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Abstract

This paper is devoted to the study of periodic solutions of a Hamiltonian system
ż(t) = J∇H(z(t)), where H is symmetric under an action of a compact Lie group.
We are looking for periodic solutions in a neighborhood of non-isolated critical
points of H which form orbits of the group action. We prove a Lyapunov-type
theorem for symmetric Hamiltonian systems.

1. Introduction

Consider a first-order system

ż(t) = J∇H(z(t)) (HS)

onR2N , where J =
[

0 I
−I 0

]
is the standard symplectic matrix and H : R2N → R

is a Hamiltonian of the class C2.
The existence of periodic orbits in Hamiltonian dynamics is an important and

widely studied problem. In 1895 Lyapunov [20] proved his center theorem, i.e.
the existence of a one-parameter family of periodic solutions of (HS) tending to
a non-degenerate equilibrium. The next important result ofWeinstein [33] shows
the existence of at least N geometrically distinct periodic solutions at any energy
level of the Hamiltonian H . The further development of the Weinstein theorem
was performed by Moser [23]. In 1978 Fadell and Rabinowitz [8] proved the
lower bound for the number of small nontrivial solutions of (HS) depending on the
period. See [27] for the general overview of the results up to 1982. The results of
Weinstein and Moser were generalized by Bartsch in 1997, [2]. The problem
of the existence of periodic solutions of (HS) in a case of a degenerate equilibrium
was also studied by Szulkin [32] and Dancer with Rybicki [6], who generalized
the classical result of Lyapunov.
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Suppose now that the compact Lie group Γ acts unitary on R
2N and

H ∈ C2(R2N ,R) is a Γ -invariant potential i.e. H(γ z) = H(z) for any γ ∈ Γ and
z ∈ R

2N . The study of the existence of periodic solutions in this casewas performed
by Montaldi et al. [22], who proved an equivariant version of the Weinstein-
Moser theorem. In 1993 Bartsch [1] generalized the theorem of Montaldi,
Roberts and Stewart for the wider class of a group actions which allowed him
to generalize the result of Fadell and Rabinowitz also. However, the authors
mentioned above assumed that a critical point z0 of H is a fixed point of the group
action, i.e. the orbit of this action consists of one point. Then z0 can be an isolated
critical point.

We study a more general case. Assume that z0 is a critical point of Hamiltonian
H . Since H is Γ -invariant, Γ (z0) = {γ z0 : γ ∈ Γ } ⊂ (∇H)−1(0), i.e. the orbit
Γ (z0) consists of critical points of H and, therefore, stationary solutions of the
equation (HS); see Remark 2.4. Hence, if dim Γz0 < dim Γ then the orbit is at
least an one-dimensional manifold and, as a consequence, critical points are not
isolated. Therefore the results mentioned above are not applicable. We are going
to prove sufficient conditions for the existence of non-constant periodic solutions
of an autonomous Hamiltonian system in the presence of symmetries of a compact
Lie group the problem (HS) in any neighborhood of the orbit Γ (z0); see the main
result Theorem 4.1 and Theorems 5.2, 5.3, 5.4.

This article is organized as follows: in Section 2we recall some basic definitions
and notions of group theory and equivariant topology. The equivariant Conley
index which is a main tool of our reasoning is shortly defined in Section 2.3.
Furhtermore, we recall the notion of a Euler ring: an equivariant Euler characteristic
and its generalization (see Remarks 2.11, 2.12). In Theorem 2.16 we recall the very
important theorem connecting an equivariant Euler characteristic, an equivariant
Conley index and the idea of an orthogonal section introduced in the paper [24].
In Section 2.5 we formulate a so called equivariant splitting lemma—the theorem
which allows us to simplify the study of Conley indexes up to the linear case in
Lemma 4.7.

In Section 3 we parameterize the equation (HS) to study the solutions with con-
stant period 2π in the equation (HS-P). Next we introduce an appropriate Sobolev
space E and the action of the group Γ × S1 on it, and we define variational func-
tional Φ : E → R (see formulas (3.4), (3.5)) such that 2π -periodic solutions of the
system (HS-P) are in bijective correspondence with S1-orbits of critical points of
Φ. In this way we begin to study the equation (3.7). Furthermore, we analyze the
linear Hamiltonian system (HS-L); it is a base for the last step in the proof of the
main result of the paper.

Section 4 is devoted to the formulation and the proof of the main result of this
paper, Theorem4.1. The notion of bifurcation theory is recalled inDefinition 4.3 and
in the nearby text. In Theorems 4.4 and 4.5we formulate the necessary and sufficient
condition for the existence of global bifurcation of solutions of the equation (3.7).
The last part of this section is devoted to the proof of the change of equivariant
Euler characteristics of equivariant Conley indexes, i.e. the formula (4.1). Firstly,
we reduce our task to the space orthogonal to the orbit; see Lemma 4.6 and the
text above them. Next, in Lemma 4.7 we reduce the problem to the linear case. To
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study we prove Theorem 4.9. The flow of this work is summarized in Remark 4.10.
Afterwards, the proof of Theorem 4.1 is finally done by the study of the minimal
periods and the convergence of new solutions.

In the fifth section we reformulate the main result to make the assumptions
easier to verify. The most friendly version of our result is the following theorem
(seeTheorem5.4),wherem+(A) denotes the positiveMorse index of the symmetric
matrix A:

Theorem 1.1. Let H : R2N → R be a Γ -invariant Hamiltonian of the class C2.
Let z0 be a critical point of H such that Γz0 = {e} and the orbit Γ (z0) is isolated in
(∇H)−1(0). Assume thatm+(∇2H(z0)) �= N anddeg(∇H|T⊥

z0
Γ (z0), B(z0, ε), 0) �=

0 for sufficiently small ε. Then there exists a connected family of non-stationary
periodic solutions of the system ż(t) = J∇H(z(t)) emanating from the stationary
solution z0 such that periods (not necessarily minimal) of solutions in the small
neighborhood of z0 are close to 2π/β j , where iβ j , β j > 0, is some eigenvalue of
J∇2H(z0).

For the two other versions see Theorems 5.2 and 5.3.
Furthermore, we show that the Lyapunov-type theorem ofDancer andRybicki

(Theorem 5.5) is generalized by the main result of this paper: Theorem 4.1. In the
last part of this section we reformulate the second-order Newtonian system to
the Hamiltonian one. Then the two symmetric versions of the Lyapunov center
theorem, Theorem 5.6 proven in [24] and Theorem 5.7 proven in [25], are also the
consequences of the results proven in this paper.

The last section is devoted to an application of the abstract results of this
paper. We study the existence of quasi-periodic motions of the satellite in
a nearbyof a geostationary orbit of an oblate spheroid. In order to do thiswe consider
a gravitational motion in the rotating frame where the corresponding Hamiltonian
is given by formula (6.2). It is SO(2) invariant and possesses a critical point which
represents the geostationary orbit in the original coordinates. Theorem 5.4 will be
directly applied in this problem to prove the existence of trajectories with arbitrarily
small deviations from the geostationary ones.

2. Preliminaries

In this section we recall the basic material on equivariant topology from [7],
[17] and prove some preliminary results. Throughout this section G stands for a
compact Lie group.

2.1. Groups and Their Representations

We denote by sub(G) the set of all closed subgroups of G. Two subgroups
H, H ′ ∈ sub(G) are said to be conjugate in G if there is g ∈ G such that
H = gH ′g−1. The conjugacy is an equivalence relation on sub(G). The class of
H ∈ sub(G) we denote by (H)G and the set of conjugacy classes will be denoted
by sub[G].
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If x ∈ R
n then G(x) = {gx : g ∈ G} is called the orbit through x and a group

Gx = {g ∈ G : gx = x} ∈ sub(G) is said to be the isotropy group of x . It is
known that if G(x1) = G(x2) then (Gx1)G = (Gx2)G i.e. the isotropy groups of
the elements of common orbit are conjugate. Moreover, the orbit G(x) is a smooth
G-manifold G-diffeomorphic to G/Gx . An open subset Ω ⊂ R

n is said to be
G-invariant if G(x) ⊂ Ω for every x ∈ Ω .

Below we recall the notion of an admissible pair, which was introduced in [24],
where one can find some examples and properties.

Definition 2.1. Fix H ∈ sub(G). A pair (G, H) is said to be admissible if for any
K1, K2 ∈ sub(H) the following condition is satisfied: if (K1)H �= (K2)H then
(K1)G �= (K2)G .

Note that if Γ is a compact Lie group, then the pair (Γ × S1, {e} × S1) is
admissible; see Lemma 2.1 of [24]. This property will play a crucial role in the
proof of the main result, Theorem 4.1.

Recall that a unitary group U (N ) is defined by

U (N ) = Sp(2N ,R) ∩ O(2N ),

where

Sp(2N ,R) = {A ∈ M2N×2N (R) : AT J A = J }
is a symplectic group and

O(2N ,R) = {A ∈ M2N×2N (R) : AT A = I d}
is an orthogonal group. In particular, if A ∈ U (N ) then J A = AJ . Note thatU (N )

is a compact subgroup of GL(2N ), A ∈ U (N ) implies AT = A−1 ∈ U (N ) and
| det A| = 1.

Let ρ : G → U (N ) be a continuous homomorphism. The space R
2N with

the G-action defined by G × R
2N 
 (g, x) → ρ(g)x ∈ R

2N is said to be a real,
unitary representation of G which we write V = (R2N , ρ). To simplify notation
we write gx instead of ρ(g)x and R2N instead of V if the homomorphism is given
in general.

