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Abstract

We consider an infinite chain of coupled harmonic oscillators with a Langevin
thermostat at the origin. In the high frequency limit, we establish the reflection-
transmission coefficients for the wave energy for the scattering off the thermostat.
To our surprise, even though the thermostat fluctuations are time-dependent, the
scattering does not couple wave energy at various frequencies.

1. Introduction

Heat reservoirs with some given temperature T are usually modelled at the
microscopic level by the Langevin stochastic dynamics, or by other random mech-
anisms such as the renewal of velocities at random times with Gaussian distributed
velocities of variance T . This latter mechanism represents the interaction with an
infinitely extended reservoir of independent particles in equilibrium at temperature
T and uniform density.

When such reservoirs are in contact with the system boundary and if energy
diffuses on the macroscopic space-time scale, then it is expected that a thermostat
enforces a local equilibrium at the boundary at the temperature T . The situation
is much less clear for kinetic (hyperbolic) space-time scales. For instance, if the
bulk evolution is governed by a discrete nonlinear wave equation, then in the kinetic
(high frequency) limit thewave number density is governed by a phononBoltzmann
equation [1,11]. If this system is coupled to a thermostat at the boundary, what are
the appropriate macroscopic boundary conditions which have to be added to the
kinetic equation?

To make a study feasible, we very much simplify the set-up. We consider an
infinite one-dimensional chain of harmonic oscillators, characterized by its disper-
sion relation ω(k), and couple it with a single Langevin thermostat at the origin.
An efficient way to localize the distribution of the energy at wave number k is
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to use the Wigner distribution. In a space-time hyperbolic rescaling, first ignoring
the thermostat, the Wigner distribution converges to the solution W (t, x, k) of a
simple transport equation, namely phonons of wavenumber k have energy ω(k)
and travel independently with group velocity ω′(k)/2π . It will be proved that when
the dispersion relation is unimodal, see Section 2 for the precise definition, in the
scaling limit, the thermostat enforces the following reflection-transmission (and
production) conditions at x = 0: phonons of wave number k are generated with
rate ß

(k)T and an incoming k-phonon is transmitted with probability p+(k), re-
flected with probability p−(k), and absorbed with probability ß

(k), see formulas
(2.28) below. These coefficients are positive, depend on ω(·), and satisfy

p+(k) + p−(k) + ß

(k) = 1.

With such boundary conditions the stationary solution of the transport equation is
the thermal equilibrium Wigner function W (t, x, k) = T .

The thermostat can be viewed as a “scatterer” of a time-varying strength: at the
microscopic scale a wave incident on the thermostat would produce reflected and
transmitted waves at all frequencies. It is remarkable that, after the scaling limit,
the reflected and transmitted waves are of the same frequency as the incident wave,
all other waves produced by the microscopic scattering are damped by oscillations
in the macroscopic limit. The presence of oscillatory integrals, responsible for the
damping mechanism, presents the main mathematical difficulty of the model. To
deal with the issue we consider the high frequency limit of the Laplace transform
of the Wigner distribution. The limit, see (2.33) below, can be decomposed into the
parts that correspond to the production, transmission and reflection of a phonon.
The calculation of the production term is relatively straightforward, see Section 4.
In contrast, the computations related to the scattering terms are remarkably difficult,
see Sections 5–9 for the proof. Moreover, the description of the limit is not intuitive
and it is not clear to us how to obtain it by a simple heuristic argument.

The multimodal case, that we shall not consider here, can be also dealt with
using the technique of the present paper. In this situation the level set of ω(k) has
generically 2N points (we assume that ω is even) for some positive integer N . The
macroscopic description of the system is as follows: a k-phonon arriving at interface
with group velocity ω′(k) > 0 is transmitted as a k ′-phonon corresponding to the
solutions of ω(k ′) = ω(k), with a positive group velocity. The probabilities of
transmission at a given k ′ can be computed explicitly in terms of the dispersion
relation. On the other hand, it reflects as a k ′-phonon corresponding to a solution
of ω(k ′) = ω(k), with a group velocity ω′(k ′) < 0. The probability of absorption
is the same as in the unimodal case.

Introducing a rarefied random scattering in the bulk, in the same fashion as
in [1], leads to a similar transport equation with a linear scattering term, without
modifying the transmission properties at the interface with the thermostat [8].

There are rather few results on the high frequency limits of the Wigner trans-
form in the presence of boundaries, interfaces or sources. We mention [2–4,6,10]
which, while highly non-trivial, are all ultimately based on essentially explicit com-
putations of the Wigner transform near the interface. Our analysis also starts with
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computing the Wigner transform, but then passes to the limit in the resulting ex-
pression. The thermal production of phonons can be seen quite straightforwardly
in this limit. However the scattering terms are much more difficult to handle and
they constitute the major part of our work.

2. The Dynamics and the Main Result

The Infinite Chain of Harmonic Oscillators

We consider the evolution of an infinite particle system governed by the Hamil-
tonian

H(p, q) := 1

2

∑

y∈Z
p2y + 1

2

∑

y,y′∈Z
αy−y′qyqy′ . (2.1)

Here, the particle label is y ∈ Z, (py, qy) is the position and momentum of the
y’s particle, respectively, and (q, p) = {(py, qy), y ∈ Z} denotes the entire config-
uration. The coupling coefficients αy are assumed to have exponential decay and
chosen such that the energy is bounded from below.

A stochastically perturbed version of this system was considered first in [1],
where the long time behavior of the wave energy was analyzed, and then in [7],
where the wave field itself was studied.

The stochasticity in [1,7] was introduced as a random exchange of momenta
between particles at adjacent sites. Here, instead of random fluctuations “in the
bulk”, we couple the particle with label 0 to a Langevin thermostat at temperature T
and with friction γ > 0. Then the Hamiltonian dynamics with stochastic source is
governed by

q̇y(t) = py(t),

dpy(t) = −(α � q(t))ydt + (− γ p0(t)dt +√2γ T dw(t)
)
δ0,y, y ∈ Z.

(2.2)

Here, {w(t), t ≥ 0} is a standardWiener process over a probability space (�,F ,P).
We use the notation

( f � g)y =
∑

y′∈Z
fy−y′gy′

for the convolution of two functions on Z.
It is convenient to introduce the complex wave function

ψy(t) := (ω̃ � q(t))y + ipy(t), (2.3)

where {ω̃y, y ∈ Z} is the inverse Fourier transform of the dispersion relation

ω(k) :=
√

α̂(k). (2.4)
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Hence |ψy(t)|2 is the local energy of the chain at time t . The Fourier transform of
the wave function is given by

ψ̂(t, k) := ω(k)q̂(t, k) + i p̂(t, k), (2.5)

so that

p̂ (t, k) = 1

2i
[ψ̂(t, k) − ψ̂∗(t,−k)], p0(t) =

∫

T

Im ψ̂(t, k)dk.

Using (2.2), it is easy to check that the wave function evolves according to

dψ̂(t, k) = (− iω(k)ψ̂(t, k) − iγ p0(t)
)
dt + i

√
2γ T dw(t). (2.6)

Above, the Fourier transform of fx ∈ l2(Z) and the inverse Fourier transform of
f̂ ∈ L2(T) are

f̂ (k) =
∑

x∈Z
fx exp{−2π i xk}, fx

=
∫

T

f̂ (k) exp{2π i xk}dk, x ∈ Z, k ∈ T. (2.7)

For a function G(x, k), we denote by G̃ : R×Z → C, Ĝ : R×T → C the Fourier
transforms of G in the k and x variables, respectively,

G̃(x, y) :=
∫

T

e−2π ikyG(x, k)dk, (x, y) ∈ R × Z,

Ĝ(η, k) :=
∫

R

e−2π iηxG(x, k)dx, (η, k) ∈ R × T.

The Initial Conditions For simplicity sake we restrict ourselves to initial con-
figurations of finite energy. In addition, we assume that the initial energy density
|ψy |2 is finite per unit length on the macroscopic scale x ∼ εy, where ε > 0
is the scaling parameter. More precisely, given ε > 0, the initial wave function
is distributed randomly, independent of the Langevin noise w(·), according to a
probability measure με on �2(Z), and

sup
ε∈(0,1)

∑

y∈Z
ε〈|ψy |2〉με

= sup
ε∈(0,1)

ε〈‖ψ̂‖2L2(T)〉με
< ∞, (2.8)

where 〈·〉με
denotes the expectation with respect to με. We will also assume that

〈ψ̂(k)ψ̂(�)〉με
= 0, k, � ∈ T. (2.9)

Condition (2.9) can be replaced by 〈ψ̂(k)ψ̂(�)〉με
∼ 0, as ε → 0 at the expense of

some additional calculations that we prefer not to perform in this article.
An additional hypothesis concerning the initial configuration will be stated later

on, see (2.18).
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The Wigner Distribution To study the effect of the thermostat, we follow the
evolution of the chain on the macroscopic time scale t ′ ∼ εt , and consider the
rescaled wave function ψ(ε)

y (t) = ψy(t/ε). A convenient tool to analyse the energy
density is the Wigner distribution (or Wigner transform) defined by its action on a
test function G ∈ S(R × T) as

〈G,W (ε)(t)〉 := ε

2

∑

y,y′∈Z
Eε

[
ψ(ε)

y (t)
(
ψ

(ε)
y′

)∗
(t)
]
G̃∗
(
ε
y + y′

2
, y − y′

)
. (2.10)

Here, Eε is the expectation with respect to the product measure με ⊗ P.
The Fourier transform of the Wigner distribution is

Ŵε(t, η, k) := ε

2
Eε

[
(ψ̂(ε))∗(t, k − εη

2
)ψ̂(ε)(t, k + εη

2
)
]
,

(t, η, k) ∈ [0,∞) × T2/ε × T, (2.11)

so that

〈G,W (ε)(t)〉 =
∫

T×R

Ŵε(t, η, k)Ĝ∗(η, k)dηdk, G ∈ S(R × T). (2.12)

We use the notation Ta = [−a/2, a/2] for the torus of size a > 0, with identified
endpoints.

A straightforward calculation shows that the macroscopic energy grows at most
linearly in time,

d‖ψ̂(ε)(t)‖2L2(T) =
[

− γ

ε
[p(ε)

0 (t)]2 + 2γ T

ε

]
dt +

√
2γ T

ε
p

(ε)
0 (t)dw(t), (2.13)

with p(ε)
0 (t) := p0(t/ε). Thus, we have a uniform bound

sup
ε∈(0,1]

εEε‖ψ̂(ε)(t)‖2L2(T) ≤ sup
ε∈(0,1]

εEε‖ψ̂(ε)(0)‖2L2(T) + 2γ T t, t ≥ 0. (2.14)

Let us denote by A the completion of S(R × T) in the norm

‖G‖A :=
∫

R

sup
k∈T

|Ĝ(η, k)|dη (2.15)

and by A′ its dual. We conclude from (2.14) that (see [5])

sup
t∈[0,τ ]

‖W (ε)(t)‖A′ < ∞, for each τ > 0, (2.16)

henceW (ε)(·) is sequentially weak-� compact over (L1([0, τ ];A))� for any τ > 0.
We will assume that the initial Wigner distribution

Ŵε(η, k) := Ŵε(0, η, k), (η, k) ∈ T2/ε × T (2.17)

is a family that converges weakly in A′ to a non-negative function W0 ∈ L1(R ×
T) ∩ C(R × T). We will also assume that there exist C, κ > 0 such that

|Ŵε(η, k)| ≤ Cϕ(η), (η, k) ∈ T2/ε × T, ε ∈ (0, 1], (2.18)

where

ϕ(η) := 1

(1 + η2)3/2+κ
. (2.19)



502 T. Komorowski et al.

Assumptions on the Dispersion Relation and Its Basic Properties We assume,
as in [1], that αy is a real-valued even function of y ∈ Z, and there exists C > 0 so
that

|αy| ≤ Ce−|y|/C , for all y ∈ Z,

thus α̂ ∈ C∞(T). We also assume that α̂(k) > 0 for k �= 0, and if α̂(0) = 0 then
α̂′′(0) > 0, so that α̂(k) = sin2(πk)α̂0(k) for some strictly positive even function
α̂0 ∈ C∞(T). It follows that the dispersion relation ω(k) = √

α̂(k) is also an
even and continuous function in C∞(T \ {0}). We assume that ω is increasing on
[0, 1/2], and denote its unique minimum attained at k = 0 by ωmin ≥ 0, its unique
maximum, attained at k = 1/2, by ωmax, and the two branches of the inverse of
ω(·) as ω− : [ωmin, ωmax] → [−1/2, 0] and ω+ : [ωmin, ωmax] → [0, 1/2]. They
satisfy ω− = −ω+, ω+(ωmin) = 0, ω+(ωmax) = 1/2 and in the case ω ∈ C∞(T):

ω′
±(w) = ±(w − ωmin)

−1/2χ∗(w), w − ωmin � 1, (2.20)

and

ω′
±(w) = ±(ωmax − w)−1/2χ∗(w), ωmax − w � 1, (2.21)

with χ∗, χ∗ ∈ C∞(T) that are strictly positive. When ω is not differentiable at 0
(the acoustic case) instead of (2.20) we assume

ω′
±(w) = ±χ∗(w), w − ωmin � 1, (2.22)

leaving condition (2.21) unchanged.
An important role in the analysis will be played by the function

J (t) =
∫

T

cos (ω(k)t) dk, t ≥ 0 (2.23)

its Laplace transform

J̃ (λ) :=
∫ ∞

0
e−λt J (t)dt =

∫

T

λ

λ2 + ω2(k)
dk, Re λ > 0, (2.24)

and the function

g̃(λ) := (1 + γ J̃ (λ))−1. (2.25)

Note that Re J̃ (λ) > 0 for λ ∈ C+ := [λ ∈ C : Re λ > 0], therefore
|g̃(λ)| ≤ 1, λ ∈ C+. (2.26)

The function g̃(·) is analytic on C+ so, by the Fatou theorem, see e.g. p. 107 of [9],
we know that

ν(k) := lim
ε→0

g̃(ε − iω(k)) (2.27)

exists a.e. in T and in any L p(T) for p ∈ [1,∞).
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To state our main result we need some additional notation. Let us introduce the
group velocity

ω̄′(k) := ω′(k)/(2π)

and

℘(k) := γ ν(k)

2|ω̄′(k)| ,

ß

(k) := γ |ν(k)|2
|ω̄′(k)| ,

p+(k) := |1 − ℘(k)|2 , p−(k) := |℘(k)|2. (2.28)

We will show in Section 10 that

Re ν(k) =
(
1 + γ

2|ω̄′(k)|
)

|ν(k)|2. (2.29)

It follows that

p+(k) + p−(k) = 1 − ß

(k) ≤ 1, (2.30)

so that, in particular, we have

0 ≤ ß

(k) ≤ 1. (2.31)

The Main Result

Our main result is as follows. For brevity, we use the notation [0, x] both for
x < 0 and x > 0, so as not to state the results separately for ω′(k) > 0 and
ω′(k) < 0.

