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Abstract

Let � ⊂ R
3 be a domain and let f ∈ BVloc(�,R3) be a homeomorphism such

that its distributional adjugate is a finite Radon measure. We show that its inverse
has bounded variation f −1 ∈ BVloc. The condition that the distributional adjugate
is finite measure is not only sufficient but also necessary for the weak regularity of
the inverse.

1. Introduction

Suppose that � ⊂ R
n is an open set and let f : � → f (�) ⊂ R

n be a
homeomorphism. In this paper we address the issue of the weak regularity of f −1

under regularity assumptions on f .
The classical inverse function theorem states that the inverse of a C1-smooth

homeomorphism f is again a C1-smooth homeomorphism, under the assumption
that the Jacobian J f is strictly positive. In this paper we address the question
whether the inverse of a Sobolev or BV -homeomorphism is a BV function or
even a Sobolev function. This problem is of particular importance as Sobolev and
BV spaces are commonly used as initial spaces for existence problems in PDE’s
and the calculus of variations. For instance, elasticity is a typical field where both
invertibility problems and Sobolev (or BV ) regularity issues are relevant (see for
example [2,4,29]).
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The problem of the weak regularity of the inverse has attracted a big attention
in the past decade. It started with the result of [20,23] where it was shown that for
homeomorphisms in dimension n = 2 we have

(
f ∈ W 1,1

loc (�,R2) is a mapping of finite distortion ⇒ f −1 ∈ W 1,1
loc ( f (�),R2)

)

and
(
f ∈ BVloc(�,R2) ⇒ f −1 ∈ BVloc( f (�),R2)

)
.

This result has been generalized to R
n in [6] where it was shown that

(
f ∈ W 1,n−1

loc (�,Rn) is a mapping of finite distortion ⇒ f −1 ∈ W 1,1
loc ( f (�),Rn)

)

and
(
f ∈ W 1,n−1

loc (�,Rn) ⇒ f −1 ∈ BVloc( f (�),Rn)
)
.

It is natural to study the sharpness of the assumption f ∈ W 1,n−1. It was
shown in [22] that the assumption f ∈ W 1,n−1−ε (or any weaker Orlicz–Sobolev
assumption) is not sufficient in general. Furthermore, by results of [9] we know
that for f ∈ W 1,n−1 we have not only f −1 ∈ BV but also the total variation of the
inverse satisfies

|Df −1|( f (�)) =
∫

�

| adj Df (x)| dx, (1.1)

where adj Df denotes the adjugate matrix, that is the matrix of (n − 1) × (n − 1)
subdeterminants. However, for n ≥ 3 it is possible to construct a W 1,1 homeomor-
phism with adj Df ∈ L1 such that f −1 /∈ BV (see [22]) so the pointwise adjugate
does not carry enough information about the regularity of the inverse. The main
trouble in the example from [22] is that the pointwise adjugate does not capture
some singular behavior on the set of measure zero.

On the other hand, the results of [6] are not perfect as they cannot be applied
to even very simple mappings. Let c(x) denote the usual Cantor ternary function,
then h(x) = x + c(x) is BV homeomorphism and its inverse g = h−1 is even
Lipschitz. It is easy to check that

f (x, y, z) = [h(x), y, z]
is a BV homeomorphism and its inverse f −1(x, y, z) = [g(x), y, z] is Lipschitz,
but the results of [6] cannot be applied as f is not Sobolev. In this paper we obtain a
new result in dimension n = 3 about the regularity of the inverse which generalizes
the result of [6] and can be applied to the above mapping.

It is well-known that in models of Nonlinear Elasticity and in Geometric Func-
tion Theory the usual pointwise Jacobian does not carry enough information about
the mapping and it is necessary to work with the distributional Jacobian; see for
example [2,5,21,24,25,27]. This distributional Jacobian captures the behavior on
zero measure sets and can be used to model for example cavitations of the mapping;
see for example [16,17,28,29]. In the same spirit we introduce the notion of the
distributional adjugate ADJ Df (see Definition 1.4 below) and we show that the
right assumption for the regularity of the inverse is thatADJ Df ∈ M(�,R3×3),
where M(�) denotes finite Radon measures on �.
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Further we need to add the technical assumption that Lebesgue area (see (2.2)
below) of image of a.e. hyperplane parallel to coordinate axes is finite. Let us recall
that the Hausdorff measure is always bigger (see Sect. 2.4):

A( f,� ∩ {x ∈ R
3 : x j = t}) ≤ H2(

f (� ∩ {x ∈ R
3 : x j = t})), j = 1, 2, 3,

so it is enough to assume the finiteness of Hausdorff measure of the image. Our
main result is the following:

Theorem 1.1. Let � ⊂ R
3 be a domain and f ∈ BVloc(�,R3) be a homeomor-

phism such that ADJ Df ∈ M(�,R3×3) and assume further that for a.e. t we
have

A( f,� ∩ {x ∈ R
3 : x j = t}) < ∞ for j = 1, 2, 3. (1.2)

Then f −1 ∈ BVloc( f (�),R3).
If we moreover know that the image of the measure f (ADJ Df ) is absolutely

continuous with respect to Lebesgue measure, then f −1 ∈ W 1,1
loc ( f (�),R3).

It would be very interesting to see if the assumption (1.2) can be removed. A similar
extra assumption was assumed in [8, Theorem 14].

To show that our result generalizes the aforementioned result of [6] we notice
first that for homeomorphisms in W 1,n−1 the distributional adjugate ADJ Df is
equal to the pointwise adjugate adj Df (see [21, Proposition 2.10]). Themain part of
the proof in [6] was to show that f mapsHn−1 null sets on almost every hyperplane
toHn−1 null sets. This implies (1.2) for W 1,n−1 -homeomorphisms. This property
of null sets on hyperplanes may fail in our setting so our proof is more subtle and
we have to use delicate tools of Geometric Measure Theory.

Moreover, our assumptions are not only sufficient but also necessary for the
weak regularity of the inverse.

Theorem 1.2. Let� ⊂ R
3 be a domain and f ∈ BV (�,R3) be a homeomorphism

such that f −1 ∈ BV ( f (�),R3). Then ADJ Df ∈ M(�,R3×3) and for a.e. t
we have

A( f,� ∩ {x ∈ R
3 : x j = t}) < ∞ for j = 1, 2, 3.

In an upcoming article [19] these results are further refined. There the total
variation of distributional adjugate is shown to equal the total variation of the
derivative of the inverse mapping. Moreover, some simple ways of verifying the
key assumption ADJ Df ∈ M(�,R3×3) are presented there.

Now we give the formal definition of the distributional adjugate. Without loss
of generality we can assume that � = (0, 1)3 as all statements are local.

Definition 1.3. Let f = ( f1, f2, f3) : (0, 1)3 → R
3 be a homeomorphism in BV .

For t ∈ (0, 1) we define

f t1 (x) = f (t, x2, x3), f t2 (x) = f (x1, t, x3) and f t3 (x) = f (x1, x2, t).
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We can split these mappings into 9 mappings from (0, 1)2 → R
2 using its coordi-

nate functions. Given k, j ∈ {1, 2, 3} choose a, b ∈ {1, 2, 3}\{ j} with a < b and
define

f tk, j (x) = [
( f tk )a(x), ( f

t
k )b(x)

];
see Fig. 1. For example,

f t1,1(x2, x3) = [
( f t1 )2(x), ( f

t
1 )3(x)

] = [
f2(t, x2, x3), f3(t, x2, x3)

]
.

Now we recall the definition of distributional Jacobian and, using it, define the
distributional adjugate.

Definition 1.4. Let f be as in Definition 1.3. For mappings f tk, j we consider the
usual distributional Jacobian (see for example [21, Sect. 2.2]), that is the distribution

J f tk, j
(ϕ) = −

∫

�

( f tk, j )1(x)J
(
ϕ, ( f tk, j )2

)
(x) dx for all ϕ ∈ C∞

0 (�).

