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Abstract

We address the inviscid limit for the Navier–Stokes equations in a half space,
with initial datum that is analytic only close to the boundary of the domain, and that
has Sobolev regularity in the complement. We prove that for such data the solution
of the Navier–Stokes equations converges in the vanishing viscosity limit to the
solution of the Euler equation, on a constant time interval.

1. Introduction

We consider the Cauchy problem for the two dimensional incompressible
Navier–Stokes equations

∂t u − ν�u + u · ∇u + ∇ p = 0 (1.1)

divu = 0 (1.2)

u|t=0 = u0 (1.3)

on the half-space domain H = T × R+ = {(x, y) ∈ T × R : y � 0}, with T =
[−π, π ]-periodic boundary conditions in x , and the no-slip boundary condition

u|y=0 = 0 (1.4)

on ∂H = T×{y = 0}. Here ν > 0 is the kinematic viscosity. Formally setting ν = 0
in (1.1)–(1.3) we arrive at the two dimensional incompressible Euler equations,
which are supplemented with the slip boundary condition given by u2|y=0 = 0.

A fundamental problem inmathematical fluid dynamics is to determinewhether
in the inviscid limit ν → 0 the solutions of the Navier–Stokes equations converge
to those of the Euler equations, in the energy norm L∞(0, T ; L2(H)), on an O(1)
(with respect to ν) time interval. A classical result of Kato [30] relates this problem
to the anomalous dissipation of kinetic energy: a necessary and sufficient condition
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for the inviscid limit to hold in the energy norm is that the total dissipation of the
energy in a boundary layer of width O(ν), vanishes as ν → 0. To date it remains
an open problem whether this condition holds for any smooth initial datum.

In this paper we prove that the inviscid limit holds for initial datum u0 for
which the associated vorticity ω0 = ∇⊥ · u0 is analytic in an O(1) strip next
to the boundary, and is only Sobolev smooth on the complement of this strip. In
particular, our main theorem (cf. Theorem 3.2 below) both implies the seminal
result of Sammartino–Caflisch [53], which assumes analyticity on the entire half-
plane, and also the more recent remarkable result of Maekawa [44], which assumes
that the initial vorticity vanishes identically in an O(1) strip next to the boundary.

The fundamental source of difficulties in studying the inviscid limit is the mis-
match in boundary conditions between the viscous Navier–Stokes flow (no-slip,
u1|y=0 = u2|y=0 = 0) and the inviscid Euler flow (slip, u2|y=0 = 0). Mathemati-
cally, this prohibits us from obtaining ν-independent a priori estimates for solutions
of (1.1)–(1.4) in the uniform norm. The main obstacle is to quantify the creation of
vorticity at ∂H, which is expected to become unbounded as ν → 0, at least very
close to the boundary.

Concerning the validity of the inviscid limit in the energy norm, in the presence
of solid boundaries, for smooth initial datum, two types of results are known. First,
we have results which make ν-dependent assumptions on the family of solutions
u of (1.1)–(1.4), and prove that these assumptions imply (a-posteriori, they are
equivalent to) the L∞

t L2
x inviscid limit. This programwas initiated in the influential

paper of Kato [30], who showed that the condition

lim
ν→0

∫ T

0

∫
{y�ν}

ν|∇u|2dxdy dt → 0 (1.5)

is equivalent to the validity of the strong inviscid limit in the energy norm. Refine-
ments and extensions based on Kato’s original argument of introducing a boundary
layer corrector were obtained for instance in [3,6,7,31,33,46,54,56]; see also the
recent review [45] and references therein. These results are important because they
yield explicit properties that the sequence of Navier–Stokes solutions must obey as
ν → 0 in order for them to have a strong L∞

t L2
x Euler limit. On the other hand,

verifying these conditions based on the knowledge of the initial datum only, is in
general an outstanding open problem.We emphasize that to date, even the question
of whether the weak L2

t L2
x inviscid limit holds (against test functions compactly

supported in the interior of the domain), remains open. Conditional results have
been established recently in terms of interior structure functions [9,11], or in terms
of interior vorticity concentration measures [8].

The second class of results are those which only make assumptions on the
initial data u0, as ν → 0. In the seminal works [52,53], Sammartino–Caflisch
consider initial data u0 which are analytic in both the x and y variables on the
entire half space, and are well-prepared, in the sense that u0 satisfies the Prandtl
ansatz (1.6) below, at time t = 0. Sammartino–Caflisch do not just prove the strong
inviscid limit in the energy norm, but they in fact establish the validity of the Prandtl
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expansion

u(x, y, t) = ū(x, y, t) + u P
(

x,
y√
ν
, t

)
+ O(

√
ν) (1.6)

for the solution u of (1.1)–(1.4). Here ū denotes the real-analytic solution of the
Euler equations, and u P is the real-analytic solution of the Prandtl boundary layer
equations. We refer the reader to [1,10,17,28,35–37,39,47,51,52] for the well-
posedness theory for the Prandtl equations, to [14,18,26,38] for the identification
of ill-posed regimes, and to [19–23] for recent works which show the invalidity of
the Prandtl expansion at the level of Sobolev regularity. In [52,53] Sammartino–
Caflisch carefully analyze the error terms in the expansion (1.6), and show that they
remain O(

√
ν) for an O(1) time interval, by appealing to real-analyticity and an

abstract Cauchy–Kowalevski theorem. This strategy has been proven successful for
treating the case of a channel [34,40] and the exterior of a disk [5]. Subsequently,
in a remarkable work [44], Maekawa proved that the inviscid limit also holds for
initial datum whose associated vorticity is Sobolev smooth and is supported at an
O(1) distance away from the boundary of the domain. The main new device in [44]
is the use of the vorticity boundary condition in the case of the half space [2,43],
using which one may actually establish the validity of the expansion (1.6). Using
conormal Sobolev spaces, the authors of [55] have obtained an energy based proof
for the Caflisch–Sammartino result, while in [12,13] it is shown that Maekawa’s
result can also be proven solely using energymethods, in two dimensional and three
dimensional respectively.More recently, Nguyen–Nguyen have found in [50] a very
elegant proof of the Sammartino–Caflisch result, which for the first time completely
avoids the usage of Prandtl boundary layer correctors. Instead, Nguyen–Nguyen
appeal to the boundary vorticity formulation, precise bounds for the associated
Green’s function, and an analysis in boundary-layer weighted spaces. In this paper
we use a number of estimates from [50], chief among which are the ones for the
Green’s function for the Stokes system (see Lemma 3.5 below). Lastly, we men-
tion that in a recent remarkable result [16], Gerard–Varet–Maekawa–Masmoudi
establish the stability in a Gevrey topology in x and a Sobolev topology in y, of
Euler+Prandtl shear flows (cf. (1.6)), when the Prandtl shear flow is bothmonotonic
and concave. It is worth noting that in all the above cases the Prandtl expansion
(1.6) is valid, and thus the Kato-criterion (1.5) holds. However, in general there
is a large discrepancy between the question of the vanishing viscosity limit in the
energy norm, and the problem of the validity of the Prandtl expansion. It is not clear
to which degree these two problems are related.

Finally,wemention that the vanishing viscosity limit is also known to hold in the
presence of certain symmetry assumptions on the initial data, which is maintained
by the flow; see for example [4,27,32,41,42,45,48,49] and references therein. This
symmetry implies that the influence of the Prandtl layer to the bulk flow is weak,
and thus in these situations the vanishing viscosity limit may be established by
verifying Kato’s criterion (1.5). Also, the very recent works [15,24,25,29] estab-
lish the vanishing viscosity limit and the validity of the Prandtl expansion for the
stationary Navier–Stokes equation, in certain regimes.
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Themaingoal of this paper is to bridge the apparent gapbetween theSammartino–
Caflisch [52,53] and the Maekawa [44] results, by proving in Theorem 3.2 that the
inviscid limit in the energy norm holds for initial datum ω0 which is analytic in a
strip ofO(1)width close to the boundary, and is Sobolev smooth on the complement
of this strip. Evidently, this type of data includes the one considered in [44,52,53].
Informally, one expects analyticity to only be required near the boundary in order
to control the catastrophic growth of boundary layer instabilities, and we confirm
this intuition. To the best of our knowledge, our result establishes the inviscid limit
in the energy norm for the largest class of initial data, in the absence of structural or
symmetry assumptions. Theorem 3.2 is a direct consequence of Theorem 3.1, which
establishes uniform in ν bounds on the vorticity in a mixed analytic-Sobolev norm.
In order to prove Theorem 3.1, we use the mild vorticity formulation approach of
Nguyen–Nguyen, which avoids the explicit use of Prandtl correctors, and instead
relies on pointwise estimates on the Green’s function for the associated Stokes
equation [50, Proposition 3.3]. The main technical difficulty we need to overcome
is the treatment of the layer where the analyticity and the Sobolev regions meet.
It is known that analytic functions are not localizable, and that the Biot–Savart
law is non-local. Thus, one cannot avoid that the analytic and the Sobolev regions
communicate. In order to overcome this difficulty we consider an analyticity radius
with respect to both the x and y variables, which vanishes in a precisely controlled
time-dependent fashion at an O(1) distance from the boundary. Moreover, since
we cannot afford a derivative loss in the Sobolev region, this estimate is carried
over using an energy method, with error terms arising to the spill into the analytic
region. Compared to [50], we employ several simplifications which provide addi-
tional information on the solution of the Navier–Stokes equations in the boundary
layer. First, we remove the need for the time dependent weight function, thus not
allowing time dependent bursts of vorticity in the secondary boundary layer of size√

νt from [50]. Second, since our solutions are no longer analytic away from the
constant sized strip, we no longer require them to decay exponentially as y → ∞.
Lastly, the approach considered here allows a wider choice of weights functions in
the analytic norm (cf. Remark 2.1 below) which may be used to provide a detailed
information about the degeneration of the vorticity as ν → 0 in a suitably defined
boundary layer.

This paper is organized as follows. In Section 2 we introduce the analytic
norms X and Y and the Sobolev norm Z used in this paper. Section 3 contains
the statements and the proofs of our main results, Theorems 3.1 and 3.2. For this
purpose, we also recall there the integral representation of the vorticity formulation
of the Navier–Stokes equations, and we collect in Lemmas 3.8, 3.9, 3.10, and 3.11
the main analytic and Sobolev estimates needed to establish our main results. These
lemmas are then proven in Section 4 for the X -norm, Section 5 for the Y -norm,
Section 6 for the nonlinear terms, and Section 7 for the Sobolev norm.



The Inviscid Limit for the Navier–Stokes Equations 783

Fig. 1. Representation of the complex domains �μ and �μ̃ for 0 < μ < μ̃

2. Functional Setting

2.1. Notation

• We use fξ (y) ∈ C to denote the Fourier transform of f (x, y) with respect to
the x variable at frequency ξ ∈ Z, i.e. f (x, y) = ∑

ξ∈Z fξ (y)eixξ . We also use
the notation ui,ξ (y) or (ui )ξ (y) for the Fourier transform of ui in x for i = 1, 2.

• Re z and Im z stand for the real and imaginary parts of the complex number z.
• For μ > 0 we define the complex domain �μ = {z ∈ C : 0 � Re z �
1, |Im z| � μRe z} ∪ {z ∈ C : 1 � Re z � 1 + μ, |Im z| � 1 + μ − Re z},
which is represented in Fig. 1. We assume that μ < μ0, where μ0 ∈ (0, 1/10]
is a fixed constant.

• For y ∈ �μ we represent exponential terms of the form eε0(1+μ−Re y)+|ξ | simply
as eε0(1+μ−y)+|ξ |. That is, in order to simplify the notation we write y instead
of Re y at the exponential.

• We assume that ν ∈ (0, 1] and t ∈ (0, 1] throughout.
• The implicit constants in � depend only on μ0 and θ0 (cf. (3.10)), and are thus
universal.

2.2. Norms

In this paper, we use norms which capture the features of a solution that is
analytic near the boundary and is H4 smooth at anO(1) distance away from it. We
include two types of analytic norms: the L∞ based X norm and the L1 based Y
norm, defined in (2.3) and (2.4) respectively. Whether working with both analytic
norms is strictly necessary, or whether instead one could just work with a single
weighted L2 analytic norm, is a natural question. At this stage such a simplification
is not evident due to logarithmic losses when one integrates in y. However, by
changing the approach it appears to be possible to remove the need for the X norm
from the proof; we plan to address such a modification in a future paper.
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Before stating the definitions of the aforementioned norms, we introduce some
notation.

For a sufficiently large constant γ > 0 to be determined in the proof, which
depends only on μ0 and the size of the initial datum via the constant M in (3.1),
throughout the paper we let t obey

t ∈
(
0,

μ0

2γ

)
. (2.1)

In order to define the weighted L∞ based analytic norm X , we introduce the
weight function w : [0, 1 + μ0] → [0, 1] given by

w(y) =

⎧⎪⎨
⎪⎩

√
ν, 0 < y � √

ν

y,
√

ν � y � 1

1, 1 � y � 1 + μ0

(2.2)

and use it to define a weighted analytic norm, with respect to y, as

‖ f ‖L∞
μ,ν

= sup
y∈�μ

w(Re y)| f (y)|

for a complex function f of the variable y ∈ �μ. Throughout the paper, in order
to simplify the notation we write w(y) instead of w(Re y).

Let ε0 ∈ (0, 1) be a sufficiently small constant to be determined below, which
only depends on the parameter θ0 in (3.10). Moreover, let α ∈ (

0, 1
2

)
be a fixed

constant. Using the L∞
μ,ν norm, we define

‖ f ‖Xμ =
∑
ξ∈Z

‖eε0(1+μ−y)+|ξ | fξ‖L∞
μ,ν

,

and then, with t as in (2.1), we define the analytic X norm as

‖ f ‖X (t)

= sup
μ<μ0−γ t

( ∑
0�i+ j�1

‖∂ i
x (y∂y) j f ‖Xμ +

∑
i+ j=2

(μ0 − μ − γ t)1/2+α‖∂ i
x (y∂y) j f ‖Xμ

)
.

(2.3)

We state in Lemma A.3 a useful analyticity recovery estimate for the Xμ norm.

Remark 2.1. Throughout the paper, the following properties of the weight are
needed:

(a) w(y) � w(z) for y � z,
(b) w(y) � w(z) for 0 < y/2 � z � 1 + μ0,
(c)

√
ν � w(y) � 1 for y ∈ [0, 1 + μ0],

(d) y � w(y) for y ∈ [0, 1 + μ0],
(e) w(y)e

− y
C

√
ν � √

ν for y ∈ [0, 1 + μ0] where C > 0 is sufficiently large
constant, depending only on θ0 in (3.10).
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It is easy to check that the weight w in (2.2) satisfies (a)–(e). We justify (e) by
simply distinguishing the cases y � √

ν and y � √
ν separately.

