 € suppw,, g and besides suppH,; = B, (0), Lemma 5.2a implies

I~ £ 12 12
125)] = N‘«ltzqf( v, B Akl )p1p2¢>>‘
i~ x¢ 12 12
< N‘«qu( v, n HE'P (V) >>-pzv1p1w>>

i~ x¢ 12 12
+N‘<<qu< v, (Vi H'P) - (k¢ )>p2p1¢>>‘

~ g€ 12 12
+N‘<<Vlqu( v, ' (v 1 ))p2p11/1>>
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= xt 12 12 — 12 2
< NI (12 HE P 12N V1) - V1pa 13, + NIV ip,)

> xt 12 12
+N 1Tl w1 (12731 HE D) pl,

1
_ 12 2
AN TNV o s | V182 213, )

-~ x° 12 12 — 12 2
+N VTl w12 B 131 V1) prid, + NIV ) pa 13, )

B 3-8 1-8
S G0 (N““T +N§MT>’

where the boundary terms upon integration by parts vanish because H;(|z]) = 0
for |z| = ¢, and where we have used Lemmas 4.6, 4.2, 4.8, 4.9a and 5.2. Similarly,
one computes

26)] < ey (ONEHEe™T,
QD] S GONEFEE T
@8)] S e (N2 4077,

—148+28  1-8 1-8
2

1—
The bound for Vb(,zl follows from this because N SuTﬂ = e2 g2

for & < # and since the admissibility condition implies for & < 2%‘3 . % that

£ 1 é
3 E4l 35 sp £+3
NEHE S _ (85)ﬁ 7 -0k (55)ﬁ :
uh ub

5.2.3. Preliminary Estimates for the Integration by Parts To control yb(?i (1)
and yb(ﬁ (), we define the quasi two-dimensional interaction potentials w,, g (x| —

X2, y1) and ﬁ(x 1 — x2), which result from integrating out one or both transverse
variables of the three-dimensional pair interaction w, g(z1 — z2), and integrate
by parts in x. In this section, we provide the required lemmas and definitions
in a somewhat generalised form, which allows us to directly apply the results in
Sections 5.2.4, 5.2.5, 5.3 and 6.6.1.

Definition 5.3. Let o € (0, 1] and define V. as the set containing all functions
EU:RZX]R—HR, (x,y) = w5 (x,y)
such that

(@) suppwy (-, y) C {x e R?:|x| <o) forall y € R,

(B) oo llpo@m2xr)y S N7lo72,

(©) supll@y (. Mgy SN
yeR

(d) supl@o (. V2@ SN ol
yeR
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Further, define the set

Vo =@, :R> > R?*:3m, €V, st @y(x) = /dy LX) *@e (x, y)

R
Note that suppa, Cixe RZ: |x| £ o} and, since x?¢ is normalised, the estimates
for the norms of @, coincide with the respective estimates for @, . Next, we define

the quasi two-dimensional interaction potentials w, g and w, g as well as the
auxiliary potentials needed for the integration by parts, and show that they are

contained in the sets VU and VU , respectively, for suitable choices of o.

Definition 5.4. Let w,, g € Wg,, for some n > 0 and define

Wip REXxR =R, (x,9) = Wepx,y) = /dilxg(i)lzwu,ﬁ(x, y=,
R
(66)

W gt R? - R, X Wy g(x) = /dy |)(g(y)|2 Wy p(x,y). (67)
R

For p € (0g, 1], define
s REXR >R, (1) = Tp(x, y)
1 20—
20 Nwe g wey  for x| < p,
— T w.B LY (R?) (68)
0 else,

0! R? — R, X = ﬁp(x) = /dy |X8(y)|25p(x, y). (69)
R

It can easily be verified that w,, g and ﬁp can equivalently be written as

W p(x) = /dyl|X€()’1)|2/l‘&dyzb(s(yzﬂzwu,ﬁ(hyl — ),
R
_ L2 W gl g2y for x| < p,
Vp(x) =

else.

In addition, note that

12 R &
Pz ( ,3)172 = Wy, p(x1 —XZ,YI)Pg s

12 — NG
Pl pF wi el i = —xpl pf

Lemma 5.5. For w, g, W, g, Vp and ﬁp [from Definition 5.4, it holds that

(@ Wpp€Voy, Wup€Vy, TVp€Vy, Vp€Vy,
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®) lwe (-, y)||L1(]R2) = [v,(, )’)||L1(R2)f0” any y € R,
lwi gl w2y = 1Vl L1 R2)-

Proof. It suffices to derive the respective estimates for w, g(-, y) and v,(-, y)
uniformly in y € R. For instance, Lemma 4.7 and (59) yield

y+op
W, S X 1 ey / dyi 1,y <op Wi p (X, y — y1)
y—08
g1l =2 N_IQEZ,

N

_ | — —
v, (-, )’)”LI(RZ) = pz—n”wu,ﬁ(', )’)”LI(R?) / IL|x|§pd3€ = [[wu.gC, y)||L1(R2)
R2
SN
and the remaining parts are verified analogously. O

In analogy to electrostatics, let us now define the “potentials” h,, 5, and g, .o,

99 —

corresponding to the “charge distributions” ws, — g, and @s, — @, , respectively.

Lemma 5.6. Let 0 < 01 < 020 = 1, Wy, € vgl and s, € 902 such that for any
yeR

e, (-, )’)||LI(R2) = |@e, (-, Y)||L1(R2)~
Define
hoyor 1 RExR - R

— 1
(6,3) = Tigy 0 (. ) = —/ds In | = £1(0, €, ) = B €, )

2
]RZ
(70)
and
Emm ‘R > R
X > Mgy gy (x) = /dy X O Roy 00 (X, ¥). (71)
R

Let y € R and (hgl,gz,a)gl,a)@) € {(ﬁgl,gz(-,y),agl(uy),EGZ(-,y)),

(h0'1,0'29 60'1 ’ 502) }
(@) ho, 0, satisfies
Axhal,az = Wg; — Wg,

in the sense of distributions, and

Supphal,az - [X (S] Rz : le é 0'2} R
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®) oy 00l 122y S N0 (1+1n02 )

1
||Vxh01,02||L2(R2) 5 N1 <lna 1)

Proof. The first part of (a) follows immediately from [35, Theorem 6.21]. For the
second part, Newton’s theorem [35, Theorem 9.7] states that for |x| = o3,

_ 1
hoy,0(x, y) = 7 x| /(Eal (,y) — w5, (5, ¥))ds =0
2

as |log, C, Vg1 2y = @6, (5 ¥)IIL1r2)- Besides, [35, Theorem 9.7] yields the
estimate

_ 1
o105 (x, Y)| = E|ln x| /(Eol(éﬁy) + @, (€, y))dE S N7 In x|
R2

by definition of @. Hence,
ooz, € N2 [ riinrar € N 2030 4 Inoy ',

To derive the second part of (b), let us define the abbreviations

(]) — —(2)
Py —/desln k= EB €. y). R, (x.y)