Theorem 2.1. Suppose that the initial conditions and the dispersion relation satisfy
the above assumptions. Then, for any τ > 0 and G ∈ L1 ([0, τ ];A) we have

lim
ε→0

∫ τ

0
〈G(t),Wε(t)〉dt =

∫ τ

0
dt
∫

R×T

G∗(t, x, k)W (t, x, k)dxdk, (2.32)

where

W (t, x, k) = W0
(
x − ω̄′(k)t, k

)
1[0,ω̄′(k)t]c(x) + ß

(k)T 1[0,ω̄′(k)t](x)

+ p+(k)W0
(
x − ω̄′(k)t, k

)
1[0,ω̄′(k)t](x)

+ p−(k)W0
(−x + ω̄′(k)t,−k

)
1[0,ω̄′(k)t](x). (2.33)
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The limit dynamics has an obvious interpretation. The first term is the ballistic
transport of those phonons which did not cross {x = 0} up to time t . The second
term in the right side of (2.33) describes the phonon production of the thermostat.
The third and the fourth term correspond, respectively, to the transmission and
reflection of the phonons at the boundary point {x = 0}. More precisely, ß

(k)T is
the phonon production rate, p−(k) is the probability of reflection, and p+(k) is the
probability of transmission at {x = 0}. Notice that the phonons are absorbed by the
thermostat with probability 1− p+(k)− p−(k) = ß

(k). The scattering at the origin
depends only on the friction coefficient γ . At zero temperature the production of
phonons is turned off, while the scattering remains unmodified.

From (2.29) it follows that

ß

(k) = 2(Re ν(k) − |ν(k)|2),
and we also know that ν(k0) = 0 at the points where ω′(k0) = 0. This means
that the thermostat does not generate phonons with zero velocity, which otherwise
would have led to the accumulation of energy at the boundary.

Our main theorem is for the averaged Wigner distribution. In general, one
expects a suitable law of large numbers for the quantity on the left of (2.32) with
respect to με ⊗ P, even if the definition (2.10) of the Wigner transform would not
include the expectation Eε.

Our result can be written as a boundary value problem, which is a simple but
useful exercise. First, W (t, x, k) solves the homogeneous transport equation

∂tW (t, x, k) + ω̄′(k)∂xW (t, x, k) = 0, (2.34)

away from the boundary point {x = 0}. Second, if we denote the right and left
limits of W by

W−(t, k) := W (t, 0−, k), W+(t, k) := W (t, 0+, k),

then at {x = 0} the outgoing phonons are related to the incoming phonons as

W+(t, k) = p−(k)W+(t,−k) + p+(k)W−(t, k) + ß

(k)T,

for 0 ≤ k ≤ 1/2, (2.35)

and

W−(t, k) = p−(k)W−(t,−k) + p+(k)W+(t, k) + ß

(k)T,

for − 1/2 ≤ k ≤ 0. (2.36)

By equipartition, the equilibrium Wigner distribution is given by

W (t, x, k) ≡ T,

which indeed satisfies (2.35)–(2.36), as one should expect.
In case the bulk is governed by a wave equation with a small nonlinearity, one

would expect a nonlinear transport equation for the bulk, but the boundary terms
would be dominated by the linear equation, hence of the form as written above.
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It is interesting to consider what happens when the strength of the thermostat
γ → +∞, so that the oscillations of the particle in contact with the thermostat
are sped up by a factor of γ . Then, we have g̃(λ) ∼ γ −1, and ν(k) ∼ γ −1,
hence ß

(k) → 0 (see (2.28)), and there is no phonon production or absortion by
the thermostat as the particle at the thermostat moves “too incoherently”. However,
there is still non-trivial reflection and transmission at the interface.

The paper is organized as follows: in Section 3, we define the Fourier-Laplace
transform of the wave function and explain how the functions J (t) and g̃(λ) appear
in this context. The Wigner transform can be decomposed into the ballistic part
coming from the initial condition with no scattering, the thermostat production part
(which is independent of the initial condition) and the scattering part. It is quite
straightforward to analyze the former two terms and pass to the limit ε → 0 in the
corresponding expressions. Passage to the limit in the scattering term is much more
difficult. It is outlined in Section 5, where one of the scattering terms is analyzed
in Lemma 5.1, and the asymptotics for the other one is stated in Lemma 5.2. The
scattering terms are put together in Section 5.3. The bulk of the remainder of the
paper, Sections 6, 7 and 8, is essentially devoted to the proof of Lemma 5.2. The
critical steps are outlined in Lemmas 7.1–7.4. Each of these statements is quite
intuitive on the formal level but a rigorous justification is, unfortunately, rather
lengthy and with little room to spare in the estimates. In Section 9, we remove
an extra assumption that the initial condition is supported away from the non-
propagating modes, made to simplify the proof. Finally, in Section 10 we prove
relation (2.29).

3. The Laplace–Fourier Transform of the Wave Function and of the Wigner
Distribution

In this section, we obtain an explicit expression for the Laplace-Fourier trans-
form of the wave function. We use the mild formulation of (2.6):

ψ̂(t, k) = e−iω(k)t ψ̂(0, k) − iγ
∫ t

0
e−iω(k)(t−s)p0(s)ds

+ i
√
2γ T

∫ t

0
e−iω(k)(t−s)dw(t).

(3.1)

Integrating both sides in the k-variable and taking the imaginary part in both sides,
we obtain a closed equation for p0(t):

p0(t) = p00(t) − γ

∫ t

0
J (t − s)p0(s)ds +√2γ T

∫ t

0
J (t − s)dw(s), (3.2)

where J (t) is given by (2.23) and

p00(t) =
∫

T

Im
(
ψ̂(0, k)e−iω(k)t

)
dk (3.3)
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is the momentum at y = 0 for the free evolution with γ = 0 (without the thermo-
stat). Taking the Laplace transform

p̃0(λ) =
∫ +∞

0
e−λtp0(t)dt, Re λ > 0

in (3.2) we obtain

p̃0(λ) = g̃(λ)p̃00(λ) +√2γ T g̃(λ) J̃ (λ)w̃(λ). (3.4)

Here, g̃(λ) is given by (2.25), and p̃00(λ) and J̃ (λ) are the Laplace transforms of
p00(t) and J (t), respectively, and w̃(λ) is the Laplace transform of the Gaussian
white noise.

It is a zero mean Gaussian process with the covariance

E[w̃(λ1)w̃(λ2)] = 1

λ1 + λ2
, Re λ1, Re λ2 > 0. (3.5)

Next, taking the Laplace transform of both sides of (3.1) and using (3.4), we
arrive at an explicit formula for the Fourier-Laplace transform of ψy(t):

ψ̃(λ, k) = ψ̂(0, k) − iγ p̃0(λ) + i
√
2γ T w̃(λ)

λ + iω(k)

= ψ̂(0, k) − iγ g̃(λ)(p̃00(λ) + √
2γ T J̃ (λ)w̃(λ)) + i

√
2γ T w̃(λ)

λ + iω(k)

= ψ̂(0, k) − iγ g̃(λ)p̃00(λ) + i g̃(λ)
√
2γ T w̃(λ)

λ + iω(k)
.

(3.6)

Note that (3.6) implies, in particular, that, even at the zero temperature, and if the
initial wave function is monochromatic, that is, ψ̂(0, k) = δ0(k − k0) for some k0,
scattering at the thermostat generates various modes k �= k0, due to the damping at
y = 0. This is a microscopic phenomenon not observed on the macroscopic level,
as seen from the discussion following Theorem 2.1.

We will show below that g̃(λ) is the Laplace transform of a signed locally finite
measure g(dτ). Then, the term (λ + iω(k))−1g̃(λ)p̃00(λ), that appears in (3.6), is
the Laplace transform of

∫ t

0
ds
∫ t−s

0
e−iω(k)(t−s−τ)g(dτ)p00(s). (3.7)

Now, the Laplace inversion of (3.6) gives an explicit expression for ψ̂(t, k):

ψ̂(t, k) = e−iω(k)t ψ̂(0, k) − iγ
∫ t

0
ds
∫ t−s

0
e−iω(k)(t−s−τ)g(dτ)p00(s)

+ i
√
2γ T

∫ t

0
ds
∫ t−s

0
e−iω(k)(t−s−τ)g(dτ)dw(s)

= e−iω(k)t ψ̂(0, k) − iγ
∫ t

0
φ(t − s, k)p00(s) ds

+ i
√
2γ T

∫ t

0
φ(t − s, k) dw(s),

(3.8)
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where

φ(t, k) =
∫ t

0
e−iω(k)(t−τ)g(dτ). (3.9)

Likewise, we conclude from (3.4) that

p0(t) =
∫ t

0
p00(t − s)g(ds) +√2γ T

∫ t

0
dw(s)

∫ t−s

0
J (t − s − τ)g(dτ).(3.10)

In order to understand how g(dτ) looks like, note that a function g∗(t) that has
the Laplace transform

g̃∗(λ) := g̃(λ) − 1 = − γ J̃ (λ)

1 + γ J̃ (λ)
,

is the solution of the Volterra equation

g∗(t) + γ J � g∗(t) = −γ J (t), t ≥ 0. (3.11)

Here, we denote by

f1 � f2(t) =
∫ t

0
f1(t − s) f2(s)ds

the convolution of f1, f2 ∈ L1
loc[0,+∞). The solution g∗ of (3.11) is given by the

convolution series

g∗(t) =
+∞∑

n=1

(−γ )n J �,n(t). (3.12)

Here, J �,n(t) is the n-time convolution of J with itself. As |J (t)| ≤ 1, we see
that g∗ ∈ C∞[0,+∞) and |g∗(t)| ≤ eγ t , t ≥ 0. Then, we can represent g(dτ) as

g(dt) = δ0(dt) + g∗(t)dt, t ≥ 0. (3.13)

Here, δ0 is the Dirac distribution.
Observe that the existence of g(dt) with the above properties implies that

∫ t

0
eiω(k)τ g(dτ) = eiω(k)tφ(t, k) −→

t→∞ ν(k) (3.14)

in the sense that for Reλ > 0 the limit defined by (2.27) implies that

lim
ε→0

∫ +∞

0
e−λt

∫ ε−1t

0
eiω(k)τ g(dτ) = ν(k)

λ
. (3.15)

We let

ŵε(λ, η, k) :=
∫ +∞

0
e−λt Ŵε(t, η, k)dt, Re λ > 0 (3.16)
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be the Laplace-Fourier transform of the Wigner distribution defined in (2.10). The
claim of Theorem 2.1 is equivalent to the following: for any test function G ∈
S(R × T) we have

lim
ε→0+

∫

R×T

Ĝ∗(η, k)ŵε(λ, η, k)dηdk =
∫

R×T

Ĝ∗(η, k)ŵ(λ, η, k)dηdk, (3.17)

where

ŵ(λ, η, k) := T |ω̄′(k)| ß

(k)

λ(λ + iω′(k)η)
+ Ŵ0(η, k)

λ + iω′(k)η

+ |ω̄′(k)|(p+(k) − 1)

λ + iω′(k)η

∫

R

Ŵ0(η
′, k)dη′

λ + iω′(k)η′

+ |ω̄′(k)|p−(k)

λ + iω′(k)η

∫

R

Ŵ0(η
′,−k)dη′

λ − iω′(k)η′ , (3.18)

and p±(k) and ß

(k) are given by (2.28). Indeed, (3.18) is nothing but the Fourier-
Laplace transform of (2.33). The rest of the paper is devoted to the derivation of
(3.18).

4. The Phonon Creation Term

Since the contribution to the energy given by the thermal term and the initial
energy are completely separate, we can derive the first term in (3.18) assuming
Ŵ0 = 0. In this case ψ̂(0, k) = 0 and (3.8) reduces to a stochastic integral:

ψ̂(t, k) = i
√
2γ T

∫ t

0
φ(t − s, k) dw(s), (4.1)

To shorten the notation, denote

φ̃(t, k) =
∫ t

0
eiω(k)τ g(dτ) = eiω(k)tφ(t, k),

and

δεω(k, η) := 1

ε

[
ω
(
k + εη

2

)
− ω

(
k − εη

2

)]
. (4.2)

We can compute directly

Ŵε(t, η, k) = γ T
∫ t

0
e−iδεω(k,η)s φ̃(s/ε, k + εη/2)φ̃∗(s/ε, k + εη/2)ds.
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The Laplace transform of φ̃(ε−1t, k) is given by λ−1g̃(ελ − iω(k)). Then we can
compute directly the Laplace-Fourier tranform of the Wigner distribution and ob-
tain

ŵε(λ, η, k) = γ T
∫ ∞

0
dte−λt

∫ t

0
dse−iδεω(k,η)s φ̃

(
ε−1s, k + εη

2

)
φ̃∗
(
ε−1s, k − εη

2

)

= γ T

λ

∫ ∞

0
dse−(λ+iδεω(k,η))s φ̃

(
ε−1s, k + εη

2

)
φ̃∗
(
ε−1s, k − εη

2

)
,

(4.3)

and by using the inverse Laplace formula for the product of functions, we obtain,
for c > 0,

ŵε(λ, η, k) = γ T

λ

1

2π i
lim
�→∞

∫ c+i�

c−i�

g̃(εσ − iω(k + εη

2 ))g̃∗(ε(λ + iδεω(k, η) − σ) − iω(k − εη

2 ))

σ (λ + iδεω(k, η) − σ)
dσ.

