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Abstract

When a Gevrey smooth perturbation is applied to a quasi-convex integrable
Hamiltonian, it is known that the KAM invariant tori that survive are “sticky”, that
is doubly exponentially stable.We show by examples the optimality of this effective
stability.
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1. Introduction

We are interested in effective stability around invariant quasi-periodic tori of
nearly integrable analytic or Gevrey regular Hamiltonian systems. Under generic
nondegeneracy assumptions on the integrableHamiltonian,KAMtheory (afterKol-
mogorv Arnold Moser) guarantees the existence of a large measure set of invariant
quasi-periodic tori for the perturbed systems. The invariant tori given by KAM
theory have Diophantine frequency vectors. To study the diffusion rate of orbits
that start near these invariant tori, an important tool is the Birkhoff Normal Forms
(or BNF) at an invariant torus, which introduces action-angle coordinates in which
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the system in small neighborhoods of an invariant Diophantine torus becomes inte-
grable up to arbitrary high degrees in the Taylor series of the Hamiltonian (see for
example [1] or [15]).

Exploiting the Diophantine property of the frequency vector of the invariant
torus, it is possible to collect estimates in the successive BNFs and establish expo-
nential stability of the torus, in the sense that nearby solutions remain close to the
invariant torus for an interval of time which is exponentially large with respect to
some power of the inverse of the distance r to the torus, a power that depends only
on the Diophantine exponent τ of the torus in the case of real analytic Hamiltoni-
ans, and that involves additionally the degree of Gevrey smoothness in the case of
Gevrey smooth Hamiltonians [13,14].

Combining BNF estimates with Nekhoroshev theory, Giorgilli and Morbidelli
proved in [12] that for integrable Hamiltonians with a quasi-convex Hessian,
the KAM tori of an analytic perturbation of the Hamiltonian are doubly expo-
nentially stable: the exponential stability time exp

(
r−1/(τ+1)

)
is promoted to

exp
(
exp

(
r−1/(τ+1)

))
. Invariant quasi-periodic toriwith this strong formof effective

stability are termed sticky.
Stickiness of the invariant tori was later extended in [3] to a residual and preva-

lent set of integrable Hamiltonians and to the Gevrey category. It was proved there
that generically, both in a topological and measure-theoretical sense, an invariant
Lagrangian Diophantine torus of a Hamiltonian system is doubly exponentially
stable. Also, for a residual and prevalent set of integrable Hamiltonians, for any
small perturbation in Gevrey class, there is a set of almost full Lebesgue measure
of KAM tori which are doubly exponentially stable.

Our aim here is to give examples showing that doubly exponential stability
cannot in general be strengthened. Loosely stated, our main result is the following:

Theorem. For arbitrary N � 3, there exist quasi-convex Hamiltonian systems
in N degrees of freedom that can be perturbed in the Gevrey smooth category so
that most of the invariant tori of the perturbed system are no more than doubly
exponentially stable.

The exact statements will be given in Section 3. The diffusion mechanism we
will use in our constructions is the so called Herman synchronized diffusion, which
first appeared in [10] where the speed in Arnol’d diffusion is estimated for a class
of nearly integrable system. In [10], completely integrable systems with twist are
considered and it is shown that it is possible to construct perturbations of size ε in
Gevrey class that have orbits diffusing in action at an exponential rate in inverse
powers of ε. The diffusion rate is shown to be almost optimal due to theNekhoroshev
effective stability theory.

Our setting here is quite different, in this that the perturbative parameter is not
an extra parameter ε but the action variable itself when viewed as the distance r of
the diffusive orbit from the invariant torus. In this “singular perturbative setting”,
the nature of the construction is in fact expected to be different from [10] since the
diffusion rate is at best doubly exponential in an inverse power of r , compared to
the simple exponential one can achieve in the Arnol’d diffusion problem treated in
[10].
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The new difficulties that arise in the singular perturbative setting, as well as the
novel constructions to overcome themwill be commented in the next section where
the heuristics of our construction are described in detail.

2. Description of the Construction

The construction of the diffusive flows is obtained by suspension from a pertur-
bative construction in the discrete setting of symplectic maps on M = (T×R)n �
T

n × R
n , where T denotes the torus R/Z and n � 2.

We now explain the main ideas in the discrete construction in the case n = 2.
We concentrate on the diffusion rate from the neighborhood of a single invariant
torus. We will be dealing with perturbation of a product of two twist maps of the
annulus T× R, denote them by F0 and G0, F0(θ1, r1) = (θ1 + ω1 + r1 + Z, r1),
G0(θ2, r2) := (θ2 + ω2 + r2 + Z, r2). Set T0 = F0 × G0 : M ý. Observe that T0
has an invariant torus T0 = T

2 × {(0, 0)}, on which the restricted dynamics is the
translation of vector ω = (ω1, ω2).

Let us explain how to perturb T0 into a map T that is tangent to T0 at T0
and that has pieces of orbits that diffuse away from a neighborhood of T0 at a
doubly exponentially small speed. More precisely, we obtain a sequence ρn → 0,
points zn such that dist(zn, T0) < ρn and times �n that are doubly exponentially
large in 1/ρn , such that dist(T �n (zn), T0) and dist(T−�n (zn), T0) are both doubly
exponentially large in 1/ρn . It will appear clearly fromour diffusionmechanism that
drifting away fromT0 by an amountρn , or by an amount that is doubly exponentially
large in 1/ρn , both require a doubly exponentially large time.

Herman Synchronized Diffusion

The diffusion mechanism we will use is the Herman synchronized diffusion
that first appeared in [10]. Let us explain in some words what is the synchronized
diffusion. It is based on the following mechanism of coupling of two twist maps of
the annulus (the secondonebeing integrablewith linear twist): at exactly one point p
of a well chosen periodic orbit of period q of the first twist map in M1 = T×R, the
coupling consists of pushing the orbits in the second annulus up in M2 = T×R on
some fixed vertical� by an amount 1/q that sends an invariant curvewhose rotation
number is a multiple of 1/q exactly to another one having the same property (due
to the linear twist property).

The dynamics of the q th iterate of the coupled map on the line {p} × � ⊂
M1 × M2 will thus drift at a linear speed : after q2 iterates the point will have
moved by 1 in the second action coordinate r2, and after q3 it will have moved
by q. The diffusing orbits obtained this way are bi-asymptotic to infinity: their
r2-coordinates travel from −∞ to +∞ at average speed 1/q2.

For this mechanism to be implemented with a Gevrey regular small coupling of
the two twist maps, it is necessary that the periodic point p be isolated from the rest
of the points on its orbit by a distanceσ that is greater than the inverse of some power
of ln q, since 1/q is the translation amount required from the coupling that must
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be exclusively localized around p. We call such periodic points “logarithmically”
isolated.

Optimal Rates in Arnol’d Diffusion of [10]

In [10], only one periodic point is sufficient to have estimates on the Arnol’d
diffusion rate in the nearly integrable system. In fact, in [10], a completely inte-
grable twist map of the annulus such as F0 is first perturbed to create a hyperbolic
saddle point with a saddle connection (a pendulum). Near the separatrix of the pen-
dulum, one can find periodic orbits of arbitrary high period q and isolation σ that
is determined by the hyperbolicity of the saddle point. More precisely, with an ε

perturbation of the integrable twist, the periodic orbits near the separatrix will then
have an isolation of order ε1/2 and choosing q exponentially large in the inverse of
ε allows to use the coupling mechanism with a second completely integrable linear
twist to obtain diffusive orbits at exponential rate in the inverse of ε.

Doubly Exponential Diffusion Rates in the Singular Perturbative Setting

In our singular perturbative setting, the main obstacles when one attempts to
apply the synchronized diffusion mechanism are threefold : (1) the diffusion rate
must be calculated from arbitrary small neighborhoods of the invariant torus T0,
hence many perturbations and many diffusive orbits may enter into play as opposed
to the single orbit of [10]; (2) each perturbationmust not affectT0 andmust allow for
further perturbations; (3) the Diophantine property on the frequency of T0 imposes,
due to averaging, strong restrictions on the period and the isolation properties of
the periodic points that come near the invariant torus.

Themain step to prepare for the coupling construction is to be able to perturb F0
in order to get an annulus map F on the first factor M1 = T × R that is tangent
to F0 at the circle r = 0 (we omit the subscript 1 for r1 in this paragraph) and that
has a sequence of periodic points pn at distance rn from the circle r = 0 and that
are σn isolated from their orbits. Since we will work with perturbations of F0 that
are compactly supported away from r = 0, we cannot expect larger isolation σn

than an exponentially small quantity in the inverse of rn , and the precise exponent
involved in this exponential is dictated by the Gevrey regularity α only. According
to the above description of how the synchronized diffusion mechanism functions,
the period qn of the point pn , that will also determine the order of the diffusion
rate, should not be taken smaller than an exponential in the inverse of σn . Hence,
the double exponential in 1

rn
!!

Let us now suppose that a map F is constructed with such a sequence pn ∈ M1,
and let us show how to obtain the coupling with the map G0 which lives on the
other factor M2 = T × R. The main idea is to couple F and G0 separately at
each periodic orbit with compactly supported Gevrey regular coupling functions.
Indeed, while performing locally the couplings around the product of the orbit of
pn with M2, we keep the direct product structure of F with G0 in the products of
smaller neighborhoods of the circle T × {0} ⊂ M1 with M2. Thus, the couplings
that yield diffusive orbits involving the successive points pn are done inductively
without affecting each other.
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How to Perturb the First Factor to Get a Sequence of Isolated Periodic Points

We turn now to the perturbative techniques that allow us to obtain F . We put
together two tools. The first one allows us to perturb a periodic circular rotation of
period P/Q while fine-tuning the rotation number so as to create circle diffeomor-
phisms with a σ -isolated periodic point p of arbitrary large period q, where σ is
exponentially small in Q for large Q but otherwise independent of q. In particular,
we can choose q exponentially large in 1/σ ( doubly exponentially large in Q).
The second tool is a trick due to M. Herman that allows us to embed the circle
dynamics thus obtained inside the phase portrait of a perturbation of a linear twist
map of the annulus M1. In fact, the periodic map will appear in the neighborhood
of the circle of period P/Q of the linear twist. The coupling mechanism will then
yield orbits that diffuse at speed 1/q2 in M1×M2. Of course, to conclude we have
to require that 1/Q be larger than the distance rQ = |ω1 − P/Q| from the circle
T × {0} to the periodic orbit of the linear twist near which the isolated periodic
point p is embedded. At that stage, we could assume ω1 irrational or Diophantine
and then impose that 1/Q be of order

√
rQ or larger, depending on the Diophantine

exponent of ω1, with the hope to refine the estimates on σ and thus on the dif-
fusing time. However, since we want to embed, using Herman’s trick, the isolated
periodic point in M1 at distance r without affecting the circle T × {0}, we must
accept the exponential smallness of the isolation parameter in M1 to be dictated in
the first place by the Gevrey regularity of our compactly supported perturbations,
thus absorbing the potential gain stemming from arithmetics. This means that by
our technique we cannot tackle the problem of matching the diffusion rate with
the doubly exponential stability lower bounds obtained in [3,12], that are of the

form exp
(
exp

(
r−

1
α(τ+1)

))
, where α refers to the Gevrey regularity class and τ is the

Diophantine exponent of the translation vector.
To emphasize the role that arithmetics should play in optimizing the diffusion

speed we may ask the following question that is similar to the one raised in [6,
Question 24] for elliptic fixed points:

Question 1. ive an example of an analytic or Gevrey smooth Hamiltonian that has
a non-resonant invariant torus with positive definite twist that is not more than
exponentially stable in time.

It follows from [2,3,12], that a super Liouville property must be required on
the frequency vector of the invariant torus.

