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Abstract

We consider a conservation lawmodel of traffic flow, where the velocity of each
car depends on a weighted average of the traffic density ρ ahead. The averaging
kernel is of exponential type: wε(s) = ε−1e−s/ε. By a transformation of coordi-
nates, the problem can be reformulated as a 2×2 hyperbolic systemwith relaxation.
Uniform BV bounds on the solution are thus obtained, independent of the scaling
parameter ε. Letting ε → 0, the limit yields a weak solution to the corresponding
conservation law ρt + (ρv(ρ))x = 0. In the case where the velocity v(ρ) = a−bρ
is affine, using the Hardy–Littlewood rearrangement inequality we prove that the
limit is the unique entropy-admissible solution to the scalar conservation law.

1. Introduction

We consider a nonlocal PDE model for traffic flow, where the traffic density
ρ = ρ(t, x) satisfies a scalar conservation law with nonlocal flux

ρt + (ρv(q))x = 0. (1.1)

Here ρ �→ v(ρ) is a decreasing function, modeling the velocity of cars depending
on the traffic density, while the integral

q(x) =
∫ +∞

0
w(s) ρ(x + s) ds (1.2)

computes a weighted average of the car density. On the function v and the averaging
kernel w, we shall always assume

(A1) The function v : [0, ρjam] �→ R+ is C2, and satisfies

v(ρjam) = 0, v′(ρ) � − δ∗ < 0, for all ρ ∈ [0, ρjam]. (1.3)
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(A2) The weight function w ∈ C1(R+) satisfies

w′(s) � 0,
∫ +∞

0
w(s) ds = 1. (1.4)

In (A1) one can think of ρjam as the maximum possible density of cars along
the road, when all cars are packed bumper-to-bumper and nobody moves. At a later
stage, more specific choices for the functions w and v will be made. In particular,
we shall focus on the case where w(s) = e−s .

The conservation Equation (1.1) will be solved with initial data

ρ(0, x) = ρ̄(x) ∈ [0, ρjam]. (1.5)

Given aweight functionw satisfying (1.4),we also consider the rescaledweights

wε(s)
.= ε−1w(s/ε) . (1.6)

As ε → 0+, the weightwε converges to a Diracmass at the origin, and the nonlocal
equation (1.1) formally converges to the scalar conservation law

ρt + f (ρ)x = 0, where f (ρ) =̇ ρv(ρ). (1.7)

The main purpose of this paper is to analyze the convergence of solutions of the
nonlocal equation (1.1) to those of (1.7).

Conservation laws with nonlocal flux have attracted much interest in recent
years because of their numerous applications and the analytical challenges they
pose. Applications of nonlocal models include sedimentation [6], pedestrian flow
and crowd dynamics [2,17–19], traffic flow [7,14], synchronization of oscillators
[3], slow erosion of granular matter [4], materials with fading memory [10], some
biological and industrial models [20], andmany others. Due to the nonlocal flux, the
Equation (1.1) behaves very differently from the classical conservation law (1.7).
Its analysis faces additional difficulties and requires novel techniques.

For a fixed weight function w, the well posedness of the nonlocal conservation
laws was proved in [7] with a Lax–Friedrich type numerical approximation, in
[26] by the method of characteristics, and in [23] using a Godunov type scheme.
Traveling waves for related nonlocal models have been recently studied in [13,31–
34]. See also the results for several space dimensions [1], and other related results
in [21,36].

Until now, however, the nonlocal to local limit for (1.1) as ε → 0+ has remained
a challenging question. Namely, is it true that the solutions of the Cauchy problem
ρε of (1.1)–(1.2), with averaging kernels wε in (1.6), as ε → 0+ converge to the
entropy admissible solutions of (1.7)? The question was already posed in [5]. For
a general weight function w(·), whose support covers an entire neighborhood of
the origin, a negative answer is provided by the counterexamples in [14]. On the
other hand, the results in [14] do not apply to the physically relevant models where
the velocity v is a monotone decreasing function and each driver only takes into
account the density of traffic ahead (not behind) the car. Indeed, existence and
uniqueness results for this more realistic model are given in [7,12]. Furthermore,
various numerical simulations [5,7] suggest that the behavior of ρε should be stable
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in the limit ε → 0+. See also [16] for the effect of numerical viscosity in the study
of this limit. In the case of monotone initial data, a convergence result was recently
proved in [25].

The main goal of the present paper is to study the limit behavior of solutions
to (1.1), for the averaging kernelwε(s) = ε−1 exp(−s/ε), as ε → 0. In this setting,
we first show that (1.1) can be treated as a 2×2 systemwith relaxation, in a suitable
coordinate system. This formulation allows us to obtain a uniform bound on the
total variation, independent of ε. As ε → 0, a standard compactness argument
yields the convergence ρε → ρ in L1

loc, for a weak solution ρ of (1.7). Finally, in
the case of a Lighthill-Whitham speed [28,35] of the form v(ρ) = a−bρ, we prove
that the limit solution ρ coincides with the unique entropy weak solution of (1.7).

The remainder of the paper is organized as follows: Section 2 contains a short
proof of global existence, uniqueness, and continuous dependence on the initial
data, for solutions to (1.1)–(1.2) with v,w, satisfying (A1)–(A2). For Lipschitz
continuous initial data, solutions are constructed locally in time, as the fixed point
of a contractive transformation. By suitable a priori estimates, we then show that
these Lipschitz solutions can be extended globally in time. In turn, the semigroup of
Lipschitz solutions can be continuously extended (with respect to the L1 distance)
to a domain containing all initial data with bounded variation.

Startingwith Section 3,we restrict our attention to exponential kernels:wε(s) =
ε−1e−s/ε. In this case, the conservation law with nonlocal flux can be reformulated
as a hyperbolic systemwith relaxation. In Section 4, by a suitable transformation of
independent and dependent coordinates, we establish a priori BV estimates which
are independent of the relaxation parameter ε. We assume here that the initial
density is uniformly positive. By a standard compactness argument, in Section 5 we
construct the limit of a sequence of solutions with averaging kernels wε, as ε → 0.
It is then an easy matter to show that any such limit provides a weak solution to the
conservation law (1.7). A much deeper issue is whether this limit coincides with
the unique entropy-admissible solution. In Section 6 we prove that this is indeed
true, in the special case where the velocity function is affine: v(ρ) = a − bρ. This
allows a detailed analysis of the convex entropy η(ρ) = ρ2. Using the Hardy-
Littlewood rearrangement inequality [24,27], we show that the entropy production
is � O(1) · ε. Hence, in the limit as ε → 0, this entropy is dissipated.