Note that, by the above statement, there are otherweights forwhichTheorem3.1
holds. For instance, we may take

w(y) = min
{√

νe
y

C
√

ν , 1
}

for a sufficiently large universal constant C . Note that this weight is larger than
(2.2), up to a multiplicative constant, and that it satisfies (a)–(e) above.

Next, we define the analytic L1 based norm. For a complex valued function f
defined on �μ, let

‖ f ‖L1
μ

= sup
0�θ<μ

‖ f ‖L1(∂�θ ).

Using L1
μ we introduce

‖ f ‖Yμ =
∑
ξ

‖eε0(1+μ−y)+|ξ | fξ‖L1
μ

and then for t as in (2.1) we define the analytic Y norm by

‖ f ‖Y (t)

= sup
μ<μ0−γ t

( ∑
0�i+ j�1

∥∥∥∂ i
x (y∂y) j f

∥∥∥
Yμ

+
∑

i+ j=2

(μ0 − μ − γ t)α
∥∥∥∂ i

x (y∂y) j f
∥∥∥

Yμ

)
. (2.4)

Note the different time weights when comparing the highest order terms in (2.3)
and (2.4). We refer to Lemma A.4 for a useful analyticity recovery estimate for the
Yμ norm.

We also define a weighted L2 norm (with respect to both x and y) by

‖ f ‖2S = ‖y f ‖2L2(y�1/2) =
∑
ξ

‖y fξ‖2L2(y�1/2)

and a weighted version of the Sobolev H3 norm as

‖ f ‖Z =
∑

0�i+ j�3

∥∥∥∂ i
x∂

j
y f

∥∥∥
S
.

Further below, it is convenient to also use a weighted L2 in y, 1 in ξ norm Sμ

given by

‖ f ‖Sμ =
∑
ξ

‖y fξ‖L2(y�1+μ).

Lastly, for fixedμ0, γ > 0, and with t which obeys (2.1), we introduce the notation

|||ω|||t = ‖ω‖X (t) + ‖ω‖Y (t) + ‖ω‖Z

for the cumulative time-dependent norm used in this paper.



786 I. Kukavica, V. Vicol & F. Wang

3. Main Results

We denote by ω = ∇⊥ ·u the scalar vorticity associated to the the velocity field
u, where ∇⊥ = (−∂y, ∂x ). The following is the main result of the paper:

Theorem 3.1. Let μ0 > 0 and assume that ω0 is such that

∑
i+ j�2

∥∥∥∂ i
x (y∂y)

jω0

∥∥∥
Xμ0

+
∑

i+ j�2

∥∥∥∂ i
x (y∂y)

jω0

∥∥∥
Yμ0

+
∑

i+ j�3

∥∥∥∂ i
x (y∂y)

jω0

∥∥∥
S

� M < ∞. (3.1)

Then there exists a γ > 0 and a time T > 0 depending on M and μ0, such that the
solution ω to the system (3.4) satisfies

sup
t∈[0,T ]

|||ω(t)|||t � C M. (3.2)

The above result immediately implies

Theorem 3.2. Let ω0 be as in Theorem 3.1. Denote by uν the solution of the Navier–
Stokes equation (1.1)–(1.4) with viscosity ν > 0, defined on [0, T ], where T is as
given in Theorem 3.1. Also, denote by ū the solution of the Euler equations with
initial datum u0, which is defined globally in time. Then we have

lim
ν→0

sup
t∈[0,T ]

∥∥uν(t) − ū(t)
∥∥

L2(H)
= 0.

The proof of Theorem3.1 is given in Section 3.4,while the proof of Theorem3.2
is given in Section 3.5.

Remark 3.3. The proof of Theorem 3.2, see Section 3.5 below, gives a rate for the
convergence for uν → ū, as ν → 0, in the energy norm. Indeed, our proof gives

ν

∫ T

0

∫
H

|∇u|2 dxdyds � ν1/2,

which classically implies the convergence rate

sup
t∈[0,T ]

∥∥uν(t) − ū(t)
∥∥

L2(H)
= O(ν1/4).

It is reasonable to expect this rate to be optimal if the Prandtl theory is correct,
i.e. if the boundary layer is of width C

√
ν (see for example [27,41,42,45,49] and

[33, Section 6] for a more detailed discussion). We thank the anonymous referee
for pointing this out.
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Remark 3.4. Note that the condition on the initial datum in both theorems depends
on ν since the first norm in (3.1), the X norm, depends on it. However, it is easy to
find sufficient ν-independent conditions which guarantee the bound. For instance,
by using w(y) � 1 we see that a sufficient condition for

∑
i+ j�2

∥∥∥∂ i
x (y∂y)

jω0

∥∥∥
Xμ0

� M

3

to hold is that

∑
i+ j�2

∑
ξ∈Z

(
sup

y∈�μ0

∣∣eε0(1+μ0−y)+|ξ |∂ i
x (y∂y)

jω0,ξ (y)
∣∣
)

� M

C
(3.3)

for a sufficiently large universal constant C > 0. A sufficient condition for (3.3) is

∑
ξ∈Z

(
sup

y∈�μ̄0

∣∣eε0(1+μ̄0−y)+|ξ |ω0,ξ (y)
∣∣
)

� M

C
,

where μ̄0 > μ0.

3.1. Vorticity Formulation

In this paper, we use the vorticity formulation of the Navier–Stokes equa-
tions (1.1)–(1.4). Taking the curl of the momentum equation (1.1), i.e. by applying
∇⊥· to it, gives

ωt + u · ∇ω − ν�ω = 0, (3.4)

whereu is recoveredby theBiot–Savart lawu = ∇⊥�−1ω. The boundary condition
in this setting was introduced in [2,43,44] and is given by

ν(∂y + |∂x |)ω = ∂y�
−1(u · ∇ω)|y=0. (3.5)

The condition (3.5) follows from ∂t u1|y=0 = 0, the Biot–Savart law, and the vor-
ticity equation (3.4).

3.2. Integral Representation of the Solution to the Navier–Stokes Equations

For ξ ∈ Z, denote by

Nξ (s, y) = −(u · ∇ω)ξ (s, y)

the Fourier transform in the x variable of the nonlinear term in the vorticity formu-
lation of the Navier–Stokes system. Also, let

Bξ (s) =
(
∂y�

−1(u · ∇ω)
)

ξ
(s)|y=0 = −

(
∂y�

−1
ξ Nξ (s)

)
|y=0,



788 I. Kukavica, V. Vicol & F. Wang

where

�ξ = −ξ2 + ∂2y

is considered with a Dirichlet boundary condition at y = 0. After taking a Fourier
transform in the tangential x variable, the system (3.4)–(3.5) may be rewritten as

∂tωξ − ν�ξωξ = Nξ

ν(∂y + |ξ |)ωξ = Bξ , (3.6)

for ξ ∈ Z. Denoting the Green’s function for this system by Gξ (t, y, z), we may
represent the solution of this system as

ωξ (t, y) =
∫ ∞

0
Gξ (t, y, z)ω0ξ (z) dz +

∫ t

0

∫ ∞

0
Gξ (t − s, y, z)Nξ (s, z) dzds

+
∫ t

0
Gξ (t − s, y, 0)Bξ (s) ds, (3.7)

whereω0ξ (z) is the Fourier transform of the initial data. A proof of this formulation
can be found in [50].

The next lemma gives an estimate of the Green’s function Gξ of the Stokes
system. For its proof, we refer to [50, Proposition 3.3 and Section 3.3].

Lemma 3.5. ([50]). The Green’s function Gξ for the system (3.6) is given by

Gξ = H̃ξ + Rξ , (3.8)

where

H̃ξ (t, y, z) = 1√
νt

(
e− (y−z)2

4νt + e− (y+z)2

4νt

)
e−νξ2t (3.9)

is the one dimensional heat kernel for the half space with homogeneous Neumann
boundary condition. The residual kernel Rξ has the property (∂y −∂z)Rξ (t, y, z) =
0, meaning that it is a function of y + z, and it satisfies the bounds

|∂k
z Rξ (t, y, z)| � bk+1e−θ0b(y+z) + 1

(νt)(k+1)/2
e−θ0

(y+z)2

νt e− νξ2 t
8 , k ∈ N0,

(3.10)

where θ0 > 0 is a constant independent of ν. The boundary remainder coefficient
b in (3.10) is given by

b = b(ξ, ν) = |ξ | + 1√
ν
.

The implicit constant in (3.10) depends only on k and θ0.
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Remark 3.6. Based on (3.10), the residual kernel Rξ satisfies

|(y∂y)
k Rξ (t, y, z)| � b ((yb)k + 1)e−θ0b(y+z)

+
((

y√
νt

)k

+ 1

)
1√
νt

e−θ0
(y+z)2

νt e− νξ2 t
8

� be− θ0
2 b(y+z) + 1√

νt
e− θ0

2
(y+z)2

νt e− νξ2 t
8 (3.11)

for k ∈ {0, 1, 2}, pointwise in y, z � 0.

Remark 3.7. As explained in [50], theDuhamel formula (3.7) holds not just for real
values of y, z ∈ [0,∞) but in general for all complex values y, z ∈ �μ∪[1+μ,∞).
In this case, for y ∈ �μ, we may find θ ∈ [0, μ) such that y ∈ ∂�θ . If Im y � 0,
the integrals from 0 to ∞ in (3.7) become integrals over the complex contour
γ +
θ = (∂�θ ∩ {z : Im z � 0}) ∪ [1 + θ,∞). A similar contour may be defined

for Im y < 0. Moreover, the Green’s function Gξ (t, y, z) from Lemma 3.5, which
appears in (3.7), has a natural extension to the complex domain �μ ∪ [1+ μ,∞),
by complexifying the heat kernels involved. Since for y ∈ �μ we have |Im y| �
μRe y, for μ small, we have that |y| is comparable to Re y. Therefore, the upper
bounds we have available for the complexified heat kernel H̃ξ and for the residual
kernel Rξ may be written in terms of Re y,Re z � 0. Because of this, as in [50],
when we prove inequalities for the analytic norms X and Y we provide details
only for the case when y and z are real-valued. The complex versions of (3.7) and
Lemma 3.5 only lead to notational complications due to integration over complex
paths, and due to having to writeRe y,Re z at the exponentials in all upper bounds.
We omit these details.

3.3. Main Estimates

We denote

μ1 = μ + 1

4
(μ0 − μ − γ s) (3.12)

μ2 = μ + 1

2
(μ0 − μ − γ s) (3.13)

and observe that

0 < μ < μ1 < μ2 < μ0 − γ s.

Lemma 3.8. (Main X norm estimate). With μ1 and μ2 as in (3.12) and (3.13), the
nonlinear term in (3.7) is bounded in the Xμ norm as

(μ0 − μ − γ s)
∑

i+ j=2

∥∥∥∥∂ i
x (y∂y)

j
∫ ∞

0
G(t − s, y, z)N (s, z) dz

∥∥∥∥
Xμ
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+
∑

i+ j�1

∥∥∥∥∂ i
x (y∂y)

j
∫ ∞

0
G(t − s, y, z)N (s, z) dz

∥∥∥∥
Xμ1

�
∑

i+ j�1

‖∂ i
x (y∂y)

j N (s)‖Xμ2
+ 1

(μ0 − μ − γ s)1/2
∑

i+ j�1

‖∂ i
x∂

j
y N (s)‖Sμ2

.

(3.14)

The Xμ norm of the trace kernel term in (3.7) is estimated as

(μ0 − μ − γ s)
∑

i+ j=2

∥∥∥∂ i
x (y∂y)

j G(t − s, y, 0)B(s)
∥∥∥

Xμ

+
∑

i+ j�1

∥∥∥∂ i
x (y∂y)

j G(t − s, y, 0)B(s)
∥∥∥

Xμ1

� 1√
t − s

⎛
⎝∑

i�1

‖∂ i
x N (s)‖Yμ1

+ ‖∂ i
x N (s)‖Sμ1

⎞
⎠ +

∑
i�1

∥∥∥∂ i
x N (s)

∥∥∥
Xμ1

. (3.15)

Lastly, the initial datum term in (3.7) may be bounded in the Xμ norm as

∑
i+ j�2

∥∥∥∥∂ i
x (y∂y)

j
∫ ∞

0
G(t, y, z)ω0(z) dz

∥∥∥∥
Xμ

�
∑

i+ j�2

‖∂ i
x (y∂y)

jω0‖Xμ +
∑

i+ j�2

∑
ξ

‖ξ i∂
j
y ω0ξ‖L∞(y�1+μ).

The proof of Lemma 3.8 is given at the end of Section 4.

Lemma 3.9. (Main Y norm estimate). Let μ1 be as defined in (3.12). Then the
nonlinear term in (3.7) is bounded in the Yμ norm as

(μ0 − μ − γ s)
∑

i+ j=2

∥∥∥∥∂ i
x (y∂y)

j
∫ ∞

0
G(t − s, y, z)N (s, z) dz

∥∥∥∥
Yμ

+
∑

i+ j�1

∥∥∥∥∂ i
x (y∂y)

j
∫ ∞

0
G(t − s, y, z)N (s, z) dz

∥∥∥∥
Yμ1

�
∑

i+ j�1

‖∂ i
x (y∂y)

j N (s)‖Yμ1
+

∑
i+ j�1

‖∂ i
x∂

j
y N (s)‖Sμ1

. (3.16)

The Yμ norm of the trace kernel term in (3.7) is estimated as
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(μ0 − μ − γ s)
∑

i+ j=2

∥∥∥∂ i
x (y∂y)

j G(t − s, y, 0)B(s)
∥∥∥

Yμ

+
∑

i+ j�1

∥∥∥∂ i
x (y∂y)

j G(t − s, y, 0)B(s)
∥∥∥

Yμ1

�
∑
i�1

(
‖∂ i

x N (s)‖Yμ1
+ ‖∂ i

x N (s)‖Sμ

)
. (3.17)

Lastly, the initial datum term in (3.7) may be bounded as

∑
i+ j�2

∥∥∥∥∂ i
x (y∂y)

j
∫ ∞

0
G(t, y, z)ω0(z) dz

∥∥∥∥
Yμ

�
∑

i+ j�2

‖∂ i
x (y∂y)

jω0‖Yμ +
∑

i+ j�2

∑
ξ

‖ξ i∂
j
y ω0ξ‖L1(y�1+μ). (3.18)

The proof of Lemma 3.9 is provided at the end of Section 5. The next lemma
provides inequalities for the nonlinearity.

