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Abstract

We study the large time behavior of Fujita–Kato type solutions to the Vlasov–
Navier–Stokes system set onT3×R

3.Under the assumption that the initial so-called
modulated energy is small enough,we prove that the distribution function converges
to a Dirac mass in velocity, with exponential rate. The proof is based on the fine
structure of the system and on a bootstrap analysis allowing us to get global bounds
on moments.
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1. Introduction

We consider the Vlasov–Navier–Stokes system in T3 × R
3:

∂t f + v · ∇x f + divv[ f (u − v)] = 0, (1.1)

∂t u + (u · ∇)u − �u + ∇ p = j f − ρ f u, (1.2)

div u = 0, (1.3)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00205-020-01491-w&domain=pdf
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where

ρ f (t, x) :=
∫
R3

f (t, x, v) dv,

j f (t, x) :=
∫
R3

v f (t, x, v) dv.

This system of nonlinear PDEs describes the transport of particles (described by
their density function f ) within a fluid (described by its velocity u and its pressure
p) and belongs to the broad family of fluid-kinetic systems which were introduced
in the pioneering works ofO’Rourke [23] andWilliams [25]. Among all possible
couplings (we refer to the introduction of [14] for other examples), the Vlasov–
Navier–Stokes has been intensively studied because of both its physical relevance
(see [5] for instance) and the mathematical challenges that it offers. The Vlasov–
Navier–Stokes system is fully coupled: both unknowns f and u depend on each
other. This is due to the Brinkman force (the source term in the fluid equation)
and the drag acceleration (the inertial term in the kinetic equation). We refer to
[5] for the physical justification of these, and to [2,3,11,18,19] for the (partial)
mathematical derivation of the former. The physical constants are all normalized
in (1.1)–(1.3).

The mathematical analysis of the Vlasov–Navier–Stokes system has been for a
long time focused on the existence of (weak or strong) solutions on rather academic
domains [4,10,24] like the flat torus that we consider in this paper, or more realistic
ones [6,16].Most of the previous results provide global existence of weak solutions
in the following sense: a Leray solution for the fluid equation and a renormalized
one (in the sense of DiPerna and Lions [12]) for the kinetic equation (for a more
precise definition, see Definition 1.3 below). These global weak solutions are all
built by an approximation-compactness argument which is based on the kinetic
energy dissipation of the system.More regular solutions can also be constructed. In
2D, thanks to the uniqueness result of [17], they coincide with the weak solutions.
In 3D, regular solutions are only known to exist locally (see [10] for instance). This
issue is mainly due to the Navier–Stokes part of the system.

Very few articles deal with the long time behavior of this system. At the formal
level, one expects a monokinetic behavior in velocity for the distribution function
(in other words, concentration to a Dirac mass in velocity), due to the damping of
the fluid component and the friction term acting on the kinetic phase. This behavior
however has never been completely proven for the Vlasov–Navier–Stokes system.
The closest attempt is the paper [10] of Choi and Kwon in which a conditional the-
orem is provided: the monokinetic behavior is shown to occur under a boundedness
assumption that has not been established for any non-trivial global solution up to
now. We intend to fill this gap by using the functional introduced by Choi and
Kwon in [10] and proving that this boundedness property (in fact, a stronger one)
indeed holds, for appropriate solutions of the Vlasov–Navier–Stokes system, under
the assumption that the initial data are (in a sense to be made precise) sufficiently
close to equilibrium.

Concerning the long-time behavior of other fluid-kinetic systems, when a
Fokker–Planck dissipation is added in the kinetic equation, the situation is less
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involved because the equilibria are all Maxwellians, which are non-singular and (at
least locally) attract all solutions. This has been investigated for instance in [7,15].
Without this dissipation term, apart from [10], we can mention the work of Jabin
[21], in which the Navier–Stokes is replaced by a stationary Stokes equation (and
a different coupling term) and [14] in which a specific geometry is considered for
the Vlasov–Navier–Stokes system, allowing for non-singular stationary solutions.

To the best of our knowledge the results that we present below constitute the first
complete and rigorous proof of asymptotic monokinetic behavior for the Vlasov–
Navier–Stokes system.

1.1. Weak Solutions of the Vlasov–Navier–Stokes Ssystem

Let us start with a short review of the notion of weak solutions for the Vlasov–
Navier–Stokes system, which will give us the opportunity to introduce some nota-
tions.

Definition 1.1. The kinetic energy of the system (1.1)–(1.3) is given for t � 0 by

E(t) := 1

2

∫
T3

|u(t, x)|2 dx + 1

2

∫
T3×R3

f (t, x, v)|v|2 dv dx, (1.4)

and the dissipation is defined as

D(t) :=
∫
T3×R3

f (t, x, v)|u(t, x) − v|2 dv dx +
∫
T3

|∇u(t, x)|2 dx . (1.5)

The kinetic energy and dissipation stem from the seminal papers on the Vlasov–
Navier–Stokes sytem [4,16]. One can check that the identity

d

dt
E(t) + D(t) = 0

formally holds, which paves the way for a theory of global weak solutions.

Definition 1.2. We shall say that ( f0, u0) is an admissible initial condition if

u0 ∈ L2
div(T

3) = {U ∈ L2(T3), divU = 0}, (1.6)

0 � f0 ∈ L1 ∩ L∞(T3 × R
3), (1.7)

(x, v) �→ f0(x, v)|v|2 ∈ L1(T3 × R
3), (1.8)∫

T3×R3
f0 dv dx = 1. (1.9)

Remark 1.1. The last condition does not play any role for what concerns the prop-
erties of existence, uniqueness and long time behavior that we are about to discuss.
However, this normalization allows us to simplify the formulas.

We shall also denote H1
div(T

3) = H1(T3) ∩ L2
div(T

3).
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Definition 1.3. Consider an admissible initial data (u0, f0) in the sense of Defini-
tion 1.2.Aweak solution of theVlasov–Navier–Stokes systemwith initial condition
(u0, f0) is a pair (u, f ) with the regularity

u ∈ L∞
loc(R+;L2(T3)) ∩ L2

loc(R+;H1
div(T

3)),

f ∈ L∞
loc(R+;L1 ∩ L∞(T3 × R

3)),

j f − ρ f u ∈ L2
loc(R+;H−1(T3)),

with u being a Leray solution of (1.2)–(1.3) (initiated by u0) and f a renormalized
solution of (1.1) (initiated by f0), and such that the following energy estimate holds
for almost all t � s � 0 (including s = 0):

E(t) +
∫ t

s
D(σ ) dσ � E(s), (1.10)

where the functionals E and D are the energy and dissipation introduced in Defini-
tion 1.1.

The existence of weak solutions (u, f ) (in the sense of Definition 1.3) to the
Vlasov–Navier–Stokes system has been established in [4] (and even on general
domains in [6,24]).

Definition 1.4. We say that an initial condition satisfies the pointwise decay
assumption of order q > 0 if

(x, v) �−→ (1 + |v|q) f0(x, v) ∈ L∞(T3 × R
3), (1.11)

and in that case we denote

Nq( f0) := sup
x∈T3,v∈R3

(1 + |v|q) f0(x, v). (1.12)

Wefinally introduce someuseful notations formoments in velocity and averages
on the torus.

Definition 1.5. For all α � 0 and any measurable non-negative function f : T
3 ×

R
3 → R+, we set

mαf(t, x) :=
∫
R3

f|v|α dv, (1.13)

Mαf(t) :=
∫
T3×R3

f|v|α dv dx . (1.14)

For any measurable non-negative function h : T
3 → R

d (for any d ∈ N \ {0}), we
denote its average by

〈h〉 :=
∫
T3

h dx . (1.15)
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1.2. Heuristics for the Long Time Behavior

In this paper, we focus on the description of the long time behavior of weak
solutions to the Vlasov–Navier–Stokes system. To this end, it is enlightning to first
have a look at the linearVlasov equationwith friction, around the trivial equilibrium
(0, 0). This reads as

∂t g + v · ∇x g − divv[gv] = 0. (1.16)

Endowed with an initial condition g0 at t = 0, this equation admits the explicit
solution

g(t, x, v) = e3t g0(x − (et − 1)v, etv). (1.17)

Definition 1.6. For U ∈ R
3, we denote by δU the Dirac measure in velocity sup-

ported at U, defined by

∀ϕ ∈ D(R3), 〈δU, ϕ〉 = ϕ(U).