We leave it as an open question to understandwhether the same result is valid for
more general velocity functions v(·). Say, for v(ρ) = a−bρ2. Moreover, all of our
techniques heavily rely on the fact that the averaging kernel w(·) is exponential. It
would be of much interest to understand what happens for different kind of kernels.

2. Existence of Solutions

In this section we consider the Cauchy problem for (1.1)–(1.2), for a given
initial datum

ρ(0, x) = ρ̄(x). (2.1)

We consider the domain

D .=
{
ρ ∈ L∞(R) ; Tot.Var.{ρ} < ∞, ρ(x) ∈ [0, ρjam] for all x ∈ R

}
. (2.2)
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Theorem 1. Under the assumptions (A1) and (A2), there exists a unique semigroup
S : [0,+∞[ ×D �→ D, continuous in L1

loc, such that each trajectory t �→ St ρ̄ is a
weak solution to the Cauchy problem (1.1)–(1.2), (2.1).

Proof. Wefirst construct a family of Lipschitz solutions, and show that they depend
continuously on time and on the initial data, in theL1 distance. By an approximation
argument, we then construct solutions for general BV data ρ̄ ∈ D.

1. Consider the domain of Lipschitz functions

DL
.=

{
ρ ∈ D ; inf

x
ρ(x) > 0, sup

x
ρ(x) < ρjam,

|ρ(x) − ρ(y)| � L|x − y| for all x, y ∈ R

}
. (2.3)

For every initial datum ρ̄ ∈ DL , we will construct a solution t �→ ρ(t, ·) ∈ D2L
as the unique fixed point of a contractive transformation, on a suitably small time
interval [0, t0].

Given any function t �→ ρ(t, ·) ∈ D2L , consider the corresponding integral
averages

q(t, x) =
∫ ∞

0
w(s)ρ(t, x + s) ds . (2.4)

We observe that

qx (t, x) =
∫ ∞

0
w(s) ρx (t, x + s) ds.

Hence
‖qx (t, ·)‖L∞ � ‖ρx (t, ·)‖L∞ � 2L . (2.5)

Moreover, an integration by parts yields

qxx (t, x) =
∫ ∞

0
w(s) ρxx (t, x + s) ds = −w(0)ρx (t, x) −

∫ ∞

0
w′(s) ρx (t, x + s) ds,

therefore

‖qxx (t, ·)‖L∞ � w(0)‖ρx (t, ·)‖L∞ + ‖w′‖L1 · ‖ρx (t, ·)‖L∞

= 2w(0)‖ρx (t, ·)‖L∞ � 4Lw(0). (2.6)

Consider the transformation ρ �→ u = Γ (ρ), where u is the solution to the
linear Cauchy problem

ut + (v(q)u)x = 0, u(0, x) = ρ̄(x), t ∈ [0, t0], (2.7)

with q as in (2.4). In the next two steps we shall prove

(i) The values Γ (u) remain uniformly bounded in the W 1,∞ norm;
(ii) The map Γ : D2L �→ D2L is contractive with respect to the C0 norm.
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By the contraction mapping theorem, a unique fixed point will thus exist, providing
the solution to (2.7) on the time interval [0, t0].

2. To fix the ideas, assume that

0 < δ0 � ρ̄(x) � ρjam − δ0 (2.8)

for some δ0. From the equation

ut + v(q)ux = − v′(q)qx , u(0, x) = ρ̄, (2.9)

integrating along characteristics and using (2.5), we obtain

δ0 − t · ‖v′‖L∞ 2L � u(t, x) � ρjam − δ0 + t · ‖v′‖L∞ 2L . (2.10)

Choosing t0 < δ0 · (‖v′‖L∞ 2L)−1, the solution u will thus remain strictly positive
and smaller than ρjam, for all t ∈ [0, t0].

3. Differentiating the conservation law in (2.7) we obtain

uxt + v(q)uxx = − 2v′(q)qx ux − [v′′(q)q2x + v′(q)qxx ]u. (2.11)

Let Z(t) be the solution to the ODE

Ż = aZ + b, Z(0) = L ,

where

a
.= 2‖v′‖L∞ · 2L , b

.=
[
4L2‖v′′‖L∞ + 4Lw(0)‖v′‖L∞

]
· ρjam.

Since

‖ux (0, ·)‖L∞ = ‖ρ̄x‖L∞ � L ,

in view of (2.11) and the bounds (2.5)–(2.6), a comparison argument yields

‖ux (t, ·)‖L∞ � Z(t). (2.12)

In particular, for t ∈ [0, t0] with t0 sufficiently small, we have

‖ux (t, ·)‖L∞ � 2L . (2.13)

4. Using the identity

qx (t, x) = − w(0)ρ(t, x) −
∫ ∞

0
w′(s)ρ(t, x + s) ds

and recalling that w′(s) � 0, one obtains the bound

‖qx (t, ·)‖L∞ ≤ 2w(0)‖ρ(t, ·)‖L∞ . (2.14)

Next, consider two functions t �→ ρ1(t, ·), t �→ ρ2(t, ·), both taking values
inside D2L . Then, for all t ∈ [0, t0], the corresponding weighted averages q1, q2
satisfy

‖q1(t, ·)−q2(t, ·)‖W 1,∞ � (1+2w(0)) · sup
τ∈[0,t0]

‖ρ1(τ, ·)−ρ2(τ, ·)‖L∞ . (2.15)
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By choosing t0 > 0 small enough, we claim that the corresponding solutions u1, u2
of (2.7) satisfy

‖u1(t, ·) − u2(t, ·)‖L∞ � 1

2
sup

τ∈[0,t]
‖ρ1(τ, ·) − ρ2(τ, ·)‖L∞ for all t ∈ [0, t0] .

(2.16)
Indeed, consider a point (τ, y). Call t �→ xi (t), i = 1, 2, the corresponding char-
acteristics. These solve the equations

ẋi = v(qi (t, xi (t))), xi (τ ) = y. (2.17)

Hence, moving backward in time, we have

− d

dt
|x1(t) − x2(t)|

�
∣∣∣v(q1(t, x1(t))) − v(q1(t, x2(t)))

∣∣∣ +
∣∣∣v(q1(t, x2(t))) − v(q2(t, x2(t)))

∣∣∣
� ‖v′‖L∞‖q1,x‖L∞ · |x1(t) − x2(t)| + ‖v′‖L∞‖q1 − q2‖L∞ .