Lemma 3.10. (The X, Y , and Sμ norm estimates for the nonlinearity). For any
μ ∈ (0, μ0 − γ s) we have the inequalities∑

i+ j�1

‖∂ i
x (y∂y)

j N (s)‖Xμ �
∑
i�1

(
‖∂ i

xω‖Yμ + ‖∂ i
xω‖Sμ

) ∑
i+ j�2

‖∂ i
x (y∂y)

jω‖Xμ

+
∑
i�2

(
‖∂ i

xω‖Yμ + ‖∂ i
xω‖Sμ

) ∑
i+ j�1

‖∂ i
x (y∂y)

jω‖Xμ

+ ‖ω‖Xμ

∑
i+ j=1

‖∂ i
x (y∂y)

jω‖Xμ (3.19)

and∑
i+ j�1

‖∂ i
x (y∂y)

j N (s)‖Yμ �
∑
i�1

(
‖∂ i

xω‖Yμ + ‖∂ i
xω‖Sμ

) ∑
i+ j�2

‖∂ i
x (y∂y)

jω‖Yμ

+
∑
i�2

(
‖∂ i

xω‖Yμ + ‖∂ i
xω‖Sμ

) ∑
i+ j�1

‖∂ i
x (y∂y)

jω‖Yμ

+ ‖ω‖Xμ

∑
i+ j=1

‖∂ i
x (y∂y)

jω‖Yμ. (3.20)

For the Sobolev norm we have the estimate∑
i+ j�1

∥∥∥∂ i
x∂

j
y N (s)

∥∥∥
Sμ

� |||ω|||s
∑

i+ j�3

∥∥∥∂ i
x∂

j
y ω

∥∥∥
S
. (3.21)

Note that in the definitions of X (t) and Y (t) norms in (2.3) and (2.4), there are
time dependent weights in front of the second derivative terms, which is the reason
why we separate them from the low order derivatives in the right side of (3.19)
and (3.20). The proof of Lemma 3.10 is given at the end of Section 6. Lastly, the
following statement provides the estimate of the Sobolev part of the norm:
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Lemma 3.11. For any 0 < t <
μ0
2γ the estimate

∑
i+ j�3

‖y∂ i
x∂

j
y ω(t)‖2L2(y�1/2)

�
(

t + t sup
s∈[0,t]

|||ω(s)|||3s +
∑

i+ j�3

‖φ∂ i
x∂

j
y ω0‖2L2(H)

)
eCt (1+sups∈[0,t] |||ω(s)|||s)

(3.22)

holds, where C > 0 is a constant independent of γ .

This statement follows from Lemma 7.2 below.

3.4. Closing the A Priori Estimates

In this section, we provide the a priori estimates needed to prove Theorem 3.1.

Proof of Theorem 3.1. Define

M̃ =
∑

i+ j�2

‖∂ i
x (y∂y)

jω0‖Xμ0
+

∑
i+ j�2

∑
ξ

‖∂ i
x∂

j
y ω0,ξ‖L∞(y�1+μ0)

and

M =
∑

i+ j�2

‖∂ i
x (y∂y)

jω0‖Yμ0
+

∑
i+ j�2

∑
ξ

‖∂ i
x∂

j
y ω0,ξ‖L1(y�1+μ0)

.

Note that by (3.1), (6.23) below, and Lemma A.1, we have

M̃ + M � M.

Let t <
μ0
2γ , s ∈ (0, t), and μ < μ0 − γ t . First we estimate the X (t) norm of

ω(t). From the mild formulation (3.7), the estimates (3.14)–(3.15), and the bounds
(3.19)–(3.21) for the nonlinear term, we obtain

∑
i+ j=2

∥∥∥∂ i
x (y∂y)

jω(t)
∥∥∥

Xμ

�
∫ t

0

( |||ω(s)|||2s
(μ0 − μ − γ s)3/2+α

+ 1√
t − s

|||ω(s)|||2s
(μ0 − μ − γ s)1+α

)
ds + M̃

� sup
0�s�t

|||ω(s)|||2s
(

1

γ (μ0 − μ − γ t)1/2+α
+ 1√

γ (μ0 − μ − γ t)1/2+α

)
+ M̃

�
sup0�s�t |||ω(s)|||2s√

γ (μ0 − μ − γ t)1/2+α
+ M̃, (3.23)

where we used Lemma A.2. Similarly, we obtain
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∑
i+ j�1

∥∥∥∂ i
x (y∂y)

jω(t)
∥∥∥

Xμ

�
∫ t

0

( |||ω(s)|||2s
(μ0 − μ − γ s)1/2+α

+ 1√
t − s

|||ω(s)|||2s
(μ0 − μ − γ s)α

)
ds + M̃

�
sup0�s�t |||ω(s)|||2s√

γ
+ M̃, (3.24)

where we again used Lemma A.2. Combining (3.23) and (3.24), we obtain

‖ω(t)‖X (t) �
sup0�s�t |||ω(s)|||2s√

γ
+ M̃ . (3.25)

Next we estimate the Y (t) norm of ω(t). From the mild formulation (3.7), the
estimates (3.16)–(3.18), and the bounds (3.19)–(3.21) for the nonlinear term, we
obtain

∑
i+ j=2

∥∥∥∂ i
x (y∂y)

jω(t)
∥∥∥

Yμ

�
∫ t

0

|||ω(s)|||2s
(μ0 − μ − γ s)1+α

ds + M

�
sup0�s�t |||ω(s)|||2s
γ (μ0 − μ − γ t)α

+ M . (3.26)

For the lower order derivatives we obtain

∑
i+ j�1

∥∥∥∂ i
x (y∂y)

jω(t)
∥∥∥

Yμ

�
∫ t

0

|||ω(s)|||2s
(μ0 − μ − γ s)α

ds + M

�
sup0�s�t |||ω(s)|||2s

γ
+ M . (3.27)

By combining (3.26)–(3.27), we arrive at

‖ω(t)‖Y (t) �
sup0�s�t |||ω(s)|||2s

γ
+ M . (3.28)

To conclude, let

M̊ =
∑

i+ j�3

‖∂ i
x∂

j
y ω0‖L2(y�1/4) � M.

Recall that the Sobolev estimate (3.22) yields

‖ω(t)‖Z �
(

M̊ + 1 + sups∈[0,t] |||ω(s)|||3/2s√
γ

)
e

C
γ

(1+sups∈[0,t] |||ω(s)|||s), (3.29)

and this inequality holds pointwise in time for t <
μ0
2γ . The constant C and the

implicit constants in � are independent of γ , but as usual, they may depend on μ0.
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Combining (3.25), (3.28), and (3.29), and taking the supremum in time for
t <

μ0
2γ , with γ � 1, we arrive at

sup
t∈

[
0,

μ0
2γ

] |||ω(t)|||t � C(M̃ + M) +
C sup

t∈
[
0,

μ0
2γ

] |||ω(t)|||2t
√

γ

+ C

⎛
⎜⎜⎝M̊ +

1 + sup
t∈

[
0,

μ0
2γ

] |||ω(t)|||3/2t

√
γ

⎞
⎟⎟⎠ e

C
γ

(
1+sup

t∈
[
0,

μ0
2γ

] |||ω(t)|||t
)

,

where C � 1 is a constant that depends only on μ0 and θ0. Using a standard
barrier argument, one may show that if γ is chosen sufficiently large, in terms of
M̃, M, M̊, μ0, we obtain

sup
t∈

[
0, μ0

2γ

] |||ω(t)|||t � 2C(M̃ + M + M̊ + 1),

concluding the proof of the theorem. ��
Remark 3.12. In order to justify the above a priori estimates, for each δ ∈ (0, 1],
we apply them on the approximate system

ωt + uδ · ∇ω − ν�ω = 0, (3.30)

where uδ is a regularization of the velocity in the Biot–Savart law (6.2)–(6.3). The
boundary condition (3.5) becomes ν(∂y + |∂x |)ω = ∂y�

−1(uδ · ∇ω)|y=0, and the
initial condition is replaced by an analytic approximation. The regularized velocity
uδ is obtained from ω by a heat extension to time δ, using a homogeneous version
of the boundary condition (3.6), and then computing the Biot–Savart law for this
regularized vorticity. Now, in order to justify our a priori estimates, we approximate
the initial datum ω0 with an entire one ωδ

0. We may show using the approach in this
paper that the system (3.30) with entire initial data has a solution which is entire for
all time. Then, we perform all the estimates in the present paper on (3.30), obtaining
uniform-in-δ upper bounds for the norm ||| · |||t for all t ∈ [0, μ0

2γ ), thus allowing us
to pass those bounds to the limit δ → 0.

3.5. Inviscid Limit

This section is devoted to the proof of Theorem 3.2.

Proof of Theorem 3.2. Let T > 0 be as in Theorem 3.1. In view of the Kato
criterion [30], we only need to consider

ν

∫ T

0

∫
H

|∇u|2 dxdyds

= ν

∫ T

0

∫
H

|ω|2 dxdyds

= ν

∫ T

0

∫
{y�1/2}

|ω|2 dxdyds + ν

∫ T

0

∫
{y�1/2}

|ω|2 dxdyds
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�
√

ν

∫ T

0

∑
ξ

‖eε0(1−y)+|ξ |w(y)ωξ (s)‖L∞(y�1/2)‖eε0(1−y)+|ξ |ωξ (s)‖L1(y�1/2) ds

+ ν

∫ T

0
‖ω(s)‖2S ds

�
√

ν

∫ T

0
‖ω(s)‖X (s) ‖ω(s)‖Y (s) ds + ν

∫ T

0
‖ω(s)‖2S ds

� M
√

ν + M2ν.

Here we used that
√

ν � w(y) and have appealed to the bound (3.2). By [30] it
follows that the inviscid limit holds in the topology of L∞(0, T ; L2(H)). ��

4. Estimates for the X Analytic Norm

Throughout this section we fix t > 0 and s ∈ (0, t) and provide the X norm
estimate of the three integrals appearing in (3.7). We first consider the kernel

Hξ (t, y, z) = 1√
νt

e− (y−z)2

4νt e−νξ2t . (4.1)

In the following lemma, we estimate the derivatives up to order one of the
integral involving the nonlinearity.

Lemma 4.1. Assume that μ and μ̃ obey the conditions

0 < μ < μ̃ < μ0 − γ s, μ̃ − μ � 1

C
(μ0 − μ − γ s), (4.2)

for some constant C � 1. Then, for (i, j) = (0, 0), (1, 0), (0, 1), we have
∥∥∥∥∂ i

x (y∂y)
j
∫ ∞

0
H(t − s, y, z)N (s, z) dz

∥∥∥∥
Xμ

� ‖∂ i
x (y∂y)

j N (s)‖Xμ̃ + ‖N (s)‖Xμ̃

+ 1

(μ0 − μ − γ s)1/2
∑
ξ

‖∂ i
x∂

j
y Nξ (s)‖L2(y�1+μ̃). (4.3)

Remark 4.2. Inspecting the proof of Lemma 4.1 below, we note that only the
following properties of the kernel Hξ (y, z, t) are used. First, we use that either
∂y Hξ (y, z, t) = ∂z Hξ (y, z, t) or ∂y Hξ (y, z, t) = −∂z Hξ (y, z, t), the property
allowing us to transfer y derivatives to z derivatives. For the terms I1 and I2 we use∥∥∥∥χ{0�y�1+μ}χ{0�z�3y/4}

w(y)

w(z)

(|Hξ (t, y, z)| + |y∂y Hξ (t, y, z)|)
∥∥∥∥

L∞
y L1

z

� 1,

(4.4)

for the term I3 we need∥∥∥eε0(z−y)+|ξ |Hξ (t, y, z)
∥∥∥

L∞
y L1

z

� 1, (4.5)
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while for the term I4 we additionally use

∥∥∥χ{0�y�1+μ}χ{z�1+μ̃}eε0(z−y)+|ξ |Hξ (t, y, z)
∥∥∥

L∞
y L2

z

� 1√
μ̃ − μ

. (4.6)

Observe that the kernel H̃ξ (t, y, z) − Hξ (t, y, z) = 1√
νt

e− (y+z)2

4νt e−νξ2t also obeys

these three properties, and thus Lemma 4.1 holds with H(t, y, z) replaced by
H̃(t, y, z).

Proof of Lemma 4.1. Let y ∈ �μ. For simplicity, we only work with y ∈ R; an
adjustment for the complex case is straight-forward and leads only to notational
complications.

We start with the proof of (4.3) in the case (i, j) = (0, 1). Let ψ : R+ → R
+

be a smooth non-increasing cut-off function such that ψ(x) = 1 for 0 � x � 1/2,
and ψ(x) = 0 for x � 3/4. We first decompose

y∂y

∫ ∞

0
Hξ (t − s, y, z)Nξ (s, z) dz

= −y
∫ ∞

0
∂z Hξ (t − s, y, z)Nξ (s, z) dz

= −y
∫ ∞

0
ψ

(
z

y

)
∂z Hξ (t − s, y, z)Nξ (s, z) dz

− y
∫ ∞

0

(
1 − ψ

(
z

y

))
∂z Hξ (t − s, y, z)Nξ (s, z) dz

= −y
∫ 3y/4

0
ψ

(
z

y

)
∂z Hξ (t − s, y, z)Nξ (s, z) dz

−
∫ 3y/4

y/2
ψ ′

(
z

y

)
Hξ (t − s, y, z)Nξ (s, z) dz

+ y
∫ 1+μ

y/2

(
1 − ψ

(
z

y

))
Hξ (t − s, y, z)∂z Nξ (s, z) dz

+ y
∫ ∞

1+μ

Hξ (t − s, y, z)∂z Nξ (s, z) dz

= I1 + I2 + I3 + I4. (4.7)

The first three terms represent contributions from the analytic region and the last
term from the Sobolev region.

