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Abstract

Let us consider the motion of a viscous incompressible fluid past a rotating
rigid body in three dimensions, where the translational and angular velocities of
the body are prescribed but time-dependent. In a reference frame attached to the
body, we have the Navier–Stokes systemwith the drift and (one half of the) Coriolis
terms in a fixed exterior domain. The existence of the evolution operator T (t, s)
in the space Lq generated by the linearized non-autonomous system was proved
by Hansel and Rhandi (J Reine Angew Math 694:1–26, 2014) and the large time
behavior of T (t, s) f in Lr for (t − s) → ∞ was then developed by Hishida (Math
Ann 372:915–949, 2018) when f is taken from Lq with q � r . The contribu-
tion of the present paper concerns such Lq -Lr decay estimates of ∇T (t, s) with
optimal rates, which must be useful for the study of stability/attainability of the
Navier–Stokes flow in several physically relevant situations. Our main theorem
completely recovers the Lq -Lr estimates for the autonomous case (Stokes and Os-
een semigroups, those semigroupswith rotating effect) in three dimensional exterior
domains, which were established by Hishida and Shibata (Arch Ration Mech Anal
193:339–421, 2009), Iwashita (Math Ann 285, 265–288, 1989), Kobayashi and
Shibata (Math Ann 310:1–45, 1998), Maremonti and Solonnikov (Ann Sc Norm
Super Pisa 24:395–449, 1997) and Shibata (in: Amann, Arendt, Hieber, Neubran-
der, Nicaise, von Below (eds) Functional analysis and evolution equations, the
Günter Lumer volume. Birkhäuser, Basel, pp 595–611, 2008).

1. Introduction

This paper is the continuation of the previous study [34] on large time behavior
of a generalized Oseen evolution operator T (t, s), which is the solution operator
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u(·, s) = f �→ u(·, t) to the initial value problem for the linear non-autonomous
system

∂t u = �u + (η(t) + ω(t) × x) · ∇u − ω(t) × u − ∇ p,

div u = 0,

u|∂D = 0,

u → 0 as |x | → ∞,

u(·, s) = f,

(1.1)

in D × (s,∞), where D is an exterior domain in R
3 with C1,1-boundary ∂D,

{u(x, t), p(x, t)} with u = (u1, u2, u3)� is the pair of unknowns which are the ve-
locity vector field and pressure of a viscous fluid, respectively, while the solenoidal
vector field f (x) = ( f1, f2, f3)� is a given initial velocity at initial time s � 0
and {η(t), ω(t)} ∈ R

3×2 will be explained soon. Here and in what follows, (·)�
stands for the transpose of vectors or matirices. Problem (1.1) is a linearized sys-
tem for the Navier–Stokes problem modeling a viscous incompressible flow past
an obstacle R3\D (rigid body) that moves in a prescribed way. One usually makes
a transformation of variables in order to reduce the problem to an equivalent one
over the fixed domain in a frame attached to the obstacle, see Galdi [16] for details.
Then the resulting system is (1.1) (with s = 0) in which the LHS of the equation of
motion should be replaced by ∂t u + u · ∇u and the fluid velocity attains the rigid
motion η + ω × x (no-slip condition) at the boundary ∂D, where η(t) and ω(t)
respectively denote the translational and angular velocities of the rigid body (after
the transformation mentioned above). This paper develops methods of analyzing
the large time behavior of T (t, s) for (t − s) → ∞ when both translational and
angular velocities are time-dependent. Our conditions on this dependence are

η, ω ∈ Cθ ([0,∞);R3) ∩ L∞(0,∞;R3) (1.2)

with some θ ∈ (0, 1), which are the same as in the previous study [34].
The well-posedness of (1.1), that is, generation of the evolution operator

{T (t, s)}t�s�0 in the space L
q for 1 < q < ∞ was successfully proved by Hansel

and Rhandi [27] under the condition

η, ω ∈ Cθ
loc([0,∞);R3) (1.3)

with some θ ∈ (0, 1). It is reasonable not to need the global behavior (1.2) just for
the well-posedness of (1.1) and for regularity of the solution. They also derived a
remarkable Lq -Lr smoothing action near the initial time, that is,

‖T (t, s) f ‖r � C(t − s)−(3/q−3/r)/2‖ f ‖q (1.4)

‖∇T (t, s) f ‖r � C(t − s)−(3/q−3/r)/2−1/2‖ f ‖q (1.5)

for 0 � s < t � T and 1 < q � r < ∞ with some constant C > 0 that depends
on T ∈ (0,∞), where ‖ · ‖q denotes the norm of the space Lq(D). Later on, the
present author [34] developed the Lq -Lr decay estimate of T (t, s), namely, (1.4)
for all t > s � 0 and 1 < q � r < ∞ with some constant C > 0 independent
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of (t, s). A duality argument is one of ingredients of the proof, so that the Lq -Lr

estimate of the adjoint evolution operator T (t, s)∗ has been also deduced in [34]
simultaneously with (1.4). Note that the adjoint T (t, s)∗ is the solution operator
v(·, t) = g �→ v(·, s) of the backward problem for the adjoint system subject to the
final condition at t > 0, see (2.6) below. However, the decay estimate of ∇T (t, s)
with optimal rate has remained open [34, Remark 2.1].

The purpose of the present paper is to develop the gradient estimate of the
evolution operator for (t − s) → ∞. Our main theorem (Theorem 2.1, particularly
the first assertion) provides us with (1.5) for all t > s � 0 and 1 < q � r � 3. The
rate of decay of ∇T (t, s) for the other case 1 < q � r ∈ (3,∞) is also discussed
and it is given by (t − s)−3/2q . In addition, we obtain the Lq -L∞ decay estimate of
T (t, s) as well, that is, (1.4) with 1 < q < r = ∞ for all t > s � 0. Our theorem
completely recovers the Lq -Lr estimates for the autonomous case developed by
[38,43] (both for the Stokes semigroup η = ω = 0), [7,8,40] (those three for the
Oseen semigroup with constant η �= 0, ω = 0), [37] (semigroup with constant
ω �= 0, η = 0) and [45] (semigroup with constants η �= 0, ω �= 0). Therefore,
analysis in this paper can be regarded as a unified approach not only to all the
cases of uniform rigid motions but to several cases of time-dependent ones. Our
result cannot be improved in general because Maremonti and Solonnikov [43] and
the present author [30] observed that the rate of decay of ∇T (t, s) in our theorem
is optimal when η = ω = 0 (case of the Stokes semigroup). Nevertheless, there
might be a chance of improvement when η �= 0; for further discussion about the
optimality, see Remark 2.1.

In view of the celebrated paper [39] by Kato, it is clear that we have several
applications of the complete Lq -Lr estimates (1.4)–(1.5) for all t > s � 0 obtained
in this paper. In [34] (see also [35] for further development) the present author has
proposed a new way of constructing a unique Navier–Stokes flow globally in time
by use only of (1.4) combined with the energy relation (see [34, Lemma 5.1]), but
the solution constructed in such a way possesses less information about the large
time behavior; in fact, an improvement of Theorem 5.1 of [34] by using (1.5) with
r = 3 for all t > s � 0 is obvious. Since the same estimate for the adjoint T (t, s)∗ is
available in the Lorentz spaces as well, see (2.25) in Theorem 2.2 below, we must
have even more applications with the aid of interpolation technique developed
by Yamazaki [53]. Once we have (2.25), his insight brings us the sharp estimate
(2.26), which is quite useful to study the stability/attainability of several physically
relevant background flows (not only steady flow but also time-dependent flows
such as time-periodic one) being in the scale-critical Lorentz space L3,∞ (weak-L3

space). This is indeed the case if, for instance, the obstacle is purely rotating or at
restwithout translation,where the optimality of the decay rate |x |−1 for generic flow
is interpreted in terms of asymptotic structure at infinity, see [9,10,41] and [33].
Several applications of our main theorems will be discussed elsewhere. Let us just
mention, as one of them, a problem of attainablity of a (small) steady flow around a
rigid body rotating from rest (that was raised by [31, Section 6]). This is called the
starting problem and was proposed first by Finn [13] in the case when the rotation
was replaced by translation of the body. Finn’s problem was successfully solved by
Galdi, Heywood and Shibata [19] bymaking use of the Lq -Lr estimate of theOseen
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semigroup [40], see also [36] for further contributions, however, the same approach
with the aid of the Lq -Lr estimate due to [37] no longer works for the question
above because of unbounded coefficient ω× x of the drift term. The right approach
seems to be use of the results obtained here for the non-autonomous system, see
[50]. Another application [20] of our theorems is the attainability of a time-periodic
flow induced by time-periodic translation with zero average (oscillation like back
and forth), whose existence has been recently proved by Galdi [18].

The proof of our main theorem consists of two stages: one is the so-called local
energy decay estimates over a bounded domain D ∩ BR (near the obstacle), see
Propositions 6.1 and 6.2; the other is a decay estimate outside BR (near inifinity),
where BR denotes the open ball centered at the originwith radius R > 0. Indeed this
combination itselfwas adopted by several authors ([8,37,38,40] for 3D, [5,6,32,42]
for 2D) for the autonomous case, but what is new is to deduce the former without
spectral analysis. In fact, our assumption (1.2) is too general (without any specific
structure such as time-periodicity) to carry out the spectral analysis. Note, however,
that analysis of the resolvent near λ = 0 is the essential and hard step for the
autonomous case in the literature above, where λ denotes the spectral parameter.
We also refer the readers to a recent work [47] on the autonomous case by Shibata,
who has developed even more in the resolvent side to furnish the Lq -Lr decay
estimates. In this paper, (1.4) for all t > s � 0 plays a role to obtain the local
energy decay estimates (note that it is the opposite way to the argument in the
literature mentioned above in which (1.4) was a conclusion of the local energy
decay estimates), but such estimates of ∇T (t, s) are not enough since we have
to control the behavior of the pressure at the other stage of deduction of decay
estimates near infinity. The natural idea is to analyze the asymptotic behavior, both
for (t − s) → ∞ and for (t − s) → 0, of the temporal derivative ∂t T (t, s) in
the Sobolev space of order (−1) over the bounded domain D ∩ BR . To this end,
we need to develop more analysis of regularity of the evolution operator T (t, s),
see Proposition 5.1, than the one done by Hansel and Rhandi [27]. Analysis of
∂t T (t, s) is in fact very nontrivial since the corresponding autonomous operator is
no longer generator of an analytic semigroup in the space Lq unless ω = 0, see
[11,28,46] and the references therein, and it can be regarded as a substitution of
Section 5 of [37] for the autonomous case (semigroup with constant ω �= 0), in
which the authors made full use of precise behavior of parametrix of the resolvent
with respect to the spectral parameter.

It is worthwhile summarizing the method developed in the present paper to-
gether with the previous study [34]. The clue at the beginning towards analysis of
large time behavior of (1.1) would be

(i) Lq -Lr estimates (3.10) for the same system in the whole space;
(ii) energy relations [34, (2.15), (2.23)] for T (t, s) and its adjoint;

both of which are clear because the equation in (1.1) is derived only from the trans-
formation of variables concerning (i) and because the additional terms arising from
this transformation are skew-symmetric concerning (ii). Those are fine, however,
we would say that the only fine things for (1.1) are them. Note that, except for
(ii), one does not have useful higher energy estimates (which play an important
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role in [43] for the Stokes semigroup) unless η = ω = 0. In [34] some devices
by use of the energy (ii) enable us to show the uniform boundedness of T (t, s)
and T (t, s)∗ in Lr with r ∈ (2,∞) by duality argument with the aid of (i) via
cut-off procedure. With this at hand, the deduction of (1.4) for all t > s � 0 can be
reduced to computations of a differential inequality [34, Lemmas 4.1, 4.2]. Then,
in this paper, (1.4) combined with a detailed analysis of ∂t T (t, s) leads us to (1.5)
for all t > s � 0 and 1 < q � r � 3 as explained in the previous paragraph.
To sum up, with the approach proposed in both papers, once we have (i) and (ii)
above, we are able to deduce the large time behavior of ∇ j T (t, s) with j = 0, 1
in three dimensional exterior domains. In the more involved 2D case, however, the
method developed in [34] unfortunately does not work well, see [34, Remark 4.1]
for the difficulties. Concerning the Lq -Lr estimate for the autonomous case in 2D
exterior domains, we refer to [5,6,43] (for the Stokes semigroup) and [32,42] (for
the Oseen semigroup, where the latter is a significant refinement of the former). For
the case of rotating obstacle, the desired decay property has still remained open in
2D even if ω �= 0 is a constant vector.

This paper is organized as follows: in the next section, after summarizing the
knowledge from [27,34], we present the main theorems. We need further analysis
of the same system in the whole space and the one in bounded domains, which are
not covered by the literature. They are performed in Sections 3 and 4, respectively.
By way of constructing the evolution operator due to [27], in Section 5, we develop
more analysis of its regularity, in particular, smoothing rate as well as justification
of the temporal derivative ∂t T (t, s) f for general solenoidal vector field f being
in the space Lq . Local energy decay estimates of the evolution operator near the
obstacle are established in Section 6. The final section is devoted to completion
of the proof of the main theorems by showing the decay estimate of the evolution
operator near spatial infinity.