The long time behavior of the solution to (1.16) is explicit, as we observe
from (1.17) that

g(t, x, v) ⇀t→+∞
(∫

R3
g0(x − v, v) dv

)
⊗ δ0.

More generally, given U ∈ R
3, for the equation

∂t g + v · ∇x g + divv[g(U − v)] = 0, (1.18)

the long time behavior of the solution is also explicit and described by

g(t, x, v) −
(∫

R3
g0(x − v − tU, v + U) dv

)
⊗ δU ⇀t→+∞ 0.

The mechanism at stake in (1.16) and (1.18) is a competition between transport
and friction. Friction always wins in the end, causing concentration to a Dirac
mass in velocity. In view of this behavior, we may expect a similar concentration
phenomenon in velocity for the full Vlasov–Navier–Stokes system, at least in a
regime close to some equilibrium.

It is actually even possible to push the heuristics a little further. Taking
for granted that the kinetic phase concentrates in velocity, with the behavior
f (t, x, v) ∼ ρ f (t, x) ⊗ δu(t,x) as t → +∞, we observe in particular that the
Brinkman force in the Navier–Stokes equations vanishes as t → +∞. Since it
is well known that the solution u(t) of the Navier–Stokes without forcing tends
to homogenize to its average in space 〈u〉(t), we may expect that f (t, x, v) ∼
ρ f (t, x) ⊗ δ〈u〉(t) as t → +∞. In particular this entails 〈 j f 〉(t) ∼ 〈ρ f 〉(t)〈u〉(t) as
t → +∞, but then, by the conservation laws

∫
T3×R3

f (t) dv dx = 1, 〈u + j f 〉(t) = 〈u0 + j f0〉
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(see (3.2) and (3.3) in Lemma 3.1), we deduce that 〈u〉(t) ∼ 〈u0+ j f0 〉
2 as t → +∞.

To summarize, it follows from this heuristic argument that one can expect

f (t, x, v) ∼ ρ f (t, x) ⊗ δ 〈u0+ j f0
〉

2

as t → +∞, that corresponds to concentration to the constant velocity
〈u0+ j f0 〉

2 .

1.3. The Modulated Energy of Choi and Kwon

In [10], Choi and Kwon introduced a modulated version of the energy E(t) of
Definition 1.1:

Definition 1.7. We define the modulated energy as

E (t) := 1

2

∫
T3×R3

f (t, x, v)|v − 〈 j f (t, x)〉|2 dv dx

+1

2

∫
T3

|u(t, x) − 〈u(t)〉|2 dx + 1

4
|〈 j f (t)〉 − 〈u(t)〉|2. (1.19)

It is proved in [10] that the identity

d

dt
E (t) + D(t) = 0

formally holds. Controlling the modulated energy is interesting in view of the
expected long time monokinetic dynamics for the kinetic phase, because of the
following statement:

Lemma 1.1. With the previous notations, we have that for all t � 0,

W1

(
f (t), ρ f (t) ⊗ δ 〈u0+ j f0

〉
2

)
+

∥∥∥∥u(t) − 〈u0 + j f0〉
2

∥∥∥∥
L2(T3)

� (E (t))1/2,

(1.20)
where W1 is the Wasserstein(-1) distance.

The definition and basic properties of the Wasserstein distance W1 are given in
the Appendix (see Section 9.1). The proof of the previous lemma is postponed to
Section 3.2.

2. Main Results

Our main result provides a sharp description of the long time behavior of weak
solutions to the Vlasov–Navier–Stokes system.
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Theorem 2.1. There exists C
 > 0 and a nondecreasing onto function ϕ : R+ →
R+ such that the following holds. Let (u0, f0) be an admissible initial condition
such that Nq( f0) < +∞ for some q > 4, Mα f0 < +∞ for some α > 3 and
u0 ∈ H1/2(T3). Then, if

‖u0‖Ḣ
1/2

(T3)
<

1

C2



,

and if the initial modulated energy E (0) is small enough, in the sense that

ϕ
(

Nq( f0) + Mα f0 + E(0) + ‖u0‖H1/2(T3) + 1
)
E (0)

< min

(
1,

1

C2



− ‖u0‖2
Ḣ
1/2

(T3)

)
, (2.1)

then for any weak solution (u, f ) to the Vlasov–Navier–Stokes system, there exists
a profile ρ∞ ∈ L∞(T3) and λ, Cλ > 0 such that, for all t � 0,

∥∥∥∥u(t) − 〈u0 + j f0〉
2

∥∥∥∥
L2(T3)

+ W1

(
f (t), ρ∞

(
x − t

〈u0 + j f0〉
2

)
⊗ δ 〈u0+ j f0

〉
2

)

�
√
E (0)Cλ exp (−λt) , (2.2)

where W1 is the Wasserstein distance.

We refer to the solutions that we consider as Fujita–Kato type, as we require

small initial Ḣ
1/2

norm for the fluid velocity.

Remark 2.1. The constant C
 is the universal constant given in Proposition 9.10.

We deduce that when 〈u0 + j f0〉 = 0, the distribution function f (t) weakly
converges to a stationary solution, whereas when 〈u0 + j f0〉 �= 0, the asymptotic
behavior is that of a travelling wave.

Remark 2.2. As already said, existence of weak solutions follows from [4] (note
by the way that both the pointwise decay assumption and the higher order Sobolev
assumption are not relevant for this part).

Remark 2.3. The fact that the asymptotic state for the distribution function is a
Dirac mass in velocity, and thus is singular, virtually forbids the use of standard
PDE techniques, such as high order Sobolev energy estimates, to prove this result.

Remark 2.4. This result proves that for the Vlasov–Navier–Stokes system, the
large time behavior on the torus is very different from that on a domain with
partially dissipative boundary conditions (and under adequate geometric control
conditions): in [14], it is indeed proved that in the latter case there exist smooth
non-trivial equilibria that are locally stable.

Theorem 2.1 will be a consequence of the following result, bearing on the large
time behavior of the modulated energy E (t):
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Theorem 2.2. Under the assumptions of Theorem 2.1, we have that there exists
λ, C′

λ > 0 such that for all t � 0,

E (t) � E (0)C′
λe−λt . (2.3)

Furthermore, we have the global bounds

sup
t�0

‖ρ f (t)‖L∞(T3) < +∞, (2.4)

and
∫ +∞

1
‖∇u(τ )‖L∞(T3) dτ � η(E (0)), (2.5)

where η is a continuous nonnegative function such that η(0) = 0.

Remark 2.5. The constants Cλ,C′
λ appearing in Theorems 2.1 and 2.2 are uniform

with respect to the various (semi-)norms of u0 and f0 that appear in the assumptions.

It is actually even possible to describe the structure of the final density ρ∞.