Questions on the Optimality of the Bounds, on Analytic Perturbations and on the
Genericity of Doubly Exponential Diffusion

An interesting way to address the question of optimizing the bounds, as well as
to aim at analytic constructions, is to look for a single analytic (or Gevrey smooth)
perturbation of F0 that yields amap F̃ that is tangent to F0 at 0 to some fixed degree,
and that has a sequence of periodic orbits pn with isolation properties related to the

arithmetics of ω1 (for instance, with σn of order er−1/(τ
′+1)

n , where τ ′ is such that ω1
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is not τ ′-Diophantine). However, even if such a perturbation of F0 is possible, it
would still be a delicate task to perform an analytic coupling with G0 since a single
analytic intervention to couple the neighborhood of the orbit of any periodic point
pn with the second factor will affect the whole map everywhere and we cannot rely
on the nice direct product structure of F with G0 for further perturbations as we
do in the Gevrey category. One should probably resort to the theory of normally
hyperbolic invariant manifolds to say that some kind of product structure remains
valid at the periodic orbits of the points pn . Even then, however, the linear character
of the twist of the second factor will definitely disappear, which will also bring extra
difficulties.

Let us make a last remark concerning the analytic category. In fact, obtaining
examples of analytic Hamiltonians having a topologically unstable invariant torus
with positive definite twist at the torus is a hard task by itself, let alone the control
of the diffusion time that is the object of our investigation here. Real analytic
Hamiltonians with unstable invariant tori and elliptic fixed points (with arbitrary
frequencies in the case of 4 degrees of freedom) were obtained in [4,5], but these
examples do not have positive definite twist.

Finally, besides the analytic question and the question of optimizing the bounds,
one can ask whether the upper bounds on the diffusion rates that we obtain in our
examples are generic for KAM tori, or for invariant quasi-periodic Diophantine tori
in general.

Plan of the Paper

Section 3 contains the main statements for symplectomorphisms and for flows.
In Section 4, we state the main inductive step of the construction, that yields a
diffusive segment of orbit for a perturbation of F0 × G0 linked to one isolated
periodic point that will be created on the first factor. In Section 4.2 we explain how
the main inductive step is used to result in a diffusive invariant torus. In Section 4.1
we elaborate on this to get simultaneously a large measure set of invariant tori that
are diffusive.

Sections 5 and6 contain the proof of themain inductive step. Section5 is devoted
to the perturbation of F0 in order to get the map F with isolated periodic points.
In Section 5.1, we show how to perturb circular rotations to obtain a periodic orbit
with the required isolation estimate and with arbitrary large period. In Section 5.2
we show how this periodic orbit can be imbedded in a perturbation of F0. Section 6
introduces the coupling lemma of F withG0 and shows how to use it to get diffusion
using the isolated periodic point of F .

In Section 7 we provide the suspension trick that allows to transfer the results
from the discrete case of symplectomorphisms to the continuous time context of
Hamiltonian flows.

In the Appendix we collect and prove some necessary Gevrey estimates for
maps and for flows that are used all along the paper.
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3. Statements

3.1. Notations on Diffusive Dynamics and Gevrey Functions

We use the notation

E(ν) = EC,γ (ν) := ee
Cν−γ

for ν > 0 (3.1)

for some choice of C, γ > 0 that we will explicit later. We will say informally that
“E(ν) is doubly exponentially large for small ν”. Notice that

E(ν) 	 E(λν)μ as ν → 0, for every λ > 1and μ > 0. (3.2)

Definition 3.1. Given a transformation T (or a flow) on a metric space (M, d) and
ν > 0, we say that:

• A point z of M is ν-diffusive if there exist an initial condition ẑ ∈ M and a
positive integer (or real) t such that d(ẑ, z) � ν, t � E(ν) and d(T t ẑ, z) �
E(2ν).

• A subset X of M is ν-diffusive if all points in X are ν-diffusive.
• A subset X of M is diffusive if there exists a sequence νn → 0 such that X is

νn-diffusive for each n.

In the latter cases, we also say that T is ν-diffusive on X , resp. diffusive on X .

Our goal is to construct examples of diffusive dynamics in the context of
near-integrable Hamiltonian systems and exact-symplectic maps. The requirement
d(T t ẑ, z) � E(2ν) might seem exaggerated at first look, but, as mentioned earlier,
there will be no essential difference in the order of magnitude of the time needed
to diffuse by an amount ν or by an amount as large as E(2ν).

We will also use a variant of the above definition: we say that a point or a set is
ν- diffusive-∗ or diffusive-∗ if the corresponding property holds with the function E
replaced by

E∗(ν) := E
(
ν/| ln ν|) = exp

(
νγ Cν−γ )

for ν ∈ (0, 1). (3.3)

Notice that, as ν → 0, E(ν) � E∗(ν) � ee
C ′ν−γ ′

for any γ ′ > γ and C ′ > 0.
We will deal with Gevrey smooth functions and maps in several real variables.

Periodicity may be required with respect to some of these variables, in which case
we will consider that each of the corresponding variables is an angle, which lives
in

T := R/Z.

Recall that, given a real α � 1, Gevrey-α regularity is defined by the requirement
that the partial derivatives exist at all (multi)orders � and are bounded byC M |�||�|!α
for some C and M ; when α = 1 this simply means analyticity, but we shall take
α > 1 throughout the article. Upon fixing a real L > 0 which essentially stands for
the inverse of the previous M , one can define a Banach algebra Gα,L(K ) ⊂ C∞(K )
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when K is a Cartesian product of closed Euclidean balls and tori; the elements of
Gα,L(K ) are the “uniformly Gevrey-(α, L)” functions on K . In the non-compact
case of a Cartesian product RN × K with K as above, we define

Gα,L(RN × K ) ⊂ Gα,L(RN × K ) ⊂ C∞(RN × K ),

where the smaller space is a Banach algebra, with norm ‖ . ‖α,L , consisting of
uniformly Gevrey-(α, L) functions onRN ×K , while Gα,L(RN ×K ) is a complete
metric space, with translation-invariant distance dα,L , obtained by covering RN by
an increasing sequence of closed balls and considering the Fréchet space structure
accordingly; details are given in Appendix A.1.

3.2. Hamiltonian Flows

Let n � 2.We work inTn×R
n , with coordinates (θ1, . . . , θn, r1, . . . , rn), or in

T
n+1 × R

n+1, with coordinates (θ1, . . . , θn, τ, r1, . . . , rn, s). We use the standard
symplectic structures

∑n
j=1 dθ j ∧ dr j or

∑n
j=1 dθ j ∧ dr j + dτ ∧ ds, so that it is

equivalent to consider a non-autonomous Hamiltonian h(θ, r, t) on Tn×R
n which

depends 1-periodically on the time t or a Hamiltonian of the form H(θ, τ, r, s) =
s + h(θ, r, τ ) on T

n+1 × R
n+1. Given an arbitrary ω ∈ R

n , we will be interested
in non-autonomous 1-periodic perturbations of

h0(r) := (ω, r)+ 1
2 (r, r) (3.4)

or, equivalently, in certain autonomous perturbations of the integrable Hamiltonian

H0(r, s) := s + h0(r), (3.5)

for which we denote by T(r,s) the invariant torus Tn+1 × {(r, s)} associated with
any r ∈ R

n and s ∈ R (it carries the quasi-periodic motion θ̇ = ω + r , τ̇ = 1).

Theorem 3.1. Let α > 1 and L > 0 be real. For any ε > 0 there is h ∈ Gα,L(Tn×
R

n × T) such that

(1) dα,L(h0, h) < ε,
(2) the Hamiltonian vector field generated by H := s+ h(θ, r, τ ) is complete and,

for every s ∈ R, the torus T(0,s) ⊂ T
n+1 × R

n+1 is invariant and diffusive
for H. Here the exponent implied in (3.1) is γ = 1

α−1 .

Note that if ω is Diophantine then, for any h satisfying (1) of Theorem 3.1,
we know from [3,12] that T(0,s) is doubly exponentially stable (because H0 is
quasi-convex). More precisely, it holds that for any initial condition that is at dis-
tance ρ from T(0,s), the orbit will stay within distance 2ρ from T(0,s) during time

exp
(
exp

(
r−

1
α(τ+1)

))
, where τ is the Diophantine exponent. Theorem 3.1 shows that

we cannot expect in general a stability better than doubly exponential. Observe that
we do not recover however the factor 1/(1+τ) in the exponent governing our lower
bound on the diffusion time.

Note also thatwe know from [12] and [3] that, for H such that dα,L (H0, H) < ε,
we have a set of invariant tori that are doubly exponentially stable andfill a setwhose



KAM Tori are No More than Sticky 1185

complement has measure going to 0 as ε → 0 (for r in the unit ball for example).
Our next result gives an example where most of these tori are no more than doubly
exponentially stable.

Theorem 3.2. Let α > 1 and L > 0 be real. For any ε > 0, there exist h ∈
Gα,L(Tn ×R

n ×T) and a closed set Xε ⊂ [0, 1] with Leb(Xε) � 1− ε, such that

(1) dα,L(h0, h) < ε,
(2) the Hamiltonian vector field generated by H := s+ h(θ, r, τ ) is complete and,

for each r ∈ (Xε + Z)× R
n−1 and s ∈ R, the torus T(r,s) ⊂ T

n+1 × R
n+1 is

invariant and diffusive-∗ for H. Here the exponent implied in (3.3) is γ = 1
α−1 .

Both theorems will be proved in Section 7 by suspension of analogous results
which deal with exact-symplectic map and which we state in the next section. In
fact, the union T

n+1 × (Xε + Z) × R
n of all the tori mentioned in Theorem 3.2

will be shown to be itself diffusive-∗ with exponent γ = 1
α−1 .

As mentioned in Section 2, the unstable orbits which we will construct to prove
our diffusiveness statements are in fact bi-asymptotic to infinity: we will see that
their r2-coordinates travel from −∞ to +∞.

3.3. Exact-Symplectic Maps

Let ω = (ω1, ω2) ∈ R
2. Recall that T = R/Z. We set M1 := T × R and

M2 := T× R and define F0 : M1 ý and G0 : M2 ý by

F0(θ1, r1) := (θ1 + ω1 + r1 + Z, r1), G0(θ2, r2) := (θ2 + ω2 + r2 + Z, r2),

(3.6)

and we set

T0 := F0 × G0 : M1 × M2 ý . (3.7)

Using the identification M1 × M2 � T
2 × R

2, we call T0 the torus T2 × {(0, 0)}.
This torus is invariant by T0 and the restricted dynamics on it is the translation of
vector ω. More generally we set

T(r1,r2) := T
2 × {(r1, r2)} for any (r1, r2) ∈ R

2.

We say that a function is flat at a point or on a subset, if it vanishes together
with all its partial derivatives of all orders there. Our first result for the discrete
case is that one can find a Gevrey perturbation of the integrable twist map T0 that
is flat at the torus T0 (which thus stays invariant) and for which this invariant torus
is diffusive.

Fromnowon,when a function H on a symplecticmanifold generates a complete
Hamiltonian vector field, we denote by �H the time-1 map of the flow (note that
t �→ �t H is then the continuous time flow generated by H ). Thus, endowing
M1×M2 � T

2×R
2 with the symplectic form dθ1∧dr1+dθ2∧dr2, we can write

T0 = �ω1r1+ω2r2+ 1
2 (r21+r22 ). (3.8)
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Theorem 3.3. Let α > 1 and L > 0 be real. For any ε > 0 there exist u ∈
Gα,L(M1) and v ∈ Gα,L(M1 × M2) such that

(1) u and v are flat for r1 = 0,
(2) ‖u‖α,L + ‖v‖α,L < ε,
(3) T0 is invariant and diffusive for T := �v ◦ �u ◦ T0, with exponent γ = 1

α−1
in (3.1).

Here, when we write �u with a function u : M1 → R, we view u as defined on
M1 × M2 (and independent of the variables θ2 and r2) and thus mean �u : M1 ×
M2 ý.