2. Results

Let us begin with introducing notation. Given two vector fields u and v, we
denote by u⊗v the matrix (uiv j ). Let A = (Ai j (x)) be a 3×3 matrix-valued func-
tion, then the vector field div A is defined by (div A)i = ∑

j ∂x j Ai j . By following
this rule, the drift and Coriolis terms in (1.1) can be expressed as

(η + ω × x) · ∇u = div
[
u ⊗ (η + ω × x)

]
, ω × u = div

[
(ω × x) ⊗ u

]
,

the latter of which follows from div u = 0. Those expressions appear in (3.16),
(4.8) and (5.21) below.

Given a domain G ⊂ R
3, q ∈ [1,∞] and integer k � 0, the standard Lebesgue

and Sobolev spaces are denoted by Lq(G) and by Wk,q(G). We abbreviate the
norm ‖ · ‖q,G = ‖ · ‖Lq (G) and even ‖ · ‖q = ‖ · ‖q,D , where D is the exterior
domain under consideration with C1,1-boundary ∂D.

Throughout this paper, we fix a number R0 > 0 so large that

R
3\D ⊂ BR0 , (2.1)
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where BR denotes the open ball centered at the origin with radius R > 0. We set
DR = D ∩ BR for R ∈ [R0,∞).

The classC∞
0 (G) consists of allC∞ functions with compact support inG, then

Wk,q
0 (G) denotes the completion ofC∞

0 (G) inWk,q(G), where k > 0 is an integer.

We setW−1,q(G) = W 1,q ′
0 (G)∗, where 1/q ′ +1/q = 1 and q ∈ (1,∞). By 〈·, ·〉G

we denote various duality pairings over the domain G. In what follows we adopt
the same symbols for denoting scalar and vector (even tensor) function spaces as
long as there is no confusion.

Let X1 and X2 be two Banach spaces. Then L(X1, X2) stands for the Banach
space consisting of all bounded linear operators from X1 into X2. We simply write
L(X1) = L(X1, X1).

Consider the boundary value problem

div w = f in G, w|∂G = 0,

where G is a bounded domain inR3 with Lipschitz boundary ∂G. Let 1 < q < ∞.
Given f ∈ Lq(G) with compatibility condition

∫
G f dx = 0, there are a lot of

solutions, some of which have already been found, see Galdi [17, Notes for Chapter
III]. Among those solutions a particular one discovered by Bogovskii [2] is useful
to recover the solenoidal condition in a cut-off procedure on account of some fine
properties of his solution. The operator f �→ his solution w, called the Bogovskii
operator, is well defined as follows (for details, see [3,17]): there is a linear operator
BG : C∞

0 (G) → C∞
0 (G)3 such that, for 1 < q < ∞ and k � 0 integers,

‖∇k+1
BG f ‖q,G � C‖∇k f ‖q,G, (2.2)

with some C = C(G, q, k) > 0, which is invariant with respect to dilation of the
domain G, and that

div (BG f ) = f if
∫

G
f (x) dx = 0. (2.3)

By continuity, BG extends uniquely to a bounded operator from Wk,q
0 (G) to

Wk+1,q
0 (G)3. In [23, Theorem 2.5] Geissert, Heck and Hieber proved that BG

can also extend to a bounded operator from W 1,q ′
(G)∗ to Lq(G)3, that is,

‖BG f ‖q,G � C‖ f ‖W 1,q′
(G)∗ , (2.4)

where 1/q ′ + 1/q = 1. Note that this is not true from W−1,q(G) to Lq(G)3, see
Galdi [17, Chapter III], who nevertheless proved that

‖BG [div F]‖q,G � C‖F‖q,G (2.5)

holds true for F ∈ Lq(G)3 satisfying the vanishing normal trace condition ν ·
F |∂G = 0 as well as div F ∈ Lq(G) [17, Theorem III.3.4]. Instead of (2.4), one
can employ (2.5) to discuss some delicate terms arising from cut-off procedures.

Let us introduce the solenoidal function space. Let G ⊂ R
3 be one of the

following domains; the exterior domain D under consideration, a bounded domain



Decay Estimates of Gradient of a Generalized Oseen Evolution 221

with C1,1-boundary ∂G and the whole space R
3. The class C∞

0,σ (G) consists of
all divergence-free vector fields being in C∞

0 (G). Let 1 < q < ∞. By Lq
σ (G) we

denote the completion of C∞
0,σ (G) in Lq(G), then it is characterized as

Lq
σ (G) = {u ∈ Lq(G); div u = 0, ν · u|∂G = 0},

where ν stands for the outer unit normal to ∂G and ν ·u is understood in the sense of
normal trace on ∂G (this boundary condition is absent when G = R

3). The space
of Lq -vector fields admits the Helmholtz decomposition

Lq(G) = Lq
σ (G) ⊕ {∇ p ∈ Lq(G); p ∈ Lq

loc(G)},
whichwas proved by Fujiwara andMorimoto [15],Miyakawa [44] and Simader and
Sohr [48].By PG = PG,q : Lq(G) → Lq

σ (G),we denote theFujita-Kato projection
associated with the decompostion above. We then see that PG ∈ L(W 1,q(G)) as
well as PG ∈ L(Lq(G)). Note the duality relation (PG,q)

∗ = PG,q ′ as well as

Lq
σ (G)∗ = Lq ′

σ (G),where 1/q ′+1/q = 1.We simplywrite P = PD for the exterior
domain D under consideration. Finally, we denote several positive constants by C ,
which may change from line to line.

We are in a position to introduce the generators which are related to (1.1) and to
the backward problem for the adjoint system subject to the final condition at t > 0:

−∂sv = �v − (η(s) + ω(s) × y) · ∇v + ω(s) × v + ∇σ,

div v = 0,

v|∂D = 0,

v → 0 as |y| → ∞,

v(·, t) = g,

(2.6)

in D × [0, t), where {v(y, s), σ (y, s)} is the pair of unknowns. Let us define the
operators L±(t) by

Dq(L±(t)) = {u ∈ Lq
σ (D) ∩ W 1,q

0 (D) ∩ W 2,q(D); (ω(t) × x) · ∇u ∈ Lq(D)},
(2.7)

L±(t)u = −P[�u ± (η(t) + ω(t) × x) · ∇u ∓ ω(t) × u].
Then we have

〈L±(t)u, v〉D = 〈u, L∓(t)v〉D (2.8)

for all u ∈ Dq(L±(t)) and v ∈ Dq ′(L∓(t)), see [34, (2.12)], where 1/q ′+1/q = 1.
Since the domain is time-dependent, as in Hansel and Rhandi [27], we need the
regularity spaces

Yq(D) = {u ∈ Lq
σ (D) ∩ W 1,q

0 (D) ∩ W 2,q(D); |x |∇u ∈ Lq(D)},
Zq(D) = {u ∈ Lq

σ (D) ∩ W 1,q(D); |x |∇u ∈ Lq(D)}, (2.9)

which are Banach spaces endowed with norms

‖u‖Yq (D) = ‖u‖W 2,q (D) + ‖|x |∇u‖q , ‖u‖Zq (D) = ‖u‖W 1,q (D) + ‖|x |∇u‖q ,
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respectively. Note that Yq(D) ⊂ Dq(L±(t)) for every t � 0 and that, differently
from [27], the homogeneous Dirichlet condition at ∂D is not involved in the space
Zq(D). The reason why this modification is actually needed will be clarified in
Section 5.

Hansel and Rhandi [27] proved the following:

Proposition 2.1. [27] Suppose that η and ω fulfill (1.3) for some θ ∈ (0, 1). Let
1 < q < ∞. The operator family {L+(t)}t�0 generates an evolution operator

{T (t, s)}t�s�0 on Lq
σ (D) such that T (t, s) is a bounded operator from Lq

σ (D) into
itself with the semigroup property

T (t, τ )T (τ, s) = T (t, s) (t � τ � s � 0); T (s, s) = I, (2.10)

in L(Lq
σ (D)) and that the map

{t � s � 0} � (t, s) �→ T (t, s) f ∈ Lq
σ (D)

is continuous for every f ∈ Lq
σ (D). Furthermore, we have the following properties:

1. Let q � r < ∞. For each T ∈ (0,∞) and m ∈ (0,∞), there is a constant
C = C(T ,m, q, r, θ, D) > 0 such that (1.4) and (1.5) hold for all (t, s) with
0 � s < t � T and f ∈ Lq

σ (D) whenever

sup
0�t�T

(|η(t)| + |ω(t)|) + sup
0�s<t�T

|η(t) − η(s)| + |ω(t) − ω(s)|
(t − s)θ

� m.

2. Let 3/2 < q < ∞ and fix s � 0. For every f ∈ Zq(D) and t ∈ (s,∞), we
have T (t, s) f ∈ Yq(D) and

T (·, s) f ∈ C1((s,∞); Lq
σ (D))

with

∂t T (t, s) f + L+(t)T (t, s) f = 0, t ∈ (s,∞), (2.11)

in Lq
σ (D).

3. Fix t > 0. For every f ∈ Yq(D), we have

T (t, ·) f ∈ C1([0, t]; Lq
σ (D))

with

∂sT (t, s) f = T (t, s)L+(s) f, s ∈ [0, t],

in Lq
σ (D).
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Among the assertions above, the second one tells us that T (t, s) f provides a
strong solution without assuming f |∂D = 0 nor ∇2 f ∈ Lq(D). This is a slight
improvement of the corresponding result in [27, Theorem 2.4 (b)], which claims the
same for f ∈ Yq(D). The proof of this improvement only in the second assertion
will be given in Section 5. The restriction q ∈ (3/2,∞) stems from Lemma 5.2
(and it seemed to be overlooked in [27]). Thus the corresponding part of Propo-
sition 2.1 of [34] should be replaced by the second assertion above. Nevertheless,
we observe that the semigroup property (2.10) in L(Lq

σ (D)) holds still for every
q ∈ (1,∞). In fact, given f ∈ C∞

0,σ (D), it follows from the second and third
assertions that ∂τ

(
T (t, τ )T (τ, s) f

) = 0 in Lq
σ (D) with q ∈ (3/2,∞), yielding

T (t, τ )T (τ, s) f = T (t, s) f . Once we have that for all f ∈ C∞
0,σ (D), a continuity

argument leads to the same equality for all f ∈ Lq
σ (D) with q ∈ (1,∞).

We should mention that the results obtained in the previous study [34] are still
valid in spite of the restriction q ∈ (3/2,∞) above. Let S(t, s) be the evolution
operator generated by the backward problem

− ∂sv(s) + L−(s)v(s) = 0, s ∈ [0, t); v(t) = g (2.12)

in Lq
σ (D), which corresponds to (2.6); it is given by

S(t, s) = T̃ (t − s, 0; t), t � s � 0, (2.13)

where {T̃ (τ, s; t)}0�s�τ�t is the evolution operator generated by the related initial
value problem

∂τw(τ) + L−(t − τ)w(τ) = 0, τ ∈ (s, t]; w(s) = g, (2.14)

see [34, Subsection 2.3]. For (2.14), note that t > 0 is just a parameter appearing in
the coefficient of the equation. We then have the duality relation [34, Lemma 2.1]

T (t, s)∗ = S(t, s), S(t, s)∗ = T (t, s) in L(Lq
σ (D)) (2.15)

for t � s � 0, which plays an important role in [34]. In fact, given f, g ∈ C∞
0,σ (D)

(instead of f ∈ Yq ′(D), g ∈ Yq(D) in the proof of [34, Lemma 2.1], where
1/q ′ + 1/q = 1), we obtain

〈T (t, s) f, g〉D = 〈 f, S(t, s)g〉D (2.16)

by computing ∂τ 〈T (τ, s) f, S(t, τ )g〉D = 0 with use of (2.11) as well as

− ∂s S(t, s)g + L−(s)S(t, s)g = 0, s ∈ [0, t), (2.17)

in Lq
σ (D), where 〈·, ·〉D should be understood for the pair of Lq ′

σ (D) and Lq
σ (D)

with q ∈ (3/2, 3). Once we have (2.16) for all f, g ∈ C∞
0,σ (D), we have only to

perform a continuity argument to justify (2.15) for every q ∈ (1,∞). In addition,
as emphasized in Section 1, one of key ingredients in [34] is the energy relation
which we certainly have since the second assertion of Proposition 2.1 is available in
L2

σ (D). Finally, as described in [34, Section 4] for the proof of decay estimates, it
suffices to carry out a cut-off procedure for fine initial velocities being in C∞

0,σ (D),
so that the restriction q ∈ (3/2,∞) does not cause any problem.
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We recall the Lq -Lr estimates globally in time developed by the present author
[34, Theorem 2.1, Proposition 3.1]. Let us introduce

|(η, ω)|0 = sup
t�0

(|η(t)| + |ω(t)|),

|(η, ω)|θ = sup
t>s�0

|η(t) − η(s)| + |ω(t) − ω(s)|
(t − s)θ

(2.18)

for θ ∈ (0, 1) and

�(τ∗) = {(t, s); t > s � 0, t − s � τ∗} (2.19)

for τ∗ ∈ (0,∞).