In order to bound I1, we compute the derivative of Hξ as

y∂z Hξ = −y∂y Hξ = y
(y − z)

2ν(t − s)

1√
ν(t − s)

e− (y−z)2

4ν(t−s) e−νξ2(t−s). (4.8)

By

|y| � 4|y − z|, 0 � z � 3y

4
(4.9)
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we arrive at

|y∂z Hξ | � 1√
ν(t − s)

e− (y−z)2

8ν(t−s) e−νξ2(t−s), 0 � z � 3y

4
(4.10)

and therefore

|I1| �
∫ 3y/4

0

1√
ν(t − s)

e− (y−z)2

8ν(t−s) e−νξ2(t−s)|Nξ (s, z)| dz. (4.11)

Next, we claim that the weight function obeys the estimate

w(y) � w(z)e
(y−z)2

64ν(t−s) , 0 � z � 3y

4
. (4.12)

In order to prove (4.12) we use that t − s � T � 1 and estimate

w(y)e− (y−z)2

64ν(t−s) � w(y)e− y2

256ν(t−s) � w(y)e− y2

256ν � w(y)e
− y

16
√

ν �
√

ν, (4.13)

where we used (4.9) in the first and Remark 2.1(e) in the last step. Then (4.12)
follows from

√
ν � w(z) by Remark 2.1(c). Using (4.11), (4.12), and

eε0(1+μ−y)+|ξ | � eε0(1+μ−z)+|ξ |, 0 � z � y, (4.14)

we obtain

|eε0(1+μ−y)+|ξ |w(y)I1|

�
∫ 3y/4

0
eε0(1+μ−z)+|ξ | 1√

ν(t − s)
e− (y−z)2

16ν(t−s) e−νξ2(t−s)w(z)|Nξ (s, z)| dz

�
∥∥Nξ (s)

∥∥L∞
μ,ν

∫ ∞

0

1√
ν(t − s)

e− (y−z)2

16ν(t−s) dz

�
∥∥Nξ (s)

∥∥L∞
μ,ν

.

Summing in ξ yields the bound

‖I1‖Xμ � ‖N (s)‖Xμ. (4.15)

Next, we consider the term I2 on the right side of (4.7). Since
∥∥ψ ′∥∥

L∞ � 1, we
directly obtain

|I2| �
∫ 3y/4

y/2

1√
ν(t − s)

e− (y−z)2

4ν(t−s) e−νξ2(t−s)|Nξ (s, z)| dz,

which shows that I2 obeys the same estimate as I1 (cf. (4.11) above). Since the
regions of integration also match, the same proof as for (4.15) gives

‖I2‖Xμ � ‖N (s)‖Xμ.

The term I3 in (4.7), which we recall equals

I3 = y
∫ 1+μ

y/2

(
1 − ψ

(
z

y

))
Hξ (t − s, y, z)∂z Nξ (s, z) dz, (4.16)
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is treated slightly differently. Since z � y/2 we may trade a power of y for a power
of z, and we also have w(y) � w(z) for z � y/2 by Remark 2.1(b), where the
implicit constant is independent of ν. Therefore,

‖I3‖Xμ =
∑
ξ

sup
y∈�μ

w(y)eε0(1+μ−y)+|ξ ||I3|

�
∑
ξ

sup
y∈�μ

∫ 1+μ

y/2
eε0(1+μ−y)+|ξ |Hξ (t − s, y, z)w(z)|z∂z Nξ (s, z)| dz.

Now, we use

eε0(1+μ−y)+|ξ | � eε0(1+μ−z)+|ξ |eε0(z−y)+|ξ |

� eε0(1+μ−z)+|ξ |eε0(y−z)2/2ν(t−s)eε0νξ2(t−s)/2, (4.17)

which follows from

e2a|ξ | � ea2/cecξ2 (4.18)

with suitable a, c > 0. Choosing ε0 sufficiently small, we obtain

‖I3‖Xμ �
∑
ξ

sup
y∈�μ

∫ 1+μ

y/2

1√
ν(t − s)

e− (y−z)2

8ν(t−s) e−νξ2(t−s)eε0(1+μ−z)+|ξ |w(z)|z∂z Nξ (s, z)| dz

� ‖z∂z N (s)‖Xμ

∫ ∞

0

1√
ν(t − s)

e− (y−z)2

8ν(t−s) dz,

whence

‖I3‖Xμ � ‖z∂z N (s)‖Xμ. (4.19)

It remains to estimate the term I4 in (4.7), which we recall equals

I4 = y
∫ ∞

1+μ

Hξ (t − s, y, z)∂z Nξ (s, z) dz.

Using Remark 2.1(a) and (c), the bound (4.17), and choosing ε0 sufficiently small,
we obtain

eε0(1+μ−y)+|ξ |w(y)|I4|

�
∫ 1+μ̃

1+μ

1√
ν(t − s)

eε0(z−y)+|ξ |e− (y−z)2

4ν(t−s) e− 1
2 νξ2(t−s)eε0(1+μ−z)+|ξ |w(z)|z∂z Nξ (s, z)| dz

+
∫ ∞
1+μ̃

1√
ν(t − s)

eε0(z−y)+|ξ |e− (y−z)2

4ν(t−s) e−νξ2(t−s)|∂z Nξ (s, z)| dz

�
∥∥z∂z Nξ (s)

∥∥L∞̃
μ,ν

∫ 1+μ̃

1+μ

1√
ν(t − s)

e
− (y−z)2

8ν(t−s) dz

+
∫ ∞
1+μ̃

1√
ν(t − s)

e
− (y−z)2

16ν(t−s) e
− (μ̃−μ)2

16ν(t−s) |∂z Nξ (s, z)| dz
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�
∥∥z∂z Nξ (s)

∥∥L∞̃
μ,ν

+ e
− (μ̃−μ)2

16ν(t−s)

(ν(t − s))1/4

(∫ ∞
1+μ̃

1√
ν(t − s)

e
− (y−z)2

8ν(t−s) dz

)1/2

∥∥∂z Nξ (s, z)
∥∥

L2(z�1+μ̃)

�
∥∥z∂z Nξ (s)

∥∥L∞̃
μ,ν

+ 1

(μ̃ − μ)1/2

∥∥∂z Nξ (s, z)
∥∥

L2(z�1+μ̃)
.

Taking a supremum over y ∈ �μ, summing over ξ , and recalling the definition of
μ̃ in (4.2), we deduce

‖I4‖Xμ
�

∥∥z∂z Nξ (s)
∥∥

Xμ̃
+ 1√

μ0 − μ − γ s

∑
ξ

∥∥∂z Nξ (s, z)
∥∥

L2(z�1+μ̃)
.

This concludes the proof of (4.3) with (i, j) = (0, 1).
Next, we note that the estimate (4.3) for (i, j) = (1, 0) follows from the bound

(4.3) with (i, j) = (0, 0), by applying the bound to ∂x N instead of N . Therefore, it
only remains to establish (4.3) for (i, j) = (0, 0). With ψ as above, we decompose
the convolution integral into three integrals as

∫ ∞

0
Hξ (t − s, y, z)Nξ (s, z) dz

=
∫ 3y/4

0
ψ

(
z

y

)
Hξ (t − s, y, z)Nξ (s, z) dz

+
∫ 1+μ

y/2

(
1 − ψ

(
z

y

))
Hξ (t − s, y, z)Nξ (s, z) dz

+
∫ ∞

1+μ

Hξ (t − s, y, z)Nξ (s, z) dz

= J1 + J2 + J3. (4.20)

Upon inspection, J1 may be bounded in exactly the same way as the term I1 earlier,
which gives the bound

‖J1‖Xμ
� ‖N (s)‖Xμ

.

On the other hand, J2 is estimated exactly as the term I3 above, and we obtain

‖J2‖Xμ
� ‖N (s)‖Xμ

.

Lastly, J3 is bounded just as I4, by splitting the integral on [1 + μ,∞) into an
integral on [1 + μ, 1 + μ̃] and one on [1 + μ̃,∞). This results in the bound

‖J3‖Xμ
�

∥∥Nξ (s)
∥∥

Xμ̃
+ 1√

μ0 − μ − γ s

∑
ξ

∥∥Nξ (s, z)
∥∥

L2(z�1+μ̃)
,

concluding the proof of the lemma. ��
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Lemma 4.3. Let μ < μ̃ obey (4.2). For (i, j) = (0, 0), (1, 0), (0, 1), we have∥∥∥∥∂ i
x (y∂y)

j
∫ ∞

0
R(t − s, y, z)N (s, z) dz

∥∥∥∥
Xμ

� ‖∂ i
x (y∂y)

j N (s)‖Xμ̃ + ‖N (s)‖Xμ̃

+ 1

(μ0 − μ − γ s)1/2
∑
ξ

‖∂ i
x∂

j
y Nξ‖L2(y�1+μ̃). (4.21)

Proof of Lemma 4.3. In order to establish (4.21), it suffices to verify the assump-
tions in Remark 4.2 for the kernel Rξ (t, y, z). We recall that ∂y Rξ (t, y, z) =
−∂z Rξ (t, y, z), which is necessary to change y derivatives to z derivatives. First
fix y ∈ [0, 1+ μ] and z ∈ [0, 3y/4]. Then, since w(z) � √

ν, from (3.11) we have

w(y)

w(z)

(|Rξ (t, y, z)| + |y∂y Rξ (t, y, z)|)

� w(y)

w(z)

(
be− θ0

2 b(y+z) + 1√
νt

e− θ0
2

(y+z)2

νt e− νξ2 t
8

)

� w(y)√
ν

(
be− θ0

2 b(y+z) + 1√
νt

e− θ0
2

y2+z2

νt

)
. (4.22)

Next, we use b � √
ν

−1 and thus by Remark 2.1(e) we have

w(y)√
ν

e− θ0
4 by � e

y
C

√
ν e

− θ0
4

y√
ν � 1, (4.23)

provided that C is sufficiently large (in terms of θ0). Similarly to (4.13), using
Remark 2.1(e) and the fact that t � 1 we have

w(y)√
ν

e− θ0
2

y2

νt � w(y)√
ν

e
− θ0

2
y√
ν � 1.

Therefore, the right side of (4.22) is bounded pointwise in y by

be− θ0
4 bz + 1√

νt
e− θ0

2
z2
νt .

Using that ‖be− θ0bz
4 ‖L1

z
� 1 and ‖ 1√

νt
e− θ0z2

2νt ‖L1
z

� 1, the condition (4.4) for R

follows.
In order to verify the condition (4.5), we use that b � |ξ |, and provided ε0 is

sufficiently small in terms of θ0, we obtain from (4.18) that

eε0(z−y)+|ξ ||Rξ (y, z, t)| � eε0(z−y)+|ξ |
(

be−θ0bz + 1√
νt

e− θ0
2

y2+z2

νt e− νξ2 t
8

)

� be− 1
2 θ0bz +

(
eε0z|ξ |e− θ0

4
z2
νt e− νξ2 t

8

)
1√
νt

e− θ0
4

z2
νt

� be− 1
2 θ0bz + 1√

νt
e− θ0

4
z2
νt ,
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and (4.5), for this kernel, follows by integrating in z. Finally, we check (4.6). For
this, let y ∈ [0, 1 + μ] and z � 1 + μ̃. Then

eε0(z−y)+|ξ ||Rξ (y, z, t)| � eε0(z−y)+|ξ |
(

be−θ0b(y+z) + 1√
νt

e− θ0
2

y2+z2

νt e− νξ2 t
8

)

� be− 1
2 θ0bz + 1√

νt
e− θ0

4
z2
νt

� be− 1
2 θ0bz + 1

(νt)1/4

(
z2

νt

)1/4

e− θ0
4

z2
νt

� b1/2e− 1
4 θ0bz + 1

(νt)1/4
e− θ0

8
z2
νt , (4.24)

where we used z � 1+ μ̃ � 1 in the third inequality. Finally, note that the L2 norm
of the far right hand side of (4.24) over [1 + μ̃,∞) is less than a constant. ��

Next, we consider the trace kernel.

Lemma 4.4. Let μ ∈ (0, μ0 − γ s) be arbitrary. For (i, j) = (0, 0), (1, 0), (0, 1),
we have the inequality

∥∥∥∂ i
x (y∂y)

j G(t − s, y, 0)∂z�
−1N (s, z)|z=0

∥∥∥
Xμ

� 1√
t − s

(‖∂ i
x N (s)‖Yμ + ‖∂ i

x N (s)‖Sμ) +
∥∥∥∂ i

x N (s)
∥∥∥

Xμ

. (4.25)

Proof of Lemma 4.4. For ξ ∈ Z, the kernel Gξ (t − s, y, 0) is the sum of two trace
operators

T1(t − s, y) = H̃ξ (t − s, y, 0) = 2√
ν(t − s)

e− y2

4ν(t−s) e−νξ2(t−s) (4.26)

and

T2(t − s, y) = Rξ (t − s, y, 0).

Recall that

|y∂y T1(t − s, y)| = 1√
ν(t − s)

e− y2

4ν(t−s) e−νξ2(t−s) y2

2ν(t − s)

� 1√
ν(t − s)

e− y2

8ν(t−s) e−νξ2(t−s) (4.27)

and

|T2(t − s, y)| + |y∂y T2(t − s, y)| � be− 1
2 θ0by + 1√

ν(t − s)
e− θ0

2
y2

ν(t−s) e− νξ2(t−s)
8 .

(4.28)
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We first prove (4.25) in the case i = j = 0. Similarly to the equation (6.2) in
Lemma 6.1 below, we have the representation formula

(
∂z�

−1Nξ (s, z)
)

|z=0 = −
∫ ∞

0
e−|ξ |z Nξ (s, z) dz

= −
∫ 1+μ

0
e−|ξ |z Nξ (s, z) dz −

∫ ∞

1+μ

e−|ξ |z Nξ (s, z) dz

= I1 + I2. (4.29)

First we treat the T1 contribution. Using (4.13) and choosing ε0 sufficiently
small, we have

|eε0(1+μ−y)+|ξ |w(y)T1(t − s, y)I1|

� 1√
t − s

eε0(1+μ−y)+|ξ |e− y2

8ν(t−s) e−νξ2(t−s)
∫ 1+μ

0
e−|ξ |z |Nξ (s, z)| dz

� 1√
t − s

∫ 1+μ

0
e−|ξ |zeε0(z−y)+|ξ |eε0(1+μ−z)+|ξ ||Nξ (s, z)| dz

� 1√
t − s

∫ 1+μ

0
eε0(1+μ−z)+|ξ ||Nξ (s, z)| dz,

leading to

‖T1(t − s, y)I1‖Xμ
� 1√

t − s
‖N (s)‖Yμ (4.30)

upon summing in ξ . For the integral I2 in (4.29), we similarly use (4.13) and obtain
the inequality

|eε0(1+μ−y)+|ξ |w(y)T1(t − s, y)I2| � 1√
t − s

∫ ∞

1+μ

|Nξ (s, z)| dz

� 1√
t − s

∥∥zNξ (s, z)
∥∥

L2(z�1+μ)
,

implying

‖T1(t − s, y)I2‖Xμ
� 1√

t − s
‖N (s)‖Sμ. (4.31)

For the T2 contribution, appealing to (4.23) and using b
√

ν = 1 + |ξ |√ν �
1 + |ξ |w(z) for any z � 0, we have

|eε0(1+μ−y)+|ξ |w(y)be− 1
2 θ0by I1|

� eε0(1+μ−y)+|ξ |b
√

ν

∫ 1+μ

0
e−|ξ |z |Nξ (s, z)| dz

�
∫ 1+μ

0
e−|ξ |zeε0(z−y)+|ξ |eε0(1+μ−z)+|ξ ||Nξ (s, z)| dz
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+
∫ 1+μ

0
|ξ |e−|ξ |zeε0(z−y)+|ξ |eε0(1+μ−z)+|ξ |w(z)|Nξ (s, z)| dz

�
∫ 1+μ

0
eε0(1+μ−z)+|ξ ||Nξ (s, z)| dz

+
∫ 1+μ

0
|ξ |e− 1

2 |ξ |zeε0(1+μ−z)+|ξ |w(z)|Nξ (s, z)| dz.