Proposition 2.3. For δ small enough, under the assumptions of Theorem 2.1, if
furthermore u ∈ C 0(R+; W1,∞(T3)) and

∫ +∞

0
‖∇u(τ )‖L∞(T3) dτ � δ, (2.6)

then there exists a vector field

R+ × T
3 × R

3 −→ R
3

(s, x, v) �−→ Ys∞,x,v,

belonging to C 0(R+;C 1(T3 × R
3)) and such that we have

ρ∞(x) =
∫
R3

f0
(

Y0∞,x,v, v
)

|detA (∞, x, v)| dv, (2.7)

with

A (∞, x, v) = I3 +
∫ +∞

0
es∇u

(
τ, Yτ∞,x,v

)
DvYτ∞,x,v dτ, (2.8)

and s �→ Ys∞,x,v satisfies

Ys∞,x,v = x − e−sv + 〈u0 + j f0〉
2

(
e−s + s

)

−
∫ +∞

0

[
1[0,s](τ )eτ−s + 1τ�s

] (
u(τ, Yτ∞,x,v) − 〈u0 + j f0〉

2

)
dτ. (2.9)
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Remark 2.6. The assumption (2.6) on u is restrictive in the sense that the integral
goes down to the time t = 0. Indeed, the parabolic regularization and the estimates
obtained in Section 6 prove that with the assumptions of Theorem 2.1 alone, u ∈
C 0([ε,+∞);W1,∞(T3)) for all ε > 0. The assumption (2.6) therefore requires
higher regularity for the initial fluid velocity u0. It is also possible to avoid this
extra regularity assumption, replacing f0 by the value of f at time t = 1, and
all integrals starting from s = 0 by the same starting from s = 1. The relevant
assumption replacing (2.6), namely

∫ +∞

1
‖∇u(τ )‖L∞(T3) dτ � δ, (2.10)

is then obtained as a consequence of Theorem 2.2, see (2.5), when E (0) is taken
small enough.

Remark 2.7. Proposition 2.3 is proved in Section 8. For the sake of clarity the
proof focuses on the case 〈u0 + j f0〉 = 0. The proof of the general case is similar
and adds in only a few lines of computations, see Remark 8.1.

There aremainly two stabilizationmechanisms at stake in the large time dynam-
ics of solutions to the Vlasov–Navier–Stokes system. The first one is due to friction
in the Vlasov equation, that forces the distribution function to concentrate in veloc-
ity. The second stabilization mechanism comes from the dissipation in the Navier–
Stokes equations. There is a competition in the Navier–Stokes equations between
this dissipation and the possible growth of the non-linearity and the Brinkman force
F = j f − ρ f u. Loosely speaking, the smallness assumptions we make allow to
tame the influence of the forcing.

As alreadybrieflydiscussed in the introduction, thanks to thefine structure of the
system, there happens to be a modulated energy/dissipation identity that follows
from the energy identity and the conservation laws of the system, as exhibited
by Choi and Kwon [10]. This identity somehow reflects the two stabilization
mechanisms we have just discussed.

2.1. The Case of Dimension 2

For the sake of conciseness and physical relevance, we focus in this paper on the
case of dimension 3. However, with the same method that we develop, it is possible
to study the Vlasov–Navier–Stokes system on T

2 × R
2 with weaker regularity

assumptions on the initial data. Namely, we can treat admissible data (in all the
Definitions, statements or equations discussed in this section, one has to replace

T
3,R3 by T

2,R2 when necessary), without requiring the higher Ḣ
1/2

regularity
for u0 like in dimension 3, see Theorem 2.1 (the fact that more stringent regularity
assumptions are required in dimension 3 is due to thewell-known difficulties related
to the resolution of the Navier–Stokes equations). For the record, we gather in the
following statement what we may obtain in dimension 2.
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Theorem 2.4. There exists a nondecreasing onto function ϕ : R+ → R+ such
that the following holds. Let ( f0, u0) be an admissible initial condition such that
Nq( f0) < +∞ for some q > 4. Assume that the initial modulated energy E (0) is
small enough, in the sense that

ϕ
(
Nq( f0) + E(0) + 1

)
E (0) < 1. (2.11)

Then the weak solution (u, f ) to the Vlasov–Navier–Stokes system satisfies (2.2).

Note that the statement is also strengthened compared to dimension 3 since
there is uniqueness of the weak solution of the Vlasov–Navier–Stokes system: it
has been indeed established in [17] that in dimension d = 2, under the pointwise
decay assumption of order q > 4 of Definition 1.4 (and in fact an even less stringent
condition is sufficient), uniqueness holds for weak solutions of the Vlasov–Navier–
Stokes system.

The proof developed in dimension 3 applies mutatis mutandis, with the follow-
ing significant simplifications:

• the Ḣ
1/2

regularity for the fluid velocity is not required in order to get higher
order energy estimates for positive times, and therefore in particular we do not

need to propagate Ḣ
1/2

estimates for all times;
• we can rely on various estimates already proved in [17];
• several indices in the Sobolev embeddings are more favorable in dimension 2.

Let us finally mention that Proposition 2.3 holds as well in dimension 2.

2.2. Outline of the Proof and Organisation of the Paper

To conclude this section, let us provide a (non-technical) outline of the proof of
Theorem2.2. This also gives the opportunity to describe how this paper is organized.

The purpose of the first Section 3 is to explain how Theorem 2.1 can be deduced
from Theorem 2.2, and more strikingly how the proof of the latter boils down to
one single uniform estimate on the local density of the kinetic phase. In Section 3.1
we gather conservation laws for the Vlasov–Navier–Stokes system. Section 3.2
emphasizes the role of the modulated energy, and we prove therein Lemma 1.1,
which explains how the decay of this functional leads to concentration in velocity
for the particles. Sections 3.3 and 3.4 detail the following key observation of [10]: up
to a control of the L∞(R+;L∞(T3)) norm of the local density ρ f = ∫

R3 f dv, the
modulated energy is essentially controlled by its dissipation, yielding exponential
decay. We also explain, following an argument of Jabin [21], how one can recover
the existence of the asymptotic profile ρ∞ appearing in (2.2), once the exponential
decay is established.

As a consequence of Section 3, the proof of Theorem 2.2 (and therefore Theo-
rem 2.1) relies only on obtaining the following global bound for ρ f :

sup
t�0

‖ρ f (t)‖L∞(T3) < +∞, (2.12)
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and in fact our bootstrap strategy actually will prove the same estimate for j f =∫
R3 f v dv.

In Section 4, we present the main tools we used to obtain such bounds on
moments. They are based on the method of characteristics, which allows, consid-
ering the characteristics curves (X,V) solving the system

Ẋ(s; t, x, v) = V(s; t, x, v),

V̇(s; t, x, v) = u(s,X(s; t, x, v)) − V(s; t, x, v),
(2.13)

with (X(t; t, x, v),V(t; t, x, v)) = (x, v), to write solutions to the Vlasov equation
as

f (t, x, v) = e3t f0(X(0; t, x, v),V(0; t, x, v)). (2.14)

We deduce that

ρ f (t, x) = e3t
∫
R3

f0(t,X(0; t, x, v),V(0; t, x, v)) dv. (2.15)

In order to study (2.15), we rely on a change of variables in velocity, referred to as
the straightening change of variables, namely v �→ V(0; t, x, v). It is not obvious
that this map is a diffeomorphism. In, Section 4, we provide a sufficient condition
to ensure this: there exists a constant δ > 0 such that, if

∫ t

0
‖∇u(s)‖L∞(T3) ds < δ, (2.16)

then indeed the straightening change of variable is admissible. Under this smallness
condition, the outcome is the estimate

‖ρ f ‖L∞(0,t;L∞(T3)) � Nq( f0).

Similar bounds for j f = ∫
R3 v f dv can be obtained as well.

This change of variables is inspired by that used by Bardos and Degond [1]
for the study of global small solutions to the Vlasov–Poisson system on R

3 × R
3.