Proposition 2.2. [34] Suppose that η and ω fulfill (1.2) for some θ ∈ (0, 1). Let
1 < q � r < ∞. Then,

1. For each m ∈ (0,∞), there is a constant C = C(m, q, r, θ, D) > 0 such that

‖T (t, s) f ‖r � C(t − s)−(3/q−3/r)/2‖ f ‖q ,
‖T (t, s)∗g‖r � C(t − s)−(3/q−3/r)/2‖g‖q ,

(2.20)

for all t > s � 0 and f, g ∈ Lq
σ (D) whenever

|(η, ω)|0 + |(η, ω)|θ � m (2.21)

is satisfied.
2. Given τ∗ ∈ (0,∞) and m ∈ (0,∞), let �(τ∗) be as in (2.19) and assume

(2.21). Then there is a constant C = C(τ∗,m, q, r, θ, D) > 0 such that

‖∇T (t, s) f ‖r � C(t − s)−(3/q−3/r)/2−1/2‖ f ‖q ,
‖∇T (t, s)∗g‖r � C(t − s)−(3/q−3/r)/2−1/2‖g‖q ,

(2.22)

for all (t, s) ∈ �(τ∗) and f, g ∈ Lq
σ (D).

The point of the second assertion is that the constant C > 0 in (2.22) can be
taken uniformly in (t, s) with t − s � τ∗. This must be the first step toward (2.22)
for all t > s � 0. It was not covered by [27] but shown by [34, Proposition 3.1]
under the condition (1.2), however, only for∇T (t, s). The same result for∇T (t, s)∗
follows from the one for ∇ T̃ (τ, s; t), which is the solution operator to (2.14) and
can be constructed along the procedure adopted by [27], see also Section 5 of this
paper. To this end, as clarified in [34, Subsections 3.1–3.3], it suffices to investigate
the initial value problem for the same equation as in (2.14) over a bounded domain
DR with R > 0 large enough by following the Tanabe-Sobolevskii theory [51].
Taking a look at the generator L−(t − τ) together with the condition (1.2), we
observe that all the constants in several key estimates can be taken uniformly in
(τ, s) with τ − s � τ∗, see the proof of Lemma 3.2 of [34], which implies

‖∇ T̃ (τ, s; t)g‖r � C(τ − s)−(3/q−3/r)/2−1/2‖g‖q
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for all (τ, s) with τ − s � τ∗ as well as 0 � s < τ � t and 1 < q � r < ∞, where
C > 0 depends on τ∗ ∈ (0, t) but is independent of t > 0. By (2.13) and (2.15) we
conclude that ∇T (t, s)∗ also satisfies (2.22) for all (t, s) ∈ �(τ∗).

We are now in a position to present the main result of this paper.

Theorem 2.1. Suppose that η and ω fulfill (1.2) for some θ ∈ (0, 1).

1. Let 1 < q � r � 3. For each m ∈ (0,∞), there is a constant C =
C(m, q, r, θ, D) > 0 such that (2.22)holds for all t > s � 0and f, g ∈ Lq

σ (D)

whenever (2.21) is satisfied.
2. Let 1 < q � r as well as r ∈ (3,∞). For each m ∈ (0,∞), there is a constant

C = C(m, q, r, θ, D) > 0 such that

‖∇T (t, s) f ‖r � C(t − s)−3/2q‖ f ‖q ,
‖∇T (t, s)∗g‖r � C(t − s)−3/2q‖g‖q ,

(2.23)

for all (t, s) with

t − s > 2 as well as 0 � s < t

and f, g ∈ Lq
σ (D) whenever (2.21) is satisfied.

3. Let1 < q < ∞. For eachm ∈ (0,∞), there is a constantC = C(m, q, θ, D) >

0 such that (2.20) with r = ∞ holds true, that is,

‖T (t, s) f ‖∞ � C(t − s)−3/2q‖ f ‖q ,
‖T (t, s)∗g‖∞ � C(t − s)−3/2q‖g‖q ,

(2.24)

for all t > s � 0 and f, g ∈ Lq
σ (D) whenever (2.21) is satisfied.

Remark 2.1. Maremonti and Solonnikov [43] first pointed out that the restriction
1 < q � r � 3 = n (space dimension) for the desired rate (2.22) of decay is
optimal when η = ω = 0. Later on, in this case of the Stokes semigroup, the present
author [30] gave another proof of the optimality, where a key observation is that the
issue is closely related to summability of the steady Stokes flow near spatial infinity.
From this point of view, it is also conjectured by [30, Section 5] that the desired
rate (1.5) of decay could be obtained for 1 < q � r � 6 = n(n+ 1)/(n− 1) when
the translation of the body is present, that is, η �= 0. For the Stokes semigroup, the
optimality of the rate (2.23) of decaywas also proved byMaremonti and Solonnikov
[43] in the sense that better rate (t−s)−3/2q−ε with some ε > 0 is impossible when
r > 3.

Having several applications to the Navier–Stokes system in mind, we next pro-
vide useful estimates especially for the adjoint evolution operator. Let us introduce
the Lorentz spaces which are usually defined as Banach spaces in terms of the
average function of the rearrangement, see [1] for details. For simplicity, we just
define the solenoidal Lorentz spaces by

Lq,ρ
σ (D) = (

Lq0
σ (D), Lq1

σ (D)
)
θ,ρ
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with

1 < q0 < q < q1 < ∞,
1

q
= 1 − θ

q0
+ θ

q1
, 1 � ρ � ∞,

where (·, ·)θ,ρ denotes the real interpolation functor. Then the RHS above is inde-
pendent of choice of {q0, q1}, so that the space Lq,ρ

σ (D), whose norm is denoted by
‖ · ‖q,ρ , is well-defined. It is obvious by interpolation to obtain (2.20) and (2.22)
for all t > s � 0 in which the Lebesgue spaces are replaced by the Lorentz spaces
except for (2.22) with 1 < q � r = 3. But we do need this end-point case for the
adjoint evolution operator to study the large time behavior of the Navier–Stokes
flow around a background flow (such as steady flow and time-periodic one) that
decays with scale-critical rate at spatial infinity, see [37,53]. For completeness, it is
worse while providing (2.25) below including the nontrivial case r = 3. Once we
have (2.25), we can get (2.26) by following the argument developed by Yamazaki
[53].

Theorem 2.2. Suppose that η and ω fulfill (1.2) for some θ ∈ (0, 1). Let 1 < q �
r � 3 and 1 � ρ < ∞. Let m ∈ (0,∞) and assume (2.21). Then there is a constant
C = C(m, q, r, ρ, θ, D) > 0 such that

‖∇T (t, s)∗g‖r,ρ � C(t − s)−(3/q−3/r)/2−1/2‖g‖q,ρ (2.25)

for all t > s � 0 and g ∈ Lq,ρ
σ (D). If, in particular 1/q − 1/r = 1/3 as well as

1 < q < r � 3, then there is a constant C = C(m, q, θ, D) > 0 such that

∫ t

0
‖∇T (t, s)∗g‖r,1 ds � C‖g‖q,1 (2.26)

for all t > 0 and g ∈ Lq,1
σ (D).

3. Whole space problem

In this section we consider the non-autonomous system

∂t u = �u + (η(t) + ω(t) × x) · ∇u − ω(t) × u − ∇ p,

div u = 0
(3.1)

in R3 × (s,∞) subject to

u → 0 as |x | → ∞,

u(·, s) = f.
(3.2)

Indeed the systemwas studied by [4,21,25–27], but we have to supplement a couple
of regularity properties: Lemma 3.1 on some smoothing actions and Lemma 3.2 on
the time derivative for general f ∈ Lq

σ (R3).
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As long as f fulfills the compatibility condition div f = 0, we see that∇ p = 0
within the class ∇ p ∈ Lq(R3) and that the solution is just the heat semigroup in
which a change of variables is made in an appropriate way, because

div [(η + ω × x) · ∇u − ω × u] = (η + ω × x) · ∇div u = 0. (3.3)

In fact, the solution to (3.1)–(3.2) is explicitly described as

u(x, t) = (
U (t, s) f

)
(x)

= �(t, s)
(
e(t−s)� f

) (

�(t, s)�
(

x +
∫ t

s
�(t, τ )η(τ ) dτ

))
, (3.4)

where
(
et� f

)
(x) = (4π t)−3/2

(
e−|·|2/4t ∗ f

)
(x),

while 3 × 3 orthogonal matrix �(t, s) stands for the evolution operator for the
ordinary differential equation d

dt ϕ = −ω × ϕ, see the literature above for details.
By �(x, y; t, s) we denote the fundamental solution, that is, the kernal matrix of
(3.4):

u(x, t) =
∫

R3
�(x, y; t, s) f (y) dy.

Then the adjoint of U (t, s) is given by

(
U (t, s)∗g

)
(y) =

∫

R3
�(x, y; t, s)�g(x) dx . (3.5)

Given t > 0 (final time) and a suitable solenoidal vector field g (final data), the
velocity v(s) = U (t, s)∗g together with the trivial pressure gradient ∇σ = 0
formally (even rigorously for fine g, see [34, third assertion of Lemma 3.1]) solves
the backward system

− ∂sv = �v − (η(s) + ω(s) × y) · ∇v + ω(s) × v + ∇σ

div v = 0,
(3.6)

in R3 × [0, t) subject to
v → 0 as |y| → ∞,

v(·, t) = g.
(3.7)

The initial value problem corresponding to (2.14) is given by

∂τw = �w − (η(t − τ) + ω(t − τ) × y) · ∇w + ω(t − τ) × w + ∇ pw,

div w = 0,

w → 0 as |y| → ∞,

w(·, s) = g,

(3.8)
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in R3 × (s, t] (with ∇ pw = 0 under the compatibility condition div g = 0), where
t > 0 is just a parameter. The solution to (3.8) is described as

w(y, τ ) = (
Ũ (τ, s; t)g)(y)

= �(t − τ, t − s)
(
e(τ−s)�g

)
(· · · ) (3.9)

with

(· · · ) = �(t − τ, t − s)�
(

y −
∫ τ

s
�(t − τ, t − σ)η(t − σ) dσ

)

where the orthogonal matrix �(·, ·) is the same as in (3.4). It is verified that the
relation

U (t, s)∗ = Ũ (t − s, 0; t), t � s � 0,

recovers (3.5) as in (2.13).
Although we will provide the results (Lemmas 3.1, 3.2) only on the evolution

operator U (t, s), those for the adjoint U (t, s)∗ or Ũ (τ, s; t) are also available and
will be needed to obtain the assertions for the adjoint T (t, s)∗.

Let 1 < q < ∞. Correspondingly to the auxiliary spaces (2.9) for the exterior
problem, let us introduce the Banach spaces

Zq(R
3) = {u ∈ Lq

σ (R3) ∩ W 1,q(R3); |x |∇u ∈ Lq(R3)},
Yq(R

3) = Zq(R
3) ∩ W 2,q(R3),

endowedwith the corresponding norms to describe the regularity of the solution.We
note that, under the condition (1.3) solely, the regularity deduced in the following
lemma holds true subject to estimates (3.12)–(3.13) below for 0 � s < t � T
with C > 0 that depends on T ∈ (0,∞). Nevertheless, for later use, we will show
those estimates for (t, s) ∈ �(τ∗), see (2.19), under the additional assumption
η ∈ L∞(0,∞;R3) [even under (1.2)].

Lemma 3.1. Suppose that η and ω fulfill (1.3) for some θ ∈ (0, 1). Assume in
addition that η ∈ L∞(0,∞;R3) for the second, third and fourth assertions below.
Let 1 < q < ∞. Then {U (t, s)}t�s�0 given by (3.4) defines an evolution operator

on Lq(R3) and on Lq
σ (R3). Furthermore, we have the following properties:

1. Let q � r � ∞. For every integer j � 0, there is a constant c j = c j (q, r) > 0,
independent of η and ω, such that

∇ jU (·, s) f ∈ C((s,∞); Lr (R3)),

‖∇ jU (t, s) f ‖r,R3 � c j (t − s)−(3/q−3/r)/2− j/2‖ f ‖q,R3

(3.10)

for all t > s � 0 and f ∈ Lq(R3).
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2. Let q � r < ∞ and m ∈ (0,∞). For every f ∈ Zq(R
3) and t ∈ (s,∞), we

have |x |∇U (t, s) f ∈ Lr (R3) subject to

‖|x |∇U (t, s) f ‖r,R3

� C(t − s)−(3/q−3/r)/2‖|x |∇ f ‖q,R3

+ C(t − s)−(3/q−3/r)/2+1/2{1 + m(t − s)1/2}‖∇ f ‖q,R3

(3.11)

for all t > s � 0 with some constant C = C(q, r) > 0, whenever |η|0 :=
supt�0 |η(t)| � m.