Two unitary representations of G, say V = (R2N , ρ),V′ = (R2N , ρ′), are
equivalent (briefly V ≈G V

′) if there exists an equivariant linear isomorphism
L : V → V

′ i.e. an isomorphism L satisfying L(gx) = gL(x) for any g ∈ G,

x ∈ R
2N . Put D(V) = {x ∈ V : ‖x‖ � 1}, S(V) = ∂D(V), SV = D(V)/S(V)

and BV(x0, r) = {x ∈ V : ‖x − x0‖ < r}. Since the representationV is orthogonal
in particular, these sets are G-invariant if G(x0) = {x0}.

2.2. G-Equivariant Maps

Let (V, 〈·, ·〉) be a unitary G-representation. Fix an open G-invariant subset
Ω ⊂ V.
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Definition 2.2. A map φ : Ω → R of class Ck is called G-invariant Ck-potential,
if φ(gx) = φ(x) for every g ∈ G and x ∈ Ω . The set of G-invariant Ck-potentials
will be denoted by Ck

G(Ω,R).

Definition 2.3. A map ψ : Ω → V of the class Ck−1 is called G-equivariant
Ck−1-map, if ψ(gx) = gψ(x) for every g ∈ G and x ∈ Ω. The set of
G-equivariant Ck−1-maps will be denoted by Ck−1

G (Ω,V).

Fix ϕ ∈ C2
G(Ω,R) and denote by ∇ϕ,∇2ϕ the gradient and the Hessian of

ϕ, respectively. For x0 ∈ Ω denote by m−(∇2ϕ(x0)) the Morse index of the
Hessian of ϕ at x0 i.e. the sum of the multiplicities of negative eigenvalues of the
symmetric matrix ∇2ϕ(x0). Similarly, by the m+(∇2ϕ(x0)) we denote the sum of
the multiplicities of positive eigenvalues of ∇2ϕ(x0).

Remark 2.4. It is clear that if ϕ ∈ Ck
G(Ω,R), then ∇ϕ ∈ Ck−1

G (Ω,V). Moreover,
if x0 ∈ (∇ϕ)−1(0), then G(x0) ⊂ (∇ϕ)−1(0) i.e. the G-orbit of a critical point
consists of critical points. If∇ϕ(x0) = 0 then∇ϕ(·) is fixed on G(x0). That is why
Tx0G(x0) ⊂ ker∇2ϕ(x0) and consequently dim ker∇2ϕ(x0) � dim Tx0G(x0) =
dimG(x0).

2.3. Equivariant Conley Index

We denote by F∗(G) the category of finite pointed G-CW-complexes (see
[7] for definition and examples), where morphisms are continuous G-equivariant
maps preserving a base points; we denote by F∗[G] the set of G-homotopy types
of elements of F∗(G), where [X]G ∈ F∗[G] (or [X] when no confusion can arise)
denotes a G-homotopy type of the pointed G-CW complex X ∈ F∗(G). If X is a
G-CW-complex without a base point, then we denote by X

+ a pointed G-CW-
complex X

+ = X ∪ {∗}.
Now we briefly recall the definition of the equivariant version of the classical

Conley index, see [1,4,9,10,30] for the details. Consider a finite-dimensional uni-
tary
G-representation (V, 〈·, ·〉) and U ⊂ V × R. Let η : U → V be a G-flow i.e.
a flowwhich is equivariant under the G-action onV. For G-invariant set X ⊂ Vwe
denote by I nv(X, η) = {x ∈ X : η(x, t) ∈ X supposing (x, t) ∈ U}. Compact
G-invariant set S ⊂ V is called isolated η-invariant set if S ⊂ I nv(W, η) ⊂ intW
for some G-invariant set W ⊂ V which is called an η-isolating neighborhood.

Let S be isolated η-invariant set.

Definition 2.5. A pair of compact G-invariant sets (N ,L), where L ⊂ N ⊂ V, is
called a G-index pair for the set S if

1. cl(N /L) is an η-isolating neighborhood for S,
2. L is positiveη-invariant inN i.e. if x ∈ L andη(x, [0, t]) ⊂ N thenη(x, [0, t]) ⊂

L,
3. L is the set of exit points from the set N i.e. if x ∈ N and t1 > 0 are such

that η(x, t1) /∈ N then there exist t0 ∈ [0, t1) such that η(x, [0, t0]) ⊂ N and
η(x, t0) ∈ L.
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It is known that for any isolated invariant set there exists a G-index pair con-
tained in its isolating neighborhood.Moreover, for any twoG-index pairs (N1,L1),
(N2,L2) for the set S two G-homotopic types [N1/L1]G , [N2/L2]G are equal.
Therefore we are able to define the equivariant Conley index as the G-homotopic
type of the pointed space

CIG(S, η) = [N /L, [L]]G .

Recall that CIG(S, η) ∈ F∗[G], see [10]. Definition of the classical Conley
index (without G-action) coincides with the above construction with G = {e}.
Example 2.6. Consider Rn as an orthogonal representation of a group G. Let η

be a flow generated by a gradient vector field −∇F , where F ∈ C2
G(Rn,R), 0

is an isolated critical point of F and the hessian ∇2F(0) is an isomorphism. It is
known that {0} is an isolated η-invariant set and by Hartman-Grobman theorem the
flow η is locally homeomorphic to the flow generated by the linearized vector field
y �→ −∇2F(0)y. Denote by Rn− and Rn+ the generalized eigenspaces of ∇2F(0)
corresponding to the negative and positive eigenvalues. Then for sufficiently small
ε > 0we haveN = DRn− (0, ε)×DRn+ (0, ε) andL = ∂DRn− (0, ε)×DRn+ (0, ε).
Since the action of G is orthogonal, these sets are G-invariant. Moreover, the pairs
(N ,L) and (DRn− (0, ε), ∂DRn− (0, ε)) have the same homotopy type. Therefore
CIG({0}, η) = [N /L, [L]]G = [DRn− (0, ε)/∂DRn− (0, ε), [∂DRn− (0, ε)]]G =
[SdimR

n−
, ∗]G = [Sm−(∇2F(0)), ∗]G .

Note that an index pair (N ,L) can be chosen without defining any isolated
η-invariant set. Moreover, the Conley index is defined only by the sets N , L.
Therefore, it is convenient to consider theConley indexof an isolatingneighborhood
CIG(N , η) = CIG(I nv(N , η), η).

The most important properties of the Conley index are given in the following
theorem:

Theorem 2.7. Let N be an η-isolating neighborhood, where η is a G-flow. Then

1. if the index CIG(N , η) is nontrivial (i.e. is not a homotopy type of one G-fixed
point) then Inv(N , η) �= ∅, i.e. there exists a complete η-trajectory contained
in N ,

2. if {ηt }t∈T is a continuous family of G-flows and N is an ηt -isolated neighbor-
hood for all t ∈ T , then the index CIG(N , ηt ) is the same for all parameters
t ∈ T .

Below we present the infinite-dimensional extension of the equivariant Con-
ley index to Hilbert spaces due to Izydorek [16]. The construction is similar to
the developing of the Leray-Schauder degree from the Brouwer degree by finite-
dimensional approximations. However, the index is not constant for sufficiently
large approximations but only stabilize in the sense described below. Therefore,
the construction requires the notation of equivariant spectra, see also [11,29]. Let
ξ = (Vn)

∞
n=0 be a sequence of finite-dimensional orthogonal G-representations.
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Definition 2.8. A pair E(ξ) =
(
(En)∞n=n(E(ξ))

, (εn)
∞
n=n(E(ξ))

)
, where n(E(ξ)) ∈ N,

is called a G-spectrum of type ξ if

1. En ∈ F∗(G) for n � n(E(ξ)),
2. εn ∈ MorG(SVn ∧ En, En+1) for n � n(E(ξ)),
3. there exists n1(E(ξ)) � n(E(ξ)) such that for n > n1(E(ξ)), εn is

a G-homotopy equivalence.

The last property tells about some stabilization of the spectrum in the sense of
a homotopy equivalence of spaces. The set of G-spectra of type ξ is denoted by
GS(ξ).

Definition 2.9. A G-map of G-spectra E(ξ), E ′(ξ) is a sequence of maps f =
( fn)∞n=n0 : E(ξ) → E ′(ξ), where n1 � max(n1(E(ξ)), n1(E ′(ξ))), such that

1. fn ∈ MorG(En, E ′
n) for n � n1,

2. G-maps fn+1 ◦ εn and ε′
n ◦ SVn fn are G-homotopic for every n � n1, where

SV fn denotes a suspension of fn .

Two G-maps f, g : E(ξ) → E ′(ξ) are G-homotopic if there exists n1 � n0
such that fn, gn : E → E ′ areG-homotopic for n � n1. Following this definition in
a natural waywe understand aG-homotopy equivalence of two spectra E(ξ), E ′(ξ).
TheG-homotopy type of aG-spectrum E(ξ)will be denoted by [E(ξ)]G (or shorter
[E(ξ)]) and the set of G-homotopy types of G-spectra by [GS(ξ)] or simply [GS]
when ξ is fixed or is not known yet.

Remark 2.10. It follows from definition of G-spectrum (Definition 2.8) that the

G-homotopy type [E(ξ)] of spectrum E(ξ) =
(
(En)∞n=n(E(ξ))

, (εn)
∞
n=n(E(ξ))

)
depends only on the sequence (En)∞n=n1(E(ξ))

.

We can consider G-spectra as a direct extension of G-CW-complexes if we
consider a constant spectrum (each space is a given G-CW-complex).

Now we define a infinite-dimensional generalization of equivariant Conley in-
dex given by Izydorek [16] in the case we deal with. Let (H, 〈·, ·〉) be an infinite-
dimensional orthogonal Hilbert representation of a compact Lie group G. Let
L : H → H be a linear, bounded, self-adjoint and G-equivariant operator such
that

(B.1) H = ⊕∞
n=0 Hn , where all subspaces Hn are mutually orthogonal

G-representations of finite dimension,
(B.2) H0 = ker L and L(Hn) = Hn for all n � 1,
(B.3) 0 is not an accumulation point of σ(L).