(4.4)

Since g̃ is bounded and Reλ > 0, there is no problem in taking the limit as ε → 0
obtaining

γ T |ν(k)|2
λ (λ + iω′(k)η)

. (4.5)

5. The Scattering Terms

If the thermal production at 0 was easy to prove, the scattering terms are much
more challenging. Since the thermal part will not affect the scattering, we can set
T = 0 and consider a non-zero initial energy.

We will first prove (3.18) under a stronger assumption than (2.18): we will
assume no energy is concentrated around modes that have null velocity, more pre-
cisely that there exist C, δ > 0 and κ > 0 such that

|Ŵε(η, k)| ≤ Cϕ(η)χ
(
k − εη

2

)
χ
(
k + εη

2

)
,

(η, k) ∈ T2/ε × T, ε ∈ (0, 1], (5.1)

here ϕ(·) is given by (2.19) and χ ∈ C(T) is non-negative and satisfies

χ(k) ≡ 0 for k ∈ L(δ), (5.2)

with

L(δ) := [k : dist(k,�∗) < δ] (5.3)
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and �∗ := [k ∈ T : ω′(k) = 0] ⊂ {0, 1/2}. The proof of Theorem 2.1 under the
weaker assumption (2.18) is presented in Section 9 below.

We could have continued to compute ŵε directly from the expression of the
wave function, as we did for the termal part. We find it more practical to use the
time evolution of Ŵε(t, η, k).

A straightforward computation starting from (2.6) and (2.11) shows that the
Wigner transform obeys, for T = 0, an evolution equation

∂t Ŵε(t, η, k) = −iδεω(k, η)Ŵε(t, η, k)

+iγ

{∫

T

Eε

[
ψ̂(ε)

(
t, k + εη

2

)
(p̂(ε))∗(t, k ′)

]
dk ′

−
∫

T

Eε

[
(ψ̂(ε))∗

(
t, k − εη

2

)
p̂(ε)(t, k ′)

]
dk ′
}

. (5.4)

Performing the Laplace transform in both sides of (5.4), we obtain

(λ + iδεω(k, η)) wε(λ, η, k) = Ŵε(η, k) − γ

2

[
dε

(
λ, k − εη

2

)
+ d�

ε

(
λ, k + εη

2

)]
,

(5.5)

where

dε(λ, k) := i
∫ +∞

0
e−λt

Eε

[
(ψ̂(ε))∗ (t, k) p(ε)

0 (t)
]
dt. (5.6)

As δεω(k, η) → ω′(k)η as ε → 0, to get (3.18), we need to understand the limit
of dε(λ, k). Using (3.8) for T = 0, we may write

dε (λ, k) = d1ε (λ, k) + d2ε (λ, k) .

Here, d j
ε (λ, k), j = 1, 2 are the Laplace transforms of Iε(t/ε), IIε(t/ε) , where

Iε(t, k) := ieiω(k)t
∫ t

0

〈
p00(t − s)ψ̂∗(k)

〉

με

g(ds),

IIε(t, k) := −γ

∫ t

0
g
(
ds ′)

∫ t

0
φ∗ (t − s, k) 〈p00(s)p00(t − s ′)〉με

ds. (5.7)

Now, with (3.17) in mind, we can introduce

Lε(λ) :=
∫

R×T

Ĝ∗(η, k)ŵε(λ, η, k)dηdk = Lε
ini t (λ) + Lε

scat (λ). (5.8)

The first term in the right side is

Lε
ini t (λ) :=

∫

R×T

Ĝ∗(η, k)
Ŵε(η, k)

λ + iδεω(k, η)
dηdk. (5.9)

The scattering term in the right side of (5.8) is

Lε
scat (λ) = Lε

scat,1 + Lε
scat,2, (5.10)



High Frequency Limit for a Chain of Harmonic Oscillators 511

with

Lε
scat, j := −γ

2

∫

R×T

Ĝ∗(η, k)

λ + iδεω(k, η)[
d j

ε

(
λ, k − εη

2

)
+ (d j

ε )
�
(
λ, k + εη

2

)]
dηdk, j = 1, 2. (5.11)

The Ballistic Term

Thanks to the assumption that Ŵε(η, k) convergesweakly inA′ toW0 ∈ L1(R×
T) ∩ C(R × T), we can easily show that

Lε
ini t (λ) :=

∫

R×T

Ĝ∗(η, k)
Ŵε(η, k)

λ + iδεω(k, η)
dηdk

→
∫

R×T

Ĝ∗(η, k)
Ŵ0(η, k)

λ + iω′(k)η
dηdk, as ε → 0, (5.12)

which is the second term in the right side of (3.18).

5.1. The Limit of the First Scattering Term

Here, we use the notation

δ+
ε ω(k, η) := δεω

(
k + εη

2

)
= 1

ε

[
ω(k + εη) − ω(k)

]
,

δ−
ε ω(k, η) := δεω

(
k − εη

2

)
= 1

ε

[
ω(k) − ω(k − εη)

]
.

(5.13)

We now compute the limit of Lε
scat,1(λ) in (5.10) that we can re-write, after a

simple change of variables as

Lε
scat,1(λ) = −γ

2

∫

R×T

[ Ĝ∗(η, k + εη/2)

λ + iδ+
ε ω(k, η)

d1ε (λ, k)

+ Ĝ∗(η, k − εη/2)

λ + iδ−
ε ω(k, η)

(
d1ε
)∗

(λ, k)
]
dηdk.

We will show the following:

Lemma 5.1. For any test function G ∈ S(R × T) and λ > 0 we have

lim
ε→0+Lε

scat,1(λ) = −γ

∫

R×T

Re[ν(k)] Ŵ0(η
′, k)

λ + iω′(k)η′
{∫

R

G∗(η, k)

λ + iω′(k)η
dη

}
dkdη′. (5.14)
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Proof. From (5.7) and (3.3) we get

Iε(t, k) = 1

2

∫ t

0
g (ds)

∫

T

{
〈ψ̂�(k)ψ̂(�)〉με

ei(ω(k)−ω(�))t+iω(�)s

−〈ψ̂�(k)ψ̂�(�)〉με
ei(ω(k)+ω(�))t−iω(�)s

}
d�. (5.15)

Using assumption (2.9) and (5.15), we conclude that

d1ε(λ, k) = 1

2

∫

T

ε〈ψ̂�(k)ψ̂(�)〉με
d�
∫ +∞

0
exp {iω(�)s} g(ds)

∫ +∞

s
e−λεt exp {i(ω(k) − ω(�))t} dt

= 1

2

∫

T

ε〈ψ̂�(k)ψ̂(�)〉με
d�

λε + i(ω(�) − ω(k))

∫ +∞

0
g(ds)e−λεs exp {iω(k)s} ds

=
∫

T

(ε/2)〈ψ̂�(k)ψ̂(�)〉με
d�

λε + i(ω(�) − ω(k))
g̃(ελ − iω(k)).

For any test function G ∈ S(T × R) we can write, therefore, (cf. (5.13))
∫

R×T

Ĝ�(η, k + εη/2)d1ε(λ, k)

λ + iδ+
ε ω(k, η)

dkdη

=
∫

R×T

Ĝ�(η, k + εη/2)

λ + iδ+
ε ω(k, η)

dkdη

{∫

T

(ε/2)〈ψ̂�(k)ψ̂(�)〉με
g̃(ελ − iω(k))

λε + i(ω(�) − ω(k))
d�

}
. (5.16)

Changing variables k := k ′ − εη′/2, � := k ′ + εη′/2 the right hand side of (5.16)
can be rewritten in the form
∫

R

dη

{∫

Tε

Ŵε(η
′, k′)g̃(ελ − iω(k′ − εη′/2))Ĝ∗(η, k′ + εη/2 − εη′/2)

[λ + iδ+
ε ω(k′ − εη′/2, η)][λ + iε−1(ω(k′ + εη′/2) − ω(k′ − εη′/2))]dk

′dη′
}

.

(5.17)

Here, Tε ⊂ T2/ε × T is the image of T2 under the inverse map k ′ := (� + k)/2,
η′ := (� − k)/ε. Note that

lim
ε→0

g̃(ελ − iω(k ′ − εη′/2))Ĝ�(η, k ′ + εη/2 − εη′/2)
[λ + iδ+

ε ω(k ′ − εη′/2, η)][λ + iε−1(ω(k ′ + εη′/2) − ω(k ′ − εη′/2))]

= ν(k ′)Ĝ�(η, k ′)
[λ + iω′(k ′)η][λ + iω′(k ′)η′]

a.e. in (η, η′, k ′). Using bounds (5.1) and (2.26) we can argue, via the dominated
convergence theorem that the limit of (5.17), as ε → 0, is the same as that of

∫

R2×T

Ŵε(η
′, k ′)ν(k ′)Ĝ∗(η, k ′)dηdη′dk ′

[λ + iω′(k ′)η][λ + iω′(k ′)η′] . (5.18)
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Summarizing, the above argument proves that

lim
ε→0+

∫

R×T

Ĝ∗(η, k + εη/2)d1ε(λ, k)

λ + iδ+
ε ω(k, η)

dkdη

=
∫

R×T

ν(k)Ŵ0(η
′, k)

λ + iω′(k)η′

{∫

R

Ĝ∗(η, k)

λ + iω′(k)η
dη

}
dη′dk (5.19)

for any test function G ∈ S(T × R). Similarly, we have

lim
ε→0+

∫

R×T

Ĝ∗(η, k − εη/2)(d1ε)
∗(λ, k)

λ + iδ−
ε ω(k, η)

dkdη

=
∫

R×T

ν∗(k)Ŵ ∗
0 (η′, k)

λ − iω′(k)η′

{∫

R

Ĝ∗(η, k)

λ + iω′(k)η
dη

}
dη′dk. (5.20)

As Ŵ ∗
ε (η, k) = Ŵε(−η, k), we conclude that (5.14) holds. ��

5.2. Asymptotics of the Second Scattering Term

Let us split Lε
scat,2(λ) as

Lε
scat,2(λ) = −γ

2

∫

R×T

[
d2ε

(
λ, k − εη

2

)
+ (d2ε)

∗
(
λ, k + εη

2

)]

Ĝ∗(η, k)

λ + iδεω(k, η)
dηdk

= −γ

2

∫

R×T

[
d2ε (λ, k)

Ĝ∗(η, k + εη/2)

λ + iδ+
ε ω(k, η)

+ (d2ε)
∗ (λ, k)

Ĝ∗(η, k − εη/2)

λ + iδ−
ε ω(k, η)

]
dηdk

= Lε
scat,21(λ) + Lε

scat,22(λ), (5.21)

with the two terms corresponding to writing

d2ε = Red2ε + iImd2ε. (5.22)

We recall that

d2ε(λ, k) = ε

∫ +∞

0
e−λεt IIε (t, k) dt

= −γ ε

∫ +∞

0
e−λεtdt

{∫ t

0
eiω(k)(t−s)

〈
g � p00(s)g � p00(t)

〉
με

}
ds.

We will prove the following:
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Lemma 5.2. For any λ > 0 and G ∈ S(R × T) we have

lim
ε→0

Lε
scat,2(λ) = γ

4

∫

R×T

ß

(k)Ŵ (η′, k)dη′dk
λ + iω′(k)η′

∫

R

Ĝ∗(η, k)dη

λ + iω′(k)η

+γ

4

∫

R×T

ß

(k)Ŵ (η′,−k)dη′dk
λ − iω′(k)η′

∫

R

Ĝ∗(η, k)dη

λ + iω′(k)η
. (5.23)

The conclusion of this lemma is the consequence of the following two limits

lim
ε→0+Lε

scat,21(λ) = γ

4

∫

R×T

ß

(k)Ŵ (η′, k)dη′dk
λ + iω′(k)η′

∫

R

Ĝ∗(η, k)dη

λ + iω′(k)η

+γ

4

∫

R×T

ß

(k)Ŵ (η′,−k)dη′dk
λ − iω′(k)η′

∫

R

Ĝ∗(η, k)dη

λ + iω′(k)η
, (5.24)

and

lim
ε→0+Lε

scat,22(λ) = 0. (5.25)

5.3. The Limit of the Full Scattering Term

Putting together the results of Lemmas 5.1 and 5.2, we see that

lim
ε→0

Lε
scat (λ) = −γ

∫

R×T

Re[ν(k)] Ŵε(η, k)

λ + iω′(k)η{∫

R

G∗(η, k)

λ + iω′(k)η
dη

}
dkdη′

+γ

4

∫

R×T

ß

(k)Ŵ (η′, k)dη′dk
λ + iω′(k)η′

∫

R

Ĝ∗(η, k)dη

λ + iω′(k)η

+γ

4

∫

R×T

ß

(k)Ŵ (η′,−k)dη′dk
λ − iω′(k)η′

∫

R

Ĝ∗(η, k)dη

λ + iω′(k)η

=
∫

[Wtr (η, k) + Wre f (η, k)]Ĝ∗(η, k)
|ω̄′(k)|dηdk
λ + iω′(k)η

dηdk, (5.26)

with the transmission term

Wtr (η, k) = γ

|ω̄′(k)|
[

− Re[ν(k)] +

ß

(k)

4

] ∫ Ŵ (η′, k)dη′dk
λ + iω′(k)η′

= (p+(k) − 1)
∫

Ŵ (η′, k)dη′dk
λ + iω′(k)η′ . (5.27)

We used (2.29) in the last step. The other term in (5.26), corresponding to reflection,
is
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Wre f (η, k) = γ

ß

(k)

4|ω̄′(k)|
∫

R×T

Ŵ (η′,−k)dη′dk
λ − iω′(k)η′

= p−(k)
∫

R×T

Ŵ (η′,−k)dη′dk
λ − iω′(k)η′ . (5.28)

Combining the scattering terms in (5.26)–(5.28), together with the ballistic term in
(5.12) , we get (3.18). Thus, the proof of Theorem 2.1 is reduced to the computation
in Lemma 5.2.