3. For every f ∈ Zq(R
3) and t ∈ (s,∞), we have U (t, s) f ∈ Yq(R3) and

u := U (·, s) f ∈ C1((s,∞); Lq
σ (R3))

with (3.1)–(3.2) in Lq
σ (R3). Let τ∗ ∈ (0,∞) and m ∈ (0,∞). If in addition

(1.2) is assumed, then there is a constant C = C(τ∗,m, q) > 0 such that

‖U (t, s) f ‖Yq (R3) + ‖∂tU (t, s) f ‖q,R3 � C(t − s)−1/2‖ f ‖Zq (R3) (3.12)

for all (t, s) ∈ �(τ∗) and f ∈ Zq(R
3) whenever (2.21) is satisfied, where

�(τ∗) is given by (2.19).
4. Let q � r < ∞, τ∗ ∈ (0,∞) and m ∈ (0,∞). For every f ∈ Zq(R

3) and
t ∈ (s,∞), we have U (t, s) f ∈ Zr (R

3) subject to

‖U (t, s) f ‖Zr (R3) � C(t − s)−(3/q−3/r)/2‖ f ‖Zq (R3) (3.13)

for all (t, s) ∈ �(τ∗) with some constant C = C(τ∗,m, q, r) > 0 whenever
|η|0 � m.

Proof. The first assertion follows from the corresponding properties of the heat
semigroup. The third assertion is a slight improvement of the one in [26,27], but it
follows fromknowledge obtained there (see Proposition 3.1 (a) of [27]). The second
and fourth assertions for the case r > q are new and preparations for Lemma 5.4.

As in the proof of (3.11) with r = q by [26], we have

|x ||∇(U (t, s) f )(x)|

�
∫

R3
(|x − y| + |y|)e

−|x−y|2/4(t−s)

{4π(t − s)}3/2
∣
∣
∣(∇ f )

(
�(t, s)�(y + ht,s)

)∣
∣
∣ dy

=: I + J,

where ht,s := ∫ t
s �(t, τ )η(τ ) dτ . We then find that

‖I‖r,R3 � C(t − s)−(3/q−3/r)/2+1/2‖∇ f ‖q,R3

and that

‖J‖r,R3 � C(t − s)−(3/q−3/r)/2
∥
∥
∥| · |(∇ f )

(
�(t, s)�( · + ht,s)

)∥
∥
∥
q,R3

� C(t − s)−(3/q−3/r)/2{‖| · |∇ f ‖q,R3 + |η|0(t − s)‖∇ f ‖q,R3
}
.
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They thus imply (3.11). It is easily seen that

‖∇ j+1U (t, s) f ‖r,R3 � C(t − s)−(3/q−3/r)/2− j/2‖∇ f ‖q,R3

for all t > s � 0, 1 < q � r < ∞ and j = 0, 1, which together with (3.10)–(3.11)
(and by using the Equation (3.1) for ∂tU (t, s) f ) leads to (3.12) as well as (3.13).
The proof is complete. ��

It is natural to expect that U (t, s) f is a weak solution in a sense together with
a reasonable estimate of ∂tU (t, s) f even if f ∈ Lq

σ (R3) rather than f ∈ Zq(R
3).

The next lemma gives an affirmative answer. Indeed the assumption (1.3) is enough
to obtain the assertion, but the constant in (3.15) below depends on T ∈ (0,∞) for
0 � s < t � T . For later use, it is convenient to show the following form when
assuming (1.2):

Lemma 3.2. Suppose that η and ω fulfill (1.2) for some θ ∈ (0, 1). Let 1 < q < ∞
and R > 0. Given f ∈ Lq

σ (R3) and s � 0, we set u(t) = U (t, s) f . For each
τ∗ ∈ (0,∞) and m ∈ (0,∞), there is a constant C = C(τ∗,m, q, R) > 0 such
that

u ∈ C1((s,∞);W−1,q(BR)), (3.14)

‖∂tU (t, s) f ‖W−1,q (BR) � C(t − s)−1/2‖ f ‖q,R3 (3.15)

for all (t, s) ∈ �(τ∗) and f ∈ Lq
σ (R3) whenever (2.21) is satisfied, where �(τ∗)

is given by (2.19). Furthermore, we have

〈∂t u, ψ〉BR + 〈∇u + u ⊗ (η + ω × x) − (ω × x) ⊗ u,∇ψ〉BR = 0 (3.16)

for all t ∈ (s,∞) and ψ ∈ W 1,q ′
0 (BR)3, where 1/q ′ + 1/q = 1.

Proof. Given f ∈ C∞
0,σ (R3) and s � 0, we set u(t) = U (t, s) f , which satisfies

(3.16) for every ψ ∈ C∞
0 (BR)3. From this together with (3.10) we see that

|〈∂t u, ψ〉BR | �
{‖∇u‖q,R3 + m(1 + 2R)‖u‖q,R3

}‖∇ψ‖q ′,BR

� C
{
1 + m(1 + 2R)

√
τ ∗

}
(t − s)−1/2‖ f ‖q,R3‖∇ψ‖q ′,BR

as long as t − s � τ∗. We thus obtain (3.15) for f ∈ C∞
0,σ (R3). Given f ∈

Lq
σ (R3), we take f j ∈ C∞

0,σ (R3) which converges to f as j → ∞ in the norm
‖ · ‖q,R3 . Then ∂tU (t, s) f j goes to some WR(t, s) f ∈ W−1,q(BR). Since the
convergence is uniform with respect to t belonging to any compact interval in
(s,∞), we haveWR(·, s) f ∈ C((s,∞);W−1,q(BR)). From this convergence with
(3.10) we observe

U (t, s) f = U (s + ε, s) f +
∫ t

s+ε

WR(τ, s) f dτ

in W−1,q(BR), where ε > 0 is arbitrary. This implies (3.14) and WR(t, s) f coin-
cides with ∂tU (t, s) f for every R > 0. Hence, we obtain (3.15). Equation (3.16)
is easily verified by approximation procedure above. ��
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4. Interior Problem

This section is devoted to the study of the initial value problem for the non-
autonomous system

∂t u = �u + (η(t) + ω(t) × x) · ∇u − ω(t) × u − ∇ p,

div u = 0,

u|∂DR = 0,

u(·, s) = f,

(4.1)

in DR × (s,∞) with R ∈ [R0,∞) being fixed, where R0 is as in (2.1). Let
1 < q < ∞. Let us introduce the Stokes operator

Dq(A) = Lq
σ (DR) ∩ W 1,q

0 (DR) ∩ W 2,q(DR),

Au = −PDR�u,

and the operator

Dq(LR(t)) = Dq(A),

LR(t)u = −PDR [�u + (η(t) + ω(t) × x) · ∇u − ω(t) × u]
= Au − (η(t) + ω(t) × x) · ∇u + ω(t) × u,

where PDR denotes the Fujita–Kato projection associated with the Helmholtz de-
composition [15], see Section 2. The last equality above follows from (3.3) and the
fact that the normal trace of the drift term vanishes, see [34, (3.22)].

For the interior problem one can apply the general theory of parabolic evolution
operators developed by Tanabe, see [51, Chapter 5], to find that {LR(t)}t�0 gener-

ates an evolution operator {V (t, s)}t�s�0 on Lq
σ (DR). For every f ∈ Lq

σ (DR), we
know that u(t) = V (t, s) f is of class

u ∈ C1((s,∞); Lq
σ (DR)) ∩ C((s,∞); Dq(A)) ∩ C([s,∞), Lq

σ (DR)),

∇ p ∈ C((s,∞); Lq(DR)),
(4.2)

and satisfies (4.1) in Lq
σ (DR). If, in addition, the pressure p is chosen such that∫

DR
p dx = 0 for each time t , then

p ∈ C((s,∞); Lq(DR)) (4.3)

by the Poincaré inequality together with (4.2) for ∇ p.
We start with the following lemma [27,34]:

Lemma 4.1. Suppose that η and ω fulfill (1.2) for some θ ∈ (0, 1). Let 1 < q �
r < ∞. For each τ∗ ∈ (0,∞), m ∈ (0,∞) and j = 0, 1, there are constants
C j = C j (τ∗,m, q, r, θ, DR) > 0 and C2 = C2(τ∗,m, q, θ, DR) > 0 such that

‖∇ j V (t, s) f ‖r,DR � C j (t − s)−(3/q−3/r)/2− j/2‖ f ‖q,DR (4.4)

‖p(t)‖q,DR � C2(t − s)−(1+1/q)/2‖ f ‖q,DR (4.5)

‖∂t V (t, s) f ‖W−1,q (DR) � C2(t − s)−(1+1/q)/2‖ f ‖q,DR (4.6)
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for all (t, s) ∈ �(τ∗) and f ∈ Lq
σ (DR) whenever (2.21) is satisfied, where �(τ∗)

is given by (2.19). Here, p(t) denotes the pressure associsted with V (t, s) f and it
is singled out subject to the side condition

∫
DR

p dx = 0.

Proof. Lq -Lr estimate (4.4) was shown by [27] for 0 � s < t � T with C j > 0
that depends on T ∈ (0,∞) under the condition (1.3). The present author [34,
Lemma 3.2] verified that the constantC j can be taken uniformly in (t, s) satisfying
t − s � τ∗ as long as (1.2) is fulfilled. Set u(t) = V (t, s) f . Estimate (4.5) for the
pressure was also proved by [34, Lemma 3.2] via

‖p(t)‖q,DR � C‖∇2u(t)‖1/qq,DR
‖∇u(t)‖1−1/q

q,DR
+ C‖∇u(t)‖q,DR (4.7)

and it is a slight improvement of the one obtained by [27, Lemma 4.3]. The remark-
able rate (t − s)−(1+1/q)/2 for the pressure near the initial time was discovered first
by [37] for the autonomous case (even for the Stokes system) and the proof relied
on analysis of the resolvent. Estimate (4.6) immediately follows from

〈∂t u, ψ〉DR

= −〈∇u + u ⊗ (η + ω × x) − (ω × x) ⊗ u,∇ψ〉DR + 〈p, div ψ〉DR (4.8)

for every ψ ∈ C∞
0 (DR)3 together with (4.4)–(4.5). ��

Wenext deduce the asymptotic behavior of V (t, s) f near t = s in someSobolev
spaces when f ∈ Lq

σ (DR) ∩ W 1,q(DR). It should be emphasized that f does not
satisfy the boundary condition f |∂DR = 0, and the reason why we have to discuss
this case is related to the function space Zq(D), see (2.9), in which the boundary
condition at ∂D is not involved. In fact, the following lemmaplays a role in the proof
of Lemma 5.3. Estimate (4.9) below should be compared with [27, Corollary 4.2],
where less singular behavior (t − s)−1/2 is deduced for f ∈ Lq

σ (DR) ∩W 1,q
0 (DR)

satisfying f |∂DR = 0.

Lemma 4.2. Suppose that η andω fulfill (1.2) for some θ ∈ (0, 1). Let 1 < q � r <

∞ and δ ∈ (0, 1/2q). For each τ∗ ∈ (0,∞) and m ∈ (0,∞), there are constants
C1 = C1(τ∗,m, q, δ, θ, DR) > 0 and C2 = C2(τ∗,m, q, r, δ, θ, DR) > 0 such
that

‖V (t, s) f ‖W 2,q (DR) + ‖∂t V (t, s) f ‖q,DR + ‖∇ p(t)‖q,DR

� C1(t − s)−1+δ‖ f ‖W 1,q (DR)

(4.9)

‖p(t)‖q,DR � C1(t − s)−(1+1/q)/2+δ‖ f ‖W 1,q (DR) (4.10)

‖V (t, s) f ‖W 1,r (DR) � C2(t − s)−(3/q−3/r)/2−1/2+δ‖ f ‖W 1,q (DR) (4.11)

for all (t, s) ∈ �(τ∗) and f ∈ Lq
σ (DR) ∩ W 1,q(DR) whenever (2.21) is satisfied,

where �(τ∗) is given by (2.19). Here, p(t) denotes the pressure associated with
V (t, s) f and it is singled out subject to the side condition

∫
DR

p dx = 0.
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Proof. As in the proof of [34, Lemma 3.2], there is a constant k = k(m) > 0 such
that k + LR(t) is invertible in Lq

σ (DR) for all t � 0 subject to

sup
t�0

‖(k + LR(t))−1‖L(Lq
σ (DR)) < ∞.

Indeed one can take even k = 0 by a compactness argument (see, for instance, [37,
Section 3], [32, Section 5]), but this refinement is not needed here. We then know
that

‖LR(t)V (t, s) f ‖q,DR � C‖(k + LR(s)) f ‖q,DR � C‖ f ‖Dq (A), f ∈ Dq(A),

and

‖LR(t)V (t, s) f ‖q,DR � C(t − s)−1‖ f ‖q,DR , f ∈ Lq
σ (DR),

for all (t, s) ∈ �(τ∗). In fact, the latter was shown in [34, (3.20)], while one verifies
the former (particularly the first inequality) if one follows the argument of general
theory [51, Chapter 5, Theorem 2.1] under the conditions (1.2) and (2.21).