This distribution iswell-defined for homeomorphism inW 1,1. It is alsowell-defined
for homeomorphism in BV for n = 3, we just consider the integral with respect to
corresponding measure d(∂l f tk, j )2(x) instead of (∂l f tk, j )2(x) dx and for example
we define

J f t1,1
(ϕ) = −

∫

�

f2(t, x2, x3)
∂ϕ(x2, x3)

∂x2
d
(∂ f3(t, x2, x3)

∂x3

)

+
∫

�

f2(t, x2, x3)
∂ϕ(x2, x3)

∂x3
d
(∂ f3(t, x2, x3)

∂x2

)
.

Assume that these 3× 3 distributions J f ti, j
are measures for a.e. t ∈ (0, 1) and

for measurable A ⊂ (0, 1)3 we set

(ADJ Df )k, j (A) =
∫ 1

0
J f tk, j

(A ∩ {xk = t}) dt.

We say that ADJ Df ∈ M(�,R3×3) if the distributions J f tk, j
are measures for

a.e. t ∈ (0, 1) and (ADJ Df )k, j ∈ M(�) for every i, j ∈ {1, 2, 3}.
A priori it seems that the definition of the distributional adjugate is dependent

on the choice of coordinates. This turns out not to be the case and we discuss this
further in Sect. 6.1.

2. Preliminaries

Total variation of the measure μ is the measure |μ| such that

|μ|(A):= sup

{∫

Rn
ϕ dμ : ϕ ∈ C0(A), ‖ϕ‖∞ ≤ 1

}
for all open sets A ⊂ R

n .

For a domain � ⊂ R
n we denote by C∞

0 (�) those smooth functions ϕ whose
support is compactly contained in �, that is suppϕ ⊂⊂ �.
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2.1. Mollification

We will need to approximate continuous BV mappings with smooth maps. To
this end we recall here the basic definitions of convolution and mollifiers for the
reader’s convenience; for a more detailed treatise on the basics and connections to
BV mappings we refer to [1, Sects. 2.1 and 3.1].

A family of mappings (ρε) ∈ C∞(Rn,R) is called a family of mollifiers if for
all ε > 0 we have ρε(x) = ε−nρ(x/ε), where ρ ∈ C∞(Rn,R) is a non-negative
mapping satisfying supp ρ ⊂ B(0, 1), ρ(−x) = ρ(x) and

∫
Rn ρ = 1. We will

sometimes use a sequence of mollifiers (ρ j ), in which case we tacitly assume that
there is a family of mollifiers (ρ̃ε) from which we extract the sequence (ρ j ) by
setting ρ j :=ρ̃ 1

j
.

For � ⊂ R
n and any two functions f : � → R

m , g : � → R we set their
convolution to be

( f ∗ g) : Rn → R
m, ( f ∗ g)(x) =

∫

�

f (y)g(x − y) dy

whenever the integral exists. Likewise for am-valued Radon measure μ defined on
� and a function g : � → R we define their convolution as

(μ ∗ f ) : Rn → R
m, (μ ∗ f )(x) =

∫

�

f (x − y) dμ(y)

whenever the integral exists.
For a function f : � → R

m or a Radon measureμ defined on�we define their
(family of) mollifications to be the families ( fε):=( f ∗ ρε) and (με):=(μ ∗ ρε),
respectively, where (ρε) is a family of mollifiers. Similarly we define the sequence
of mollifications as ( f j ):=( f ∗ρ j ) and (μ j ):=(μ∗ρ j ). For our purposes the exact
family of mollifiers does not matter, so we tacitly assume that some such family
has been given whenever we use mollifications.

2.2. Topological degree

For � ⊂ R
n and a given smooth map f : � → R

n we define the topological
degree as

deg( f,�, y0) =
∑

x∈�∩ f −1{y0}
sgn(J f (x))

if J f (x) �= 0 for each x ∈ f −1{y0}. This definition can be extended to arbitrary
continuous mappings and each point y0 /∈ f (∂�), see for example [13, Sect. 1.2]
or [21, Chapter 3.2]. For our purposes the following property of the topological
degree is crucial; see [13, Definition 1.18]:

Lemma 2.1. Let � ⊂ R
n be a domain, f : � → R

n a continuous function and U
a domain with U ⊂ �. Then for any point y0 ∈ R

n\ f (∂U ) and any continuous
mapping g : � → R

n with

‖ f − g‖∞ ≤ dist (y0, f (∂U )) ,

we have deg( f,�, y0) = deg(g,�, y0).
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We will also need some classical results concerning the dependence of the
degree on the domain. The following result is from [13, Theorem 2.7]:

Lemma 2.2. Let � ⊂ R
n be a domain, f : � → R

n a continuous function and U
a domain with U ⊂ �.

(1) (Domain decomposition property) For any domain D ⊂ U with a decomposi-
tion D = ∪i Di into open disjoint sets, and a point p /∈ f (∂D), we have

deg( f, D, p) =
∑

i

deg( f, Di , p).

(2) (Excision property) For a compact set K ⊂ U and a point p /∈ f (K ∪ ∂U ) we
have deg( f,U, p) = deg( f,U\K , p).

The topological degree agrees with the Brouwer degree for continuous map-
pings, which in turn equals the winding number in the plane. The winding num-
ber is an integer expressing how many times the path β f := f (∂D) circles the
point p; indeed, the winding number equals the topological index of the mapping
β f −p
|β f −p| : S1 → S

1. We refer to [13, Sect. 2.5] for discussion of the winding number
in the setting of holomorphic planar mappings.

2.3. Hausdorff measure

For A ⊂ R
n we use the classical definition of the Hausdorff measure (see for

example [11])

Hk(A) = lim
δ→0+Hk

δ (A),

where

Hk
δ (A) = inf

{∑

i

diamk Ai : A ⊂
⋃

i

Ai , diam Ai ≤ δ
}
.

The important ingredient of our proof is the Gustin boxing inequality [14] which
states that for each compact set K ⊂ R

n we have

Hn−1∞ (K ) ≤ CnHn−1(∂K ). (2.1)

2.4. On various areas

Besides homeomorphisms in three dimensions weworkwith a continuousmap-
pings g : [0, 1]2 → R

3. A central object is the Hausdorff measure of the image
H2(g((0, 1)2)), but we need to use other finer notions of area. The results of this
subsection can be found in the book of Cesari [3] and they also follow by some
results of Federer, see for example [12, (13) on p. 93] and references given there.

First we define the Lebesgue area (see [3, 3.1]). Let L be an affinemapping, then
for any triangle 	 the area of L(	) is defined in the natural way. For a piecewise
linear mapping h : [0, 1]2 → R

3 we define the Lebesgue area A(h, [0, 1]2) to be
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the sum of the areas of the triangles of some triangulation where h is linear in each
of these triangles. We define

A(g, [0, 1]2):= inf

{
lim
k→∞ A(gk, [0, 1]2) : (gk) ∈ PH(g)

}
, (2.2)

where PH(g) is the collection of all sequences of polyhedral surfaces converging
uniformly to g.

Next we define coordinate mappings g j : [0, 1]2 → R
2 as

g1(x) = [g2(x), g3(x)], g2(x) = [g1(x), g3(x)] and g3(x) = [g1(x), g2(x)].
Finally we define (see [3, 9.1])

V (g j , [0, 1]2):= sup
S

{
∑

π∈S

∫

R2

∣∣deg(g j , π, y)
∣∣ dy

}

, (2.3)

where S is any finite system of nonoverlapping simple open polygonal regions in
[0, 1]2 and deg(g j , y, A) denotes the topological degree of mapping.

We need the following characterization of the Lebesgue area (see [3, 18.10 and
12.8.(i i)]) which holds for any continuous g

V (g j , [0, 1]2) ≤ A(g, [0, 1]2) ≤ V (g1, [0, 1]2) + V (g2, [0, 1]2) + V (g3, [0, 1]2).
(2.4)

Let us note that these results are highly nontrivial. For example it is possible to
construct continuous g such that A(g, [0, 1]2) is much smaller thanH2(g([0, 1]2))
(which may be even infinite) but the result (2.4) is still true. Further for the validity
we need only continuity of g and we do not need to assume that A(g, [0, 1]2) < ∞.
However, this is only known to hold for two dimensional surfaces in R

3 and for
higher dimensions the assumption about the finiteness of the Lebesgue area might
be needed.