Our next result is a strengthening of Theorem 3.3, in which we find a perturba-
tion that keeps invariant most of the tori of T0 while insuring that they do become
diffusive.

We will see that, since the construction of u and v is completely local, one can
insure that in addition they are 1-periodic in r1. If now X ⊂ [0, 1] is a closed set
and if u and v are flat for r1 ∈ X , then all the tori of the form T(r1,r2), r1 ∈ X + Z,
that are invariant by T0, are also invariant by T = �v ◦�u ◦ T0 and carry the same
translation dynamics of vector ω+ (r1, r2). If moreover u and v are such that there
are diffusive orbits for T on sufficiently dense scales in the neighborhood of the
tori T(r1,r2), r1 ∈ X + Z, then all these tori will be diffusive. This is the content
of the next result, in which we also control the measure of the complement of the
invariant tori (in bounded regions).

Theorem 3.4. Let α > 1 and L > 0 be real. For any ε > 0 there exist u ∈
Gα,L(M1) and v ∈ Gα,L(M1 × M2) that are 1-periodic in r1, and a closed set
Xε ⊂ [0, 1] with Leb(Xε) � 1− ε, so that

(1) u and v are flat for r1 ∈ Xε + Z.
(2) ‖u‖α,L + ‖v‖α,L < ε,
(3) for each (r1, r2) ∈ (Xε + Z)×R, the torus T(r1,r2) is invariant and diffusive-∗

for T := �v ◦�u ◦ T0, with exponent γ = 1
α−1 in (3.3).

In fact, in (3), the union T× (Xε + Z)× M2 of all these tori will be shown to
be itself diffusive-∗ for T with exponent γ = 1

α−1 .

Remark 3.1. As immediate corollaries, we get multidimensional versions of The-
orems 3.3 and 3.4 , in Tn ×R

n with any n � 3, simply by taking direct product of

the previous discrete systems with factors of the form�ωi ri+ 1
2 r2i , i � 3: identifying

T
n × R

n with M1 × · · · × Mn , where Mi := T× R for each i , and setting

T0 := �h0 : Tn × R
n ý

[with the same h0 as in (3.4)—this is thus a generalization of (3.8)], the statements
of Theorems 3.3 and 3.4 hold verbatim with this new interpretation of T0 except
that, in condition (3) of Theorem 3.4, T(r1,r2) is to be replaced with T

n × {r} for
arbitrary r ∈ (Xε+Z)×R

n and the functions u and v are to be viewed as functions
on T

n × R
n .



KAM Tori are No More than Sticky 1187

Remark 3.2. To prove the above discrete-time diffusiveness statements, we will
exhibit orbits (T k ẑ)k∈Z which satisfy the first requirement of Definition 3.1,
d(T t ẑ, z) � E(2ν) with a certain positive integer t � E(ν), for smaller and
smaller positive values of ν. We will see that, in fact, they even satisfy d(T jt ẑ, z) �
| j |EC,γ (2ν) for all j ∈ Z and are thus bi-asymptotic to infinity, and more precisely
their r2-coordinates grow linearly by an exact amount 1/q after q iterates, where
q = t1/3 is integer.

4. The Main Building Brick: Localized Diffusive Orbits

We now fix real numbers α > 1 and L > 0 once for all. We also fix ω ∈ R
2

and work with T0 = �ω1r1+ω2r2+ 1
2 (r21+r22 ) : M1 × M2 ý as in Section 3.3.

To prove Theorems 3.3 and 3.4 , and then the continuous time versions of these,
we will use the following building brick, where we use the notation

V(r, ν) := T× (r − ν, r + ν) ⊂ T× R for any r ∈ R and ν > 0.

Proposition 4.1. Let γ := 1
α−1 and b := 1

4 . There exists c = c(α, L) such that,

for any ν > 0 small enough and r̄ ∈ R, there exist u ∈ Gα,L(M1) and v ∈
Gα,L(M1 × M2) such that

(1) u ≡ 0 on V(r̄ , ν)c and v ≡ 0 on V(r̄ , ν)c × M2,
(2) ‖u‖α,L + ‖v‖α,L� e−cν−γ

,
(3) the setV(r̄ , ν)×M2 is invariant and

(
3ν, τ, τ b

)
-diffusive for T := �v◦�u ◦T0,

where τ := E3cγ,γ (ν).

In Condition (3) of the statement, we have used a refinement of Definition 3.1:
we say that a subset X of M is (ν̃, τ, A)-diffusive for T if, for every point z of X ,
there exist ẑ ∈ M and t integer such that d(ẑ, z) � ν̃, t � τ and d(T t ẑ, z) � A.

The proof of Proposition 4.1 is in Sections 5 and 6 . (The reader will see that
our choice of b = 1

4 is quite arbitrary; any positive number less than 1
3 would do.)

4.1. Proof that Proposition 4.1 Implies Theorem 3.3

Weare given ε > 0 and, without loss of generality, we can assume that ε is small
enough so that we can apply Proposition 4.1 for every n � 1 with the following
values of ν and r̄ :

νn := (cγ )1/γ 10−nε, r̄ (n) := 2νn .

We thus obtain un ∈ Gα,L(M1), supported in V(r̄ (n), νn), and vn ∈ Gα,L(M1 ×
M2), supported in V(r̄ (n), νn) × M2, which also satisfy Conditions (2) and (3) of
Proposition 4.1. Observe that for any two different values of n the supports are
disjoint (because r̄ (n) − νn > r̄ (n+1) + νn+1).

Since

ex > x and e−x < x−1 for all x > 0, (4.1)
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we have

e−cν−γ
n = (

e−cγ ν
−γ
n

)1/γ
<

(
cγ ν

−γ
n

)−1/γ = (cγ )−1/γ νn, (4.2)

hence the formulas u := ∑∞
n=1 un and v := ∑∞

n=1 vn define functions u ∈
Gα,L(M1) and v ∈ Gα,L(M1 × M2) with ‖u‖α,L + ‖v‖α,L �

∑
e−cν−γ

n < ε.
Moreover, since the un’s, vn’s and all their partial derivatives vanish for r1 = 0,
the same is true for u and v. The functions u and v thus satisfy properties (1)–(2)
of Theorem 3.3.

We claim that T = �v ◦ �u ◦ T0 also satisfies property (3) of Theorem 3.3.
Indeed, the disjointness of the supports implies that T coincides with�vn ◦�un ◦T0
onV(r̄ (n), νn)×M2. Now, for each z ∈ T0 and n � 1, we can pick z̄ ∈ V(r̄ (n), νn)×
M2 such that d(z̄, z) < 2νn , and then, by (3) of Proposition 4.1, we can find
ẑ ∈ V(r̄ (n), νn) × M2 and t � τn := E3cγ,γ (νn) such that d(ẑ, z̄) � 3νn and
d(T t ẑ, z̄) � τ b

n . We get d(ẑ, z) � 5νn and τn = EC,γ (5νn) if we use C :=
3cγ · 5γ in the definition (3.1) of the doubly exponentially large function EC,γ .
Then, d(T t ẑ, z) > τ b

n − 2νn > 1
2τ

b
n 	 EC,γ (10νn) by (3.2), hence T is 5νn-

diffusive on T0 for every n large enough.

4.2. Proof that Proposition 4.1 Implies Theorem 3.4

We are given ε > 0 and, without loss of generality, we can assume ε � 1. Let
γ := 1

α−1 and let c be as in Proposition 4.1.
Here is a definition that we will use from now on: we say that a subset Y of

a metric space X is ν-dense if, for every z ∈ X , there exists z̄ ∈ Y such that
d(z, z̄) � ν.
(a) We first define a fast increasing sequence of integers by

N1 := � ∗ �exp(4κ/ε), Ni := Ni−1
� ∗ �exp (

exp
(
C̃(Ni−1 ln Ni−1)γ

))
for i � 2, (4.3)

where κ := max{1, (cγ )−1/γ } and C̃ := max{6cγ, 1/γ }. We also set

ν̃i := 1

Ni
, νi := ν̃i

| ln ν̃i | =
1

Ni ln Ni
, τi := E3cγ,γ (νi ).

According to Lemma B.1 in the appendix, one has

2νi Ni = 2
ln Ni

� 2−2i+1ε/κ < 1. (4.4)

(b) We now construct a sequence (Yi )i�1 of mutually disjoint subsets of R/Z such
that, for each i � 1,

(i) Yi is a disjoint union of at most Ni open arcs Y (i, j),
(ii) each of these open arcs can be written Y (i, j) = (r (i, j)−νi , r (i, j)+νi ) mod Z,

with r (i, j) ∈ [0, 1),
(iii) Yi is ν̃i -dense in (R/Z)− ⊔

1�i ′�i−1
Yi ′ ,
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(iv) (R/Z)− ⊔

1�i ′�i

Yi ′ is a disjoint union of Ni closed arcs of equal length.

To do this, we start with r (1, j) := j−1
N1

for j = 1, . . . , N1 and define the

arcs Y (1, j) and the set Y1 by (i)–(ii) (the disjointness requirement results from
2ν1N1 < 1). We then go on by induction and suppose that, for a given i � 1,
(i)–(iv) hold for i ′ = 1, . . . , i . As a consequence of (i)–(ii) and (4.4), we have

Leb(Yi ′) � 2νi ′Ni ′ � 2−i ′ε/κ � 2−i ′ for i ′ = 1, . . . , i. (4.5)

We observe that Mi+1 := Ni+1
Ni

is an integer � 3. Inside each closed arc mentioned
in (iv), we can place Mi+1 − 1 disjoint open arcs of length 2νi+1 so that the
complement is made of Mi+1 closed intervals of equal length. Indeed, on the one
hand 2νi+1(Mi+1 − 1) < 2νi+1Ni+1/Ni < 2−i−1/Ni , on the other hand, the
common length of the closed arcs of (iv) is

μi = 1
Ni

(
1−

i∑

i ′=1
Leb(Yi ′)

)
> 2−i−1/Ni

by (4.5). Labelling all the new open arcs as Y (i+1, j), where j runs through a set
of Ni (Mi+1 − 1) < Ni+1 indices, and calling Yi+1 their union, we get the desired
properties (note that Yi+1 is μi

Mi+1 -dense in each closed arc mentioned in (iv), and
μi

Mi+1 < 1
Ni Mi+1 = ν̃i+1).

(c) Now, for each i and j , we apply Proposition 4.1 with r̄ = r (i, j) just constructed
and ν = νi (assuming ε small enough so that the νi ’s are small enough to allow
us to do so). We obtain Gevrey functions u(i, j) and v(i, j) supported in V(r (i, j), νi )

and V(r (i, j), νi )× M2, with

‖u(i, j)‖α,L + ‖v(i, j)‖α,L � ξi , where ξi := e−cν−γ
i < κνi

(incorporating (4.2)), so that V(r (i, j), νi ) × M2 is invariant and
(
3νi , τi , τ

b
i

)
-

diffusive for �v(i, j) ◦ �u(i, j) ◦ T0. We set u(i, j)
per (θ1, r1) := ∑

k∈Z
u(i, j)(θ1, r1 + k)

and v
(i, j)
per (θ1, r1, θ2, r2) := ∑

k∈Z
v(i, j)(θ1, r1 + k, θ2, r2) so as to get functions

which are 1-periodic in r1 and have the same Gevrey norms.
Consider the finite sums ui := ∑

j u(i, j)
per and vi := ∑

j v
(i, j)
per for each i � 1:

the disjointness of the supports implies that

Ti := �vi ◦�ui ◦ T0 is
(
3νi , τi , τ

b
i

)
-diffusive on T× Ỹi × M2, (4.6)

where Ỹi is the lift of Yi in R. Finally, let u := ∑
i ui and v := ∑

i vi . These are
well-defined Gevrey functions which are 1-periodic in r1 because

‖ui‖α,L + ‖vi‖α,L � Niξi < Niκνi = κ

ln Ni
� 2−i−1ε for each i � 1 (4.7)

(by (4.4)), hence the series over i are convergent in Gevrey norm, with ‖u‖α,L +
‖v‖α,L < ε.
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(d) We claim that T := �v ◦�u ◦ T0 satisfies Theorem 3.4 with

Xε :=
(
R−

⊔

i�1

Ỹi

)
∩ (0, 1).