6. The Proof of Lemma 5.2: The Limit of Lε
scat,21(λ)

We now turn to the proof of Lemma 5.2. In this section, we begin the rather
long and technical computation leading to (5.24).

A Calculation of Re d2ε

Recall that Lε
scat,21(λ) comes from the contribution to Lε

scat,2(λ) that appears
from Re d2ε . Our first task, therefore, is to compute Re d2ε . We have

2Re d2ε(λ, k)

= −2γ ε

〈∫ +∞

0
e−λεtdt

{∫ t

0
cos(ω(k)s)(g � p00)(s)ds

}
cos(ω(k)t)(g � p00)(t)

〉

με

−2γ ε

〈∫ +∞

0
e−λεtdt

{∫ t

0
sin(ω(k)s)(g � p00)(s)ds

}
sin(ω(k)t)(g � p00)(t)

〉

με

= −γ ε

〈∫ +∞

0
e−λεt d

dt

{[∫ t

0
cos(ω(k)s)g ∗ p00(s)ds

]2

+
[∫ t

0
sin(ω(k)s)g ∗ p00(s)ds

]2}
dt

〉

με

.

Integrating by parts, we obtain

2Re d2ε(λ, k) = −γ ε2λ

∫ +∞

0
e−λεtdt

〈{∫ t

0
cos(ω(k)s)(g � p00)(s)ds

}2〉

με

−γ ε2λ

∫ +∞

0
e−λεtdt

〈{∫ t

0
sin(ω(k)s)(g � p00)(s)ds

}2〉

με

:= Cε(λ, k) + Sε(λ, k). (6.1)

The first term in the right side is

Cε(λ, k) = −γ ε2λ

∫ +∞

0
e−λεtdt

∫ t

0∫ t

0
dsds ′ cos(ω(k)s) cos(ω(k)s ′)〈g ∗ p00(s)g ∗ p00(s

′)〉με
. (6.2)
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Using (2.9) and (3.3) gives

ε〈(g � p00)(s)(g � p00)(s
′)〉με

= 1

4

∫ s

0

∫ s ′

0
g(dτ)g(dτ ′)

∫

T2
d�d�′e−iω(�)(s−τ)eiω(�′)(s ′−τ ′)ε〈ψ̂(�)ψ̂∗(�′)〉με

+1

4

∫ s

0

∫ s ′

0
g(dτ)g(dτ ′)

∫

T2
d�d�′eiω(�)(s−τ)e−iω(�′)(s ′−τ ′)ε〈ψ̂∗(�)ψ̂(�′)〉με

.

(6.3)

Now, symmetry implies that the two terms above make an identical contribution to
Cε(λ, t), hence

Cε(λ, k) = −γ

2
ελ

∫ +∞

0
e−λεtdt

∫ t

0∫ t

0
dsds ′ cos(ω(k)s) cos(ω(k)s ′)

∫ s

0

∫ s ′

0
g(dτ)g(dτ ′)

∫

T2
d�d�′

×e−iω(�)(s−τ)eiω(�′)(s ′−τ ′)ε〈ψ̂(�)ψ̂∗(�′)〉με

= − γ

4π
ελ

∫

R

dβ

∫

T2
d�d�′ε〈ψ̂(�)ψ̂∗(�′)〉με

∫ +∞

0

∫ +∞

0
eiβ(t−t ′)e−λε(t+t ′)/2dtdt ′

×
∫ t

0

∫ t ′

0
dsds ′ cos(ω(k)s) cos(ω(k)s ′)

∫ s

0∫ s ′

0
g(dτ)g(dτ ′)e−iω(�)(s−τ)eiω(�′)(s ′−τ ′)

= − γ

4π
ελ

∫

R

dβ
∫

T2
ε〈ψ̂(�)ψ̂∗(�′)〉με

�(β, �, k, λ)��(β, �′, k, λ)d�d�′, (6.4)

with

�(β, �, k, λ) :=
∫ +∞

0
cos(ω(k)s)ds

{∫ s

0
e−iω(�)(s−τ)g(dτ)

∫ +∞

s
e(−λε/2+iβ)tdt

}
.

Integrating out first the t variable, and then the s varable, we obtain

�(β, �, k, λ) = 1

λε/2 − iβ

∫ +∞

0
eiω(�)τ g(dτ)

∫ +∞

τ

cos(ω(k)s)e[−λε/2+i(β−ω(�))]sds

= 1

2(λε/2 − iβ)

∫ +∞

0
g(dτ)eiω(�)τ

{
e[−λε/2+i[β+ω(k)−ω(�)]]τ

λε/2 − i(β + ω(k) − ω(�))
+ e[−λε/2+i(β−ω(k)−ω(�))]τ

λε/2 − i[β + ω(k) + ω(�)]
}
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= 1

2(λε/2 − iβ){
g̃ (λε/2 − i[β + ω(k)])

λε/2 − i(β + ω(k) − ω(�))
+ g̃ (λε/2 − i[β − ω(k))])

λε/2 − i[β + ω(k) + ω(�)]
}

.

Hence, after a change of variables β := εβ ′, we get

Cε(λ, k) = − γ λ

16 · πε2

∫

R

dβ

(λ/2)2 + β2

∫

T2
d�d�′ε〈ψ̂(�)ψ̂∗(�′)〉με

×
{

g̃ (λε/2 − i[εβ + ω(k)])
λ/2 − i{β + ε−1[ω(k) − ω(�)]}

+ g̃ (λε/2 − i[εβ − ω(k)])
λ/2 − i{β + ε−1[ω(k) + ω(�)]}

}

×
{

g̃ (λε/2 + i[εβ + ω(k)])
λ/2 + i{β + ε−1[ω(k) − ω(�′)]}

+ g̃ (λε/2 + i[εβ−ω(k)]))
λ/2 + i{β + ε−1[ω(k) + ω(�′)]}

}
. (6.5)

A similar calculation leads to

Sε(λ, k) = γ λ

24πε2

∫

R

dβ

(λ/2)2 + β2

∫

T2
d�d�′ε〈ψ̂(�)ψ̂∗(�′)〉με

×
{

g̃ (λε/2 − i[εβ + ω(k)])
λ/2 − i{β + ε−1[ω(k) − ω(�)]}

− g̃ (λε/2 − i[εβ − ω(k)])
λ/2 − i{β + ε−1[ω(k) + ω(�)]}

}

×
{

g̃ (λε/2 + i(εβ − ω(k)]))
λ/2 + i{β − ε−1[ω(k) + ω(�′)]}

− g̃ (λε/2 + i[εβ−ω(k)])
λ/2 + i{β + ε−1[ω(k) − ω(�′)]}

}
. (6.6)

Putting (6.1), (6.5) and (6.6) together gives

2Re d2ε(λ, k) = Rε(λ, k) + ρε(λ, k), (6.7)

with

Rε(λ, k) := − γ λ

8πε2

∫

R

dβ

(λ/2)2 + β2

∫

T2
d�d�′ε〈ψ̂(�)ψ̂∗(�′)〉με

× |g̃ (λε/2 − i[εβ + ω(k)]) |2
λ/2 − i{β + ε−1[ω(k) − ω(�)]}

× 1

λ/2 + i{β + ε−1[ω(k) − ω(�′)]} (6.8)

and

ρε(λ, k)
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:= − γ λ

16 · πε2

∫

R

dβ

(λ/2)2 + β2

∫

T2
d�d�′ε〈ψ̂(�)ψ̂∗(�′)〉με

{
g̃ (λε/2 − i[εβ + ω(k)])

λ/2 − i{β + ε−1[ω(k) − ω(�)]}
×
{ g̃ (λε/2 + i[εβ + ω(k)])
λ/2 + i{β + ε−1[ω(k) + ω(�′)]} + g̃ (λε/2 + i[εβ − ω(k)]))

λ/2 + i{β − ε−1[ω(k) + ω(�′)]
}

+ g̃ (λε/2 − i[εβ − ω(k)])
λ/2 − i{β + ε−1[ω(k) + ω(�)]}

×
{ g̃ (λε/2 + i[εβ + ω(k)])
λ/2 + i{β + ε−1[ω(k) + ω(�′)]} + g̃ (λε/2 + i[εβ − ω(k)]))

λ/2 + i{β − ε−1[ω(k) + ω(�′)]
}

− g̃ (λε/2 − i[εβ + ω(k)])
λ/2 − i{β + ε−1[ω(k) − ω(�)]}

g̃ (λε/2 + i[εβ − ω(k)]))
λ/2 + i{β − ε−1[ω(k) + ω(�′)]}

− g̃ (λε/2 − i[εβ − ω(k)])
λ/2 − i{β + ε−1[ω(k) + ω(�)]}

g̃ (λε/2 + i[εβ−ω(k)])
λ/2 + i{β + ε−1[ω(k) − ω(�′)]}

}
.

(6.9)

The main contribution to Lε
scat,21(λ) will come from the term Rε(λ, k) due to the

difference ω(k) − ω(�) in the denominator that can become small. As ρε(λ, k)
contains the sum ω(k) + ω(�), or ω(k) + ω(�′) we expect its contribution to be
small in the limit. More precisely, we will show the following result for the limit
of Rε(λ, k):

Lemma 6.1. Let

H±(λ, ε) :=
∫

R×T

Rε (λ, k)
Ĝ∗(η, k ± εη/2)

λ + iδ±
ε ω(k, η)

dηdk (6.10)

and

Itr (λ) := −2γπ

∫

R×T

|ν(k)|2Ŵ 0(η
′, k)dη′dk

|ω′(k)|[λ + iω′(k)η′]
∫

R

Ĝ∗(η, k)dη

λ + iω′(k)η
, (6.11)

and

Ire f (λ) := −2γπ

∫

R×T

|ν(k)|2Ŵ 0(η
′,−k)dη′dk

|ω′(k)|[λ − iω′(k)η′]
∫

R

Ĝ∗(η, k)dη

λ + iω′(k)η
, (6.12)

then

lim
ε→0+H±(λ, ε) = 1

2
(Itr (λ) + Ire f (λ)). (6.13)

On the other hand, ρε(λ, k) vanishes in the limit.

Lemma 6.2. For each λ > 0 we have

lim
ε→0+

∫

T

|ρε(λ, k)|dk = 0. (6.14)

These two lemmas, together with (5.21)–(5.22) and (6.7), imply (5.24).
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Proof of Lemma 6.2

Aword on notation: for two functions f, g : D → Rwe say that f � g if there
exists C > 0 such that f (x) ≤ Cg(x), x ∈ D. We shall use the notation f ≈ g if
f � g and g � f .

Opening the parentheses in (6.9), we can write

ρε(λ, k) =
6∑

j=1

ρ j
ε (λ, k).

We will only show that

lim
ε→0

∫

T

|ρ1
ε (λ, k)|dk = 0, (6.15)

as the other terms are analyzed in a similar fashion. To verify (6.15), it suffices to
show that

lim
ε→0

1

ε

∫

R

dβ

(λ/2)2 + β2

∫

T3

∣∣∣〈ψ̂(�)ψ̂∗(�′)〉με

∣∣∣

×
∣∣∣∣

g̃ (λε/2 − i[εβ + ω(k)])
λ/2 − i{β + ε−1[ω(k) − ω(�)]}

∣∣∣∣

×
∣∣∣∣

g̃ (λε/2 + i[εβ + ω(k)])
λ/2 + i{β + ε−1[ω(k) + ω(�′)]}

∣∣∣∣ dkd�d�
′ = 0. (6.16)

Change variables

� =: k ′ + εη′

2
, �′ =: k ′ − εη′

2
(6.17)

and let

T 2
ε :=

[
(η′, k ′) : |η′| ≤ 1

ε
, |k ′| ≤ 1 − ε|η′|

2

]
⊂ T2/ε × T, (6.18)

be the image of T2 under the inverse map, as below (5.17). The expression under
the limit in (6.16) can then be estimated by

‖g̃‖2∞
ε

∫

R

dβ

(λ/2)2 + β2

∫

T2×T2/ε

|Ŵε(η
′, k ′)|

|λ/2 − i{β + ε−1[ω(k) − ω(k ′ + εη′/2)]}|
× dkdk′dη′

|λ/2 + i{β + ε−1[ω(k) + ω(k ′ − εη′/2)]}| ≤ I1,ε + I2,ε, (6.19)

where

I1,ε := ‖g̃‖2∞
ε

∫

R

dβ

(λ/2)2 + β2

∫

T2×T2/ε

|Ŵε(η
′, k′)|

|λ + iε−1 (ω(k′ − εη′/2) + ω(k′ + εη′/2)) |

× dkdk′dη′

|λ/2 − i{β + ε−1[ω(k) − ω(k′ + εη′/2)]}|
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and

I2,ε := ‖g̃‖2∞
ε

∫

R

dβ

(λ/2)2 + β2

∫

T2×T2/ε

|Ŵε(η
′, k ′)|

|λ + iε−1 (ω(k ′ − εη′/2) + ω(k ′ + εη′/2)) |
× dkdk′dη′

|λ/2 + i{β + ε−1[ω(k) + ω(k ′ − εη′/2)]}| .
We used here the identity

1

(λ/2 − ia)(λ/2 + ib)
=
( 1

λ/2 − ia
+ 1

λ/2 + ib

) 1

λ − i(a − b)
.

