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Abstract

We paralinearize the Muskat equation to extract an explicit parabolic evolution
equation having a compact form. This result is applied to give a simple proof of the
local well-posedness of the Cauchy problem for rough initial data, in homogeneous
Sobolev spaces Ḣ1(R) ∩ Ḣ s(R) with s > 3/2. This paper is essentially self-
contained and does not rely on general results from paradifferential calculus.

1. Introduction

The Muskat equation is a fundamental equation for incompressible fluids in
porous media. It describes the evolution of a time-dependent free surface �(t)
separating two fluid domains�1(t) and�2(t). A common assumption in this theory
is that the motion is in two dimensions so that the interface is a curve. In this
introduction, for the sake of simplicity, we assume that the interface is a graph (the
analysis is done later on for a general interface). On the supposition that the fluids
extend indefinitely in horizontal directions, we have that

�1(t) = {(x, y) ∈ R × R ; y > h(t, x)} ,

�2(t) = {(x, y) ∈ R × R ; y < h(t, x)} ,

�(t) = ∂�1(t) = ∂�2(t) = {y = h(t, x)}.
Introduce the density ρi , the velocity vi and the pressure Pi in the domain �i

(i = 1, 2). One assumes that the velocities v1 and v2 obey Darcy’s law. Then, the
equations by which the motion is to be determined are

vi = ∇(Pi + ρi gy) in �i ,

div vi = 0 in �i ,

P1 = P2 on �,

v1 · n = v2 · n on �,
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where g is the gravity and n is the outward unit normal to �2 on �,

n = 1
√
1 + (∂xh)2

(−∂xh
1

)
.

The first two equations express the classical Darcy’s law and the last two equations
impose the continuity of the pressure and the normal velocities at the interface. This
system is supplemented with an equation for the evolution of the free surface:

∂t h =
√
1 + (∂xh)2 v2 · n.

The previous system has been introduced byMuskat [41] whose main application
was in petroleum engineering (see [42,43] for many historical comments).

In [21], Córdoba and Gancedo discovered a formulation of the previous system
based on contour integral, which applies whether the interface is a graph or not. The
latter work opened the door to the solution of many important problems concerning
the Cauchy problem or blow-up solutions (see [9–11,19], more references are given
below as well as in the survey papers [30,31]). This formulation is a compact
equation where the unknown is the parametrization of the free surface, namely a
function f = f (t, x) depending on time t ∈ R+ and x ∈ R, satisfying that

∂t f = ρ

2π
∂x

∫
arctan (�α f ) dα, (1.1)

where ρ = ρ2 − ρ1 is the difference of the densities, the integral is understood in
the principal value sense and �α f is the slope, namely,

�α f (t, x) = f (x, t) − f (x − α, t)

α
·

The beauty of Equation (1.1) lies in its apparent simplicity, which should be com-
pared with the complexity of the equations written in Eulerian formulation. This
might suggest that (1.1) is the simplest version of the Muskat equation one may
hope for. However, since the equation is highly nonlocal (this means that the non-
linearity enters in the nonlocal terms), even with this formulation the study of the
Cauchy problem for (1.1) is a very delicate problem. We refer the reader to the
above mentioned papers for the description of the main difficulties one has to cope
with.

Our goal in this paper is to continue this line of research. We want to simplify
further the study of theMuskat problem by transforming the Equation (1.1) into the
simplest possible form.Weshall prove that one canderive from the formulation (1.1)
an explicit parabolic evolution. In particular, we shall see that one can decouple
the nonlinear and nonlocal aspects. There are many possible applications that one
could work out of this explicit parabolic formulation. Here we shall study the
Cauchy problem in homogeneous Sobolev spaces.

The well-posedness of the Cauchy problem was first proved in [21] by Córdoba
and Gancedo for initial data in H3(R) in the stable regime ρ2 > ρ1 (they also
proved that the problem is ill-posed in Sobolev spaces when ρ2 < ρ1). Several
extensions of their results have been obtained by different proofs. In [14], Cheng,
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Granero-Belinchón, Shkoller proved the well-posedness of the Cauchy prob-
lem in H2(R) (introducing a Lagrangian point of viewwhich can be used in a broad
setting, see [34]) andConstantin,Gancedo,Shvydkoy andVicol ([18]) consid-
ered rough initial data which are inW 2,p(R) for some p > 1, as well they obtained
a regularity criteria for the Muskat problem. We refer also to the recent work [31]
where a regularity criteria is obtained in terms of a control of some critical quanti-
ties.Many recent results aremotivated by the fact that, loosely speaking, theMuskat
equation has to do with the slope more than with the curvature of the fluid interface.
Indeed, one scale invariant norm is the Lipschitz norm supx∈R |∂x f (t, x)|. We refer
the reader to the work [17] of Constantin, Córdoba, Gancedo, Rodríguez-Piazza
and Strain for global well-posedness results assuming that the Lipschitz semi-norm
is smaller than 1 (see also [15] where time decay of those solutions is proved). In
[26],Deng, Lei and Lin proved the existence of global in time solutions with large
slopes, assuming some monotonicity assumption on the data. In [8], Cameron was
able to prove a global existence result assuming that some critical quantity, namely
the product of the maximal and minimal slopes, is smaller than 1. His result al-
lows to consider arbitrary large slopes. By using a new formulation of the Muskat
equation involving oscillatory integrals, Córdoba and the second author in [20]
proved that the Muskat equation is globally well-posed for sufficiently smooth data

provided the critical Sobolev norm Ḣ
3
2 (R) is small enough. The latter is a global

existence result of a unique strong solution having arbitrarily large slopes.
These observations suggest to study the local in time well-posedness of the

Cauchy problem without assuming that any L p-norm of the curvature is finite. The
well-posedness of theCauchyproblem in this casewas obtainedbyMatioc [37,38].
Using tools from functional analysis, Matioc proved that the Cauchy problem is
locally in time well-posed for initial data in Sobolev spaces Hs(R) with s > 3/2,
without smallness assumption. We shall give a simpler proof which generalizes the
latter result to homogeneous Sobolev spaces Ḣ s(R). We also mention that many
recent results focus on different rough solutions, which are important for instance in
the unstable regime ρ1 > ρ2 (see for example the existence mixing zones in [12,13,
44] or the dynamic between the two different regimes [23,24]).We refer also to [22,
47]where uniqueness issues have been studied using the convex integration scheme.

In this paper we assume that the difference between the densities in the two
fluids satisfies ρ > 0, so, by rescaling in time, we can assume without loss of
generality that ρ = 2.

A fundamental difference with the above mentioned results is that we shall
determine the full structure of the nonlinearity instead of performing energy esti-
mates. To explain this, we begin by identifying the nonlinear terms. Since ρ = 2,
one can rewrite Equation (1.1) as

∂t f = 1

π

∫
∂x�α f

1 + (�α f )2
dα

(in this introduction some computations are formal, but we shall rigorously justify
them later). Consequently, the linearized Muskat equation reads as

∂t u = 1

π
pv

∫
∂x�αu dα. (1.2)
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Consider the singular integral operators

Hu = − 1

π
pv

∫
�αu dα and 	 = H∂x . (1.3)

Then H is the Hilbert transform (the Fourier multiplier with symbol −i sgn(ξ))
and 	 is the square root of −∂xx . With the latter notation, the linearized Muskat
Equation (1.2) reads as

∂t u + 	u = 0.

With this notation, the Muskat Equation (1.1) can be written under the form

∂t f + 	 f = T ( f ) f, (1.4)

where T ( f ) is the operator defined by

T ( f )g = − 1

π

∫ (
∂x�αg

) (�α f )2

1 + (�α f )2
dα.

Our firstmain result will provide a thorough study of this nonlinear operator. Before
going any further, let us fix some notations.

Definition 1.1. (i) Given a real numberσ , we denote by	σ the Fouriermultiplier
with symbol |ξ |σ and by Ḣσ (R) the homogeneous Sobolev space of tempered
distributions whose Fourier transform û belongs to L1

loc(R) and satisfies

‖u‖2
Ḣσ = ∥∥	σu

∥∥2
L2 = 1

2π

∫

R

|ξ |2σ ∣∣û(ξ)
∣∣2 dξ < +∞.

(ii) We denote by Hσ (R) the nonhomogeneous Sobolev space L2(R) ∩ Ḣσ (R).
We set H∞(R) := ∩σ�0H

σ (R) and introduce X := ∩σ�1 Ḣ
σ (R), the set

of tempered distributions whose Fourier transform û belongs to L1
loc(R) and

whose derivative belongs to H∞(R).
(iii) Given 0 < s < 1, the homogeneous Besov space Ḃs

2,1(R) consists of those
tempered distributions f whose Fourier transform is integrable near the origin
and such that

‖ f ‖Ḃs
2,1

=
∫ (∫ | f (x) − f (x − α)|2

|α|2s dx

) 1
2 dα

|α| < +∞.

(iv) We use the notation ‖·‖E∩F = ‖·‖E + ‖·‖F .
Theorem 1.2. (i) (Low frequency estimate) There exists a constant C such that,

for all f in Ḣ1(R) and all g in Ḣ
3
2 (R), T ( f )g belongs to L2(R) and

‖T ( f )g‖L2 � C ‖ f ‖Ḣ1 ‖g‖
Ḣ

3
2

. (1.5)

Moreover, f �→ T ( f ) f is locally Lipschitz from Ḣ1(R) ∩ Ḣ
3
2 (R) to L2(R).
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(ii) (High frequency estimate) For all 0 < ν < ε < 1/2, there exists a positive
constant C > 0 such that, for all functions f, g in X = ∩σ�1 Ḣ

σ (R),

T ( f )g = γ ( f )	g + V ( f )∂x g + R( f, g), (1.6)

where

γ ( f ) := f 2x
1 + f 2x

,

and R( f, g) and V ( f ) satisfy

‖R( f, g)‖L2 � C ‖ f ‖
Ḣ

3
2+ε

‖g‖Ḃ1−ε
2,1

, (1.7)

and

‖V ( f )‖C0,ν := ‖V ( f )‖L∞ + sup
y∈R

( |V ( f )(x + y) − V ( f )(x)|
|y|ν

)

� C ‖ f ‖2
Ḣ1∩Ḣ

3
2+ε

. (1.8)

(iii) Let 0 < ε < 1/2. There exists a non-decreasing function F : R+ → R+ such
that, for all functions f, g in X,

∥∥∥	1+εT ( f )g − T ( f )	1+εg
∥∥∥
L2

� F
( ‖ f ‖

Ḣ1∩Ḣ
3
2+ε

) ‖ f ‖
Ḣ1∩Ḣ

3
2+ε

‖g‖
Ḣ

3
2+ε∩Ḣ2

. (1.9)

The proof of the first statement follows directly from the definition of fractional
Sobolev spaces in terms of finite differences, see Section 2. The proof of the second
statement is the most delicate part of the proof, which requires to uncover some
symmetries in the nonlinearity, see Section 4. The last statement is proved in Sec-
tion 3 by using sharp variants of the usual nonlinear estimates in Sobolev spaces.
Namely we used for the later proof a version of the classical Kato–Ponce estimate
proved recently by Li and also a refinement of the composition rule in Sobolev
spaces proved in Section 2.

We deduce from the previous result a paralinearization formula for the non-
linearity. We do not consider paradifferential operators as introduced by Bony
([6,39]). Instead, following Shnirelman [46], we consider a simpler version of
these operators which is convenient for the analysis of the Muskat equation for
rough solutions.