Put Hn := ⊕n
k=0 Hk and denote by Pn : H → H

n the orthogonal projection
ontoHn . Moreover, denote byH+

k the subspace ofHk corresponding to the positive
part of spectrum of L . Consider a functional Φ : H → R such that ∇Φ(x) =
Lx + ∇K (x), where ∇K ∈ C1

H (H,H) is completely continuous. Denote by ϑ

a G-LS-flow, see Definition 2.1 of [16], generated by ∇Φ. Let be O an isolating
G-neighborhood forϑ and putN = I nv(O, ϑ). Set ξ = (H+

k )∞k=1. LetΦn : Hn →
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R be given by Φn = Φ|Hn and ϑn denotes the G-flow generated by ∇Φn . Note
that ∇Φn(x) = Lx + Pn ◦ ∇K (x), i.e. it is the n-th approximation of the original
flow. Choose sufficiently large n0 such that for n � n0 the set On := O ∩ H

n

is an isolating G-neighborhood for the flow ϑn . Then the set I nv(On, ϑn) admits
aG-index pair (Yn, Zn) and we are able to define the Conley index CIG(On, ϑn) =
[Yn/Zn, [Zn]] ∈ F∗[G].

We define the spectrum E(ξ) := (Yn/Zn)
∞
n=n0 . Then the equivariant Conley

index of O with respect to the flow ϑ is given by CIG(O, ϑ) := [E(ξ)] ∈ [GS].
We will write a vector field and an isolated invariant set or a flow and and isolat-

ing neighborhood synonymously i.e. CIG(N ,∇Φ) ≡ CIG(O, ϑ). The equivariant
Conley index defined above inherits the properties of the finite-dimensional Conley
index described in Theorem 2.7. The second of this properties (known as a continu-
ation) provides the suitable local bifurcation theorem. Since we are going to prove
the existence of a connected branch of solutions we need to apply a bifurcation
theorem in some degree theory, therefore in the next section we briefly introduce
an equivariant Euler characteristic.

2.4. Equivariant Euler Characteristic

Let (U (G),+, �)) be the Euler ring of G, see [7] for the definition and more
details. Let us briefly recall that the Euler ring U (G) is commutative, generated
by χG(G/H+), where (H) ∈ sub[G] with the unit IU (G) = χG(G/G+), where
χG : F∗[G] → U (G) is the universal additive invariant for finite pointed G-CW-
complexes known as the equivariant Euler characteristic.

Remark 2.11. Below we present some properties of the Euler characteristic χG(·).
– For X,Y ∈ F∗(G) we have: χG(X) + χG(Y) = χG(X ∨ Y) and

χG(X) � χG(Y) = χG(X ∧ Y).
– IfW is a G-representation then χG(SW) is an invertible element of U (G), see
[5].

– If G is connected and V,V′ are G-representations such that dimV > dimV
′

but V �≈G V
′ ⊕ W, where W is even-dimensional trivial G-representations

then

χG(SV) �= χG(SV
′
).

For the proof of this fact see Lemma 3.4 in [18].

For the trivial group G = {e} the equivariant Euler characteristic χ{e} is the
well-known Euler characteristic and U ({e}) = Z.

There is a natural extension of the equivariant Euler characteristic for finite
pointed G-CW-complexes to the category of G-equivariant spectra due to
GoŁȩbiewska and Rybicki [14]. Since a spectrum does not have to be constant
fromsomepoint but only stabilizes, to define someelement ofEuler ring as an equiv-
ariant Euler characteristic of a spectrumwe need to utilize this kind of stabilization.
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Let ξ = (Vn)
∞
n=0 and put Vn = V0 ⊕ V1 ⊕ · · · ⊕ Vn , for n � 0. Recall that

due to Remark 2.11 an element χG(SV
n
) is invertible in the Euler ring U (G) and

define a map ΥG : [GS(ξ)] → U (G) by the following formula

ΥG([E(ξ)]) = lim
n→∞

(
χG

(
SV

n−1
)−1

� χG(En)
)

. (2.1)

Remark 2.12. It was shown in [14] that ΥG is well-defined. In fact,

ΥG([E(ξ)]) = χG

(
SV

n1(E)−1
)−1

� χG(En1(E))), (2.2)

where n1(E) = n1(E(ξ)) comes from Definition 2.8.

Remark 2.13. Note that a finite pointed G-CW-complex X can be considered as a
constant spectrum E(ξ), where En = X for all n � 0 and ξ is a sequence of trivial,
one-point representations. Then ΥG([X]) = ΥG([E(ξ)]) = IU (G)

−1 � χG([X]) =
χG([X]). Therefore we can treat CIG and ΥG as natural extensions of CIG and χG ,
respectively.

In theorem 3.5 of [14] we find a very important formula connecting an equivari-
ant Conley index, an equivariant Euler characteristic and a degree for equivariant
gradient maps, defined in [13].

Theorem 2.14. Denote by η a local G-LS-flow generated by −∇Φ. Let O be an
isolated η-invariant G-set. Then

ΥG (CIG(O, η)) = ∇G − deg(∇Φ,O).

By the above result and Theorem 3.1 of [14] we obtain the following product
formula:

Theorem 2.15. If N1, N2 are isolated G-invariant sets for the local G-LS flows
generated by ∇Ψ1 and ∇Ψ2, respectively, then

ΥG (CIG (N1×N2, (∇Ψ1,∇Ψ2))) =ΥG (CIG (N1,∇Ψ1)) � ΥG (CIG (N2,∇Ψ2)) .

The next theorem is one of the most important fact in our reasoning. It allows
us to simplify the distinguishing of the infinite-dimensional equivariant Conley
indexes, significantly. In the view of theorem 2.14 and good properties of the degree
for equivariant gradient maps it will provide the existence of global bifurcation in
the proof of the main result.

Let H = ⊕∞
n=0 Hn be a representation of the compact Lie group G. Con-

sider two functionals ϕ1, ϕ2 ∈ C2
G(H,R) such that ∇ϕi = Lx + ∇Ki (x), where

∇Ki ∈ C1
G(H,H) is completely continuous for i = 1, 2, which satisfy the condi-

tions (B.1)–(B.3) described previously in Section 2.3. Note that T⊥
x G(x), a space

orthogonal to the orbit, is a representation of the isotropy group Gx and if ϕ is
G-invariant then ϕ|T⊥

x G(x) is Gx -invariant.
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Theorem 2.16. ([25], Theorem 2.4.3) Let G(x1),G(x2) be isolated orbits of criti-
cal points of the potentials ϕ1 and ϕ2, respectively. Moreover, assume that
Gx1 = Gx2(= H). If the pair (G, H) is admissible and
ΥH (CIH ({x1},−∇φ1)) �= ΥH (CIH ({x2},−∇φ2)) ∈ U (H)whereφi = ϕi |T⊥

xi
G(xi ),

then

ΥG(CIG(G(x1),−∇ϕ1)) �= ΥG(CIG(G(x2),−∇ϕ2)) ∈ U (G).

The proof of the theorem above is based on a concept of smash product over
group. One can findmore details in [25], especially Definition 2.4.2, Theorem 2.4.1
and Theorem 2.4.2.

2.5. Equivariant Splitting Lemma

Let K be a compact Lie group and let (V, 〈·, ·〉) be an orthogonal Hilbert
representation of K with an invariant scalar product 〈·, ·〉. Assume additionally that
dimV

K < ∞. Here and subsequently, Ω ⊂ V stands for an open and invariant
subset of V such that 0 ∈ Ω.

Consider a functional Ψ ∈ C2
K (Ω,R) given by the formula

Ψ (x) = 1

2
〈Ax, x〉 + ζ(x), (2.3)

which satisfies the following assumptions:

(F.1) A : V → V is a K -equivariant self-adjoint linear Fredholm operator,
(F.2) ker A ⊂ V

K ,
(F.3) ∇ζ : V → V is a K -equivariant, compact operator,
(F.4) ∇ζ(0) = 0 and ||∇2ζ(0)|| = 0,
(F.5) 0 ∈ Ω is an isolated critical point of Ψ .

Denote by ker A and im A the kernel and the image of ∇2Ψ (0) = A, re-
spectively. Notice that both, ker A and im A, are orthogonal representations of K .

Moreover, ker A is finite dimensional and trivial representation of K . Since A is
self-adjoint, V = ker A ⊕ im A. Put x = (u, v), where u ∈ ker A and v ∈ im A.

The following theorem (known as the splitting lemma) proves the existence
of equivariant homotopy which allows us to study the product (splitted) flow
(∇ϕ(u), Av),whereu ∈ ker A, v ∈ im A insteadof thegeneralΨ (x) = 1

2 〈Ax, x〉+
ζ(x) (the proof of this theorem one can find in [25] (Theorem 2.5.2)):

Theorem 2.17. Suppose that a functional Ψ ∈ C2
K (Ω,R) is defined by formula

(2.3) and satisfies assumptions (F.1)–(F.5). Then, there exists ε0 > 0 and
K-equivariant gradient homotopy ∇H : (Bε0(ker A) × Bε0(im A)) × [0, 1] → V

satisfying the following conditions:

1. ∇H((u, v), t) = Av − ∇ξt (u, v), for t ∈ [0, 1], where ∇ξt = ∇ξ(·, t) and
∇ξ : V × [0, 1] → V is compact and K–equivariant;

2. (∇H)−1(0) ∩ (Bε0(ker A) × Bε0(im A)) × [0, 1] = {0} × [0, 1] i.e. 0 is an
isolated critical point of ∇H(·, t) for any t ∈ [0, 1];
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3. ∇H((u, v), 0) = ∇Ψ (u, v);
4. There exists an K–equivariant, gradient mapping ∇ϕ : Bε0(ker A) → ker A

such that∇H((u, v), 1)=(∇ϕ(u), Av), for all (u, v) ∈ Bε0(ker A)×Bε0(im A).