As a consequence of Section 4, the remaining task is now to prove that for small
enough initial modulated energy, the estimate (2.16) holds for all t � 1 (small times
are handled by local estimates). Sections 5 to 7 are dedicated to this task. To this
end, we set up a bootstrap argument. Loosely speaking, we consider

t
 := sup

{
t � 1,

∫ t

1
‖∇u(s)‖L∞(T3) ds < δ

}
, (2.17)

and the aim is to show that t
 = +∞. The general strategy is as follows: assuming
t
 < +∞, we work on the interval of time [1, t
], and shall obtain regularity
estimates for u using higher order energy estimates for the Navier–Stokes equations
and maximal parabolic estimates for the Stokes equations. Such bounds are not
relevant in terms of decay in time but on [1, t
] we have thanks to the straightening
change of variables

sup
t∈[1,t
]

‖ρ f (t)‖L∞(T3) � 1.
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Therefore, by Choi–Kwon’s key observation, E (t) decays exponentially fast on
[1, t
). The idea is then to interpolate the higher regularity estimate with the point-
wise L2(T3) bound bearing on u − 〈u〉 which is provided by the exponential decay
of themodulated energy.More precisely, we use the Gagliardo–Nirenberg–Sobolev
interpolation inequalities to obtain

‖u(s) − 〈u(s)〉‖L∞(T3) � ‖D2u(s)‖α

L2(T3)
‖u(s) − 〈u(s)〉‖1−α

L2(T3)
, (2.18)

for α ∈ (0, 1); we argue similarly for the control of ∇u.
To apply the previous bootstrap strategy, we need enough regularity and integra-

bility on the solutions of the Vlasov–Navier–Stokes system. We prove in Section 5
that any weak solution of the system instantaneously satisfies adequate estimates,
which includes:

• a short time control of ρ f and j f in L∞(T3), using local bounds;
• L∞

t H1
x ∩ L2

t H
2
x estimates for u, on time intervals away from zero, that is to say

for t � 1

‖∇u(t)‖2
L2(T3)

+
∫ t

1
‖�u(s)‖2

L2(T3)
ds � 1 + sup

s∈[1,t]
‖ρ f (s)‖L∞(T3). (2.19)

We introduce the convenient notion of strong existence times in order to be able to
propagate regularity.

In Section 6, we start to implement the interpolation strategy, relying this time
on higher order maximal parabolic estimates for the Stokes equation. The outcome
is a control of D2u in Lp

loc(R+;Lq(T3)) by (u · ∇)u and j f − ρ f u in the same
space.

Then Section 7 is dedicated to the proof of the global bound (2.12) : we explain
therein how the previous control of D2u can be iteratively used to produce an
estimate of the form

∫ t


1
‖∇u(s)‖L∞(T3) � E (0)γ .

Consequently, if E (0) is small enough, then we must have t
 = +∞, which con-
cludes the proof of Theorem 2.2.

Finally Section 8 is devoted to the proof of Proposition 2.3 which provides a
sharper description of the asymptotic behavior. The analysis comes down to the
study of the limit as t → ∞ of characteristics (more precisely of renormalized
versions of them). For the sake of clarity, the proof is written in the particular case
〈u0 + j f0〉 = 0 to lighten the computations (see Remark 8.1).

To conclude the paper, Section 9 is an Appendix where we provide some
reminders (in particular, we shortly review some well-known basic facts about
the Wasserstein distance) and justify H1 energy estimates for the Navier–Stokes
equations with source.
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3. Conservation Laws, Energy Dissipation Identities and Consequences

3.1. Conservation Laws

Wediscuss here someconservations laws for theVlasov–Navier–Stokes system.
We start by describing some basic ones in a first lemma: the first two ones come
from the structure of theVlasov equation alone, while the third one is a consequence
of the fine structure of the complete system.

Lemma 3.1. Any weak solution (in the sense of Definition (1.3)) satisfies the fol-
lowing conservations laws: for almost all t � 0,

f (t) � 0, for almost all (x, v) ∈ T
3 × R

3, (3.1)∫
T3×R3

f (t) dv dx =
∫
T3×R3

f0 dv dx = 1, (3.2)

〈u + j f 〉(t) = 〈u0 + j f0〉. (3.3)

Proof. Considering the results of [4], the only item to prove is (3.3). Let us assume
that both u and f are smooth functions. Integrating the Vlasov equation against v,
the conservation law satisfied by j f reads as

∂t j f + div

(∫
R3

f v ⊗ v dv

)
= ρ f u − j f , (3.4)

so that 〈 j f 〉 satisfies
d

dt
〈 j f 〉 = 〈ρ f u − j f 〉.

On the other hand, from (1.2), 〈u〉 satisfies
d

dt
〈u〉 = 〈 j f − ρ f u〉,

from which we deduce d
dt 〈u + j f 〉 = 0, and consequently (3.3).

In the general case, for the fluid equation we can directly use ϕ = 1 as an
admissible test function to recover almost everywhere

〈u(t)〉 − 〈u0〉 =
∫ t

0
〈 j f − ρ f u〉(s) ds.

For the kinetic equation we use an approximation argument relying on DiPerna
and Lions theory [12] for linear transport equations : we consider a sequence of
nonnegative distribution functions ( fn)n solving the Vlasov equation with regu-
larized vector fields (un)n and regularized and truncated initial conditions ( f0,n)n ,
and such that for all n � 1 and all t � 0,

∫
R3×R3

fn|v|2 dv dx � 1.
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By the DiPerna–Lions theory, f is the (strong) limit of ( fn)n in L∞(0, T ;Lp(T3 ×
R
3)) for all finite values of p ; interpolating with the previous bound we infer that

( j fn )n → j f strongly in L∞(0, T ;L1(T3 × R
3)) and (ρ fn un)n → ρ f u at least

in L1(0, T ;L1(T3)). This is sufficient to pass to the limit in the following identity
(which is justified at the regularized level)

〈 j fn (t)〉 − 〈 j f0〉 =
∫ t

0
〈ρ fn un − j fn 〉(s) ds,

and finally, (3.3) follows for almost every t .

A straightforward consequence of (3.3) in Lemma 3.1 is the following formula:

Lemma 3.2. For almost all t � 0,

1

4
|〈 j f 〉(t) − 〈u〉(t)|2=

∣∣∣∣〈 j f 〉(t) − 〈u0 + j f0〉
2

∣∣∣∣
2

=
∣∣∣∣〈u〉(t) − 〈u0+ j f0〉

2

∣∣∣∣
2

. (3.5)

Remark 3.1. We shall use in this paper several times the DiPerna–Lions theory
[12], in the same fashion as in the proof of Lemma 3.1. Thanks to the property of
strong stability of renormalized solutions, this allows to systematically argue as if
both f and u are smooth when looking to establish estimates for the kinetic phase.
The argument, as already outlined in the proof of Lemma 3.1, is the following:

• consider an approximating sequence (un)n for u and ( fn)n the associated solu-
tion to the Vlasov equation, with a regularized initial condition;

• prove the desired estimate for the solution fn (without explicitly using the higher
regularity of fn or un);

• pass to the limit using the strong stability property of renormalized solutions
(and Fatou’s lemma).

In the following, for brevity, we will never write down this argument explicitly but
will repeatedly refer to the current remark.

3.2. The Role of the Modulated Energy: Proof of Lemma 1.1

Proof. By theMonge–Kantorovich duality for theW1 distance (see Proposition 9.2
in the Appendix), we have

W1
(

f (t), ρ f (t) ⊗ δ〈 j f 〉
)

= sup
‖∇x,vφ‖∞�1

{∫
T3

(∫
R3

f (t, x, v)φ(x, v) dv − ρ(t, x)φ(x, 〈 j f 〉)
)
dx

}

= sup
‖∇x,vφ‖∞�1

{∫
T3×R3

f (t, x, v)(φ(x, v) − φ(x, 〈 j f 〉))dv dx

}

�
∫
T3×R3

f |v − 〈 j f 〉| dv dx .
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We thus infer, using the Cauchy–Schwarz inequality, the normalization (3.2) and
the definition of the modulated energy E (t)

W1
(

f (t), ρ f (t) ⊗ δ〈 j f 〉
)

�
(∫

T3×R3
f |v − 〈 j f 〉|2 dv dx

)1/2 (∫
T3×R3

f dv dx

)1/2

�
√
2 E (t)1/2.