Corollary 1.3. Consider 0 < ε < 1/2 and, given a bounded function a = a(x),
denote by T̃a : Ḣ1+ε(R) → L2(R) ∩ Ḣ1+ε(R) the paraproduct operator defined
by

T̃ag = (I + 	1+ε)−1(a	1+εg).

Then, there exists a function F : R → R such that, for all f ∈ X,

T ( f ) f = T̃γ ( f )	 f + T̃V ( f )∂x f + Rε( f ), (1.10)
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where

‖Rε( f )‖H1+ε � F
( ‖ f ‖

Ḣ1∩Ḣ
3
2+ε

) ‖ f ‖
Ḣ1∩Ḣ

3
2+ε

‖ f ‖
Ḣ1∩Ḣ2+ ε

2
. (1.11)

Proof. Writing

T ( f ) f = (I + 	1+ε)−1T ( f )(I + 	1+ε) f + (I + 	1+ε)−1[	1+ε, T ( f )
]
f,

and using the formula (1.6), we find that (1.10) holds with

Rε( f ) = (I + 	1+ε)−1
(
T ( f ) f + R

(
f,	1+ε f

) + [
	1+ε, T ( f )

]
f
)
.

To prove (1.11), we have to estimate the L2-norm of the three terms between
parentheses. The L2-norm of T ( f ) f is estimated by means of (1.5). We use (1.7)
and (1.9) to estimate the two other terms. This yields

‖Rε( f )‖H1+ε � F
( ‖ f ‖

Ḣ1∩Ḣ
3
2+ε

) ‖ f ‖
Ḣ1∩Ḣ

3
2+ε

(
‖ f ‖

Ḣ
3
2 ∩Ḣ2

+
∥∥∥	1+ε f

∥∥∥
Ḃ1−ε
2,1

)
.

Thus, (1.11) follows from Ḣ1− 3ε
2 (R) ∩ Ḣ1− ε

2 (R) ↪→ Ḃ1−ε
2,1 (R) (see

Lemma 2.2). 	

We now consider the Cauchy problem for the Muskat equation. Substituting

the above identity for T ( f ) in the Equation (1.4) and simplifying, we find that
(
∂t − V ( f )∂x + 1

1 + f 2x
	

)
	1+ε f = 	1+εRε( f ).

Now, the key point is that the estimates (1.8) and (1.11) mean that the remainder
term Rε( f ) and the operator V ∂x contribute as operators of order stricly less than 1
(namely 1−ε/2 and 1−ν) to an energy estimate, and so they are sub-principal terms
for the analysis of the Cauchy problem. We also observe that the Muskat equation
is parabolic as long as one controls the L∞-norm of fx only. This observation is
related to our second goal, which is to solve the Cauchy problem in homogeneous
Sobolev spaces instead of nonhomogeneous spaces. This is a natural result since
the Muskat equation is invariant by the transformation f �→ f + C . This allows
us to make an assumption only on the L∞-norm of the slope of the initial data,
allowing initial data which are not bounded or not square integrable.

Theorem 1.4. Consider s ∈ (3/2, 2) and an initial data f0 in Ḣ1(R) ∩ Ḣ s(R).
Then, there exists a positive time T such that the Cauchy problem for (1.1) with
initial data f0 has a unique solution f satisfying f (t, x) = f0(x) + u(t, x) with
u(0, x) = 0 and

u ∈ C0([0, T ]; Hs(R)
) ∩ C1([0, T ]; Hs−1(R)

) ∩ L2(0, T ; Hs+ 1
2 (R)

)
,

where Hσ (R) denotes the nonhomogeneous Sobolev space L2(R) ∩ Ḣσ (R).

The latter result is proved in the last section. We conclude this introduction by
fixing some notations.
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Notation 1.5. (i) We denote by fx the spatial derivative of f .
(ii) A � B means that there is C > 0, depending only on fixed quantities, such

that A � CB.
(iii) Given g = g(α, x) and Y a space of functions depending only on x , the

notation ‖g‖Y is a compact notation for α �→ ‖g(α, ·)‖Y .

2. Preliminaries

In this section, we recall or prove various results about Besov spaces which we
will need throughout the article. We use the definition of these spaces originally
given by Besov in [5], using integrability properties of finite differences.

Given a real number α, the finite difference operators δα and sα are defined by

δα f (x) = f (x) − f (x − α),

sα f (x) = 2 f (x) − f (x − α) − f (x + α).

Definition 2.1. Consider three real numbers (p, q, s) in [1,∞]2 × (0, 2). The ho-
mogeneous Besov space Ḃs

p,q(R) consists of those tempered distributions f whose
Fourier transform is integrable near the origin and such that the following quantity
‖ f ‖Ḃs

p,q
is finite:

‖ f ‖Ḃs
p,q

=
∥∥∥∥
‖δα f ‖L p(R,dx)

|α|s
∥∥∥∥
Lq (R,|α|−1 dα)

for s ∈ (0, 1), (2.1)

‖ f ‖Ḃs
p,q

=
∥∥∥∥
‖sα f ‖L p(R;dx)

|α|s
∥∥∥∥
Lq (R,|α|−1 dα)

for s ∈ [1, 2). (2.2)

We refer the reader to the book of Peetre [45, Chapter 8] for the equivalence
between these definitions and the one in terms of Littlewood–Paley decomposition
(see also [7, Proposition 9] or [4, Theorems 2.36, 2.37] for the case s ∈ (0, 1]).

In this paper, we use only Besov spaces of the form

Ḃs
2,2(R), Ḃs∞,2(R), Ḃs

2,1(R).

We will make extensive use of the fact that ‖·‖Ḣ s and ‖·‖Ḃs
2,2

are equivalent for

s ∈ (0, 2). Moreover, for s ∈ (0, 1),

‖u‖2
Ḣ s = 1

4πc(s)
‖u‖2

Ḃs
2,2

with c(s) =
∫

R

1 − cos(t)

|t |1+2s dt. (2.3)

We will also make extensive use of the fact that, for all s in (0, 2),

Ḣ s+ 1
2 (R) ↪→ Ḃs∞,2(R). (2.4)

We will also use the following:
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Lemma 2.2. For any s ∈ (0, 1) and any δ > 0 such that [s − δ, s + δ] ⊂ (0, 1),

Ḣ s−δ(R) ∩ Ḣ s+δ(R) ↪→ Ḃs
2,1(R).

Proof. We have
∫

|α|�1

‖δα f ‖L2(R;dx)
|α|s

dα

|α| =
∫

|α|�1
|α|δ ‖δα f ‖L2(R;dx)

|α|s+δ

dα

|α|

�
(∫

|α|�1
|α|2δ dα

|α|

) 1
2
(∫

R

‖δα f ‖2
L2(R;dx)

|α|2(s+δ)

dα

|α|

) 1
2

� C(δ) ‖ f ‖Ḃs+δ
2,2

= C(δ, s) ‖ f ‖Ḣ s+δ ,

and similarly,

∫

|α|�1

‖δα f ‖L2(R;dx)
|α|s

dα

|α| � C ′(δ, s) ‖ f ‖Ḣ s−δ ,

which gives the result. 	

As an example of properties which are very simple to prove using the definition

of Besov semi-norms in terms of finite differences, let us prove the first point in
Theorem 1.2. Recall that, by notation,

T ( f )g = − 1

π

∫
�αgx

(�α f )2

1 + (�α f )2
dα,

where gx := ∂x g.

Proposition 2.3. (i) For all f in Ḣ1(R) and all g in Ḣ
3
2 (R), the function

α �→ �αgx
(�α f )2

1 + (�α f )2

belongs to L1
α(R; L2

x (R)). Consequently, T ( f )g belongs to L2(R). Moreover,
there is a constant C such that

‖T ( f )g‖L2 � C ‖ f ‖Ḣ1 ‖g‖
Ḣ

3
2

. (2.5)

(ii) For all δ ∈ [0, 1/2), there exists a constant C > 0 such that, for all functions
f1, f2 in Ḣ1−δ(R) ∩ Ḣ

3
2+δ(R),

‖(T ( f1) − T ( f2)) f2‖L2 � C ‖ f1 − f2‖Ḣ1−δ ‖ f2‖
Ḣ

3
2+δ

.

(iii) The map f �→ T ( f ) f is locally Lipschitz from Ḣ1(R) ∩ Ḣ
3
2 (R) to L2(R).
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Proof. (i) Since
∥∥∥∥�αgx

(�α f )2

1 + (�α f )2

∥∥∥∥
L2

� ‖�αgx‖L2 ‖�α f ‖L∞ = ‖δαgx‖L2

|α|
‖δα f ‖L∞

|α| ,

by using the Cauchy–Schwarz inequality and the definition (2.1) of the Besov
semi-norms one finds that

‖T ( f )g‖L2 � 1

π

∫ ‖δαgx‖L2

|α|
‖δα f ‖L∞

|α| dα

� 1

π

∫ ‖δαgx‖L2

|α|1/2
‖δα f ‖L∞

|α|1/2
dα

|α|

� 1

π

(∫ ‖δαgx‖2L2

|α|
dα

|α|

) 1
2
(∫ ‖δα f ‖2L∞

|α|
dα

|α|

) 1
2

� 1

π
‖gx‖

Ḃ
1
2
2,2

‖ f ‖
Ḃ

1
2∞,2

.

Recalling that ‖·‖
Ḃ

1
2
2,2

and ‖·‖
Ḣ

1
2
are equivalent semi-norms, and using the

Sobolev embedding (2.4), we have

‖gx‖
Ḃ

1
2
2,2

� ‖g‖
Ḣ

3
2

, ‖ f ‖
Ḃ

1
2∞,2

� ‖ f ‖Ḣ1 ,

and hence we obtain the wanted inequality (2.5).
(ii) Write that

(T ( f1) − T ( f2)) f2 = − 1

π

∫
�α f2x�α( f1 − f2)M(α, x) dα,

where

M(α, x) = (�α f1) + �α f2
(1 + (�α f1)2)(1 + (�α f2)2)

.

Since |M(α, x)| � 1, by repeating similar arguments to those used in the first
part (balancing the powers of α in a different way), we get

‖(T ( f1) − T ( f2)) f2‖L2 � 1

π

∫ ‖δα f2x‖L2

|α|
‖δα( f1 − f2)‖L∞

|α| dα

� 1

π

∫ ‖δα f2x‖L2

|α|1/2+δ

‖δα( f1 − f2)‖L∞

|α|1/2−δ

dα

|α|
� 1

π
‖ f2x‖

Ḃ
1
2+δ

2,2

‖ f1 − f2‖
Ḃ

1
2−δ

∞,2

,

which implies

‖(T ( f1) − T ( f2)) f2‖L2 � C ‖ f1 − f2‖Ḣ1−δ ‖ f2‖
Ḣ

3
2+δ

.
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(iii) Consider f1 and f2 in Ḣ1(R) ∩ Ḣ
3
2 (R). Then

T ( f1) f1 − T ( f2) f2 = T ( f1)( f1 − f2) + (T ( f1) − T ( f2)) f2.

Then (2.5) implies that the L2-norm of the first term is bounded by

C ‖ f1‖Ḣ1 ‖ f1 − f2‖
Ḣ

3
2

.

We estimate the second term by using (ii) applied with δ = 0. It follows that

‖T ( f1) f1 − T ( f2) f2‖L2 �
( ‖ f1‖

Ḣ1∩Ḣ
3
2

+ ‖ f2‖
Ḣ1∩Ḣ

3
2

) ‖ f1 − f2‖
Ḣ1∩Ḣ

3
2

,

which completes the proof. 	