Remark 2.18. The homotopy H is given by

H((u, v), t) = 1

2
〈Av, v〉 + 1

2
t (2 − t)〈Aw(u), w(u)〉

+ tζ(u, w(u)) + (1 − t)ζ(u, v + tw(u)).

Moreover, from theproof ofTheorem2.17 it follows that the potentialϕ : Bε0(ker A)

→ R is given by ϕ(u) = Ψ (u, w(u)), where w : Bε(ker A) → im A ∩ V
K is

K -equivariant; see Remark 2.5.1 in [25].

Remark 2.19. Note that we don’t assume that ker A �= {0}. In the case of trivial
kernel the homotopy given in Theorem 2.17 provides a linearization of functional.

3. Variational Formulation for Hamiltonian Systems

Recall that we are interested in the existence of periodic solutions with any
period of the system (HS). In order to find them we are going to study 2π -periodic
solutions of the parameterized system

ż(t) = λJ∇H(z(t)), (HS-P)

which is in one-to-one correspondence to 2πλ-periodic solutions of the system
(HS).

To prove the existence of solutions of the Hamiltonian system (HS-P) we are
going to the study critical points of a corresponding functional.

Define the Sobolev space of 2π -periodic R2N -valued functions

E :=
{
z(t) = a0 +

∞∑
k=1

ak cos(kt) + bk sin(kt) : ai , bi ∈ R
2N ,

∞∑
k=1

k(|ak |2 + |bk |2) < ∞
}

.

Then E = E0 ⊕⊕∞
k=1 Ek where E0 = R

2N is a subspace of constant functions
and Ek = {a cos(kt) + b sin(kt) : a, b ∈ R

2N }. Moreover Ek = E
−
k ⊕ E

+
k for

k � 1, where

E
−
k = {a cos(kt) + Ja sin(kt) : a ∈ R

2N },
E

+
k = {a cos(kt) − Ja sin(kt) : a ∈ R

2N }.
The space E with inner product given by

〈z, z̃〉E := 2πa0 · ã0 + π

∞∑
k=1

k(ak · ãk + bk · b̃k), (3.1)



932 D. Strzelecki

where · denotes the standard scalar product, is a Hilbert space usually denoted by
H

1/2(S1,R2N ). Since we consider R2N as a unitary representation of the compact
Lie group Γ , E is a unitary G = Γ × S1-representation with the action given by

G × E 
 ((γ, eiθ ), z(t)) → γ z(t + θ) (3.2)

and Ek is a unitary G-representation for any k � 1. Indeed,

ak cos(k(t + θ)) + bk sin(k(t + θ))

=
[
cos(kθ) · I d2N sin(kθ) · I d2N

− sin(kθ) · I d2N cos(kθ) · I d2N
] [

ak cos(kt)
bk sin(kt)

]
,

and therefore the action proposed in (3.2) is given on Ek by the product of unitary

matrices

[
γ 0
0 γ

]
and

[
cos(kθ) · I d2N sin(kθ) · I d2N

− sin(kθ) · I d2N cos(kθ) · I d2N
]
.

Remark 3.1. Since we are going to study the Hamiltonian system (HS-P) is
a neighborhood of the orbit of critical points Γ (z0), without loss of generality
we can assume that Hamiltonian H satisfies the following growth restriction:

|∇H(z)| � a1 + a2|z|s for some a1, a2 > 0, s ∈ [1,∞). (3.3)

Indeed, we may choose H̄ such that ∇ H̄ is bounded (i.e. s = 1) and H̄(z) = H(z)
in a neighborhood of the orbit Γ (z0).

It is known (see [21]) that periodic solutions of the system (HS-P) are in one to
one correspondencewith S1-orbits of critical points of a potentialΦ : E×(0,∞) →
R of a class C1 defined by

Φ(z, λ) = 1

2
〈Lz, z〉E + Kλ(z), (3.4)

where

〈Lz, z〉E =
∫ 2π

0
J ż(t) · z(t) dt, Kλ(z) =

∫ 2π

0
λH(z(t)) dt. (3.5)

Note that Φ(·, λ) acts on the subspace of constant functions E0 as Φ|E0×R(z, λ) =
2πλH(z). Moreover, L is given explicit on z(t) = a0 + ∑∞

k=1 ak cos(kt) +
bk sin(kt) by

(Lz)(t) =
∞∑
k=1

Jbk cos(kt) − Jak sin(kt); (3.6)

see [12], the formula (3.3).
Since we consider R2N as a unitary representation of a group Γ and H is

Γ -invariant, the potential Φ is Γ -invariant. Moreover, it is S1-invariant since it
acts on 2π -periodic functions.

Recall that since the Hamiltonian H is Γ -invariant, the solutions of the system
(HS-P) form Γ -orbits i.e. if z0 is a solution on (HS-P) then γ z0 solves (HS-P) for
any γ ∈ Γ . Therefore we are going to study G = Γ × S1-orbits of critical points
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of the corresponding G-invariant potential Φ i.e. we are interested in solutions of
the system

∇zΦ(z, λ) = 0. (3.7)

Note that ∇zΦ(z, λ) = Lz + ∇Kλ(z), L is a linear, self-adjoint and G-equivariant
operator and ∇Kλ(z) is completely continuous. Since ker L = E0 and L |E±

k
=

±I d, the conditions (B.1)–(B.3) given on the page 6 are satisfied.
Let z0 ∈ (∇H)−1(0) and consider a linear Hamiltonian system

ż(t) = λJ A(z(t) − z0), (HS-L)

which has a form of (HS-P) with H(z) = 1
2 A(z − z0) · (z − z0). The variational

potential has the form ΦL(z, λ) = 1
2 〈Lz, z〉E + 1

2 〈Bλ(z − z0), z − z0〉E, where

〈Bλz, z
′〉E =

∫ 2π

0
λAz(t) · z′(t) dt

=
∫ 2π

0

(
(λA)a0 +

∞∑
k=1

(λA)ak cos(kt) + (λA)bk sin(kt)

)

·
(
a′
0 +

∞∑
k=1

a′
k cos(kt) + b′

k sin(kt)

)

= 2π(λA)a0 · a′
0 + π

∞∑
k=1

(λA)ak · a′
k + (λA)bkb

′
k .

(3.8)

Taking into account the scalar product in E given by (3.1) and the formula (3.8),
we obtain

Bλ(z − z0) = (λA)(a0 − z0) +
∞∑
k=1

λ

k
Aak cos(kt) + λ

k
Abk sin(kt),

and, as a consequence,

∇zΦL(z, λ) = (L + Bλ)(z − z0) = λA(a0 − z0) +
∞∑
k=1

(
λ

k
Aak + Jbk

)
cos(kt)

+
(

λ

k
Abk − Jak

)
sin(kt).

This means that ∇ΦL(z, λ) acts on Ek = {a cos(kt) + b sin(kt) : a, b ∈ R
2N } for

k � 1 as a linear map

Tk,λ(A) =
[−λ

k A −J
J −λ

k A

]
. (3.9)
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Lemma 3.2. The linear equation (HS-L) possesses a non-constant 2π -periodic
solution if and only if Tk,λ(A) is singular for some k � 1 and it holds true if λ = k

βr
where iβr ∈ σ(J A).

Proof. Let (z, λ) = (a0 + ∑∞
k=1 ak cos(kt) + bk sin(kt), λ) �= (const., λ) be

a critical point of ΦL and let k be such that |ak |2 + |bk |2 �= 0. Then, in particular,
Tk,λ(A)(ak, bk)T = 0 i.e. Tk,λ(A) has a nontrivial kernel.

It is easy to see that equation Tk,λ(A)(ak, bk)T = 0 has the form
⎧⎪⎨
⎪⎩

−λ

k
Aak = Jbk

Jak = λ

k
Abk

,

which implies that J A(ak − ibk) = k
λ
(bk + iak) = ki

λ
(ak − ibk) i.e.

ki
λ

∈ σ(J A). ��

4. Main Result

In this section we prove our main result of this paper i.e. the global bifurcation
of periodic solutions of the system (HS) in the most general version. We emphasize
our assumptions:

(A1) H : R2N → R is a Γ -invariant Hamiltonian of the class C2,
(A2) z0 ∈ R

2N is a critical point of H such that the isotropy group Γz0 is trivial,
(A3) the orbit Γ (z0) is isolated in (∇H)−1(0),
(A4) ±iβ1, . . . ,±iβm , 0 < βm < . . . < β1, m � 1 are the purely imaginary
eigenvalues of J∇2H(z0),
(A5) deg(∇H|T⊥

z0
Γ (z0), B(z0, ε), 0) �= 0 for sufficiently small ε,

(A6) β j0 is such that β j/β j0 �∈ N for all j �= j0
(A7) m− (T1,λ(∇2H(z0))

)
changes at λ = 1

β j0
when λ varies.

Theorem 4.1. Under the assumptions (A1)–(A7) there exists a connected family
of non-stationary periodic solutions of the system ż(t) = J∇H(z(t)) emanating
from the stationary solution z0 (i.e. with amplitudes tending to 0) such that minimal
periods of solutions in a small neighborhood of z0 are close to 2π/β j0 .

Remark 4.2. The assumption (A7) is very general and laborious to verify. We will
change and simplify them in some specific cases. However, it does not follow
directly from the structure of a Hamiltonian system in general situation as we
obtained in a study of Newtonian systems, see [24], the proof of Lemma 4.1.