The first of the above terms is estimated using the Yμ norm, while the second one

is bounded using the Xμ norm. Here we use that
∥∥∥|ξ |e− 1

2 |ξ |z
∥∥∥

L1
z

� 1. The above

estimate, combined with the fact that the second term in the upper bound for T2
(cf. (4.28)) is estimated just as T1, leads to the bound

‖T2(t − s, y)I1‖Xμ
� 1√

t − s
‖N (s)‖Yμ + ‖N (s)‖Xμ

. (4.32)

For the contribution from T2 to the second integral in (4.29) we use (4.23) and the
bound

√
νb � 1 + |ξ |, to obtain

|eε0(1+μ−y)+|ξ |w(y)be− 1
2 θ0by I2| � eε0(1+μ−y)+|ξ |√νbe−|ξ |(1+μ)

∫ ∞

1+μ

|Nξ (s, z)| dz

� ‖zNξ (s)‖L2(z�1+μ).

Again, since the second term in the upper bound for T2 (cf. (4.28)) is estimated just
as T1 we obtain

‖T2(t − s, y)I2‖Xμ
� 1√

t − s
‖yN (s)‖L2(y�1+μ). (4.33)

Combining (4.30), (4.31), (4.32), and (4.33) concludes the proof of (4.25) when
(i, j) = (0, 0). For (i, j) = (0, 1), we use the fact that the conormal derivative of
the kernel obeys similar estimates as the kernel itself, which holds in view of (4.27)
and (4.28). Lastly, for (i, j) = (1, 0), the ∂x derivative simply acts on the Nξ term
in (4.29), and the above proof applies. ��

Finally, we estimate the first term in themild representation of the solution (3.7).

Lemma 4.5. Let μ ∈ (0, μ0 − γ s) be arbitrary. For i + j � 2, the initial datum
term in (3.7) satisfies

∑
i+ j�2

∥∥∥∥∂ i
x (y∂y)

j
∫ ∞

0
G(t, y, z)ω0(z) dz

∥∥∥∥
Xμ

�
∑

i+ j�2

‖∂ i
x (y∂y)

jω0‖Xμ +
∑

i+ j�2

∑
ξ

‖ξ i∂
j
y ω0,ξ‖L∞(y�1+μ). (4.34)
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Proof of Lemma 4.5. Let i + j � 2. We recall from (3.8), (3.9), and (4.1) that

Gξ (t, y, z) = Hξ (t, y, z) + Hξ (t, y,−z) + Rξ (t, y, z). (4.35)

Accordingly, we divide
(

∂ i
x (y∂y)

j
∫ ∞

0
G(t, y, z)ω0(z) dz

)
ξ

=
∫ ∞

0
(ı̂ξ)i (y∂y)

j Hξ (t, y, z)ω0,ξ (z) dz

+
∫ ∞

0
(ı̂ξ)i (y∂y)

j Hξ (t, y,−z)ω0,ξ (z) dz

+
∫ ∞

0
(ı̂ξ)i (y∂y)

j Rξ (t, y, z)ω0,ξ (z) dz

= J1 + J2 + J3. (4.36)

We first treat the term J1. Using that

(y∂y)
j = y j∂

j
y + 1{ j=2}y∂y

and y � 1, we have, similarly to (4.7),

|J1| �
∫ 3y/4

0
|(y∂y)

j Hξ (t, y, z)||ξ |i |ω0,ξ (z)| dz

+
∫ 3y/4

y/2

(∣∣∣∣ψ ′
(

z

y

)∣∣∣∣ +
∣∣∣∣ψ ′′

(
z

y

)∣∣∣∣
)

|Hξ (t, y, z)||ξ |i |ω0,ξ (z)| dz

+
∫ 3y/4

y/2

∣∣∣∣ψ ′
(

z

y

)∣∣∣∣ |Hξ (t, y, z)||∂zω0,ξ (z)| dz

+
∫ 1+μ

y/2
|Hξ (t, y, z)||∂2z ω0,ξ (z)| dz +

∫ ∞

1+μ

|Hξ (t, y, z)||∂2z ω0,ξ (z)| dz

+
∫ 1+μ

y/2
|Hξ (t, y, z)||∂zω0,ξ (z)| dz +

∫ ∞

1+μ

|Hξ (t, y, z)||∂zω0,ξ (z)| dz

+ 1{ j�1}
∫ 1+μ

y/2
|Hξ (t, y, z)||ξ |i |∂ j

z ω0,ξ (z)| dz

+ 1{ j�1}
∫ ∞

1+μ

|Hξ (t, y, z)||ξ |i |∂ j
z ω0,ξ (z)| dz

= J11 + J12 + J13 + J14 + J15 + J16 + J17 + J18 + J19. (4.37)

The terms J11, J12, and J13 are bounded in the same way as the term I1 in (4.7)
(see (4.11)–(4.15)), leading to the first term in (4.34). The terms J14, J16, and J18
are estimated in the same way as the term I3 in (4.7) (see (4.16)–(4.19)), and are
bounded by the first term in (4.34). It is only the Sobolev contributions J15, J17,
and J19 which need to be treated differently than the term I4 in (4.7), because here
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we do not wish to increase the value of μ to μ̃. These Sobolev terms are treated in
the same way. For instance, for J15 we use (4.17) and obtain

eε0(1+μ−y)+|ξ |w(y)|J15| �
∫ ∞

1+μ

1√
νt

eε0(z−y)+|ξ |e− (y−z)2

4νt e− 1
2 νξ2t |∂2z ω0,ξ (z)| dz

�
∫ ∞

1+μ

1√
νt

e− (y−z)2

8νt |∂2z ω0,ξ (z)| dz

�
∥∥∥∂2z ω0,ξ (z)

∥∥∥
L∞(z�1+μ)

. (4.38)

Thus, the terms J15, J17, and J19 contribute to the second term on the right side of
(4.34).

The second kernel in (4.35) is treated the same as the first. Likewise, the third
kernel in (4.35) is a function of y + z and we may write the analog of the inequality
(4.38) and the proof concludes similarly. ��

We conclude this section with the proof of Lemma 3.8.

Proof of Lemma 3.8. Given μ ∈ (0, μ0 − γ t) and s ∈ (0, t), recall that μ1 and
μ2 are given by (3.12) and (3.13). By the analyticity recovery for the X norm,
cf. Lemma A.3 below, the bound for the first term on the left side of (3.14) is a
direct consequence of the bound for the second term. Indeed, we have

∑
i+ j=2

∥∥∥∥∂ i
x (y∂y)

j
∫ ∞

0
G(t − s, y, z)N (s, z) dz

∥∥∥∥
Xμ

� 1

μ0 − μ − γ s

∑
i+ j=1

∥∥∥∥∂ i
x (y∂y)

j
∫ ∞

0
G(t − s, y, z)N (s, z) dz

∥∥∥∥
Xμ1

.

The bound for the second term on the left side of (3.14) follows from Lemma 4.1,
Remark 4.2, and Lemma 4.3, applied with μ = μ1 and μ̃ = μ2.

Concerning the trace kernel, the estimate for the first term on the left side of
inequality (3.15) is a consequence of the bound for the second term in (3.15), the
analyticity recovery for the X norm in Lemma A.3, and the increase in analyticity
domain from μ to μ1. The bound for the second term on the left side of (3.15) is a
consequence of Lemma 4.4 with μ = μ1.

Lastly, the initial datum term is bounded as in Lemma 4.5, which concludes the
proof of the lemma. ��

5. Estimates for the Y Analytic Norm

Lemma 5.1. Let μ ∈ (0, μ0 − γ s) be arbitrary. For (i, j) = (0, 0), (1, 0), (0, 1),
we have ∥∥∥∥∂ i

x (y∂y)
j
∫ ∞

0
H(t − s, y, z)N (s, z) dz

∥∥∥∥
Yμ

� ‖∂ i
x (y∂y)

j N (s)‖Yμ + ‖N (s)‖Yμ + ‖∂ i
x∂

j
y N (s)‖Sμ. (5.1)
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Remark 5.2. Similarly toRemark 4.2,we emphasize that in the proof ofLemma5.1
we only use several properties of the heat kernel Hξ (t, y, z). Examining the proof
below, one may verify that these properties are: The kernel should be either a
function of y + z or y − z, and it should obey the estimates

∥∥∥χ{0�y�1+μ}χ{0�z�3y/4}
(|Hξ (t, y, z)| + |y∂y Hξ (t, y, z)|)

∥∥∥
L1

y L∞
z

� 1 (5.2)

∥∥∥eε0(z−y)+|ξ |Hξ (t, y, z)
∥∥∥

L1
y L∞

z

� 1. (5.3)

It is direct to check that the kernel H̃ξ (t, y, z) − Hξ (t, y, z) = Hξ (t, y,−z) =
1√
νt

e− (y+z)2

4νt e−νξ2t obeys these two properties. Therefore, the bounds stated in

Lemma 5.1 hold with H(t, y, z) replaced by the full kernel H̃(t, y, z).

Proof of Lemma 5.1. Let y ∈ �μ. For simplicity, we only work with y ∈ R; an
adjustment for the complex case is straight-forward and leads only to notational
complications.

We start with the proof of (5.1) in the case (i, j) = (0, 1). Let ψ be the cut-off
function from the proof of Lemma 4.1. The first conormal derivative is given as in
(4.7) by

y∂y

∫ ∞

0
Hξ (t − s, y, z)Nξ (s, z) dzs

= −y
∫ 3y/4

0
ψ

(
z

y

)
∂z Hξ (t − s, y, z)Nξ (s, z) dz

−
∫ 3y/4

y/2
ψ ′

(
z

y

)
Hξ (t − s, y, z)Nξ (s, z) dz

+ y
∫ 1+μ

y/2

(
1 − ψ

(
z

y

))
Hξ (t − s, y, z)∂z Nξ (s, z) dz

+ y
∫ ∞

1+μ

Hξ (t − s, y, z)∂z Nξ (s, z) dz

= I1 + I2 + I3 + I4. (5.4)

Using the bounds (4.8), (4.9), (4.10), and (4.14), we obtain

eε0(1+μ−y)+|ξ ||I1|

�
∫ 3y/4

0

1√
ν(t − s)

e− (y−z)2

8ν(t−s) e−νξ2(t−s)eε0(1+μ−z)+|ξ ||Nξ (s, z)| dz. (5.5)

Integrating in y, changing the order of integration, and using

∥∥∥∥ 1√
ν(t − s)

e− (y−z)2

8ν(t−s)

∥∥∥∥
L∞

z L1
y

� 1, (5.6)
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we arrive at∥∥∥eε0(1+μ−y)+|ξ | I1
∥∥∥L1

μ

�
∫ 1+μ

0

∫ 3y/4

0

1√
ν(t − s)

e− (y−z)2

16ν(t−s) eε0(1+μ−z)+|ξ ||Nξ (s, z)| dzdy

�
∥∥∥eε0(1+μ−z)+|ξ |Nξ (s)

∥∥∥L1
μ

.

Summing over ξ yields the bound

‖I1‖Yμ � ‖N (s)‖Yμ. (5.7)

The term I2 in (5.4) is treated in the same way, by using
∥∥ψ ′∥∥

L∞ � 1, leading to
the same upper bound as in (5.7). For the term I3 in (5.4), we use (4.17), the fact
that ε0 is small, and the bound (5.6), in order to conclude

‖I3‖Yμ =
∑
ξ

∥∥∥eε0(1+μ−y)+|ξ | I3
∥∥∥L1

μ

�
∑
ξ

∥∥∥∥
∫ 1+μ

y/2

1√
ν(t − s)

e− (y−z)2

8ν(t−s) eε0(1+μ−z)+|ξ ||z∂z Nξ (s, z)| dz

∥∥∥∥
L1

μ

�
∑
ξ

∥∥∥eε0(1+μ−z)+|ξ ||z∂z Nξ (s)|
∥∥∥L1

μ

= ∥∥z∂z Nξ (s)
∥∥

Yμ
. (5.8)

In order to estimate the term I4 in (5.4) we appeal to (4.17), use that ε0 is chosen
sufficiently small, and the bound y � 1 + μ � z, to obtain

eε0(1+μ−y)+|ξ ||I4|
�

∫ ∞

1+μ

1√
ν(t − s)

eε0(z−y)+|ξ |e− (y−z)2

4ν(t−s) e− 1
2 νξ2(t−s)|∂z Nξ (s, z)| dz

�
∫ ∞

1+μ

e− (y−z)2

8ν(t−s)√
ν(t − s)

|∂z Nξ (s, z)| dz.

Upon integrating in y, using (5.6), and summing in ξ , the above estimate yields

‖I4‖Yμ
�

∑
ξ

∥∥∂z Nξ (s)
∥∥

L1(z�1+μ)
� ‖∂z N (s)‖Sμ

.

This concludes the proof of (5.1) with (i, j) = (0, 1).
The estimate (5.1) for (i, j) = (1, 0) follows from the bound (5.1) with (i, j) =

(0, 0), by applying the estimate to ∂x N instead of N . In order to prove (5.1) for
(i, j) = (0, 0), we decompose, as in (4.20),

∫ ∞

0
Hξ (t − s, y, z)Nξ (s, z) dz

=
∫ 3y/4

0
ψ

(
z

y

)
Hξ (t − s, y, z)Nξ (s, z) dz
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+
∫ 1+μ

y/2

(
1 − ψ

(
z

y

))
Hξ (t − s, y, z)Nξ (s, z) dz

+
∫ ∞

1+μ

Hξ (t − s, y, z)Nξ (s, z) dz

= J1 + J2 + J3.

Upon inspection of the proof for (i, j) = (0, 1), we see that using (5.6) we obtain

‖J1‖Yμ
+ ‖J2‖Yμ

� ‖N (s)‖Yμ
.

On the other hand, the term J3 is estimated exactly as the term I4 above, and we
obtain

‖J3‖Yμ
� ‖N (s)‖Sμ

.

This concludes the proof of the lemma. ��
Next, we state the inequalities involving the remainder kernel Rξ .