By (2.5), the quantity ‖q1,x (t, ·)‖L∞ remains uniformly bounded. The distance
Z(t)

.= |x1(t) − x2(t)| between the two characteristics thus satisfies a differential
inequality of the form

− d

dt
Z(t) � a∗Z(t) + b∗‖q1(t, ·) − q2(t, ·)‖L∞, Z(τ ) = 0,

for some constants a∗, b∗. This implies

|x1(t) − x2(t)| �
∫ τ

t
e(t−s)a∗ · b∗‖q1(s, ·) − q2(s, ·)‖L∞ ds. (2.18)

The values ui (τ, y), i = 1, 2, can now be obtained by integrating along character-
istics. Indeed,

d

dt
ui (t, xi (t)) = v′(qi (t, xi (t))) · qi,x (t, xi (t)) · ui (t, xi (t)), ui (0, xi (0)) = ρ̄(xi (0)).

Thanks to the a priori bounds (2.6) on ‖qi,xx (t, ·)‖L∞ , using (2.18) for any ε > 0
we can choose t0 > 0 such that

|u1(τ, y) − u2(τ, y)| � ε · sup
t∈[0,τ ]

‖q1(t, ·) − q2(t, ·)‖L∞ ,

for all τ ∈ [0, t0] and y ∈ R. In view of (2.15), this implies (2.16).
5. By the contraction mapping principle, there exists a unique function t �→

ρ(t, ·) such that ρ(t, ·) = u(t, ·) for all t ∈ [0, t0]. This fixed point of the trans-
formation Γ provides the unique solution to the Cauchy problem (1.1)–(1.2) with
initial data (2.1).

6. In this step we show that this solution can be extended to all times t > 0.
This requires (i) a priori upper and lower bounds of the form

0 < δ0 � ρ(t, x) � ρjam − δ0 , (2.19)
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independent of time, and (ii) a priori estimates on the Lipschitz constant, which
should remain uniformly bounded on bounded intervals of time.

To establish an upper bound on the solution ρ(t, ·), t ∈ [0, t0], we analyze its
behavior along a characteristic. Fix ε > 0. Consider any point (τ, ξ) such that

ρ(τ, ξ) � sup
x∈R

ρ(τ, x) − ε.

At the point (τ, ξ) one has

ρt + v(q)ρx

= −ρv′(q)qx = − ρ(τ, ξ)v′(q(τ, ξ)) · ∂

∂ξ

[∫ +∞

ξ

ρ(τ, y) w(y − ξ) dy

]

= −ρ(τ, ξ)v′(q(τ, ξ)) ·
[
−ρ(τ, ξ)w(0) −

∫ +∞

ξ

ρ(τ, y) w′(y − ξ) dy

]

= −ρ(τ, ξ)v′(q(τ, ξ)) ·
∫ +∞

ξ

[
ρ(τ, ξ) − ρ(τ, y)

]
w′(y − ξ) dy

� ρjam · max
0�q�ρjam

|v′(q)| · w(0) · ε
.= C0 ε. (2.20)

The above implies that

d

dt

(
sup
x

ρ(t, x)

)
� C0ε,

as long as 0 < ρ(t, y) < ρjam for all y ∈ R.
Since ρ̄ satisfies (2.8) and ε > 0 is arbitrary, this establishes the upper bound

in (2.19). The lower bound is proved in an entirely similar way.
Next, from the analysis in step 3 it follows that

‖ρx (t, ·)‖L∞ � Z(t), (2.21)

which immediately yields the a priori bound on the Lipschitz constant.
By induction,we can thus construct a unique solutionρ = ρ(t, x) on a sequence

of time intervals [0, t0], [t0, t1], [t1, t2], . . ., where the length of each interval
[tk tk+1] depends only on (i) the constant δ0 in (2.19), and (ii) the Lipschitz constant
of ρ(tk, ·). Thanks to (2.21), this Lipschitz constant remains � Z(tk). This implies
tk → +∞ as k → ∞, hence the solution can be extended to all times t > 0.

We remark that, by a further differentiation of the basic equation (1.1), one
can prove that, if ρ̄ ∈ Ck , then every derivatives up to order k remains uniformly
bounded on bounded intervals of time.

7. To complete the proof, it remains to show that the semigroup of solutions
can be extended by continuity to all initial data ρ̄ ∈ D.

Toward this goal, we first prove that the total variation of the solution ρ(t, ·)
remains uniformly bounded on bounded time intervals. Indeed, from

ρxt + (v(q)ρx )x = − (v′(q)qxρ)x ,
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it follows that

d

dt
‖ρx‖L1 � ‖(v′(q)qxρ)x‖L1

� ‖v′‖L∞‖qx‖L∞‖ρx‖L1 + ‖v′‖L∞‖qxx‖L1‖ρ‖L∞

+‖v′′‖L∞‖qx‖L∞‖qx‖L1‖ρ‖L∞

� C‖ρx‖L1 . (2.22)

Above we used the estimates

‖qx‖L1 ≤ ‖ρx‖L1 , ‖qxx‖L1 ≤ 2w(0) · ‖ρx‖L1 . (2.23)

Note that in (2.22) the constant C depends on the velocity function v : [0, ρjam] �→
R+ and the averaging kernel w, but it does not depend on the Lipschitz constant
‖ρx‖L∞ of the solution. According to (2.22), the total variation of the solution
grows at most at an exponential rate. In particular, it remains bounded on bounded
intervals of time.

8. Thanks to the a priori bounds (2.22) on the total variation and (2.12) on the
Lipschitz constant, the solution can be extended to an arbitrarily large time interval
[0, T ]. This already defines a family of trajectories t �→ St ρ̄ defined for every
L > 0, every ρ̄ ∈ DL , and t � 0.

In order to extend the semigroup S by continuity to the entire domain D, we
need to prove that for every t > 0 the map ρ̄ �→ St ρ̄ is Lipschitz continuous with
respect to the L1 distance.

Indeed, consider a family of smooth solutions, say ρθ (t, ·), θ > 0. Define the
first order perturbations

ζ θ (t, ·) = lim
h→0

ρθ+h(t, ·) − ρθ (t, ·)
h

, Qθ (t, ·) = lim
h→0

qθ+h(t, ·) − qθ (t, ·)
h

.

Notice that

Qθ (t, x) =
∫ +∞

0
w(s) ζ θ (t, x + s) ds.