Likewise,

W1

(
ρ f ⊗ δ〈 j f 〉, ρ f ⊗ δ 〈u0+ j f0

〉
2

)

= sup
‖∇x,vφ‖∞�1

∫
T3

ρ f (t, x)
(
φ(x, 〈 j f 〉) − φ

(
x,

〈u0 + j f0〉
2

))
dx

�
∣∣∣∣〈 j f 〉 − 〈u0 + j f0〉

2

∣∣∣∣
∫
T3

ρ f (t, x)dx .

We therefore deduce, using the normalization (3.2) and the identity (3.5)

W1

(
ρ f ⊗ δ〈 j f 〉, ρ f ⊗ δ 〈u0+ j f0

〉
2

)
� 1

2

∣∣〈 j f 〉 − 〈u〉∣∣ � E (t)1/2,

so that by triangular inequality we have established

W1

(
f (t), ρ f (t) ⊗ δ 〈u0+ j f0

〉
2

)
� E (t)1/2.

On the other hand, using again (3.5), we can also estimate
∥∥∥∥u(t)−〈u0+ j f0〉

2

∥∥∥∥
L2(T3)

� ‖u(t) − 〈u(t)〉‖L2(T3) +
∥∥∥∥〈u(t)〉 − 〈u0 + j f0〉

2

∥∥∥∥
L2(T3)

� ‖u(t) − 〈u(t)〉‖L2(T3) + 1

4
|〈 j f 〉 − 〈u〉|2,

and the result follows.

3.3. Dissipation of the Modulated Energy

As already said in the introduction, Choi and Kwon noticed in [10]1 that the
modulated energy (see Definition 1.7) satisfies the following formal identity

d

dt
E (t) + D(t) = 0. (3.6)

At the level of weak solutions, we are only able to obtain the inequality version
of (3.6), as stated in the next lemma.

1 As a matter of fact, they consider the more general Vlasov-inhomogeneous Navier–
Stokes system but we recover the system (1.1)–(1.3) as soon we stick to the case of constant
fluid density.
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Lemma 3.3. For any weak solution (u, f ) in the sense of Definition 1.3, for almost
all t � 0,

E (t) − E(t) = −1

4
|〈u0 + j f0〉|2.

In particular, we have the following modulated energy/dissipation inequality for
almost all 0 � s � t < +∞ (including s = 0),

E (t) +
∫ t

s
D(σ ) dσ � E (s). (3.7)

Proof. Let us first write

E (t) = E(t) + 1

2

(∫
T3×R3

f dv dx

)
〈 j f 〉2 − 〈 j f 〉2 − 1

2
〈u〉2 + 1

4
|〈 j f 〉 − 〈u〉|2,

that we can simplify in the following way thanks to (3.2)

E (t) = E(t) − 1

2
〈 j f 〉2 − 1

2
〈u〉2 + 1

4
|〈 j f 〉 − 〈u〉|2

= E(t) − 1

4
|〈 j f 〉 + 〈u〉|2,

so that E (t) − E(t) does not depend on t thanks to (3.3). Estimate (3.7) follows
then from the energy estimate (1.10).

3.4. Conditional Long Time Behavior

Definition 3.1. Let cP be the Poincaré constant, that is the best constant such that
the Poincaré–Wirtinger inequality holds:

‖g − 〈g〉‖L2(T3) � cP‖∇g‖L2(T3), ∀g ∈ H1(T3). (3.8)

The following result relating the dissipation and the modulated energy is a
variant of [10, Theorem 1.2]:

Lemma 3.4. There exists a continuous nonincreasing function ψ : R+ → R+ such
that the following holds, for any weak solution of the VNS system (in the sense of
Definition 1.3) for which ρ f ∈ L∞

loc(R+; L∞(T3)). Fix T > 0 and define

λ := ψ

(
sup
[0,T ]

‖ρ f (t)‖L∞(T3)

)
. (3.9)

Then

∀t ∈ [0, T ], D(t) � λE (t), (3.10)

and we have the exponential estimate

∀t ∈ [0, T ], E (t) � e−λtE (0), (3.11)

where � depends only on λ.
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Proof. First we note that (3.10) ⇒ (3.11). Indeed, combining with estimate (3.7)
of Lemma 3.3, we get for almost all 0 � s � t � T ,

E (t) + λ

∫ t

s
E (σ ) dσ � E (s),

so that from Lemma 9.3 of the Appendix we get E (t) � E (0)e−λt , where �
depends only on λ. We therefore focus on (3.10) and try to find λ > 0 of the form
(3.9).

Define

Ẽ (t) := E (t) − 1

2
‖u(t) − 〈u(t)〉‖2

L2(T3)
.

The Poincaré-Wirtinger inequality gives us a constant cP > 0 such that

D(t) � 1

2

∫
T3×R3

f (t)|v − u(t)|2 dv dx + 1

2
cP‖u(t) − 〈u(t)〉‖2

L2(T3)
.

Therefore to get (3.10) for some λ > 0, it is sufficient to prove that for some
γ, β > 0 we have

∫
T3×R3

f (t)|v − u(t)|2 dv dx � γ Ẽ (t) − β‖u(t) − 〈u(t)〉‖2
L2(T3)

, (3.12)

with β small enough (namely β < cP ) : in that case we have D(t) � λE (t) with
λ := min(γ, cP − β).

For the sake of clarity, we omit the time variable for a few lines. We also denote
‖ρ‖∞,T := sup[0,T ] ‖ρ f (s)‖L∞(T3). We start with the identity

|v − u|2 = |v − 〈u〉|2 + 2(v − 〈u〉) · (〈u〉 − u) + |〈u〉 − u|2,
from which we infer∫

T3×R3
f |v − u|2 dv dx =

∫
T3×R3

f |v − 〈u〉|2 dv dx +
∫
T3

ρ f |〈u〉 − u|2dx

+2
∫
T3×R3

f (v − 〈u〉) · (〈u〉 − u) dv dx . (3.13)

Now for any α ∈ (0, 1), Young’s inequality entails that

2
∫
T3×R3

f (〈u〉 − v) · (u − 〈u〉) dv dx

� −α

∫
T3×R3

f |v − 〈u〉|2 dv dx − α−1
∫
T3

ρ f |u − 〈u〉|2 dx .

Combining with (3.13) we have therefore
∫
T3×R3

f |v − u|2 dv dx � (1 − α)
∫
T3×R3 f |v − 〈u〉|2 dv dx

−(α−1 − 1)
∫
T3 ρ f |〈u〉 − u|2dx . (3.14)
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On the other hand, we have

|v − 〈u〉|2 = |〈 j f 〉 − 〈u〉|2 + 2(v − 〈 j f 〉) · (〈 j f 〉 − 〈u〉) + |v − 〈 j f 〉|2,

from which we deduce
∫
T3×R3

f |v − 〈u〉|2 dv dx = |〈 j f 〉 − 〈u〉|2 +
∫
T3×R3

f |v − 〈 j f 〉|2 dv dx,

where we used the normalization property (3.2) and

∫
T3×R3

f (v − 〈 j f 〉) · (〈 j f 〉 − 〈u〉) dv dx = 0.

In particular, we have

∫
T3×R3

f (t)|v − 〈u(t)〉|2 dv dx � Ẽ (t).