2.5. BV functions and the coarea formula

Let� ⊂ R
n be an open domain. A function h ∈ L1(�) is of bounded variation,

h ∈ BV (�), if the distributional partial derivatives of h are measures with finite
total variation in �, that is there are Radon (signed) measures μ1, . . . , μn defined
in � so that for i = 1, . . . , n, |μi |(�) < ∞ and

∫

�

hDiϕ dx = −
∫

�

ϕ dμi

for all ϕ ∈ C∞
0 (�). We say that f ∈ L1(�,Rn) belongs to BV (�,Rn) if the

coordinate functions of f belong to BV (�).
Let � ⊂ R

n be open set and E ⊂ � be measurable. The perimeter of E in �

is defined as a total variation of χE in �, that is

P(E,�):= sup
{∫

E
div ϕ dx : ϕ ∈ C1

0(�), ‖ϕ‖∞ ≤ 1
}
.

We will need the following coarea formula to characterize BV functions (see
[1, Theorem 3.40]):
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Theorem 2.3. Let � ⊂ R
n be open and u ∈ L1(�). Then we have

|Du|(�) =
∫ ∞

−∞
P({x ∈ � : u(x) > t},�) dt. (2.5)

In particular, u ∈ BV (�) if and only if the integral on the righthand side is finite.

It is well-known (see for example [1, Proposition 3.62]) that for the coordinate
functions of a homeomorphism f : � → R

n we have

P
({x ∈ � : fi (x) > t},�) ≤ Hn−1({x ∈ � : fi (x) = t}). (2.6)

Moreover, we have the following version of coarea formula for continuous BV
functions by Federer [11, Theorem 4.5.9 (13) and (14) for k ≡ 1].

Theorem 2.4. Let � ⊂ R
n be open and u ∈ BV (�) be continuous. Then we have

|Du|(�) =
∫ ∞

−∞
Hn−1({x ∈ � : u(x) = t}) dt.

2.6. BVL condition

Let � ⊂ R
n be open and f ∈ L1(�). It is well-known that f ∈ BV (�) if and

only if it satisfies the BVL condition, that is it has bounded variation on Ln−1 a.e.
line parallel to the coordinate axes, and the variation along these lines is integrable
(see for example [1, Remark 3.104]). As a corollary we obtain that a BV function
of n-variables is a BV function of (n − 1)-variables on L1 a.e. hyperplane parallel
to coordinate axis.

For example for n = 2 and f ∈ BV ((0, 1)2) we have that the function

fx (y):= f (x, y)

has bounded (one-dimensional) variation for a.e. x ∈ (0, 1). Moreover,

∫ 1

0
|Dfx ((0, 1))| dx = |D2 f |((0, 1)2), (2.7)

where |Dfx | denotes the (one-dimensional) total variation of fx and |D2 f | denotes
the total variation of the measure ∂ f

∂y . A similar identity holds for fy(x):= f (x, y)
and D1 f .

2.7. Convergence of BV functions

In dimension two, the boundary of a ball B(x, r) is a curve and we will tacitly
assume that it is always parametrized with the path

β : [0, 2π ] → R
2, β(t) = (x1 + r cos t, x2 + r sin t).



194 S. Hencl, A. Kauranen, & R. Luisto

Thus when we speak of the length �(∂B(x, r)) of the boundary of a ball or its
image f (∂B(x, r)) under a mapping f , we mean the length of the curve β or f ◦β,
respectively. Note that the length of a path γ : [0, 1] → R

2 equals

�(γ ):=
⎧
⎨

⎩

k∑

j=1

d(γ (t j−1), γ (t j )) : 0 = t0 ≤ · · · ≤ tk = 1

⎫
⎬

⎭
,

from which we immediately see that if f j → f uniformly, then

lim
j→∞ �( f j ◦ β) ≥ �( f ◦ β).

Similarly, we also assume line segments in the plane to be equipped with a path
parametrization and to have similar length convergence properties.

By the results in the previous Sect. 2.6 we know that the restriction of a BV
mapping f ∈ BV (R2,R2) to L1 a.e. line segment in the plane is again a BV
mapping; that is for all a > b and a.e. x ∈ R, the restriction fx := f |{x}×(a,b) is a
BV mapping and

H1( f (Ix )) ≤ �( f (Ix )) = |Dfx |(Ix ) < ∞,

where |Dfx | denotes the one-dimensional total variation of fx .
A similar result holds also for H1 a.e. radius of a sphere: given a point x , the

restriction of f to ∂B(x, r) is BV for H1 a.e. radius r > 0. This in particular
implies that for such radii,

H1( f (∂B(x, r))) ≤ �( f (∂B(x, r))) = |D( fr )|(∂B(x, r)) < ∞,

where fr := f |∂B(x,r) and |D( fr )| denotes the one-dimensional total variation of
fr . Furthermore, similarly as in (2.7), we have

∫ r

0
H1( f (∂B(x, s))) ds ≤

∫ r

0
|D( fs)|(∂B(x, s)) ds ≤ |Df | (B(x, r)) . (2.8)

Recall the weak* convergence of BV mappings.

Definition 2.5. We say that a sequence ( f j ) of BV mappings weakly* converges
to f in BV , if f j → f in L1 and Df j weakly* converge to Df , that is

lim
j→∞

∫

�

ϕ dDf j =
∫

�

ϕ dDf

for all ϕ ∈ C0(�).

The next result from [1, p. 125, Proposition 3.13.] gives a characterization
for weak* convergence in BV . Note especially that since the mollifications of
continuous BV functions converge uniformly, they especially converge locally in
L1, so in this case the boundedness of the sequence in BV -norm gives weak*
convergence for the derivatives.

Proposition 2.6. Let f j be a sequence of BV mappings� → R
2. Then f j weakly*

converges to a BV mapping f : � → R
2 if and only f j → f in L1 and

sup |Df j |(�) < ∞.
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3. Properties of BV Mappings

In the proof of Theorem 1.1 we use some ideas of [9, proof of Theorem 1.7]. In
particular we use the following observation based on the coarea formula (Theorem
2.3):

Theorem 3.1. Let � ⊂ R
n be a domain and f ∈ BVloc(�,Rn) be a homeomor-

phism. Then the following measure on � is finite

μ(A) =
n∑

i=1

∫ ∞

−∞
Hn−1(

f ({x ∈ A : xi = t})) dt

if and only if f −1 ∈ BVloc( f (�),R3). In addition, f (μ) is absolutely continuous
with respect to the Lebesgue measure if and only if f −1 ∈ W 1,1( f (�),R3).

Proof. Assume that μ is a finite measure. By Theorem 2.3 and the perimeter
inequality (2.6) we have

|Df −1|( f (�)) ≈
n∑

i=1

|(Df −1)i |( f (�))

= C
n∑

i=1

∫ ∞

−∞
P({y ∈ f (�) : ( f −1)i (y) > t}, f (�)) dt

≤ C
n∑

i=1

∫ ∞

−∞
Hn−1({y ∈ f (�) : ( f −1)i (y) = t}) dt

= C
n∑

i=1

∫ ∞

−∞
Hn−1(

f ({x ∈ � : xi = t})) dt < ∞,

(3.1)

and thus f −1 ∈ BVloc.
If f −1 ∈ BVloc, then by Theorem 2.4 we know that the only inequality in the

above computation (3.1) is actually equality and we get μ ∈ M(�).
Let us consider now the final claim. We have to show that

∣∣Df −1
∣∣ (E) < ε if

|E | < δ. Given ε we choose δ > 0 from the absolute continuity of measure f (μ).
By approximation we may assume that E is open and |E | < δ. The definition of
μ, assumed absolute continuity of f (μ) and (3.1) (with E instead of �) imply

∣
∣∣Df −1

∣
∣∣ (E) ≤ μ( f −1(E)) < ε.

If we know that f −1 ∈ W 1,1 then we have only equalities in (3.1) and we easily
obtain that f (μ) is absolutely continuous with respect to the Lebesgue measure.
��

We next show that for a mollification of a continuous BV mapping, the con-
vergence is inherited to a.e. circle in a weak sense.
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Proposition 3.2. Let f : � ⊂ R
2 → R

2 be a continuous BV mapping and (ρk) a
sequence of mollifiers. Denote f k := f ∗ ρk , f kc,s := f k |∂B(c,s) and fc,s := f |∂B(c,s).
Then for any point z ∈ R

2 we have

lim
k→∞ |Df kz,r |(∂B(z, r)) = |Dfz,r |(∂B(z, r)) < ∞

and

D( f kz,r )
w∗
⇀ D( fz,r ),

for H1 a.e. radius r > 0 such that B(z, r) ⊂ �.