We gather in the following proposition the nonlinear estimates which will be

needed:

Proposition 2.4. (i) Let s ∈ (0, 1), then L∞(R)∩Ḣ s(R) is an algebra.Moreover,
for all u, v in L∞(R) ∩ Ḣ s(R),

‖uv‖Ḣ s � 2 ‖u‖L∞ ‖v‖Ḣ s + 2 ‖v‖L∞ ‖u‖Ḣ s . (2.6)

(ii) Consider a C∞ function F : R → R satisfying

∀(x, y) ∈ R
2, |F(x) − F(y)| � K |x − y| .

Then, for all s ∈ (0, 1) and all u ∈ Ḣ s(R), one has F(u) ∈ Ḣ s(R) together
with the estimate

‖F(u)‖Ḣ s � K ‖u‖Ḣ s . (2.7)

(iii) Consider a C∞ function F : R → R and a real number σ in (1, 2). Then,
there exists a non-decreasing function F : R → R such that, for all u ∈
Ḣσ−1(R) ∩ Ḣσ (R) one has F(u) ∈ Ḣσ (R) together with the estimate

‖F(u)‖Ḣσ � F(‖u‖L∞)
(

‖u‖Ḣσ−1 + ‖u‖Ḣσ

)
. (2.8)

Remark 2.5. (i) The inequality (2.6) is the classical Kato–Ponce estimate ([29]).
Wewill use it only when 0 < s < 1, for which one has a straightforward proof
(see below).

(ii) Statement (ii) is also elementary and classical (see [7]). Notice that (2.7) is a
sub-linear estimate, which means that the constant K depends only on F and
not on u (which is false in general for s > 1).

(iii) The usual estimate for composition implies that

‖F(u)‖Ḣσ � F(‖u‖L∞) ‖u‖L2∩Ḣσ .

The bound (2.8) improves the latter estimate in that one requires less control of
the low frequency component. This will play a role in the proof of Lemmas 3.2
and 3.3.
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Proof. (i) Since δα(uv) = uδαv+(ταv)δαu where ταv(x) = v(x−α), we have

‖δα(uv)‖L2 � ‖u‖L∞ ‖δαv‖L2 + ‖v‖L∞ ‖δαu‖L2 .

Directly from the definition (2.1), we deduce that

‖uv‖Ḃs
2,2

� 2 ‖u‖L∞ ‖v‖Ḃs
2,2

+ 2 ‖v‖L∞ ‖u‖Ḃs
2,2

.

This implies (2.6) by virtue of the identity (2.3) on the equivalence of ‖·‖Ḣ s

and ‖·‖Ḃs
2,2
.

(ii) Similarly, the inequality (2.7) follows directly from the fact that

‖δαF(u)‖L2 � K ‖δαu‖L2 .

(iii) We adapt the classical proof of the composition rule in nonhomogeneous
Sobolev spaces, which is based on the Littlewood–Paley decomposition.
Namely, choose a function � ∈ C∞

0 ({ξ ; |ξ | < 1}) which is equal to 1 when
|ξ | � 1/2 and set φ(ξ) = �(ξ/2) − �(ξ) which is supported in the annulus
{ξ ; 1/2 � |ξ | � 2}. Then, for all ξ ∈ R, one has�(ξ)+∑

j∈N φ(2− jξ) = 1,
which one can use to decompose tempered distribution. For u ∈ S ′(R),
we set �−1u = F−1(�(ξ )̂u) and � j u = F−1(φ(2− jξ )̂u) for j ∈ N.
We also use the notation S ju = ∑

−1�p� j−1 �pu for j � 0 (so that
S0u = �−1u = �(Dx )u).

The classical proof (see [3,4,35]) of the composition rule consists in splitting
F(u) as

F(u) = F(S0u) + F(S1u) − F(S0u) + · · · + F(S j+1u) − F(S ju) + · · ·

= F(S0u) +
∑

j∈N
m j� j u with m j =

∫ 1

0
F ′(S ju + y� j u) dy

= F(S0u) +
∑

j∈N
m j� j ũ with ũ = u − �(2Dx )u,

where we used � j ◦ �(2Dx ) = 0 for j � 0. Then, the Meyer’s multiplier lemma
(see [40, Theorem 2] or [3, Lemma 2.2]) implies that

∥∥∥
∑

j�0

m j� j ũ
∥∥∥
Hσ

� F(‖u‖L∞) ‖ũ‖Hσ ,

where, to clarify notations, we insist on the fact that above Hσ is the nonhomo-
geneous Sobolev space. Since ‖ũ‖Hσ � ‖u‖Ḣσ , we see that the contribution of∑

m j� j ũ is bounded by the right-hand side of (2.8). This shows that the only
difficulty is to estimate the low frequency component F(S0u). We claim that

‖F(S0u)‖Ḣσ � F(‖u‖L∞) ‖u‖Ḣσ−1 . (2.9)

To see this, we start with

‖F(S0u)‖Ḣσ = ∥∥∂x
(
F(S0u)

)∥∥
Ḣσ−1 = ∥∥F ′(S0u)∂x S0u

∥∥
Ḣσ−1 ,
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and then use the product rule (2.6) with s = σ − 1 ∈ (0, 1),
∥∥F ′(S0u)∂x S0u

∥∥
Ḣσ−1 � 2

∥∥F ′(S0u)
∥∥
L∞ ‖∂x S0u‖Ḣσ−1

+ 2
∥∥F ′(S0u)

∥∥
Ḣσ−1 ‖∂x S0u‖L∞ .

Since |ξ�(ξ)| � 1, one has the obvious inequality

‖∂x S0u‖Ḣσ−1 � ‖u‖Ḣσ−1 .

On the other hand, since the support of the Fourier transform of S0u is included in
the ball of center 0 and radius 1, it follows from the Bernstein’s inequality that

‖S0u‖L∞ � C1 ‖u‖L∞ , ‖∂x S0u‖L∞ � C2 ‖u‖L∞ .

The first estimate above also implies that
∥∥F ′(S0u)

∥∥
L∞ � F1(‖S0u‖L∞) � F2(‖u‖L∞),

where F1(r) = supy∈[−r,r ]
∣∣F ′(y)

∣∣ and F2(r) = F1(C1r). It thus remains only to
estimate

∥∥F ′(S0u)
∥∥
Ḣσ−1 . Notice that we may apply the composition rule given in

statement (ii) since the index σ − 1 belongs to (0, 1) and since F ′ is Lipschitz on
an open set containing S0u(R). The composition rule (2.7) implies that

∥∥F ′(S0u)
∥∥
Ḣσ−1 � K ‖S0u‖Ḣσ−1 � K ‖u‖Ḣσ−1

with

K = sup
[−2‖S0u‖L∞ ,2‖S0u‖L∞]

∣∣F ′′∣∣ � F3(‖u‖L∞).

This proves that the Ḣσ -norm of F(S0u) satisfies (2.9) and hence it is bounded by
the right-hand side of (2.8), which completes the proof of statement (iii). 	


For later purposes, we prove the following commutator estimatewith theHilbert
transform:

Lemma 2.6. Let 0 < θ < ν < 1. There exists a constant K such that for all
f ∈ C0,ν(R), and all u in the nonhomogeneous space H−θ (R),

‖H( f u) − fHu‖L2 � K ‖ f ‖C0,ν ‖u‖H−θ . (2.10)

Proof. Weestablish this estimate byusing thepara-differential calculus ofBony [6].
We use the Littlewood–Paley decomposition (see the proof of Proposition 2.4) and
denote by T f the operator of para-multiplication by f , so that

T f u =
∑

j�1

S j−1( f )� j u.

Denote by f � the multiplication operator u �→ f u and introduce H0, the Fourier
multiplier with symbol −i(1 − �(ξ))ξ/ |ξ | where � ∈ C∞

0 (R) is such that
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�(ξ) = 1 on a neighborhood of the origin. With these notations, one can rewrite
the commutator

[
H, f �

]
as

[
H, f �

] = [
H, T f

] + H( f � − T f ) − ( f � − T f )H
= [

H0, T f
] + (H − H0)T f − T f (H − H0)

+ H( f � − T f ) − ( f � − T f )H. (2.11)

Notice thatH−H0 is a smoothing operator (that is an operator bounded from Hσ

to Hσ+t for any real numbers σ, t ∈ R). We then use two classical estimates for
paradifferential operators (see [6,39]). Firstly,

∀σ ∈ R,
∥∥T f

∥∥
Hσ →Hσ � c(σ ) ‖ f ‖L∞ ,

so
∥∥(H − H0)T f

∥∥
H−θ→L2 � ‖H − H0‖H−θ→L2

∥∥T f
∥∥
H−θ→H−θ � ‖ f ‖L∞ ,

∥∥T f (H − H0)
∥∥
H−θ→L2 �

∥∥T f
∥∥
L2→L2 ‖H − H0‖H−θ→L2 � ‖ f ‖L∞ .

Secondly, since H0 is a Fourier multiplier whose symbol is a smooth function of
order 0 (which means that its kth derivative is bounded by Ck(1+|ξ |)−k), one has

∀σ ∈ R,
∥∥[
H0, T f

]∥∥
Hσ →Hσ+ν � c(ν, σ ) ‖ f ‖C0,ν .

In particular,
∥∥[
H0, T f

]∥∥
H−ν→L2 � ‖ f ‖C0,ν .

It remains only to estimate the last two terms in the right-hand side of (2.11). We
claim that

∥∥H( f � − T f )
∥∥
H−θ→L2 + ∥∥( f � − T f )H

∥∥
H−θ→L2 � ‖ f ‖C0,ν .

Since H is bounded from Hσ to itself for any σ ∈ R, it is enough to prove that
∥∥ f � − T f

∥∥
H−θ→L2 � ‖ f ‖C0,ν .

To do this, observe that

f g − T f g=
∑

j,p�−1

(� j f )(�pg)−
∑

−1� j�p−2

(� j f )(�pg)=
∑

j�−1

(S j+2g)� j f.

Then, using the Bernstein’s inequality and the characterization of Hölder spaces in
terms of Littlewood–Paley decomposition, it follows from the assumption θ < ν

that the series
∑

2 j (θ−ν) converges, so
∥∥ f g − T f g

∥∥
L2 �

∑ ∥∥S j+2g
∥∥
L2

∥∥� j f
∥∥
L∞

�
∑

2θ( j+2) ‖g‖H−θ 2− jν ‖ f ‖C0,ν � ‖g‖H−θ ‖ f ‖C0,ν .

By combining the previous estimates, we have
∥∥[
H, f �

]∥∥
H−θ→L2 � ‖ f ‖C0,ν ,

which gives the result. 	
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3. Commutator Estimate

In this section we prove statement (iii) in Theorem 1.2. Namely, we prove the
following proposition:

Proposition 3.1. Let 0 < ε < 1/2. There is a non-decreasing function F : R+ →
R+ such that, for all functions f, g in ∩σ�1 Ḣ

σ (R),

∥∥∥	1+εT ( f )g − T ( f )	1+εg
∥∥∥
L2

� F
( ‖ f ‖

Ḣ1∩Ḣ
3
2+ε

) ‖ f ‖
Ḣ1∩Ḣ

3
2+ε

‖g‖
Ḣ

3
2+ε∩Ḣ2

. (3.1)

Proof. Recall that

T ( f )g = − 1

π

∫
(�α f )2

1 + (�α f )2
�αgx dα.

Since

	1+ε�αgx = �α

(
	1+εgx

)
,

we have

	1+εT ( f )g = T ( f )	1+εg + R1( f )g + R2( f )g,

where

R1( f )g = − 1

π

∫ (
�αgx

)
	1+ε

(
(�α f )2

1 + (�α f )2

)
dα, (3.2)

and

R2( f )g = − 1

π

∫ (
	1+ε

(
uαvα

) − uα	1+εvα − vα	1+εuα

)
dα with

uα = �αgx , vα = (�α f )2

1 + (�α f )2
.