Let z0 ∈ R
2N be a critical point of the Hamiltonian H such that the assumptions

(A1)–(A4) are satisfied. From now we study variational reformulation (3.7) of the
parameterized Hamiltonian system (HS-P). Then z0 is a constant functions which
solves the equation (3.7) for any λ ∈ (0,∞) and the orbit G(z0) = Γ (z0) consists
of solutions of the equation (3.7). Therefore we put T = G(z0) × (0,∞) for the
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family of trivial solutions of the equation (3.7) andN = {(z, λ) ∈ E×(0,+∞)\T :
∇zΦ(z, λ) = 0} is called a family of non-trivial solutions.

Denote by C(z0, λ0) a connected component of the set N which contains the
set {z0} × {λ0}.
Definition 4.3. We say that the orbit G(z0) × {λ0} is an orbit of global bifurcation
of solutions of the equation (3.7) if the set C(z0, λ0) is unbounded in E× (0,∞) or
(C(z0, λ0) ∩ T ) \ (G(z0) × λ0) �= ∅ i.e. C(z0, λ0) coincide with the trivial family
outside the orbit G(z0) × {λ0}.

The definition above does not depend on the choice of z ∈ G(z0). Indeed,
if z1 = g1z0 then, taking into account an equivariancy of the equation (3.7), we
obtain C(z1, λ0) = g1C(z0, λ0) i.e. the connected component of {z1}×{λ0} satisfies
the same conditions as the connected component of {z0} × {λ0}. In other words,
global bifurcation from the orbit G(z0) × {λ0} provides the existence of solutions
emanating from any point of the orbit. In fact, using the equivariant method we
obtain the existence the bifurcation of the G-orbits of solutions. However, we are
working with the bifurcation of single solutions (not orbits) to connect the main
result of the paper to the original theorem of Lyapunov directly.

Note that the definition of global bifurcation implies that the set C(z0, λ0) is
not empty; i.e. there is a family of solutions of the equation (3.7) emanating from
the orbit G(z0)×{λ0} at the point {z0}×{λ0}. Therefore, to prove Theorem 4.1 we
have to show the existence of global bifurcation from the orbit G(z0) × {λ0} and
to control the bifurcation level {λ0} to determine periods of bifurcating solutions.
Finally, since the existence of bifurcation provides the convergence in the norm of
Sobolev space E = H

1/2(S1,R2N ), we have to prove that new periodic solutions
tend to {z0} in the L∞-norm.

Put Λ = { k
β j

: k ∈ N, iβ j ∈ σ(J∇2
z H(z0))}. In the theorem below we prove

the necessary condition for the existence of bifurcation from the orbitG(z0)×{λ0}.
Theorem 4.4. (Necessary condition) If G(z0)×{λ0} is an orbit of global bifurcation
of solutions of the equation (3.7) then ker∇2

z Φ(z0, λ0)∩⊕∞
k=1 Ek �= ∅ i.e. λ0 ∈ Λ.

Proof. By a reasoning given in the proof of Theorem 3.2.1 in [25] we obtain
ker∇2

z Φ(z0, λ0) ∩⊕∞
k=1 Ek �= ∅. To complete the proof we have to prove that it

implies λ0 ∈ Λ. The study of the kernel of ∇2
z Φ(z0, λ0) is equivalent to the study

of the linearized system (HS-L) where A = ∇2
z H(z0). Therefore, by Lemma 3.2

we obtain the thesis. ��
Choose λ0 such that the necessary condition and assumptions (A6), (A7) are

satisfied i.e. λ0 = 1
β j0

∈ Λ and put λ± = 1±ε
β j0

such that λ± > 0 and [λ−, λ+]∩Λ =
{λ0}.Toprove the existence of global bifurcationwe are going to apply the following
theorem:

Theorem 4.5. (Sufficient condition). Under the assumptions above, if

ΥG (CIG (G(z0),−∇Φ(·, λ+))) �= ΥG (CIG (G(z0),−∇Φ(·, λ−))) , (4.1)

then G(z0) × {λ0} is an orbit of a global bifurcation.
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Proof. The theorem above follows directly from the relation

ΥG(CIG(X, f ) = ∇G − deg( f, IntX)

(see [3], Theorem 3.10) and from a global bifurcation theorem for equivariant
gradient degree (see [13], Theorem 3.3). ��

Define H ⊂ E by H = T⊥
z0 G(z0). Recall that the space perpendicular to the

orbit at z0 is an Gz0 -representation. Since z0 is a constant function and by the
assumption (A2) Gz0 = {e} × S1, H is an unitary S1-representation.

Put Ψ± : H → R by Ψ±(z) = Φ(z, λ±). Note that since H is an
S1-representation, the potenatial Ψ± is S1-invariant. Moreover, z0 is an isolated
critical point of Ψ±. Since G(z0) = Γ (z0) ⊂ E0 we have the following decompo-
sition:

H = T⊥
z0 Γ (z0) ⊕

∞⊕
k=1

Ek .

In order to prove the main result of this paper we prove the existence of global
bifurcation from the orbit G(z0) × {λ0}; i.e. we need to prove formula (4.1). In the
theorem below we simplify this formula to the study of potentials defined on the
orthogonal section T⊥

z0 G(z0).

Lemma 4.6. Under the above assumptions if

ΥS1
(
CIS1({z0},−∇Ψ+)

) �= ΥS1
(
CIS1({z0},−∇Ψ−)

)
, (4.2)

then

ΥG (CIG (G(z0),−∇Φ(·, λ+))) �= ΥG (CIG (G(z0),−∇Φ(·, λ−))) . (4.3)

Proof. Since the pair (Γ × S1, {e} × S1) is admissible (because S1 is abelian),
see Definition 2.1, and both ∇Φ(·, λ−), ∇Φ(·, λ+) are in the form of a compact
perturbation of the same linear operator L , we can apply Theorem 2.16 to obtain
the thesis directly. ��

From now our goal is to prove formula (4.2). The next step is to transform
a problem into the study of Conley indexes with simpler structure of flows.

We define H̃ : T⊥
z0 Γ (z0) → R by H̃(z) = H(z + z0) and Ψ̃± : H → R by

Ψ̃±(z) = Ψ±(z+z0). Since Ψ̃±|E0 = 2πλ± H̃ and the orbitsG(z0)×{λ+}, G(z0)×
{λ−} do not satisfy the necessary condition for the existence of bifurcationwe obtain
ker∇2Ψ̃±|(0) = ker∇2 H̃(0) so the kernel is independent on λ±. Since ∇2Ψ̃±(0)
is self-adjoint we are able to decompose

H = N ⊕ R = ker∇2Ψ̃±(0) ⊕ im ∇2Ψ̃±(0)

independently on λ. We further decomposeR = R0⊕R∞, whereR0 = R∩E0 ⊂
H

S1 and R∞ =⊕∞
k=1 Ek ⊂ R ⊂ H.
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Note that the S1-invariant potential Π± : R∞ → R of the linear vector field

∇2Ψ±|R∞(z0)(z− z0) is defined by Π±(z) = 1

2
〈∇2Ψ±|R∞(z0)(z− z0), z− z0〉E.

The next theorem simplifies the proof of formula (4.2) to the study of Conley
indexes of linear vector fields. In order to prove it we apply the splitting lemma
(Theorem 2.17).

Lemma 4.7. Under the above assumptions the formula (4.2) holds true if and only
if

ΥS1
(
CIS1 ({z0},−∇Π+)

) �= ΥS1
(
CIS1 ({z0},−∇Π−)

)
. (4.4)

Proof. It is clear that by the properties of Conley index we have

CIS1({z0},−∇Ψ±) = CIS1({0},−∇Ψ̃±).

Since we are going to apply splitting lemma (Theorem 2.17), nowwe verify that Ψ̃±
satisfies conditions (F.1)–(F.5) given on the page 8 with K = S1, A = ∇2Ψ̃±(0)
and ζ±(z) = Ψ̃±(z) − 〈∇2Ψ̃±(0)z, z〉E. Thus,
(F.1) Since Ψ̃± is S1-invariant (it is the invariant Ψ translated by z0 ∈ E

S1 ) its
hessian is S1-equivariant. Moreover, a hessian is a self-adjont operator. By
Theorem 4.4 ker∇2Ψ̃± ⊂ E0 ∩ H is finite dimensional, since λ± /∈ Λ.

(F.2) In a fashion similar to as above, ker∇2Ψ̃± ⊂ E0 ∩ H = H
S1

(F.3) Since∇ζ±(z) = ∇Ψ̃±(z)−∇2Ψ̃±(0)z and both summands are compact and
S1-equivariant, ∇ζ± is also compact and S1-equivariant.

(F.4) It is obvious due to formula given in (F.3).
(F.5) Since λ± /∈ Λ, i.e. the orbits G(z0) × {λ±} do not satisfy the necessary

conditions for the existence of bifurcations, the orbit G(z0) is isolated in the
set (∇Φ(·, λ±))−1(0). Therefore 0 ∈ H is an isolated critical point of Ψ̃±.

Applying Theorem 2.17 (splitting lemma) and Theorem 2.15 (product formula),
we obtain

ΥS1
(
CIS1({0},−∇Ψ̃±)

) = ΥS1
(
CIS1({0},−∇ϕ±)

)
�ΥS1

(
CIS1({0},−∇2Ψ̃±(0)|R)

)
,

where 0 = (0, 0) ∈ N ⊕ R, ϕ± : Bε0(N ) → R, ϕ±(u) = Ψ̃±(u, w(u)) and
∇ϕ±(u) is S1-equivariant.