Lemma 5.3. Let μ ∈ (0, μ0 − γ s) be arbitrary. For (i, j) ∈ {(0, 0), (1, 0), (0, 1)}
we have the estimate

∥∥∥∥∂ i
x (y∂y)

j
∫ ∞

0
Rξ (t − s, y, z)Nξ (s, z) dz

∥∥∥∥
Yμ

� ‖∂ i
x (y∂y)

j N (s)‖Yμ + ‖N (s)‖Yμ + ‖∂ i
x∂

j
y N (s)‖Sμ. (5.9)

Proof of Lemma 5.3. In order to establish (5.9), we only need to verify that the
kernel Rξ (t, y, z) obeys the conditions stated in Remark 5.2. According to Re-
mark 3.6, in order to obtain (5.2)–(5.3), we only need to prove that

∥∥∥χ{0�y�1+μ}χ{0�z�3y/4}
(
be− 1

2 θ0b(y+z))∥∥∥
L1

y L∞
z

� 1 (5.10)

∥∥∥eε0(z−y)+|ξ |be−θ0b(y+z)
∥∥∥

L1
y L∞

z

� 1. (5.11)

Indeed, the second term in the upper bound (3.11) for the residual kernel is treated
in exactly the same way as Hξ (t, y,−z), but replacing 1

4 with
θ0
2 , and this term was

addressed in Remark 5.2.
In order to establish (5.10), let y ∈ [0, 1 + μ] and z ∈ [0, 3y/4]. Then

‖be− 1
2 θ0b(y+z)‖L1

y
� ‖be− 1

2 θ0by‖L1
y

� 1,

and (5.10) follows. For (5.11), let ε0 � θ0, andobserve that eε0(z−y)+|ξ |be−θ0b(z+y) �
be−θ0by . The inequality (5.11) then follows upon integration in y. ��

Next, we consider the Y norm estimate for the trace kernel contribution to (3.7).
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Lemma 5.4. Let μ ∈ (0, μ0 − γ s) be arbitrary. For 0 � i + j � 1, we have the
inequality∥∥∥∂ i

x (y∂y)
j G(t − s, y, 0)∂z�

−1Nξ (s, z)|z=0

∥∥∥
Yμ

� ‖∂ i
x N (s)‖Yμ + ‖∂ i

x N‖Sμ.

(5.12)

Proof of Lemma 5.4. First, we note that the case (i, j) = (1, 0) follows from the
bound (5.12) with (i, j) = (0, 0), because the ∂x derivative commutes with the
operator G(t − s, y, 0)∂z�

−1|z=0 (see also the formula (5.14) below). Second,
we emphasize that the case (i, j) = (0, 1) is treated in the same way as the case
(i, j) = (0, 0), because the conormal derivative y∂y ofG(t−s, y, 0) obeys the same
bounds as G(t − s, y, 0) itself (see the bounds (4.27)–(4.28) above). Therefore, we
only need to consider the case (i, j) = (0, 0).

As opposed to the proof of Lemma 4.4, we do not split the kernel Gξ (t −s, y, 0)
into two parts. The only property of the kernel which is used in this estimate is∥∥Gξ (t − s, y, 0)

∥∥
L1

y
� 1, (5.13)

which follows directly from (4.26) and (4.28).
Using (4.29), we have

∂z�
−1Nξ (s, z)|z=0 = −

∫ ∞

0
e−|ξ |z Nξ (s, z) dz, (5.14)

and thus, since ε0 may be taken sufficiently small, we obtain∣∣∣eε0(1+μ−y)+|ξ |Gξ (t − s, y, 0)∂z�
−1Nξ (s, z)|z=0

∣∣∣
� Gξ (t − s, y, 0)

∫ ∞

0
e−|ξ |zeε0(z−y)+|ξ |eε0(1+μ−z)+|ξ ||Nξ (s, z)| dz

� Gξ (t − s, y, 0)
∫ 1+μ

0
eε0(1+μ−z)+|ξ ||Nξ (s, z)| dz

+ Gξ (t − s, y, 0)
∫ ∞

1+μ

|Nξ (s, z)| dz.

Using (5.13) and summing over ξ , we arrive at∥∥∥Gξ (t − s, y, 0)∂z�
−1Nξ (s, z)|z=0

∥∥∥
Yμ

� ‖N (s)‖Yμ + ‖N (s)‖Sμ
,

which concludes the proof of the lemma. ��
Next, we provide an inequality corresponding to the initial datum.

Lemma 5.5. Let μ ∈ (0, μ0 − γ t). For i + j � 2, the initial datum term in (3.7)
satisfies

∑
i+ j�2

∥∥∥∥∂ i
x (y∂y)

j
∫ ∞

0
G(t, y, z)ω0(z) dz

∥∥∥∥
Yμ

�
∑

i+ j�2

‖∂ i
x (y∂y)

jω0‖Yμ +
∑

i+ j�2

∑
ξ

‖ξ i∂
j
y ω0,ξ‖L1(y�1+μ). (5.15)
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Proof of Lemma 5.5. Let i + j � 2. Thenwe have the decomposition of the kernel
(4.35). We start with the first kernel in (4.35) and consider the inequality (4.37),
where J1 is as in (4.36).

Now, the terms J11, J12, and J13 are bounded the same as the term I1 in (5.4)
(see (5.5)–(5.7)), giving the first term in (5.15). The terms J14, J16, and J18 are
estimated in the same way as the term I3 in (5.4), cf. (5.8), and are bounded by the
first term in (4.34). It remains to consider the Sobolev contributions J15, J17, and
J19.

For J15 we use (4.17) and write

eε0(1+μ−y)+|ξ ||J15|
�

∫ ∞

1+μ

1√
ν(t − s)

eε0(z−y)+|ξ |e− (y−z)2

4ν(t−s) e− 1
2 νξ2(t−s)|∂2z ω0,ξ (z)| dz

�
∫ ∞

1+μ

1√
ν(t − s)

e− (y−z)2

8ν(t−s) |∂2z ω0,ξ (z)| dz.

Upon integrating in y, using Fubini, the estimate (5.6), and summing in ξ , we obtain

‖J15‖Yμ
�

∑
ξ

∥∥∥∂2z ω0,ξ

∥∥∥
L1(z�1+μ)

.

With a similar treatment of J17 and J19 we obtain the second term on the right side
of (5.15).

Since the other kernels in (4.35) are treated completely analogously, the proof
is concluded. ��

Proof of Lemma 3.9. By increasing the analyticity domain fromμ toμ1, which is
defined in (3.12), and using the analyticity recovery for the Y norm in Lemma A.4,
we obtain

∑
i+ j=2

∥∥∥∥∂ i
x (y∂y)

j
∫ ∞

0
G(t − s, y, z)N (s, z) dz

∥∥∥∥
Yμ

� 1

μ0 − μ − γ s

∑
i+ j=1

∥∥∥∥∂ i
x (y∂y)

j
∫ ∞

0
G(t − s, y, z)N (s, z) dz

∥∥∥∥
Yμ1

.

Therefore, the bound for the first term on the left of (3.16) is a direct consequence
of the estimate for the second term in (3.16). The bound for the second term on the
left side of (3.16) follows from Lemma 5.1, Remark 5.2, and Lemma 5.3, with μ

replaced by μ1 ∈ (0, μ0 − γ s).
Similarly, using analytic recovery for the Y norm and increasing the analytic

domain from μ to μ1, we see that the bound for the first term on the left side of
(3.17) is a direct consequence of the estimate for the second term. For this later
term, the estimate is established in Lemma 5.4, with μ replaced by μ1. Lastly, the
bound (3.18) is proven in Lemma 5.5, concluding the proof of the lemma. ��
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6. Estimates for the Nonlinearity

In this section we provide estimates for the nonlinear term

Nξ = (u · ∇ω)ξ = (u1∂xω)ξ +
(

u2

y
y∂yω

)
ξ

(6.1)

and its ∂ i
x (y∂y)

j derivatives, with i + j � 1, in the Xμ, Yμ, and Sμ norms. We first
recall a representation formula of the velocity field in terms of the vorticity.

Lemma 6.1. (Lemma 2.4 in [44]). The velocity for the system (3.4)–(3.5) is given
by

u1,ξ (y) = 1

2

(
−

∫ y

0
e−|ξ |(y−z)(1 − e−2|ξ |z)ωξ (z) dz

+
∫ ∞

y
e−|ξ |(z−y)(1 + e−2|ξ |y)ωξ (z) dz

)
(6.2)

and

u2,ξ (y) = −ı̂ξ

2|ξ |
(∫ y

0
e−|ξ |(y−z)(1 − e−2|ξ |z)ωξ (z) dz

+
∫ ∞

y
e−|ξ |(z−y)(1 − e−2|ξ |y)ωξ (z) dz

)
, (6.3)

where ı̂ is the imaginary unit.

As in Remark 3.7 above, the Biot–Savart law of Lemma 6.1 also holds for y in
the complex domain �μ ∪ [1 + μ,∞). If y ∈ ∂�θ for some θ ∈ [0, μ), and say
Im y � 0, then the integration from 0 to y in (6.2)–(6.3) is an integration over the
complex line ∂�θ ∩{z : Im z � 0,Re z � Re y}, while the integration from y to∞
is an integration over (∂�θ ∩ {z : Im z � 0,Re y � Re z � 1+ θ}) ∪ [1+ θ,∞).

Moreover, we emphasize here that while (6.3) immediately implies the bound-
ary conditionu2,ξ (0) = 0, from(6.2) it just follows thatu1,ξ (0) = ∫ ∞

0 e−|ξ |zωξ (z)dz.
To see that this integral vanishes, one has to use that it vanishes at time t = 0, and
that its time derivative is given using the vorticity boundary condition (3.6) as
∂t u1,ξ (0) = (−∂y�

−1
ξ (u · ∇ω)ξ )|y=0 − ∫ ∞

0 e−|ξ |z(u · ∇ω)ξ (z)dz = 0. In the last

equality we have used explicitly that the kernel of the operator (−∂y�
−1
ξ )|y=0 is

given by e−|ξ |z . Thus, (3.6) ensures that u1,ξ (0) = 0 is maintained by the evolution.
The main estimate concerning the Xμ norm is the following:

Lemma 6.2. Let μ ∈ (0, μ0 − γ s) be arbitrary. We have the inequalities

‖N (s)‖Xμ �
∑
i�1

(
‖∂ i

xω‖Yμ + ‖∂ i
xω‖Sμ

) ∑
i+ j=1

‖∂ i
x (y∂y)

jω‖Xμ (6.4)

and
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∑
i+ j=1

‖∂ i
x (y∂y)

j N (s)‖Xμ

�
(

‖ω‖Xμ +
∑

1�i�2

(‖∂ i
xω‖Yμ + ‖∂ i

xω‖Sμ

)) ∑
i+ j=1

‖∂ i
x (y∂y)

jω‖Xμ

+
∑
i�1

(
‖∂ i

xω‖Yμ + ‖∂ i
xω‖Sμ

) ∑
i+ j=2

‖∂ i
x (y∂y)

jω‖Xμ. (6.5)

Before the proof of Lemma 6.2, we analyze the first order derivatives of the
nonlinear term. By the Leibniz rule, for i + j = 1, we have

∂ i
x (y∂y)

j Nξ = (∂ i
x (y∂y)

j u1∂xω)ξ +
(

(y∂y)
j
(

∂ i
x u2

y

)
y∂yω

)
ξ

+ (u1∂
i+1
x (y∂y)

jω)ξ +
(

u2

y
∂ i

x (y∂y)
j+1ω

)
ξ

.

Using the triangle inequality we have eε0(1+μ−y)+|ξ | � eε0(1+μ−y)+|η|
eε0(1+μ−y)+|ξ−η|, and thus, by the definition of the Xμ norm andYoung’s inequality
in ξ and η, it follows that

‖∂ i
x (y∂y)

j N (s)‖Xμ � ‖∂xω‖Xμ

∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ ||(∂ i
x (y∂y)

j u1)ξ |

+ ‖y∂yω‖Xμ

∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ |
∣∣∣∣∣
(

(y∂y)
j
(

∂ i
x u2

y

))
ξ

∣∣∣∣∣
+ ‖∂ i+1

x (y∂y)
jω‖Xμ

∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ ||(u1)ξ |

+ ‖∂ i
x (y∂y)

j+1ω‖Xμ

∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ |
∣∣∣∣∣
(

u2

y

)
ξ

∣∣∣∣∣ .
(6.6)

Thus, in order to prove (6.5), we only need to estimate the above norms of the
velocity terms. These inequalities are collected in the next lemma.

Lemma 6.3. Let μ ∈ (0, μ0 − γ s) be arbitrary and let 0 � i + j � 1. For the
velocity u1 and its derivatives, we have∑

ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ ||(∂ i
x (y∂y)

j u1)ξ | � ‖∂ i+ j
x ω‖Yμ + ‖∂ i+ j

x ω‖Sμ + j ‖ω‖Xμ
,

(6.7)

while for the second velocity component u2 the bound

∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ |
∣∣∣∣∣
(

(y∂y)
j
(

∂ i
x u2

y

))
ξ

∣∣∣∣∣ � ‖∂ i+1
x ω‖Yμ + ‖∂ i+1

x ω‖Sμ (6.8)

holds.
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Proof of Lemma 6.3. First we prove (6.7), starting with the case (i, j) = (0, 0).
We decompose the integral (6.2) for u1 as

u1,ξ (y) = 1

2

(
−

∫ y

0
e−|ξ |(y−z)(1 − e−2|ξ |z)ωξ (s, z) dz

+
(∫ 1+μ

y
+

∫ ∞

1+μ

)
e−|ξ |(z−y)(1 + e−2|ξ |y)ωξ (s, z) dz

)

= I1 + I2 + I3.

Note that we have

eε0(1+μ−y)+|ξ |e−|y−z||ξ | � eε0(1+μ−z)+|ξ |eε0(z−y)+|ξ |e−|y−z||ξ | � eε0(1+μ−z)+|ξ |
(6.9)

provided ε0 � 1. Hence, we obtain

eε0(1+μ−y)+|ξ |(|I1| + |I2|) �
∫ 1+μ

0
eε0(1+μ−z)+|ξ ||ωξ (s, z)| dz

� ‖eε0(1+μ−y)+|ξ |ω‖L1
μ
. (6.10)

For the term I3, using (6.9) we have

eε0(1+μ−y)+|ξ ||I3| �
∫ ∞

1+μ

|ωξ (s, z)| dz � ‖zωξ‖L2(z�1+μ). (6.11)

Summing the bounds (6.10) and (6.11) in ξ , we conclude the proof of (6.7) when
i + j = 0.