We shall estimate these two terms separately. Classical results from paradiffer-
ential calculus (see [6,16,39]) would allow us to estimate them provided that we
work in nonhomogeneous Sobolev spaces. In the homogeneous spaces we are con-
sidering, we shall see that one can derive similar results by using only elementary
nonlinear estimates.

We begin with the study of R1( f )g.

Lemma 3.2. There exists a non-decreasing function F : R+ → R+ such that

‖R1( f )g‖L2 � F
( ‖ f ‖

Ḣ1∩Ḣ
3
2+ε

) ‖ f ‖
Ḣ1∩Ḣ

3
2+ε

‖g‖
Ḣ

3
2+ε∩Ḣ2

.
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Proof. By definition

R1( f )g = − 1

π

∫ (
�αgx

)
	1+ε

(
(�α f )2

1 + (�α f )2

)
dα,

so

‖R1( f )g‖L2 �
∫

‖�αgx‖L∞
∥∥∥∥

(�α f )2

1 + (�α f )2

∥∥∥∥
Ḣ1+ε

dα. (3.3)

The Sobolev embedding L2(R) ∩ Ḣ
1
2+ε(R) ↪→ L∞(R) implies that, for all α in

R,
sup
x∈R

|�α f (x)| � sup
x∈R

| fx (x)| � ‖ fx‖
L2∩Ḣ

1
2+ε

= ‖ f ‖
Ḣ1∩Ḣ

3
2+ε

, (3.4)

so that the composition rule (2.8) implies that

∥∥∥∥
(�α f )2

1 + (�α f )2

∥∥∥∥
Ḣ1+ε

� F
( ‖ f ‖

Ḣ1∩Ḣ
3
2+ε

)( ‖�α f ‖Ḣ ε + ‖�α f ‖Ḣ1+ε

)
. (3.5)

We claim that we have the two following inequalities:
∫

‖�αgx‖L∞ ‖�α f ‖Ḣ ε dα � ‖g‖
Ḣ

3
2+ε

‖ f ‖Ḣ1 , (3.6)
∫

‖�αgx‖L∞ ‖�α f ‖Ḣ1+ε dα � ‖g‖Ḣ2 ‖ f ‖
Ḣ

3
2+ε

. (3.7)

Let us prove (3.6). Directly from the definition of �α , we have
∫

‖�αgx‖L∞ ‖�α f ‖Ḣ ε dα =
∫ ‖δαgx‖L∞

|α|
‖δα	ε f ‖L2

|α| dα

=
∫ ‖δαgx‖L∞

|α|ε
‖δα	ε f ‖L2

|α|1−ε

dα

|α| ,

so, using the Cauchy–Schwarz inequality,

∫
‖�αgx‖L∞ ‖�α f ‖Ḣ ε dα �

(∫ ‖δαgx‖2L∞
|α|2ε

dα

|α|

) 1
2
(∫ ‖δα	ε f ‖2

L2

|α|2(1−ε)

dα

|α|

) 1
2

,

and hence, using the definition of Besov semi-norms (see (2.1)),
∫

‖�αgx‖L∞ ‖�α f ‖Ḣ ε dα � ‖gx‖Ḃε∞,2
‖	ε f ‖Ḃ1−ε

2,2
.

By using (2.3) and (2.4), we obtain that
∫

‖�αgx‖L∞ ‖�α f ‖Ḣ ε dα � ‖g‖
Ḣ

3
2+ε

‖ f ‖Ḣ1 ,

which is the first claim (3.6). To prove the second claim (3.7), we repeat the same
arguments except that we balance the powers of α in a different way:
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∫
‖�αgx‖L∞ ‖�α f ‖Ḣ1+ε dα =

∫ ‖δαgx‖L∞

|α|1/2
‖δα	1+ε f ‖L2

|α|1/2
dα

|α|

�
(∫ ‖δαgx‖2L∞

|α|
dα

|α|

) 1
2
(∫ ‖δα	1+ε f ‖2

L2

|α|
dα

|α|

) 1
2

� ‖gx‖
Ḃ

1
2∞,2

∥∥∥	1+ε f
∥∥∥
Ḃ

1
2
2,2

� ‖g‖Ḣ2 ‖ f ‖
Ḣ

3
2+ε

,

which proves the claim (3.7). Now, by combining the two claims (3.6), (3.7) with
(3.3) and (3.5), we obtain that

‖R1( f )g‖L2 � F
( ‖ f ‖

Ḣ1∩Ḣ
3
2+ε

) ‖ f ‖
Ḣ1∩Ḣ

3
2+ε

‖g‖
Ḣ

3
2+ε∩Ḣ2

,

which is the desired result. 	

We now move to the second remainder term R2( f )g.

Lemma 3.3. There exists a non-decreasing function F : R+ → R+ such that

‖R2( f )g‖L2 � F
( ‖ f ‖

Ḣ1∩Ḣ
3
2+ε

) ‖ f ‖
Ḣ1∩Ḣ

3
2+ε

‖g‖
Ḣ

3
2+ε∩Ḣ2

.

Proof. We use the classical Kenig–Ponce–Vega commutator estimate

‖	s(uv) − u	sv − v	su‖Lr � C
∥∥	s1u

∥∥
L p1

∥∥	s2v
∥∥
L p2 . (3.8)

where s = s1 + s2 and 1/r = 1/p1 + 1/p2. Kenig, Ponce and Vega considered
the case s < 1. Since, for our purpose we need s > 1, we will use the recent
improvement by Li [36] (see also D’Ancona [25]) showing that (3.8) holds under
the assumptions

s = s1 + s2 ∈ (0, 2), s j ∈ (0, 1),
1

r
= 1

p1
+ 1

p2
, 2 � p j < ∞.

With p1 = 4, p2 = 4, r = 2, s = 1 + ε, s1 = 3ε
2 , s2 = 1 − ε

2 , this implies that

‖R2( f )g‖L2 �
∫ ∥∥	

3ε
2 �αgx

∥∥
L4

∥∥∥∥	1− ε
2

(�α f )2

1 + (�α f )2

∥∥∥∥
L4

dα.

We now use the Sobolev inequality

‖u‖L4 �
∥∥	

1
4 u

∥∥
L2 ,

to obtain

‖R2( f )g‖L2 �
∫ ∥∥	

1
4+ 3ε

2 �αgx
∥∥
L2

∥∥∥∥	
5
4− ε

2
(�α f )2

1 + (�α f )2

∥∥∥∥
L2

dα.
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By combining the composition rule (2.8) (applied with σ = 5
4 − ε

2 ∈ (1, 2)) and
(3.4), we obtain that

‖R2( f )g‖L2

� F(M)

∫ ∥∥	
1
4+ 3ε

2 �αgx
∥∥
L2

(∥∥	
1
4− ε

2 �α f
∥∥
L2 + ∥∥	

5
4− ε

2 �α f
∥∥
L2

)
dα

whereM = ‖ f ‖
Ḣ1∩Ḣ

3
2+ε

.Wenowproceed as in the previous proof.Moreprecisely,

we balance the powers of α, use the Cauchy–Schwarz inequality, the definition of
the Besov semi-norms (2.1) and the Sobolev embedding to obtain that

∫ ∥∥	
1
4+ 3ε

2 �αgx
∥∥
L2

∥∥	
1
4− ε

2 �α f
∥∥
L2 dα

=
∫ ∥∥	

1
4+ 3ε

2 δαgx
∥∥
L2

|α|

∥∥	
1
4− ε

2 δα f
∥∥
L2

|α| dα

=
∫ ∥∥	

1
4+ 3ε

2 δαgx
∥∥
L2

|α|1/4−ε/2

∥∥	
1
4− ε

2 δα f
∥∥
L2

|α|3/4+ε/2

dα

|α|
�

∥∥∥	
1
4+ 3ε

2 gx
∥∥∥
Ḃ

1
4−ε/2
2,2

∥∥∥	
1
4− ε

2 f
∥∥∥
Ḃ

3
4+ε/2
2,2

� ‖g‖
Ḣ

3
2+ε

‖ f ‖Ḣ1 .

One estimates the second term in a similar way. We begin by writing that
∫ ∥∥	

1
4+ 3ε

2 �αgx
∥∥
L2

∥∥	
5
4− ε

2 �α f
∥∥
L2 dα

=
∫ ∥∥	

1
4+ 3ε

2 δαgx
∥∥
L2

|α|

∥∥	
5
4− ε

2 δα f
∥∥
L2

|α| dα

=
∫ ∥∥	

1
4+ 3ε

2 δαgx
∥∥
L2

|α|3/4−3ε/2

∥∥	
5
4− ε

2 δα f
∥∥
L2

|α|1/4+3ε/2

dα

|α| .

Since ε belongs to (0, 1/2)we have 3/4−3ε/2 > 0 and 1/4+3ε/2 < 1. Therefore
one can use the definition (2.1) of the Besov semi-norms to deduce that
∫ ∥∥	

1
4+ 3ε

2 �αgx
∥∥
L2

∥∥	
5
4− ε

2 �α f
∥∥
L2 dα �

∥∥	
1
4+ 3ε

2 gx
∥∥
Ḃ

3
4− 3ε

2
2,2

∥∥	
5
4− ε

2 f
∥∥
Ḃ

1
4+ 3ε

2
2,2

� ‖g‖Ḣ2 ‖ f ‖
Ḣ

3
2+ε

.

By combining the above inequalities, we have proved that

‖R2( f )g‖L2 � F
( ‖ f ‖

Ḣ1∩Ḣ
3
2+ε

) ‖ f ‖
Ḣ1∩Ḣ

3
2+ε

‖g‖
Ḣ

3
2+ε∩Ḣ2

,

which concludes the proof. 	

This completes the proof of the proposition. 	
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4. High Frequency Estimate

We now prove the second point of Theorem 1.2 whose statement is recalled in
the next proposition.

Proposition 4.1. For all 0 < ν < ε < 1/2, there exists a positive constant C > 0
such that, for all functions f, g in ∩σ�1 Ḣ

σ (R),

T ( f )g = f 2x
1 + f 2x

	g + V ( f )∂x g + R( f, g)

where

‖R( f, g)‖L2 � C ‖ f ‖
Ḣ

3
2+ε

‖g‖Ḃ1−ε
2,1

, ‖V ( f )‖C0,ν � C ‖ f ‖2
Ḣ1∩Ḣ

3
2+ε

.

We shall prove this proposition in this section by using a symmetrization argu-
ment which consists in replacing the finite differences δα f (x) = f (x)− f (x −α)

by the symmetric finite differences 2 f (x)− f (x −α)− f (x +α). To do so, it will
be convenient to introduce a few notations.

Notation 4.2. Given a function f = f (x) and a real number α, we define the
functions δ̄α f , �̄α f , sα f , Sα f and Dα f by

δ̄α f (x) = f (x) − f (x + α),

sα f (x) = δα f (x) + δ̄α f (x) = 2 f (x) − f (x − α) − f (x + α),

and

�̄α f (x) = f (x) − f (x + α)

α
,

Sα f (x) = �α f (x) + �̄α f (x) = sα f (x)

α
= 2 f (x) − f (x + α) − f (x − α)

α
,

Dα f (x) = �α f (x) − �̄α f (x) = f (x + α) − f (x − α)

α
.