Then ζ θ satisfies the linearized equation

ζt + (v(q)ζ )x + (
v′(q)Qρ

)
x = 0, (2.24)

where for simplicity we dropped the upper indices. Using the estimates

‖Q(t, ·)‖L1 ≤ ‖ζ(t, ·)‖L1 , ‖Qx (t, ·)‖L1 ≤ 2w(0) · ‖ζ(t, ·)‖L1 , (2.25)

‖qx (t, ·)‖L∞ ≤ 2w(0) · ρjam, ‖Q(t, ·)‖L∞ ≤ w(0) · ‖ζ(t, ·)‖L1 , (2.26)

we compute

d

dt
‖ζ(t, ·)‖L1 � ‖(v′(q)Qρ)x‖L1

� ‖v′′‖L∞‖qx‖L∞‖Q‖L1‖ρ‖L∞ + ‖v′‖L∞‖Qx‖L1‖ρ‖L∞

+‖v′‖L∞‖Q‖L∞‖ρx‖L1
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� C(t) · ‖ζ(t, ·)‖L1 . (2.27)

Here C(t) depends on time because the total variation ‖ρx (t, ·)‖L1 may grow at an
exponential rate. On the other hand, it is important to observe that C(t) does not
depend on the Lipschitz constant of the solutions. From (2.27) we deduce

‖ζ(t, ·)‖L1 � exp

{∫ t

0
C(τ ) dτ

}
‖ζ(0, ·)‖L1 . (2.28)

For any two Lipschitz solutions ρ0, ρ1 of (1.1)–(1.2), we now construct a 1-
parameter family of solutions ρθ (t, ·) with initial data

ρθ (0, ·) = θρ1(0, ·) + (1 − θ)ρ0(0, ·).
Using (2.28) one obtains

‖ρ1(t, ·) − ρ0(t, ·)‖L1

�
∫ 1

0
‖ζ θ (t, ·)‖L1 dθ �

∫ 1

0
exp

{∫ t

0
C(τ ) dτ

}
· ‖ζ θ (0, ·)‖L1 dθ

� exp

{∫ t

0
C(τ ) dτ

}
· ‖ρ1(0, ·) − ρ0(0, ·)‖L1 . (2.29)

This establishes Lipschitz continuity of the semigroup with respect to the initial
data.Notice that this Lipschitz constantmaywell depend on time. Since every initial
datum ρ̄ ∈ D can be approximated in the L1 distance by a sequence of Lipschitz
continuous functions ρ̄n ∈ DLn (possibly with Ln → +∞), by continuity we
obtain a unique semigroup defined on the entire domain D. 
�
Remark 1. By the argument in step 6 of the above proof, if the initial condition
satisfies

0 � ā � ρ̄(x) � b̄ � ρjam for all x ∈ R,

then the solution satisfies

ā � ρ(t, x) � b̄ for all t � 0, x ∈ R.

3. A Hyperbolic System with Relaxation

From now on, we focus on the case where w(s) = e−s , so that the rescaled
kernels are

wε(s) = ε−1e−s/ε.

This yields

∂

∂x

[∫ +∞

x
ρ(t, s)

1

ε
e−(s−x)/ε ds

]
= − 1

ε
ρ(t, x)+1

ε

∫ +∞

x
ρ(t, s)

1

ε
e−(s−x)/ε ds.

(3.1)
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Therefore, the averaged density q satisfies the ODE

qx = ε−1q − ε−1ρ .

The conservation law with nonlocal flux (1.1)–(1.2) can thus be written as
{

ρt + (ρv(q))x = 0,
qx = ε−1(q − ρ).

(3.2)

To make further progress, we choose a constant K > v(0) and consider new
independent coordinates (τ, y) defined by

τ = t − x

K
, y = x . (3.3)

For future use, we derive the relations between the partial derivative operators in
these two sets of coordinates:

∂τ = ∂t , ∂y = ∂x + K−1∂t , ∂x = ∂y − K−1∂τ . (3.4)

A direct computation yields

ρt = ρτ , (ρv(q))x = −K−1(ρv(q))τ + (ρv(q))y, qx = −K−1qτ + qy .

In these new coordinates, the equations (3.2) take the form
{

(Kρ − ρv(q))τ + (Kρv(q))y = 0,

qτ − Kqy = K

ε
(ρ − q).

(3.5)

One can easily verify that the above system of balance laws is strictly hyperbolic,
with two distinct characteristic speeds

λ1 = −K , λ2 = Kv(q)

K − v(q)
. (3.6)

We observe that λ1 < 0 < λ2, provided that K is sufficiently large such that
K > v(0). Moreover, both characteristic families are linearly degenerate.

In the zero relaxation limit, letting ε → 0+ one formally obtains q → ρ. Hence
(3.5) formally converges to the scalar conservation law

(Kρ − ρv(ρ))τ + (Kρv(ρ))y = 0. (3.7)

Recalling the function f defined in (1.7), one obtains

(Kρ − f (ρ))τ + (K f (ρ))y = 0. (3.8)

Note that (3.8) is equivalent to the conservation law (1.7) in the original (t, x)
coordinates.

The characteristic speed for (3.8) is

λ∗ = K f ′(ρ)

K − f ′(ρ)
= K 2

K − f ′(ρ)
− K . (3.9)
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Since K > v(0) ≥ v(ρ) > f ′(ρ), we clearly have λ∗ > −K = λ1. Furthermore,
since f ′(ρ) < v(ρ), we conclude that λ∗ < λ2. The sub-characteristic condition

λ1 < λ∗ < λ2 (3.10)

is thus satisfied. This is a crucial condition for stability of the relaxation system,
see [29]. For other related general references on zero relaxation limit, we refer to
[9,11].

From (3.5) it follows that

(K − v(q))ρτ + Kv(q)ρy = ρ
[
v(q)τ − Kv(q)y

]

= ρv′(q)(qτ − Kqy) = ρv′(q) · K
ε

(ρ − q).

We can thus write (3.5) in diagonal form:
⎧⎪⎨
⎪⎩

ρτ + Kv(q)

K − v(q)
ρy = K

ε
· (ρ − q) · ρv′(q)

K − v(q)
,

qτ − Kqy = K

ε
· (ρ − q).

(3.11)

To further analyze (3.11), it is convenient to introduce the new dependent variables

u = ln ρ, z = ln(K − v(q)), (3.12)

so that
ρ = eu, v(q) = K − ez . (3.13)

Using these new variables, (3.11) becomes
⎧⎪⎨
⎪⎩
uτ + K (Ke−z − 1)uy = K

ε
Λ(u, z),

zτ − Kzy = −K

ε
Λ(u, z),

(3.14)

where the source term Λ is given by

Λ(u, z) = (ρ(u) − q(z))
v′(q(z))

K − v(q(z))
. (3.15)

Introducing the monotone function

g(u) =̇ ln(K − v(eu)), where g′(u) = −v′(eu)eu

K − v(eu)
> 0, (3.16)

one checks that
Λ(u, g(u)) = 0 for all u. (3.17)

Letting ε → 0, we expect that z → g(u) hence the system (3.14) formally
converges to the scalar conservation law

(u + g(u))τ + K (Ke−g(u) − 1)uy − Kg(u)y = 0. (3.18)
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Q

x

τ

P y

Fig. 1. The new system of coordinates (τ, y) defined at (3.3), is illustrated here together
with the original coordinates (t, x). The two characteristics through a point Q have speeds
λ1 < 0 < λ2, as in (3.6). With reference to the system (4.1), one can think of zy as the
density of backward-moving particles, with speed λ1 = −K , while uy is the density of
forward-moving particles, with speed λ2 > 0. Backward particles are transformed into
forward particles at rate KΛz/ε, while forward particles turn into backward ones with
rate −KΛu/ε. The total number of particles does not increase; actually, it decreases when
positive and negative particles of the same type cancel out

Using the identities

u + g(u) = ln(eu(K − v(eu))), e−g(u) = 1

K − v(eu)
, Ke−g(u) − 1 = v(eu)

K − v(eu)
,

we get

(eu(K − v(eu)))τ
eu(K − v(eu))

+ K (euv(eu))y
eu(K − v(eu))

= 0.