By complex interpolation we have

‖LR(t)V (t, s) f ‖q,DR � C(t − s)−1+δ‖ f ‖Dq (Aδ)

for all (t, s) ∈ �(τ∗) and

f ∈ Dq(A
δ) = [Lq

σ (DR), D(A)]δ
= Lq

σ (DR) ∩ [Lq(DR),W 1,q
0 (DR) ∩ W 2,q(DR)]δ

where [·, ·]δ stands for the complex interpolation functor and the characterization
of Dq(Aδ) is due to Giga [24]. As a consequence, we get

‖V (t, s) f ‖W 2,q (DR) + ‖∂t V (t, s) f ‖q,DR + ‖∇ p(t)‖q,DR

� C‖LR(t)V (t, s) f ‖q,DR + C‖V (t, s) f ‖q,DR

� C(t − s)−1+δ‖ f ‖Dq (Aδ)

(4.12)

for all (t, s) ∈ �(τ∗) and f ∈ Dq(Aδ) provided 0 � δ � 1.
If in particular δ ∈ (0, 1/2q), then the space Dq (Aδ) does not involve the bound-

ary condition, to be precise, Dq(Aδ) = Lq
σ (DR) ∩ H2δ

q (DR), where H2δ
q (DR) :=

[Lq(DR),W 2,q(DR)]δ is the Bessel potential space, see Fujiwara [14, Section 2,
Theorem 5] (this theorem asserts a characterization of some complex interpolation
spaces). We thus have Lq

σ (DR) ∩ W 1,q(DR) ⊂ Dq(Aδ) for δ ∈ (0, 1/2q) and,
therefore, (4.12) leads us to (4.9).

We next observe

‖V (t, s) f ‖W 1+ j,q (DR) � C(t − s)− j/2‖ f ‖W 1,q (DR) (4.13)

for all (t, s) ∈ �(τ∗), f ∈ Lq
σ (DR) ∩ W 1,q

0 (DR) and j = 0, 1. In [27, Corollary
4.2] Hansel and Rhandi proved (4.13) for such data satisfying f |∂DR = 0 and
0 � s < t � T with C > 0 that depends on T ∈ (0,∞) under the condition
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(1.3), however, we need to show that the constant C > 0 can be taken uniformly in
(t, s) ∈ �(τ∗) as long as (1.2) is fulfilled. In fact, using (4.12) with δ = 1/2, we find
(4.13) j=1 since we know from [14,24] that Dq(A1/2) = Lq

σ (DR)∩W 1,q
0 (DR). We

also have (4.12) with δ = 1 as well as (4.4) j=0 with r = q, which implies (4.13) j=0
by interpolation. The interpolation argument once more by use of (4.13) j=0 and
(4.4) with r = q yields

‖V (t, s) f ‖W 1,q (DR) � C(t − s)−1/2+δ‖ f ‖H2δ
q (DR)

for all (t, s) ∈ �(τ∗) and

f ∈ [Lq
σ (DR), Lq

σ (DR) ∩ W 1,q
0 (DR)]2δ = Lq

σ (DR) ∩ H2δ
q (DR)

provided δ ∈ (0, 1/2q), where the last equality follows from the reiteration the-
orem for the complex interpolation [1] combined with the Fujiwara theorem [14]
employed above; thereby, we infer

‖V (t, s) f ‖W 1,q (DR) � C(t − s)−1/2+δ‖ f ‖W 1,q (DR) (4.14)

for all (t, s) ∈ �(τ∗) and f ∈ Lq
σ (DR) ∩ W 1,q(DR). This together with (4.9)

concludes (4.10) by virtue of (4.7).
It turns out that

‖V (t, s)g‖W 1,r (DR) � C(t − s)−(3/q−3/r)/2‖g‖W 1,q (DR) (4.15)

for all (t, s) ∈ �(τ∗) and g ∈ Lq
σ (DR)∩W 1,q

0 (DR), where 1 < q � r < ∞. In fact,
this follows from (4.13) together with the Gagliardo-Nirenberg inequality provided
that 3/q − 3/r � 1. If r is not close to q, then one has only to use the semigroup
property. Note that g = V ((s+ t)/2, s) f fulfills the boundary condition g|∂DR = 0

so that g ∈ Lq
σ (DR) ∩ W 1,q

0 (DR) even though f ∈ Lq
σ (DR) ∩ W 1,q(DR). Hence,

by the semigroup property, (4.14) and (4.15) imply (4.11). The proof is complete.
��

5. Regularity of the Evolution Operator

Some regularity properties as well as construction of the evolution operator
T (t, s) were proved by Hansel and Rhandi [27], nevertheless, we need more anal-
ysis, especially,
– The smoothing effect of T (t, s) : Zq(D) → Yq(D) when 3/2 < q < ∞;
– The smoothing effect of T (t, s) : Zq(D) → Zr (D) when 3/2 < q < r < ∞;
– The justification of ∂t T (t, s) f inW−1,q(DR) for f ∈ Lq

σ (D) when 1 < q < ∞;
which are not covered by [27], where Yq(D) and Zq(D) are defined by (2.9). We
will also show the second assertion of Proposition 2.1, that is related to the first issue
above since it slightly improves the corresponding result of [27]. The restriction
q > 3

2 = n
n−1 (n denotes the space dimension) stems from Lemma 5.2 below on

someweighted estimate of the Fujita-Kato projection. The third issue above is quite
important to proceed to analysis of large time behavior of T (t, s).



Decay Estimates of Gradient of a Generalized Oseen Evolution 235

Let us recall the idea of [27] for construction of a parametrix of the evolution
operator by use of evolution operators in the whole space R3 and in the bounded
domain DR0+6, where R0 is as in (2.1). We fix three cut-off functions

φ ∈ C∞
0 (BR0+4), φ = 1 in BR0+3,

φ0 ∈ C∞
0 (BR0+2), φ = 1 in BR0+1,

φ1 ∈ C∞
0 (BR0+6), φ = 1 in BR0+5,

and set

A = {R0 + 2 < |x | < R0 + 4}, A0 = {R0 < |x | < R0 + 2},
A1 = {R0 + 4 < |x | < R0 + 6}.

By B = BA, B0 = BA0 and B1 = BA1 we denote the Bogovskii operators, see
(2.3), in the bounded domains A, A0 and A1, respectively. Given f ∈ Lq

σ (D),
1 < q < ∞, let us set

f0 = (1 − φ0) f + B0[ f · ∇φ0] ∈ Lq
σ (R3),

f1 = φ1 f − B1[ f · ∇φ1] ∈ Lq
σ (DR0+6),

where f0 is understood as its extension to R
3 by putting zero outside D, then we

see from (2.2) that

‖ f0‖q,R3 + ‖ f1‖q,DR0+6 � C‖ f ‖q ,
‖∇ f0‖q,R3 + ‖∇ f1‖q,DR0+6 � C‖ f ‖W 1,q (D),

‖|x |∇ f0‖q,R3 � C‖|x |∇ f ‖q + C‖ f ‖q ,
(5.1)

where ∇ f ∈ Lq(D) is additionally assumed for (5.1)2 and even |x |∇ f ∈ Lq(D)

is assumed for (5.1)3. Thus, f0 ∈ Zq(R
3) follows from f ∈ Zq(D).

It is reasonable to start with

W (t, s) f = (1 − φ)U (t, s) f0 + φV (t, s) f1 + B[(U (t, s) f0 − V (t, s) f1) · ∇φ]
(5.2)

as a fine approximation of the evolution operator, where U (t, s) is the evolution
operator for the whole space problem (Section 3) and V (t, s) is the one for the
interior problem (Section 4) over DR0+6. Note thatW (s, s) f = f . In what follows,
let us fix τ∗ ∈ (0,∞) as well as m ∈ (0,∞), and suppose (2.21). By (3.10), (4.4)
and (5.1)1 together with (2.2), we easily observe

‖∇ jW (t, s) f ‖q � C(t − s)− j/2‖ f ‖q (5.3)

for all (t, s) ∈ �(τ∗), j = 0, 1 and f ∈ Lq
σ (D) with C = C(τ∗,m, q, θ, D) > 0.

By p1 we denote the pressure associated with V (t, s) f1 for the interior problem
over DR0+6, and it is singled out subject to the side condition

∫
DR0+6

p1 dx = 0.

Then the pair of

u := W (t, s) f, p := φp1
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should obey

∂t u = �u + (η(t) + ω(t) × x) · ∇u − ω(t) × u − ∇ p − K (t, s) f,

div u = 0,

u|∂D = 0,

u → 0 as |x | → ∞,

u(·, s) = f,

in D× (s,∞) (the equation is actually understood in Lq(D) for f ∈ Zq(D)) with

K (t, s) f

= −2∇φ · ∇(U f0 − V f1) − {�φ + (η + ω × x) · ∇φ}(U f0 − V f1)

− (∇φ)p1 − B[(∂tU f0 − ∂t V f1) · ∇φ] + �B[(U f0 − V f1) · ∇φ]
+ (η + ω × x) · ∇B[(U f0 − V f1) · ∇φ] − ω × B[(U f0 − V f1) · ∇φ],

(5.4)

where we abbreviate U f0 = U (t, s) f0 and V f1 = V (t, s) f1. As in [27, (5.3)], it
follows from (2.2), (2.4), (3.10), (3.14), (3.15), (4.2), (4.3), Lemma 4.1 and (5.1)1
that

PK (·, s) f ∈ C((s,∞); Lq
σ (D)),

‖PK (t, s) f ‖q � C(t − s)−(1+1/q)/2‖ f ‖q ,
(5.5)

for all (t, s) ∈ �(τ∗) and f ∈ Lq
σ (D) with some C = C(τ∗,m, q, θ, D) > 0,

where �(τ∗) is given by (2.19).
The approach adopted by [27] is somewhat similar to the one for construction of

parabolic evolution operators, see [51, Chapter 5], although the first approximation
(5.2) is completely different from general theory. In fact, the idea of [27] is to solve
the integral equation

T (t, s) f = W (t, s) f +
∫ t

s
T (t, τ )PK (τ, s) f dτ. (5.6)

To this end, consider the iteration scheme

T0(t, s) f = W (t, s) f,

Tj+1(t, s) f =
∫ t

s
Tj (t, τ )PK (τ, s) f dτ ( j = 0, 1, 2, · · · ). (5.7)

One can expect that (5.9) below provides a solution as long as it is convergent.
The argument of [27] is based on the next lemma on iterated convolutions, see [22,
Lemma 4.6], [26, Lemma 3.3] and [27, Lemma 5.2] (the same idea was essentially
employed in [51, Chapter 5, Sections 2 and 3], too). In those literature the operator
families are parametrized by (t, s) with 0 � s < t � T for fixed T ∈ (0,∞),
but we need to discuss the ones parametrized by (t, s) ∈ �(τ∗), see (2.19), and
what is important is that the constant in (5.8) below can be taken uniformly in
(t, s) ∈ �(τ∗). This is easily verified by following the proof in the literature above.
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Lemma 5.1. [22,26,27] Let X1 and X2 be two Banach spaces, and fix τ∗ ∈ (0,∞).
Suppose that there are constants α, β ∈ [0, 1) and κ > 0 such that

{A0(t, s); (t, s) ∈ �(τ∗)} ⊂ L(X1, X2), {Q(t, s); (t, s) ∈ �(τ∗)} ⊂ L(X1)

with

‖A0(t, s)‖L(X1,X2) � κ(t − s)−α, ‖Q(t, s)‖L(X1) � κ(t − s)−β

for all (t, s) ∈ �(τ∗). For f ∈ X1 and (t, s) ∈ �(τ∗), define a sequence
{A j (t, s) f }∞j=0 ⊂ X2 by

A j+1(t, s) f =
∫ t

s
A j (t, τ )Q(τ, s) f dτ ( j = 0, 1, 2, · · · ).

Then

A(t, s) f :=
∞∑

j=0

A j (t, s) f in X2

converges absolutely and uniformly in (t, s) ∈ �(τ∗) with t − s � ε for every
ε ∈ (0, τ∗). Moreover, there is a constant C = C(τ∗, κ, α, β) > 0 such that

‖A(t, s) f ‖X2 �
∞∑

j=0

‖A j (t, s) f ‖X2 � C(t − s)−α‖ f ‖X1 (5.8)

for all (t, s) ∈ �(τ∗) and f ∈ X1. If in particular α = 0, then the convergence of
the series above is uniform in (t, s) ∈ �(τ∗) = {(t, s); 0 � s � t, t − s � τ∗}.

With (5.3) and (5.5) at hand, Hansel and Rhandi [27] applied Lemma 5.1 with

A0 = W, Q = PK , X1 = X2 = Lq
σ (D), α = 0, β = 1

2

(

1 + 1

q

)

to (5.7) and succeeded in construction of the evolution operator

T (t, s) f :=
∞∑

j=0

Tj (t, s) f, (5.9)

which solves (5.6). This was quite successful. In order to show that T (t, s) leaves
Yq(D) invariant, they first intended to prove T (t, s)Zq,0(D) ⊂ Zq,0(D), where
Zq,0(D) = { f ∈ Zq(D); f |∂D = 0}, see (2.9). Note that Zq,0(D) is denoted by Z
in their paper, see [27, p. 17]. To this end, they applied Lemma 5.1 with X1 = X2 =
Zq,0(D) as well as A0 = W and Q = PK , however, PK (t, s) f cannot always
belong to Zq,0(D) because PK (t, s) f does not satisfy the homogeneous Dirichlet
boundary condition at ∂D no matter how fine f is. Indeed this is unfortunately an
oversight of [27], but their argument can be corrected in the following way.