Lemma 4.3. One has

Dα f = 2 fx − 1

α

∫ α

0
sη fx dη, (4.1)

where sη fx (x) = 2 fx (x) − fx (x + η) − fx (x − η). Furthermore,

∂α(Dα f ) = − Sα fx + 1

α2

∫ α

0
sη fx dη, (4.2)

and

∂α(Sα f ) = �̄α fx − �α fx − Sα f

α
. (4.3)
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Proof. The formula (4.1) can be verified by two direct calculations:

1

α

∫ α

0
2 fx (x) dη = 2 fx (x),

and

1

α

∫ α

0
( fx (x − η) + fx (x + η)) dη = 1

α

∫ α

0
∂η( f (x + η) − f (x − η)) dη

= 1

α
( f (x + α) − f (x − α)).

Now, the value for ∂α(Dα f ) in (4.2) follows by differentiating (4.1).
The formula for ∂α(Sα f ) follows from the definition of Sα f and the

chain rule. 	

Recall that

T ( f )g = − 1

π

∫
(�α f )2

1 + (�α f )2
�αgx dα.

The idea is to decompose the factor

(�α f )2

1 + (�α f )2

into its even and odd components with respect to the variable α. We define

E(α, ·) = 1

2

(�α f )2

1 + (�α f )2
+ 1

2

(�̄α f )2

1 + (�̄α f )2
, (4.4)

O(α, ·) = 1

2

(�α f )2

1 + (�α f )2
− 1

2

(�̄α f )2

1 + (�̄α f )2
, (4.5)

where the dots in the notationsE(α, ·) andO(α, ·) are placeholders for the variable x
(notice that (�̄α f )2 = (�−α f )2 and �̄α f = −�−α f ). Then,

T ( f )g = − 1

π

∫
�αgx E(α, ·) dα − 1

π

∫
�αgx O(α, ·) dα,

and hence, since α �→ E(α, ·) is even, this yields T ( f )g = Te( f )g + To( f )g with

Te( f )g = − 1

2π

∫ (
�αgx − �̄αgx

)
E(α, ·) dα,

To( f )g = − 1

π

∫
�αgx O(α, ·) dα.

The following result is the key point of the proof where we identify the main
contribution of the nonlinearity:
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Proposition 4.4. There exists a constant C such that

∥∥∥∥Te( f )g − f 2x
1 + f 2x

	g

∥∥∥∥
L2

� C ‖ f ‖
Ḣ

3
2+ε

‖g‖Ḃ1−ε
2,1

,

‖To( f )g − V ∂x g‖L2 � C ‖ f ‖
Ḣ

3
2+ε

‖g‖Ḃ1−ε
2,1

, (4.6)

where

V (x) = − 1

π

∫

R

O(α, x)

α
dα. (4.7)

Proof. (i) The main difficulty is to extract the elliptic component from Te( f )g.
To uncover it, we shall perform an integration by parts in α. The first key point
is that

�αgx − �̄αgx = gx (· + α) − gx (· − α)

α

= ∂α (g(· + α) + g(· − α) − 2g(·))
α

= −∂α(sαg)

α
.

Consequently, directly from the definition of Te( f )g, by integrating by parts
in α, we obtain that

Te( f )g = 1

2π

∫
∂α(sαg)

α
E(α, ·) dα

= 1

2π

∫
sαg

α2 E(α, ·) dα − 1

2π

∫
sαg

α
∂αE(α, ·) dα. (4.8)

We now have to estimate the coefficients E(α, ·) and ∂αE(α, ·).
Lemma 4.5. (i) We have

E(α, x) = fx (x)2

1 + fx (x)2
+ Q(α, x) (4.9)

for some function Q satisfying

|Q(α, x)| � |sα f (x)|
|α| +

∣∣∣∣
1

α

∫ α

0
sη fx (x) dη

∣∣∣∣ . (4.10)

(ii) Furthermore,

|∂αE(α, x)|�C

{∣∣δ̄α fx (x)
∣∣

|α| + |δα fx (x)|
|α| + |sα f (x)|

|α|2 +
∣∣∣∣
1

α2

∫ α

0
sη fx (x) dη

∣∣∣∣

}

(4.11)
for some fixed constant C.
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Proof. (i) We introduce the function

F(a) = a2

1 + a2
.

Then we have the identity (4.9) with

Q := 1

2

(
F(�α f ) + F(�̄α f )

) − F( fx ). (4.12)

Since F ′′ is bounded, the Taylor formula implies that, for all (a, b) ∈ R
2,

∣∣∣∣
1

2
(F(a) + F(b)) − F

(
a + b

2

)∣∣∣∣ �
∥∥F ′′∥∥

L∞
8

|a − b|2 .

On the other hand, since F is bounded, one has the obvious inequality

∣∣∣∣
1

2
(F(a) + F(b)) − F

(
a + b

2

)∣∣∣∣ � 2 ‖F‖L∞ .

By combining these two inequalities, we find that

∣∣∣∣
1

2
(F(a) + F(b)) − F

(
a + b

2

)∣∣∣∣ � |a − b| .

Since F is even we have F(b) = F(−b) and hence

∣∣∣∣
1

2
(F(a) + F(b)) − F

(
a − b

2

)∣∣∣∣ � |a + b| .

We now apply this inequality with a = �α f and b = �̄α f . Since, by
definition, Dα f = �α f − �̄α f , Sα f = �α f + �̄α f , we conclude that

∣∣∣∣
1

2
(F(�α f ) + F(�̄α f )) − F

(
1

2
Dα f

)∣∣∣∣ � |Sα f | . (4.13)

We now use the fact that F is Lipschitz to infer from (4.1) that

∣∣∣∣F
(
1

2
Dα f

)
− F( fx )

∣∣∣∣ �
∣∣∣∣
1

α

∫ α

0
sη fx dη

∣∣∣∣ . (4.14)

In light of (4.12), by using the triangle inequality, it follows from (4.13) and
(4.14) that

|Q| � |Sα f | +
∣∣∣∣
1

α

∫ α

0
sη fx dη

∣∣∣∣ ,

which gives the result (4.10).
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(ii) Since

E(α, ·) = 1

2
F(�α f ) + 1

2
F(�̄α f ),

and since F ′ is bounded, the chain rule implies that

|∂αE(α, ·)| � |∂α�α f | + ∣∣∂α�̄α f
∣∣ .

By combining this estimate with the identities

2�α f = Sα f + Dα f, 2�̄α f = Sα f − Dα f,

we deduce that |∂αE(α, ·)| � |∂αSα f | + |∂αDα f |. Then the second estimate
(4.11) follows from the values for ∂αSα f and ∂αDα f given by Lemma 4.3.

	

It follows directly from (4.8) and (4.9) that

Te( f )g = 1

2π

f 2x
1 + f 2x

∫
sαg

α2 dα

+ 1

2π

∫
sαg

α

(
Q(α, ·)

α
− ∂αE(α, ·)

)
dα. (4.15)

Observe that
∫

sαg

α2 dα = −
∫

sαg∂α

(
1

α

)
dα

=
∫

∂αsαg

α
dα =

∫
gx (x − α) − gx (x + α)

α
dα

= − 2
∫

�αgx dα = 2π	g,

where we used (1.3). Thus, the first term in the right-hand side of (4.15) is the
wanted elliptic component

f 2x
1 + f 2x

	g.

To conclude the proof of the first statement in (4.6), it remains only to prove that
the second term in the right-hand side of (4.15) is a remainder term. Putting for
shortness

I =
∥∥∥∥

∫
sαg

α

(
Q(α, ·)

α
− ∂αE(α, ·)

)
dα

∥∥∥∥
L2

,

we will prove that
I � ‖ f ‖

Ḣ
3
2+ε

‖g‖Ḃ1−ε
2,1

. (4.16)

The L∞-norm of Q(α,·)
α

− ∂αE(α, ·) is controlled from (4.10) and (4.11). We have

I � I1 + I2 + I3 + I4
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with

I1 =
∫ ‖sαg‖L2

|α|1−ε

‖δ̄α fx‖L∞

|α|ε
dα

|α| ,

I2 =
∫ ‖sαg‖L2

|α|1−ε

‖δα fx‖L∞

|α|ε
dα

|α| ,

I3 =
∫ ‖sαg‖L2

|α|1−ε

‖sα f ‖L∞

|α|1+ε

dα

|α| ,

I4 =
∫ ‖sαg‖L2

|α|1−ε

1

|α|1+ε

∣∣∣∣

∫ α

0
‖sη fx‖L∞ dη

∣∣∣∣
dα

|α| , (4.17)

where, as above, we have distributed the powers of |α| in a balanced way. Using
the Cauchy–Schwarz inequality and the definition (2.1) of Besov semi-norms, it
follows that

I1 + I2 � ‖g‖Ḃ1−ε
2,2

‖ fx‖Ḃε∞,2
.

and, similarly, it results from (2.2) that

I3 � ‖g‖Ḃ1−ε
2,2

‖ f ‖Ḃ1+ε
∞,2

.

Consequently, the Sobolev embeddings

Ḃ1−ε
2,1 ↪→ Ḃ1−ε

2,2 , Ḣ
3
2+ε(R) ↪→ Ḃε∞,2(R),

imply that I1 + I2 + I3 � ‖g‖Ḃ1−ε
2,1

‖ f ‖
Ḣ

3
2+ε

.

To estimate I4, the key point consists in using the Cauchy–Schwarz inequality
to verify that

1

|α|1+ε

∣∣∣∣

∫ α

0
‖sη fx‖L∞ dη

∣∣∣∣ �
(∫ ∞

0

‖sμ fx‖2L∞
μ2ε

dμ

μ

) 1
2

(notice that the variable η above could be negative, whileμ here is always positive).
It follows from (2.1) that

(∫ ∞

0

‖sμ fx‖2L∞
μ2ε

dμ

μ

) 1
2

� ‖ fx‖Ḃε∞,2
� ‖ f ‖

Ḣ
3
2+ε

,

So we obtain, again using (2.1) with (p, q, s) = (2, 1, 1 − ε),

I4 � ‖ f ‖
Ḣ

3
2+ε

∫ ‖sαg‖L2

|α|1−ε

dα

|α| � ‖ f ‖
Ḣ

3
2+ε

‖g‖Ḃ1−ε
2,1

. (4.18)

This completes the proof of (4.16) and hence the proof of the desired result (4.6).
(ii) It remains to study To( f )g. Recall that

To( f )g = − 1

π

∫ (
�αgx

)
O(α, ·) dα,
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where O(α, ·) is given by (4.5). By splitting the factor �αgx into two parts,

�αgx (x) = gx (x)

α
− gx (x − α)

α
,

and we obtain at once that

To( f )g = V ∂x g + B,

where V is given by (4.7) and where the remainder B is given by

B(x) = 1

π

∫
1

α
gx (x − α)O(α, x) dα.

The analysis of B is based on the observation that

gx (x − α) = ∂α(g(x) − g(x − α)) = ∂α(δαg),

which allows us to integrate by parts in α to obtain

B = 1

π

∫
δαg

α

(
1

α
O(α, ·) − ∂αO(α, ·)

)
dα.