:/ A€ In|x — &[Gy (&, ).
RZ

To estimate V. h(rl o+ let y € R and consider § € suppwy, (-, y), hence [§] < oy
If |x| < 201, we have |x — &| < |x| + |€] < 307, hence
301
70 1 -1
Vil o (X, WIS @0y | Lo m2xR) / dr SN"loy
0

If 201 < |x| £ oy, this implies |x — &| 2 |x| — |&§] 2 |x| — o1 2 %|x|, and one
concludes

(1) _ _
Vil 001 £ By [ @ (606 S N7,

R2

To estimate V h(71 o, DOte that |x —&| < x|+ €] £ 20y forx € suppEmmC, y)
and £ € suppw,,, hence

—(2) — _
Vil 0, (20 W) < SUP[@o | o r2 xRy / dig'l < N7yl

1§’ <207

Part (b) follows from integrating over |x| < op. O
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5.2.4. Estimate of yb( ) (t) To derive a bound for yb <, observe first that both
terms (29) and (30) contain the interaction w, g. We add and subtract v o from
Definition 5.4 for suitable choices of p, i.e.,

Wy p(x1 — X2, Y1) = Wy g (X1 — X2, ¥1) — Vp (X1 — X2, ¥1) + V(X1 — X2, ¥1)
= Axﬁgﬁ,p(xl — X2, y1) +Vp(x1 — X2, y1)

by Lemma 5.6, which is applicable by Lemma 5.5.

Estimate of (29). Due to the symmetry of i, (29) can be written as

(29)=N’<<q1 v, ST} w'h py pf pi"CIfbw»

12
<<‘11 v, ‘Iébll’z ,(Lﬁ)Pz ri Pibq;bw» ;

hence with (sfb, tzq’) € {(pf’, qf’), (qu, pg’)} and for some p € (0g, 11,
129)] < N’«qf Vg3 pY (Bxyhgy.p(x1 — x2. 1)) pf T]sf"rf’w»' (72)

+N ‘«qf"w, g5 p¥ v,p(x1 — x2, y1>p¥‘zis?’r§’w>>‘ : (73)

Since sfbtzq) contains in both cases a projector p® and a projector ¢®, the second
term is easily estimated as

(73) < Nlig{ vIlhigP v IlpPo, @ — x2. yD)llop S €3 (0)ep™!

by Lemmas 4.8d and 4.2d. For (72), note first that for (sfp, t2¢) = (qlq), pg’),

1(Viyhigs. o (x1 — X2, Y1) Vi, Y a P Tl
< N (Vayhgpp (1 — x2, Y1) Vi, 3 12, T1a P 0|
< ep(ON " (Inp )z

and for (s?, 15°) = (p?. ¢3),

1(Vayhgp.0(x1 — X2, Y1) Y Vinq3 p L
S 1 (Vayhiggp(x1 = x2, yO) PP 131 Vg T |
SSON T nph?,

where we have used that gg ~ uP. Hence, integration by parts in x» yields with
Lemma 4.6

|72l £ N '«qf( V. a3 PF (Viyhoy p(x1 — x2, yD)) pf varf’lis?’w»‘
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+N

<<V)Qq§bp§ U, g1 (Vayhos p(x1 — X2, yO)t5 pf Tls?’w»'

S NIGE I (Vayhgs,p (1 — X2, y1)) Vi by st i Ll

+N | Viyq3 p5 wn(npi‘ ¥ (Vaghgy.p(x1 — x2, yO)5 Tigf Il

1
N Tl 01 = 52y s? ol Tl

S SOWEe+ N HInp 3,

Estimate of (30). For this term, we choose p = 1 and integrate by parts in x,. This
yields

I30)| £ N ‘«qu"q;"w, pr pf Ui — xa2, y)pLal wm
W (o, ot o8 (apatn = m0) - st )

+N

<<szqu"q§’w, DY PE (VesTigpa (et — x2, 1) pw»]

< Nllg{ ¥liligaS vl (Ip3 11 = x2. y1)llop
+||(Vx2]7gﬂ,1 (x1 — x2, yl)) szpg)”op)
+Nllgf vllpS (Verhop.1(x1 — x2, YD) lopll Vaslg P g5 ¥ |

S G0enp™?
by Lemmas 4.2, 4.9a, 4.8d and 5.6. Together, the estimates for (29) and (30) yield
3 1 1 - - %
YLl S eh) (Ne+N77) (np™)?2 S i) (HgV ™ + SN2
by Lemma 4.11. Since 8 € (0, 1) and 3 — § € (0,2) as § € (1, 3), this implies
3 5
P01 S GO (TN + N% )T

which yields the final bound for yb(2 because, by admissibility and since & <
3-8 B

7 5-B°
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5.2.5. Estimate of yb(i (t) First, observe that

163 S Mg1a29 1@V NP o ey S €50 <<w,ﬁw>>.

Since both terms (31) and (32) contain the quasi two-dimensional interaction w, g,
we integrate by parts in x as before, using that

Wy p(x1 — x1) = A gy p(X1 — X2) + Dp(x1 — X2)

and choose p = N~ for i = min {%, ,3} in (31) and p = 1 in (32). In the
sequel, we abbreviate

_(12) pr— :(12) = :(12) =
Wy, B =Wy p(xr —x2), UV, = Up (X1 — X2), h@ﬁ,p = Qﬂ,p()q —X2).

Estimate of (31). Integration by parts in x; yields with Lemma 4.3b

~1 =(12 !
IBDIE N ‘«lzq?’q;l’w, 5 )plpzl?w»‘ (74)
~ % @ =(12)
+N |(Valay ay ¥, (Vxhy, ) P12y (75)
~ ® ® =(12)
+N \\lar ¥.ay (Vyhg, p) - Ve pip2yr )| - (76)

For the first term, we obtain with Lemmas 4.6c, 4.8d and for p = N —A

1
~ —(12) =4 _1.,=(12) ! 2
(74)] S Nlz2gPy || (upzvp pilzatyl* + N7, pébn%pl@wuz)

<0 (((vav))+ vt

where we used that 5,0 =, /5/7‘ /ﬁp since 5,0 = 0 and consequently

=(12) —=(12) —=(12) = _
1p20, " pilley S 1Py T, oIy T, " PG, S €4 OITp 171 g2y S 5N
a7

To estimate (75) and (76), observe first that for any operator s acting only on the
first coordinate,
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<<q2 (szhgﬂ p)smzw q3 (VX3 0p. p)S1p3w>>

=(12) ~

= <<hQ,S PSIVXZPZCB W (Vizh 08, p)S1P3CI W>>
=(12) =13 ~
<<hgﬁ 510245V, (Vs 25, p)S1p3szq ¢>>