The idea of correction is to replace Zq,0(D) by Zq(D), which does not in-
volve the homogeneous Dirichlet boundary condition, and to employ the following
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weighted estimate of the Fujita-Kato projection. For the weighted estimate, one
needs the restriction q ∈ (3/2,∞), however, this is not an obstacle for later argu-
mant. See [28, Proposition 4.3] for similar consideration in the case q = 2. Note
that the next lemma holds true even for g ∈ W 1,q(D) (without boundary condition)
with |x |∇g ∈ Lq(D) if the second term of the RHS of (5.10) is replaced by ‖∇g‖q .
Since we will use this lemma only with g = K (t, s) f , see (5.4), it is given in the
following form:

Lemma 5.2. Let 3/2 < q < ∞. Then there is a constant C = C(q, D) > 0 such
that

‖|x |∇Pg‖q � C(‖|x |∇g‖q + ‖div g‖q + ‖g‖q) (5.10)

for all g ∈ W 1,q
0 (D)3 with |x |∇g ∈ Lq(D)3×3.

Proof. Consider the Neumann problem

−�w = div g in D,
∂w

∂ν

∣
∣
∣
∂D

= −ν · g|∂D = 0,

where ν stands for the outer unit normal to ∂D. It then suffices to show

‖|x |∇2w‖q � C(‖|x |(div g)‖q + ‖div g‖q + ‖g‖q), (5.11)

which implies (5.10) since Pg = g + ∇w. We fix L ∈ (R0,∞) and take a cut-off
function φ ∈ C∞

0 (DL) such that φ = 1 in BR0 , where R0 is as in (2.1). We choose
a solution w satisfying

∫
DL

w dx = 0, so that

‖w‖q,DL � C‖∇w‖q,DL � C‖∇w‖q � C‖g‖q , (5.12)

where the last inequality is due to [44,48]. Then φw obeys

−�(φw) = φ(div g) − 2∇φ · ∇w − (�φ)w in DL , ν · ∇(φw)|∂DL = 0,

which leads to

‖∇2(φw)‖q,DL � C‖div g‖q + C‖w‖W 1,q (DL ), (5.13)

where, this time, ν denotes the outer unit normal to ∂DL . On the other hand, (1−φ)w

obeys

−�{(1 − φ)w} = (1 − φ)(div g) + 2∇φ · ∇w + (�φ)w =: h in R3.

By R = ∇(−�)−1/2 we denote the Riesz transform, then we know

‖|x |Rh‖q,R3 � C‖|x |h‖q,R3

from the Muckenhoupt theory for singular integrals as long as n
n−1 = 3

2 < q < ∞;
in fact, for such q, the weight |x |q belongs to the Muckenhoupt class Aq(R

3), see
Farwig and Sohr [12, Section 2], Stein [49, Chapter V], Torchinsky [52, Chapter
IX] for details. We thus obtain

‖|x |∇2{(1 − φ)w}‖q,R3 = ‖|x |(R ⊗ R)h‖q,R3 � C‖|x |h‖q,R3

� C‖|x |(div g)‖q + C‖w‖W 1,q (DL )

(5.14)

for 3/2 < q < ∞. We collect (5.12), (5.13) and (5.14) to conclude (5.11). ��
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Since the functions being in our class Zq(D) do not satisfy the Dirichlet bound-
ary condition, we have to replace [27, (5.4)] by (5.16) of the following lemma. The
smoothing rate (t − s)−1+δ below stems from (4.9) for the interior problem.

Lemma 5.3. Suppose that η and ω fulfill (1.2) for some θ ∈ (0, 1). Let 1 < q < ∞
and δ ∈ (0, 1/2q). Given τ∗ ∈ (0,∞) and m ∈ (0,∞), let �(τ∗) be as in (2.19)
and assume (2.21). Then,

1. There is a constant C = C(τ∗,m, q, δ, θ, D) > 0 such that, for every f ∈
Zq(D) and t ∈ (s,∞), we have W (t, s) f ∈ Yq(D) subject to

‖W (t, s) f ‖Yq (D) � C(t − s)−1+δ‖ f ‖Zq (D) (5.15)

for all (t, s) ∈ �(τ∗).
2. There is a constant C = C(τ∗,m, q, δ, θ, D) > 0 such that

‖K (t, s) f ‖W 1,q (D) � C(t − s)−1+δ‖ f ‖Zq (D) (5.16)

for all (t, s) ∈ �(τ∗) and f ∈ Zq(D). If in particular q ∈ (3/2,∞), then there
is a constant C = C(τ∗,m, q, δ, θ, D) > 0 such that

‖PK (t, s) f ‖Zq (D) � C(t − s)−1+δ‖ f ‖Zq (D) (5.17)

for all (t, s) ∈ �(τ∗) and f ∈ Zq(D).

Proof. We collect (2.2), (3.10), (3.12), (4.4), (4.9), (4.10) and (5.1) to obtain (5.15)
and (5.16). Since K (t, s) f ∈ W 1,q

0 (D) with |x |∇K (t, s) f ∈ Lq(D), one can use
(5.10) to obtain (5.17). ��
Proof of the second assertion of Proposition 2.1. Let 3/2 < q < ∞. In view of
(5.7), (5.15) and (5.17) one can apply Lemma 5.1 with

A0 = W, Q = PK , X1 = Zq(D), X2 = Yq(D), α = β = 1 − δ

to see that T (t, s) f ∈ Yq(D) with

‖T (t, s) f ‖Yq (D) � C(t − s)−1+δ‖ f ‖Zq (D) (5.18)

for all (t, s) ∈ �(τ∗) and f ∈ Zq(D). Note that [27, (5.9)] is now replaced by
(5.18). The proof of the other parts by [27] is correct and there is no need to repeat
it. Here, the assertion has been proved under the condition (1.2) in order to deduce
all the estimates with constants uniformly in (t, s) ∈ �(τ∗); in fact, such estimates
are needed for Proposition 2.2. But one can show Proposition 2.1 under the same
condition (1.3) as in [27] subject to the corresponding estimates for 0 � s < t � T ,
where T ∈ (0,∞) is arbitrarily fixed. ��

The following lemma on smoothing effect in the framework of the space Zq(D)

is needed in the proof of Proposition 6.1.

Lemma 5.4. Suppose that η and ω fulfill (1.2) for some θ ∈ (0, 1). Let 3/2 < q �
r < ∞. For every f ∈ Zq(D) and t ∈ (s,∞), we have T (t, s) f ∈ Zr (D).
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Proof. Let τ∗ ∈ (0,∞) and δ ∈ (0, 1/2q). By (2.2), (3.13) and (4.11) together
with (5.1) we find

‖W (t, s) f ‖Zr (D) � C(t − s)−(3/q−3/r)/2−1/2+δ‖ f ‖Zq (D)

for all (t, s) ∈ �(τ∗) and f ∈ Zq(D) even if 1 < q � r < ∞. By virtue of this
combined with (5.17), we apply Lemma 5.1 with

A0 = W, Q = PK , X1 = Zq(D), X2 = Zr (D),

α = 3

2

(
1

q
− 1

r

)

+ 1

2
− δ, β = 1 − δ

to get the conclusion subject to

‖T (t, s) f ‖Zr (D) � C(t − s)−α‖ f ‖Zq (D)

for all (t, s) ∈ �(τ∗) and f ∈ Zq(D) provided α < 1 as well as q ∈ (3/2,∞).
The condition α < 1 with some δ ∈ (0, 1/2q) is always accomplished for every
r ∈ [q,∞) when q � 2. Otherwise (3/2 < q < 2), one needs a restriction that r is
not too large. In this latter case, T (t, s) f ∈ Zr (D) for r ∈ (q, 2] is always possible
and then we have only to use the semigroup property to obtain T (t, s) f ∈ Zr (D)

even for r ∈ (2,∞) as follows:

‖T (t, s) f ‖Zr (D) � C(t − s)−(3/2−3/r)/2−1/2+δ̃‖T ((t + s)/2, s) f ‖Z2(D)

� C(t − s)−(3/q−3/r)/2−1+δ̃+δ‖ f ‖Zq (D)

for all (t, s) ∈ �(τ∗) and f ∈ Zq(D), where max{1/4 − 3/2r, 0} < δ̃ < 1/4 and
δ ∈ (0, 1/2q). The proof is complete. ��

The following result justifies the derivative with respect to time variable with
values inW−1,q(DR) for general data being in Lq

σ (D). This is indeed a key observa-
tion in the present paper and can be regarded as a substitution of [37, Theorem 5.1]
for autonomous case. Here, a bounded domain DR can be independent of DR0+6
in which the solution V (t, s) f1 was found in constructing the parametrix (5.2).

Proposition 5.1. Suppose that η and ω fulfill (1.2) for some θ ∈ (0, 1). Let 1 <

q < ∞ and R ∈ (R0 + 1,∞), where R0 is as in (2.1). Given f ∈ Lq
σ (D), we set

u(t) = T (t, s) f . Given τ∗ ∈ (0,∞) and m ∈ (0,∞), let �(τ∗) be as in (2.19) and
assume (2.21). Then,

1. There is a constant C = C(τ∗,m, q, R, θ, D) > 0 such that

u ∈ C1((s,∞);W−1,q(DR)), (5.19)

‖∂t T (t, s) f ‖W−1,q (DR) � C(t − s)−(1+1/q)/2‖ f ‖q (5.20)

for all (t, s) ∈ �(τ∗) and f ∈ Lq
σ (D). Furthermore, we have the pressure p(t)

subject to
∫
DR

p dx = 0 such that the pair {u, p} satisfies
〈∂t u, ψ〉DR + 〈∇u + u ⊗ (η + ω × x) − (ω × x) ⊗ u,∇ψ〉DR

− 〈p, div ψ〉DR = 0
(5.21)
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for all t ∈ (s,∞) and ψ ∈ W 1,q ′
0 (DR)3, where 1/q ′ + 1/q = 1, that

‖p(t)‖q,DR � C‖∂t u(t)‖W−1,q (DR) + C‖u(t)‖W 1,q (DR) (5.22)

for all t ∈ (s,∞) with a constant C = C(m, q, R, D) > 0 and that

‖p(t)‖q,DR � C(t − s)−(1+1/q)/2‖ f ‖q (5.23)

for all (t, s) ∈ �(τ∗) with a constant C = C(τ∗,m, q, R, θ, D) > 0, where
both constants above are independent of f ∈ Lq

σ (D).
2. If in particular q ∈ (3/2,∞) and f ∈ Zq(D), then there is a constant C =

C(τ∗,m, q, R, θ, D) > 0 such that

‖L+(t)T (t, s) f ‖W−1,q (DR) � C(t − s)−(1+1/q)/2‖ f ‖q (5.24)

for all (t, s) ∈ �(τ∗).

Proof. From Lemma 3.2, (4.2) and Lemma 4.1 we infer that

W (·, s) f ∈ C1((s,∞);W−1,q(DR))

with

‖∂tW (t, s) f ‖W−1,q (DR) � C(t − s)−(1+1/q)/2‖ f ‖q
for all (t, s) ∈ �(τ∗) and f ∈ Lq

σ (D). Here, notice that

∂tB[(U (t, s) f ) · ∇φ] = B[(∂tU (t, s) f ) · ∇φ]
holds even in Lq(DR), which follows from (2.4) and (3.14). Starting fromW (t, s) f
together with (5.5), we use (5.7) to show by induction that

Tj (·, s) ∈ C1((s,∞);W−1,q(DR))

for every j with

∂t T0(t, s) f = ∂tW (t, s) f,

∂t T1(t, s) f = PK (t, s) f +
∫ t

s
∂tW (t, τ )PK (τ, s) f dτ,

∂t Tj+1(t, s) f =
∫ t

s
∂t Tj (t, τ )PK (τ, s) f dτ ( j = 1, 2, · · · ).

and that

‖∂t Tj (t, s) f ‖W−1,q (DR) � μ j (t − s)−(1+1/q)/2‖ f ‖q (5.25)

for all (t, s) ∈ �(τ∗) and f ∈ Lq
σ (D) with

μ j = μ j (τ∗,m, q, R, θ, D) = c0c
j
1

�((1 − α) j)
( j = 1, 2, · · · )
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where α = (1+ 1/q)/2, �(·) denotes the Gamma function, and positive constants
c0, c1 are independent of j , so that

∑∞
j=1 μ j < ∞. This can be verified along

the same way as in the proof of Lemma 5.1, see [26, Lemma 3.3], [51, Chapter
5, Section 2]. Hence, for each s � 0, the series

∑∞
j=0 ∂t Tj (t, s) f converges in

W−1,q(DR) uniformly with respect to t ∈ [s + ε, s + τ∗] for every ε ∈ (0, τ∗). We
thus conclude (5.19) with

∂t T (t, s) f =
∞∑

j=0

∂t Tj (t, s) f

in W−1,q(DR), which yields (5.20). This combined with the second assertion of
Proposition 2.1 implies (5.24) aswell. Formally, the result obtained here is observed
by applying Lemma 5.1 with

A0 = ∂t T1, Q = PK , X1 = Lq
σ (D), X2 = W−1,q(DR),

α = β = 1

2

(

1 + 1

q

)

,

however, the differentiability of Tj (t, s) f with respect to t is verified simultane-
ously with (5.25); thus, we should take the way explained above.