Proof. Since the claim is local it suffices, after a smooth change of local coordinates,
to show that for a continuous BV mapping f : (0, 1)2 → R

2 we have

lim
k→∞ |Df kx |(Ix ) = |Dfx |(Ix ) < ∞, (3.2)

and

D( f kx )
w∗
⇀ D( fx ), (3.3)

onH1 almost every line segment Ix :={x}×(0, 1), where f kx := f k |Ix and fx := f |Ix .
We start by proving (3.2). By the results in Sect. 2.7, forH1 a.e. x ∈ (0, 1) we

have

|Df kx |(Ix ) = �( f k(Ix )) < ∞ and |Dfx |(Ix ) = �( f (Ix )) < ∞,

so since f kx → fx uniformly, we see by the notions of Sect. 2.7 that

lim
k→∞ |Df kx |(Ix ) = lim

k→∞ �( f k(Ix )) ≥ �( f (Ix )) = |Dfx |(Ix ).

Thus to prove (3.2) it suffices to show that for a.e. x ∈ (0, 1),

lim
k→∞ |Df kx |(Ix ) ≤ |Dfx |(Ix ).

Suppose this is not true, whence there exists δ > 0 such that the set

J :=
{
x ∈ (0, 1) : lim

k→∞ |Df kx |(Ix ) > (1 + δ)|Dfx |(Ix )
}

has positive 1-measure. Fix a Lebesgue point x0 ∈ (0, 1) of J . By the Lebesgue
density theorem we may assume x0 to be such that

lim
r→0

1

2r

∫ x0+r

x0−r

∣∣|Dfx |(Ix ) − |Dfx0 |(Ix0)
∣∣ = 0.

Choose η > 0 such that

(1 + δ)
1 − η

2

(
(1 − η)2 − η

)
> 1. (3.4)
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Fix r > 0 for which

(i) |Df |(∂((x0 − r, x0 + r) × (0, 1))
) = 0,

(i i) |J ∩ (x0 − r, x0 + r)| ≥ (1 − η)2r,

(i i i)
∫ x0+r

x0−r

∣
∣|Dfx |(Ix ) − |Dfx0 |(Ix0)

∣
∣ dx < η|Dfx0 |(Ix0)r, and

(iv) |Dfx0 |(Ix0) >
1 − η

2r

∫ x0+r

x0−r
|Dfx |(Ix ) dx .

(3.5)

As remarked in Sect. 2.6, D2 f is a finite Radon measure. Thus applying [1,
Proposition 2.2.(b), p. 42] for the mollification of its total variation |D2 f | and using
the fact that the measure is Borel regular, we see that

lim
k→∞ |D2 f

k |(U ) ≤ lim
k→∞ |D2 f |

(
U + B(0, k−1)

)
= |D2 f |(U ).

for any Borel set U . By setting U :=(x0 − r, x0 + r) × (0, 1) we have by (i) that
|Df |(∂U ) = 0, and so also |D2 f |(∂U ) ≤ |Df |(∂U ) = 0. Thus

lim
k→∞ |D2 f

k |(U ) ≤ |D2 f |(U ) = |D2 f |(U ). (3.6)

On the other hand by using Fatou’s lemma, the definition of J , (3.5) (i i i), (i i), (iv)

and (3.4),

lim
k→∞ |D2 f

k |(U ) ≥ lim
k→∞

∫

(x0−r,x0+r)∩J
|Df kx |(Ix ) dx

≥ (1 + δ)

∫

(x0−r,x0+r)∩J
|Dfx |(Ix ) dx

≥ (1 + δ)
[∫

(x0−r,x0+r)∩J
|Dfx0 |(Ix0) dx − η|Dfx0 |(Ix0)r

]

≥ (1 + δ)|Dfx0 |(Ix0)
(
(1 − η)2r − ηr

)

≥ (1 + δ)
1 − η

2r

∫ x0+r

x0−r
|Dfx |(Ix ) dx

(
(1 − η)2r − ηr

)

> |D2 f
k |(U ).

This contradicts (3.6) and so (3.2) holds.
To prove (3.3) we note that for H1 a.e. line segment Ix the BV mappings

f kx : Ix → R
2 converge uniformly to the continuous BV mapping fx : Ix → R

2.
Furthermore they form a bounded sequence with respect to the BV norm, and thus
by Proposition 2.6 they converge weak* in BV . This implies (3.3) and the proof is
complete. ��
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4. Degree Theorem for Continuous BV Planar Mappings

The aim of this section is to prove the following analogy of the change of vari-
ables formula for the distributional Jacobian in two dimensions. A similar statement
was shown before in [5] for mappings that satisfy J f > 0 a.e. and that are one-to-
one and in [10] for open and discrete mappings. Here we generalize this result to
mappings where the Jacobian can change the sign but we restrict our attention to
planar mappings only.

Theorem 4.1. Let f : R2 → R
2 be a continuous BV mapping such that the dis-

tributional Jacobian J f is a signed Radon measure. Then for every x ∈ R
2 we

have
∫

R2
deg( f, B(x, r), y) dy = J f (B(x, r)) (4.1)

for a.e. r > 0.

Before the proofTheorem4.1weprove the following important corollary,which
is one of the main tools in the proof of Theorem 1.1:

Proposition 4.2. Let f : R2 → R
2 be a continuous BV mapping such that the

distributional Jacobian J f is a signed Radon measure and such that V ( f,R2) <

∞. Then for every x ∈ R
2 we have

∫

R2
|deg( f, B(x, r), y)| dy ≤ |J f | (B(x, r)) (4.2)

for a.e. r > 0.

Proof. Let us note that the previous theorem holds not only for balls but also for
a.e. cube Q(x, r). From the previous theorem we know that the set
{[x, r ] : Q(x, r) is good for (4.1), L2( f (∂Q(x, r))) = 0 and |J f |(∂Q(x, r)) = 0

}
.

has fullLn+1 measure. It follows that for a.e. r > 0 we have that Q(x, r) is good for
a.e. x ∈ � with r < dist(x, ∂�). Hence we can fix r0 > 0 such that all rk = r02k ,
k ∈ Z, are good for every x ∈ �\N0 with |N0| = 0. Hence we can fix x0 ∈ R

n and
a dyadic grid

G0 := {
x0 + 2k Q(yi , r0), yi ∈ Z

n}
, (4.3)

such that for all cubes from the grid inside � we have
∫

R2
deg( f, Q, y) dy = J f (Q) (4.4)

and L2( f (∂Q)) = |J f |(∂Q) = 0 for every Q ∈ G0, Q ⊂ �. It is enough to
choose any

x0 /∈
∞⋃

k=1

( ⋃

yi∈Zn

2k{−yi } + N0

)
.
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Let us fix a cube Q ⊂ �. Instead of proving (4.2) for a ball we prove it for Q
which is equivalent. Analogously to (2.3) we define (see [3, 9.10])

U ( f, Q):= sup
S

{
∑

π∈S

∣∣
∣
∫

R2
deg( f, π, y) dy

∣∣
∣

}

,

where S is any finite system of nonoverlapping simple open polygonal regions in
Q. By [3, 12.9 Theorem (iii)] we know that

U ( f, Q) = V ( f, Q).

Note that for the validity of this identity we need the additional assumption
V ( f, Q) < ∞ as it is the assumption of [3, 12.9 Theorem (iii)] (it is stated in [3]
as f is plane BV but in the notation of the book it means exactly V ( f, Q) < ∞).
By [3, 12.9 Theorem (i) and 12.6] we know that there is a sequence of figures Fn
in Q that consists of disjoint cubes from our dyadic grid Qi,n , Fn = ⋃

i Qi,n , so
that

U ( f, Q) = lim
n→∞

∑

i

∣∣∣
∫

R2
deg( f, Qi,n, y) dy

∣∣∣.

Now we can easily estimate with the help of (4.4) and definition of total varia-
tion

∫

R2
|deg( f, Q, y)| dy ≤ V ( f, Q) = U ( f, Q)

= lim
n→∞

∑

i

∣∣∣
∫

R2
deg( f, Qi,n, y) dy

∣∣∣

≤ lim
n→∞

∑

i

∣∣∣J (Qi,n)|

≤ |J f | (Q) .