The case (i, j) = (1, 0) amounts to multiplying by ı̂ξ , and thus the assertion
follows by the same proof as for (i, j) = (0, 0). Consider now the case (i, j) =
(0, 1). Taking the conormal derivative of (6.2) gives

y∂yu1,ξ = y

2

(∫ y

0
e−|ξ |(y−z)(1 − e−2|ξ |z)|ξ |ωξ (s, z) dz

+
∫ ∞

y
e−|ξ |(z−y)(1 + e−2|ξ |y)|ξ |ωξ (s, z) dz

− 2
∫ ∞

y
e−|ξ |(z−y)e−2|ξ |y |ξ |ωξ (s, z) dz

)
− yωξ (y). (6.12)

The first three terms in (6.12) are treated as in the case i + j = 0. The presence of
the additional factor |ξ | causes ω to be replaced by ∂xω in the upper bounds. For
the last term in (6.12), we have
∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ |y|ωξ (y)| �
∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ |w(y)|ωξ (y)| � ‖ω‖Xμ,

where we have used Remark 2.1(d). This concludes the proof of (6.7) for (i, j) =
(0, 1).
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Next, we prove (6.8), beginning with the case (i, j) = (0, 0). Using (6.3) we
decompose

u2,ξ

y
= − ξ

|ξ |
ı̂

2y

(∫ y

0
e−|ξ |(y−z)(1 − e−2|ξ |z)ωξ (s, z) dz

+
(∫ 1+μ

y
+

∫ ∞

1+μ

)
e−|ξ |(z−y)(1 − e−2|ξ |y)ωξ (s, z) dz

)

= J1 + J2 + J3.

Using the bound
∣∣∣∣1 − e−2|ξ |z

y

∣∣∣∣ � |ξ |, z � y,

we arrive at ∣∣∣∣u2,ξ

y

∣∣∣∣ �
∫ y

0
e−|ξ |(y−z)|ξ ||ωξ (s, z)| dz

+
(∫ 1+μ

y
+

∫ ∞

1+μ

)
e−|ξ |(z−y)|ξ ||ωξ (s, z)| dz. (6.13)

Using (6.9) and the same bounds as in (6.10)–(6.11), we obtain the inequality (6.8)
for i + j = 0. The case (i, j) = (1, 0) follows from the same argument, by adding
an extra x derivative.

It remains to consider the case (i, j) = (0, 1). From the incompressibility we
have

y∂y

(
u2,ξ

y

)
= ∂yu2,ξ − u2,ξ

y
= −ı̂ξu1,ξ − u2,ξ

y
. (6.14)

The bound for the second term on the right of (6.14) was established in (6.13),
whereas the bound for the first term follows by setting (i, j) = (1, 0) in (6.7). ��

Having established Lemma 6.3, we return to the proofs of (6.4) and (6.5).

Proof of Lemma 6.2. In order to prove (6.4), we use (6.1) and similarly to (6.6)
we obtain

‖N (s)‖Xμ � ‖∂xω‖Xμ

∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ ||(u1)ξ |

+ ‖y∂yω‖Xμ

∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ |
∣∣∣∣∣
(

u2

y

)
ξ

∣∣∣∣∣ . (6.15)

Using Lemma 6.3 with i + j = 0 we get

‖N (s)‖Xμ �
(‖ω‖Yμ + ‖ω‖Sμ

)‖∂xω‖Xμ + (‖∂xω‖Yμ + ‖∂xω‖Sμ

)‖y∂yω‖Xμ,

and (6.4) is established.
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For (6.5), we use the bounds of Lemma 6.3 in (6.6) to obtain

∑
i+ j=1

‖∂ i
x (y∂y)

j N (s)‖Xμ � ‖∂xω‖Xμ

(‖∂xω‖Yμ + ‖∂xω‖Sμ + ‖ω‖Xμ

)

+ ‖y∂yω‖Xμ

(∑
i�1

‖∂ i+1
x ω‖Yμ + ‖∂ i+1

x ω‖Sμ

)

+
( ∑

i+ j=1

‖∂ i+1
x (y∂y)

jω‖Xμ

) (‖ω‖Yμ + ‖ω‖Sμ

)

+
( ∑

i+ j=1

‖∂ i
x (y∂y)

j+1ω‖Xμ

) (‖∂xω‖Yμ + ‖∂xω‖Sμ

)
,

and (6.5) is proven. ��

Next, we estimate the term ∂ i
x (y∂y)

j N (s) for 0 � i + j � 1 in the Y norm.

Lemma 6.4. Let μ ∈ (0, μ0 − γ s) be arbitrary. For the nonlinear term, we have
the inequalities

‖N (s)‖Yμ �
∑
i�1

(
‖∂ i

xω‖Yμ + ‖∂ i
xω‖Sμ

) ∑
i+ j=1

‖∂ i
x (y∂y)

jω‖Yμ (6.16)

and

∑
i+ j=1

‖∂ i
x (y∂y)

j N (s)‖Yμ

�
(

‖ω‖Xμ +
∑

1�i�2

(‖∂ i
xω‖Yμ + ‖∂ i

xω‖Sμ

)) ∑
i+ j=1

‖∂ i
x (y∂y)

jω‖Yμ

+
∑
i�1

(
‖∂ i

xω‖Yμ + ‖∂ i
xω‖Sμ

) ∑
i+ j=2

‖∂ i
x (y∂y)

jω‖Yμ. (6.17)

Proof of Lemma 6.4. By writing the nonlinear term as in (6.1), and using the
definition of the Yμ norm, we obtain, similarly to (6.15),

‖N (s)‖Yμ � ‖∂xω‖Yμ

∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ ||(u1)ξ |

+ ‖y∂yω‖Yμ

∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ |
∣∣∣∣
(

u2

y

)
ξ

∣∣∣∣.

Using the bounds in Lemma 6.3 with i + j = 0, we arrive at (6.16).
For i + j = 1, by the definition of Yμ norm and Young’s inequality, we have

as in (6.6)
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‖∂ i
x (y∂y)

j N (s)‖Yμ � ‖∂xω‖Yμ

∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ ||(∂ i
x (y∂y)

j u1)ξ |

+ ‖y∂yω‖Yμ

∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ |
∣∣∣∣∣
(

(y∂y)
j
(

∂ i
x u2

y

))
ξ

∣∣∣∣∣
+ ‖∂ i+1

x (y∂y)
jω‖Yμ

∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ ||(u1)ξ |

+ ‖∂ i
x (y∂y)

j+1ω‖Yμ

∑
ξ

sup
y∈�μ

eε0(1+μ−y)+|ξ |
∣∣∣∣∣
(

u2

y

)
ξ

∣∣∣∣∣ .

The proof of (6.17) is then concluded by an application of Lemma 6.3. ��
To conclude this section we consider the Sobolev norm estimates for the non-

linear term.

Lemma 6.5. Let μ ∈ (0, μ0 − γ s) be arbitrary. We have

‖N (s)‖Sμ �
(
‖ω‖Yμ

+ ‖ω‖Sμ

) ∑
i+ j=1

‖∂ i
x∂

j
y ω‖Sμ (6.18)

and∑
i+ j=1

‖∂ i
x∂

j
y N (s)‖Sμ �

∑
i+ j�1

(
‖∂ i

x∂
j
y ω‖Yμ + ‖∂ i

x∂
j
y ω‖Sμ

) ∑
i+ j�1

‖∂ i
x∂

j
y ω‖Sμ

+ (‖ω‖Yμ + ‖ω‖Sμ

) ∑
i+ j=2

‖∂ i
x∂

j
y ω‖Sμ. (6.19)

Proof of Lemma 6.5. In order to prove (6.18) we write

y(u · ∇ω) = u1y∂xω + u2y∂yω,

and thus from Hölder’s inequality in y and Young’s inequality in ξ we deduce that

∑
ξ

(
‖u1,ξ‖L∞(y�1+μ) + ‖u2,ξ‖L∞(y�1+μ)

)
�

∑
ξ

∫ ∞

0
|ωξ (z)| dz

� ‖ω‖Yμ
+ ‖ω‖Sμ

. (6.20)

For (6.19), when i + j = 1, by the Leibniz rule we have

y∂ i
x∂

j
y (u · ∇ω) = ∂ i

x∂
j
y u1y∂xω + u1y∂ i+1

x ∂
j
y ω + ∂ i

x∂
j
y u2y∂yω + u2y∂ i

x∂
j+1
y ω,

and therefore from Hölder’s inequality in y and Young’s inequality in ξ we deduce
that ∥∥∥∂ i

x∂
j
y N (s)

∥∥∥
Sμ

� ‖∂xω‖Sμ

∑
ξ

∥∥∥|ξ |i∂ j
y u1,ξ

∥∥∥
L∞(y�1+μ)

+ ∥∥∂yω
∥∥

Sμ

∑
ξ

∥∥∥|ξ |i∂ j
y u2,ξ

∥∥∥
L∞(y�1+μ)
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+
∥∥∥∂ i+1

x ∂
j
y ω

∥∥∥
Sμ

∑
ξ

∥∥u1,ξ
∥∥

L∞(y�1+μ)

+
∥∥∥∂ i

x∂
j+1
y ω

∥∥∥
Sμ

∑
ξ

∥∥u2,ξ
∥∥

L∞(y�1+μ)
.

For the last two terms in the above inequality we appeal to (6.20). For the first two
terms, when (i, j) = (1, 0) the L∞ bound on the velocity field is again given by
(6.20) with an additional derivative in x , i.e.,∑

ξ

‖(∂x u)1,ξ‖L∞(y�1+μ) + ‖(∂x u)2,ξ‖L∞(y�1+μ) � ‖∂xω‖Yμ
+ ‖∂xω‖Sμ

.

(6.21)

On the other hand, for (i, j) = (0, 1), we use incompressibility and the definition
of ω to write

∂yu1 = −ω + ∂x u2 and ∂yu2 = −∂x u1. (6.22)

For the L∞ bound on ∂x u we again appeal to (6.21) whereas for the L∞ norm of
ω we use the fundamental theorem of calculus and Hölder’s inequality to estimate∑

ξ

‖ωξ‖L∞(y�1+μ) �
∑
ξ

‖y∂yωξ‖L2(y�1+μ) = ∥∥∂yω
∥∥

Sμ
. (6.23)

The bound (6.19) now follows by combining all the estimates. ��

7. The Sobolev Norm Estimate

In this section, we provide an estimate on the Sobolev part of the norm
∑

i+ j�3

∥∥∥∂ i
x∂

j
y ω

∥∥∥
S

=
∑

i+ j�3

∥∥∥y∂ i
x∂

j
y ω

∥∥∥
L2

x,y(y�1/2)

=
∑

i+ j�3

(∑
ξ

‖yξ i∂
j
y ωξ‖2L2(y�1/2)

)1/2

. (7.1)

For a given norm ‖·‖ it is convenient to introduce the notation

‖Dku‖ =
∑

i+ j=k

‖∂ i
x∂

j
y u‖.

We first state a lemma which estimates u in terms of ω.

Lemma 7.1. Let t be such that γ t � μ0/2. Then we have
∑

0�k�2

‖Dku(t)‖L∞
x,y(y�1/4) �

∑
i+ j�2

∑
ξ

‖|ξ |i ∂ j
y uξ (t)‖L∞(y�1/4) � |||ω|||t (7.2)

and ∥∥∥D3u(t)
∥∥∥

L2
x,y(y�1/4)

� |||ω|||t . (7.3)
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Proof of Lemma 7.1. The first inequality in (7.2), in which the L∞ norm in x is
replaced by an 1 norm in the ξ variable is merely the Hausdorff–Young inequality.
It thus remains to establish the second inequality in (7.2). The case j = 0 follows
by the same argument as (6.20). Indeed, we only replace the norm L∞(y � 1+μ)

with the norm L∞(y � 1/4), which has no bearing on the estimates, to obtain

∑
ξ

‖(∂ i
x u)1,ξ‖L∞(y�1/4) + ‖(∂ i

x u)2,ξ‖L∞(y�1/4) �
∥∥∥∂ i

xω

∥∥∥
Yμ/2

+
∥∥∥∂ i

xω

∥∥∥
Sμ/2

(7.4)

for any i � 2 and μ > 0. In particular, we may take

μ = μ0 − γ t

10
. (7.5)

Note that since γ t � μ0/2 we have μ � μ0/20. To replace the Sμ/2 norm, which
is 1 in ξ , with the S norm, which is 2 in ξ , we pay an additional price of 1 + |ξ |
(cf. Lemma A.1 below). Additionally, in (7.4) we further appeal to the analyticity
recovery for the Y norm, cf. Lemma A.4 below, and obtain

∑
i�2

∑
ξ

‖(∂ i
x u)1,ξ ‖L∞(y�1/4) + ‖(∂ i

x u)2,ξ ‖L∞(y�1/4) � ‖ω‖Yμ
+

∑
i�3

∥∥∥∂ i
x ω

∥∥∥
S

� |||ω|||t .

This concludes the proof of (7.2) when j = 0 and i � 2. For the case j = 1, we
use (6.22) to convert the ∂y derivative into a ∂x derivative, at a cost of an additional
term involvingω. Similarly to (6.23), appealing to LemmaA.1, using thatw(y) � 1
for y ∈ [1/4, 1/2], and with μ as in (7.5) we get

∑
ξ

‖|ξ |iωξ‖L∞(y�1/4) �
∑
ξ

‖w(y)eε0(1+μ−y)+|ξ ||ξ |iωξ‖L∞(1/4�y�1/2)

+
∑
ξ

‖y∂y |ξ |iωξ‖L2(y�1/2)

�
∥∥∥∂ i

xω

∥∥∥
Xμ

+
∥∥∥∂ i

x∂yω

∥∥∥
S

+
∥∥∥∂ i+1

x ∂yω

∥∥∥
S

� |||ω|||t (7.6)

for i � 1. The above estimate gives (7.2) for j = 1. It only remains to consider the
case (i, j) = (0, 2). For this purpose, note that

∂2y u1 = −∂yω − ∂2x u1 and ∂2y u2 = ∂xω − ∂2x u2, (7.7)

which follows from (6.22) and incompressibility. The terms with two x derivatives
were already estimated in (7.4), whereas ∂xω was already bounded in (7.6). Lastly,
for the term ∂yω, we have, similarly to (7.6),

∑
ξ

‖∂yωξ‖L∞(y�1/4) �
∑
ξ

‖eε0(1+μ−y)+|ξ |w(y)y∂yωξ‖L∞(1/4�y�1/2)

+
∑
ξ

‖y∂2yωξ‖L2(y�1/2)
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�
∥∥y∂yω

∥∥
Xμ

+
∥∥∥∂2yω

∥∥∥
S

+
∥∥∥∂x∂

2
yω

∥∥∥
S

� |||ω|||t ,
which gives (7.2).