Now, we can estimate I1,ε as follows:

I1,ε ≤ ε�ε‖g̃‖2∞
∫

R

dβ

(λ/2)2 + β2

∫

T×T2/ε

|Ŵε(η
′, k ′)|dk′dη′

ω(k ′ − εη′/2) + ω(k ′ + εη′/2)
,

with

�ε := sup
A∈R

∫

T

dk

|ελ/2 − i (ω(k) − A) | ≤ �+
ε + �−

ε ,

with

�±
ε := sup

A∈R

∫ ωmax

0

du

|ελ/2 − i(u − A)||ω′(ω±(u))| .

Recall thatω−,ω+ are the decreasing and increasingbranches of the inverse function
of the dispersion relation ω(·). Our assumptions on the dispersion relation imply
that

ω′(ω±(u)) ≈ (ωmax − u)1/2, for ωmax − u � 1.

The consideration near the minimum of ω is identical unless ωmin = 0, in which
case |ω′(k)| stays uniformly positive near the minimum. Therefore, we have

�±
ε � sup

A∈[0,1]

∫ 1

0

du

[ε + |u − A|]√u
� ε−1/2 log ε−1.

We therefore obtain

I1,ε � ε1/2 log ε−1
∫

Tε×T

|Ŵε(η
′, k ′)|dη′dk′

ω(k ′ − εη′/2) + ω(k ′ + εη′/2)

�
∫ +∞

0

∫ 1

0

ε1/2 log ε−1dqdu

(u + ε(q ∧ 1))(1 + q3+2κ )
→ 0,

as ε → 0, due to (5.1) and (2.19), and since if ωmin = 0, then ω(k) behaves as |k|
near the minimum k = 0. One can easily verify that the right hand side vanishes,
with ε → 0. Similarly we obtain that

lim
ε→0+ I2,ε = 0,

which finishes the proof of Lemma 6.2. ��
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7. The Proof of Lemma 6.1

7.1. Outline of the Proof

We now turn to the proof of Lemma 6.1, the main ingredient in the computation
of the limit ofLε

scat,21(λ). Wewill only consider the termH+(λ, ε), as the computa-
tion of the limit ofH−(λ, ε) is essentially the same.Wewill focus on the harder case
when the dispersion relation ω(k) is smooth both at its maximum k = 1/2 and its
minimum k = 0, so that the inverse function has a square root singularity at each of
these points. That is, the two branches of its inverse ω+ : [ωmin, ωmax] → [0, 1/2]
and ω− := −ω+ satisfy

ω′
±(w) = ±(w − ωmin)

−1/2χ∗(w), w − ωmin � 1,

and

ω′
±(w) = ±(ωmax − w)−1/2χ∗(w), ωmax − w � 1,

with χ∗, χ∗ ∈ C∞(T) that are strictly positive.
Using (6.8) and the change of variables (6.17) we can write

H+(λ, ε) = − γ λ

4πε

∫

R2

dβdη

(λ/2)2 + β2

∫

T×T 2
ε

Ŵε(η
′, k ′)dkdη′dk ′

λ/2 − i{β + ε−1[ω(k) − ω(k ′ + εη′/2)]}
× |g̃ (λε/2 − i[εβ + ω(k)]) |2

λ/2 + i{β + ε−1[ω(k) − ω(k ′ − εη′/2)]} × Ĝ∗(η, k + εη/2)

λ + iδ+
ε ω(k, η)

.

(7.1)

In fact, we may discard the contribution due to large η′, thanks to assumption (5.1).
More precisely, let H̃+(λ, ε) be the expression analogous toH+(λ, ε) correspond-
ing to integration over η′ and k ′ over

T 2
ε :=

[
(η′, k ′) : |η′| ≤ δ

2100ε
, |k ′| ≤ 1 − ε|η′|

2

]
⊂ T2/ε × T, (7.2)

with δ as in (5.2). Due to (5.1) and (2.19) we have
∣∣H+(λ, ε) − H̃+(λ, ε)

∣∣

� 1

ε

∫

|η′|≥δ/(2100ε)

dη′

(1 + (η′)2)3/2+κ
≈ ε1+2κ → 0, as ε → 0. (7.3)

In what follows we restrict ourselves therefore to studying the limit of H̃+(λ, ε).
Themain contribution to the limit comes from the regions whereω(k) ≈ ω(k ′),

that is, where either k ≈ k ′—this generates the transmission term, or k ≈ −k ′—this
is responsible for the reflection term in the limit. The smallness of these regions
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will compensate for the factor 1/ε in front of the integral in (7.1). To distinguish
the contributions of these two regions, we decompose

H̃+(λ, ε) =
∑

ι∈{−,+}
Iι(λ, ε). (7.4)

Here Iι(λ, ε) correspond to the integration over the domains T̃ 3
ε,ι, ι = ±:

T̃ 3
ε,ι :=

[
(k, η′, k ′) ∈ T × T 2

ε : sign k = ιsign(k ′ + εη′/2)
]
,

so that the integration over T̃ 3
ε,+ will generate the transmission term, and over T̃ 3

ε,−
the reflection. Changing variables k ′ := ιk + εη′′/2, and using the fact that ω(k) is
even, gives

Iι(λ, ε) = −γ λ

8π

∫

R2

dβdη

(λ/2)2 + β2

∫

T 3
ε,ι

Ŵε(η
′, ιk + εη′′/2)dkdη′dη′′

λ/2 − i{β + ε−1[ω(k) − ω(k + ι(εη′/2 + εη′′/2))]}
× |g̃ (λε/2 − i[εβ + ω(k)]) |2

λ/2 + i{β + ε−1[ω(k) − ω(k + ι(−εη′/2 + εη′′/2))]}
× Ĝ∗(η, k + εη/2)

λ + iδ+
ε ω(k, η)

. (7.5)

Here, T 3
ε,ι ⊂ T×T2/ε×T6/ε is the pre-image of T̃ 3

ε,ι under themapping (k, η′, η′′) �→
(k, η′, ιk + εη′′/2):

T 3
ε,ι :=

[
(k, η′, η′′) : k ∈ T, |η′| ≤ δ

250ε
,

∣∣∣k + ι
εη′′

2

∣∣∣

≤ 1 − ε|η′|
2

, sign k = sign
(
k + ι(εη′/2 + εη′′/2)

) ]
. (7.6)

We will pass to the limit ε → 0 in expression (7.5) in several steps. The first
step will be to replace the quotient ε−1[ω(k) − ω(k + ι(εη′/2 + εη′′/2))] in the
first denominator by −ιω′(k)(η′ + η′′)/2. That is, we will show the following:

Lemma 7.1. We have

lim
ε→0

{Iι(λ, ε) − I(1)
ι (λ, ε)} = 0, ι ∈ {−,+}, (7.7)

where

I(1)
ι (λ, ε) := − γ λ

8π

∫

R2

dβdη

(λ/2)2 + β2

∫

T 3
ε,ι

Ŵε

(
η′, ιk + εη′′/2

)

λ/2 − i{β − ιω′(k)(η′ + η′′)/2}

× |g̃ (λε/2 − i[εβ + ω(k)]) |2
λ/2 + i{β + ε−1[ω(k) − ω(k + ι(−εη′/2 + εη′′/2))]}

× Ĝ�(η, k + εη/2)

λ + iδ+
ε ω(k, η)

dkdη′dη′′. (7.8)
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Next, wewill replace a similar term in the second denominator by ιω′(k)(η′−η′′)/2.

Lemma 7.2. We have

lim
ε→0

{I(1)
ι (λ, ε) − I(2)

ι (λ, ε)} = 0, ι ∈ {−,+}, (7.9)

where

I(2)
ι (λ, ε) := − γ λ

8π

∫

R2

dβdη

(λ/2)2 + β2

∫

T 3
ε,ι

Ŵε

(
η′, ιk + εη′′/2

)

λ/2 − i{β − ιω′(k)(η′ + η′′)/2}

× |g̃ (λε/2 − i[εβ + ω(k)]) |2
λ/2 + i{β + ιω′(k)(η′ − η′′)/2} × Ĝ�(η, k + εη/2)

λ + iδ+
ε ω(k, η)

dkdη′dη′′.

(7.10)

The third step will be to replace the term |g̃ (λε/2 − i[εβ + ω(k)]) |2 in (7.10) by
its limit |ν(k)|2.
Lemma 7.3. We have

lim
ε→0

|I(2)
ι (λ, ε) − I(3)

ι (λ, ε)| = 0, ι ∈ {−,+}, (7.11)

with

I(3)
ι (λ, ε) = −γ λ

8π

∫

R2

dβdη

(λ/2)2 + β2

∫

T 3
ε,ι

Ŵε(η
′, ιk + εη′′/2)dkdη′dη′′

λ/2 − i{β − ιω′(k)(η′ + η′′)/2}

× |ν(k)|2
λ/2 + i{β + ιω′(k)(η′ − η′′)/2} × Ĝ�(η, k + εη/2)

λ + iδ+
ε ω(k, η)

. (7.12)

Next,wewill approximate theWigner transform Ŵε(η
′, ιk+εη′′/2)by Ŵε(η

′, ιk),
the test function G∗(η, k + εη/2) by G∗(η, k), and δ+

ε ω(k, η) by ω′(k)η, respec-
tively.

Lemma 7.4. We have

lim
ε→0

|I(3)
ι (λ, ε) − I(4)

ι (λ, ε)| = 0, ι ∈ {−,+}, (7.13)

with

I(4)
ι (λ, ε) = −γ λ

8π

∫

R2

dβdη

(λ/2)2 + β2

∫

T×R2

Ŵε(η
′, ιk)dkdη′dη′′

λ/2 − i{β − ιω′(k)(η′ + η′′)/2}
× |ν(k)|2

λ/2 + i{β + ιω′(k)(η′ − η′′)/2} × Ĝ�(η, k)

λ + iω′(k)η
. (7.14)

The last step will be to pass to the limit in Ŵε(η
′, ιk) and integrate in β, which is

done in Section 7.5.
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7.2. The Proof of Lemmas 7.1 and 7.2

We only present the proof of Lemma 7.1 since the proof of Lemma 7.2 is
very similar except somewhat simpler. We will also only consider ι = + (the
transmission case) in the proof of Lemma 7.1, as the reflection case can be treated
in a similar fashion.

Let us drop the subscript +, setting

I(λ, ε) := I+(λ, ε), I(1)(λ, ε) := I(1)
+ (λ, ε)

to reduce the number of subscripts. We split the domain of integration T 3
ε,+ into

four regions:

T 3
ε,+,ι1,ι2

:= [(k, η′, η′′) ∈ T 3
ε,+ : ι1k > 0, ι2(k − εη′/2 + εη′′/2) > 0],

ι1, ι2 ∈ {−,+}, (7.15)

and write

I(λ, ε) =
∑

ι1,ι2=±
Iι1,ι2(λ, ε), I(1)(λ, ε) =

∑

ι1,ι2=±
I(1)

ι1,ι2
(λ, ε).

Wewill only consider the case ι1 = ι2 = +, as the other cases can be done similarly,
and set

Ĩ(λ, ε) = I+,+(λ, ε), Ĩ(1)(λ, ε) = I(1)
+,+(λ, ε).

Our goal is to show that for any σ > 0 we have

lim sup
ε→0

|Ĩ(λ, ε) − Ĩ(1)(λ, ε)| < σ. (7.16)

We perform the change of variables

w0 := ω(k), w1 := ω(k − εη′/2 + εη′′/2), w2 := ω(k + εη′/2 + εη′′/2)
(7.17)

in the integrals over k, η′, η′′, to get

Ĩ(λ, ε) − Ĩ(1)(λ, ε)

= γ λi

4πε2

∫

R2

dβdη

(λ/2)2 + β2

∫

Dε

Ŵε

(
ε−1[ω+(w2) − ω+(w1)], (1/2)[ω+(w2) + ω+(w1)]

)

λ/2 − i{β + ε−1(w0 − w2)}

× �
(ε)
+ (w2, w0, β)|g̃ (λε/2 − i(εβ + w0)) |2

λ/2 + i{β + ε−1(w0 − w1)}

× Ĝ∗(η, ω+(w0) + εη/2)

λ + iδ+
ε ω(ω+(w0), η)

2∏

j=1

1

ω′(ω+(w j ))
dw0dw1dw2, (7.18)
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with Dε ⊂ [ωmin, ωmax]3—the image of T 3
ε,+,+,+ under the change of variables

mapping,

�
(ε)
± (w′, w, β) := ε−1δω+(w′, w)

λ/2 ∓ i{β + ε−1(w − w′) + ε−1ω′(ω+(w))δω+(w′, w)} ,
(7.19)

and

δω+(w′, w) := ω+(w) − ω+(w′) − ω′
+(w)(w − w′).

Let us explain some difficulties in passing to the limit in (7.18). Formally, we
have a factor of ε−2 in front of the integral compensated by the terms of the order
ε−1 in the first two denominators. The factor of ε−1 in the first argument in Ŵε

seemingly would then bring a collapse of one variable of integration and show that
the overall expression is small in the limit. However, there are two obstacles: first,
the factors ω′(ω+(w j )) have a square root singularity at ωmin and ωmax, so that the
effect of the ε−1 terms in the first two denominators is reduced. Second, the terms
of the size εβ are not necessarily small andmay influence the limit since the domain
of integration in β is all of R.

In order to deal with the first issue, using assumption (5.1), we see that there
exists δ0 > 0 such that for all (w1, w2), for which we have

Ŵε

(
1

ε

[
ω+(w2) − ω+(w1)

]
,
1

2

[
ω+(w2) + ω+(w1)

]) = 0, (7.20)

provided that either w1, w2 ∈ [ωmin, ωmin + δ0), or w1, w2 ∈ (ωmax − δ0, ωmax],
and (w0, w1, w2) ∈ Dε for some w0.