=(12) o~ =(
={{Agy,p51 Vi 2 V305V By, psunqz R
(78)

=(12)
+ <<hgﬁ 51V, p2q3 hQﬁ psngpzq >>
=(12) =13
+ hQﬁ p51p2Vx3q3 Iﬁ 08, p51P3Vx242 W

=(12) ~ =(13)
+ hgﬁ pS1P243 1# h ﬁpslvxgp3vx26h 1,”

S G Olhgy.pl 3202, (108 T2+ 1 Vi TI7)

by Lemmas 4.2e and 4.9a. With Lemmas 4.6, 4.2 and 5.6b, we thus obtain for
p = N7ﬂ|

~ ¢ @ =(12) @ =(13)
TS NIValar vl (42 (Vaahg, p)P1p2vr. a3 (Vishy, ) pip3y

1

2
”( x1 Qﬂ p)pl ||0p>

< (N‘ﬂﬁf InN + N~ (In ,fl)%> ,

1(76)] < NlllAqulﬂH(«czz (V;czhg,S p)Vxlplpzw g3 (Vsh 25, p)Vxlplpzw»
1

2
+N (VB p)pz Iopl Ve, PT ||0p>
710 (N’ﬂl InN 4+ N"2(In ;f‘)%) .
Together, this yields, with Lemma 4.11, that

6015 G0 nav )+ o (VIS v o)

Note that for ,31 = min{—> s , B} and since & < %, it holds that N A1t >~ N—2F§
and that —5 + + B1 < —pB1 + &. Hence,

13D < e%(l) <<¢ h‘¢>> 4 e%(;)N—(ﬂu—S)‘_
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Estimate of (32). Observe first that for j € {0, 1},
=(12) ~
1pY (Vashg, gt as vl
WD~ o o2 o7V o 0,2
= @DV, @Dy, pliar g VT + 1oy hgy yValjar g w7 (79)
=(12) ~ =(12) _ ~
+ (<<|d>(x1)><vxlc1>(x1)|hgﬁ,pz.,q;‘>q§’w, p?hgﬁ,pvﬂz.jq?qg’w» + h.c.)
=(12) ~ =(12) ~
S Wty oV P lopllla gy wrii? + kg, , P I5p 11V 1g 43" w11
S e5(Dlhgy.pll7o g2, («w,ﬁw» + ||vxlq?’w||2> : (80)
Integration by parts in x, with p = 1 yields with Lemmas 4.3b, 5.6, 4.9a and 4.11
o~ e £ 4 o~ B € =(12)
132)] < N‘«lq?’q?lﬁ, ¥ pf Fglz)q?p?’w»‘ +N ‘«ltﬁ’tﬁ’w ¥ pf (Vthgﬁ,l)p?Vqu?w»‘
D @ x o x© PRGN N
+N ‘<<szq1 @ ¥, Py Py (Vayhg, Dprhay 1//>>'

T =(12) =(12) <
NITgP gL vy pP llopllas Wil + NIVay g Wil pf (Ve By, gt a3 v

N

1
2

=(12) ~ B =(12) —~
+N[Vegs ¥ (npi"(vnhgﬂ‘1>lqu"q;"n/f||2 +N 1||<V,thgﬁ.l>p?||§p||11q§’wu2>

ep (1) <<<Mw>> + Vgl I + ﬁzv—l’) .

With Lemma 5.7 below, we obtain

LA

1
B 3\2 _B- 1-p
321 S ey (e, , () + €4 (0) (’“‘7+ (%) + N+ a4+ )

for f» = min { B, %} Together, the estimates of (31) and (32) yield

1
4 B 3\2 (B —E)" 1-B
V(O] S eh ey (1) + eh0) (—“8 +(—§,,) L NPT L 4t >

5.3. Estimate of the Kinetic Energy for 8 € (0, 1)

Lemma 5.7. For 82 = min {JT, ,3} and sufficiently small u,
1
B 3\2 _B- 1-8
IV gt v I? S ep(ay (1) + e4(1) (“7 + (M—ﬂ) Y L )

Proof. Analogously to the proof of Lemma 4.21 in [9], we expand
Ev, 5 (V) — Epy ()

2
2 IVagPyI? + Ny w3 (= prp)vl? (81)

1 el e 3
<<n 229, Ay pY (qlx n2 + pf nf) ¢>>'

— [IVx PPV = IV P17 o)
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- ‘<<¢/ P2 (wa)j; - bﬂ|<1>(x1)|2) p1p21//>>‘ - ||\/@mpzwn2 (83)

N (Tt el gt v ) (84)

-N ‘<<1//,q1qzwf)’?p1p21//>>‘ (85)

- <<w (- P1P2)|<1>(X1)|2p1p21//>>’ - K(w (1= pip)| @)1 - pupz)wm
(86)

- <<w |c1><x1)|2¢>> - (o, \@(x1>|24>)‘ (87)

- <<w V”(t,zl)w» —(@, via, (xl,O))<I>>‘. (88)

Note that the second term in (81) is non-negative. For (82), we observe that
IV PEU I = IV @172 oy = =V @l 2o laP VI S e,%,(r><<w,ﬁw>>

and <<W%q$¢, Ay, p?ﬁ%w» X710 <<¢ ﬁw». Making use of G(x) from (65)
and Lemma 4.8, we find [(83)] < ¢3(1) (ﬁ LNy ,ﬂ) and [(84)] < ep(t)
<<1/f, ﬁw». Insertion of 7272 yields [(86)] < e% () <<I/f, ﬁt//>> As a consequence

of Lemmas 4.5 and 4.10, [(87)] + [(88)] < e% (1) <<1p,h‘w>> + 23/3 (t)e. Finally, we

decompose |(85)] as
185 SN '«w qf“qzwfi?plpzl/f»‘ +N '<<q§('¢, qup{('wﬂ,?plpzw>>'
+N ‘<<‘I1q>q§>w’ pi P} wﬁ?mpzlﬁ»‘-

Analogously to the bound of (25) (Section 5.2.2), the first line is bounded by

_B 15
2 2

SOIC R

and the second line yields
e5(t) <<w ﬁw» +ey(ON

for B> = min {B, } as in the estimate of (31) (Section 5.2.5). O
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6. Proofs for § =1

6.1. Microscopic Structure
This section collects properties of the scattering solution fz and its complement
8§-
Lemma 6.1. Let 15 and Qg asin Definition 3.7 and j,, as in (36). Then
(a) f7 is a non-negative, non-decreasing function of |z|,

(b) fg(z) 2 ju(2) forall z € R? and there exists Kg € (1,

B
W
Mﬁ—ua) such that
J5@) = kg ju(2)

for |zl < P,

© o5 ~ 1’
2 12
(A) Lz 2o <o VIV 2 + %«w, wi? — U,(L,E))"’» 2 0 for any ¢ € D(V)).
Proof. Parts (a) to (c) are proven in [10, Lemma 4.9]. For part (d), see [43, Lemma
5.13)]. o
Lemma 6.2. For gg as in Definition 3.7 and sufficiently small ¢,
@ lggI S ¢,
B

®) llggll 2@y S w't2,

1
©) IVggllL2msy < 12,
12 —
@ llgg v 0l SN

s 1 71
(©) I Lsuppgz (21 — DYV ED S e (Oufes = e ()N Pef 3,
o
(O I suppez (-, yi—yny 1 = xDY M@ S er ()7 P for any fixed p € (1, 00).