Since R0 is an invariant space of the linear map ∇2Ψ̃±(0) we are able to
decompose the linear flow to obtain

ΥS1

(
CIS1({(0, 0)},−∇2Ψ̃±(0)|R)

)

= ΥS1

(
CIS1({0},−∇2Ψ̃±(0)|R0)

)

� ΥS1

(
CIS1({0},−∇2Ψ̃±(0)|R∞)

)
,
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and combining the flows given on the E0 ∩ H, we finally obtain

ΥS1
(
CIS1({0},−∇Ψ̃±)

)
= ΥS1

(
CIS1({(0, 0)}, (−∇ϕ±,−∇2Ψ̃±(0)|R0))

)

� ΥS1

(
CIS1({0},−∇2Ψ̃±(0)|R∞)

)
. (4.5)

If we study the homotopy H (see Theorem 2.17 and Remark 2.18) acting on the
subspace of constant function E0, we obtain

∇H|E0((u, v), 1) = (−∇ϕ±(u),−∇2Ψ̃±(0)|R0(v)),

∇H|E0((u, v), 0) = ∇Ψ̃±|E0(u, v) = L̃ |E0(u, v) + ∇ K̃λ±|E0(u, v)

= 2πλ±∇ H̃(u, v).

By thehomotopy invariance of theConley index, and sinceλ−, λ+ are both positive,
we have

ΥS1

(
CIS1({(0, 0)}, (−∇ϕ±,−∇2Ψ̃±(0)|R0))

)

= ΥS1(CIS1({0},−∇ H̃)) = ΥS1(CIS1({z0},−∇H|T⊥
z0

Γ (z0))).

Note that the space E0 is finite-dimensional and consists of constant functions
(elements invariant on S1 action), therefore

ΥS1(CIS1({z0},−∇H|T⊥
z0

Γ (z0))) = χS1(CIS1({z0},−∇H|T⊥
z0

Γ (z0)))

= χ(CI({z0},−∇H|T⊥
z0

Γ (z0)))

= deg(∇H|T⊥
z0

Γ (z0), B(z0, ε)) · I ∈ U (S1) (4.6)

for sufficiently small ε > 0, where the last equality follows from Poincaré-Hopf
theorem (see [31]). Since

ΥS1

(
CIS1({0},−∇2Ψ̃±(0)|R∞)

)
= ΥS1

(
CIS1({z0},−∇Π±)

)
,

we finally have that

ΥS1
(
CIS1({0},−∇Ψ̃±)

) = deg(∇H|T⊥
z0

Γ (z0), B(z0, ε))

·ΥS1
(
CIS1({z0},−∇Π±)

)
. (4.7)

By the assumption (A5) deg(∇H|T⊥
z0

Γ (z0), B(z0, ε), 0) �= 0 and due to equation
(4.7) we obtain that the formula (4.2) is equivalent to

ΥS1
(
CIS1 ({z0},−∇Π+)

) �= ΥS1
(
CIS1 ({z0},−∇Π−)

)
,

and the proof is completed. ��
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To verify formula (4.4) we are going to study the equivariant Conley index and
equivariant Euler characteristic by definitions. Note that the vector field −∇Π± :
R∞ → R∞ is linear and the decomposition R∞ = ⊕∞

k=1 Ek satisfies condi-
tions (B.1)–(B.3) given on the page 6. Recall that λ0 = 1

β j0
∈ Λ where iβ j0 ∈

σ(J∇2H(z0)) and λ± = 1+ε
β j0

is such that [λ−, λ+] ∩ Λ = {λ0}.
Remark 4.8. Note that the linearization of the variational functional Φ for the
parameterized Hamiltonian system (HS-P) is equal to variational functional for the
linearized system (HS-L) (we remove high order tenses in both cases). Therefore
the action of the linear vector field ∇Π± : R∞ → R∞ is given on Ek by

Tk,λ(A) =
[−λ

k A −J
J −λ

k A

]
, (4.8)

where A = ∇2 H̃(0) = ∇2H(z0). For k → ∞ we have Tk,λ(A) →
[
0 −J
J 0

]
i.e.

m−(Tk,λ) = 2N for k big enough.

Theorem 4.9. Under the assumptions (A1)–(A7) of Theorem 4.1,

ΥS1
(
CIS1 ({z0},−∇Π+)

) �= ΥS1
(
CIS1 ({z0},−∇Π−)

)
. (4.9)

Proof. Since Tk,λ is singular iff λ = k
β j

(see Lemma 3.2), [λ−, λ+] ∩ Λ = {λ0} =
{ 1
β j0

} and 1
β j0

�= k
β j

for any k ∈ N and β j �= β j0 (see assumption (A6)), matrices

Tk,λ for k � 2 are nonsingular if λ varies. Therefore the spectral decomposition of
Ek for k � 2 given by −∇2Π± does not depend on λ±, i.e.

Ek = Ek,− ⊕ Ek,+,

but

E1 = E1,λ±,− ⊕ E1,λ±,+.

As a consequence the spectra E−, E+ whose homotopy types are Conley indexes
CIS1 ({z0},−∇Π−) , CIS1 ({z0},−∇Π+) are of the same type ξ = (Ek,+)∞k=2.
Define Pn =⊕n

k=2 Ek,+.
Put Rn = ⊕n

k=1 Ek and consider Πn± = Π±|Rn : Rn → R. By Remark 2.12
we obtain

ΥS1
(
CIS1 ({z0},−∇Π±)

) =
(
χS1

(
SPn−1

))−1

�χS1
(
CIS1

({z0},−∇Πn±
))

(4.10)

for n large enough. Now, to prove formula (4.9), it is enough to show that

χS1
(
CIS1

({z0},−∇Πn−
)) �= χS1

(
CIS1

({z0},−∇Πn+
))

.

Since −∇Πn± is a linear isomorphism, Conley indexes are very simple, i.e.

CIS1
({z0},−∇Πn±

) = SE1,λ±,+⊕Pn = SE1,λ±,+ ∧ SPn . (4.11)
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By the assumption (A7), we have

dimE1,λ−,+ = m− (T1,λ−(∇2H(z0))
)

�= m− (T1,λ+(∇2H(z0))
)

= dimE1,λ+,+.

Since E1 is a non-trivial S1-representation, by Remark 2.11 we obtain that

χS1

(
SE1,λ−,+

)
�= χS1

(
SE1,λ+,+

)
. (4.12)

Combining formulas (4.11) and (4.12), we finally obtain

χS1
(
CIS1

({z0},−∇Πn−
)) = χS1

(
SE1,λ−,+

)
� χS1

(
SPn
)

�= χS1

(
SE1,λ+,+

)
� χS1

(
SPn
)

= χS1
(
CIS1

({z0},−∇Πn+
))

,

which completes the proof. ��
Remark 4.10. Lets summarize the work we have already done.

1. By the change of variables we translate the equation (HS) into (HS-P).
2. We formulate the equation (HS-P) as a variational problem (3.7).
3. We apply the equivariant Conley index and the equivariant Euler characteristic

to provide the existence of global bifurcation of solutions of the equation (3.7)
from the orbit G(z0) × {λ0}. From now we are going to prove formula (4.1)
i.e. the change of the equivariant gradient degree at the level λ0 satisfying the
necessary condition.

4. To study the change of equivariant the Conley index of the orbit we apply the
method of the orthogonal section, reducing the problem to formula (4.2).

5. Applying the equivariant splitting lemma and the assumption (A5), we reduce
formula (4.2) to the linear case, i.e., to formula (4.4).

6. Finally we prove formula (4.4), computing equivariant Conley index by the
definition.

Proof of Theorem 4.1. Applying bifurcation theory to the variational potential
Φ : H1/2(S1,R2N ) × (0,∞) → R (as is summarized in the above remark) we
have proved the existence of a family of critical points of Φ emanating from {z0}×
{λ0} ∈ H

1/2(S1,R2N ) × (0,∞) in the norm of H1/2(S1,R2N ). Now we prove
that corresponding periodic solutions of Hamiltonian system tend to z0 ∈ R

2N in
L∞-norm, i.e. the amplitudes of these solutions are tending to zero.

Let z(t) = a0 +∑∞
k=1 ak cos(kt) + bk sin(kt) be a solution of (HS-P) for λ

close to λ0. Firstly,

||z − z0||2L2 = 2π |a0 − z0|2 + π

∞∑
k=1

(|ak |2 + |bk |2)

� 2π |a0 − z0|2 + π

∞∑
k=1

k(|ak |2 + |bk |2) = ||z − z0||2H1/2 .
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Under the condition (3.3), the map z(t) → ∇H(z(t)) is continuous from L2(S1)
to L2(S1) (see Proposition B.1 in [28]). Let ε > 0 and choose 0 < δ < ε such
that ||z − z0||L2 � ||z − z0||H1/2 < δ implies that ||∇H(z)||L2 = ||∇H(z) −
∇H(z0)||L2 < ε. Since z is a solution of (HS-P), we obtain

||(z − z0)
′||L2 = ||ż||L2 = ||λ∇H(z)||L2 � λε.

Applying Sobolev inequality (see Proposition 1.1 in [21]), we obtain

||z − z0||2L∞ � c||z − z0||2H1 = c
(
||z − z0||2L2 + ||(z − z0)

′||2L2

)
� c(1 + λ2)ε2.

Since λ is bounded in the neighborhood of λ0 the convergence of solutions z to z0
in the norm of H1 implies the convergence in L∞.

To finish the proof we have to study the minimal periods of new periodic solu-
tions. These were obtained by the bifurcation from the orbit G(z0) × {λ0}, where
the parameter λ0 comes from the change of variables and describes the period of
solutions. More precisely, we have already obtained the connected branch of solu-
tions of the system (HS) emanating from the stationary solutions z0 with periods
close to 2πλ0 = 2π

β j0
.