��
The proof of Theorem 4.1 requires several auxiliary results. We begin with the

following degree convergence lemma; compare to Lemma 2.1:

Lemma 4.3. Let f : � ⊂ R
2 → R

2 be a continuous BV mapping and let ( f k) be
mollifications of f . Then for any point x ∈ R

2 and a.e. radius r > 0 we have

lim
k→∞

∫

R2
deg( f k, B(x, r), y) dy =

∫

R2
deg( f, B(x, r), y) dy. (4.5)

Proof. Let x0 ∈ R
2. By the BVL properties remarked in Sect. 2.6 we know that

for almost every radius r > 0 the length of f (∂B(x0, r)) is finite, that is
|Dfz,r |(∂B(z, r)) < ∞ and that the claim of Proposition 3.2 holds. Fix such a

r0, and set B0:=B(x0, r0).
We first define

Fk(y) = deg( f k, B0, y) and F(y) = deg( f, B0, y),



200 S. Hencl, A. Kauranen, & R. Luisto

whence
∫

R2
| deg( f k, B0, y)|dy = ∥∥Fk

∥∥
1 and

∫

R2
| deg( f, B0, y)|dy = ∥∥F

∥∥
1,

and we have to show that Fk → F in L1. To show this we use compactness of BV .
First we show that Fk is bounded sequence in BV -norm.

It is easy to see that the variation measure of Fk is supported only on the
curve f k(∂B0). Furthermore, since f k(∂B0) is rectifiable, H1-a.e. point is on the
boundary of at most two components of R2\ f k(∂B0). In such a situation, if the
value of Fk differs by N on these two components, the image f k(∂B0) must cover
this joint boundary at least N times. Thus the total variation of Fk is in fact bounded
by

�
(
f k(∂B0)

) =
∣∣∣Df kx0,r0

∣∣∣ (∂B0).

Since the radius r0 was chosen such that Proposition 3.2 holds, we have

∣∣∣Df kx0,r0

∣∣∣ (∂B0) → ∣∣Dfx0,r0
∣∣ (∂B0),

and so
∣
∣DFk

∣
∣ is uniformly bounded. Furthermore the boundedness of the sequence

(Fk) in L1 follows from the Sobolev inequality [1, Theorem 3.47]. Thus, the com-
pactness theorem in [1, Theorem 3.23] implies that there exists a subsequence
(Fk( j)) which converges in L1 to a function G.

We will show that G = F, which implies that the original sequence Fk con-
verges to F in L1, as every converging subsequence must converge to F. Assume
that F �= G on a set A with positive Lebesgue measure. Since f (∂B0) has finite
1-Hausdorff measure we find with the Lebesgue density theorem z ∈ R

2\ f (∂B0),

which is a density point of A with G(z) �= F(z). For some very small ball Bz

centered at z we have
∣
∣∣∣

∫

Bz
G − F

∣
∣∣∣ > 0

and Bz is compactly contained in some component of R2\ f (∂B0). Now recall that
f k converge uniformly to f.When ‖ f k − f ‖ < dist(Bz, f (∂B0))we have by basic
properties of the degree (see [13, Theorem 2.3.])

Fk(y) = deg( f k, B0, y) = deg( f, B0, y) = F(y)

for every point y ∈ Bz . This is a contradiction with L1 convergence and the defi-
nition of Bz . Thus the original claim follows. ��

The proof of the previous lemma goes through also with absolute values of the
degrees. We record this observation as the following corollary even though we will
not be using it in this paper:
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Corollary 4.4. Let f : � ⊂ R
2 → R

2 be a continuous BV mapping and ( f k) a
mollification of f . Then for any point x ∈ R

2 and a.e. radius r > 0 we have

lim
k→∞

∫

R2
| deg( f k, B(x, r), y)| dy =

∫

R2
| deg( f, B(x, r), y)| dy. (4.6)

Proposition 4.5 is essentially a BV -version of [18, Proposition 2.10]. For
smooth mappings the identity (4.9) follows in a more general form with smooth
test functions g ∈ C∞(�,R2) by combining the Gauss-Green theorem and the
area formula in a ball B:

∫

∂B
〈(g( f (x)) · cof Df (x), ν〉 dH1(x) =

∫

B
div g( f (y))J f (y) dy

=
∫

R2
div g(y) deg( f, B, y) dy, (4.7)

where ν denotes the unit exterior normal to B and cof Df (x) denotes the cofactor
matrix, that is the matrix of (n − 1) × (n − 1) subdeterminants with correct signs.
For more details for the general setting we refer to Müller, Spector and Tang; in
[29, Proposition 2.1] they prove the claim for continuous f ∈ W 1,p, p > n − 1
and g ∈ C1. We need the identity only in the case of g(x1, x2) = [x1, 0]. In this
case the integrand on left hand side of (4.7) reduces to

f1 〈Df2, νt 〉 , (4.8)

where νt is the unit tangent vector of ∂B. Thus in the BV setting it is natural to
replace the left hand side of (4.7) with

∫

∂B
f1d(Df |∂B),

since by Sect. 2.6, f is one dimensional BV -function on almost every sphere
centered at any given point.

Proposition 4.5. Let � ⊂ R
2 be a domain and let f : � → R

2 be a continuous
BV mapping. Then for every c ∈ R

2 and a.e. r > 0 such that B:=B(c, r) ⊂ � we
have

∫

∂B
f1d(Df |∂B) =

∫

R2
deg( f, B, y) dy. (4.9)

Proof. We prove the claim by approximating f with a sequence of mollifiers ( f k),
showing that [ f k1 , 0]·cof Df k convergencesweakly* to f1d(Df |∂B) and combining
this with Lemma 4.3.

Let us fix r > 0 such that B(c, r) ⊂⊂ � and the conclusion of Lemma 4.3 and
Proposition 3.2 hold for this radius. Now for every k with B(c, r + 1

k ) ⊂⊂ � we
have f k ∈ C∞(B,R2). Since f is continuous, f k → f uniformly. Clearly
∫

∂B

(
f k1 Df k2 |∂B− f1Df |∂B

)=
∫

∂B

(
f1Df k2 |∂B− f1Df |∂B

)
−

∫

∂B

(
f k1 − f1

)
Df k2 |∂B .
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We next note that by Proposition 3.2, Df k |∂B → Df |∂B with respect to the weak*
convergence and ‖ f k1 − f1‖∞ → 0 by the uniform convergence of ( f k). Thus both
terms of the right hand side converge to zero as k → ∞. It follows that

lim
k→∞

∫

∂B

〈[ f k1 (x), 0] · cof Df k(x), ν
〉
dH1(x)

= lim
k→∞

∫

∂B
f k1 (x)Df k |∂B(x)dH1(x) =

∫

∂B
f1(x)d(Df |∂B(x)).

(4.10)

On the other hand, since the mappings f k are smooth we have by for example
[29, Proposition 2.1] that

∫

∂B

〈[ f k1 (x), 0] · cof Df k(x), ν
〉
dH1(x) =

∫

R2
deg( f k, B, y)dy.

Combining this with (4.10) and Lemma 4.3 gives the claim. ��
We are now ready to prove the main result of this section, Theorem 4.1. In its

proof we use some ideas from [5,27].

Proof of Theorem 4.1. We recall the definition of distributional Jacobian for any
ϕ ∈ C∞

0 (�)

J f (ϕ) = −
∫

�

f1(x)J (ϕ(x), f2(x)) dx =
∫

�

〈[ f1(x), 0] · cof Df (x), Dϕ(x)
〉
dx .

(4.11)

Let us pick a ball B:=B(y, r) ⊂ � such that |Df |(∂B) = 0. Furthermore, by
the Lebesgue theorem we may assume that

lim
δ→0

1

δ

∫ r

r−δ

∣∣∣|Dfy,s |(∂B(y, s)) − |Dfy,r |(∂B(y, r))
∣∣∣ ds = 0, (4.12)

where fy,s := f |∂B(y,s) and |Dfy,s | is the corresponding (one-dimensional) total
variation. Let us fixψ ∈ C∞(R, [0, 1]) such thatψ(s) ≡ 1 for s < 0 andψ(s) ≡ 0
for s > 1. For 0 < δ < r we set

�δ(s) = ψ
( s − (r − δ)

δ

)
, that is �δ(s) =

{
1 for s ≤ r − δ.