Consequently, by writing

‖B‖L2 �
∫ ‖δαg‖L2

|α|
∥∥∥∥
1

α
O(α, ·) − ∂αO(α, ·)

∥∥∥∥
L∞

dα

|α| ,

we are back to the situation already treated in the first step. The estimate for ∂αO
is proved by repeating the arguments used to prove the estimate (4.11) for ∂αE .
To bound α−1O(α, x), remembering the expression ofO(α, x) given by (4.5), it is
sufficient to notice that

∣∣∣∣
O(α, ·)

α

∣∣∣∣ = 1

2 |α|
∣∣∣∣

(�α f )2

1 + (�α f )2
− (�̄α f )2

1 + (�̄α f )2

∣∣∣∣

� 1

2 |α|
∣∣∣∣

�α f − �̄α f

(1 + (�α f )2)(1 + (�̄α f )2

∣∣∣∣
∣∣�α f + �̄α f

∣∣

� |Sα f |
|α| · (4.19)

This gives that |O(α, x)| � |sα f (x)| / |α|2. Therefore, we obtain that the L∞-norm
of O(α,·)

α
− ∂αO(α, ·) is estimated by the right-hand side of (4.11). Then we may

repeat the arguments used in the proof of the first step to estimate I . We call the
attention to the fact that, previously, in (4.17), the expressions involved the more
favorable symmetric differences sαg instead of δαg. However, this is not important
for our purpose since, to estimate I1, . . . , I4, we used only the characterization of
Besov norms valid for 0 < s < 1, which involves only the finite differences δα f .
This proves that ‖B‖L2 is controlled by the right-hand side of (4.16), which implies
that B ∼ 0. 	
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Lemma 4.6. Let 0 < ν < ε < 1/2. There exists a positive constant C > 0 such
that

‖V ‖C0,ν = ‖V ‖L∞ + sup
y∈R

( |V (x + y) − V (x)|
|y|ν

)
� C ‖ f ‖2

Ḣ1∩Ḣ
3
2+ε

.

Proof. As we have already seen, we have

V (x) = − 1

π

∫

R

O(α, x)

α
dα,

where

O(α, ·) = Mα( f )Sα f with Mα( f ) = 1

2

�α f − �̄α f

(1 + (�̄α f )2)(1 + (�̄α f )2
.

Since |Mα( f )| � |�α f | + ∣∣�̄α f
∣∣, we obtain that

‖V ‖L∞ � 2
∫ ( ‖�α f ‖L∞ + ∥∥�̄α f

∥∥
L∞

) ‖Sα f ‖L∞
dα

|α|
�

∫ ‖δα f ‖L∞ + ∥∥δ̄α f
∥∥
L∞

|α|1−ε

‖sα f ‖L∞

|α|1+ε

dα

|α|
� ‖ f ‖Ḃ1−ε

∞,2
‖ f ‖Ḃ1+ε

∞,2
� ‖ f ‖2

Ḣ1∩Ḣ
3
2+ε

,

where we used the Cauchy–Schwarz inequality, the definitions (2.1) and (2.2) of
the Besov semi-norms, and the Sobolev embedding.

We now have to estimate the Hölder-modulus of continuity of V . Given y ∈ R

and a function u = u(x), we introduce the function [u]y defined by

[u]y(x) = u(x + y) − u(x)

|y|ν ·

We want to estimate the L∞-norm of [V ]y uniformly in y ∈ R. Notice that

[O(α, ·)]y = Mα( f )Sα([ f ]y) + [Mα( f )]yτy(Sα f ),

where τyu(x) = u(x + y). The contribution of the first term is estimated as above,
so by setting δ = ε − ν > 0, we have
∫ ∥∥Mα( f )Sα([ f ]y)

∥∥
L∞ dα �

∫ ( ‖�α f ‖L∞ + ∥∥�̄α f
∥∥
L∞

) ∥∥Sα[ f ]y
∥∥
L∞

dα

|α|
�

∫ ‖δα f ‖L∞ + ∥∥δ̄α f
∥∥
L∞

|α|1−δ

∥∥sα[ f ]y
∥∥
L∞

|α|1+δ

dα

|α|
� ‖ f ‖Ḃ1−δ

∞,2

∥∥[ f ]y
∥∥
Ḃ1+δ

∞,2
.

Now, using the Plancherel theorem and the inequality
∣∣eiyξ − 1

∣∣ � |yξ |ν , we have
∥∥[ f ]y

∥∥
Ḃ1+δ

∞,2
�

∥∥[ f ]y
∥∥
Ḣ

3
2+δ

� ‖ f ‖
Ḣ

3
2+δ+ν

= ‖ f ‖
Ḣ

3
2+ε

,
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since δ + ν = ε. On the other hand, since
∣∣[Mα( f )]y

∣∣ �
∣∣�α[ f ]y

∣∣ + ∣∣�̄α[ f ]y
∣∣ ,

by repeating the previous arguments, we get
∫ ∥∥[Mα( f )]yτy(Sα f )

∥∥
L∞ dα �

∫ ∥∥δα[ f ]y
∥∥
L∞ + ∥∥δ̄α[ f ]y

∥∥
L∞

|α|1−ν

‖sα f ‖L∞

|α|1+ν

dα

|α|
�

∥∥[ f ]y
∥∥
Ḃ1−ν

∞,2
‖ f ‖Ḃ1+ν

∞,2
� ‖ f ‖

Ḣ
3
2

‖ f ‖
Ḣ

3
2+ν

.

This concludes the proof of Lemma 4.6 	

This completes the proof of Theorem 1.2.

5. Cauchy Problem

In this section we prove Theorem 1.4 about the Cauchy problem.
We prove the uniqueness by estimating the difference of two solutions. With

regards to the existence, we construct solutions to the Muskat equation as limits of
solutions to a sequence of approximate nonlinear systems, following here [1,2,32,
33]. We split the analysis in to three parts.

1. Firstly, we prove that the Cauchy problem for these approximate systems are
well-posed locally in time by means of an ODE argument.

2. Secondly, we use Theorem 1.2 and an elementary L2-estimate for the paralin-
earized equation to prove that the solutions of the later approximate systems
are bounded in C0([0, T ]; Ḣ1(R) ∩ Ḣ s(R)) on a uniform time interval.

3. The third task consists in showing that these approximate solutions converge
to a limit which is a solution of the Muskat equation. To do this, one cannot
apply standard compactness results since the equation is non-local. Instead,
we prove that the solutions form a Cauchy sequence in an appropriate space,
by estimating the difference of two solutions.

5.1. Approximate systems

To define approximate systems, we use a version of Galerkin’s method based
on Friedrichs mollifiers. We find convenient to use smoothing operators which are
projections and consider, for n ∈ N\{0}, the operators Jn defined by

Ĵnu(ξ) = û(ξ) for |ξ | � n,

Ĵnu(ξ) = 0 for |ξ | > n.

Notice that Jn is a projection, J 2n = Jn . Thiswill allowus to simplify some technical
arguments.

Now we consider the following approximate Cauchy problems:
{

∂t f + 	 f = Jn
(
T ( f ) f

)
,

f |t=0 = Jn f0.
(5.1)

The following lemma states that this system has smooth local in time solutions:



Paralinearization of the Muskat Equation and Application 571

Lemma 5.1. For all f0 ∈ Ḣ1(R), and any n ∈ N\{0}, the initial value prob-
lem (5.1) has a unique maximal solution, for some time Tn > 0, of the form
fn = Jn f0 + un where un ∈ C1([0, Tn[; H∞(R)) is such that un(0) = 0. More-
over, either

Tn = +∞ or lim sup
t→Tn

‖un(t)‖L2 = +∞. (5.2)

Proof. We begin by studying an auxiliary system. Consider the following Cauchy
problem {

∂t f + Jn	 f = Jn
(
T (Jn f )Jn f

)
,

f |t=0 = Jn f0.
(5.3)

Set u = f − Jn f0. Then the Cauchy problem (5.3) has the form

∂t u = Fn(u), u|t=0 = 0, (5.4)

where

Fn(u) = −	Jnu − 	Jn f0 + Jn
(
T (Jn( f0 + u))Jn( f0 + u)

)

(we have used J 2n = Jn to simplify the expression of F). The operator Jn is a
smoothing operator: it is bounded from Ḣ1(R) into Ḣμ(R) for any μ � 1, and
from L2(R) into Hμ(R) for any μ � 0. Consequently, if u belongs to L2(R), then
Jn( f0 + u) belongs to Ḣμ(R) for any μ � 1. Thus, it follows from statement (i)
in Proposition 2.3 and the assumption f0 ∈ Ḣ1(R) that Fn maps L2(R) into
itself. This shows that (5.4) is in fact an ODE with values in a Banach space for
any n ∈ N\{0}. The key point is that statement (ii) in Proposition 2.3 implies
that the function Fn is locally Lipschitz from L2(R) to itself. Consequently, the
Cauchy–Lipschitz theorem gives the existence of a unique maximal solution un
in C1([0, Tn[; L2(R)). Then the function fn = Jn f0 + un is a solution to (5.3).
Since J 2n = Jn , we check that the function (I − Jn) fn solves

∂t (I − Jn) fn = 0, (I − Jn) fn|t=0 = 0.

This shows that (I − Jn) fn = 0, so Jn fn = fn . Consequently, the fact that fn
solves (5.3) implies that fn is also a solution to (5.1).

The alternative (5.2) is a consequence of the usual continuation principle for or-
dinary differential equations. Eventually, integrating (5.4) in time and using the fact
that Jn is a smoothing operator, we obtain that un belongs to C0([0, Tn[; H∞(R)).
Using again (5.4), we conclude that ∂t un belong to C0([0, Tn[; H∞(R)). 	


5.2. A priori estimate for the approximate systems

In this paragraph we prove two a priori estimates which will play a key role to
prove uniform estimates for the solutions ( fn) and also to estimate the differences
between two such solutions. We begin with the following estimate in L2(R) ∩
Ḣ s(R):
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Proposition 5.2. For all real number s ∈ (3/2, 2), there exists a positive constant
C > 0 and a non-decreasing function F : R → R such that, any n ∈ N\{0}, for
any T ∈ (0, Tn), the norm

Mn(T ) = sup
t∈[0,T ]

‖ fn(t) − f0‖2L2∩Ḣ s

satisfies

Mn(T ) + C

1 + K 2

∫ T

0
‖ fn(t)‖2

Ḣ s+ 1
2
dt

� (2 + T )2 ‖ f0‖2Ḣ1∩Ḣ s + TF
(

sup
t∈[0,T ]

‖ fn(t)‖2Ḣ1∩Ḣ s

)
, (5.5)

where
K := sup

(t,x)∈[0,T ]×R

|∂x fn(t, x)| . (5.6)

Proof. Set Tn( f ) = Jn
(
T ( f ) f

)
. We estimate the ‖·‖L2 -norm and ‖·‖Ḣ s -norm by

different methods.
First step : low-frequency estimate. Since

∂t fn + 	 fn = JnT ( fn) fn, fn|t=0 = Jn f0, (5.7)

we have

fn(t) = exp (−t	) Jn f0 +
∫ t

0
exp

(−(t − t ′)	
)
Tn( fn)(t ′) dt ′,

so

fn(t) − Jn f0 = (exp (−t	) − I ) Jn f0 +
∫ t

0
exp

(−(t − t ′)	
)
Tn( fn)(t ′) dt ′,

where I denotes the identity operator. Using the Fourier transform and Plancherel
identity, one obtains immediately that

‖(exp (−t	) − I ) Jn f0‖L2 � ‖t	Jn f0‖L2 � T ‖ f0‖Ḣ1 .

On the other hand,
∥∥exp

(−(t − t ′)	
)
Tn( fn)(t ′)

∥∥
L2 �

∥∥Tn( fn)(t ′)
∥∥
L2 .

Consequently,

‖ fn(t) − Jn f0‖L2 � T ‖ f0‖Ḣ1 + T sup
t ′∈[0,T ]

∥∥Tn( fn)(t ′)
∥∥
L2 .