By the non-resonance condition for eigenvalues (i.e β j/β j0 �∈ N for all j �= j0),
we obtain λ0

r /∈ Λ = { k
βr

: k ∈ N, iβr ∈ σ(J∇2
z H(z0))} for any r ∈ N, and

therefore, in the view of Theorem 4.4, there are no 2πλ0
r -periodic non-stationary

solutions in a neighborhood of the orbit Γ (z0). Hence we can consider periods
tending to 2π

β j0
as minimal and the proof of Theorem 4.1 is completed. ��

Remark 4.11. The assumption (A6) was used only in the proof of Theorem 4.9,
i.e. in the last step of the proof of our main theorem. We are able to remove this
assumption, but then in the proof of Theorem 4.9 we need to study λ-depending
decompositions of not only E1 but any Ek such that 1

β j0
�= k

β j
for some j . It will

cause a complicated notation and the proof will be less readable. However, the
change of dimEk,λ,+ when λ varies we will obtain in the same way as for k = 1.
Note that assumption (A6) is always satisfied for j0 = 1 since β1 is the maximum
of βi .

5. Corollaries

In this sectionwe study how it is possible tomodify assumption (A7).Moreover,
we show that the results of this paper are generalizations of some versions of the
Lyapunov center theorem.

The following theorem was proven by Szulkin ([32], Proposition 3.6):

Theorem 5.1. Suppose that A is symmetric and iβ j ,β j > 0, is an eigenvalue of J A.
Let E j be the eigenspace of J A in C2N corresponding to iβ j and Z j the invariant
subspace of J A in R

2N corresponding to ±iβ j . Then m−(T1,λ(A)) changes at
λ = 1/β j if and only if the following two equivalent conditions are satisfied:
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1. m−(A|Z j ) �= m+(A|Z j ),
2. m−(−i J|E j ) �= m+(−i J|E j ).

Due to the theorem above we are able to formulate new versions of assumption
(A7):

(A7.1) m−(∇2H(z0)|Z j0
) �= m+(∇2H(z0)|Z j0

),
(A7.2) m−(−i J|E j0

) �= m+(−i J|E j0
),

where E j is the eigenspace of J∇2H(z0) in C2N corresponding to iβ j and Z j the
invariant subspace of J∇2H(z0) in R2N corresponding to ±iβ j .

Note that if ∇2H(z0)|Z j0
is a definite matrix, then the condition (A7.1) is sat-

isfied. Therefore we put that

(A7.3) ∇2H(z0)|Z j0
is definite.

Theorem 5.2. Under the assumptions (A1)–(A6) and one of the conditions (A7.1)–
(A7.3) there exists a connected family of non-stationary periodic solutions of the
system ż(t) = J∇H(z(t)) emanating from the stationary solution z0 such that
minimal periods of solutions in the small neighborhood of z0 are close to 2π/β j0 .

If we are not interested in the minimal period of new solutions but only in
the study of its existence, the assumptions can be modified. The computation of
invariant subspaces Z j we can change to the study of general invariant subspace
of J∇2H(z0) associated to all the eigenvalues of the form ±iβk . Denoting this
subspace by Z we formulate a new condition.

(A7.4) ∇2H(z0)|Z is definite.

Under this condition the assumption (A7.3) is satisfied for some eigenvalue of
J∇2H(z0) andwe do not know it precisely. Thereforewe exclude assumption (A6).
In the theorem below we prove the existence of periodic solutions of the system
(HS) without information about their minimal periods. According to the reasoning
above, it is clear that Theorem 5.3 is a direct consequence of Theorem 4.1.

Theorem 5.3. Under the assumptions (A1)–(A5) and (A7.4) there exists a con-
nected family of non-stationary periodic solutions of the system ż(t) = J∇H(z(t))
emanating from the stationary solution z0 such that periods (not necessarily min-
imal) of solutions in the small neighborhood of z0 are close to 2π/β j where iβ j ,
β j > 0, is some eigenvalue of J∇2H(z0).

Looking on the T1,λ(∇2H(z0)) from the other point of view, we see that

T1,λ(∇2H(z0)) →
[
0 −J
J 0

]
and m−(T1,λ(∇2H(z0))) → 2N

for λ → 0,
1

λ
T1,λ(∇2H(z0)) →

[−∇2H(z0) 0
0 −∇2H(z0)

]
for λ → ∞

and m−(T1,λ(∇2H(z0))) = m−(
1

λ
T1,λ(∇2H(z0))) → 2m+(∇2H(z0))

for λ → ∞.
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Therefore if m+(∇2H(z0)) �= N , then m−(T1,λ(∇2H(z0))) changes at some
λ ∈ (0,∞). Recall that the levels λ where it can change is Λ (see Lemma 3.2).
Therefore the change ofm−(T1,λ(∇2H(z0))) implies the existence of purely imag-
inary eigenvalue of J∇2H(z0). As a consequence we can propose a new condition:

(A7.5) m+(∇2H(z0)) �= N ,

and we are able to formulate the next theorem without assumption (A4).

Theorem 5.4. Under the assumptions (A1),(A2),(A3),(A5) and (A7.5) there ex-
ists a connected family of non-stationary periodic solutions of the system ż(t) =
J∇H(z(t)) emanating from the stationary solution z0 such that periods (not nec-
essarily minimal) of solutions in the small neighborhood of z0 are close to 2π/β j ,
where iβ j , β j > 0, is some eigenvalue of J∇2H(z0).

Below we present a way in where the theorems presented above generalize
classical Lyapunov center theorem and an analogous theorem for Hamiltonian sys-
tems that has been proved by Dancer and Rybicki [6]. Moreover, two symmetric
versions of the Lyapunov center theorem proposed in [24] and [25] are generalized
in this paper.

Theorem 5.5. ([6], Theorem 3.3. (reformulated)) Consider an equation ż(t) =
J∇H(z(t)), where H : R

2N → R is of the class C2. Let z0 ∈ R
2N be an

isolated critical point of H. Let iβ0 β0 > 0 be an eigenvalue of J∇2H(z0).
If deg(∇H, B(z0, ε), 0) �= 0 for sufficiently small ε and m− (T1,λ(∇2H(z0))

)
changes at λ = 1

β0
when λ varies, then there exists a connected family of peri-

odic solution of the Hamiltonian system emanating from z0.

Proof. This theorem follows directly fromTheorem 4.1 if we consider trivial group
Γ = {e}. In this case Tz0Γ (z0) = R

2N + z0. ��
Consider a Newtonian (second-order) system

q̈(t) = −∇U (q(t)), (NS)

where U : RN → R is Γ -invariant potential of the class C2, Γ acts orthogonally
on R

N and q0 ∈ (∇U )−1(0). If we substitute r = q̇ we can reformulate the
second-order system (NS) to the first-order system

{
q̇(t) = r(t),
ṙ(t) = −∇U (q(t)),

(5.1)

which can be considered as a Hamiltonian system with H : R2N → R defined by
H(z) = H(q, r) = 1

2r
2 +U (q). An action of Γ on R2N induced by action on RN

is diagonal i.e γ (q, r) → (γ q, γ r). It is easy to verify that this action is symplectic,
so Γ acts unitary on R2N . Moreover, z0 = (q0, r0) = (q0, q̇0) = (q0, 0) (since we
consider q0 as a constant function) is a critical point of H .We see that J∇2H(z0) =[

0 ∇2U (q0)
−I 0

]
. The easy block–form of the matrix J∇2H(z0) lets us to observe
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a bijective correspondence between positive eigenvalues of ∇2U (q0) and the pairs
of purely imaginary eigenvalues of J∇2H(z0). In fact, if β2 ∈ σ(∇2U (q0)) then
±iβ ∈ σ(J∇2H(z0)). Taking into account the above reasoning, the following
theorems are consequences of Theorem 4.1:

Theorem 5.6. (Symmetric Lyapunov center theorem, [24]). Let U : Ω → R be
a Γ -invariant potential of the class C2 and q0 ∈ Ω . Assume that

1. q0 is a critical points of the potential U,
2. dim ker∇2U (q0) = dim Γ (q0),
3. the isotropy group Γq0 is trivial,
4. σ(∇2U (q0)) ∩ (0,+∞) = {β2

1 , . . . , β
2
m} and m � 1.

Then for any β j0 such that β j/β j0 �∈ N for all j �= j0, there exists a sequence
(qk(t)) of periodic solutions of the system (NS) with minimal period tending to
2π/β j0 such that in any open neighborhood of the orbit Γ (q0) there is an element
of the sequence (qk(t)).

Theorem 5.7. (Symmetric Lyapunov center theorem for minimal orbit, [25]). Let
U : Ω → R be a Γ -invariant potential of the class C2 and q0 ∈ Ω . Assume that

1. q0 is a minimum of potential U,
2. the orbit Γ (q0) is isolated in (∇U )−1(0),
3. the isotropy group Γq0 is trivial,
4. σ(∇2U (q0)) ∩ (0,+∞) = {β2

1 , . . . , β
2
m}, β1 > β2 > . . . > βm > 0 and

m � 1.

Then for any β j0 such that β j/β j0 �∈ N for j �= j0 there exists a sequence (qk(t))
of periodic solutions of the system (NS) with a sequence of minimal periods (Tk)
such that dist(Γ (q0), qk([0, Tk])) → 0 and Tk → 2π/β j0 as k → ∞.

Proof. Note that the assumptions (A1)–(A4) and (A6) are satisfied directly due to
statements of the theorems above.