0 for s ≥ r.
and |�′

δ| ≤ C

δ
.

As the distributional Jacobian is a Radon measure and |Df |(∂B) = 0 we obtain

J f (B(y, r)) = lim
δ→0+

∫

�

�δ(|x − y|) dJ f (x). (4.13)

By (4.11) for ϕ = �δ(|x − y|) and Proposition 4.5 we have
∫

�

�δ(|x − y|) dJ f (x) =
∫

�

〈[ f1(x), 0] · cof Df (x), D�δ(|x − y|)〉 dx

=
∫ r

r−δ

∫

∂B(y,s)
f1(x)�

′
δ(s)d(Df |∂B(x))

=
∫ r

r−δ

�′
δ(s)

∫

R2
deg( f, B(y, s), z) dz ds.

(4.14)
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We next show that the integral on the right hand side of (4.14) converges as
δ → 0. For all y ∈ � and δ > 0 small enough we set

fs(x) = f
( s
r
(x − y) + y

)
.

Note that with this notation,
∫ r

r−δ
�′

δ(s)
∫

R2
deg( f, B(y, s), z) dz ds =

∫ r

r−δ
�′

δ(s)
∫

R2
deg( fs , B(y, r), z) dz ds, (4.15)

and the right hand side is a type of average integral as
∫ r
r−δ

�′
δ = 1.

We have a fixed mapping f |B(y,r) with |Dfy,r |(∂B(y, r)) < ∞. We claim that
given ε > 0 we can find η > 0 such that for every continuous mapping g|B(y,r) we
have

‖ f − g‖L∞(∂B) < η and
∣∣|Dfy,r |(∂B(y, r)) − |Dgy,r |(∂B(y, r))

∣∣ < η ⇒
⇒

∣∣∣
∫

R2
deg( f, B(y, r), z) dz −

∫

R2
deg(g, B(y, r), z) dz

∣∣∣ < ε.
(4.16)

Indeed, if this were not true, we would have uniformly converging sequence such
that conclusion of (4.16) would not hold. Analogously to the proof of Lemma 4.3
we would then get a contradiction.

Moreover, similarly to the proof of Lemma 4.3, the Sobolev inequality gives,
for these a.e. radii,

∣∣
∣
∫

R2
deg( fs, B(y, r), z) dz

∣∣
∣ ≤ C |Dfy,s |(∂B(y, s)). (4.17)

Given ε > 0 we choose η > 0 as in (4.16) and then we choose δ > 0 so that
for every s ∈ [r − δ, r ] we have

‖ f − fs‖L∞(∂B) < η and
1

δ

∫ r

r−δ

∣∣
∣|Dfy,s |(∂B(y, s)) − |Dfy,r |(∂B(y, r))

∣∣
∣ ds < η2, (4.18)

where we have used (4.12). By Chebyshev’s inequality with (4.18) we obtain

|W | < ηδ for W :=
{
s ∈ [r − δ, r ] : ∣∣|Dfy,s |(∂B(y, s)) − |Dfy,r |(∂B(y, r))

∣∣ > η
}
.

By (4.14), (4.15),
∫ r
r−δ

�′
δ = 1, |�′

δ| ≤ C
δ
, (4.16) and (4.17) we obtain

∣
∣∣
∫

�
�δ(|x − y|) dJ f (x) −

∫

R2
deg( f, B(y, r), z) dz

∣
∣∣

=
∣
∣∣
∫ r

r−δ
�′

δ(s)
(∫

R2
deg( fs , B(y, r), z) dz −

∫

R2
deg( f, B(y, r), z) dz

)
ds

∣
∣∣

≤ C

δ

[∫

[r−δ,r ]\W
ε +

∫

W

(|Dfy,s |(∂B(y, s)) + |Dfy,r |(∂B(y, r))
)
ds

]

≤ Cε + C

δ

∫

W

∣
∣|Dfy,s |(∂B(y, s)) − |Dfy,r |(∂B(y, r))

∣
∣ ds + 2C

δ

∫

W
|Dfy,r |(∂B(y, r))ds

≤ Cε + Cη2 + 2Cη|Dfy,r |(∂B(y, r)).

Together with (4.13) this implies that

J f (B(y, r)) = lim
δ→0+

∫

�

�δ(|x − y|) dJ f (x) =
∫

R2
deg( f, B(y, r), z) dz.

��
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5. Proof of Main Theorem 1.1

Given a point x ∈ R
n and a s > 0 we denote by Q(x, s) the cube with center x

and sidelength s and whose sides are parallel to coordinate planes. Given a t > 0
we also denote t Q(x, s):=Q(x, ts).

Proof of Theorem 1.1. Without loss of generality we may assume that (−1, 2)3 ⊂
� and we prove only that f −1 ∈ BV

(
f ((0, 1)3)

)
as the statement is local.

We denote Q:=Q(( 12 ,
1
2 ), 1) = (0, 1)2. Slightly abusing the notation we write

2Q:=Q(( 12 ,
1
2 ), 2). We claim that

∫ 1

0
H2(

f (Q × {t}))dt < ∞

and the statement of the theorem then follows from Theorem 3.1. Let ε > 0. We
start with an estimate for H2

ε( f (Q × {t})) for some fixed t ∈ (0, 1).
First let us fix t ∈ (0, 1) such that (see (1.2))

A( f, Q × {t}) < ∞
and

lim
δ→0

1

2δ

∫ t+δ

t−δ

3∑

j=1

∣∣|J f s3, j
|(2Q × {s}) − |J f t3, j

|(2Q × {t})∣∣ ds = 0, (5.1)

and we note that this holds for a.e. t ∈ (0, 1) by the Lebesgue density theorem. Let
us define the measure on (0, 1) by

μ((a, b)) =
3∑

j=1

∫ 2

−1
|J f s2, j

|((−1, 2) × {s} × (a, b)
)
ds

+
3∑

j=1

∫ 2

−1
|J f s1, j

|({s} × (−1, 2) × (a, b)
)
ds.

(5.2)

Let us denote by h the absolutely continuous part of μ with respect to L1. Then it
is easy to see that

∫ 1

0
h ≤ μ((0, 1)) ≤ |ADJ Df |((−1, 2)2 × (0, 1)

)
. (5.3)

Moreover, we can fix t so that

lim
δ→0

μ
(
(t − δ, t + δ)

)

2δ
= h(t),

which holds for a.e. t by the Lebesgue density theorem and by the fact that the
corresponding limit is zero a.e. for the singular part of μ.

Since f is uniformly continuous there exists for our fixed t a subdivision of
Q ×{t} = ⋃

i Qi into squares Qi = Q(ci , ri ) such that diam( f (2Qi ×{t})) < ε
2 .
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Furthermore we fix r > 0 so that for every 0 < δ < r we have with the help of
(5.1)

(i)
μ

(
(t − δ, t + δ)

)

2δ
≤ 2h(t),

(i i)
3∑

j=1

|J f t+δ
3, j

|(2Q × {t + δ}) ≤ 2
3∑

j=1

|J f t3, j
|(2Q × {t}),

(i i i)
3∑

j=1

|J f t−δ
3, j

|(2Q × {t − δ}) ≤ 2
3∑

j=1

|J f t3, j
|(2Q × {t}) and

(iv) diam
(
f (2Qi × [t − δ, t + δ])) < ε for each i.