We can further write

I(λ, ε) − Ĩ(1)(λ, ε) =
2∑

j=1

J j,ε,

where the integration is split into the regions |w1−w2| ≥ δ0/4 and otherwise. From
(5.1) and (7.18) we conclude that

∣∣J1,ε

∣∣ � ε. If, on the other hand |w1−w2| < δ0/4
we only need to be concerned with the integration over w2 ∈ I (δ0/2), where
I (δ) := [ωmin + δ, ωmax − δ], as otherwise the integrand vanishes because of
(7.20). The above implies thatw1 ∈ I (δ0/4). Since ω+ ∈ C∞(I (δ0/4))we can can
find C > 0 such that, after integration in η, we have, with a constant depending on
λ:

|J2,ε| � Rε := 1

ε2

∫

R

dβ

1 + β2

∫ ωmax

ωmin

dw0

∫

I (δ0/4)

∫

I (δ0/2)

ϕ
(
Cε−1(w2 − w1)

)

1 + |β + ε−1(w0 − w2)|

× |�(ε)
+ (w2, w0, β)|dw1dw2

1 + |β + ε−1(w0 − w1)| = R1
ε + R2

ε.
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The two terms above correspond to the integration in w0 over the regions I ′(ρ) :=
[ωmin, ωmax] \ I (ρ) and I (ρ), with ρ < δ0/8. We have

R1
ε � 1

ε3

∫

I ′(ρ)

(
1 + 1

ω′(ω+(w0))

)
dw0

∫

I (δ0/4)

∫

I (δ0/2)
ϕ
(
Cε−1(w2 − w1)

)
dw1dw2

×
∫

R

1

1 + |β + ε−1(w0 − w2)| × 1

1 + |β + ε−1(w0 − w1)| × dβ

1 + β2

(7.21)

� 1

ε3

2∑

j=1

∫

I ′(ρ)

(
1 + 1

ω′(ω+(w0))

)
dw0

∫

I (δ0/4)
∫

I (δ0/2)
ϕ
(
Cε−1(w2 − w1)

)
dw1dw2

×
∫

R

1

1 + |β + ε−1(w0 − w j )|2 × dβ

1 + β2
. (7.22)

An elementary estimate
∫

R

1

1 + (β + a)2
× dβ

1 + β2
� 1

1 + a2
, a ∈ R (7.23)

implies that

R1
ε � 1

ε3

2∑

j=1

∫

I ′(ρ)

(
1 + 1

ω′(ω+(w0))

)
dw0

∫

I (δ0/4)
∫

I (δ0/2)
ϕ
(
Cε−1(w2 − w1)

) dw1dw2

1 + ε−2(w0 − w j )2
.

If w0 ∈ I ′(ρ) we have |w0 − w j | ≥ δ0/8, thus

R1
ε � 1

δ20

∫

I ′(ρ)

(
1 + 1

ω′(ω+(w0))

)
dw0

∫ 1

0

∫ 1

0

1

ε
ϕ
(
Cε−1(w2 − w1)

)
dw1dw2.

We conclude that

lim sup
ε→0

R1
ε � 1

δ20

∫

I ′(ρ)

(
1 + 1

ω′(ω+(w0))

)
dw0, ρ ∈ (0, 1). (7.24)

Selecting ρ > 0 sufficiently small, we deduce

lim sup
ε→0

R1
ε < σ. (7.25)

Next, we fix ρ > 0 sufficiently small, so that (7.25) holds and look at the termR2
ε ,

that involves integration in w0 over the region I (ρ). Note that ω+ ∈ C∞(I (ρ))

and

inf
w∈I (ρ)

ω′(ω+(w)) > 0,



High Frequency Limit for a Chain of Harmonic Oscillators 527

hence

R2
ε � 1

ε2

∫

R

dβ

1 + β2

∫

I (ρ)

∫

I (δ0/4)

∫

I (δ0/2)

ϕ
(
Cε−1(w2 − w1)

)

1 + |β + ε−1(w0 − w2)|

×|�(ε)
+ (w2, w0)|dw0dw1dw2

1 + |β + ε−1(w0 − w1)| .

After the change of variables w′
1 := ε−1(w1 − w0), w′

2 := ε−1(w2 − w0), β ′ :=
β − w′

2, the expression in the right side can be estimated by

Iε :=
∫

I (ρ)

dw0

∫

Iε(δ0)
dw1dw2

∫

R

ϕ (C(w2 − w1))

1 + |β + w2 − w1| × |�̃(ε)
+ (w2, w0, β)|

1 + (β + w2)2

× dβ

1 + |β| = I(1)
ε + I(2)

ε , (7.26)

with

�̃
(ε)
± (w′, w, β) := ε−1δ̃εω+(w′, w)

λ/2 ∓ i{β + ε−1ω′(ω+(w))δ̃εω+(w′, w)}
and

δ̃εω+(w′, w) = −
∫ w+εw′

w

(ω′
+(v) − ω′

+(w))dv = ω+(w) + ω′
+(w)εw′

−ω+(w + εw′). (7.27)

The two terms in the right side of (7.26) correspond to splitting the region Iε(δ0) ⊂
[−C1ε

−1,C1ε
−1]2 of integration in w1, w2 (the image of I (δ0/4) × I (δ0/2) under

the above map) into two sub-regions, corresponding to the integration over

Bε(ρ
′) := [w2 : |w2| ≤ ρ ′/ε]

and its complement, with ρ ′ > 0 is to be determined later. Note that in both regions
we have the estimates

lim
ε→0

ε−1δ̃εω+(w′, w) = 0 for each w,w′, (7.28)

and
∫

R

ϕ (Cw) dw

1 + |β + w| � 1

1 + |β| , dβ ∈ R. (7.29)

As the domain of integration in (7.26) depends on ε, even with (7.28) in hand,
we still can not apply the Lebesgue dominated convergence theorem directly. In
addition, we have the estimate

|�̃(ε)
+ (w,w0, β)| � |ε−1δ̃εω+(w,w0)| � εw2, (7.30)
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for all w0 and w in the domain of integration in (7.26). Integrating out the w1-
variable using (7.29) and (7.30), we obtain

I(1)
ε �

∫

I (ρ)

dw0

∫ ρ ′/ε

−ρ ′/ε
dw
∫

R

εw2

1 + (β + w)2

× dβ

1 + β2
�
∫

I (ρ)

dw0

∫ ρ ′/ε

−ρ ′/ε

εw2dw

1 + w2
� ρ ′. (7.31)

It follows that

lim
ε→0

I(1)
ε ≤ σ, (7.32)

for a sufficiently small ρ ′ ∈ (0, 1).
For the second term in the right side of (7.26), we use (7.29) to integrate out

the w1-variable once again, and write

I(2)
ε =

∫

I (ρ)

dw0

∫

I ′
ε

dw
∫

R

|�̃(ε)
+ (w,w0)|

1 + (β + w)2
× dβ

1 + β2
= I(2,1)

ε + I(2,2)
ε . (7.33)

Here, I ′
ε ⊂ [ρ ′/ε ≤ |w| ≤ C1/ε] is the projection of Iε ∩ Bc

ε(ρ
′) onto the w2-axis.

The first integral in the right side of (7.33) corresponds to integration over the set

[(β,w) ∈ R
2 : |β + w| ≤ |w|3/4]

and the second over its complement. We split again to get that

I(2,1)
ε = I(2,1)

ε,+ + I(2,1)
ε,− ,

according to the integration in w over I±
ε = I ′

ε ∩ [w > 0] and its complement, so
that

I(2,1)
ε,± �

∫

I (ρ)

dw0

∫

I+
ε

ε−1|δ̃εω+(w,w0)|dw
1 + w2

∫

[|β−w|≤|w|3/4]
dβ

1 + |β − ε−1ω′(ω+(w0))δ̃εω+(w,w0)|
. (7.34)

Let us set

zε(w,w0) := ε−1ω′(ω+(w0))δ̃εω+(w,w0) = w − ω+(w0 + εw) − ω+(w0)

εω′+(w0)
,

so that

w − zε(w,w0) > w4/5, for all w0 ∈ I (ρ) and w ∈ I+
ε (7.35)

for all ε > 0 sufficiently small. Then, we have

Zε(w,w0) :=
∫ w+w3/4

w−w3/4

dβ

1 + |β − zε| =
∫ w+w3/4−zε

w−w3/4−zε

dβ

1 + |β|
= log

(1 + w + w3/4 − zε

1 + w − w3/4 − zε

)
.
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It follows from (7.35) that by taking ε sufficiently small we may ensure that

lim sup
ε→0

sup
w0∈I (ρ),w∈I+

ε

|Zε(w,w0)| = 0. (7.36)

Then, using (7.30), we get

I(2,1)
ε,+ �

∫

I (ρ)

dw0

∫

|w−z|≥w4/5
|Zε(w,w0)|εw

2dw

1 + w2
≤ σ

2
, (7.37)

for ε > 0 sufficiently small. A similar calculation yields the same estimate for
I(2,1)

ε,− , thus

lim sup
ε→0

I(2,1)
ε < σ. (7.38)

As for I(2,2)
ε we can write

I(2,2)
ε �

∫

I (ρ)

dw0

∫

I ′
ε

ε−1|δ̃εω+(w,w0)|dw
1 + w3/2

∫

R

dβ

(1 + |β + ε−1ω′(ω+(w0))δ̃εω+(w,w0)|)(1 + β2)
.

Using an elementary estimate
∫

R

1

1 + |β + a| × dβ

1 + β2
� 1

1 + |a| , a ∈ R, (7.39)

we obtain

I(2,2)
ε �

∫

I (ρ)

dw0

∫

I ′
ε

ε−1|δ̃εω+(w,w0)|dw
[1 + |ε−1ω′(ω+(w0))δ̃εω+(w,w0)|](1 + w3/2)

.

Here, we can use the Lebesgue dominated convergence theorem and (7.28) to
conclude that

lim
ε→0

I(2,2)
ε = 0.

This finishes the proof of (7.16).

7.3. The Proof of Lemma 7.3

Let us note that the integration in η′′ both in expression (7.10) for I(2)
ι and

(7.12) for I(3)
ι would bring out the factor of [ω′(k)]−1 that is not integrable. This

singularity should be compensated by the g̃-term in (7.10) and by its limit |ν(k)|2
in (7.12), as can be seen from (2.27), (2.28) and (2.31). The following auxiliary
result will allow us to use this argument:

Lemma 7.5. For each k∗ such that ω′(k∗) = 0, we have

lim
δ′→0

lim sup
ε→0

sup
β∈(−δ′,δ′)

|g̃ (ε − i[β + ω(k∗)]) | = 0. (7.40)
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Proof. As follows from (2.25), it suffices to show that

lim
δ′→0

lim inf
ε→0

inf
β∈(−δ′,δ′)

| J̃ (ε − i[β + ω(k∗)]) | = +∞, (7.41)

with J̃ (·) as in (2.24). Consider the point k∗ = 1/2 where ω attains its maximum
ωmax = ω(k∗) > 0, and write

J̃ (ε − i[β + ω(k∗)])
= i

2

{ ∫

T

d�

iε + β + ω(k∗) + ω(�)
+
∫

T

d�

iε + β + ω(k∗) − ω(�)

}
.

Hence, (7.41) would follow if we can show that for each M > 0 there exist ε0, δ0 ∈
(0, 1) such that

∣∣∣
∫

T

d�

iε + β + ω(k∗) − ω(�)

∣∣∣ > M, β ∈ (−δ0, δ0), ε ∈ (0, ε0). (7.42)

The real and imaginary parts of the expression under the absolute value in (7.42)
are

rε(β) :=
∫

T

[β + ω(k∗) − ω(�)]d�
ε2 + [β + ω(k∗) − ω(�)]2 , jε(β) := −

∫

T

εd�

ε2 + [β + ω(k∗) − ω(�)]2 .

Changing variables u := ω(�) − β, we obtain

| jε(β)| ≥
∫ ωmax−β

ωmin−β

ε

ε2 + [ωmax − u]2 × du

|ω′(ω+(u + β))| .

Choosing a sufficiently small δ0 > 0, we see that

|ω′(ω+(u + β))| ≤ π/(2M) for |β| < δ0 and u ∈ (ωmax − δ0, ωmax + δ0),

hence

inf
β∈(−δ0,δ0)

| jε(β)| ≥ 2M

π

∫ ωmax+δ0

ωmax−δ0

εdu

ε2 + [ωmax − u]2 .