Proof. Parts (a) to (c) are proven in [10, Lemmas 4.10 and 4.11]. Assertion (d)
works analogously as [10, Lemma 4.10c]. For (e), we obtain similarly to [10,
Lemma 4.10e]

~ 6
I Lsuppgy (21 — 22)¥ 1% S ;ﬂf’/dm, ol (/ 21y (21, oo, ZN)|6) :

where we have used Holder’s inequality in the dz; integration. Now we substitute
71— 71 = (x1, y?]) and use Sobolev’s inequality in the dZ|-integration, noting
that Vz, = (V4,, £9y,) and dz| = edz;. This yields

2

(/ dZ1|¢(11,...,ZN)|6>6

2
6
= (e/d?llw((m,eyl),zz,-.-,ZN)|6>
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5e?/dfnv;,w«xl,e%),zz,...,ZN>|2

2
=73 [z (1Y ¥tz 4 0 Gt 2.

The statement then follows with Lemma 4.9a. For part (f), recall the two-dimensional
Gagliardo—Nirenberg—Sobolev inequality: for 2 < ¢ < oo and f € H'(R?),

= 2

”Vf”LZ(RZ)”f”LZ(RZ) = Sq”f”Lq(R%, (89)

where S, is a positive constant which is finite for 2 < g < oo (e.g. [41, Equa-

tion (2.2)] and [36, Equation (2.2.5)]). Consequently, ||f||Lq(]R2) ||f||L2(R2
q-2

||Vf||L‘§(R2) for each fixed ¢ € (2, 00). Hence, for any fixed p € (1, c0) and
¥ € L2R*) N D(Vy,),

2
||]1suppg§(x] —x)vll

p=1 2
P 2

§/dzw,...,dy| /ﬂ‘x‘gggdx fdxnn/f(zl,...,zmﬁf’

R2 R?2

<

-1
v N
2B(p-1) 2 2
NG dzy, ....dyi dx1 ¥ (21, s 28] dx1 |V ¥ (21, .o 2v)]

R? R?
2(p=1

2B(p=1
Spor WII"HVx,IﬁII ?

where we have used Holder’s inequality in the dx; integration, applied (89), and
finally used again Holder in the dzy, ...,dy; integration. O

6.2. Characterisation of the Auxiliary Potential U, i

In this section, we show that both U, gfpand U, 5 from Definition 3.7 are
contained in the set W~ Bon from Definition 2.2, which admits the transfer of results
obtained in Section 5 to these interaction potentials.

Lemma 6.3. The family U, 7 is contained in Wg , for any n > 0.
Proof. Note that p~! fR3 UM,E(Z)dZ = %’Ta(g%p, 3B — 1) = Zac for some

¢ > 0 by Lemma 6.1c, hence bz y (U, 5) = lim,)— (c0,0) bﬂ’N (U, 7). The
remaining requirements are easily verified.

Lemma 6.4. Let0 <n < 1 — E Then the family U, 7 fg is contained in Wy .

Proof. As before, it only remains to show that U,, 5 f7 satisfies part (d) of Defini-
tion 2.2. To see this, observe that

wo! / GO f3@dz 2 ! f w,(2) f5(2)

R3 B,.(0)
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6.1 . 38
=" e / wu(2)ju @) 'F Kg8ma,

B,.(0)

hence bE,N,e(Uu,EfE) = KB‘STL'a f]R Lx () [*dy. By Lemma 6.1b, this implies

li bz 2f7) = Ydy =b
Wm0 v WU, 55 Sﬂaflx(y)l y=bi 90)
R
and
6.1» ~
pa _
bW )~ il = 8mateg = 1) [ Ixofay 5 4 i,
wh — pa
R
O

6.3. Estimate of the Kinetic Energy for f = 1

The main goal of this section is to provide a bound for the kinetic energy of the
part of 1//N *¢(¢) with at least one particle orthogonal to @ (¢). Since the predominant
part of the kinetic energy is caused by the microscopic structure and thus concen-
trated in neighbourhoods of the scattering centres, we will consider the part of the
kinetic energy originating from the complement of these neighbourhoods and prove
that it is subleading. The first step is to define the appropriate neighbourhoods C j
as well as sufficiently large balls A iD c ;j around them.

Definition 6.5. Let max{yz—J;l,%} <d < B jke{l,., N} and define the
subsets of R3V

ajk = {(m, e ZN) lZj — ] < Md},
Cjk = {(Zl, s ZN) Hlzp— < 95],
@ = { @y, G v g — il < )

with (xj,y;) € R2*! as usual. Then the subsets 7\.,', E,', E(/ and .71); of R3N are
defined as

— - - —X
.Aj = Uaj,k, B./ = U a1, Cj = ch'k’ .Aj = Uaik

k#j k1) k#j k#j
and their complements are denoted by A;, B;, Cj and A}, e.g., A; = R3V\ A;.

The sets A j and Zj contain all N-particle configurations where at least one other
particle is sufficiently close to particle j or where the projections in the x-direction
are close, respectively. The sets BB; consist of all N-particle configurations where
particles can interact with particle j but are mutually too distant to interact among
each other.



Derivation of the 2d Gross—Pitaevskii equation 589

Note that the characteristic functions 1 41 and ]lﬁf do not depend on any y-
coordinate, and 1p, and ILEl are independent of z;. Hence, the multiplication
operators corresponding to these functions commute with all operators that act non-
trivially only on the y-coordinates or on z1, respectively. Some useful properties of
these cut-off functions are collected in the following lemma.

Lemma 6.6. Let A, 7(16 and By as in Definition 6.5. Then

3d—1 3d—1
@ 1z, pillop Se1®u™ T, g, Ve pillop Ser( ™7,
1
O) 1, ¥l S w3 (IVq ¥l + €lldy, ¥ ll) for any ¥ € LA®R*N) N D(Vy),

€ _1
©) g,y pf NI S er(e™ 73,
1

1 N 2
@ llig, vl < u's (Z(IIkaWIIZ +s2||8yk1/f||2))
k=2
forany ¢ € L>(R3*N) N D(Vy),
© g, ¥V (Ol S 1 (N I3 = e ()N ~4F3ed73,
p=1 1 p=1
O 1yl S N> PN IP [V ¥l 7 for any fived p € (1, 00),
and € L>(R*N) N D(V,,),
e 1 =l
@ gl v Ol S er(@e? (Np?)) = for any fixed p € (1, 00).