(5.4)

For η > 0 we put our Qi × {t} into the box

Ui,η:=(1 + η)Qi × [t − δ, t + δ].
In the following we divide ∂Ui,η into three parts parallel to coordinate axes:

∂3Ui,η:=(1 + η)Qi × {t − δ, t + δ}, ∂2Ui,η and ∂1Ui,η,

where ∂2Ui,η denotes two rectangles perpendicular to x2 axis and ∂1Ui,η denotes
two rectangles perpendicular to x1 axis. For each Qi we choose a real number
0 ≤ ηi ≤ 1 so that

2∑

k=1

3∑

j=1

|J fk, j |(∂kUi,ηi ) ≤
∫ 1

0

2∑

k=1

3∑

j=1

|J fk, j |(∂kUi,η′) dη′, (5.5)

which is possible as the smallest value is less or equal to the average and here and
in the following we denote for simplicity |J f1, j |(∂1Ui,η) the sum of two:

|J
f
ci1±(1+η)ri
1, j

|({ci1 ± (1 + η)ri } × [ci2 − (1 + η)ri , c
i
2 + (1 + η)ri ] × [t − δ, t + δ]),

as Qi = Q(ci , ri ).
It is obvious that f (Qi × {t}) ⊂ f (Ui,ηi ). By the definition of the Lebesgue

area (2.2) and its estimate (2.4) we obtain that we can approximate f on ∂Ui,ηi by
piecewise linear f i : ∂Ui,ηi → R

3 such that

H2( f i (∂Ui,ηi )) ≤ 2A( f, ∂Ui,ηi ) = 2
3∑

k=1

A( fk , ∂kUi,ηi ) ≤ 2
3∑

k=1

3∑

j=1

V ( fk, j , ∂kUi,ηi ), (5.6)

and so that f i is so close to f that (see (5.4) (iv))

diam
(
f i (∂Ui,ηi )

)
< ε (5.7)

and f (Qi × {t}) lies inside f i (Ui,ηi ), that is

f (Qi × {t}) ⊂ Gi :=
⋃

bounded components of R3\ f i (∂Ui,ηi ).
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By (5.7) we have

H2
ε(Gi ) = H2∞(Gi ).

Now we obtain for each t with the help of the Gustin boxing lemma (2.1) and
(5.6) that

H2
ε( f (Q × {t})) ≤

∑

i

H2
ε( f (Qi × {t})) ≤

∑

i

H2
ε(Gi )

=
∑

i

H2∞(Gi ) ≤ C
∑

i

H2(∂Gi ) ≤ C
∑

i

H2( f i (∂Ui,ηi ))

≤ C
∑

i

3∑

k=1

3∑

j=1

V ( fk, j , ∂kUi,ηi ). (5.8)

Recall that by definition (2.3),

V (h,U ) = sup
S

{
∑

π∈S

∫

R2

∣∣deg(h, π, y)
∣∣ dy

}

,

so by Proposition 4.2 we obtain

2∑

k=1

3∑

j=1

V ( fk, j , ∂kUi,ηi ) ≤ C
2∑

k=1

3∑

j=1

|J fk, j |(∂kUi,ηi ) and

3∑

j=1

V ( f3, j , ∂3Ui,ηi ) ≤ C
3∑

j=1

|J f3, j |(∂3Ui,ηi ).

(5.9)

Notice that even though Theorem 4.2 is stated only for disks, it also holds for
rectangles and moreover, we may use it for polygons. This can be seen by covering
the polygon by rectangles and arguing as in the end of the proof of Proposition 4.2.

We treat the terms in (5.9) separately. We sum the last inequality, use the fact
that (1 + ηi )Qi have bounded overlap (as 1 ≤ 1 + ηi ≤ 2) and with the help of
(5.4) (i i) and (i i i) we obtain

∑

i

3∑

j=1

V ( f3, j ,∂3Ui,ηi ) ≤ C
∑

i

3∑

j=1

|J f3, j |(∂3Ui,ηi )

≤ C
3∑

j=1

(
|J f3, j |(2Q × {t − δ}) + |J f3, j |(2Q × {t + δ}

)

≤ C
3∑

j=1

|J f3, j |(2Q × {t}).

(5.10)
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For the remaining part of the right hand side of (5.8) we recall that Qi = Q(ci , ri )
and by (5.9), (5.5), linear change of variables and δ < r we have

2∑

k=1

3∑

j=1

V ( fk, j ,∂kUi,ηi ) ≤ C
2∑

k=1

3∑

j=1

|J fk, j |(∂kUi,ηi )

≤ C
∫ 1

0

2∑

k=1

3∑

j=1

|J fk, j |(∂kUi,η′ ) dη′

≤ C

δ

∫ ci1+2ri

ci1−2ri

3∑

j=1

|J f a1, j
|({a} × [ci2 − 2ri , c

i
2 + 2ri ] × [t − δ, t + δ]) da

+ C

δ

∫ ci2+2ri

ci2−2ri

3∑

j=1

|J f a2, j
|([ci1 − 2ri , c

i
1 + 2ri ] × {a} × [t − δ, t + δ]) da.

Summing over i , using bounded overlap of 2Qi , (5.2) and (5.4) (i) we obtain

∑

i

2∑

k=1

3∑

j=1

V ( fk, j , ∂kUi,ηi ) ≤ C
μ

(
(t − δ, t + δ)

)

δ
≤ Ch(t). (5.11)

Combining (5.8), (5.10) and (5.11), we have, with the help of (5.3),

∫ 1

0
H2

ε

(
f (Q × {t})) dt ≤ C

∫ 1

0

3∑

j=1

|J f3, j |(2Q × {t}) dt +
∫ 1

0
h(t) dt

≤ C |ADJ Df |((−1, 2)3).

By passing ε → 0 we obtain our conclusion with the help of Theorem 3.1. ��

6. Reverse Implication

The main aim of this Section is to show Theorem 1.2. For its proof we again
use some ideas fromMüller [27] and De Lellis [7]. As a corollary we show that
the notion ofADJ Df ∈ M does not depend on the chosen system of coordinates
and that this notion is weakly closed.

For the proof of Theorem 1.2 we require the following result which shows that
the topological degree is smaller than the number of preimages.

Lemma 6.1. Let F : R3 → R
3 be a homeomorphism, f : R2 → R

3 the restriction
of F to the xy-hyperplane, p : R3 → R

2 the projection (x1, x2, x3) �→ (x1, x2)
and g = p ◦ f . Then for any B(x, r) ⊂ (0, 1)2 and y ∈ R

2\g(∂B(z, r)),

| deg(g, B(z, r), y)| ≤ N (g, B(z, r), y).

Proof. We may assume that N (g, B(z, r), y) is finite and deg(g, B(z, r), y) > 0.
By [13, Theorem 2.9] we can write the degree as a sum of local indices

deg(g, B(z, r), y) =
∑

x∈B(z,r)∩g−1{y}
i(g, x, y);
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recall that local index is defined by

i(g, x, y) := deg(g, V, y),

where V is any neighborhood of x such that g−1{y} ∪ V̄ = {x}.
To prove the claim it thus suffices to prove that |i(g, x, y)| ≤ 1 for every

x ∈ g−1{y}. Towards contradiction suppose that this is not the case. Fix some
x0 ∈ g−1{y} such that i(g, x, y) ≥ 2; the case when the index is negative is dealt
identically. Let B(x0, s) be a ball such that

i(g, x0, y) = deg(g, B(x0, s), y).

Without loss of generality we may assume that x0 = y = 0, s = 1. Denote
Z = {0}×{0}×R. Since the topological degree equals thewinding number, the path
β:=g(∂B(0, 1)) winds around the point 0 at least twice in R

2\{0}, so especially
the path α:= f (∂B(0, 1)) winds twice around Z in R3\Z .

Now we note that ∂B(0, 1) × {0} ⊂ S
2, where S2 denotes the two-dimensional

sphere in R
3. Since F : R3 → R

3 is a a homeomorphism and f the restriction of
F , F(S2) is a topological sphere in R3. Furthermore, Z intersects f B(0, 1) only at
a single point, and we fix Ẑ to be the compact subinterval of Z which contains the
intersection point and intersects F(S2) only at the endpoints of the interval, which
we may assume to be (0, 0,±1). The unique pre-images of these points cannot be
on the circle ∂B(0, 1), so we may assume then to be (0, 0,±1) as well. Thus

α = f (∂B(0, 1)) = F(∂B(0, 1) × {0}) ⊂ F(S2)\Ẑ .