Suppose f ∈ C∞
0,σ (D) and set u(t) = T (t, s) f . By p(t) we denote the associ-

ated pressure which is singled out such that
∫
DR

p dx = 0. Combining the Equation
(1.1) with

‖p(t)‖q,DR � C‖∇ p(t)‖W−1,q (DR)

(see, for instance, [29, Remark 4.1] for its proof with the aid of (2.2)), we find (5.22)
for f ∈ C∞

0,σ (D) as well as p ∈ C((s,∞); Lq(DR)). Thus, (5.23) follows from
(5.20) together with the second assertion of Proposition 2.2 when f ∈ C∞

0,σ (D).
We next take general f ∈ Lq

σ (D), then by approximation we get the function pR ∈
C((s,∞); Lq(DR)) which together with u(t) = T (t, s) f enjoys (5.21) as well as
the same estimates (5.22)–(5.23) and

∫
DR

pR dx = 0. In this way, for every integer
k > 0, we obtain the pressure pR+k over DR+k satisfying

∫
DR+k

pR+k dx = 0,
however, we see from (5.21) that

〈pR+k(t) − pR+ j (t), div ψ〉DR+ j = 0

for everyψ ∈ C∞
0 (DR+ j )

3 and k > j � 0.Consequently, pR+k(x, t)−pR(x, t) =
ck(t) almost everywhere DR with some ck(t) independent of x ∈ DR . Let us define

p(x, t) =
{
pR(x, t), x ∈ DR,

pR+k(x, t) − ck(t), x ∈ DR+k\DR+k−1 (k = 1, 2, · · · ),
which is the desired pressure over D satisfying

p ∈ C((s,∞); Lq(DR)),

∫

DR

p dx = 0

as well as (5.21)–(5.23) for all f ∈ Lq
σ (D). ��
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Analysis in this section can be also carried out for the evolution operator
T̃ (τ, s; t) generated by the initial value problem (2.14) with use of Ũ (τ, s; t)
given by (3.9) and the corresponding evolution operator in the bounded domain
DR0+6. Although the latter one is not explicitly given, we do have it by the Tanabe-
Sobolevskii theory [51, Chapter 5] and it possesses the same properties as described
in Section 4. All the constants in several key estimates can be independent of t and
taken uniformly in (τ, s) with τ − s � τ∗ as well as 0 � s < τ � t . In view of
the relations (2.13) and (2.15), the corresponding results for the adjoint T (t, s)∗,
especially (6.3) and (6.10) in the next section, are available.

6. Local Energy Decay of the Evolution Operator

In this sectionwe deduce local energy decay estimates of the evolution operator:
Proposition 6.1 for initial velocity with bounded support and Proposition 6.2 for
general data. The former is a step to get the latter. In Proposition 6.1 we have a bit
less sharp rate of decay than the desired one (t − s)−3/2, but this does not cause any
problem. If we took the sameway for general data as in the proof of Proposition 6.1,
we would obtain less decay rate (t − s)−3/2q+ε than the one in Proposition 6.2.
This never implies Theorem 2.1, and thus we should take the following way:

Proposition 6.1. Suppose that η and ω fulfill (1.2) for some θ ∈ (0, 1). Let R ∈
(R0 + 1,∞), where R0 is as in (2.1). Let ε > 0 be arbitrarily small. Then,

1. Let 1 < q < ∞. For each m ∈ (0,∞), there is a constant C = C(m, ε, q,

R, θ, D) > 0 such that

‖T (t, s) f ‖W 1,q (DR) � C(t − s)−3/2+ε‖ f ‖q ,
‖T (t, s)∗g‖W 1,q (DR) � C(t − s)−3/2+ε‖g‖q ,

(6.1)

for all (t, s) with

t − s > 2 as well as 0 � s < t

and f, g ∈ Lq
σ (D) with

f (x) = 0, g(x) = 0 almost everywhere R3\B3R0

whenever (2.21) is satisfied.
2. Let 3/2 < q < ∞. For each m ∈ (0,∞), there is a constant C = C(m, ε,

q, R, θ, D) > 0 such that

‖∂t T (t, s) f ‖W−1,q (DR) � C(t − s)−3/2+ε‖ f ‖q ,
‖∂sT (t, s)∗g‖W−1,q (DR) � C(t − s)−3/2+ε‖g‖q ,

(6.2)

for all (t, s) with

t − s > 2 as well as 0 � s < t

and f, g ∈ Lq
σ (D) ∩ W 1,q(D) with

f (x) = 0, g(x) = 0 almost everywhere R3\B3R0

whenever (2.21) is satisfied.
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Proof. Given ε > 0 arbitrarily small as well as q ∈ (1,∞), let us take p0 and q0
such that 1 < p0 < q < q0 < ∞ and (3/p0 − 3/q0)/2 = 3/2 − ε.

Set u(t) = T (t, s) f and suppose t−s > 2.Byboth assertions in Proposition 2.2
we find

‖∇T (t, t − 1)u(t − 1)‖q0,DR � C‖u(t − 1)‖q0 � C(t − s − 1)−3/2+ε‖ f ‖p0

which implies (6.1) for ∇T (t, s) f . As for T (t, s) f itself (without derivative), the
argument is straightforward without using semigroup property.

To show the second assertion for ∂t u(t), we note that f ∈ Zq(D) and, thereby,
∂t u(t) = −L+(t)u(t) provided q > 3/2, see Proposition 2.1. By Lemma 5.4 we
know that T (t − 1, s) f ∈ Zq0(D) for every q0 ∈ (q,∞) and t ∈ (s + 1,∞). It
then follows from (2.20) with (5.24) that

‖L+(t)T (t, t − 1)u(t − 1)‖W−1,q0 (DR) � C‖u(t − 1)‖q0
� C(t − s − 1)−3/2+ε‖ f ‖p0 ,

which proves (6.2) for ∂t T (t, s) f .
Set v(s) = T (t, s)∗g, then we have v(s) = T (s + 1, s)∗v(s + 1) by the

backward semigroup property. We then take the same way as above; to be sure, we
just describe several lines only for (6.2). As mentioned at the end of the previous
section, we have

‖L−(s)T (t, s)∗g‖W−1,q (DR) � C(t − s)−(1+1/q)/2‖g‖q (6.3)

for all (t, s) ∈ �(τ∗) and g ∈ Zq(D) with q ∈ (3/2,∞), which corresponds to
(5.24) for T (t, s). Furthermore, similarly to Lemma 5.4, we have

v(s + 1) = T (t, s + 1)∗g = T̃ (t − s − 1, 0; t)g ∈ Zq0(D)

for every q0 ∈ (q,∞), see (2.13). Therefore, we combine (6.3) with (2.20) to
obtain

‖L−(s)T (s + 1, s)∗v(s + 1)‖W−1,q0 (DR) � C‖v(s + 1)‖q0
� C(t − s − 1)−3/2+ε‖g‖p0

which leads to (6.2) for ∂sT (t, s)∗g. ��
Let us proceed to the second stage of the local energy decay properties, in which

we intend to estimate the evolution operator still over the bounded domain DR near
the boundary for general data being in f ∈ Lq

σ (D).

Proposition 6.2. Suppose that η and ω fulfill (1.2) for some θ ∈ (0, 1). Let R ∈
(R0 + 1,∞), where R0 is as in (2.1). Let 1 < q < ∞. For each m ∈ (0,∞), there
is a constant C = C(m, q, R, θ, D) > 0 such that

‖T (t, s) f ‖W 1,q (DR) + ‖∂t T (t, s) f ‖W−1,q (DR) � C(t − s)−3/2q‖ f ‖q ,
‖T (t, s)∗g‖W 1,q (DR) + ‖∂sT (t, s)∗g‖W−1,q (DR) � C(t − s)−3/2q‖g‖q ,

(6.4)
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for all (t, s) with

t − s > 2 as well as 0 � s < t

and f, g ∈ Lq
σ (D) whenever (2.21) is satisfied. Here, the temporal derivatives are

understood as in Proposition 5.1.

Proof. By (2.20), (2.22) and (5.20) it suffices to prove (6.4) for all f, g ∈ C∞
0,σ (D).

Concerning the temporal derivatives ∂t T (t, s) f and ∂sT (t, s)∗g, it is also sufficient
to show the assertion for q ∈ (3/2,∞); in fact, once we have that for such q (for
instance, q = 3), (2.20) yields

‖∂t T (t, s) f ‖W−1,q (DR) � C‖L+(t)T (t, s) f ‖W−1,3(DR)

� C(t − s)−1/2‖T ((t + s)/2, s) f ‖3
� C(t − s)−3/2q‖ f ‖q ,

even if q ∈ (1, 3/2].
As in the previous study [34, Section 4], given f ∈ C∞

0,σ (D) ⊂ C∞
0,σ (R3), we

regard the solution T (t, s) f as the perturbation from a modification of theR3-flow
U (t, s) f as follows:

T (t, s) f = (1 − φ)U (t, s) f + B[(U (t, s) f ) · ∇φ] + v(t),

where v(t) denotes the perturbation, φ ∈ C∞
0 (B3R0) is a cut-off function satisfying

φ = 1 on B2R0 and B = BAR0
is the Bogovskii operator on the domain AR0 =

B3R0\BR0 , see (2.3). From (2.2) and Lq -L∞ estimate (3.10) (together with the
Equation (3.1) for ∂tU (t, s) f ), it follows that (1 − φ)U (t, s) f + B[(U (t, s) f ) ·
∇φ] and its temporal derivative (even in Lq(DR)) possess the desired decay rate
(t − s)−3/2q . Our task is thus to estimate

v(t) = T (t, s) f̃ +
∫ t

s
T (t, τ )F(τ ) dτ (6.5)

and

∂tv(t) = ∂t T (t, s) f̃ + F(t) +
∫ t

s
∂t T (t, τ )F(τ ) dτ (6.6)

where f̃ = φ f − B[ f · ∇φ] and
F(x, t) = −2∇φ · ∇U (t, s) f − [�φ + (η(t) + ω(t) × x) · ∇φ]U (t, s) f

− B[(∂tU (t, s) f ) · ∇φ] + �B[(U (t, s) f ) · ∇φ]
+ (η(t) + ω(t) × x) · ∇B[(U (t, s) f ) · ∇φ]
− ω(t) × B[(U (t, s) f ) · ∇φ].

The forcing term F fulfills, (see [34, (4.2)])

‖F(t)‖q � C(m + 1)‖ f ‖q
{

(t − s)−1/2, 0 < t − s < 1,
(t − s)−3/2q , t − s � 1,

(6.7)
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as well as div F = �p = 0 (so that PF = F) which follows at once from
the equation that {v, p} obeys, where p is the pressure associated with T (t, s) f .
Given q ∈ (1,∞), let us take ε > 0 so small that 3/2 − ε > 3/2q. Suppose
t − s > 2. By Proposition 6.1 with such ε and by (6.7) it is seen that T (t, s) f̃ and
∂t T (t, s) f̃ + F(t) satisfy the desired decay property.

Let us consider the last terms of (6.5)–(6.6). Concerning the latter one for
the temporal derivative we can apply (6.2) since F ∈ Lq

σ (D) ∩ W 1,q(D) with
F(x, t) = 0 almost everywhere |x | � 3R0 (note that estimate of∇F is not needed).
It follows from Propositions 6.1, 5.1 and 2.2 together with (6.7) that

‖T (t, τ )F(τ )‖W 1,q (DR) � C(m + 1)‖ f ‖q α(τ),

‖∂t T (t, τ )F(τ )‖W−1,q (DR) � C(m + 1)‖ f ‖q β(τ),

with

α(τ) = (t − τ)−1/2(1 + t − τ)−1+ε(τ − s)−1/2(1 + τ − s)−3/2q+1/2,

β(τ ) = (t − τ)−(1+1/q)/2(1 + t − τ)−1+1/2q+ε(τ − s)−1/2(1 + τ − s)−3/2q+1/2,

for τ ∈ (s, t). Then we see that

∫ (s+t)/2

s
α(τ) dτ � C(t − s)−3/2+ε

⎧
⎨

⎩

1, q < 3/2,
log(t − s), q = 3/2,
(t − s)1−3/2q , q > 3/2,

as well as
∫ t

(s+t)/2
α(τ) dτ � C(t − s)−3/2q

and that the same estimates as above hold for β(τ), too. We have completed the
proof of (6.4)1.