Writing ρ = eu , we obtain once again the conservation law (3.7).

4. A Priori BV Bounds

In order to prove a rigorous convergence result, we need an a priori BV bound
on the solution to the system (3.14), independent of the relaxation parameter ε. We
always assume that the velocity v satisfies the assumptions (A1).

Differentiating (3.14) with respect to y one obtains
⎧⎪⎨
⎪⎩
uyτ + [K (Ke−z − 1)uy]y = K

ε
[Λuuy + Λz zy],

zyτ − Kzyy = − K

ε
[Λuuy + Λz zy].

(4.1)

A kinetic interpretation of the above system is shown in Figure 1.
We observe that

d

dτ

∫
|uy(τ, y)| dy + d

dτ

∫
|zy(τ, y)| dy

= K

ε

∫ {
sign(uy)[Λuuy + Λz zy] − sign(zy)[Λuuy + Λz zy]

}
dy

� K

ε

∫ {
Λu |uy | + |Λz | · |zy | + |Λu | · |uy | − Λz |zy |

}
dy.
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Therefore, if

Λu � 0, Λz � 0, (4.2)

then the map

τ �→ ‖uy(τ, ·)‖L1 + ‖zy(τ, ·)‖L1

will be non-increasing. By (3.15), a direct computation yields

Λu = eu
v′(q(z))

K − v(q(z))
< 0.

It remains to verify that Λz ≥ 0. Since ∂q
∂z > 0, it suffices to show that Λq ≥ 0.

We compute

Λq = (ρ − q)
v′′(q)(K − v(q)) + (v′(q))2

(K − v(q))2
− v′(q)

K − v(q)

= 1

K − v(q)

[
(ρ − q)

(
v′′(q) + (v′(q))2

K − v(q)

)
− v′(q)

]
. (4.3)

Since v′(q) < 0, the above inequality will hold provided that

|ρ − q| ·
(

|v′′(q)| + (v′(q))2

K − v(q)

)
≤ ∣∣v′(q)

∣∣ for all q. (4.4)

Notice that, by choosing K sufficiently large, the factor (v′)2
K−v

can be rendered as
small as we like. Hence we can always achieve the inequality (4.4) provided that

– Either |ρ − q| remains small. This is certainly the case if the oscillation of the
initial datum is small;

– Or else, |v′′| is small compared with |v′|.
As a consequence of the above analysis, we have

Lemma 1. Let (u, z) be a Lipschitz solution to the relaxation system (4.1). Assume
that ρ(τ, y) = eu(τ,y) ∈ [ρ1, ρ2] for all (τ, y), and moreover

min
q∈[ρ1,ρ2]

|v′(q)| � (ρ2 − ρ1) ·
(

‖v′′‖L∞ + ‖v′‖2L∞
K − ‖v‖L∞

)
. (4.5)

Then the total variation function

τ �→ ‖uy(τ, ·)‖L1(R) + ‖zy(τ, ·)‖L1(R) (4.6)

is non-increasing.
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We observe that, in the case where v is affine, say

v(ρ) = ao − boρ (4.7)

for some ao, bo > 0, by (1.3) we can always choose K large enough so that

ρjam · ‖v′‖2L∞
K − ‖v‖L∞

� min
0�q�ρjam

|v′(q)|. (4.8)

Hence (4.5) is satisfied.
Ourmain goal is to obtain uniformBV bounds for solutions to the nonlocal con-

servation law (1.1)–(1.2). This will be achieved by working in the (τ, y) coordinate
system.

Theorem 2. Consider the Cauchy problem for (1.1)–(1.2), with kernel w(s) =
ε−1e−s/ε. Assume that the velocity function v satisfies

min
ρ∈[0,ρjam] |v′(q)| > ρjam · ‖v′′‖L∞([0,ρjam]) . (4.9)

Moreover, assume that the initial density ρ̄ has bounded variation and is uniformly
positive. Namely,

0 < ρmin � ρ̄(x) � ρmax � ρjam for all x ∈ R. (4.10)

Then the total variation remains uniformly bounded in time:

Tot.Var.{ρ(t, ·)} � ρmax

ρmin
· Tot.Var.{ρ̄} for all t � 0. (4.11)

Proof. 1. Assume first that ρ is Lipschitz continuous. By (4.1) it follows that

div

(
uy

K (Ke−z − 1)uy

)
+ div

(
zy

−Kzy

)
= 0. (4.12)

Thanks to (4.9), we can choose a constant K large enough so that (4.2) holds. In
this case we also have

div

( |uy |
K (Ke−z − 1)|uy |

)
+ div

( |zy |
−K |zy |

)
� 0. (4.13)

In terms of the original (t, x) coordinates, by (3.4) the inequality (4.13) takes the
form

∂t

(∣∣∣ux + ut
K

∣∣∣ +
∣∣∣zx + zt

K

∣∣∣
)

+
(
1

K
∂t + ∂x

) (
K (Ke−z − 1)

∣∣∣ux + ut
K

∣∣∣ − K
∣∣∣zx + zt

K

∣∣∣
)

= ∂t

(
Ke−z

∣∣∣ux + ut
K

∣∣∣
)

+ ∂x

(
K (Ke−z − 1)

∣∣∣ux + ut
K

∣∣∣ − K
∣∣∣zx + zt

K

∣∣∣
)

� 0. (4.14)
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2. Integrating (4.14) over any time interval [0, T ], we obtain
∫

K

K − v(q(T, x))

∣∣∣ux (T, x) + ut (T, x)

K

∣∣∣ dx
�

∫
K

K − v(q(0, x))

∣∣∣ux (0, x) + ut (0, x)

K

∣∣∣ dx . (4.15)

Since we are choosing K > v(0) � v(q(t, x)) for all t, x , the above denominators
remain uniformly positive and bounded. This implies that

∫ ∣∣∣ux (T, x) + ut (T, x)

K

∣∣∣ dx � CK ·
∫ ∣∣∣ux (0, x) + ut (0, x)

K

∣∣∣ dx, (4.16)

with CK
.= K

K−v(0) .
Repeating the same argument, with K replaced by γ K where γ > 1, we obtain
∫ ∣∣∣ux (T, x) + ut (T, x)

γ K

∣∣∣ dx � Cγ K ·
∫ ∣∣∣ux (0, x) + ut (0, x)

γ K

∣∣∣ dx, (4.17)

where the constant is now Cγ K = γ K
γ K−v(0) .