Since α ∈ (0, 1) we deduce from (3.14)

∫
T3×R3

f |v − u|2 dv dx � (1 − α)Ẽ (t) − (α−1 − 1)
∫
T3

ρ f |〈u〉 − u|2dx

� (1 − α)Ẽ (t) − (α−1 − 1)‖ρ f ‖∞,T

∫
T3

|〈u〉 − u|2dx,

which is exactly (3.12) with γ := 1 − α and β = (α−1 − 1)‖ρ f ‖∞,T . Picking α

close enough to 1 (to ensure β < cP ), λ := min(γ, cP − β) satisfies (3.10). To
check that λ can indeed be chosen of the form (3.9) we have to make more explicit
the choice of α by imposing for instance the condition β = cP/2 above, that
is α−1 = cP/(2‖ρ‖∞,T ) + 1 which is a continuous, nonincreasing, nonvanishing
function of ‖ρ‖∞,T :α is then continuous and increasing andλ := min(1−α, cP/2)
is of the form (3.9).

Once exponential decay of the modulated energy is ensured, one can prove the
existence of an asymptotic profile ρ∞ for whichwe have the following convergence
statement:

Proposition 3.5. For any weak solution (u, f ) to the Vlasov–Navier–Stokes system
for which supt�0 ‖ρ f (t)‖L∞(T3) < +∞ and E (t) →t→+∞ 0 with exponential

decay, there exists a profile ρ∞ ∈ L∞(T3) such that

W1

(
f (t), ρ∞

(
x − t

〈u0 + j f0〉
2

)
⊗ δ 〈u0+ j f0

〉
2

)
−→t→+∞0, (3.15)

exponentially fast.
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Proof. We rely on an argument of Jabin [21] used in the context of the large time
behavior of the Vlasov–Stokes system. The proof heavily relies on the exponential
decay of the modulated energy. Recall the conservation of the mass

∂tρ f = −∇ · j f .

For any smooth function ψ ∈ C∞(T3) we have therefore for 0 � s � t

∫
T3

ψρ f (t) −
∫
T3

ψρ(s) =
∫ t

s

∫
T3

∇ψ · j f (τ ) dτ.

Keeping in mind the definition of the Wasserstein distance (see Section 9.1), one
sees that the large time convergence of ρ f (which would imply that the Cauchy
criterion is verified for this metric) is in a way or another linked with the decay
of j f (τ ) as τ → +∞. In the general case, this property is not expected, as j f is
“supposed” to converge to ρ f 〈u0 + j f0〉/2. This justifies to consider the following
renormalized density:

ρ f (t, x) := ρ f

(
t, x + t

〈u0 + j f0〉
2

)
,

for which we have, denoting as well j f := j f

(
t, x + t

〈u0+ j f0 〉
2

)
,

∂tρ f = ∇ ·
(

ρ f
〈u0 + j f0〉

2
− j f

)
.

The previous computation implies
∫
T3

ψρ f (t) −
∫
T3

ψρ f (s) =
∫ t

s

∫
T3

∇ψ ·
(

j f − ρ f
〈u0 + j f0〉

2

)
(τ ) dτ,

and the integrand is now expected to decay for large time. More precisely if
‖∇ψ‖∞ � 1 we have, by translation invariance of the integration over T3

∣∣∣∣
∫
T3

ψρ f (t) −
∫
T3

ψρ f (s)

∣∣∣∣ �
∫ t

s

∫
T3

∣∣∣∣ j f − ρ f
〈u0 + j f0〉

2

∣∣∣∣ (τ ) dτ

=
∫ t

s

∫
T3

∣∣∣∣ j f − ρ f
〈u0 + j f0〉

2

∣∣∣∣ (τ ) dτ,

and we thus deduce, by Cauchy–Schwarz inequality, that
∣∣∣∣
∫
T3

ψρ f (t) −
∫
T3

ψρ f (s)

∣∣∣∣

�
∫ t

s

(∫
T3×R3

f

)1/2
(∫

T3×R3
f

∣∣∣∣v − 〈u0 + j f0〉
2

∣∣∣∣
2
)1/2

(τ ) dτ.

On the one hand, thanks to Lemma 3.1, the integral of f over T3 × R
3 equals 1.

On the other hand, thanks to Lemma 3.2 we have
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∣∣∣∣v − 〈u0 + j f0〉
2

∣∣∣∣
2

�
∣∣v − 〈 j f 〉

∣∣2 +
∣∣∣∣〈 j f 〉 − 〈u0 + j f0〉

2

∣∣∣∣
2

= ∣∣v − 〈 j f 〉
∣∣2 + 1

4

∣∣〈 j f 〉 − 〈u〉∣∣2 .

All in all, using the the Definition 1.7 of the modulated energy we have established
for any ψ ∈ C∞(R3) such that ‖∇ψ‖∞ � 1 that

∣∣∣∣
∫
T3

ψρ f (t) −
∫
T3

ψρ f (s)

∣∣∣∣ �
∫ t

s

(∫
T3×R3

f
∣∣v − 〈 j f 〉

∣∣2
)1/2

(τ ) dτ

+
∫ t

s
|〈 j f 〉 − 〈u〉|(τ ) dτ

�
∫ t

s
E (τ )1/2 dτ.

This estimate extends toLipschitz functionsψ satisfying‖∇ψ‖∞ � 1by a standard
approximation argument and the Monge–Kantorovitch duality formula allows us
to write

W1(ρ f (t), ρ f (s)) �
∫ t

s
E (τ )1/2 dτ. (3.16)

The exponential decay of the modulated energy leads to integrability of E 1/2 and
therefore the Cauchy criterion for ρ f (t) is verified for t → +∞ : we recover in
this way the convergence of ρ∞

f (t) → ρ∞ for some measure ρ∞ as t → +∞.

Since t �→ ρ∞(t) is uniformly bounded in L∞(R+;L∞(T3)), we must have ρ∞ ∈
L∞(T3). Note that the convergence is indeed exponential, thanks to the exponential
decay of E 1/2 : this can be seen when letting t → +∞ in (3.16). Now by a change
of variable we have

W1(ρ f (s), ρ
∞) = W1

(
ρ f (s), ρ

∞(
x − s

〈u0 + j f0〉
2

))
, (3.17)

which concludes the proof.

4. Changes of Variables and L∞ Bounds on Moments

In this sectionwe aim at establishing tools for obtaining bounds on themoments
ρ f and j f . We first obtain rough unconditional integrability results for ρ f and
j f thanks to some interpolation estimates. Next, using some adequate change of
variables in velocity, we get refined estimates on ρ f and j f , which can be controlled
along the flow in the following way. Assuming a suitable control on the quantity
‖∇u‖L1(0,t;L∞(T3)), it is possible to prove that (cf. Lemma 4.5)

‖ρ f ‖L∞(0,t;L∞(T3)) � 1,

‖ j f ‖L∞(0,t;L∞(T3)) �
(∫ t

0
‖u(s) − 〈u(s)〉‖L∞(T3) ds + e−t

(
1 +

∫ t

0
es |〈u(s)〉|ds

))
,
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which can be exploited in long time : the core of the bootstrap argument presented
in Section 7 is to prove that the control on ∇u holds as long as E (0) is small.

Many proofs in this section rely on the representation of the solution to the
Vlasov equation using characteristics, which holds at least when u is a smooth
vector field.

Definition 4.1. Assume u is smooth (say C 1). We define the characteristic curves
X(s; t, x, v) and V(s; t, x, v) associated with u as the solution to the system of
ODEs

Ẋ(s; t, x, v) = V(s; t, x, v),

V̇(s; t, x, v) = u(s,X(s; t, x, v)) − V(s; t, x, v),
(4.1)

with the initial condition (X(t; t, x, v),V(t; t, x, v)) = (x, v).

By the method of characteristics, for a smooth vector field u, we can write the
solution f to the Vlasov equation as

f (t, x, v) = e3t f0(X(0; t, x, v),V(0; t, x, v)). (4.2)

As explained in Remark 3.1, we then rely on DiPerna–Lions theory to ensure that
the estimates we are able to prove with this representation formula still hold even
if u is not smooth enough. For instance, a rough bound on the L∞ norm of f can
be directly deduced from (4.2).