It follows that for a sufficiently small ε0 we have

inf
β∈(−δ0,δ0)

| jε(β)| ≥ M, ε ∈ (0, ε0),

and (7.42) follows. ��
We now turn to the proof of Lemma 7.3. Once again, we will only consider

ι = + and drop the subscript + in the notation. Let σ > 0 be arbitrary. For
ρ ∈ (0, δ/4), with δ > 0 as in (5.2), we let

L(ρ) := [k : dist(k,�∗) < ρ], �∗ := [k ∈ T : ω′(k) = 0] ⊂ {0, 1/2},
(7.43)
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with ρ to be specified further later. We can write

I(2)(λ, ε) − I(3)(λ, ε) = Ĩ1(λ, ε) + Ĩ2(λ, ε),

with the two terms corresponding to the integration in (7.10) and (7.12) in the k-
variable over Lc(ρ), the complement of L(ρ), and L(ρ) itself, respectively. Since
|ω′(k)| is bounded away from0on Lc(ρ), an elementary application of theLebesgue
dominated convergence theorem implies that

lim
ε→0

Ĩ1(λ, ε) = 0. (7.44)

Assumption (5.1), (5.2) on the support of Ŵε(η, k) in k allows us to write

|Ĩ2(λ, ε)| � Ĩ2,1(λ, ε) + Ĩ2,2(λ, ε), (7.45)

where

Ĩ2, j (λ, ε) :=
∫

R

dβ

(λ/2)2 + β2

∫

L(ρ)×B(δ,ε)×A(δ,ε)

|δ j,ε(β, k)|
1 + |β + ω′(k)(η′ − η′′)/2|

× ϕ(η′)dkdη′dη′′

1 + |β − ω′(k)(η′ + η′′)/2| ,

with

A(δ, ε) := [η′′ : δ/(2ε) ≤ |η′′| ≤ 6/ε], B(δ, ε) := [η′ : |η′| ≤ δ/(2100ε)]
(7.46)

and

δ1,ε(β, k) := |g̃ (λε/2 − i[εβ + ω(k)]) |2, δ2,ε(β, k) := |ν(k)|2 � |ω′(k)|.
(7.47)

The last inequality above follows from (2.29). It follows that

Ĩ2,2(λ, ε) �
∫

R

dβ

(λ/2)2 + β2

∫

L(ρ)×B(δ,ε)×A(δ,ε)

|ω′(k)|
1 + |β + ω′(k)(η′ − η′′)/2|

ϕ(η′)dkdη′dη′′

1 + |β − ω′(k)(η′ + η′′)/2|
≤ C(J+ + J−), (7.48)

with

J± :=
∫

L(ρ)×B(δ,ε)×A(δ,ε)

ϕ(η′)|ω′(k)|dkdη′dη′′

1 + [ω′(k)(η′ ± η′′)]2 , (7.49)

and a constantC > 0 independent of ε, ρ. We used the Cauchy-Schwarz inequality
and (7.23) in the last inequality in (7.48). Note that

J± :=
∫

L(ρ)×B(δ,ε)×A(δ,ε)

ϕ(η′)|ω′(k)|dkdη′dη′′

1 + [ω′(k)(η′ ± η′′)]2 . (7.50)
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Changing variables η′′ := ω′(k)(η′ ± η′′) we conclude that

J± ≤
∫

L(ρ)×R2

ϕ(η′)dkdη′dη′′

1 + |η′′|2 ≤ σ, (7.51)

provided that ρ > 0 is sufficiently small.
As for the term Ĩ2,1(λ, ε), using Cauchy-Schwarz inequality we obtain

Ĩ2,1(λ, ε) � Kε,+ + Kε,−,

with

Kε,±(ρ) :=
∫

R

dβ

1 + β2

∫

L(ρ)×B(δ,ε)×A(δ,ε)

δ1,ε(β, k)ϕ(η′)dkdη′dη′′

1 + |β − ω′(k)(η′′ ± η′)/2|2
= K 1

ε,+(ρ, ρ ′) + K 2
ε,+(ρ, ρ ′). (7.52)

The terms in the right side correspond to integration over the regions

K1
ε,+(ρ, ρ ′) := [(β, k, η′, η′′) ∈ R × L(ρ) × R × A(δ, ε) : |η′|
< δ/(2100ε), |β| ≥ ρ ′ε−1],

K2
ε,+(ρ, ρ ′) := [(β, k, η′, η′′) ∈ R × L(ρ) × R × A(δ, ε) : |η′|
< δ/(2100ε), |β| < ρ ′ε−1],

with ρ ′ > 0 to be chosen later. Since ω′(k∗) = 0, for each ρ ′ > 0 we can find ρ

sufficiently small so that

|β − ω′(k)(η′′ + η′)/2| ≥ |β|/2, on K1
ε,+(ρ, ρ ′).

Therefore, for each ρ ′ > 0 we can find ρ > 0 sufficiently small so that

K 1
ε,+(ρ, ρ ′) � 1

ε

∫

[|β|≥ρ ′ε−1]
dβ

(1 + β2)2
→ 0, as ε → 0, (7.53)

with the pre-factor ε−1 coming again from the integration over η′′ in (7.52) . Finally,
we can write

K 2
ε,+(ρ, ρ ′) ≤ mε(ρ, ρ ′)

∫

R

dβ

1 + β2

∫

L(ρ)×[|η′ |<δ/(2100ε)]×A(δ,ε)

ϕ(η′)dkdη′dη′′

1 + |β − ω′(k)(η′′ + η′)/2|2 ,

where

δ′ := ρ ′ + sup
k∈L(ρ)

|ω(k) − ω(k∗)|, mε(ρ, ρ ′) := sup
β ′∈(−δ′,δ′)

|g̃(ελ − i[β ′ + ω(k∗)])|2.

Using (7.23) again gives
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K 2
ε,+(ρ, ρ ′) � mε(ρ, ρ ′)

∫

L(ρ)×[|η′ |<δ/(2100ε)]×A(δ,ε)

ϕ(η′)dkdη′dη′′

1 + |ω′(k)(η′′ + η′)|2

� mε(ρ, ρ ′)
∫

L(ρ)×A(δ/10,ε/2)

dkdη′′

1 + |ω′(k)η′′|2

� mε(ρ, ρ ′)
∫

L(ρ)

dk

|ω′(k)|
[
arctan

(
12|ω′(k)|

ε

)
− arctan

(
δ|ω′(k)|

5ε

)]
.

Using a well known trigonometric identity we write

arctan
(12|ω′(k)|

ε

)
− arctan

(δ|ω′(k)|
5ε

)

= arctan
( (12 − δ/5)|ω′(k)|

ε

{
1 + (12/5)δ|ω′(k)|2

ε2

}−1)
,

therefore

K 2
ε,+(ρ, ρ ′) � mε(ρ, ρ ′)

∫ ρ

0

dk

k
arctan

( (k/ε)

1 + (k/ε)2

)

� mε(ρ, ρ ′)
∫ ∞

0

dk

k
arctan

( k

1 + k2

)
� mε(ρ, ρ ′).

Lemma 7.5 implies now that we can choose ρ, ρ ′ so small that

lim sup
ε→0

K 2
ε,+(ρ, ρ ′)� σ. (7.54)

Combining (7.53) and (7.54)we conclude that for eachσ > 0 there existsρ ∈ (0, 1)
such that

lim sup
ε→0

Kε,+(ρ) � σ. (7.55)

The analysis for Kε,−(ρ) is very similar, finishing the proof of Lemma 7.3.

7.4. The Proof of Lemma 7.4

As usual, we only consider ι = + and drop the corresponding subscript +. A
straightforward computation using (5.1), the regularity of the test function Ĝ(η, k),
and (7.23) shows that we can replace Ĝ�(η, k + εη/2) in (7.12) by Ĝ�(η, k), and
δ+
ε ω(k, η) by ω′(k)η, so that

|I(3)(λ, ε) − Ĩ(3)(λ, ε)| → 0, as ε → 0, (7.56)

where

Ĩ(3)(λ, ε) = −γ λ

8π

∫

R2

dβdη

(λ/2)2 + β2

∫

T 3
ε,ι

Ŵε(η
′, k + εη′′/2)dkdη′dη′′

λ/2 − i{β − ιω′(k)(η′ + η′′)/2}

× |ν(k)|2
λ/2 + i{β + ιω′(k)(η′ − η′′)/2} × Ĝ�(η, k)

λ + iω′(k)η
. (7.57)
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We change variables k ′ := k + εη′′/2 in the right side to obtain

Ĩ(3)(λ, ε) = − γ λ

8π

∫

R2

dβdη

(λ/2)2 + β2

∫

Uε

Ŵε(η
′, k)dkdη′dη′′

λ/2 − i{β − ω′(k − εη′′/2)(η′ + η′′)/2}

× |ν(k − εη′′/2)|2
λ/2 + i{β + ω′(k − εη′′/2)(η′ − η′′)/2} × Ĝ�(η, k)

λ + iω′(k)η
+ o(1)

= − γ λ

8π

∫

R2

dβdη

(λ/2)2 + β2

∫

Uε

Ŵε(η
′, k)dkdη′dη′′

λ/2 − i{β − ω′(k)(η′ + η′′)/2}

× |ν(k)|2
λ/2 + i{β + ω′(k)(η′ − η′′)/2} × Ĝ�(η, k)

λ + iω′(k)η
+ �ε + o(1),

(7.58)

with, cf (7.6),

Uε :=
[
(k, η′, η′′) : k ∈ T, |η′| ≤ δ

2100ε
, |k| ≤ 1 − ε|η′|

2
, sign(k − εη′′/2)

= sign
(
k + εη′/2

)]
. (7.59)

The term o(1) in the right side of (7.58) appears because we have, once again,
approximated the arguments in Ĝ� and ω′ by k in the very last factor, despite the
latest change of variables. The error �ε, that we now need to estimate, appears in
(7.58) because we have replaced the arguments of ω′ by k in the first two factors.

Thanks to assumption (5.1), the integration over k in (7.58) is only over the
complement of the set L(δ), see (5.3). We can then write (cf (7.46)) that

|�ε| �
∫

Lc(δ)×R×B(δ,ε)×R

dε(k, η
′, η′′)ϕ(η′)

|Ĝ�(η, k)|
|λ + iω′(k)η|dkdηdη

′dη′′

= �′
ε + �′′

ε . (7.60)

The terms�′
ε and�′′

ε correspond to the integration inη′′ over thedomains A′(δ, ε) :=
[|η′′| ≤ δ/(2ε)], and A′′(δ, ε) = [|η′′| ≥ δ/(2ε)], and

dε(k, η
′, η′′) :=

∫

R

dβ

(λ/2)2 + β2

∣∣∣∣
1

λ/2 − i{β − ω′(k − εη′′/2)(η′ + η′′)/2}
× |ν(k − εη′′/2)|2

λ/2 + i{β + ω′(k − εη′′/2)(η′ − η′′)/2}
− 1

λ/2 − i{β − ω′(k)(η′ + η′′)/2}
× |ν(k)|2

λ/2 + i{β + ω′(k)(η′ − η′′)/2}
∣∣∣∣ . (7.61)

Using (7.23) we can estimate, for (k, η′, η′′) ∈ Lc(δ) × B(δ, ε) × A′(δ, ε), that

dε(k, η
′, η′′) � 1

1 + (η′ − η′′)2
+ 1

1 + (η′ + η′′)2
. (7.62)
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As dε(k, η′, η′′) → 0 pointwise, we can apply the dominated convergence theorem
in (7.60), to get

lim
ε→0

�′
ε = 0. (7.63)

To estimate �′′
ε , observe that (7.23) implies

dε(k, η
′, η′′) �

∑

ι=±

(
d1,ι

ε (k, η′, η′′) + d2,ι
ε (k, η′, η′′)

)
,

with

d1,ι
ε (k, η′, η′′) := |ν(k − εη′′/2)|2

1 + [ω′(k − εη′′/2)(η′ + ιη′′)]2 , d2,ι
ε (k, η′, η′′)

:= |ν(k)|2
1 + [ω′(k)(η′ + ιη′′)]2 , ι ∈ {−,+}. (7.64)

As |η′′| is larger than δ/ε on A′′(δ, ε) and |ω′(k)| is bounded away from 0 on
Lc(δ), the decay of ϕ(η′) allows us to apply the dominated convergence theorem,
to obtain

lim
ε→0

∫

Lc(δ)×R×B(δ,ε)×A′′(δ,ε)
d2,ι

ε (k, η′, η′′)ϕ(η′)
|Ĝ�(η, k)|

|λ + iω′(k)η|dkdηdη
′dη′′

= 0, ι ∈ {−,+}. (7.65)

For the terms d1,ι
ε , we consider only the case ι = +, as the other case can be done

similarly. Note that

B(δ, ε) × A′′(δ, ε) ⊂ A1(δ, ε) := [(η′, η′′) ∈ R × A′′(δ, ε) : |η′ + η′′| ≥ |η′′|/2].
Hence,

∫

Lc(δ)×R×B(δ,ε)×A′′(δ,ε)
d1

ε (k, η′, η′′)ϕ(η′)
|Ĝ�(η, k)|

|λ + iω′(k)η|dkdηdη
′dη′′

≤ Dε :=
∫

Lc(δ)×R×A1(δ,ε)

d1
ε (k, η′, η′′)ϕ(η′)

|Ĝ�(η, k)|
|λ + iω′(k)η|dkdηdη

′dη′′. (7.66)

For any κ ′ ∈ (0, 1) we can write

Dε �
∫

Lc(δ)×A′′(δ,ε)

|ν(k − εη′′/2)|2
1 + [ω′(k − εη′′/2)η′′]2 dkdη

′′

�
∫

Lc(δ)×A′′(δ,ε)

|ν(k − εη′′/2)|2
|ω′(k − εη′′/2)| × dkdη′′

|ω′(k − εη′′/2)|κ ′ |η′′|1+κ ′

�
∫

Lc(δ)×A′′(δ,ε)

dkdη′′

|ω′(k − εη′′/2)|κ ′ |η′′|1+κ ′

�
∫

A′′(δ,ε)

dη′′

|η′′|1+κ ′ � εκ ′ → 0, as ε → 0. (7.67)
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We obtain from (7.65) and (7.67) and its analog for ι = − that

lim
ε→0

�′′
ε = 0, (7.68)

which, together with (7.63) gives

lim
ε→0

�ε = 0. (7.69)

We have shown that

Ĩ(3)(λ, ε) = − γ λ

8π

∫

R2

dβdη

(λ/2)2 + β2

∫

Uε

Ŵε(η
′, k)dkdη′dη′′

λ/2 − i{β − ω′(k)(η′ + η′′)/2}

× |ν(k)|2
λ/2 + i{β + ω′(k)(η′ − η′′)/2} × Ĝ�(η, k)

λ + iω′(k)η
+ o(1). (7.70)

Now, the dominated convergence theorem allows us to pass to the limit in the
domains of integration in (7.58), leading to (7.14).