3. Next, we observe that, for any two numbers α, β and any number γ > 1 one
has

α = γ

γ − 1

(
α + β

γ

)
− 1

γ − 1
(α + β),

so

|α| � γ

γ − 1

∣∣∣∣α + β

γ

∣∣∣∣ + 1

γ − 1
|α + β|.

Applying the above inequality with α = ux , β = K−1ut , from (4.16)–(4.17) one
obtains ∫ ∣∣ux (T, x)

∣∣ dx � γCγ K

γ − 1

∫ ∣∣∣ux (0, x) + ut (0, x)

γ K

∣∣∣ dx
+ CK

γ − 1

∫ ∣∣∣ux (0, x) + ut (0, x)

K

∣∣∣ dx . (4.18)

4. By the assumption (4.10) and Remark 1 it follows that

0 < ρmin � ρ(t, x) � ρmax for all t � 0, x ∈ R.

By the change of variables (3.12)–(3.13), one has

|ux | = |ρx |
ρ

� |ρx |
ρmin

, |ut | = |ρt |
ρ

� |ρt |
ρmin

, |ρx | � ρmax|ux |. (4.19)

Combining (4.19) with (4.18) we conclude

ρ−1
max

∫ ∣∣ρx (T, x)
∣∣ dx �

∫ ∣∣ux (T, x)
∣∣ dx
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≤ γCγ K

γ − 1

∫ ∣∣∣∣ux (0, x) + ut (0, x)

γ K

∣∣∣∣ dx + CK

γ − 1

∫ ∣∣∣∣ux (0, x) + ut (0, x)

K

∣∣∣∣ dx

� γCγ K

(γ − 1)ρmin

∫ [
|ρx (0, x)| + |ρt (0, x)|

γ K

]
dx

+ CK

(γ − 1)ρmin

∫ [
|ρx (0, x)| + |ρt (0, x)|

K

]
dx . (4.20)

We observe that∫
|ρt (0, x)| dx �

∫
|ρ̄x (x)v(q(0, x))| + ∣∣ρ̄(x)v′(q(0, x))qx (0, x)

∣∣ dx
≤ ‖v‖L∞ · ‖ρ̄x‖L1 + ρmax · ‖v′‖L∞ · ‖qx (0, ·)‖L1 ≤ C0‖ρ̄x‖L1 ,

where C0
.= ‖v‖L∞ + ρmax · ‖v′‖L∞ is a bounded constant. Recalling the values

of the constants CK ,Cγ K , from (4.20) we obtain
∫ ∣∣ρx (T, x)

∣∣ dx

� ρmax

ρmin
· 1

γ − 1

(
γ 2K

γ K − v(0)

(
1 + C0

γ K

)
+ K

K − v(0)

(
1 + C0

K

))
· ‖ρ̄x‖L1 .

Since the constant K can be chosen arbitrarily large, letting K → +∞ in the above
inequality we obtain

‖ρx (T, ·)‖L1 � ρmax

ρmin
· γ + 1

γ − 1
· ‖ρ̄x‖L1 .

We note that as K → ∞, (4.5) reduces to (4.9). Again, since γ > 1 can be chosen
arbitrarily large, letting γ → ∞ we obtain

‖ρx (T, ·)‖L1 � ρmax

ρmin
· ‖ρ̄x‖L1 . (4.21)

For any Lipschitz solution, this provides an a priori bound on the total variation,
which does not depend on time or on the relaxation parameter ε. By an approxi-
mation argument we conclude that (4.11) holds, for every uniformly positive initial
condition ρ̄ with bounded variation. 
�

5. Existence of a Limit Solution

Relying on the a priori bound on the total variation, proved in Theorem 2, we
now show the existence of a limit ρ = limε→0+ ρε, which provides a weak solution
to the conservation law (1.7).

Theorem 3. Let ρ̄ : R �→ [ρmin, ρmax] be a uniformly positive initial datum,
with bounded variation. Call ρε the corresponding solutions to (1.1)–(1.2), with
averaging kernel wε(s) = ε−1e−s/ε. Then, by possibly extracting a subsequence
εn → 0, one obtains the convergence ρεn → ρ in L1

loc(R+ ×R). The limit function
ρ provides a weak solution to the conservation law (1.7).
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Proof. By Theorem 2, all solutions ρε(t, ·) have uniformly bounded total variation.
The same is thus true for the weighted averages qε(t, ·), where

qε(t, x) =
∫ +∞

0
ε−1e−s/ερε(t, x + s) ds. (5.1)

By (1.1), this implies that the map t �→ ρε(t, ·) is uniformly Lipschitz continuous
with respect to the L1 distance.

By a compactness argument based on Helly’s theorem (see for example Theo-
rem 2.4 in [8]), we can select a sequence εn ↓ 0 such that

ρεn → ρ in L1
loc(R+ × R), (5.2)

ρεn (t, ·) → ρ(t, ·) in L1
loc(R), for almost everywhere t � 0. (5.3)

By (5.1), it now follows that
∥∥qε(t, ·) − ρε(t, ·)

∥∥
L1

=
∫∫

x<y
ε−1e(x−y)/ε

∣∣ρε(t, y) − ρε(t, x)
∣∣ dy dx

�
∫∫∫

x<s<y
ε−1e(x−y)/ε

∣∣ρε,x (t, s)
∣∣ ds dy dx

=
∫ +∞

−∞

(∫ +∞

0

∫ +∞

0
ε−1e−σ/εe−ξ/ε dξ dσ

) ∣∣ρε,x (t, s)
∣∣ ds

= ε · Tot.Var.{ρε(t, ·)},
where the variables σ = y − s, ξ = s − x were used. Therefore, as εn → 0, we
have the convergence qεn → ρ in L1

loc. By (1.1), this implies that the limit function
ρ = ρ(t, x) is a weak solution to the scalar conservation law (1.7). 
�

6. Entropy Admissibility of the Limit Solution

In the previous section we proved that, as ε → 0, any limit in L1
loc of solutions

uε to (1.1), (1.5) with ρ̄ ∈ BV and qε given by (5.1) is a weak solution to the
conservation law (1.7). A key question is whether this limit is the unique entropy
admissible solution. The following analysis shows that this is indeed the case when
the velocity function is affine, namely

v(ρ) = a − bρ . (6.1)

Theorem 4. Let the velocity function v be affine. Consider any uniformly positive
initial datum ρ̄ ∈ BV . Then as ε → 0, the corresponding solutions ρε to (1.1),
(5.1), (1.5) converge to the unique entropy admissible solution of (1.7).