Nowwewant to replace the left hand side of the above inequality by‖ fn(t) − f0‖L2 .
To do so, notice that, since the spectrum of Jn f0 − f0 is contained in {|ξ | � 1}, we
have

‖Jn f0 − f0‖L2 � ‖ f0‖Ḣ1 .
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By combining the above estimates, we deduce that

‖ fn(t) − f0‖L2 � (1 + T ) ‖ f0‖Ḣ1 + T sup
t ′∈[0,T ]

∥∥Tn( fn)(t ′)
∥∥
L2 .

Now, we estimate the L2-norm of the nonlinearity Tn( fn) by means of the first
statement in Theorem 1.2. We conclude that, for T < 1,

‖ fn(t) − f0‖2L2 � 2(1 + T )2 ‖ f0‖2Ḣ1 + CT 2 sup
[0,T ]

‖ fn‖2Ḣ1 sup
[0,T ]

‖ fn‖2
Ḣ

3
2

.

This is in turn estimated by the right side of (5.5). This concludes the first step.
Second step : High frequency estimate.Denote by (·, ·) the scalar product in L2(R).
To estimate the Ḣ s-norm of fn , we make act 	s on the equation, and then take its
scalar product with 	s fn . We get

(∂t	
s fn,	

s fn) + (	s+1 fn,	
s fn) = (

	sTn( fn),	s fn
)
.

Since the Muskat equation is parabolic of order one, we will be able to gain one
half-derivative. We exploit this parabolic regularity by writing that

(	s+1 fn,	
s fn) = ∥∥ fn

∥∥2
Ḣ s+ 1

2
,

and
(
	sTn( fn),	s fn

) = (
	s Jn

(
T ( fn) fn

)
,	s fn

)

= (
	s(T ( fn) fn

)
, Jn	

s fn
)

= (
	s(T ( fn) fn

)
,	s fn

)
since Jn fn = fn,

= (
	s− 1

2 T ( fn) fn,	
s+ 1

2 fn
)
.

Consequently, we find that

1

2

d

dt
‖ fn‖2Ḣ s + ∥∥ fn

∥∥2
Ḣ s+ 1

2
= (

	s− 1
2 T ( fn) fn,	

s+ 1
2 fn

)
.

We next use a variant of the paralinearization formula given by Corollary 1.3. Set

ε = s − 3

2
.

We claim that, for any function g,

	1+ε(T (g)g) = V (g)∂x	
1+εg + g2x

1 + g2x
	2+εg + 	1+εRε(g),

where V (g) and Rε(g) are two functions satisfying, for any fixed ν < ε,

‖Rε(g)‖Ḣ1+ε � F(‖g‖Ḣ1∩Ḣ s ) ‖g‖
Ḣ s+ 1

2− ε
2

, (5.8)

‖V (g)‖C0,ν � F(‖g‖Ḣ1∩Ḣ s ) ‖g‖
Ḣ s+ 1

2− ε
2

. (5.9)
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where F depends only on ε (that is s) and ν (which will be specified later). The
proof of this claim is similar to the one of (1.10).

With notations as above, set

Vn = V ( fn), Rn = 	1+εRε( fn), γn = f 2nx
1 + f 2nx

where fnx = ∂x fn .

Then,

1

2

d

dt
‖ fn‖2Ḣ s + ‖ fn‖2

Ḣ s+ 1
2

= (
γn	

s+ 1
2 fn,	

s+ 1
2 fn,

)

+
((
Vn∂x	

s− 1
2 fn + Rn

)
,	s+ 1

2 fn
)
. (5.10)

Now the key point is that

‖ fn‖2
Ḣ s+ 1

2
− (

γn	
s+ 1

2 fn,	
s+ 1

2 fn
) =

∫ (
	s+ 1

2 fn
)2

1 + f 2nx
dx .

On the other hand, the Cauchy–Schwarz inequality and the estimate (5.8) imply
that

∣∣(Rn,	
s+ 1

2 fn
)∣∣ � ‖Rn‖L2

∥∥	s+ 1
2 fn

∥∥
L2

� F(‖ fn‖Ḣ1∩Ḣ s ) ‖ fn‖
Ḣ s+ 1

2− ε
2

‖ fn‖
Ḣ s+ 1

2
.

It remains to estimate the contribution of Vn to the second term in the right-hand
side of (5.10). Here we use the commutator estimate given by Lemma 2.6. To do
this, one uses the identity H	 = − ∂x where H is the Hilbert transform, to write

Vn∂x	
s− 1

2 fn = − Vn	
s+ 1

2H fn .

Since H is skew-symmetric, we deduce that

(
Vn∂x	

s− 1
2 fn,	

s+ 1
2 fn

)
= 1

2

([
H, Vn

]
	s+ 1

2 fn,	
s+ 1

2 fn
)
.

Now we exploit the regularity result for Vn given by (5.9). Fix ν = 2ε/3 and
θ = ε/2. By applying the commutator estimate in Lemma 2.6, we obtain

∥∥[
H, Vn

]
	s+ 1

2 fn
∥∥
L2 � ‖Vn‖C0,ν

∥∥	s+ 1
2 fn

∥∥
H−θ

� ‖Vn‖C0,ν ‖ fn‖
Ḣ s+ 1

2− ε
2

� F(‖ fn‖Ḣ1∩Ḣ s ) ‖ fn‖
Ḣ s+ 1

2− ε
2

.

Thus, by combining the above estimates,

1

2

d

dt
‖ fn‖2Ḣ s +

∫ (
	s+ 1

2 fn
)2

1 + f 2nx
dx � F(‖ fn‖Ḣ1∩Ḣ s ) ‖ fn‖

Ḣ s+ 1
2− ε

2
‖ fn‖

Ḣ s+ 1
2

.
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The end of the proof will consist in exploiting the parabolic regularity and a variant
ofGronwall’s lemma to absorb the right-hand side. Set K (t) = supx∈R |∂x fn(t, x)|.
Then

1

1 + f 2nx
� 1

1 + K 2 ,

so

1

2

d

dt
‖ fn‖2Ḣ s + C

1 + K 2
‖ fn‖2

Ḣ s+ 1
2

� F(‖ fn‖Ḣ1∩Ḣ s ) ‖ fn‖
Ḣ s+ 1

2− ε
2

‖ fn‖
Ḣ s+ 1

2
.

(5.11)

Then we observe that

F(‖ fn‖Ḣ1∩Ḣ s ) ‖ fn‖
Ḣ s+ 1

2− ε
2

‖ fn‖
Ḣ s+ 1

2

� C

2(1 + K 2)
‖ fn‖2

Ḣ s+ 1
2

+ 1 + K 2

2C
F(‖ fn‖Ḣ1∩Ḣ s )

2 ‖ fn‖2
Ḣ s+ 1

2− ε
2

.

Since K � ‖ fn‖Ḣ1∩Ḣ s by Sobolev embedding, up to modifying the value of the
function F , by inserting the above inequality in (5.11), we get

1

2

d

dt
‖ fn‖2Ḣ s + C

2(1 + K 2)
‖ fn‖2

Ḣ s+ 1
2

� F(‖ fn‖Ḣ1∩Ḣ s ) ‖ fn‖2
Ḣ s+ 1

2− ε
2

. (5.12)

To conclude, it will suffice to replace in the right side the norm ‖ fn‖2
Ḣ s+ 1

2− ε
2
by

‖ fn‖2Ḣ s . To do this, we begin by using the interpolation inequality

‖ fn‖2
Ḣ s+ 1

2− ε
2

� ‖ fn‖2θḢ s ‖ fn‖2−2θ

Ḣ s+ 1
2

(5.13)

for some θ ∈ (0, 1). Next, because of Young’s inequality,

xy � 1

p
x p + 1

p′ y
p′

with
1

p
+ 1

p′ = 1, (5.14)

and applied with p = 2/(2 − 2θ), we infer that

1

2

d

dt
‖ fn‖2Ḣ s + C

4(1 + K 2)
‖ fn‖2

Ḣ s+ 1
2

� F(‖ fn‖Ḣ1∩Ḣ s ) ‖ fn‖2Ḣ s , (5.15)

where as above we modified the value of the function F . From this, it is now an
easy matter to obtain the conclusion of the proposition. Firstly, integration of the
above estimate gives

1

2
‖ fn(t)‖2Ḣ s + C

4(1 + K 2)

∫ t

0

∥∥ fn(t
′)
∥∥2
Ḣ s+ 1

2
dt ′

� 1

2
‖ fn(0)‖2Ḣ s + t sup

t ′∈[0,t]
F(

∥∥ fn(t
′)
∥∥
Ḣ1∩Ḣ s )

∥∥ fn(t
′)
∥∥2
Ḣ s .
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Modifying F(·) and C , we deduce that

‖ fn(t)‖2Ḣ s + C

1 + K 2

∫ t

0

∥∥ fn(t
′)
∥∥2
Ḣ s+ 1

2
dt ′

� ‖ fn(0)‖2Ḣ s + TF
(

sup
t∈[0,T ]

‖ fn(t)‖2Ḣ1∩Ḣ s

)
,

for any t ∈ [0, T ]. By taking the supremum over t ∈ [0, T ], we deduce an estimate
for supt∈[0,T ] ‖ fn(t)‖2Ḣ s . Now, the desired estimate for supt∈[0,T ] ‖ fn(t) − f0‖2Ḣ s

follows from the triangle inequality and the fact that ‖ fn(0)‖Ḣ s � ‖ f0‖Ḣ s . 	

We will also need another energy estimate to compare two different solutions

f1 and f2. The main difficulty here will be to find the optimal space in which
one can perform an energy estimate. The most simpler way to do so would be
to estimate their difference f1 − f2 in the biggest possible space and to use an
interpolation inequality to control the latter in a space of smoother function. This
suggests thatwe should to estimate f1− f2 inC0([0, T ]; L2(R)). On the other hand,
by thinking of the fluid problem, we might think that it is compulsory to control
the difference between the two functions parametrizing the two free surfaces in a
space of smooth functions. We will see later that, somewhat unexpectedly, that it is
enough to estimate f1 − f2 in C0([0, T ]; Ḣ1/2(R)). In this direction, we will use
the following proposition:

Proposition 5.3. (i) For all s in (3/2, 2), there exists a non-decreasing function
F : R+ → R+ such that, for any n ∈ N\{0}, any T > 0, and any functions

f ∈ C0([0, T ]; Ḣ1(R) ∩ Ḣ s(R)),

g ∈ C1([0, T ]; H 1
2 (R)) with Jng = g,

F ∈ C0([0, T ]; L2(R)),

satisfying the equation

∂t g − Jn
(
V ( f )∂x g) + Jn

( 1

1 + f 2x
	g

)
= F, (5.16)

where V ( f ) is as above, we have the estimate

1

2

d

dt
‖g‖2

Ḣ
1
2

+
∫

(	g)2

1 + f 2x
dx � F(‖ f ‖Ḣ1∩Ḣ s ) ‖g‖

Ḣ1− ε
2

‖g‖Ḣ1 + (F,	g)L2 ,

(5.17)
where ε = s − 3/2 and C = F

( ‖ f ‖L∞([0,T ];Ḣ1∩Ḣ s )

)
.

(ii) Moreover, the same result is true when one replaces Jn by the identity.

Proof. To prove (5.17) we take the L2-scalar product of the Equation (5.16) with
	g. Since

1

2

d

dt
‖g‖2

Ḣ
1
2

= (∂t g,	g),
(
Jn

( 1

1 + f 2x
	g

)
,	g

)
=

∫
(	g)2

1 + f 2x
dx
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(where we used Jng = g), we only have to estimate
(
Jn

(
V ( f )∂x g),	g

)
. As above,

writing ∂x = −H	, where H is the Hilbert transform satisfying H∗ = −H, we
obtain

∣∣(Jn
(
V ( f )∂x g),	g

)∣∣ = 1

2

∣∣([H, V ( f )
]
	g,	g

)∣∣ .