Proof. The proof of parts (a) to (e) works analogously to the proof of [10, Lemma
4.13]: one first observes that in the sense of operators, ]lz1 < Z,](vzz 14, and

ILEl < Z,Icvﬁ ]l;lk, concludes that ng Loy, (21, zk)dzr S w3, and proceeds as in
the proof of Lemma 6.2e. The proofs of (f) and (g) work analogously to the proof
of Lemma 6.2f, where one uses the estimate fR2 ILZ.]x (x1, oo, xy)dx; S Nuz‘i. o

y+l 5

Lemma 6.7. Let 1 > ﬁ > d > max {W’ z } Then, for sufficiently small u,

L4, Vi g v ()12
Z 1

S €i0ag, O +¢(0) ((%) + (&) 4T+ Nd+2> .

Proof. We will in the following abbreviate wN “(t) = ¥ and ®(t) = . Analo-
gously to [10, Lemma 4.12], we decompose the energy difference as

Ey (1)=& @)
2 |14, Ve gtV I* — ‘«vx.q?’w, 14, vxlp?’qm»‘ 1)

+||]LX] ILBIVxNﬁllz + <<1ﬂ, (—3)2)1 + SLZVJ-()e_l) _ %)w>>

+ <<w 1s, (wi? - v''?) w>> 92)
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+2% <<Vx1 p1v. Ly, Vx1q11//>> 93)
LA, Ve P17 = (V2@ 72 g (94)
+4 (<<w |d>(x1>|2w>> - <<I>, |<I>|2<1>)) + <<w via, z1>w>>

- <q>, v, (x, 0))<1>> 95)

+41 <<1ﬂ 1161P1P2U 7 P1P216.1ﬂ>> -4 <<1/f |<I>(X1)|21ﬁ>> (96)
+(N — 1)m<<w, 15,(P1g2 + 01p2)U,, 2 121, w» 97)

+(N — 1)m<<w, ﬂslqlqzvﬁg’pmzﬂslw». (98)
The first line is easily controlled as

O 2 114, Vayg? ¥ 17 — e} (e,
To estimate (92), note that (cix N B1) ﬂ (c1; N By) = ¥ by Definition 6.5 and
since d < ,3 implies 05 < 20f < u?. Consequently, ]lA 1p, 2 Ilc 1, =

N N
1p, kzz Lo, =1p, kzz ]l\zn—z;c\égg’ which yields with Lemma 6.1d

115,15, V191 + <<1131w( 12— U(2) 15 w>>

To use this for (92), we must extract a contribution ||]ljl 1p, E)ylt//||2 from the
remaining expression <<1/f, (—83l + ELZVJ‘(%) - %)w». To this end, recall that

x ¢ is the ground state of 8y21 +Lvit (y—l) corresponding to the eigenvalue %, hence
Oy, = —831 + ;—QVL(%‘) — fo is a positive operator and Oy, ¢ = Oquf(slﬂ.
Since lﬁf and Ilgl and their complements commute with any operator that acts
non-trivially only on y; and since 17{ ]lE1 Yand 1 Ar Y are contained in the domain
of Oy, if this holds for v, we find

[ 0n8)) - v o'
+ <<(“‘A,‘“‘Bl +H AV, Oy i, + K Ale)w>>
2 ks gt V17— eIV = Eo)-lle I graf vI°

2 WK, 0y, 1P =2 ‘«%Bl dy,ql W 3y, P mw»‘
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— e gl VI
— g dy pf w2
_ p=1 942 p=1
2 W5 ¥, 0 Y IIP — e (1) (s "Np) T — e (N )

for any fixed p € (1,00) by Lemma 6.6. Note that we have used in the last
line the fact that Ilz; > 11711 in the sense of operators as A; C A)lc. Now choose

p= l—i—m,whichiscontainedin(1, oo)as2d—1 > %becaused > %—i—%
This yields

e (20 ol (N_1 - y) by (2d— DA ed-Dp-1-p-1)

= ()7 < ()7

=\

because, since y > 1 and d < B,

p—1 _ 2Qd-1) 2d—1 1
5 Qd =D = o > T > ik

For the second expression in the brackets, recall that d > % + % by Definition 6.5,
hence

—1
e 2 (V2 5 = (N—lgl—y> 7 RA=D rl (-1 @d-1)-2424)

1

1) (47

< (83’

=
31
LS

Consequently,

(92) 2 —ef (1) (8%)#

Analogously to the estimates of (48) to (50) in [10, Lemma 4.12], we obtain

93)] S &) <<<vf m/f>> )
01 % 80 (w4 + (vaw)))

195)] < ef(r) << >> + ¢} (e,

where we have decomposed 14, = 1 — ]lj and used that ||Vxlpup||2 =
IVx <I>|| R2)||p1w||2 aswell as Lemmas 4.3b, 4.5,4.7a,4.9a,4.10 and 6.6a. Analo-

gously to the corresponding terms (51) and (52) in [10, Lemma 4.12], we write (96)
as
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= <<(11 — g )W 12 (W, 5D + U, )1 ) prpa(l - 13,)w>>

- <<w b1|d>(x1>|2w>>

and control the contribution with U, 7 fz and without ]lg1 by means of G(x) as
in (65), using the respective estimates from Section 5.2.1 since U, 5 fg € Wp , for

ne@1-— E). For the remainders of (96), note that ||UM,E||L‘(R3) < w and that

IV, 585l L1 sy = an' dzlgg()| < an' Pz dz
w.BSB B B
suppUM’E suppUM’/g‘
< purh.
For (97), we decompose 1, = 1 — 13 B and insert n fn 7 into the term with

identities on both sides. This leads to the bounds

196)] < e3(7) (“7’3 pul PN Nd+28d%> ,

197 S e}) (N"*ie” + <<w,ﬁw>>) :

Finally, for the last term of the energy difference, we decompose ¢ = g** + pX ¢ ®,
which yields

+N

O8) S N ‘<<13.w, gl U3 21, v >>‘
’ (99)

V. qf ¢ Ps v ﬁp1p21ﬂ>>
+N |((15,v. af g pf U )plpzﬂglwm (101)

+N

{

+N <<ﬂ g atpl U2 pip w>>‘ (100)
{
{

V. qtqy pf p2 RO ﬂplpzl/f>>' (102)

+N <<11311/f, avas p{ P} U“?P”’z‘”»‘ e

e xfy,(12
+N <<113]w, ara; py vl U,ﬁ,g)mpzﬂglw» . 104)

where we used the symmetry under the exchange 1 <> 2 of the second term in the
first line. For (99), note that 13, is symmetric in {2, ..., N} and commutes with
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V) and g f( g, hence we obtain, analogously to the estimate of (25) (Section 5.2.2),
the bound