It remains to discuss the adjoint T (t, s)∗. Given g ∈ C∞
0,σ (D), we describe the

solution T (t, s)∗g in the form

T (t, s)∗g = (1 − φ)U (t, s)∗g + B[(U (t, s)∗g) · ∇φ] + u(s),

where φ and B are the same as before, while U (t, s)∗ is the evolution operator for
the backward problem (3.6)–(3.7) in the whole space and the first two terms above
possess the decay rate (t − s)−3/2q . Given vector field ψ ∈ C∞

0 (D)3, we know
from Lemma 5.2 that Pψ ∈ Zq(D) for every q ∈ (3/2,∞), which implies (2.11)
with f = Pψ for such q. With this at hand, as in [34, (4.17)], we utilize (2.8) and
(2.15) to compute

∂τ 〈Pψ, T (τ, s)∗u(τ )〉D
= ∂τ 〈T (τ, s)Pψ, u(τ )〉D
= 〈T (τ, s)Pψ, ∂τu(τ )〉D − 〈L+(τ )T (τ, s)Pψ, u(τ )〉D
= 〈T (τ, s)Pψ, ∂τu(τ ) − L−(τ )u(τ )〉D .
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This implies the Duhamel formula in the weak form

〈ψ, u(s)〉D = 〈ψ, T (t, s)∗g̃〉D +
∫ t

s
〈ψ, T (τ, s)∗G(τ )〉D dτ (6.8)

for all ψ ∈ C∞
0 (D)3 on account of Pu(s) = u(s). Here, g̃ = φg −B[g · ∇φ] and

G(y, s) = −2∇φ · ∇U (t, s)∗g − [�φ − (η(s) + ω(s) × y) · ∇φ]U (t, s)∗g
+ B[(∂sU (t, s)∗g) · ∇φ] + �B[(U (t, s)∗g) · ∇φ]
− (η(s) + ω(s) × y) · ∇B[(U (t, s)∗g) · ∇φ]
+ ω(s) × B[(U (t, s)∗g) · ∇φ],

both of which are solenoidal. It follows from (6.8) that

〈ψ, ∂su(s)〉D = 〈ψ, ∂sT (t, s)∗g̃〉D − 〈ψ,G(s)〉D +
∫ t

s
〈ψ, ∂sT (τ, s)∗G(τ )〉D dτ

(6.9)

for all ψ ∈ C∞
0 (D)3. Since we intend to derive estimates over DR , let us consider

the test functions ψ ∈ C∞
0 (DR)3 in (6.8)–(6.9). Suppose t − s > 2. We know that

‖G(s)‖q enjoys exactly the same estimate as in (6.7), see [34, (4.16)]. By use of
this combined with Propositions 6.1, 2.2 and

‖∂sT (t, s)∗g‖W−1,q (DR) � C(t − s)−(1+1/q)/2‖g‖q (6.10)

for all (t, s) ∈ �(τ∗) and g ∈ Lq
σ (D), which corresponds to (5.20) for T (t, s),

we find the desired estimates for ‖u(s)‖q,DR and ‖∂su(s)‖W−1,q (DR), in which
computations are essentially the same as those for the last terms of (6.5)–(6.6)
although we employ the duality. One can get the desired estimate of ‖∇u(s)‖q,DR

as well by taking test functions of the form ψ = div � with � ∈ C∞
0 (DR)3×3 and

then by adopting the same argument as above after integration by parts in (6.8).
The proof is complete. ��

As a corollary to Proposition 6.2 as well as Proposition 5.1, one can derive
the following asymptotic behavior of the pressures associated with T (t, s) f and
T (t, s)∗g (this plays an important role in the next section):

Corollary 6.1. Suppose that η and ω fulfill (1.2) for some θ ∈ (0, 1). Let R ∈
(R0 + 1,∞), where R0 is as in (2.1). Let 1 < q < ∞. Given f ∈ Lq

σ (D), we
denote by p(t) the pressure associatedwith T (t, s) f subject to

∫
DR

p dx = 0, which
is determined by Proposition 5.1. Let φ ∈ C∞

0 (BR) satisfy φ = 1 in BR0+1, and
B = BAR the Bogovskii operator on the bounded domain AR = {R0 < |x | < R},
see (2.3). Then, for eachm ∈ (0,∞), there is a constantC = C(m, q, R, θ, D) > 0
such that

‖p(t)‖q,DR + ‖B[(∂t T (t, s) f ) · ∇φ]‖q,AR

� C‖ f ‖q
{

(t − s)−(1+1/q)/2, 0 < t − s � 2,
(t − s)−3/2q , t − s > 2,

(6.11)
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for all f ∈ Lq
σ (D) whenever (2.21) is satisfied. Here, the temporal derivative is

understood as in Proposition 5.1. The same assertion holds true for T (t, s)∗g with
g ∈ Lq

σ (D) and the associated pressure as well.

Proof. Estimate (6.11) near t = s for the pressure was already obtained in (5.23).
By (2.4) we have

‖B[(∂t T (t, s) f ) · ∇φ]‖q,AR � C‖(∂t T (t, s) f ) · ∇φ‖W 1,q′
(AR)∗

� C‖∂t T (t, s) f ‖W−1,q (DR),

which together with (5.22) implies that (6.11) follows from (6.4) for large (t − s)
as well as (5.20) for small (t − s). ��

Another corollary to Proposition 6.2 is the L∞-estimate.

Corollary 6.2. Suppose that η and ω fulfill (1.2) for some θ ∈ (0, 1). Let R ∈
(R0 + 1,∞), where R0 is as in (2.1). Let 1 < q < ∞. For each m ∈ (0,∞), there
is a constant C = C(m, q, R, θ, D) > 0 such that

‖T (t, s) f ‖∞,DR � C(t − s)−3/2q‖ f ‖q ,
‖T (t, s)∗g‖∞,DR � C(t − s)−3/2q‖g‖q ,

(6.12)

for all (t, s) with

t − s > 2 as well as 0 � s < t

and f, g ∈ Lq
σ (D) whenever (2.21) is satisfied.

Proof. L∞-estimate follows directly from (6.4) together with the Sobolev embed-
ding when q > 3. If q � 3, then we have

‖T (t, s) f ‖∞,DR � C(t − s)−1/4‖T ((t + s)/2, s) f ‖6,
which leads to (6.12) by the first assertion of Proposition 2.2. ��

7. Proof of the Main Theorems

In the final section we complete the proof of the main results on decay estimates
of gradient of the evolution operator T (t, s) and its adjoint T (t, s)∗ as well as L∞-
decay estimates.

Proof of Theorem 2.1. Let 1 < q < ∞ (q > 3/2 for L∞-estimates) and fix
R ∈ (R0 + 1,∞), where R0 is as in (2.1). It then suffices to prove

‖∇T (t, s) f ‖q,R3\BR
� C(t − s)−min{1/2, 3/2q}‖ f ‖q ,

‖T (t, s) f ‖∞,R3\BR
� C(t − s)−3/2q‖ f ‖q ,

(7.1)
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and

‖∇T (t, s)∗g‖q,R3\BR
� C(t − s)−min{1/2, 3/2q}‖g‖q ,

‖T (t, s)∗g‖∞,R3\BR
� C(t − s)−3/2q‖g‖q ,

(7.2)

for all (t, s) with t − s > 2 as well as 0 � s < t and f, g ∈ C∞
0,σ (D). From

this combined with (6.4), (6.12), Proposition 2.2 and the semigroup property we
conclude Theorem 2.1. Note that (2.24) for t − s � 2 follows from Proposition 2.2
together with an embedding relation and that (2.24) for q > 3/2 yields (2.24) even
for q � 3/2 on account of the semigroup property and (2.20).

Let us take a cut-off functionφ ∈ C∞
0 (BR) and theBogovskii operatorB = BAR

as in Corollary 6.1. Given f ∈ C∞
0,σ (D), we denote by p(t) the pressure associated

with the velocity T (t, s) f such that
∫
DR

p dx = 0. Set

v(t) = (1 − φ)T (t, s) f + B[(T (t, s) f ) · ∇φ], pv(t) = (1 − φ)p(t). (7.3)

Since v(t) = T (t, s) f in R
3\BR , let us consider ‖∇v(t)‖q,R3 and ‖v(t)‖∞,R3 by

using

v(t) = U (t, s) f̃ +
∫ t

s
U (t, τ )PR3H(τ ) dτ (7.4)

where PR3 = I + R ⊗ R is the Fujita-Kato projection in the whole space, f̃ =
(1 − φ) f + B[ f · ∇φ] ∈ C∞

0,σ (R3) and

H(x, t) = 2∇φ · ∇T (t, s) f + {�φ + (η + ω × x) · ∇φ}T (t, s) f

− �B[(T (t, s) f ) · ∇φ] − (η + ω × x) · ∇B[(T (t, s) f ) · ∇φ]
+ ω × B[(T (t, s) f ) · ∇φ]
+ B[(∂t T (t, s) f ) · ∇φ] − (∇φ)p.

Among several terms of which H consists, the last two terms are always delicate
in cut-off procedures, but we have Corollary 6.1 and that is why we have made
effort to analyze ∂t T (t, s) in Propositions 6.1 and 6.2, while the other terms are
harmless. Clearly, H = 0 for |x | � R, and it is seen from (6.4), (6.11) and the
second assertion of Proposition 2.2 that

‖H(t)‖r,R3 � C(m + 1)‖ f ‖q
{

(t − s)−(1+1/q)/2, 0 < t − s � 2,
(t − s)−3/2q , t − s > 2

(7.5)

for every r ∈ (1, q].
Suppose t−s > 2. By (3.10) the first termU (t, s) f̃ of (7.4) satisfies the desired

estimate. Let us consider the second term of (7.4). To this end, we combine (7.5)
with (3.10) to observe

‖∇U (t, τ )PR3H(τ )‖q,R3 � C(m + 1)‖ f ‖q α̃(τ ),

‖U (t, τ )PR3H(τ )‖∞,R3 � C(m + 1)‖ f ‖q β̃(τ ),
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with

α̃(τ ) = (t − τ)−1/2(1 + t − τ)−(3/r−3/q)/2(τ − s)−(1+1/q)/2(1 + τ − s)−1/q+1/2,

β̃(τ ) = (t − τ)−3/2q (1 + t − τ)−(3/r−3/q)/2(τ − s)−(1+1/q)/2(1 + τ − s)−1/q+1/2

for τ ∈ (s, t), where r ∈ (1, q] will be soon chosen appropriately. Then we have

∫ (s+t)/2

s
α̃(τ ) dτ � C(t − s)−(3/r−3/q)/2−1/2

⎧
⎨

⎩

1, q < 3/2,
log(t − s), q = 3/2,
(t − s)1−3/2q , q > 3/2

By a suitable choice of r ∈ (1, q], that is,
r = q < 3/2, r < 3/2 = q, r � 3/2 < q,

we find
∫ (s+t)/2

s
α̃(τ ) dτ � C(t − s)−1/2

for every q ∈ (1,∞). On the other hand, we observe

∫ t

(s+t)/2
α̃(τ ) dτ � C

{
(t − s)−3/2q+1/2, q � 3/2,
(t − s)−3/2q , q > 3/2,

� C

{
(t − s)−1/2, q � 3,
(t − s)−3/2q , q > 3,

where r is chosen to be close to 1 in such a way that 1/r > 1/q + 1/3 for the
case q > 3/2, while it is enough to choose r = q for the other case q � 3/2.
Summing up all computations above, we are led to the gradient estimate in (7.1).
L∞-estimate is discussed similarly by use of β̃(τ ) above as long as q > 3/2.

Given g ∈ C∞
0,σ (D), we next consider T (t, s)∗g together with the associated

pressure σ(s) such that
∫
DR

σ dy = 0, see (2.6). As in (7.3), we set

u(s) = (1 − φ)T (t, s)∗g + B[(T (t, s)∗g) · ∇φ], σu(s) = (1 − φ)σ(s).

(7.6)

The same argument as above with use of the adjoint U (t, s)∗ being the solution
operator to the backward system (3.6)–(3.7) in the whole space implies (7.2). The
proof of Theorem 2.1 is thus complete. ��

Let us close the paper with a brief description of the proof of Theorem 2.2.

Proof of Theorem 2.2. Given g ∈ C∞
0,σ (D), as in the last part of the proof of Theo-

rem 2.1, we still consider the strong solution T (t, s)∗g and single out the associated
pressure σ(s) satisfying the side condition

∫
DR

σ dy = 0.
Toward (2.25) with r = 3 (the most important case for us), as was discussed in

[37, Section 8] for the autonomous case, the real interpolation is performed at the
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level of (6.4) and (6.11) for the adjoint T (t, s)∗ [as well as (2.20) and (2.22)] to
find that

‖∇ j T (t, s)∗g‖Lq,ρ (DR) � C‖g‖q,ρ

{
(t − s)− j/2, 0 < t − s � 2,
(t − s)−3/2q , t − s > 2,

(7.7)

with j = 0, 1 and that

‖σ(s)‖Lq,ρ (DR) + ‖B[(∂sT (t, s)∗g) · ∇φ]‖Lq,ρ (AR)

� C‖g‖q,ρ

{
(t − s)−(1+1/q)/2, 0 < t − s � 2,
(t − s)−3/2q , t − s > 2,

(7.8)

where 1 < q < ∞, 1 � ρ � ∞ and g ∈ Lq,ρ
σ (D).We then proceed to the final step

in this section to obtain (7.2)1 in which Lq -norm is now replaced by Lq,ρ-norm. To
this end, we consider u(s) given by (7.6) and have only to estimate ‖∇u(s)‖Lq,ρ (R3)

by making use of Lq,ρ-Lr,ρ estimates of ∇U (t, s)∗ and the estimate of the Bogov-
skii operator B = BAR in Lq,ρ(AR), which follows from (2.2) by interpolation, as
well as (7.7)–(7.8). The argument ends up with continuity and that is why the case
ρ = ∞ is missing in (2.25).

Finally, following Yamazaki [53], we perform the real interpolation for the
sublinear operator: g �→ ‖∇T (t, ·)∗g‖r,1 (for fixed t > 0 and r ∈ (3/2, 3]) to
conclude (2.26). The proof is complete. ��
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