Lemma 4.1. For almost all t � 0,

‖ f (t)‖L∞(T3×R3) � ‖ f0‖L∞(T3×R3)e
3t . (4.3)

In the remaining paragraphs of this section we will systematically use the
approximation procedure described inRemark 3.1, without refering to it explicitely.
This is in particular the case for each of the proofs which rely on the characteristic
curves.

4.1. Rough Local Bounds on Moments

We recall the notations Mα and mα introduced in Definition 1.5.

Lemma 4.2. Consider α � 1 such that u ∈ L1
loc(R+; Lα+3 ∩ W1,1(T3)) and

Mα f0 < ∞. Then Mα f (t) < ∞ and for all t > 0 and

Mα f (t) �α

(
Mα f0 + e

3t
α+3

∫ t

0
‖u(s)‖Lα+3(T3) ds

)α+3

. (4.4)

Proof. Multiplying the Vlasov equation by |v|α and integrating over T3 ×R
3, we

get

d

dt
Mα f (t) + αMα f (t) = α

∫
T3

u(t, x) · mα−1(t, x) dx . (4.5)
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Recall that, for 0 � � � k, the following interpolation estimate

‖m�g‖
L

k+3
�+3 (T3)

� (Mk g)
�+3
k+3 ‖g‖

k−�
k+3

L∞(T3)
, (4.6)

holds for any non-negative g ∈ L∞(T3 ×R
3). In particular for (�, k) = (α − 1, α)

we get

‖mα−1g‖
L

α+3
α+2 (T3)

� (Mαg)
α+2
α+3 ‖g‖

1
α+3

L∞(T3)
.

We can control ‖g‖L∞(T3) by Lemma 4.1, so that using Hölder’s inequality in (4.5),
we infer

d

dt
Mα f (t)

1
α+3 + α

α + 3
Mα f (t)

1
α+3 � e

3t
α+3 ‖u(t)‖Lα+3(T3),

from which we get

d

dt

{
e

αt
α+3 Mα f (t)

1
α+3

}
� et‖u(t)‖Lα+3(T3),

from which (4.4) follows.

Lemma 4.3. Assuming M3 f0 < +∞, we have the following:

(i) M3 f ∈ L∞
loc(R+);

(ii) ρ f ∈ L∞
loc(R+; L2(T3)) ;

(iii) j f ∈ L∞
loc(R+; L3/2(T3)).

Proof. By Lemma 4.2, we have

M3 f (t) �
(

M3 f0 + e
t
2

∫ t

0
‖u(s)‖L6(T3) ds

)6

.

However, using the Sobolev embedding H1(T3) ↪→ L6(T3) and the Poincaré-
Wirtinger inequality and the energy estimate (1.10), we infer

∫ t

0
‖u(s)‖L6(T3) ds �

∫ t

0
‖u(s) − 〈u(s)〉‖L6(T3) ds + √

tE(0)1/2

�
√

t

(∫ t

0
‖∇u(s)‖2

L2(T3)
ds

)1/2

+ √
tE(0)1/2

�
√

tE(0)1/2.

This concludes the proof of (i). By the interpolation estimate (4.6) for (�, k) =
(0, 3) and (�, k) = (1, 3) we have

‖ρ f (t)‖L2(T3) = ‖m0 f (t)‖L2(T3) � M3 f (t)1/2‖ f (t)‖1/2L∞ ,

‖ j f (t)‖L3/2(T3) � ‖m1 f (t)‖L3/2(T3) � M3 f (t)2/3‖ f (t)‖1/3L∞ .

We therefore obtain (i i) and (i i i) thanks to (i) and Lemma 4.1.
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4.2. The Straightening Change of Variables

We discuss in this section the change of variables in velocity that will allow us,
as explained at the beginning of this section, to prove long time estimates. The idea
is to come down to the “free” case (that is to say to the characteristics associatedwith
the vector field (x, v) → (v,−v) here), by using an appropriate diffeomorphism
in velocity. In doing this, a smallness condition bearing on ‖∇u‖L1(0,t;L∞(T3)) will
naturally appear in our calculations.

This change of variables is close in spirit to that employed in [1] by Bardos
and Degond in the study of small data solutions to the Vlasov–Poisson system on
R
3×R

3. We note however that the stabilization mechanism for Vlasov–Poisson on
R
3 ×R

3 is based on the dispersion properties of the free transport operator, which
is significantly different from that used in our work.

We also mention that similar ideas were recently used in the context of the
inertialess limit of the Vlasov–Stokes system in [20].

Lemma 4.4. Fix δ > 0 such that δeδ < 1/9. Then, for any t ∈ R+ satisfying
∫ t

0
‖∇u(s)‖L∞(T3) ds � δ, (4.7)

and any x ∈ R
3, the map

�t,x : v �→ V(0; t, x, v),

is a C 1-diffeomorphism from R
3 to itself satisfying furthermore

∀v ∈ R
3, | det Dv�t,x (v)| � e3t

2
. (4.8)

Proof. The proof is directly inspired from the arguments outlined in [1, Proposi-
tion 1 and Corollary 1].
(i) Consider a generic vector-valued flow Ys

t,z := Y(s; t, z) associated with a
smooth vector field w(t, z) defined on R+ × X and assume that ‖Dzw(t)‖L∞(X) �
1 + ψ(t), for some function ψ ∈ L1

loc(R+). We have ∂sYs
t,z = w(s,Ys

t,z) which
after differentiation with respect to z (introducing �s

t,z := DzYs
t,z) leads to

∂s�
s
t,z = Dzw(s,Ys

t,z) · �s
t,z,

from which we get by Gronwall’s inequality, for s � t , that

‖�s
t,z‖L∞(X) � ‖�t

t,z‖L∞(X) exp

(∫ t

s
‖Dzw(σ)‖L∞(X)dσ

)

� et−s exp

(∫ t

s
|ψ(σ)| dσ

)
, (4.9)

where we used �t
t,z = Id.

Now, let us get back to our system. Introducing the state variable z := (x, v)

which belongs to X = T
3 × R

3, the vector field w(t, z) := (v, u(t, x) − v)
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satisfies the assumption for the above abstract result, since ‖Dzw(t)‖L∞(X) � 1 +
‖∇u‖L∞(T3). If we denote by (X(s; t, z),V(s; t, z)) the characteristics associated
with u, integrating the equation defining s �→ V(s; t, z) we have

V(0; t, z) = etv −
∫ t

0
esu(s,X(s; t, z)) ds, (4.10)

which leads to

DvV(0; t, z) − et Id = −
∫ t

0
es∇u(s,X(s; t, z))DvX(s, t; z) ds.

We thus infer from (4.9) with ψ = ‖∇u‖L∞(T3) that

‖DvX(s; t, z)‖L∞(T3×R3) � et−s exp

(∫ t

s
‖∇u(τ )‖L∞(T3) dτ

)
,

and thus that

‖e−tDvV(0; t, z) − Id‖L∞(T3×R3)

� exp

(∫ t

0
‖∇u(s)‖L∞(T3)ds

) ∫ t

0
‖∇u(s)‖L∞(T3)ds.

In particular, if (4.7) holds with δ > 0 such that δeδ � 1
9 , then Lemma 9.4 applies

and we can conclude.

Thanks to the change of variables of Lemma 4.4, we deduce the following
control on moments:

Lemma 4.5. If assumption (4.7) of Lemma 4.4 is satisfied, we have for almost all
t � 0,

‖ρ f (t)‖L∞(T3) � 2Iq Nq( f0), (4.11)

‖ j f (t)‖L∞(T3) � 2Iqe−t
(∫ t

0
es‖u(s)‖L∞(T3) ds + 1

)
Nq( f0), (4.12)

where Nq( f0) is given by (1.12) and

Iq :=
∫
R3

1 + |v|
1 + |v|q dv.