199)] < elm( b +M'25) <) ((7) +M‘f),

since

Ngg# (Nf;”9 1) M (Nsﬁ 1)

forﬁ <3 5. For the second line and third line, note that p] U (]? png W Bx1—
X2, ¥2), w1th U . f s in Definition 5.4, which is sensible since U wp € Wﬂ 0 for

any 1 > 0. Hence, with v, and hQ 5.0 S in Definition 5.4 and Lemma 5.6, we obtain
with the choice p = 1
I(100)] S N ‘<<f1fb1311ﬂ, 43 Tp(x1 — x2, yz)P1P21ﬂ>>’

+N ‘<<]181 Vi a4 (Ve hoz1 (1 — x2, yz))mpzl/f>>‘

& —(12
+N ‘«q?ﬂglw, a3 (Vb 1)Vx1P1P21lf>>‘

D=

S NG, w15, (61 — 2. 32 lop (103 w12+ N7")

1

NIV U I Bzt (1 = 22, 32) 0P lop (g2 1P + N7)°

Nl—

+N g, ¥ (Ve Bzt (i1 = %2, 32)) - Ve P lop (llgZ w12 + N7
1 1
SOnpTH2E+N7)

by Lemmas 4.6c,4.9a, 5.6 and 6.6e. Similarly, but without the need for Lemma 4.6c¢,
we obtain with p = 1

1(101)] < SEONF8ed=5(Inp™")2.

Analogously to the bound of (31) in Section 5.2.5, using ﬁgﬁ, o with the choice

p=N -1 and suitably inserting ﬁ%ff%, we obtain
(102)] < ef(r) <<w ﬁ¢>> +E@ONTT

Finally, with the choice p = N -3 , the last two lines can be bounded as

=(12) > @ 712
1(103)] < N ({( 15, ¥, atay v, pip2y Iga ¥, a4 (V,nhgg,p) -V pip2¥r
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+N‘<<JIBI wav . gy (Vy, hos p)plpzlbm

1
(12) —=(12)
< Niig, vl (np?’ v, pg’uopﬂv Iv, p?’nop) + N1, ¥V, I, Qﬁ p) Vi Py lop

+Nuvxlq?’wu<<<q2 (Vi T o p>p1p2w 4 (Vo h o5 ,,>p1p3w>>

1

2
Vs, gﬁ p)pl ”op)
1
e (1) (N_(H'%é‘d_% + N_%) (lnu_1>2

12) =(12
104)] < N1, ¥ <||p2 T2 5oy + N 15850 lop + 1(Ta, gy ) ||0pe.<r>)

N

N

FON i (2,

where we used (78) with s; = p; as well as (77) and Lemmas 5.6, 6.6e, 4.11
and 4.9a. Hence, we obtain with Lemma 4.11

1—

198)] < (1) (( ) b b LN el +Nd+ie<d§>>

pyp
S e?(t) ((%) + M]%E + N7 2) + e](t) <<1/f’ﬁl/f>>’

d—

where we have used that —4—1‘ < —d+ % and thate K N _d+%£ %, which follows

because

N

d—3 d—
ENdfge%fd = (Nsﬁil) o 8%7’9(‘1*%) < (%) <1
since ¥ < 3. All estimates together imply

|EY () = &g (O] Z 114, Vi g Y11 — €1 (1) <<w,ﬁw>>

-

_e:i)’(t) (Ml;ﬁ"i_( ) +N_d+6+( )B‘Z>,

1

ul

7 s 5 wg 2
where we havellsedlthat 13al - 11 >1—pBaspf >d> zandthat - < (—V)
because, since 8 > 5+ 7 >y

s ~ s 1

B _
=) e < (B) < (5)P7

ml
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6.4. Proof of Proposition 3.9

Recalling that 7 = py paint? + (p1g2 + q1 p2)in®, we conclude immediately

N2

12 ~ ~,
<<llsuppg,§(11 —22)¥, gf,; "(p1pai® + (p1g2 + qlpz)m“)w»‘
< e%(t)N_¥+5sé+¥ < e%(t)e%

by Lemmas 6.2 and 4.2a and because 8 > 5. For fixed ¢ € [0, T7;}) and sufficiently

small ¢, e2 (t)e s < 1, hence this is bounded by &.

6.5. Proof of Proposition 3.10
This proof is analogous to the proof of [10, Proposition 3.2], and we sketch the

main steps for convenience of the reader. In the sequel, we abbreviate V¢ = v
and ®(t) = ®. Since

o, () = oy (1) = N(N — 1)%( «1// g(mw»),

Proposition 3.5 implies that for almost every ¢ € [0, \iH

| S, | S e <] + |yp < (1) = N(N — DR (d, <<w g“”ﬂ/f>>>‘. (105)

The second term in (105) gives

(o)

= NN = 1)3 <<1/, <12)[H (;)—Zh (1), ]1//>> (106)

j=1

+N(N—1)m9<< H ), g<12)] w>> (107)

In (106), WewrlteZKJ wi? = (12)—1-29] 3 ( D4 w(zj))+Z3<,<]<N e

and use the identity wi, > — by (|© (x) 2+ | (x2)[2) = 202 — N=2p, (1 (x> +

|®(x2)]?). This yields

(106) = ya(6) + ya(t) + 7e(0) + v (0) + N(N = DY <<w g5? 2027 w>>
For (107), note that

[ Huo. 887w = (wi? = Ug?) 11270 =210
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-~ 12 -~
VIPY — 2(Vagg”) - Vary,

hence
(107) = ye(®) + N(N = DS <<1/f (i -u') fé‘”w».

The expressions y,, < (t), ¥, < (¢) together with the remaining terms from (106) and
(107) yield

o e B ALt

<<w (wli — (]2))f(12)A1/f>>)

= Y(t) = N(N — DY <<1p gé}Z)?Z(lz)l//»

—N(N—l)%«w,(uﬁg 2 (1ol + e )) a gf;”)?w»

=y=@) + (),

where we used that & <<1//, Z(lz)ﬂb» =3 <<1p, f(lz)ﬁil/f» and that

702 £ _ ( (12) U(12)> f(12)
B Wy

(12) ,(12) b (12)
+Uﬂ’/§f/§ (|(D(X1)| + [P (x2)] )fg .

6.6. Proof of Proposition 3.11

6.6.1. Estimate of y=(r) To estimate y =(¢), we apply Proposition 3.6 to the
interaction potential U wBIE which makes sense since U, 55 € Wﬁ,n forn €
O, 1— E) by Lemma 6.4. Besides, we need to verify that the sequence (N, €), which
satisfies A4 with (®,T"); = (¥, 7/) 1s also admissible and moderately confining
with parameters (®, ')z = = (§/ ;3 1/ ﬂ) for some 6 € (1, 3). We show that this
holds for § = ¥ 8.

By assumption, 1 > E > 7/2—';1 >1s %. Hence, § = 195 € (1, 3) and we find

iz
8/B » .