This gives rise to a contradiction, since F is a homeomorphism and so the degree of
F |S2\Z is ±1. More specifically, the path α : S1 → F(S2)\Z winds around the Z -
axis at least twice, that is the homotopy class [α]ofα in the groupπ1(R

2\Z , α(0)) �
Z is non-zero and does not span the group Z. Furthermore the intersection Z ∩
F(B3(0, 1)) consists of countably many paths starting and ending at the boundary
f S2 and so since Z intersects f B(0, 1) only at a single point all but one of these
loops can be pulled to the boundary f S2 without intersecting α. Thus the homotopy
class [α] of α in the group π1(F(S2)\Ẑ , α(0)) � Z is also non-zero and does not
span the groupZ. But this is a contradiction sinceα = F(∂B(0, 1)×{0}), where the
homotopy class [∂B(0, 1) × {0}] spans π1(F(S2)\Z , (1, 0, 0)) � Z at the domain
side and a homeomorphism F induces an isomorphism between homotopy groups
by for example [15, p. 34]. ��
Proof of Theorem 1.2. The distributional adjugate is a well-defined distribution as
f ∈ BV is continuous. Without loss of generality we assume that f is defined on
(0, 1)3 and we show that ADJ Df ∈ M((0, 1)3). We only show that J f t1,1

is a
measure for a.e. t ∈ (0, 1) and that

∫ 1

0
J f t1,1

((0, 1)2) dt < ∞ (6.1)

as the proof for other eight components of ADJ Df is similar.
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By Theorem 3.1 we know that

∫ 1

0
H2(

f t1 ((0, 1)
2)

)
dt < ∞,

and hence

A( f, [0, 1]2 × {t}) < ∞ for a.e. t ∈ (0, 1).

Let us fix t ∈ (0, 1) such thatH2
(
f t1 ((0, 1)

2)
)

< ∞. Put g:= f t1,1 and denote by g1
and g2 its coordinate functions. Let us fix ϕ ∈ C1

0((0, 1)
2). We recall the definition

of distributional Jacobian

Jg(ϕ) = −
∫

(0,1)2
g1(x)J (ϕ(x), g2(x)) dx

= −
∫

(0,1)2

〈
[g1(x), 0] · cof Dg(x), Dϕ(x)

〉
dx,

where the integration is with respect to the relevant components of the variation
measure of g as earlier.

Let ψ ∈ C∞
C [0, 1) be such that ψ ≥ 0, ψ ′ ≤ 0 and

∫

B(0,1)
ψ(|x |) dx = 1.

For each ε > 0 we denote by ηε the usual convolution kernel, that is

ηε(x) = ψε(|x |) = ε−2ψ
( |x |

ε

)
.

It is clear that ηε ∗ Dϕ = Dηε ∗ ϕ converges uniformly to Dϕ as ε → 0+ and
hence

Jg(ϕ) = lim
ε→0+

−
∫

(0,1)2

〈
[g1(x), 0] · cof Dg(x),

(∫

B(x,ε)
ϕDηε(x − z) dz

)〉
dx .

It is easy to see that Dηε(x) = ψε
′(|x |)ν, where ν = x

|x | is the normal vector. By
the Fubini theorem and change to polar coordinates we get

Jg(ϕ) = − lim
ε→0+

∫

(0,1)2
ϕ(z)

(∫ ε

0
ψ ′

ε(r)
∫

∂B(z,r)
g1(x)d(Dg|∂B(z,r)(x))dr

)
dz.

By the degree formula Proposition 4.5 we obtain

Jg(ϕ) = − lim
ε→0+

∫

(0,1)2
ϕ(z)

(∫ ε

0
ψ ′

ε(r)
∫

R2
deg(g, B(z, r), y) dy dr

)
dz.
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Let us fix 0 < ε < 1
2 dist(supp ϕ, ∂(0, 1)2). Then we have with the help of Lemma

6.1

|Jg(ϕ)| ≤ 2
∫

supp(ϕ)

|ϕ(z)|
(∫ ε

0
|ψ ′

ε(r)|
∫

R2
| deg(g, B(z, r), y)| dy dr

)
dz

≤ 2‖ϕ‖∞
∫

(0,1)2

(∫ ε

0

C

ε3

∫

R2
N (g, B(z, r), y) dy dr

)
dz

≤ C‖ϕ‖∞
∫

R2

1

ε2

∫

(0,1)2
N (g, B(z, ε), y) dz dy.

(6.2)

Notice that for fixed y ∈ R
2 we have

N (g, B(z, t), y) =
∑

zi∈g−1{y}
χB(zi ,t)(z).

With this we obtain from (6.2) that

|Jg(ϕ)| ≤ C‖ϕ‖∞
∫

R2
N (g, (0, 1)2, y) dy. (6.3)

By [26, Theorem 7.7] we see that
∫

R2
N (g, (0, 1)2, y) dy ≤ H2( f t1 ((0, 1)

2)).

Combining this with (6.3), it follows that for every ϕ ∈ C1
0((0, 1)

2) we have

|Jg(ϕ)| ≤ C‖ϕ‖∞H2(
f t1 ((0, 1)

2)
)
, (6.4)

with C independent of ϕ. By the Hahn-Banach Theorem there is an extension to
every ϕ ∈ C0((0, 1)2)which satisfies the same bound. By the Riesz Representation
Theorem there is a measure μt such that

Jg(ϕ) =
∫

(0,1)2
ϕ(x) dμt (x) for every ϕ ∈ C1

0((0, 1)
2).

By (6.4) and (6.1) we have

∫ 1

0
μt ((0, 1)

2) dt ≤ C
∫ 1

0
H2(

f t1 ((0, 1)
2)

)
dt < ∞,

and thus ADJ Df ∈ M((0, 1)3). ��

6.1. Dependence on the system of coordinates

In principle the Definition 1.4 of ADJ Df ∈ M depends on our coordinate
system.Belowwe show that this notion is independent on the systemof coordinates.
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Corollary 6.2. Let � ⊂ R
3 be a domain and f ∈ BV (�,R3) be a homeomor-

phism satisfying (1.2) such that ADJ Df ∈ M(�,R3×3). Then ADJ Df ∈
M(�,R3×3) also for a different coordinate system.

Proof. By Theorem 1.1 we know that f −1 ∈ BV . Hence f ∈ BVloc and f −1 ∈
BVloc and both of these do not depend on the choice of coordinate system. Thus by
Theorem 1.2 we have ADJ Df ∈ M(�,R3×3) for any coordinate system. ��

It is of course not true that the value of

|ADJ Df |(�)

is independent of coordinate system. In fact it might be more natural to define
|ADJ Df | as an average over all directions (and not only 3 coordinate directions).
Then, one could ask for the validity of (compare with (1.1))

|Df −1|( f (�)) = |ADJ Df |(�).

6.2. The notion is stable under weak convergence

For possible applications in the Calculus of Variations we need to know that
the notion of distributional adjugate is stable under weak convergence.

Theorem 6.3. Let � ⊂ R
3 be a bounded domain. Let f j , f be a BV homeo-

morphisms of (0, 1)3 onto � and assume that f j → f uniformly and weak* in
BV ((0, 1)3,�). Further suppose each f j satisfies (1.2) and let ADJ Df j ∈
M((0, 1)3) with

sup
j

|ADJ Df j |
(
(0, 1)3

)
< ∞. (6.5)

Then ADJ Df ∈ M.

Proof. By (6.5) and Theorem 1.1 we obtain that the sequence ( f −1
j ) is a bounded

in BV (�,R3) and hence it has a weakly* converging subsequence. Thus we can
assume (passing to a subsequence) that f −1

j → h weakly* in BV and also strongly

in L1 (see [1, Corollary 3.49]). We define the pointwise representative of h as

h(y):= lim sup
r→0

1

|B(y, r)|
∫

B(y,r)
h.

Now we need to show that h = f −1. Fix x0 ∈ (0, 1)3 and 0 < r <

dist(x0, ∂(0, 1)3). We find δ > 0 so that B( f (x0), δ) is compactly contained in
f (B(x0, r)). Since f j → f uniformly we obtain that for j large enough we have

B( f (x0), δ) ⊂ f j (B(x0, r)).

It follows that

f −1
j (B( f (x0), δ)) ⊂ B(x0, r) and hence |h( f (x0)) − x0| ≤ r,
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where we use that f −1
j → h strongly in L1 and that we have a proper representative

of h. As the above inequality holds for every r > 0 we obtain h( f (x0)) = x0.
From f ∈ BV and f −1 = h ∈ BV we obtain ADJ Df ∈ M((0, 1)3) by

Theorem 1.2. ��
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