To prove this claim, firstly we note that Leb
([0, 1] − Xε

) = ∑
i Leb(Yi ) � ε

by (4.5), and Xε is closed because Ỹ1 contains 0 and 1.
Secondly the functions u and v vanish with all their partial derivatives for

r1 ∈ Xε because the functions u(i, j)
per and v

(i, j)
per and all their partial derivatives do.

Lastly, by virtue of the previous point, for each (r1, r2) ∈ (Xε + Z) × R the
torus T(r1,r2) is invariant for T , thus it only remains for us to show that the union
T× (Xε +Z)×M2 of these tori is diffusive-∗ with exponent γ = 1

α−1 . In view of
the definition of Xε, it is sufficient to show that, for i large enough,

Zi := M1 × M2

−
⊔

1�i ′�i−1
T× Ỹi ′ × M2 is 2ν̃i -diffusive-∗ for T with exponent γ. (4.8)

We will prove this with the constant C := 3γ+1cγ in the definitions (3.1) and (3.3)
of the functions E = EC,γ and E∗ = E∗C,γ , as a consequence of the fact that, for i
large enough,

Zi is (2ν̃i , τi ,
1
2τ

b
i )− diffusive for T . (4.9)

Indeed, τi = E3cγ,γ (νi ) = E(3νi ) = E
( 3ν̃i| ln ν̃i |

) � E
( 2ν̃i| ln ν̃i |−ln 2

) = E∗(2ν̃i )

by (3.2), and 1
2τ

b
i 	 E

( 4ν̃i| ln ν̃i |−ln 4
) = E∗(4ν̃i ) still by (3.2), hence (4.9)

implies (4.8).
(e) To prove (4.9), let z ∈ Zi . We set Wi := T × Ỹi × M2. By property (iii)
of the construction of Yi , we can find z̄ ∈ Wi such that d(z̄, z) � ν̃i , and (4.6)
then yields ẑ ∈ Wi and t � τi such that d(ẑ, z̄) � 3νi and d(T t

i ẑ, z̄) � τ b
i . We

have | ln ν̃i | = ln Ni > 3 by virtue of (4.4), hence 3νi < ν̃i and d(ẑ, z) � 2ν̃i .
Since u1, . . . , ui−1, v1, . . . , vi−1 and all their partial derivatives vanish on Wi , the
restriction of T to Wi coincides with that of

T̃i := �vi+gi ◦�ui+ fi ◦ T0, where fi :=
∑

i ′>i

ui ′ , gi :=
∑

i ′>i

vi ′ . (4.10)

Comparing the definition Ti in (4.6) and that of T̃i in (4.10), we observe that the
first t points on the Ti -orbit of ẑ are close to the first t points on its T -orbit (which
is the same as its T̃i -orbit). More precisely, (4.7) yields

‖ui‖α,L + ‖ fi‖α,L + ‖vi‖α,L + ‖gi‖α,L �
∑

i ′�i

Ni ′ξi ′ � 2−iε,

hence we can use Corollary A.3 from the appendix for i large enough, obtaining

d
(
T t

i (ẑ), T̃ t
i (ẑ)

)
� 3τi C1

(‖ fi‖α,L + ‖gi‖α,L
)
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from (A.11), where C1 = C1(α, L), but

‖ fi‖α,L + ‖gi‖α,L �
∑

i ′�i+1
Ni ′ξi ′ � 2Ni+1ξi+1 � 2 · 3−τi

by the first part of (4.7) and (B.2)–(B.3), whence d(T t
i ẑ, T̃ t

i ẑ) � 2C1 � 1
2τ

b
i −

d(z̄, z) and thus d(T t ẑ, z) = d(T̃ t
i ẑ, z) � 1

2τ
b
i for i large enough, and we conclude

that z is (2ν̃i , τi ,
1
2τ

b
i )-diffusive for T . The proof of (4.9) is thus complete.

5. Isolated Periodic Points for Twist Maps of the Annulus

Definition 5.1. Given a real σ > 0 and a discrete dynamical system in a metric
space, we say that a periodic point is σ -isolated if it lies at a distance � σ of the
rest of its orbit.

The goal of this section is to prove the following statement, which will be
instrumental in the proof of Proposition 4.1, where a perturbation of F0 is obtained
that has an isolated periodic point in M1.

Proposition 5.1. Let γ := 1
α−1 . There exists c = c(α, L) with the following

property: if we are given real numbers ν and σ with ν > 0 small enough and
0 < σ � exp(−2cν−γ ), then, for any integer � � 6/ν and for any r̄ ∈ R, there
exists u ∈ Gα,L(M1) such that

(1) u ≡ 0 on V(r̄ , ν)c,
(2) ‖u‖α,L � 1

2 exp(−cν−γ ),
(3) F := �u ◦ F0 : M1 ý has a σ -isolated periodic point z1 ∈ V(r̄ , 3ν/4) of

period q ∈ [�, 3�/ν],
(4) the set {Fs(z1) | s ∈ N, 2/ν � s � 6/ν} is 2ν-dense in V(r̄ , ν).

The interest of the statement is that, although σ is required to be exponentially
small, it can be kept independent of �, even if we choose �, and thus q, doubly
exponentially large.

The proof will start with the construction of a circle map with an isolated
periodic point.

5.1. Circle Diffeomorphisms with Isolated Periodic Points

Westart by constructing a circle diffeomorphismwith an isolated periodic point.
For any Q ∈ N

∗ we denote by �Q a function in C∞(T) satisfying

�Q is 1
Q -periodic, 0 � �Q � 1, �Q(0) = 0, �Q ≡ 1on

[ 1
4Q , 3

4Q

]
. (5.1)

Since α > 1, every space Gα,L ′(T) contains such a function, and one can choose
it so that

‖�Q‖α,L ′ � L ′α exp(c̃ Qγ ), (5.2)
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with c̃ = c̃(α, L ′) independent of Q according to Lemma A.5 in the appendix (take
for example �Q(θ) := ∑Q

j=1 η2Q
( 2 j−1

2Q + θ
)
and c̃ := L ′−α + 1

γ
+ 2γ c1(α, L ′)

with the notation of Lemma A.5, using the inequalities L ′−α � eL ′−α
and 1 � Q �

e
1
γ

Qγ

).

Proposition 5.2. Let Q ∈ N
∗ and P ∈ Z be coprime and let σ ∈ (

0, 1
max(−�′Q)

)
.

Then, for every � ∈ N
∗, there exist an integer q = q�(Q, P) and a real δ =

δ�(σ, Q, P) such that

• � � q � �Q and 0 < δ � 1
�Q ,

• the point 1
2Q + Z is periodic of period q and σ -isolated for the circle map

θ ∈ T �→ fσ,δ(θ) := θ + P

Q
+ δ + σ�Q(θ) mod Z. (5.3)

If, moreover, � � 2Q, then the set { f s
σ,δ(

1
2Q + Z) | s ∈ N, Q � s � 2Q − 1} is

1
Q -dense in T.

Proof. (a) We define q = q�(Q, P) by writing

�P + 1

�Q
= p

q
with q ∈ N

∗and p ∈ Z coprime.

Since 1 is the only common divisor of � and �P + 1, we must have

�P + 1 = pD, Q = q ′D, q = �q ′ (5.4)

with D ∈ N
∗ and p ∧ q ′ = 1, hence � � q � �Q.

The condition 0 < σ < 1
max(−�′Q)

ensures that 1+ σ�′Q stays positive hence,

for every δ ∈ R, the formula

Fσ,δ(x) := x + P

Q
+ δ + σ�Q(x)

defines an increasing diffeomorphism of R such that Fσ,δ(x + 1) = Fσ,δ(x) + 1.
Formula (5.3) then defines a diffeomorphism fσ,δ of T, a lift of which is Fσ,δ . We
will tune δ so as to get the rotation number of fσ,δ equal to p/q.
(b) To study the dynamics of Fσ,δ and particularly the orbit of x0 := 1

2Q , we perform

the change of variable X = Qx and set X0 := 1
2 and

Gσ,δ(X) := QFσ,δ(X/Q) = X + P + δQ + σ Q�Q(X/Q),

G̃σ,δ(X) := X + δQ + σ Q�Q(X/Q).

Note that also G̃σ,δ is an increasing diffeomorphism ofR for each δ ∈ R. For every
� ∈ N

∗ we have

G̃�
σ,0(X0) < X0 + 1 = G̃�

0, 1
�Q

(X0) � G̃�

σ, 1
�Q

(X0)



KAM Tori are No More than Sticky 1193

(the left inequality holds because X0 < 1 and 1 is a fixed point of G̃σ,0; the right
inequality holds because σ Q�Q(x) � 0 for all x). Therefore, since δ �→ G̃�

σ,δ(X0)

is continuous and increasing, we can define δ := δ�(σ, Q, P) as the unique solution
of the equation

G̃�
σ,δ(X0) = X0 + 1,

and we know that 0 < δ�(σ, Q, P) � 1
�Q .

(c) We now fix δ to be this value δ�(σ, Q, P) and check that it satifies the desired
properties. First, notice that

4σ Q < 1 (5.5)

(because �Q(3/4Q) = 1 and �Q(1) = 0, hence the mean value theorem implies
max(−�′Q) � 4Q). Let us denote the full orbits of X0 = 1

2 under Gσ,δ and G̃σ,δ

by

X j := G j
σ,δ(X0), X̃ j := G̃ j

σ,δ(X0), j ∈ Z.

We have X0 = X̃0 < X̃1 < · · · < X̃�−1 < X̃� = X0 + 1. In fact,

X0 + σ Q < X̃1 < · · · < X̃�−1 < X0 + 1− σ Q. (5.6)

Indeed,�Q(X0/Q) = 1 hence X̃1 = X0+σ Q+δQ, and either X̃�−1 � X0+1− 1
4 ,

in which case X0 + 1 = G̃σ,δ(X̃�−1) = X̃�−1 + σ Q + δQ > X̃�−1 + σ Q, or
X̃�−1 < X0 + 1− 1

4 < X0 + 1− σ Q by (5.5).

Since �Q is 1
Q -periodic, we have G̃σ,δ(X + 1) = G̃σ,δ(X) + 1 and the pat-

tern (5.6) repeats 1-periodically: for every m ∈ Z, X̃�m = X0 + m and

X0 + m + σ Q < X̃�m+s < X0 + m + 1− σ Q for s = 1, . . . , �− 1.

Since �Q is 1
Q -periodic, we have G j

σ,δ(X) = G̃ j
σ,δ(X) + j P for every j ∈ Z,

hence X j = X̃ j + j P and, for every m ∈ Z,

X�m = X0 + m(�P + 1) = X0 + mpD (5.7)

X0 + Mm,s + σ Q < X�m+s < X0 + Mm,s + 1− σ Q for s = 1, . . . , �− 1,

(5.8)

with Mm,s := m(�P + 1)+ s P .
(d) Going back to the variable x = X/Q, we see that the orbit (x j ) j∈Z of x0
under Fσ,δ satisfies

x�m = x0 + mp

q ′
and x0 + Mm,s

Q
+ σ < x�m+s < x0 + Mm,s + 1

Q
− σ

(5.9)
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form ∈ Z and1 � s < � (thanks to (5.4) and (5.7)–(5.8)). In particular, xq = x0+p,
hence it induces a q-periodic orbit of type p/q for fσ,δ . The σ -isolation property
amounts to

dist(x j , x0 + Z) � σ for 1 � j < q = �q ′.