Set ε = s − 3/2, ν = 2ε/3 and θ = ε/2. We use Lemma 2.6 to obtain

∣∣(Jn
(
V ( f )∂x g),	g

)∣∣ � 1

2

∥∥[
H, V ( f )

]
	g

∥∥
L2 ‖	g‖L2

� ‖V ( f )‖C0,ν ‖	g‖H−θ ‖	g‖L2

� F(‖ f ‖Ḣ1∩Ḣ s ) ‖	g‖
H− ε

2
‖	g‖L2

� F(‖ f ‖Ḣ1∩Ḣ s ) ‖g‖
Ḣ1− ε

2
‖g‖Ḣ1 .

This completes the proof of (i) and the same arguments can be
used to prove (ii). 	


5.3. End of the proof

In this paragraph we complete the analysis of the Cauchy problem. We begin
by proving the uniqueness part in Theorem 1.2.

Lemma 5.4. Assume that f and f ′ are two solutions of the Muskat equation with
the same initial data and satisfying the assumptions of Theorem 1.4. Then f = f ′.

Proof. Set

g = f − f ′, M = ‖ f ‖L∞([0,T ];Ḣ1∩Ḣ s ) + ∥∥ f ′∥∥
L∞([0,T ];Ḣ1∩Ḣ s )

.

We denote by C(M) various constants depending only on M .
We want to prove that g = 0. To do so, we use the energy estimate in Ḣ1/2(R).

The key point is to write that g is a smooth function, in C1([0, T ]; H 1
2 (R)), satis-

fying

∂t g + 	g = T ( f )g + F1 with F1 = T ( f ) f ′ − T ( f ′) f ′.

This term is estimated bymeans of point (ii) in Proposition 2.3with δ = ε = s−3/2,

‖F1‖L2 =∥∥(T ( f )−T ( f ′)) f ′∥∥
L2 �C

∥∥ f − f ′∥∥
Ḣ1−ε

∥∥ f ′∥∥
Ḣ

3
2+ε

=C(M) ‖g‖Ḣ1−ε .

(5.18)
Recall from (1.6) that

T ( f )g = f 2x
1 + f 2x

	g + V ( f )∂x g + R( f, g),

where R( f, g) satisfies (setting ε = s − 3/2) that

‖R( f, g)‖L2 � C ‖ f ‖
Ḣ

3
2+ε

‖g‖Ḃ1−ε
2,1

� C(M) ‖g‖Ḃ1−ε
2,1

. (5.19)



578 T. Alazard & O. Lazar

Therefore, g satisfies

∂t g − V ∂x g + 1

1 + f 2x
	g = F,

where F = F1 + R( f )g. In view of the estimates (5.18), (5.19) and the embedding
Ḣ1−3ε/2(R) ∩ Ḣ1−ε/2(R) ↪→ Ḃ1−ε

2,1 (see Lemma 2.2), we have

|(F,	g)| � ‖F‖L2 ‖g‖Ḣ1 � C(M) ‖g‖
Ḣ1− ε

2 ∩Ḣ1− 3ε
2

‖g‖Ḣ1 .

Hence, it follows from Proposition 5.3 [see point (ii)] that

1

2

d

dt
‖g‖2

Ḣ
1
2

+
∫

(	g)2

1 + f 2x
dx � C(M) ‖g‖

Ḣ1− ε
2 ∩Ḣ1− 3ε

2
‖g‖Ḣ1 .

Next, we use interpolation inequalities as in the proof of Proposition 5.2. More
precisely, by using arguments parallel to those used to deduce (5.15) from (5.13)-
(5.14), we get

1

2

d

dt
‖g‖2

Ḣ
1
2

+ 1

4(1 + ‖ fx‖L∞
t,x

)

∫
(	g)2 dx � C(M) ‖g‖2

Ḣ
1
2

.

This obviously implies that

1

2

d

dt
‖g‖2

Ḣ
1
2

� C(M) ‖g‖2
Ḣ

1
2

.

Since g(0) = 0, the Gronwall’s inequality implies that ‖g‖
Ḣ

1
2

= 0 so g = 0,

which completes the proof. 	

Having proved the uniqueness of solutions, we now study their existence. The

key step will be here to apply the a priori estimates proved in Proposition 5.2. This
will give us uniform bounds for the solutions fn defined in Section 5.1.

Lemma 5.5. There exists T0 > 0 such that Tn � T0 for all n ∈ N\{0} and such
that ( fn − f0)n∈N is bounded in C0([0, T0]; Hs(R)).

Proof. We use the notations of Section 5.1 and Proposition 5.2. Given T < Tn , we
define

Mn(T ) = sup
t∈[0,T ]

‖ fn(t) − f0‖2L2∩Ḣ s , Nn(T ) = Mn(T ) + ‖ f0‖2Ḣ1∩Ḣ s .

Denote by F the function whose existence is the conclusion of Proposition 5.2 and
set

A = 10 ‖ f0‖2Ḣ1∩Ḣ s .

We next pick 0 < T0 � 1 small enough such that

3(1 + T0)
2 ‖ f0‖2Ḣ1∩Ḣ s + T0F(A) < A,
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We claim the uniform bound

∀n ∈ N\{0}, ∀T ∈ In := [0,min{T0, Tn}), Nn(T ) < A.

Let us prove this claim by contradiction. Assume that for some n there exists
τn ∈ In such that Nn(τn) � A and consider the smallest of such times (then
τn > 0 since T �→ Nn(T ) is continuous and Nn(0) < A by construction). Then,
by definition, for all 0 < T � τn , one has Nn(T ) � A and Nn(τn) = A. Since
‖∂x fn(t)‖L∞(R) � ‖ fn(t)‖Ḣ1∩Ḣ s (see (3.4)), we have a uniform control of the
L∞
x -norm of ∂x fn on [0, T ] in terms of A, hence we are in position to apply the a

priori estimate (5.5). Now, if we add ‖ f0‖2Ḣ1∩Ḣ s to both sides of (5.5) we deduce
that

Nn(τn) + C

1 + C(A)2

∫ τn

0
‖ fn(t)‖2

Ḣ s+ 1
2
dt

� 3(1 + τn)
2 ‖ f0‖2Ḣ1∩Ḣ s + τnF(Nn(τn)).

We infer that

A = Nn(τn) � 3(1 + τn)
2 ‖ f0‖2Ḣ1∩Ḣ s + τnF(Nn(τn))

� 3(1 + T0)
2 ‖ f0‖2Ḣ1∩Ḣ s + T0F(A)

< A,

hence the contradiction. We thus have proved that, for all n ∈ N and all T �
min{T0, Tn}, we have

sup
t∈[0,T ]

‖ fn(t) − f0‖2L2∩Ḣ s � A.

This obviously implies that

sup
t∈[0,T ]

‖ fn(t) − f0‖L2 �
√
A.

Since

un = fn − Jn f0 = fn − f0 + (I − Jn) f0,

and since ‖(I − Jn) f0‖L2 � ‖ f0‖Ḣ1 , the previous bound implies that the norm
‖un(t)‖L2 is bounded for all t � min{T0, Tn}. The alternative (5.2) then implies
that the lifespan of fn is bounded from below by T0, and the previous inequal-
ity shows that ( fn − f0) is bounded in C0([0, T0]; Hs(R)). This completes the
proof. 	


At that point, we have defined a sequence ( fn) of solutions to well-chosen ap-
proximate systems. The next task is to prove that this sequence converges. Here
a word of caution is in order: Ḣ s(R) is not a Banach space when s > 1/2.
To overcome this difficulty, we use the fact that un = fn − f0 is bounded in
C0([0, T0]; Hs(R)), where Hs(R) is the nonhomogeneous space L2(R) ∩ Ḣ s(R),
which is a Banach space. We claim that, in addition, (un) is a Cauchy sequence in
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C0([0, T0]; Hs′(R)) for any s′ < s. Let us assume this claim for the moment. This
will imply that (un) converges in the latter to some limit u. Now, setting f = f0+u
and using the continuity result for T ( f ) f given by (ii) in Proposition 2.3, we verify
immediately that f is a solution to the Cauchy problem for the Muskat equation. It
would remain to prove that u is continuous in time with values in Hs(R) (instead
of Hs′(R) for any s′ < s). For the sake of shortness, this is the only point that we
do not prove in details in this paper (referring to [2] for the proof of a similar result
in a case with similar difficulties).

To conclude the proof of Theorem1.4, it remains only to establish the following:

Lemma 5.6. For any real number s′ in [0, s), the sequence (un) is a Cauchy se-
quence in C0([0, T0]; Hs′(R)).

Proof. The proof is in two steps. We begin by proving that ( fn) is a Cauchy se-
quence inC0([0, T0]; Ḣ s′(R)) for 1/2 � s′ < s. Then,we use this result and an ele-
mentary L2-estimate to infer that (un) is a Cauchy sequence inC0([0, T0]; L2(R)).

By using estimates parallel to those used to prove Lemma 5.4, one obtains that

( fn) is a Cauchy sequence in C0([0, T0]; Ḣ 1
2 (R)). Now consider 1/2 < s′ < s.

By interpolation, there exists α in (0, 1) such that

‖u‖Ḣ s′ � ‖u‖α

Ḣ
1
2

‖u‖1−α

Ḣ s .

Consequently, since ( fn) is bounded in C0([0, T0]; Ḣ s(R)), we deduce that ( fn)
is a Cauchy sequence in C0([0, T0]; Ḣ s′(R)) for any s′ < s.

It remains only to prove that (un) is a Cauchy sequence in C0([0, T0]; L2(R)).
To do so, we proceed differently. Starting from (see (5.7))

∂t fn + 	 fn = JnT ( fn) fn,

we obtain that un − u p = fn − f p − (Jn − Jp) f0 satisfies

∂t (un − u p) + 	(un − u p) = Fnp + Gnp, (5.20)

where

Fnp = Jn(T ( fn) fn − T ( f p) f p), Gnp = (Jn − Jp)
( − 	 f0 + T ( f p) f p

)
.

We now use an elementary L2-estimate. We take the L2-scalar product of the
Equation (5.20) with un − u p, to obtain, since un(0) − u p(0) = 0,

sup
t∈[0,T ]

∥∥un(t) − u p(t)
∥∥
L2 �

∥∥Fnp
∥∥
L1([0,T ];L2)

+ ∥∥Gnp
∥∥
L2([0,T ];Ḣ− 1

2 )
.

So it remains only to prove that
∥∥Fnp

∥∥
L1([0,T ];L2)

and
∥∥Gnp

∥∥
L2([0,T ];Ḣ− 1

2 )
are

arbitrarily small for n, p large enough. Here we use the result proved in the first
part of the proof. Namely, since ( fn) is a Cauchy sequence in C0([0, T ]; Ḣ1(R) ∩
Ḣ

3
2 (R)), we deduce from point (ii) in Proposition 2.3 that

T ( fn) fn − T ( f p) f p
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is small in C0([0, T ]; L2(R)) for n, p large enough. On the other hand, using the
estimate

∥∥(Jn − Jp)u
∥∥
Ḣ− 1

2
� 1√

min(n, p)
‖u‖L2 ,

we verify that
∥∥Gnp

∥∥
L2([0,T ];Ḣ− 1

2 )
is arbitrarily small for n, p large enough. This

completes the proof. 	
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