Proof. For simplicity, we consider the case where v(ρ) = 1− ρ. The general case
(6.1) is entirely similar. According to [22,30], to prove uniqueness it suffices to
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prove that the limit solution dissipates one single strictly convex entropy. We thus
consider the entropy and entropy flux pair

η(ρ) = ρ2

2
, ψ(ρ) = ρ2

2
− 2ρ3

3
. (6.2)

When v(ρ) = 1 − ρ, the equation (1.1) can be written as

ρt + (ρ(1 − ρ))x = (ρ(1 − ρ) − ρ(1 − q))x = (ρ(q − ρ))x .

Multiplying both sides by η′(ρ) = ρ, we obtain

η(ρ)t + ψ(ρ)x = ρ(ρ(q − ρ))x = (ρ2(q − ρ))x − (q − ρ)ρρx . (6.3)

Given a test function ϕ ∈ C1c (R), ϕ � 0, we thus need to estimate the quantity

J = J1 − J2 ,

where

J1
.=

∫
(ρ2(q − ρ))xϕ dx = −

∫
ρ2(q − ρ)ϕx dx, (6.4)

J2
.=

∫ (
q(x) − ρ(x)

) · ρ(x)ρx (x)ϕ(x) dx

=
∫ (∫ +∞

x

1

ε
e(x−y)/ε

(∫ y

x
ρx (s) ds

)
dy

)
ρ(x) ρx (x) ϕ(x) dx . (6.5)

Our ultimate goal is to show that

J � O(1) · ε.

Since we have

|J1| ≤ ‖ρ‖2L∞ · ‖ϕx‖L∞ ·
∫

|q(x) − ρ(x)| dx = O(1) · ε,

it remains to show that

J2 � O(1) · ε. (6.6)

A key tool to achieve this estimate is the Hardy–Littlewood inequality.

Lemma 2. (Hardy–Littlewood inequality). For any two functions g1, g2 � 0 van-
ishing at infinity, one has

∫
g1(x) g2(x) dx �

∫
g∗
1(x)g

∗
2(x) dx, (6.7)

where g∗
1 , g

∗
2 are the symmetric decreasing rearrangements of g1, g2, respectively.
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For a proof, see [24] or [27].
Starting from (6.5) we compute

J2 =
∫ ∫ ∫

x<s<y

1

ε
e(x−y)/ερx (s)ρ(x)ρx (x) ϕ(x) dy ds dx

=
∫ ∫

x<s
e(x−s)/ερx (s) ρ(x)ρx (x) ϕ(x) dx ds

=
∫ (∫ +∞

x
e−s/ερx (s) ds

)
ex/ερ(x)ρx (x) ϕ(x) dx

= −
∫

ρ2(x)ρx (x) ϕ(x) dx + 1

ε

∫ ∫
x<s

e−s/ερ(s) ex/ερ(x)ρx (x) ϕ(x) dx ds

=
∫

ρ3(x)

3
ϕx (x) dx + 1

ε

∫
e−s/ερ(s)

(∫ s

−∞

(ρ2(x)

2

)
x
ex/εϕ(x) dx

)
ds

=̇A + B − C − D,

where

A =̇
∫

ρ3(x)

3
ϕx (x) dx,

B =̇ 1

ε

∫
ρ(s)

ρ2(s)

2
ϕ(s) ds ,

C =̇ 1

ε2

∫ ∫ s

−∞
e(x−s)/ε ρ2(x)

2
ρ(s) ϕ(x) dx ds ,

D =̇ 1

ε

∫ ∫ s

−∞
e(x−s)/ε ρ2(x)

2
ρ(s) ϕx (x) dx ds .

To achieve some cancellations, using a Taylor expansion of the term C we
obtain

C =̇ C1 + C2 + C3 ,

where

C1 =̇ 1

ε2

∫ ∫ s

−∞
e(x−s)/ε ρ2(x)

2
ρ(s) ϕ(s) dx ds ,

C2 =̇ 1

ε2

∫ ∫ s

−∞
e(x−s)/ε ρ2(x)

2
ρ(s) (x − s)ϕx (x) dx ds ,

C3 =̇ 1

ε2

∫ ∫ s

−∞
e(x−s)/ε ρ2(x)

2
ρ(s)

(x − s)2

2
ϕxx (ζ ) dx ds . (6.8)

In the integral for C3, it is understood that for each x, s one must choose a suitable
ζ = ζ(x, s) ∈ [x, s].

We now compare the integrals B and C1. Without loss of generality one can
assume ϕ = φ3 for some φ ∈ C2c , φ � 0. For any σ � 0, we now apply the
Hardy–Littlewood inequality with

g1(x) = ρ2(x)φ2(x), g2(x) = ρ(x + σ) φ(x + σ),
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and obtain
∫

ρ2(x)

2
ρ(x) ϕ(x) dx �

∫
ρ2(x)

2
φ2(x) · ρ(x + σ) φ(x + σ) dx . (6.9)

Indeed, the level sets of the two functions ρ2φ2 and ρφ are the same. By (6.7), the
integral on the right hand side of (6.9) is maximum (and coincides with

∫
g∗
1g

∗
2 dx)

when σ = 0.
Performing the change of variable s = x +σ , a further integration with respect

to s yields

B = 1

ε

∫
ρ2(x)

2
ρ(x) ϕ(x) dx ≥ 1

ε

∫
ρ2(x)

2
φ2(x) · ρ(s) φ(s) dx

� 1

ε2

∫ ∫ s

−∞
e(x−s)/ε ρ2(x)

2
φ2(x) · ρ(s) φ(s) dx ds

.= B1 − B2 ,(6.10)

where

B1 =̇ 1

ε2

∫ ∫ s

−∞
e(x−s)/ε ρ2(x)

2
ρ(s) φ3(s) dx ds = C1 ,

B2 =̇ 1

ε2

∫ ∫ s

−∞
e(x−s)/ε ρ2(x)

2
φ(x)ρ(s) [φ2(s) − φ2(x)] dx ds. (6.11)