This holds because either j = �m with 1 � m < q ′ and the first part of (5.9) entails
x�m − x0 ∈ Q−Zwith dist(x�m − x0,Z) � 1

q ′ � 1
Q > 4σ by (5.5), or j = �m+ s

with 1 � s < � and the second part of (5.9) yields x j−x0 ∈ (
Mm,s

Q +σ,
Mm,s+1

Q −σ),

but ( Mm,s
Q ,

Mm,s+1
Q ) ∩ Z = ∅, hence dist(x j − x0,Z) > σ .

(e) We now suppose � � 2Q and prove the 1
Q -density statement.

If P = 0, then Q = 1 (because of the assumption P ∧ Q = 1) and there is
nothing to prove. We thus suppose P �= 0. Using the second part of (5.9) with
1 � s � 2Q − 1 < � and m = 0, since M0,s = s P , we get

x0 + s P

Q
< xs < x0 + s P

Q
+ 1

Q
for s = Q, . . . , 2Q − 1. (5.10)

Since P ∧Q = 1, the Q arcs
[
x0+ s P

Q , x0+ s P
Q + 1

Q

)
mod Z are mutually disjoint

and cover T; each of them has length 1
Q and, according to (5.10), contains a point

of {xs + Z | s = Q, . . . , 2Q − 1} = { f s
σ,δ(x0 + Z) | s = Q, . . . , 2Q − 1}. This

set is thus 1
Q -dense in T. ��

5.2. Herman Imbedding Trick of Circle Diffeomorphisms into Twist Maps

We will have to imbed the circle dynamics of Proposition 5.2 into the annulus
via a perturbation of the twist map F0. For this we will use the celebrated technique
introduced by Herman in [8] to imbed circle dynamics as restricted dynamics on
an invariant graph by a twist map.

Recall that trivial examples of symplectic maps of the annulus are given by

�h(θ, r) = (
θ + h′(r)+ Z, r

)
, �w(θ, r) = (

θ, r − w′(θ)
)
, (5.11)

where the function h = h(r) does not depend on the angle θ ∈ T, and the function
w = w(θ) does not depend on the action r . In particular,

h(r) ≡ ω1r + 1
2r2 ⇒ �h = F0. (5.12)

Proposition 5.3. Suppose that we are given a circle diffeomorphism of the form

θ ∈ T �→ f (θ) = θ + h′
(
r̂ + ε(θ)

)
mod Z,

where h = h(r) and ε = ε(θ) are smooth functions and r̂ ∈ R. Then the equation

− w′ = ε − ε ◦ f −1, (5.13)

determines a smooth function w = w(θ) up to an additive constant, and the annulus
map

�w ◦�h : (θ, r) �→ (
θ + h′(r)+ Z, r − w′(θ + h′(r))

)
(5.14)
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leaves invariant the graph
{(

θ, r̂ + ε(θ)
) | θ ∈ T

}
, with induced dynamics θ �→

f (θ) on it.

Proof. Let us check that the right-hand side of (5.13) has zero mean value:

〈ε ◦ f −1〉 =
∫

T

ε
(

f −1
(
θ̃
))
dθ̃ =

∫

T

ε(θ) f ′(θ) dθ and

f ′(θ) = 1+ d

dθ

[
h′

(
r̂ + ε(θ)

)]
,

hence 〈ε〉−〈ε◦ f −1〉 = − ∫
T

ε(θ) d
dθ

[
h′

(
r̂+ε(θ)

)]
dθ = ∫

T
ε′(θ)h′

(
r̂+ε(θ)

)
dθ =

0, since this is the mean value of the derivative of the periodic function h
(
r̂+ε(θ)

)
.

Consequently, any primitive of ε − ε ◦ f −1 induces a smooth function on T.
Now, consider an arbitrary point (θ, r) = (

θ, r̂ +ε(θ)
)
on the graph mentioned

in the statement. Its image by �w ◦�h is (θ1, r1) :=
(
θ + h′(r)+ Z, r −w′(θ1)

)
.

We have

θ1 = θ + h′
(
r̂ + ε(θ)

)+ Z = f (θ)

and r1 = r̂ + ε(θ)− w′(θ1) = r̂ + ε ◦ f −1(θ1)− w′(θ1) = r̂ + ε(θ1). ��
Let us have a look at the solutions of (5.13) in the case of Gevrey data, with h

as in (5.12), that is h′(r) ≡ ω1 + r .

Lemma 5.4. Let L ′ > L. Suppose

f (θ) = θ + ω1 + r̂ + ε(θ) mod Z for all θ ∈ T, and ε = δ + ε∗,
where r̂ , δ ∈ R and ε∗ ∈ Gα,L ′(T) satisfies ‖ε∗‖α,L ′ � εi with εi = εi(α, L , L ′)
as in Lemma A.4. Then f is a circle diffeomorphism and Equation (5.13) has a
solution w such that

‖w‖α,L � (1+ 2Lα)‖ε∗‖α,L ′ . (5.15)

Proof. We canwrite f = (Id+ω)◦(Id+ε∗)withω := ω1+r̂+δ. By LemmaA.4,
we obtain that Id+ε∗ is a diffeomorphism ofR, which (because of periodicity) can
be viewed as the lift of a circle diffeomorphism. Hence f is a circle diffeomorphism
and the right-hand side of (5.13) is

g := ε − ε ◦ f −1 = ε∗ − ε∗ ◦ f −1 = ε∗ − ε∗ ◦ (Id+ε∗)−1 ◦ (Id−ω).

LemmaA.4 yields ‖ε∗◦(Id+ε∗)−1‖α,L � ‖ε∗‖α,L ′ , which easily implies ‖g‖α,L �
2‖ε∗‖α,L ′ .

Now, we already know that g has zero mean value, and a solution to (5.13) can
be defined by the formula

w(θ + Z) ≡ −
∫ θ

0
g(θ1) dθ1 for θ ∈ (− 1

2 ,
1
2 ].

One has ‖w‖C0(T) � 1
2‖g‖C0(T) and, for each k � 0,

L(k+1)α

(k + 1)!α ‖w
(k+1)‖C0(T) =

L(k+1)α

(k + 1)!α ‖g(k)‖C0(T) � Lα · Lkα

k!α ‖g(k)‖C0(T),

whence ‖w‖α,L � ( 12 + Lα)‖g‖α,L , and the conclusion follows. ��
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5.3. Proof of Proposition 5.1

(a) We start with an elementary fact.

Lemma 5.5. Suppose x and ν are real, with ν > 0 small enough. Then there exist
Q ∈ N

∗ and P ∈ Z coprime such that |x − P/Q| < ν/2 and 1 < 2
ν

< Q < 3
ν

.

Proof. For ν > 0 small enough, thanks to the Prime Number Theorem, we can
pick a prime number Q in (2ν−1, 3ν−1) (for example Q = pk with k := � ∗
�5ν−1/2| ln ν|, where pk ∼ k ln k is the kth prime number). The interval (Qx −
Qν
2 , Qx + Qν

2 ) has length > 2, hence it contains at least two consecutive integers,
one of which is not a multiple of Q and can be taken as P . ��

We now define

L ′ := 2L , c := max{3γ+1c̃, 2γ+1c1},
with c̃ = c̃(α, L ′) as in (5.2) and c1 = c1(α, L) as in Lemma A.5, and suppose that
we are given ν, σ, �, r̄ as in the statement of Proposition 5.1, with ν small enough
so as to be able to apply Lemma 5.5.

Applying Lemma 5.5 with x = ω1 + r̄ , we get a rational P/Q such that
P ∧ Q = 1 and

1 < 2/ν < Q < 3/ν and
P

Q
= ω1 + r̂ with |r̂ − r̄ | < ν/2.

(b) Let us choose a function � = �Q ∈ Gα,L ′(T) satisfying (5.1)–(5.2) and apply
Proposition 5.2.We can do so since 2c � 3γ c̃, hence 0 < σ � e−2cν−γ

< e−c̃Qγ �
1

max(−�′) by (5.2). We get an integer q and a real δ satisfying

q ∈ [�, �Q] ⊂ [�, 3�/ν], 0 < δ � 1

�Q
<

ν

2�
� ν2

12
,

so that 1
2Q +Z is a σ -isolated periodic point of period q for the circle map f defined

by

θ ∈ T �→ f (θ) := θ + P

Q
+ δ + ε∗(θ) mod Z with ε∗ := σ�.

Moreover, since � � 6/ν � 2Q and 1
Q < ν

2 , the set { f s( 1
2Q + Z) | s ∈ N, 2/ν �

s � 6/ν} is ν
2 -dense in T.

(c) We are in the situation of Lemma 5.4, with

‖ε∗‖α,L ′ � σ L ′αec̃ Qγ � L ′αe−(2c−3γ c̃)ν−γ � L ′αe−
5c
3 ν−γ

,

which is less than εi(α, L , L ′) for ν small enough, thus Equation (5.13) with ε :=
δ + ε∗ and h′ = Id+ω1 has a solution w ∈ Gα,L(T) such that

‖w‖α,L � (1+ 2Lα)‖ε∗‖α,L ′ � (1+ 2Lα)L ′αe−
5c
3 ν−γ

.
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Proposition 5.3 now tells us that the annulus map F̃ := �w ◦ F0 : M1 ý leaves
invariant the graph G := {(

θ, r̂ + ε(θ)
) | θ ∈ T

}
, with f : T ý as induced

dynamics on G. In particular,

z1 :=
(

1
2Q + Z, r̂ + ε

(
1
2Q

))
∈ T× R

is a σ -isolated periodic point of period q for F̃ , with all its orbit contained in G.
Notice that, for ν small enough,‖ε‖C0(T) � δ+‖ε∗‖C0(T) � ν2/12+L ′αe− 5c

3 ν−γ �
ν/4, hence G ⊂ V(r̂ , ν/4) ⊂ V(r̄ , 3ν/4) and {F̃ s(z1) | s ∈ N, 2/ν � s � 6/ν} is
2ν-dense in V(r̄ , ν).
(d) The only shortcoming of the perturbation �w is that it is not supported on the
strip V(r̄ , ν), but this is easy to remedy: we will multiply w by a function which
vanishes outside V(r̄ , ν) without modifying the dynamics in V(r̂ , ν/4). Note that

V(r̂ , ν/4) ⊂ V(r̂ , ν/2) ⊂ V(r̄ , ν).

Let us thus pick η ∈ Gα,L(R) such that η(r) = 1 for all r ∈ [r̂ − ν/4, r̂ + ν/4]
and η(r) = 0 whenever |r − r̂ | � ν/2. According to Lemma A.5, we can achieve
‖η‖α,L � exp

(
2γ c1ν−γ

)
(using, in fact, a non-periodic version of Lemma A.5,

with p = 2
ν
). We now set

u(θ, r) := η(r)w(θ) for all (θ, r) ∈ T× R.

One can check that u satisfies conditions (1) and (2) of Proposition 5.1 for ν small

enough, because then ‖w‖α,L � 1
2e
− 3c

2 ν−γ
, while ‖η‖α,L � e

c
2 ν−γ

. Since F :=
�u ◦ F0 and F̃ coincide on G (in fact on all of V(r̂ , ν/4)), requirements (3) and (4)
are also fulfilled.

6. Coupling Lemma and Synchronized Diffusion à la Herman

6.1. Coupling Lemma

The following “coupling lemma” due toM. Herman was already used in [9–11]
to construct examples of unstable near-integrable Hamiltonian flows.