Firstly, we check that the assumption (A7) is always satisfied for Newtonian

systems. Since∇2H(z0) =
[∇2U (q0) 0

0 I

]
and the matrix∇2U (q0) is orthogonally

diagonalizable (say by D ∈ O(N )) then the symplectic matrix D̄ =
[
D 0
0 D

]
diago-

nalize the hessian∇2H(z0) and we are able to simplify the form of T1,λ(∇2H(z0))
as follows: [

D̄ 0
0 D̄

]
·
[−λ∇2H(z0) −J

J −λ∇2H(z0)

]
·
[
D̄T 0
0 D̄T

]

=
[−λD̄∇2H(z0)D̄T −J

J −λD̄∇2H(z0)D̄T

]
,

where D̄∇2H(z0)D̄T = diag (η1, η2, . . . , ηN , 1, . . . , 1) and η1, η2, . . . , ηN are
the eigenvalues of ∇2U (q0) (not necessarily different). Further, we apply the per-
mutation of the basis (1, 2, . . . , 4N ) → (1, N+1, 2N+1, 3N+1, 2, N+2, 2N+
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2, 3N+2, . . . , N , 2N , 3N , 4N ) to transformourmatrix to diag (A1, A2, . . . , AN ),

where Ai =

⎡
⎢⎢⎣

−ληi 0 0 1
0 −λ −1 0
0 −1 −ληi 0
1 0 0 −λ

⎤
⎥⎥⎦. The characteristic polynomial of the matrix

Ai has the form WAi (t) = ((ληi + t)(λ + t) − 1)2 and has 4 negative roots for
λ2 = λ2+ = 1+ε

ηi
and 2 negative roots for λ2 = λ2− = 1−ε

ηi
, where ηi is positive.

Therefore m−(T1,λ+(∇2H(z0)) = m−(T1,λ−(∇2H(z0))) + 2mult (ηi ) for suffi-
ciently small ε, so the assumption (A7) is satisfied automatically for any positive
eigenvalue β2

i of ∇2U (q0) when we study Newtonian system translated into the
Hamiltonian one.

To complete the proofs of theorems we have to verify assumption (A5) in both
cases.

– In Theorem 5.6we assume that the orbit is non-degenerate i.e. dim ker∇2U (q0)
= dim Γ (q0) and Tq0Γ (q0) = ker∇2U (q0). Therefore z0 is non-degenerate
critical point of ∇H|T⊥

z0
Γ (z0) i.e. ∇2H|T⊥

z0
Γ (z0) is an isomorphism. In such case

deg(∇H|T⊥
z0

Γ (z0), B(z0, ε), 0) = ±1.

– In Theorem 5.6 we assume that the orbit Γ (q0) consists of minima ofU and is
isolated in critical points of U . Therefore z0 = (q0, 0) is an isolated minimum
of H|T⊥

z0
Γ (z0). However, it is known that the Brouwer degree of minimum equals

1 (see [26]).

Theorems 5.6 and 5.7 are given with the original thesis, but in fact they are directly
related to the thesis of Theorem 4.1; see the remarks below Definition 4.3. ��

6. An Application

In this sectionwe apply our abstract results to the study of the quasi-periodicmo-
tions of a satellite near the geostationary orbit of an oblate spheroid with rotational
symmetry. Note that the Earth is flattened and therefore the study of gravitation
potential of such bodies has crucial role in the design of missions of satellites.

A gravitational potential of an oblate spheroid has a general form

UG(r, θ) = −G
E

r

(
1 −

∞∑
n=2

(
R

r

)n

Jn Pn(cos θ)

)
,

where r is a distance from the center of mass of the spheroid, θ—deviation from
the axis of rotation, G—gravitational constant, E is the mass of the spheroid and R
is its equatorial radius, (Jn) is the sequence of coefficients realted to the spherical
harmonics and Pn denotes the n-th Legendre polynomial, see [19] for the details.
In the case of axial symmetry the dominating term is J2, so called dynamical form-
factor, which is directly related to the body’s flattening and for the oblate body J2
is positive. For the Earth J2 = 1.0826359 · 10−3.



946 D. Strzelecki

We are going to study the motions under approximate potential

U (r, θ) = −GE

r

(
1 − J2R2

r2
P2(cos θ)

)
.

By the chooseof theunitswemayassumeGE = 1.Moreover, P2(x) = 1
2

(
3x2 − 1

)
and by the change of coordinates to the axially symmetric cylindrical ones we ob-
tain

V (r, z) = − 1

d

(
1 − c

d2

(
3
z2

d2
− 1

))
= − 1

d
− c

d3
+ 3cz2

d5
, (6.1)

where c = 1
2 R

2 J2 > 0, d = √
r2 + z2.

Assume that axially symmetric and oblate planet is rotating with an angular
velocity ω. We study the move of the satellite in the gravity field of this planet
without influence of other bodies. Denote by q1, q2, q3 coordinates of the satellite in
a frame rotating with an angular velocity ω (the frame fixed with planet), where the
axisq3 is the axis of rotation and symmetry of the planet anddenote by p1, p2, p3 the
corresponding momenta. The equation of motion is generated by the Hamiltonian
H of the form:

H(q1, q2, q3, p1, p2, p3) = 1

2
(p21 + p22 + p23) + ω(q1 p2 − q2 p1)

+ V (r, q3), (6.2)

where r =
√
q21 + q22 and V is given in (6.1), see [15]. Note that this Hamiltonian

is S1-invariant where the symplectic action is given by

S1 × R
6 
 (eiθ , (q1, q2, q3, p1, p2, p3))

→
⎛
⎝
⎛
⎝cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝q1q2
q3

⎞
⎠ ,

⎛
⎝cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝p1
p2
p3

⎞
⎠
⎞
⎠ .

Non-zero equilibria of the Hamiltonian system ż(t) = J∇H(z(t)) describe a mo-
tion of a satellite along geostationary orbits. We apply Theorem 5.4 to prove the
existence of periodic solutions in a nearby of any equilibrium. Since the coordi-
nates frame is rotating, we obtain the quasi-periodic motions of the satellite in
a neighborhood of the geostationary orbit. We are interested in geostationary cir-
cular orbit so we assume r > 0

Firstly, we have to find critical points of H :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

H ′
q1(q1, q2, q3, p1, p2, p3) = ωp2 + V ′

r (r, q3)
q1
r ,

H ′
q2(q1, q2, q3, p1, p2, p3) = −ωp1 + V ′

r (r, q3)
q2
r ,

H ′
q3(q1, q2, q3, p1, p2, p3) = V ′

z (r, q3),
H ′

p1(q1, q2, q3, p1, p2, p3) = p1 − ωq2,
H ′

p2(q1, q2, q3, p1, p2, p3) = p2 + ωq1,
H ′

p3(q1, q2, q3, p1, p2, p3) = p3.
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Therefore, critical points of H need to satisfy⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
rω2 − V ′

r (r, q3)
)
q1 = 0,(

rω2 − V ′
r (r, q3)

)
q2 = 0,

V ′
z (r, q3) = 0,

p1 = ωq2,
p2 = −ωq1,
p3 = 0.

Since r =
√
q21 + q22 > 0, by the first two equations we have

rω2 = V ′
r (r, q3) = r

d3
+ 3cr

d5
− 15cq23r

d7
⇒ ω2d7 = d4 + 3cd2 − 15cq23 .(6.3)

Further, by the third equation,

0 = V ′
z (r, q3) = q3

d3
+ 9cq3

d5
− 15cq33

d7
= q3

d7

(
d4 + 9cd2 − 15cq23

)

= q3
d7

(
w2d7 + 6cd2

)
.

Since ω, c, d > 0, we obtain q3 = 0. As a consequence, the equation (6.3) has the
form

ω2d5 − d2 − 3c = 0.

Since c > 0, by Descartes’ rule of signs there exists exactly one positive root of
this equation, say d0. This means that there exist one SO(2) orbit of critical points
of H i.e. SO(2)(Q)where Q = (d0, 0, 0, 0,−ωd0, 0). The point Q from this orbit

is chosen such that r =
√
q21 + q22 = q1 = d0. This orbit is obviously isolated in

(∇H)−1(0). To apply theorem 5.4 we compute the Hessian ∇2H(Q). We have

∇2H(Q) =

⎡
⎢⎢⎢⎢⎢⎢⎣

V ′′
r,r (d0, 0) 0 V ′′

r,z(d0, 0) 0 ω 0
0 ω2 0 −ω 0 0

V ′′
r,z(d0, 0) 0 V ′′

z,z(d0, 0) 0 0 0
0 −ω 0 1 0 0
ω 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and

V ′′
r,r (d0, 0) = − 2

d30
− 12c

d50
< 0,

V ′′
z,z(d0, 0) = 1

d30
+ 9c

d50
> 0,

V ′′
r,z(d0, 0) = 0.

(6.4)

The Hessian is obviously degenerate (see Remark 2.4). One can see that it pos-
sesses eigenvalues 1 + ω2 (with eigenvector [0, 1, 0,−1/ω, 0, 0]T ]) and 1 (with
eigenvector [0, 0, 0, 0, 0, 1]T ). Denote be λ1, λ2, λ3 the other three eigenvalues. If
we compute the characteristic polynomial w(t) of ∇2H(Q) its coefficient of the
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term t (which is the additive inverse of the product of eigenvalues different from
the one zero-eigenvalue we have already know) equals

−(1 + ω2)
(
−ω2V ′′

z,z(d0, 0) + V ′′
r,r (d0, 0)V

′′
z,z(d0, 0) − (V ′′

r,z(d0, 0))
2
)

,

and substituting formulas (6.4), we obtain

λ1λ2λ3 =
(

1

d30
+ 9c

d50

)(
−ω2 − 2

d30
− 12c

d50

)
< 0.

Hence one or three of λi are negative. Therefore the Hessian ∇2H(Q) has two
or four positive eigevalues. This means that the assumption (A7.5) is satisfied.
Moreover, the kernel of this Hessian is one-dimensional which provides that the
orbit SO(2)(Q) is non-degenerate. Therefore the assumption (A5) is also satisfied
(see the reasoning in the last paragraph of the previous section on the page 19).
To summarize, all assumptions of Theorem 5.4 are satisfied. This provides the
existence of periodic solutions in a nearby of an equilibrium Q in the rotating frame.
These solutions correspond to amotion in a neighborhood of the geostationary orbit.
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