In order to conclude the proof of the lemma, we need to establish (7.3). For
this purpose, fix (i, j) such that i + j = 3. To avoid redundancy, we only consider
the cases (i, j) = (3, 0) and (i, j) = (0, 3). First, using Lemma 6.1 and Young’s
inequality, we have

‖∂3x u‖2L2(y�1/4) �
∑
ξ

‖|ξ |3uξ‖2L2(y�1/4)

�
∑
ξ

∥∥∥∥
∫ ∞

0
e−|y−z||ξ ||ξ |3|ωξ |(z) dz

∥∥∥∥
2

L2(y�1/4)

�
∑
ξ

‖|ξ |5/2|ωξ |‖2L1(z�1/2) +
∑
ξ

‖|ξ |2|ωξ |‖2L2(z�1/2)

�
∑
ξ

‖eε0(1+μ−z)+|ξ ||ωξ |‖2L1(z�1/2)|ξ |5/2e− ε0
2 |ξ |

+
∑
ξ

‖z|ξ |2|ωξ |‖2L2(z�1/2)

� ‖ω‖2Yμ
+

∥∥∥∂2x ω

∥∥∥2
S

� |||ω|||2t ,
with μ as in (7.5). In the last inequality above we used ‖·‖2 � ‖·‖1 . Thus, we
have proven (7.3) for (i, j) = (3, 0). For the other extremal case, we apply the y
derivative to (7.7) and obtain

∂3y u1 = ∂2yω + ∂2x ω − ∂3x u2 and ∂3y u2 = −∂x∂yω + ∂3x u1.

The velocity terms ∂3x u1 and ∂3x u2 were already bounded above. Clearly, we have∥∥D2ω
∥∥

L2(y�1/2) �
∥∥D2ω

∥∥
S � |||ω|||t . On the other hand, similarly to (7.6), we

have ∥∥∥D2ω

∥∥∥
L2(1/4�y�1/2)

�
∥∥∥D2ω

∥∥∥
L∞(1/4�y�1/2)

�
∥∥∥D2ω

∥∥∥
Xμ

� |||ω|||t .

In the last inequality we used thatμ in (7.5) is bounded from below by μ0/20. This
concludes the proof of the lemma. ��

The remainder of this section is devoted to an a priori estimate for the norm∑
i+ j�3‖∂ i

x∂
j
y ω‖S . For this purpose, denote

φ(y) = yψ̄(y), (7.8)

where ψ̄ ∈ C∞ is a non-decreasing function such that ψ̄ = 0 for 0 � y � 1/4 and
ψ̄ = 1 for y � 1/2. In order to estimate the norm in (7.1), note that

‖y f ‖L2
x,y(y�1/2) � ‖φ f ‖L2(H) ,

so in order to obtain Lemma 3.11, it suffices to estimate this larger norm.
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Lemma 7.2. For any 0 < t <
μ0
2γ the estimate

∑
i+ j�3

‖φ∂ i
x∂

j
y ω(t)‖2L2(H)

�
(

t + t sup
s∈[0,t]

|||ω(s)|||3s +
∑

i+ j�3

‖φ∂ i
x∂

j
y ω0‖2L2(H)

)
eCt (1+sups∈[0,t] |||ω(s)|||s)

holds, where C > 0 is a constant independent of γ .

Proof of Lemma 7.2. Let α ∈ N
2
0 be a multi-index with |α| � 3. We apply ∂α to

the vorticity form of the Navier–Stokes equation and test this equation with φ2∂αω

to obtain the energy estimate

1

2

d

dt

∥∥φ∂αω
∥∥2

L2(H)
+ ν

∥∥φ∇∂αω
∥∥2

L2(H)

= 2
∫
H

u2φ
′φ|∂αω|2 −

∑
0<β�α

(
α

β

) ∫
H

∂βu · ∇∂α−βω∂αωφ2

− 2ν
∫
H

φ′∂αω∂y∂
αωφ. (7.9)

Using the pointwise estimate

|φ′(y)| � φ(y) + χ{1/4�y�1/2} (7.10)

on the first and the third terms, summing over |α| � 3, and absorbing a part of the
third term in (7.9) into the left side of the inequality, we obtain

d

dt

∑
i+ j�3

‖φ∂ i
x∂

j
y ω‖2L2(H)

�
(

ν + ‖u2‖L∞(y�1/4) +
∑

1�k�2

‖Dku‖L∞
x,y(y�1/4)

) ∑
i+ j�3

‖φ∂ i
x∂

j
y ω‖2L2(H)

+
∥∥∥D3u

∥∥∥
L2

x,y(y�1/4)
‖φ∇ω‖L∞(H)

∑
i+ j�3

‖φ∂ i
x∂

j
y ω‖L2(H)

+
(
ν + ‖u2‖L∞

x,y(1/4�y�1/2)

) ∑
i+ j�3

‖∂ i
x∂

j
y ω‖2L2

x,y(1/4�y�1/2). (7.11)

We first consider the third term on the right side of (7.11). We use (7.2) to bound
‖u2‖L∞

x,y(1/4�y�1/2) � |||ω|||t , and we note the analytic estimate

∑
i+ j�3

‖∂ i
x∂

j
y ω‖2L2

x,y(1/4�y�1/2) �
∑

i+ j�3

∑
ξ

∥∥∥ξ i∂
j
y ωξ

∥∥∥2
L2(1/4�y�1/2)

�
∑

i+ j�3

∑
ξ

∥∥∥eε0(1+μ/2−y)+|ξ |ξ i (y∂y)
jωξ

∥∥∥2L∞
μ/2,ν
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�
∑

i+ j�3

∥∥∥∂ i
x (y∂y)

jω

∥∥∥2
Xμ/2

uniformly in μ > 0. Here we used essentially that the weights y and w(y) are
comparable to 1 (independently of ν) in the region {1/4 � y � 1/2}, and that for
sequences {aξ }ξ∈Z we have

∥∥aξ

∥∥
2

�
∥∥aξ

∥∥
1
. In particular, in the above estimate

we may take μ = μ0−γ t
10 > 0. With this choice, we appeal to the analyticity

recovery Lemma A.3, and estimate

∑
i+ j�3

‖∂ i
x∂

j
y ω‖2L2

x,y(1/4�y�1/2) � ‖ω‖2Xμ
, (7.12)

where we used that 1
μ

= 10
μ0−γ t � 20

μ0
� 1.

For the second term on the right side of (7.11), we appeal to (7.3) and to the
estimate

‖φ∇ω‖L∞(H) � ‖∇(φω)‖L∞(H) + ‖φω‖L∞(H) + ‖ω‖L∞
x,y(1/4�y�1/2)

�
∑

i+ j�3

∥∥∥∂ i
x∂

j
y (φω)

∥∥∥
L2(H)

+ ‖ω‖Xμ
.

Here we have used the Sobolev embedding H2(H) ⊂ L∞(H), the previously
established bound (7.12), the Leibniz rule, and the definition of φ in (7.8). Using
(7.10), the resulting inequality is

∥∥∥D3u
∥∥∥

L2
x,y(y�1/4)

‖φ∇ω‖L∞(H)

∑
i+ j�3

‖φ∂ i
x∂

j
y ω‖L2(H)

� |||ω|||t
∑

i+ j�3

‖φ∂ i
x∂

j
y ω‖2L2(H)

+ |||ω|||t ‖ω‖2Xμ
.

Combining (7.11)–(7.12) with the above estimate and Lemma 7.1, we deduce

1

2

d

dt

∑
i+ j�3

‖φ∂ i
x∂

j
y ω‖2L2(H)

� (1 + |||ω(t)|||t )
∑

i+ j�3

‖φ∂ i
x∂

j
y ω(t)‖2L2(H)

+ (1 + |||ω(t)|||t ) ‖ω(t)‖2Xμ
,

where μ = μ0−γ t
10 . Upon applying the Grönwall inequality, the proof of the lemma

is concluded. ��
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Appendix A. Proofs of Some Technical Lemmas

Here we list some technical lemmas.
The next lemma converts an 1 norm in ξ to an 2 norm, which is necessary

when converting Sμ norms to an S and hence a Z norm.

Lemma A.1. Let μ ∈ (0, 1). We have

∑
i+ j�2

‖∂ i
x (y∂y)

jω‖Sμ �
∑

i+ j�2

∥∥∥∂ i
x (y∂y)

jω

∥∥∥
S

+
∥∥∥∂ i+1

x (y∂y)
jω

∥∥∥
S
.

Proof of Lemma A.1. We have

∑
ξ

|vξ | �
(∑

ξ

(1 + |ξ |2)|vξ |2
)1/2

(A.1)

for every v for which the right side is finite. The inequality (A.1) holds since∑
ξ (1 + |ξ |2)−1 < ∞. ��

Lemma A.2. Assume that the parameters μ,μ0, γ, t > 0 obey μ < μ0−γ t . Then,
for α ∈ (0, 1

2 ) we have

∫ t

0

1√
t − s

1

(μ0 − μ − γ s)1+α
ds � C√

γ (μ0 − μ − γ t)1/2+α
(A.2)

and

∫ t

0

1√
t − s

1

(μ0 − μ − γ s)α
ds � C√

γ
, (A.3)

where C > 0 is a constant depending on μ0 and 1/2 − α.
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Proof of Lemma A.2. Changing variables s′ = γ s, t ′ = γ t , and lettingμ0 −μ =
μ′ > 0, the left side of (A.2) is rewritten and bounded as

∫ t ′

0

√
γ√

t ′ − s′
1

(μ′ − s′)1+α

ds′

γ
� 1√

γ (μ′ − t ′)α

∫ t ′

0

ds′
√

t ′ − s′(μ′ − s′)

=
2 arctan

(√
t ′

μ′−t ′
)

√
γ (μ′ − t ′)1/2+α

� 1√
γ (μ′ − t ′)1/2+α

= 1√
γ (μ0 − μ − γ t)1/2+α

.

In order to prove (A.3), we proceed similarly and use μ′ > t ′ to deduce
∫ t ′

0

√
γ√

t ′ − s′
1

(μ′ − s′)α
ds′

γ
� 1√

γ

∫ t ′

0

ds′

(t ′ − s′)1/2+α
� 1√

γ
,

where the implicit constant may depend on μ0 and 1/2 − α. ��
Lemma A.3. (Analyticity recovery for the X norm). For μ̃ > μ � 0, we have

∑
i+ j=1

‖∂ i
x (y∂y)

j f ‖Xμ � 1

μ̃ − μ
‖ f ‖Xμ̃ .

Proof of Lemma A.3. First, let (i, j) = (1, 0). According to the definition of the
Xμ norm, and using that the bound (μ̃−μ)|ξ |eε0|ξ |((1+μ−y)+−(1+μ̃−y)+) � 1 holds
on �μ, we have

‖∂x f ‖Xμ =
∑
ξ

‖ξeε0(1+μ−y)+|ξ | fξ‖L∞
μ,ν

� 1

μ̃ − μ

∑
ξ

‖eε0(1+μ̃−y)+|ξ | fξ‖L∞
μ,ν

� 1

μ̃ − μ

∑
ξ

‖eε0(1+μ̃−y)+|ξ | fξ‖L∞̃
μ,ν

= 1

μ̃ − μ
‖ f ‖Xμ̃ .

Next, consider (i, j) = (0, 1). By the Cauchy integral theorem, we have

∂y fξ (y) =
∫

C(y,Ry)

fξ (z)

(y − z)2
dz, (A.4)

where C(y, Ry) is the circle centered at y with radius Ry . Hence, we have

|∂y fξ (y)| � 1

Ry
sup

z∈C(y,Ry)

| fξ (z)|.

By taking Ry = C−1(μ̃−μ)Re y, for a sufficiently large universal constantC > 0,
we obtain

‖y∂y f ‖Xμ =
∑
ξ

‖eε0(1+μ−y)+|ξ |y∂y fξ‖L∞
μ,ν

� 1

μ̃ − μ

∑
ξ

‖eε0(1+μ−y)+|ξ | fξ‖L∞̃
μ,ν

� 1

μ̃ − μ

∑
ξ

‖eε0(1+μ̃−y)+|ξ | fξ‖L∞̃
μ,ν

= 1

μ̃ − μ
‖ f ‖Xμ̃ ,

concluding the proof. ��



824 I. Kukavica, V. Vicol & F. Wang

Lemma A.4. (Analyticity recovery for the Y norm). Let μ0 � μ̃ > μ � 0. Then
we have

∑
i+ j=1

‖∂ i
x (y∂y)

j f ‖Yμ � 1

μ̃ − μ
‖ f ‖Yμ̃ . (A.5)

Proof of Lemma A.4. By the same argument which yielded the X norm estimate
in Lemma A.3, we obtain

‖∂x f ‖Yμ =
∑
ξ

‖ξeε0(1+μ−y)+|ξ | fξ‖L1
μ

� 1

μ̃ − μ

∑
ξ

‖eε0(1+μ̃−y)+|ξ | fξ‖L1
μ

� 1

μ̃ − μ

∑
ξ

‖eε0(1+μ̃−y)+|ξ | fξ‖L1
μ̃

= 1

μ̃ − μ
‖ f ‖Yμ̃ .

In order to prove the estimate (A.5) for (i, j) = (0, 1), we use (A.4) to bound

‖y∂y fξ‖L1(∂�θ ) =
∫

∂�θ

∣∣∣∣∣
∫

C(y,Ry)

y fξ (z)

(y − z)2
dz

∣∣∣∣∣ dy �
∫

∂�θ

∫
C(y,Ry)

|y fξ (z)|
R2

y
dzdy

for any 0 � θ < μ. By taking Ry = C−1(μ̃ − μ)Re y for a sufficiently large
universal constant C > 0, using that |y| is comparable to Re y in this region, and
applying Fubini’s theorem, we obtain

‖y∂y fξ‖L1(∂�θ ) � 1

μ̃ − μ

∫
∂�θ

∫
C(y,Ry)

| fξ (z)|
Ry

dzdy

� 1

μ̃ − μ

∫
∂�θ

∫ 2π

0
| fξ (y + Ryeiφ)| dφdy

� 1

μ̃ − μ
sup

θ̄∈
(
θ− 2(μ̃−μ)

C ,θ+ 2(μ̃−μ)
C

)
∥∥ fξ

∥∥
L1(∂�θ̄ )

� 1

μ̃ − μ
‖ fξ‖L1

μ̃
,

which proves the claim. Since eε0(1+μ−y)+|ξ | � eε0(1+μ̃−y)+|ξ |, for every y ∈ �μ,
the lemma follows. ��
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