Lemma 6.1. Let M and M ′ be symplectic manifolds. Suppose we are given two
maps, F : M ý and G : M ′ ý, and two Hamiltonian functions f : M → R and
g : M ′ → R which generate complete vector fields and define time-1 maps � f

and �g. Suppose moreover that z∗ ∈ M is F-periodic, of period q, and that

f (z∗) = 1, d f (z∗) = 0 (6.1)

f (Fs(z∗)) = 0, d f (Fs(z∗)) = 0 for 1 � s � q − 1. (6.2)

Then f ⊗ g generates a complete Hamiltonian vector field and the maps

T := � f⊗g ◦ (F × G) : M × M ′ ý and ψ := �g ◦ Gq : M ′ ý
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satisfy

T nq+s(z∗, z′) = (
Fs(z∗), Gs ◦ ψn(z′)

)
(6.3)

for all z′ ∈ M ′ and n, s ∈ Z such that 0 � s � q − 1.

We have denoted by f ⊗ g the function (z, z′) �→ f (z)g(z′), and by F ×G the
map (z, z′) �→ (F(z), G(z′)).

Proof. See [10]. ��

6.2. Proof of Proposition 4.1

(a) Given r̄ ∈ R and ν > 0 small enough, we apply Proposition 5.1 with

σ := e−2cν−γ

(where c = c(α, L) is provided by Proposition 5.1) and an integer � � 6/ν that we
will specify later.

We thus get a function u ∈ Gα,L(M1) and a map F = �u ◦ F0 : M1 ý
satisfying properties (1)–(4) of Proposition 5.1. We call z(0)

1 the σ -isolated periodic
point mentioned in property (4), the period of which is an integer q ∈ [�, 3�/ν].

Let f := η
z(0)
1 ,σ

be defined by Lemma A.6. Observe that f , F and z∗ = z(0)
1

satisfy conditions (6.1)–(6.2) of Lemma 6.1 because z(0)
1 is a σ -isolated periodic

point.
(b) We now define g : M2 → R by the formula g(r2, θ2) = − 1

2πq sin(2πθ2).

According to (5.11), we have�g(θ2, r2) =
(
θ2, r2+ 1

q cos(2πθ2)
)
for all (θ2, r2) ∈

M2. In particular,

�g(0+ Z, r2) =
(
0+ Z, r2 + 1

q

)
for all r2 ∈ R.

On the other hand, (3.6) gives Gs
0(θ2, r2) =

(
θ2+ s(ω2+r2)+Z, r2

)
for all s ∈ Z.

Therefore

ψ := �g ◦ Gq
0

satisfies ψn(0+ Z,−ω2) = (0+ Z,−ω2 + n
q ) for all n ∈ Z, whence

Gs
0 ◦ ψn(z(0,0)

2

) = z(n,s)
2 with z(n,s)

2 :=
( sn

q
+ Z,−ω2 + n

q

)
for all n, s ∈ Z.

(6.4)

(c) Let v := f ⊗ g. We now apply Lemma 6.1 with the above functions f and g
and the maps F and G0, taking z∗ = z(0)

1 . In view of (6.3)–(6.4), we get

T nq+s(z(0)
1 , z(0,0)

2

) = (
Fs(z(0)

1 ), z(n,s)
2

)
for all n, s ∈ Z such that 0 � s�q−1,

(6.5)

with T = �v ◦ (F × G0) = �v ◦�u ◦ (F0 × G0).
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Notice that, for ν small enough, we have σ < ν/4, hence f ≡ 0 on V(r̄ , ν)c,
thus v satisfies condition (1) of Proposition 4.1, and we already knew that u also
did.

We have ‖u‖α,L � 1
2 exp(−cν−γ ) with c = c(α, L) stemming from Proposi-

tion 5.1.We can also achieve ‖v‖α,L � 1
2 exp(−cν−γ ) by choosing appropriately �.

Indeed, calling K the Gevrey-(α, L) norm of the function θ �→ 1
2π sin(2πθ) and

using q � � and (A.15), we get ‖v‖α,L � K
q ‖ηz,ν‖α,L � K

�
exp(c2σ−γ ), where

c2 = c2(α, L) stems from Lemma A.6. Therefore, the condition

q � � � L := 2K ecν−γ

ec2σ−γ

(6.6)

is sufficient to ensure that u and v satisfy condition (2) of Proposition 4.1. We
will fine-tune our choice of � later, when considering the “diffusion speed” of the
T -orbit described by (6.5).
(d) We note that V(r̄ , ν)×M2 is invariant by T because it is invariant by T0 as well
as by �tu and �tv for all t ∈ R in view of the condition on the supports of u and v.
Let b := 1

4 . To get condition (3) of Proposition 4.1 and thus complete its proof, we
will require

Lemma 6.2. The set
{(

Fs(z(0)
1 ), z(n,s)

2

) | n, s ∈ Z, 2
ν

� s � 6
ν

}
is 3ν-dense in

V(r̄ , ν)× M2 if (6.6) holds and ν is small enough.

Taking Lemma 6.2 for granted, we now show how to choose � so as to make
V(r̄ , ν)× M2

(
3ν, τ, τ b

)
-diffusive for T with τ := E3cγ,γ (ν).

Given arbitrary z ∈ V(r̄ , ν) × M2, Lemma 6.2 yields n and s integer such
that ẑ := (

Fs(z(0)
1 ), z(n,s)

2

) = T nq+s
(
z(0)
1 , z(0,0)

2

)
is 3ν-close to z. For any m � 1,

comparing the last coordinates of ẑ and T mq(ẑ) = (
Fs(z(0)

1 ), z(n+m,s)
2

)
, namely

−ω2 + n
q and −ω2 + n+m

q , we see that d(T mq(ẑ), ẑ) � m/q, hence

d(T q3
(ẑ), z) � q − 3ν with � � q � 3�

ν
. (6.7)

Let μ := ecν−γ = σ−1/2. The number L of (6.6) is 2Kμ ec2μ2γ � μ2ec2μ2γ
<

e(c2+ 1
γ

)μ2γ
and (c2 + 1

γ
)μ2γ � bμ3γ provided ν is small enough, and then

L < eb eCν−γ

with C := 3cγ. (6.8)

Since b < 1
3 , we can satisfy (6.6) by choosing � := � ν

3 e
1
3 e

Cν−γ

� and we then have

q3 � (3�/ν)3 � ee
Cν−γ = EC,γ (ν).

On the other hand, q−3ν � �−3ν � eb eCν−γ = EC,γ (ν)b for ν small enough.
We thus get property (3) of Proposition 4.1 from (6.7). The proof of that Proposition
is thus complete up to the proof of Lemma 6.2.
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6.3. Proof of Lemma 6.2

We keep the notations and assumptions of Section 6.2 and give ourselves an
arbitrary z = (z1, z2) ∈ V(r̄ , ν) × M2. We look for integers n and s such that
d
((

Fs(z(0)
1 ), z(n,s)

2

)
, (z1, z2)

)
� 3ν and 2

ν
� s � 6

ν
.

By property (4) of Proposition 5.1, we can choose the integer s so that

d
(
Fs(z(0)

1 ), z1
)

� 2ν, 2
ν

� s � 6
ν
.

On the other hand, writing z2 = (θ2+Z, r2)with θ2, r2 ∈ Z, we see from (6.4) that
the last coordinate of z(n,s)

2 will be ν-close to r2 if and only if |n−q(ω2+r2)| � νq.
Let us denote by n∗ the integer nearest to q(ω2 + r2), thus |n∗ − q(ω2 + r2)| � 1

2 .
To conclude, it is sufficient to take n of the form n = n∗ + m with m integer such
that

|m| � νq − 1
2 and dist

(
s(n∗ + m)

q
, θ2 + Z

)
� ν. (6.9)

Indeed, we will then have d
((

Fs(z(0)
1 ), z(n,s)

2

)
, (z1, z2)

)
�
√
4ν2 + ν2 + ν2 < 3ν.

The second part of (6.9) is equivalent to dist
(

m,
qθ2

s
− n∗ + q

s
Z

)
� νq

s
. Let

I :=
[
− (νq− 1

2 ), νq − 1
2

]
, J :=

[
x2 − νq

s
, x2 + νq

s

]
with x2 = qθ2

s
− n∗.

The whole of (6.9) is thus equivalent to

m ∈ I and m ∈ kq

s
+ J for some k ∈ Z. (6.10)

Now, kq
s + J ⊂ I is equivalent to

|I | � |J | and − 1
2

(|I | − |J |) � kq

s
+ x2 � 1

2

(|I | − |J |). (6.11)

Since � := |I | − |J | = 2νq − 1 − 2νq/s, (6.11) amounts to � � 0 and k
belonging to the interval

[ − sx2
q − s�

2q ,− sx2
q + s�

2q

]
, which has length s�/q =

2νs − 2ν − s/q � 4 − 2ν − 6/(νL) (using q � L). That length is � 1 for ν

small enough and the interval then contains at least one integer k∗. Diminishing ν

if necessary, we then have | k∗q
s + J | = 2νq/s � ν2L/3 � 1, hence we can find

m ∈ (
k∗q

s + J ) ∩ Z ⊂ I ∩ Z, thus solution to (6.10) or, equivalently, to (6.9).

7. Continuous Time

In Sections 4–6, we have proved Theorems 3.3 and 3.4 , providing examples of
discrete systems of the form�v◦�u ◦�h0 : Tn×R

n ýwith diffusive invariant tori
(using Remark 3.1). We will now deduce Theorems 3.1 and 3.2 by a “suspension”
device adapted from [10].
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Definition 7.1. Given an exact symplectic map T : Tn×R
n ý, we call suspension

of T any non-autonomous Hamiltonian which depends 1-periodically on time

h : Tn × R
n × T→ R,

for which the flow map between the times t = 0 and t = 1 exists and coincides
with T .

Lemma 7.1. Let h0 : r ∈ R
n �→ (ω, r)+ 1

2 (r, r) as in Section 3.2. Suppose that u
and v are C∞ functions on T

n ×R
n which generate complete Hamiltonian vector

fields. Let ψ, χ ∈ C∞([0, 1]) be such that

∫ 1

0
ψ(t) dt =

∫ 1

0
χ(t) dt = 1, supp(ψ) ⊂ [ 1

3 ,
2
3

]
, supp(χ) ⊂ [ 2

3 , 1
]
. (7.1)

Then the formula

h(θ, r, t) := h0(r)+ ψ(t)u
(
θ + (1− t)(ω + r)

+Zn, r
)+ χ(t)v

(
θ + (1− t)(ω + r)+ Z

n, r
)

(7.2)

defines a function on T
n × R

n × [0, 1] which uniquely extends by periodicity to a
C∞ function onTn×R

n×T and, when viewed as a non-autonomous time-periodic
Hamiltonian, is a suspension of �v ◦�u ◦�h0 .

Proof. Let ϕ ∈ C∞([0, 1]) have support⊂ [0, 1
3 ] and

∫ 1
0 ϕ(t) dt = 1. We observe

that (7.2) entails, for all (θ, r, t) ∈ T
n × R

n × [0, 1],
h(θ, r, t) = h0(r)+ ψ(t)u

(
θ + ϕ̃(t)(ω + r)+ Z

n, r
)

+χ(t)v
(
θ + ϕ̃(t)(ω + r)+ Z

n, r
)
, (7.3)

where ϕ̃(t) := ∫ t
0

(
ϕ(t ′) − 1

)
dt ′ extends to a 1-periodic C∞ function. This takes

care of the first statement.
Let z0 ∈ T

n×R
n and let z(t) = (

θ(t), r(t)
)
denote the maximal solution of the

initial value problem dz
dt = Xh(z, t), z(0) = z0. Defining θ∗(t) := θ(t)+ ϕ̃(t)

(
ω+

r(t)
)
and z∗(t) := (

θ∗(t), r(t)
)
, we compute

dz∗
dt (t) = ϕ(t)Xh0

(
z∗(t)

)
for t ∈ [

0, 1
3

]
,

dz∗
dt (t) = ψ(t)Xu

(
z∗(t)

)
for t ∈ [ 1

3 ,
2
3

]
,

dz∗
dt (t) = χ(t)Xv

(
z∗(t)

)
for t ∈ [ 2

3 , 1
]
.