7.5. The End of the Proof of Lemma 6.1

As a result of Lemmas 7.1–7.4, together with (7.4), we know that

H+(λ, ε) = −γ λ

8π

∑

ι=±

∫

R2

dβdη

(λ/2)2 + β2

∫

T×R2

Ŵε(η
′, ιk)dkdη′dη′′

λ/2 − i{β − ιω′(k)(η′ + η′′)/2}

× |ν(k)|2
λ/2 + i{β + ιω′(k)(η′ − η′′)/2} × Ĝ�(η, k)

λ + iω′(k)η
+ o(1), (7.71)

as ε � 1. Recall the elementary formula: for q± ∈ C such that Im q+ > 0 > Im q−
we have

∫

R

dq

(q − q+)(q − q−)
= 2π i

q+ − q−
. (7.72)

Performing the integral in the η′′ variable in (7.71) we obtain

H+(λ, ε) = −γ λ

2

∑

ι=±

∫

R2

dβdη

(λ/2)2 + β2

∫

T×R

|ν(k)|2Ŵε(η
′, ιk)dkdη′

|ω′(k)|[λ + ιiω′(k)η′]

× Ĝ�(η, k)

λ + iω′(k)η
+ o(1). (7.73)

Integrating out the β-variable we get (recall that ω̄′(k) = ω′(k)/(2π))

H+(λ, ε) = −γ

2

∑

ι=±

∫

T×R2

|ν(k)|2Ŵε(η
′, ιk)

|ω̄′(k)|[λ + ιiω′(k)η′]

× Ĝ�(η, k)

λ + iω′(k)η
dkdηdη′ + o(1). (7.74)

Ananalogous formula holds forH−(λ, ε). Letting ε → 0weobtain (6.13), finishing
the proof of Lemma 6.1.
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8. Proof of Lemma 5.2: The Limit of Lε
scat,22(λ)

We now turn to the computation that leads to (5.25) the second and final ingre-
dient in Lemma 5.2:

lim
ε→0+Lε

scat,22(λ) = 0. (8.1)

Observe that, as follows from (5.21) and (5.22), we have

Lε
scat,22(λ)

= − iγ

2

∫

R×T

[Imd2ε (λ, k)]
[ Ĝ∗(η, k + εη/2)

λ + iδ+
ε ω(k, η)

− Ĝ∗(η, k − εη/2)

λ + iδ−
ε ω(k, η)

]
dηdk (8.2)

with

d2ε(λ, k) = −γ ε

∫ +∞

0
e−λεtdt

{ ∫ t

0
eiω(k)(t−s)

〈
g � p00(s)g � p00(t)

〉
με

}
ds. (8.3)

A lengthy calculation, similar to that at the beginning of Section 6, leads to an
expression

iIm d2ε(λ, k) = − iελγω(k)

4π

∫

R

β |g̃(ελ/2 − iβ)|2dβ
{(ελ/2)2 + [β + ω(k)]2}{(ελ/2)2 + [β − ω(k)]2}

×
∫

T2

ε〈ψ̂(�)ψ̂∗(�′)〉με
d�d�′

{ελ/2 − i[β − ω(�)]}{ελ/2 + i[β − ω(�′)]} , (8.4)

hence

Lε
scat,22(λ) = iελγ 2

8π

∫

R2×T3

[
Ĝ�(η, k + εη/2)

λ + iδ+
ε ω(k, η)

− Ĝ�(η, k − εη/2)

λ + iδ−
ε ω(k, η)

]

× ω(k)β |g̃(ελ/2 − iβ)|2
{(ελ/2)2 + [β + ω(k)]2}{(ελ/2)2 + [β − ω(k)]2}

ε〈ψ̂(�)ψ̂∗(�′)〉με
dβdηdkd�d�′

{ελ/2 − i[β − ω(�)]}{ελ/2 + i[β − ω(�′)]} . (8.5)

After the change of variables β ′ := ε−1β, we get

Lε
scat,22(λ) = −λγ 2

8πε

∫

T

ω(k)Gε(k)dk

∫

R

β |g̃(ελ/2 − iεβ)|2dβ
{(λ/2)2 + [β + ε−1ω(k)]2}{(λ/2)2 + [β − ε−1ω(k)]2}

×
∫

T 2
ε

ε〈ψ̂(�)ψ̂∗(�′)〉με
d�d�′

{λ/2 − i[β − ε−1ω(�)]}{λ/2 + i[β − ε−1ω(�′)]} , (8.6)

with

Gε(k) := −i
∫

R

[
Ĝ�(η, k + εη/2)

λ + iδ+
ε ω(k, η)

− Ĝ�(η, k − εη/2)

λ + iδ−
ε ω(k, η)

]
dη
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=
∫

R

Ĝ�(η, k + εη/2)[2ω(k) − ω(k + εη) − ω(k − εη)]
ε{λ2 + [δ+

ε ω(k, η)]2} dη. (8.7)

Let us first assume that ω ∈ C∞(T). Then we can estimate

|Gε(k)| � ε‖ω′′‖∞
∫

R

η2‖Ĝ�(η, ·)‖∞dη � ε, (8.8)

while the last integral in the right side of (8.6) is bounded by

4ε

λ2

〈[∫

T2
|ψ̂(�)|d�

]2〉

με

≤ 4ε

λ2

〈
‖ψ̂‖2L2(T)

〉

με

� 1. (8.9)

Hence, we have

|Lε
scat,22(λ)| � ε

∫

T

dk
∫ +∞

0

ε−1ω(k)β dβ

{1 + [β + ε−1ω(k)]2}{1 + [β − ε−1ω(k)]2}
= ε

∫

T

dk
∫ ω(k)/ε

0

ε−1ω(k)β dβ

{1 + [β + ε−1ω(k)]2}{1 + [β − ε−1ω(k)]2}
+ε

∫

T

dk
∫ +∞

ω(k)/ε

ε−1ω(k)β dβ

{1 + [β + ε−1ω(k)]2}{1 + [β − ε−1ω(k)]2}

= ε

∫

T

dk
∫ ω(k)/ε

0

ε−1ω(k)
(
ε−1ω(k) − β

)

1 + [2ε−1ω(k) − β]2
dβ

1 + β2

+ε

∫

T

dk
∫ +∞

0

ε−1ω(k)
(
ε−1ω(k) + β

)

1 + [β + 2ε−1ω(k)]2
dβ

1 + β2
. (8.10)

Using the dominated convergence theorem, we conclude that

lim
ε→0

Lε
scat,22(λ) = 0. (8.11)

Finally, consider (8.6)–(8.7) when ω ∈ C∞(T \ {0}). Let σ > 0 be arbitrary,
and take A > 0, to be chosen later. We can write

Lε
scat,22(λ) = Lε,1

scat,22(λ) + Lε,2
scat,22(λ),

where the terms in the right hand side correspond to the integration over [k : |k| ≤
Aε] and its complement. As ω is Lipschitz, we have

|Gε(k)| �
∫

R

|η|‖Ĝ�(η, ·)‖∞dη � 1

Using (8.9) we write

|Lε,1
scat,22(λ)| �

∫

[|k|≤Aε]
dk
∫ +∞

0

ε−1ω(k)βdβ

{1 + [β + ε−1ω(k)]2}{1 + [β − ε−1ω(k)]2}
≤
∫

[|k|≤Aε]
dk
∫ +∞

0

ε−1ω(k)βdβ

{1 + ε−1ω(k)β}{1 + [β − ε−1ω(k)]2} � Aε. (8.12)
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Finally, we write

Lε,2
scat,22(λ) = Lε,21

scat,22(λ) + Lε,22
scat,22(λ),

corresponding to the partition of the integration domain in η into [η : |η| < A/4]
and its complement. In the first case, as |k| > Aε and |η| < A/4, we can still use
estimate (8.8), hence

lim
ε→0

Lε,21
scat,22(λ) = 0.

In the other case, we can estimate

|Lε,22
scat,22(λ)| �

∫

[|η|>A/4]
|η|‖Ĝ�(η, ·)‖∞dη

∫

[|k|>Aε]
dk

∫ +∞

0

ε−1ω(k)βdβ

{1 + ε−1ω(k)β}{1 + [β − ε−1ω(k)]2}
�
∫

[|η|>A/4]
|η|‖Ĝ�(η, ·)‖∞dη ≤ σ, (8.13)

provided that A is sufficiently large. This finishes the proof of (5.25), and that of
Lemma 5.2 as well.

9. End of Proof of Theorem 2.1

In the present section we show Theorem 2.1 assuming that the Fourier-Wigner
transform of the initial data satisfies (2.18) rather than the stronger assumption
(5.1). Suppose that σ > 0 and G ∈ S(R × T) are arbitrary. Let us decompose the
solution of (2.6) as

ψ̂(t, k) = ψ̂1(t, k) + ψ̂2(t, k),

where

dψ̂1(t, k) =
{

− iω(k)ψ̂1(t, k) − γ

2i

∫

T

[ψ̂1(t, k ′) − (ψ̂1(t, k ′))�]dk ′
}
dt

+ i
√
2γ T dw(t),

ψ̂1(0, k) = ψ̂(k)χδ(k)

(9.1)

and

dψ̂2(t, k)

dt
= −iω(k)ψ̂2(t, k) − γ

2i

∫

T

[
ψ̂2(t, k ′) − (ψ̂2(t, k ′))�

]
dk ′,

ψ̂2(0, k) = ψ̂(k)[1 − χδ(k)],
(9.2)

with χδ ∈ C(T) such that 0 ≤ χ ≤ 1, χδ ≡ 0 on L(δ) (see (5.3)), χδ ≡ 1 on
Lc(2δ) and δ chosen so small that

lim sup
ε→0+

εEε‖ψ̂(1 − χδ)‖2L2(T) < σ. (9.3)



540 T. Komorowski et al.

Let ŵε(λ, η, k) and ŵ1
ε (λ, η, k) be the Laplace transforms of the Fourier-Wigner

functions corresponding to ψ̂(t, k) and ψ̂1(t, k) via (2.11). Using estimates (2.14)
and (9.3) we see that

lim sup
ε→0+

sup
η∈T2/ε

∫

T

∣∣ŵε(λ, η, k) − ŵ1
ε (λ, η, k)

∣∣ dk � σ, for each λ > 0.

It follows, in particular, that

lim sup
ε→0+

∣∣∣∣
∫

R×T

Ĝ∗(η, k)ŵε(λ, η, k)dηdk −
∫

R×T

Ĝ∗(η, k)ŵ1
ε (λ, η, k)dηdk

∣∣∣∣ � σ.

(9.4)

In addition, the initial condition for ψ̂1(t, k) satisfies assumption (I3’) in (5.1). As
we have already proved Theorem 2.1 under this hypothesis, we conclude that

lim
ε→0+

∫

R×T

Ĝ∗(η, k)ŵ1
ε (λ, η, k)dηdk =

∫

R×T

Ĝ∗(η, k)ŵ1(λ, η, k)dηdk, (9.5)

with ŵ1(λ, η, k) given by (3.18), but with Ŵ0(η, k) replaced by χ2
δ (k)Ŵ0(η, k).

Thus, for a sufficiently small δ > 0 we have

∣∣∣∣
∫

R×T

Ĝ∗(η, k)ŵ1(λ, η, k)dηdk −
∫

R×T

Ĝ∗(η, k)ŵ(λ, η, k)dηdk

∣∣∣∣ < σ. (9.6)

We have thus shown that

lim sup
ε→0+

∣∣∣∣
∫

R×T

Ĝ∗(η, k)ŵε(λ, η, k)dηdk −
∫

R×T

Ĝ∗(η, k)ŵ(λ, η, k)dηdk

∣∣∣∣ � σ,

(9.7)

which ends the proof of Theorem 2.1.

10. The Properties of ν(k)

In this section, we prove relation (2.29). The function

ν(k) := lim
ε→0

g̃(ε − iω(k))

can be determined from the identity

ν(k)

(
1 + γ lim

ε→0
J̃ (ε − iω(k))

)
= 1.

Recalling (2.24), we write
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lim
ε→0

J̃ (ε − iω(k)) = lim
ε→0

∫

T

(ε − iω(k))d�

(ε − iω(k))2 + ω2(�)
= 1

2
lim
ε→0

∫

T

d�

ε − iω(k) + iω(�)

+1

2
lim
ε→0

∫

T

d�

ε − iω(k) − iω(�)
= i

2

∫

T

d�

ω(k) + ω(�)

+ i

2
lim
ε→0

∫

T

d�

iε + ω(k) − ω(�)
.

Let us set

G(u) := 1

2

∫

T

d�

u + ω(�)
=
∫ 1/2

0

d�

u + ω(�)
=
∫ ωmax

ωmin

dv

|ω′(ω−1
+ (v))|(u + v)

,

and

H(u) := 1

2
lim
ε→0

∫

T

d�

iε + u − ω(�)
= lim

ε→0

∫ ωmax

ωmin

dv

|ω′(ω−1+ (v))|(iε + u − v)
, a.e.

so that

ν(k) = 1

1 + iγ [G(ω(k)) + H(ω(k))] . (10.1)

In our situation, with u = ω(k) ∈ (ωmin, ωmax ), we have

H(ω(k)) = Hr (ω(k)) + i H i (ω(k)), (10.2)

with Hr (u), Hi (u) real valued functions equal

Hr (u) := lim
ε→0

∫ ωmax

ωmin

(u − v)dv

|ω′(ω−1
+ (v))|[ε2 + (u − v)2] (10.3)

and

Hi (u) := − lim
ε→0

∫ ωmax

ωmin

εdv

|ω′(ω−1
+ (v))|[ε2 + (u − v)2] . (10.4)

Both limits exist for all v ∈ R \ {ωmin, ωmax }. After an elementary calculation we
obtain

Hi (u) = − π

|ω′(ω−1
+ (u))| . (10.5)

Substituting into (10.1) immediately gives

Re ν(k) =
(
1 + πγ

|ω′(k)|
)
|ν(k)|2, (10.6)

which is (2.29).
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