£ e
7 nw cl/B &Y 24

Since Proposition 3.6 requires the parameter 0 <& < min { %, #, ,E , % . 5—_’35 },

we choose 0 < & < min {%, 23(;2’?) }
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Proposition 3.6 provides a bound for y =(¢), which, however, depends on e i ()
s

nsequently on the energy difference |Eg Nfﬁﬁ (l) — Eg) Nfﬁ, (Z)l Note that
(){U t) enters O]]] w.p y a
<p,,,‘iff;'( ) y in the estimate of

(32)] < N‘«Tq?’w, oSl kW, 55" 2] pX plaf wm

in 7’17(41 (t). Hence, we need a new estimate of (32) by means of Lemma 6.7 to

obtain a bound in terms of |E$M(t) — 5‘1’ (1)]. Since U/Mgfg € Wﬁ,n’ we can
define U, 3 fﬁ € VQ~ as in Definition 5.4,

£ £ & £ —(12) £ £
Pl Pk W, gt vk =U, 5/ bl Py

and perform an integration by parts in two steps: first, we replace U,, 7 f5 by the
potential ﬁuﬂZ € ?Mﬁz from Definition 5.4, namely,
TP, gl ey for lx] < w2,

vlyﬁZ (x) =
else,

where we have chosen p = uP? for some B, € (0, ,5). Subsequently, we replace

this potential by v; € V| with p = 1, where §M52 plays the role of U, 73, i.e.,

1 =
_ —|v, 5 lL1w2y  for|x| <1,
T1(x) = {n I (R=)

else.

By construction,

U, 5 /5l ey = 10,8 12y = 171121 2y,

hence, by Lemma 5.6a, the functions Z and Zu,s“ as defined in (71) satisfy

op.nP2
the equations

Ahozur = Uy gIg=Vums Axhyp y =Vpp =1

Hence,

Pl p¥ W, 5" pf b = (AXFQE,M;SZ + Ak, | +51) pi Py,

and consequently

£ =(12) .
|G <N ‘«p{ Vaar ¥, q?(vxlhgg,ﬂﬂz>pzq?’llw>>‘ (108)
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@ @ =(12) @
+N |{{ pf 1611 Vo dy (Vaihgs yp) P2V ar' ¥ (109)

+N << wdr ¥, a5 (Vxlh,mz 1)p1 Py p ;’quf"w»‘ (110)

P =(12) & &
+N <<lq?’w, a3y (Vb )Py pE pfvxlq?’w» (111)
o, =(12) x
+N << 19 ¥, V) P} Pz qi ¢>>‘ (112)

With Lemma 4.6a, the first two lines can be bounded as
(108) < Nm(r)(«qz (Vs Mﬂz)qul T 4 (vxshg D ) p3d llw>>
VT e P ||%p)%
S o (u +N72) (lnM”)% ,
(109) < NIVagP Y IIpS Va8 01 S Sou np,

where we used for (108) the estimate (78) with s = q1<1> and @ = Tl Yr and for (109)
the estimate (80) and applied Lemma 5.6b. To estimate (110) and (111), we insert
identities 1 = 1 4, + I3, to be able to use Lemma 6.7:

—=(12) & o~
(110)+ (111) £ N valq?’w, 15,95 (Ve hys ) p2p] q?’llw» (113)

+N << x 9 W ILA P2P1 (Vxlh,ﬁz 1)141 9> ¢> (114)

=(12) &
+N <<1A1Vx1611¢1/f, a3 (Vb ) P20 gty >>' (115)
+N <<lq1 v, q, (thuﬁz 1)P2P1 ﬂAl x191 1/f>>’ (116)
By Lemma 6.6b, we find for 1; € L2(R3*N) and with x = (x(V, x@)

=(12) ~
Hlﬁlqg(vmhw“z 1)17§l)l/f||2
= ||11AIQ2 (8 #ﬂzl)l’z W” +||]1Alq2 (8 (2 /Lﬂzl)pr”
7 = —(12) -
=3 (192 LU 2 2712 @72
N (||(3x](1)huﬁz,l)p2 vl©+ “(3)652)}1,/32,1)])2 Yi©+ ||(8xfl>axf2)hﬂﬂ2,1)p2 vl

=(12) ~ =(12) ~ =(12) ~
(0,02 1) P I DI + 10,02 h 0 1) P3 Ve TP + sznwxlhﬂﬂz,lp?)aylw||2),
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and analogously for the respective expression in (114). Note that for 7, ] e {1, 2}
and F € L2(R?) with Fourier transform F(k), it holds that |3 ) F||?

IV FII

<
L2 Rz) =

2R and that

10,080 Fll 72 oy = Ik, F I o)

S IEDY + (D) FI 2 gy = IAF 722,
Hence, we conclude with Lemma 4.8d that
(113) 4+ (114)
_1 = o~
S NIV gy liu sela)(nAthﬁz,l||L2<Rz)||lq?’w||
HIVeh 1 2@ IV 1g P VI + el Vih 122 19y, Y ||op||7q?’w||>

NGHO) (ud’ﬂr% + N5 3 (In u’l)%> :

which follows because A xﬁﬂﬁz = 5Mﬂ2 — 7. For the next two lines, note that

14, Vy, qf’l/f is symmetric in{2, ..., N}, hence we can apply Lemma 4.3a. Similarly
to the estimate that led to (78), integrating by parts twice yields

(115) S N1 4, vxlq?’wn(uﬂq?q;"w||2||ﬁ§fé),1vxzp§’||§p
Hlpahm 1 Vg PP w2
1
T, Dp213,)
Furthermore, proceeding as in (80), we find
(116) < N|[14, Ve, g7 V|
(nﬁffé),lvxlp?’uopnfq?’q;"wn + ||plﬁff§§,lvxl7q?’q§’x/f||> |
By Lemmas 4.2d, 5.6b and 6.6b, we obtain, for j € {0, 1},
1o g ? Vg w2
< kg g2 14, Vg P2

=(12) =(12) ~
+|((Vagly, ]1,41 i huﬂz 1P1hys. a3 Ve a
o=(12 =12 ~
+ (Vo qi lﬁ lA 1‘12 hﬂﬂz 1Pl 111612 L4, Vx4, W

=(12)
Spihye 13,114, Vgt w12
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1o~ =(12) =(12)
Vg 1P u? 3 ||l||op(||<vx] i DPY Nlop + 117,62 1 Vi, PT llop
e =(12) =(12)
113 7 Nopllin, 197 lop ) .1 lop
_ _ _1 _1. 4
SGON L4, Vi gt vl + el (ON 75 (n 2.

Combining these estimates, we conclude, with Lemma 6.7, that
(115) + (116) < e1 (1) (nulvxqu’wnz + <<wﬁw>> +N7! ln/fl)
+eONE P (2
< d0ey, )+ @) (( ) F(2)A T N—d+§) .