To compute the last integral for B2 we use the Taylor expansion

φ2(s) − φ2(x) = 2φ(x)φx (x) · (s − x) + [2φ2
x (ζ ) + 2φxx (ζ )] · (s − x)2

2
,

where ζ = ζ(x, s) ∈ [x, s]. This yields

B2 = 1

ε2

∫ ∫ s

−∞
e(x−s)/ε(s − x) · ρ2(x)

2
ρ(s) φ2(x) 2φx (x)dx ds

+ 1

ε2

∫ ∫ s

−∞
e(x−s)/ε (s − x)2

2
· ρ2(x)

2
ρ(s) φ(x) [2φ2

x (ζ ) + 2φxx (ζ )] dx ds
= B21 + B22 + B23 ,

where

B21
.= 1

ε2

∫ ∫ s

−∞
e(x−s)/ε(s − x) · ρ3(x) φ2(x)φx (x)dx ds,

B22
.= 1

ε2

∫ ∫ s

−∞
e(x−s)/ε(s − x) · ρ2(x)

(∫ s

x
ρx (σ ) dσ

)
φ2(x)φx (x)dx ds,

B23
.= 1

ε2

∫ ∫ s

−∞
e(x−s)/ε (s − x)2

2
· ρ2(x) ρ(s) φ(x) [φ2

x (ζ ) + φxx (ζ )] dx ds.

The term B21 is computed by

B21 =
∫

ρ3(x)
ϕx (x)

3
dx = A . (6.12)
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Concerning B22, using σ, x , and ξ = s − x as variables of integration, we obtain

|B22| � ‖ρ‖2L∞ · 1
3
‖ϕx‖L∞ · 1

ε2

∫ ∫ ∫
x<σ<s

e(x−s)/ε(s − x)|ρx (σ )| dx dσ ds

= ‖ρ‖2L∞ · 1
3
‖ϕx‖L∞ · 1

ε2

∫ ∫ +∞

0
e−ξ/εξ

(∫ σ

σ−ξ

dx

)
dξ |ρx (σ )| dσ

= ‖ρ‖2L∞ · 1
3
‖ϕx‖L∞ ·

∫ (∫ +∞

0

e−ξ/ε

ε2
ξ2 dξ

)
|ρx (σ )| dσ

= ‖ρ‖2L∞ · 1
3
‖ϕx‖L∞ · ‖ρx‖L1 · 2ε . (6.13)

The term B23 can be estimated by

|B23| � ‖ρ‖2L∞‖φ‖L∞
(
‖φx‖2L∞ + ‖φxx‖L∞

) ∫
|ρ(s)|

∫ s

−∞
e(x−s)/ε (x − s)2

2ε2
dx ds

= ‖ρ‖2L∞‖φ‖L∞
(
‖φx‖2L∞ + ‖φxx‖L∞

)
· ‖ρ‖L1

∫ +∞

0
e−σ/ε σ 2

2ε2
dσ

= ‖ρ‖2L∞‖φ‖L∞
(
‖φx‖2L∞ + ‖φxx‖L∞

)
· ‖ρ‖L1 · ε . (6.14)

An entirely similar argument shows that the integral defining C3 at (6.8) also
approaches zero as ε → 0. Indeed,

|C3| = 1

ε2

∣∣∣∣
∫ ∫ s

−∞
e(x−s)/ε ρ2(x)

2
ρ(s)

(x − s)2

2
ϕxx (ζ ) dx ds

∣∣∣∣
� ‖ϕxx‖L∞ · ‖ρ‖2L∞ · 1

2ε2

∫
|ρ(s)|

∫ s

−∞
e(x−s)/ε (x − s)2

2
dx ds

� ‖ϕxx‖L∞ · ‖ρ2‖L∞ · ‖ρ‖L1 · 1

2ε2

∫ +∞

0
e−σ/ε σ 2

2
dσ

= ‖ϕxx‖L∞ · ‖ρ‖2L∞ · ‖ρ‖L1 · ε

2
. (6.15)

Finally, we estimate the sum of the remaining two terms:

D + C2 = 1

ε

∫ ∫ s

−∞
e(x−s)/ε ρ2(x)

2
ρ(s) ϕx (x) dx ds

− 1

ε2

∫ ∫ s

−∞
e(x−s)/ε ρ2(x)

2
ρ(s) (s − x)ϕx (x) dx ds

=
∫

ρ2(x)

2
ϕx (x)

(∫ +∞

x
e(x−s)/ε

(1
ε

− s − x

ε2

)
ρ(s) ds

)
dx .

Using the identity

∫ +∞

x
e(x−s)/ε

(1
ε

− s − x

ε2

)
ds = 0 ,
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we compute

D + C2 =
∫

ρ2(x)

2
ϕx (x)

(∫ +∞

x
e(x−s)/ε

(1
ε

− s − x

ε2

)
[ρ(s) − ρ(x)] ds

)
dx

=
∫

ρ2(x)

2
ϕx (x)

∫ +∞

x
e(x−s)/ε

(1
ε

− s − x

ε2

) ∫ s

x
ρx (σ ) dσ ds dx

=
∫

ρ2(x)

2
ϕx (x)

∫ +∞

x
ρx (σ )

∫ +∞

σ

e(x−s)/ε
(1

ε
− s − x

ε2

)
ds dσ dx

=
∫

ρ2(x)

2
ϕx (x)

∫ +∞

x
ρx (σ ) e(x−σ)/ε x − σ

ε
dσ dx

=
∫

ρx (σ )

∫ σ

−∞
ρ2(x)

2
ϕx (x)e

(x−σ)/ε x − σ

ε
dx dσ .

As a consequence, we obtain the following estimate:

|D + C2| � ‖ρx‖L1 ·
∥∥∥ρ2

2

∥∥∥
L∞ · ‖ϕx‖L∞ ·

∫ σ

−∞
e(x−σ)/ε σ − x

ε
dx

= ‖ρx‖L1 ·
∥∥∥ρ2

2

∥∥∥
L∞ · ‖ϕx‖L∞ · ε . (6.16)

Summarizing all the above estimates (6.8)–(6.16), we have

J2 = A + B − C − D

� A + B1 − (B21 + B22 + B23) − (C1 + C2 + C3) − D (6.17)

= (A − B21) + (B1 − C1) − (D + C2) − B22 − B23 − C3

= O(1) · ε. (6.18)

Indeed, on the line (6.18) the first two terms are zero, while the remaining four terms
have size O(1) · ε. Letting ε → 0 we thus obtain the desired entropy inequality.

We remark that the inequality on the line (6.17), accounting for possible entropy
dissipation, is due to the relation B � B1 − B2 in (6.10). This follows from the
Hardy–Littlewood rearrangement inequality. 
�
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