The flow map of Xh between the times t = 0 and t = 1
3 is thus a reparametriza-

tion of the flow of Xh0 : t ∈ [
0, 1

3

] ⇒ z∗(t) = �h0
( ∫ t

0 ϕ(t ′) dt ′
)
, whence

z∗
( 1
3

) = �h0(z0) since
∫ 1/3
0 ϕ(t ′) dt ′ = 1. Similarly, z∗

( 2
3

) = �u
(
z∗

( 1
3

))
since

∫ 2/3
1/3 ψ(t ′) dt ′ = 1, and z∗(1) = �v

(
z∗

( 2
3

))
, since

∫ 1
2/3 χ(t ′) dt ′ = 1. We thus get

z∗(1) = �v ◦�u ◦�h0(z0), which yields the desired result because z∗(1) = z(1).
��
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Notice that, if T = �v◦�u◦�h0 satisfies properties (1) and (3) of Theorem 3.3,
resp. Theorem 3.4, then any suspension of T of the form (7.3) satisfies property (2)
of Theorem 3.1, resp. Theorem 3.2. The invariance of the torus T(r,s) with r = 0,
resp. r ∈ (Xε + Z) × R

n−1, stems from the vanishing of ∂θ h and ∂t h for r1 = 0,
resp. r1 ∈ Xε + Z.

Lemma 7.2. Consider the mapping

Sω : (θ, r, t) ∈ T
n × R

n × T �→ (
θ + (1− t)ω + Z

n, r
) ∈ T

n × R
n .

Let α � 1 and � > 0 be real, and �1 � �
(
1+ max

1�i�n
|ωi |1/α

)
. Then

w ∈ Gα,�1(Tn × R
n) ⇒ w ◦ Sω ∈ Gα,�(Tn × R

n × T)

and ‖w ◦ Sω‖α,� � ‖w‖α,�1
.

Proof. One can check that, for every (p, q, s) ∈ N
n × N

n × N,

∂
p
θ ∂

q
r ∂s

t (w ◦ Sω) = (−1)s
∑

m∈Nn s.t. |m|=s

ω
m1
1 · · ·ωmn

n (∂
p+m
θ ∂

q
r w) ◦ Sω,

whence, with the notation � := max
1�i�n

|ωi |,

‖w ◦ Sω‖α,� �
∑

p,q,m∈Nn

�|m|�|p+q+m|α

p!αq!α|m|!α ‖∂ p+m
θ ∂

q
r w‖C0(Tn×Rn)

=
∑

�,q∈Nn

A�

�|�+q|α

q!α ‖∂�
θ ∂

q
r w‖C0(Tn×Rn) with A�

:=
∑

p,m∈Nn s.t. p+m=�

�|m|

p!α|m|!α .

Now, A� �
∑

p+m=�

�|m|
p!αm!α �

( ∑

p+m=�

�|m|/α
p!m!

)α = 1
�!α (1+�1/α)|�|α , hence

‖w ◦ Sω‖α,� �
∑

�,q∈Nn

(1+�1/α)|�|α�|�+q|α

�!αq!α ‖∂�
θ ∂

q
r w‖C0

� �
|�+q|α
1

�!αq!α ‖∂
�
θ ∂

q
r w‖C0 = ‖w‖α,L1

.

��
Lemma 7.3. Consider an interval I ⊂ [0, 1] and the mapping

RI : (θ, r, t) ∈ T
n × R

n × I �→ (
θ + (1− t)r + Z

n, r, t
) ∈ T

n × R
n × I.

Let α � 1 and � > 0 be real, and � � L max
{
23/α, 21/α L

}
. Then

w ∈ Gα,�(Tn × R
n × I )

⇒ w ◦RI ∈ Gα,L(Tn × R
n × I ) and dα,L(0, w ◦RI ) � ‖w‖α,�.
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Proof. Let L j := 2−
j−1
α L and R j := 2 j for each j ∈ N

∗, as in Appendix A.1. We
also set K j := T

n × B R j × I , so Gα,L(Tn × R
n × I ) =⋂

j�1 Gα,L j (K j ).

A simple adaptation of [10, Remark A.1] shows that, if φ ∈ Gα,L j (I ) and

Lα
j + (R j + Lα

j )‖φ‖α,L j ,I − R j‖φ‖C0(I ) � �α, (7.4)

then the composition with the mapping

R : (θ, r, t) ∈ T
n × R

n × I �→ (
θ + φ(t)r + Z

n, r, t
) ∈ T

n × R
n × I

has the property

w ∈ Gα,�(K j ) ⇒ w ◦R ∈ Gα,L j (K j ) and ‖w ◦R‖α,L j ,K j
� ‖w‖α,�. (7.5)

Taking φ(t) := 1 − t , since our interval I is ⊂ [0, 1], we have ‖φ‖C0(I ) � 1 and
‖φ‖α,L j ,I = ‖φ‖C0(I ) + Lα

j , hence the left-hand side of (7.4) equals

Lα
j + R j Lα

j + Lα
j

(‖φ‖C0(I ) + Lα
j

)

� Lα
j (Lα

j + R j + 2) � L2α + 4Lα � 1
2�

α + 1
2�

α

and (7.5) allows us to conclude, in view of (A.4). ��

Proof of Theorems 3.1 and 3.2

In both cases, we are given α > 1, L > 0 and ε > 0. Let

�1 := �
(
1+ max

1�i�n
|ωi |1/α

)
, � := L max

{
23/α, 21/α L

}
.

Since α > 1, we can pick ψ, χ ∈ Gα,�(T) satisfying (7.1).
Let us apply the multidimensional version of Theorem 3.3 or Theorem 3.4 (cf.

Remark 3.1) with parameters �1 instead of L and

ε1 := ε

max
{
1, ‖ψ‖α,�, ‖χ‖α,�

}

instead of ε. We thus get u, v ∈ Gα,�1(Tn × R
n) and, in the second case, Xε1 ⊂

[0, 1], such that ‖u‖α,�1
+ ‖v‖α,�1

< ε1 and any suspension of �v ◦ �u ◦ �h0

satisfies property (2) of Theorem 3.1, resp. Theorem 3.2.
By Lemma 7.1, we can choose the suspension to be

h := h0 + ũ ◦R[ 13 , 23 ] + ṽ ◦R[ 23 ,1]
with

ũ(θ, r, t) := ψ(t)(u ◦ Sω)(θ, r, t), ṽ(θ, r, t) := χ(t)(v ◦ Sω)(θ, r, t).

Lemma 7.2 and (A.2) give

‖ũ‖α,� � ‖ψ‖α,�‖u‖α,�1
, ‖ṽ‖α,� � ‖χ‖α,�‖v‖α,�1

,

whence ‖ũ‖α,�+‖ṽ‖α,� < ε. Then, since the distance dα,L is translation-invariant,

dα,L(h0, h) � dα,L
(
0, ũ ◦R[ 13 , 23 ]

)+ dα,L
(
0, ṽ ◦R[ 23 ,1]

)
� ‖ũ‖α,� + ‖ṽ‖α,�

by Lemma 7.3, and we are done.
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Appendix A: Gevrey Estimates

We fix real numbers α � 1 and L > 0.

A.1 Gevrey Functions and Gevrey Maps

Here we adapt definitions and facts taken from [7,10,11].

The Banach Algebra Gα,L(RM × K ) of Uniformly Gevrey-(α, L) Functions
Let N � 1 be integer. We will deal with real functions of N variables defined on
R

M×K , where M � 0 and K ⊂ R
N−M is a Cartesian product of closed Euclidean

balls and tori.
We define the uniformly Gevrey-(α, L) functions on R

M × K by

Gα,L(RM × K ) := { f ∈ C∞(RM × K ) | ‖ f ‖α,L <∞},

‖ f ‖α,L :=
∑

�∈NN

L |�|α

�!α ‖∂
� f ‖C0(RM×K ). (A.1)

We have used the standard notations |�| = �1 + · · · + �N , �! = �1! . . . �N !, ∂� =
∂

�1
x1 . . . ∂

�N
xN , and N := {0, 1, 2, . . .}. The space Gα,L(RM × K ) turns out to be a

Banach algebra, with

‖ f g‖α,L � ‖ f ‖α,L‖g‖α,L (A.2)

for all f and g, and there are “Cauchy–Gevrey inequalities”: if 0 < L0 < L , then

∑

m∈NN ; |m|=p

‖∂m f ‖α,L0
� p!α

(L − L0)pα
‖ f ‖α,L for all p ∈ N. (A.3)

When necessary, we use the notation ‖ . ‖α,L ,RM×K instead of ‖ . ‖α,L to keep track
of the domain to which the norm relates.
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The Metric Space Gα,L(RM × K ) When M � 1, instead of restricting ourselves
to uniformly Gevrey-(α, L) functions onRM × K , we may cover the factor RM by
an increasing sequence of closed balls and consider a Fréchet space accordingly.
For technical reasons, we choose the sequences

L j := 2−
j−1
α L , R j := 2 j for j ∈ N

∗,

and set

Gα,L(RM × K ) :=
⋂

j�1

Gα,L j
(
B R j × K

)
,

dα,L( f, g) :=
∑

j�1

2− j min
{
1, ‖g − f ‖α,L j ,B R j×K

}
.

(A.4)

Clearly, Gα,L(RM ×K ) ⊂ Gα,L(RM ×K ) but the inclusion is strict, and the larger
space is a complete metric space for the distance dα,L .
This construction is needed in Section 7 only. In the rest of this appendix, we focus
on uniformly Gevrey functions and maps on R

N (with M = N and no factor K ).

CompositionwithUniformlyGevrey-(α, L)Maps For N � 1 integer,we define

Gα,L(RN ,RN ) := {F ∈ C∞(RN ,RN ) | ‖F‖α,L <∞},
‖F‖α,L := ‖F[1]‖α,L + · · · + ‖F[N ]‖α,L . (A.5)

This is a Banach space.
We also define

N ∗
α,L( f ) :=

∑

�∈NN �{0}

L |�|α

�!α ‖∂
� f ‖C0(RN ),

so that ‖ f ‖α,L = ‖ f ‖C0(RN ) +N ∗
α,L( f ).

Lemma A.0. Let L0 ∈ (0, L). There exists εc = εc(α, L , L0, N ) such that, for any
f ∈ Gα,L(RN ) and F = (F[1], . . . , F[N ]) ∈ Gα,L0(RN ,RN ), if

N ∗
α,L0

(F[1]), . . . ,N ∗
α,L0

(F[N ]) � εc,

then f ◦ (Id+F) ∈ Gα,L0(RN ) and ‖ f ◦ (Id+F)‖α,L0
� ‖ f ‖α,L .

The proof is in Appendix A of [7].
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A.2 Comparison Estimates for Gevrey Flows

In Section 4.2, we use comparison estimates for the flows of two nearby Gevrey
Hamiltonian systems. We prove them here, building upon some facts which are
proved in [7] about the flows of Gevrey vector fields.

Lemma A.1. (General case) Suppose that 0 < L0 < L and N � 1. Then
there exists εf = εf(α, L , L0, N ) > 0 such that, for every vector field X ∈
Gα,L(RN ,RN ) with ‖X‖α,L � εf , the time-1 map � of the flow generated by X
satisfies that

‖�− Id ‖α,L0
� ‖X‖α,L , (A.6)

and, if we are given another vector field X̃ ∈ Gα,L(RN ,RN ) with ‖X̃‖α,L � εf ,
then its time-1 map �̃ satisfies

‖�̃−�‖α,L0
� 2‖X̃ − X‖α,L . (A.7)

Proof. The first part of the statement is exactly Part (i) of Lemma A.1 from [7].
There, the flow t ∈ [0, 1] �→ �(t) was obtained by considering the functional
ξ �→ F(ξ) defined by

F(ξ)(t) :=
∫ t

0
X ◦ (

Id+ξ(τ )
)
dτ.