Finally,

|_(12)

(112) S NligP s vl v Py llop < e1(2) <<1/fﬁ1ﬂ>>,

by Lemmas 4.2, 4.8d and by Definition 5.3 of 51. With the choice 8, = —3‘16’ LS
#, all estimates together yield

B J S
32)] S & (e, + € () ((%) ()P 4T N—d+6) :

In combination with the remaining bounds from Proposition 3.6, evaluated for B,
n=(-— ,3) and § = 19;3 we obtain

B
P 2 = 5
<) < e?(t)alju + ¢l (1) <<%)2 ()P e T Nd+6> )

6.6.2. Estimate of the Remainders y,(¢) to ys(t) The estimates of y,(¢), y»(t)
as well as the bounds for y,(¢) to y () work mostly analogously to the respective
estimates in [10, Section 4.5], hence we merely sketch the main steps for complete-
ness.

Recalling that 7 := m” p; p» + m%(p1g2 + q1p2), one concludes with Lem-
mas 4.10, 6.2b and 4.2b that

12

ra® < NV 20) = Vi, @, OV llgg " pillo (1 lop + 17" lop)

since ,E > %, & < ﬁ and ¥ < 3. To estimate y,(f), note first that bg =
b(U B fg) = by by (90), hence (49) = 0. The two remaining terms can be con-
trolled as

12 ~ ~
G8)] S NI@ Iy 125> Prllop (178 lop + 1" op )
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N "
et 3 £

7
< SN2t < (e 2,
1 1

15O S N21p185 lop (17 llop + 17" op )

Ip1 (0l = PGP + |<I><xz>|2>)w||

N“\L
=

B 148
SN < el(t)s ,

as a consequence of Lemmas 4.2b, 4.7a, 4.9e and 6.2b. The first term of y,4(¢) yields
12 ~ —~
1521 S N Lsuppez 21 = 22V 115> Pillopl @ oy (177 op + 17 op )
38 3B
< e‘l‘(t)NHs_TaTJr% < ef(ne,

since E > % and £ < 11—2 For the second term of y;(¢), we write 7 = m“(p; +
p2) + (WP — 2m®) p1 pa, apply Lemma 4.3¢ with m¢ and m¢ from Definition 3.2,

and observe that g/(;z)

forz; —zp € suppgg and |z1 — z3| < p for z; — z3 € suppw),,. This leads to

wl? # 0 implies |z3 — z3| < 20 because |21 — 22| = < 0

153)] < N?

2 ~ -
<<¢, g%l ) [llsuppw“ (z1 — Z3)w,(4]3), pip3m® + (pigs + q1p3)mc] ¢>>'

2 -~
+N3 <<p1 Lsuppw,, (21 — z3)gg YDy, 1,002 = Za)ma¢>>‘

+N3 <<1P ggz)m(n’i“ + pa(im® — 2;”\a))l’1w,(¢l3)lﬁ>>‘
+N3 << (13)1// g( 2)p2]lsuppw“ (z1 — 23)p1(fn\b _ 2n’i“)¢>>‘

i® (N_ “Ee s g NIy v e#>

()T ).

since E > % and & < ﬁ and where we have estimated ”13295(0) (z2 — z3)m®yr||?
analogously to Lemma 6.2e. Using Lemma 4.3c, the relation

p3pa(® —72) + (p3ga + q3pa) T —T11)

= (P192 + q1P2) (D394 + 3 p)TE + (p1g2 + q1 p2) p3 pait?

+p1P2(p3g4 + g3 pa)m® + p1pap3pai’

and the symmetry of i, we obtain

lye()] S N*

<<w gfs 2)P1Q2[ GY | p3qai® + p3 pam ]w>>'

12 —~ o~
<<1/f g( )p1p2[ 9. p3gqam® +p3p4mf] 1!f>>‘

12 ~ ~
< NP5y llgd” pllop (1 lop + 1 lop

+N*
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<o (t)N_7+3

by Lemmas 4.9¢, 6.2b and Lemma 4.2b. Finally,

12 ~ ~
TOIES N2e2<r>||ng§ Mop (17 llop + 171 lop)
<N~ z+

The last remaining term left to estimate is y,(t), where we follow a different
path than in [10]: we decompose the scalar product of the gradients into its x-

and y-component and subsequently integrate by parts, making use of the fact

that V,, gé‘z) = —V,, g/(3 ? and analogously for y. Taking the maximum over

52 € {p2, g2} and 1 € £ from (20), this results in
lve@®] < N‘<<w (Vxlg ). Vxlmlszw>>‘ K<w (szg pa- Vxllq1w>>‘
117)

+N ’<<p§gw, <ay2g§2)>ayl stzw»l +N ‘«pg‘gw, (ayzgj;m)pzaylz‘ql w»‘
(118)

+N K(q%w (03,85 )0y, stzw»‘ +N '«q;w (ayzgg”)pzaylfqlwm :
(119)

With Lemmas 4.2b, 4.8, 4.9a and 6.2, the first line is easily estimated as
(117) < N (Ve v, e8PV, pils N|{(v U2Dg pils
~ X1 vgg xpils2v) )| + ¥, glg xi1 P1lsay

‘<<W g(l )Axlplfl\sztﬁ»‘ '<<W 8(12)Vx2P2Vx1’1\t21¢>>

148 148
2 2

B
SN < &()e

For the second line, we conclude with Lemma 6.2f that for any fixed p € (1, 00),
& 12 -
(118) 5 N ’<<3y2p§ HAsuppg;g(-,yl—yz)()Cl —x)Y, gl(g )3y1pllszl/f>>‘
+ N |((8y,p5 ¥ - U2 I
y2 P suppgﬁ(~,yl—y2)(x1 x2)Y, gg P20y, qQy

+N <<P§ ¥osuppgg -y —y2) (X1 — X2) ¥, g/(g )3yll713y21521/f>>‘

& 12 o~
+N <<P§ Wosuppgz .y —y2) (X1 — X2) ¥, g}g )3sz23yll‘11W>>‘

SN ¥ suppg (-, y1—y2) (X1 = x2) ¥/l
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12)
x(ngg B pilon + ™ i lope™ ')
<e1(z)Né e

With the choice p = )’;—J_r}, we obtain

NEFHE D (vl y) £ yﬂ(——m>—§—sw—1>
(;

since /3 > VH and & < —. Finally, the last line yields

(119) SN ‘«ayzqé‘gw, g,%”aylmfszw/f»‘ +N '<<q2 2 g(‘”ay.mayiszw»‘

12 7 ¢ 12 7
+N‘<< ¥ V8§ >pzay11q1w>>‘+zv'<<q5‘ V.85 >ay2pzayllqu/f>>‘
< 2 N-Ere 15t w
SN < (5)7,
where the last inequality follows because
12 eF3-E-0 (Nl b

N‘g+§£_ = (N_lsl_y)%_é

as,8> V+ and$<—.
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