Using an auxiliary L ′ ∈ (L0, L) and LemmaA.0, it was shown that, if ‖X‖α,L � εf
small enough, then F maps into itself

B := { ξ ∈ C0([0, 1], Gα,L (RN ,RN )
) | ‖ξ‖ � ‖X‖α,L }

(which is a closed ball in a Banach space) and has a unique fixed point, none other
than ξ∗(t) := �(t)− Id.
In that proof, F was shown to be K -Lipschitz, with K := maxi, j ‖∂x j X[i]‖α,L ′ .

We can ensure K � 1
2 by diminishing εf if necessary and using (A.3). Then, for

any ξ0 ∈ B, the fixed point ξ∗ is the limit of the sequence of iterates (Fk(ξ0))k∈N

and ‖ξ∗ − ξ0‖ � 2‖F(ξ0)− ξ0‖.
Now, suppose we also have ‖X̃‖α,L � εf . The time-t map of X̃ is thus �̃(t) =
Id+ξ̃∗(t), with ξ̃∗ fixed point of F̃ : B ý. Lemma A.0 yields

‖F̃(ξ)− F(ξ)‖ = ‖
∫ t

0
(X̃ − X) ◦ (

Id+ξ(τ )
)
dτ‖ � ‖X̃ − X‖α,L for any ξ ∈ B,

thus we can compare the fixed points ξ∗ and ξ̃∗ by writing the former as the limit
of the sequence (Fk(ξ0))k∈N with ξ0 := ξ̃∗; we get

‖ξ∗ − ξ̃∗‖ � 2‖F(ξ̃∗)− ξ̃∗‖ = 2‖F(ξ̃∗)− F̃(ξ̃∗)‖ � 2‖X̃ − X‖α,L ,

which yields the desired result. ��
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Lemma A.2. (Hamiltonian case) Suppose that 0 < L0 < L and n � 1. Then there
exist εH, C0 > 0 such that, for every u ∈ Gα,L(R2n) with ‖u‖α,L � εH,

‖�u − Id ‖α,L0
� C0‖u‖α,L , (A.8)

and, given another ũ ∈ Gα,L(R2n) with ‖ũ‖α,L � εH,

‖�ũ −�u‖α,L0
� C0‖ũ − u‖α,L . (A.9)

Proof. Let L ′ := (L0+L ′)/2. Any u ∈ Gα,L(R2n) generates a Hamiltonian vector
field Xu which, according to (A.3) with p = 1, satisfies

‖Xu‖α,L ′ =
∑

m∈N2n; |m|=1
‖∂mu‖α,L ′ � (L − L ′)−α‖u‖α,L .

Similarly, ‖Xũ − Xu‖α,L ′ � (L − L ′)−α‖ũ − u‖α,L . Thus, with εH := (L −
L ′)αεf(α, L ′, L0, 2n) and C0 := 2(L − L ′)−α , we get

‖u‖α,L , ‖ũ‖α,L � εH ⇒ ‖�u − Id ‖α,L0
� 1

2C0‖u‖α,L

and ‖�ũ −�u‖α,L0
� C0‖ũ − u‖α,L .

��
Corollary A.3. (Iteration of maps of the form �v ◦�u ◦ T0) Suppose that n � 1.
Then there exist εd, C1 > 0 such that, for every u, v, ũ, ṽ ∈ Gα,L(R2n) such that

‖u‖α,L + ‖v‖α,L � εd, ‖ũ‖α,L + ‖ṽ‖α,L � εd (A.10)

and for every z ∈ R
2n, the orbits of z under the maps T := �v ◦ �u ◦ T0 and

T̃ := �ṽ ◦�ũ ◦ T0 satisfy

dist
(
T k(z), T̃ k(z)

)
� 3kC1

(‖ũ − u‖α,L + ‖ṽ − v‖α,L
)

for all k ∈ N.

(A.11)

Proof. For any u, v, ũ, ṽ ∈ Gα,L(R2n) and z, z̃ ∈ R
2n , themaps T := �v ◦�u ◦T0

and T̃ := �ṽ ◦�ũ ◦ T0 satisfy

dist
(
T (z), T̃ (z)

)
� dist

(
�v(�u(T0(z))),�

v(�u(T0(z̃)))
)

+ dist
(
�v(�u(T0(z̃))),�

v(�ũ(T0(z̃)))
)

+ dist
(
�v(�ũ(T0(z̃))),�

ṽ(�ũ(T0(z̃)))
)

� (Lip�v)(Lip�u)(Lip T0) dist(z̃, z)+ (Lip�v)‖�ũ −�u‖C0(R2n)

+ ‖�ṽ −�v‖C0(R2n).

On the one hand, Lip T0 = 2. On the other hand, for any L0 > 0, the Lipschitz
constant of a map � such that � − Id ∈ Gα,L0(R2n,R2n) is bounded by 1 +
Lip(� − Id) � 1 + L−α

0 ‖� − Id ‖α,L0
(using the mean value inequality, (A.1)
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and (A.5)). Applying Lemma A.2 with L0 = L/2, we can thus choose εd so that
assumption (A.10) entails

Lip�u,Lip�v � 1+ 2α L−αC0εd � (3/2)1/2

and

‖�ũ −�u‖α,L0
� C0‖ũ − u‖α,L , ‖�ṽ −�v‖α,L0

� C0‖ṽ − v‖α,L ,

whence dist
(
T (z), T̃ (z)

)
� 3 dist(z̃, z) + η with η := (3/2)1/2C0

(‖ũ − u‖α,L +
‖ṽ− v‖α,L

)
. Iterating this, we get dist

(
T k(z), T̃ k(z)

)
� 3k(dist(z̃, z)+ 1

2η)− 1
2η

for all k ∈ N, thus we can conclude by choosing C1 := 1
2 (3/2)

1/2C0. ��

A.3 A Gevrey Inversion Result

In Section 5.2, we use the following

Lemma A.4. Suppose L < L1. Then there exists εi = εi(α, L , L1) such that, for
every ε ∈ Gα,L1(R), if ‖ε‖α,L1

� εi, then Id+ε is a diffeomorphism of R and

(Id+ε)−1 = Id+ε̃ with ‖ε̃‖α,L � ‖ε‖α,L1
, (A.12)

‖ ∗ ‖g ◦ (Id+ε)−1α,L � ‖g‖α,L1
for any g ∈ Gα,L1(R). (A.13)

Proof. Let L ′ := (L + L ′)/2. We use Lemma A.0 and define

εi := min
{ 1
2 (L1 − L ′)α, εc(α, L ′, L , 1), εc(α, L1, L , 1)

}
.

Given ε ∈ Gα,L1(R) such that ‖ε‖α,L1
� εi, the functional

F : f ∈ B �→ −ε ◦ (Id+ f ), where B := { f ∈ Gα,L(R) | ‖ f ‖α,L � ‖ε‖α,L1
},

is well defined (because ‖ε‖α,L1
� εc(α, L ′, L , 1) and ε ∈ Gα,L ′(R)), maps B into

itself (we even have ‖F( f )‖ � ‖ε‖α,L ′ ), and is K -Lipschitz with K := ‖ε′‖α,L ′
(using also (A.2) and the mean value inequality). But (A.3) yields ‖ε′‖α,L ′ �
(L1−L ′)−α‖ε‖α,L1

� 1
2 , which implies thatF is a contraction, and also that Id+ε

is a diffeomorphism ofR (since its derivative stays� 1/2). The unique fixed point ε̃
ofF in B is (Id+ε)−1− Id, which yields ‖ε̃‖α,L � ‖ε‖α,L1

� εc(α, L1, L , 1) and
hence (A.13) by another application of Lemma A.0.
��

A.4 Gevrey Functions with Small Support

From now on we suppose α > 1. We quote, without proof, Lemma 3.3 of [11]:
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Lemma A.5. There exists a real c1 = c1(α, L) > 0 such that, for each real p > 2,
the space Gα,L(T) contains a function ηp which takes its values in [0, 1] and
satisfies

− 1

2p
� θ � 1

2p
⇒ ηp(θ + Z) = 1,

1

p
� θ � 1− 1

p
⇒ ηp(θ + Z) = 0

and

‖ηp‖α,L � exp
(
c1 p

1
α−1

)
. (A.14)

The proof can be found in [11, p. 1633]. This easily implies

Lemma A.6. There exists a real c2 = c2(α, L) > 0 such that, for any z ∈ T × R

and ν > 0, there is a function ηz,ν ∈ Gα,L(T× R) which takes its values in [0, 1]
and satisfies

ηz,ν ≡ 1 on B(z, ν/2), ηz,ν ≡ 0onB(z, ν)c

and

‖ηz,ν‖α,L � exp(c2ν
− 1

α−1 ). (A.15)

Here, for arbitrary ν̃ > 0, we have denoted by B(z, ν̃) the closed ball relative to
‖ . ‖∞ centred at z with radius ν̃.

Appendix B: Some Estimates on Doubly Exponentially Growing Sequences

According to (4.3), the increasing sequence (Ni )i�1 is defined by

N1 := � ∗ �exp(4κ/ε), Ni := Ni−1� ∗ �exp
(
exp

(
C̃(Ni−1 ln Ni−1)γ

))
for i � 2,

where 0 < ε � 1, κ � 1 and C̃ := max{6cγ, 1/γ }, with c, γ > 0. Here, we
show a few inequalities which are used in Section 4.2. Recall that νi := 1

Ni ln Ni

and ξi := e−cν−γ
i .

Lemma B.1. One has

ln Ni � 4iκ/ε for every i � 1, (B.1)

Ni+1ξi+1 � 1
2 Niξi for i large enough, (B.2)

Ni+1ξi+1 � 3−E3cγ,γ (νi ) for i large enough. (B.3)

Proof. We have ln(N1) � 4κ/ε and, by virtue of (4.1), N1 � 4κ/ε � 4. Now, for
i � 2, since γ C̃ � 1, we have

ln Ni � exp
(
C̃(Ni−1 ln Ni−1)γ

) =
[
exp

(
γ C̃(Ni−1 ln Ni−1)γ

)]1/γ

�
[
exp(Ni−1 ln Ni−1)γ

]1/γ
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and (4.1) yields ln(Ni ) � Ni−1 ln Ni−1 � 4 ln Ni−1, whence (B.1) follows.
We have ln 1

Ni ξi
= c(Ni ln Ni )

γ − ln Ni and, since ln(Ni ) � (Ni ln Ni )
γ ,

c�γ

i � ln
1

Niξi
� c(�i/

√
3)γ for i large enough, where �i := Ni ln Ni = 1/νi .

Inequality (B.2), being equivalent to

ln
1

Ni+1ξi+1
� ln

1

Niξi
+ ln 2 for i large enough,

thus results from (�i+1/
√
3)γ � �

γ

i + ln 2
c (which holds for i large enough because

Ni+1 � 3Ni , hence �i+1 = Ni+1 ln Ni+1 > 3�i ).
Let C := 3cγ . Inequality (B.3), being equivalent to

ln
1

Ni+1ξi+1
� (ln 3)EC,γ (1/�i ) for i large enough,

results from �
γ

i+1 � 3γ /2 ln 3
c EC,γ (1/�i ), which holds since EC,γ (1/�i ) = � ∗

�exp (
exp(C�

γ

i )
)
and

�
γ

i+1 = N γ

i (ln Ni+1)γ � ∗ �exp
(
γ exp(C̃�

γ

i )
)
, N γ

i (ln Ni+1)γ � 3γ /2 ln 3
c

and γ exp(C̃�
γ

i ) � exp(C�
γ

i ) for i large enough since C̃ > C . ��
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