Proof. Let (X(s, t; x, v),V(s, t; x, v)) be the characteristics (4.1) associated with
u. We start again from the representation formula

ρ f (t, x) = e3t
∫
R3

f0(X(0; t, x, v),V(0; t, x, v)) dv.

By Lemma 4.4, the mapping v �→ �t,x (v) = V(0; t, x, v) defines an admissible
change of variable of which we deduce

ρ f (t, x) = e3t
∫
R3

f0(X(0; t, x, �t,x (w)),w)
∣∣Dv(�t,x )(�t,x (w))

∣∣ dw,
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which implies (the control of the jacobian is given by Lemma 4.4)

‖ρ f (t)‖L∞(T3) � 2Nq( f0)Iq . (4.13)

For j f we proceed similarly and write the representation formula (valid for the
same reasons)

j f (t, x) = e3t
∫
R3

�t,x (w) f0(X(0; t, x, �t,x (w)),w)
∣∣Dv(�t,x )(�t,xw))

∣∣ dw.

By definition of �t,x (w), we have the identity

w = et�t,x (w) −
∫ t

0
esu(s,X(s; t, x, �t,x (w))) ds, (4.14)

from which we deduce

|�t,x (w)| � e−t
[
|w| +

∫ t

0
es‖u(s)‖L∞(T3) ds

]
,

hence the claimed result.

In the next lemma,we study how the pointwise decay condition ofDefinition 1.4
can be locally propagated.

Lemma 4.6. Let t0 > 0. If f0 satisfies (1.11) and u ∈ L1
loc(R+; H1 ∩ L∞(T3)),

then ft0 := f (t0) satisfies also (1.11) and

Nq( ft0) � (1 + ‖u‖q
L1(0,t0;L∞(T3))

)Nq( f0).

Proof. We write

f (t0, x, v) = e3t0 f0(X(0; t0, x, v),V(0; t0, x, v)).

Thanks to the differential equation satisfied by s �→ V(s; t, x, v) we have

V(0; t0, x, v) = et0v −
∫ t0

0
esu(s,X(0; s, x, v)) ds

= et0

(
v −

∫ t0

0
es−t0〈u(s)〉 ds

)

−
∫ t0

0
es

(
u(s,X(0; s, x, v)) − 〈u(s)〉 ds

)
. (4.15)

We deduce

|v| � |V (0; t0, x, v)| +
∫ t0

0
‖u(s)‖L∞(T3) ds,

and therefore

(1 + |v|q) f (t0, x, v) � e3t0
(
1 + ‖u‖q

L1(0,t0;L∞(T3))

)
Nq( f0).
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This allows us to obtain another version of Lemma 4.5 with a control like (4.7)
starting only from some time t0 > 0.

Lemma 4.7. Let t0 > 0. With the same assumptions and notations as in Lemma 4.4,
except that we replace (4.7) by

∫ t

t0
‖∇u(s)‖L∞(T3) ds � δ, (4.16)

we have, for all t � t0,

‖ρ f (t)‖L∞(T3) � Nq( f0)(1 + ‖u‖q
L1(0,t0;L∞(T3))

), (4.17)

‖ j f (t)‖L∞(T3) � e−t
(∫ t

0
es‖u(s)‖L∞(T3) ds+1

)
Nq( f0)(1+‖u‖q

L1(0,t0;L∞(T3))
).

(4.18)

Proof. We can reproduce Lemma 4.4 and Lemma 4.5 replacing the initial time
t = 0 by t = t0 and thus f0 by f (t0). Using Lemma 4.6, we obtain the claimed
estimates.

5. Regularity Estimates for Solutions of the Vlasov–Navier–Stokes System

This section is devoted to the following two tasks:

• obtaining a precise short time control for the L∞ norm of ρ f and j f (relying
on local estimates and Lemma 4.6);

• obtaining L∞
t H1

x ∩ L2
t H

2
x estimates for u, on time intervals away from zero, as

developed in Proposition 9.10.

Such estimates will be crucial to prove Theorem 2.2, combined with the higher
order estimates proved in Section 6.

We shall also introduce in this section the notion of strong existence times (see
Definition 5.2). Loosely speaking, this corresponds to times t for which the solution
u of the Navier–Stokes equation is strong on the interval of time [0, t], whichmeans
in this context that it enjoys H1/2(T3) regularity. A smallness criterion bearing both
on u and on the Brinkman force j f − ρ f u (see (5.4)) will be used.

Notation 5.1. From now on, A �0 B will mean

A � ϕ
(
‖u0‖H1/2(T3) + Mα f0 + Nq( f0) + E(0) + 1

)
B,

where ϕ : R+ → R+ is onto, continuous and nondecreasing, and q > 4 and α > 3
are the exponents given in the statements of Theorems 2.1 and 2.2. Note that �0
may depend on the integration exponents appearing in the inequality, but this will
always be harmless.

Notation 5.2. We will use the following notations:

F := j f − ρ f u, S := F − (u · ∇)u.
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5.1. Local Estimates

In this paragraph we establish local estimates on both the fluid and the particle
densities. Namely, we prove u ∈ L1

loc(R+;L∞(T3)) and deduce from this estimate
that ρ f , j f ∈ L∞

loc(R+;L∞(T3)) and then F ∈ L2
loc(R+;L2(T3)).

Proposition 5.1. We have u ∈ L1
loc(R+; L∞(T3))andρ f , j f ∈ L∞

loc(R+; L∞(T3)).
Moreover there exists a continuous nondecreasing function η : R+ → R+ such
that

‖u‖L1(0,t;L∞(T3)) �0 η(t), (5.1)

‖ρ f ‖L∞(0,t;L∞(T3)) + ‖ j f ‖L∞(0,t;L∞(T3)) �0 η(t). (5.2)

Proof. In the proof we denote by η a generic continuous function (as in the state-
ment of the proposition), which may vary from line to line.

Since M2 f0 < +∞ (see the Definition 1.2 of admissible initial data), we have
also M3 f0 � M2 f0 + Mα f0 < +∞. We infer from the proof of Lemma 4.3 that

‖ρ f (t)‖L2(T3) + ‖ j f (t)‖L3/2(T3) �0 η(t).

In particular, recalling the notation S = j f − ρ f u − (u · ∇)u, we infer, using
Hölder’s inequality and the Sobolev embedding H1(T3) ↪→ L6(T3) and the energy
estimate (1.10),

∫ t

0
‖S(s)‖2

L3/2(T3)
ds �0 η(t).

Now, if P stands for the Leray projector (that is the projection on divergence free
vector fields), let w be the unique solution of

∂tw − �w = PS,

divw = 0,

w(0) = 0,

so that u − w = et�u0. Since u0 ∈ H
1
2 (T3), we infer from [13, Lemma 3.3] that

u − w ∈ L2(R+;L∞(T3)) with the estimate
∫ ∞

0
‖(u − w)(s)‖2L∞(T3)

ds � ‖u0‖2
H

1
2 (T3)

.

Thanks to the L2
loc(R+;L3/2(T3)) estimate on S that we obtained above, we infer

from the continuity ofP onL3/2(T3) and themaximal regularity of the heat operator
on the torus (see Corollary 9.8) that �w ∈ L2

loc(R+;L3/2(T3)). Therefore, from
a standard elliptic estimate, we deduce D2w ∈ L2

loc(R+;L3/2(T3)) and thus w ∈
L2
loc(R+;Lp(T3)) for all p < ∞, by Sobolev’s embedding. We have even more

precisely (keeping track of the different constants)
∫ t

0
‖w(s)‖2Lp(T3)

ds �0 η(t).
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Up to now we have thus established (for any p < ∞) that u ∈ L2
loc(R+;Lp(T3))

with ∫ t

0
‖u(s)‖2Lp(T3)

ds �0 η(t). (5.3)

In particular, we get u ∈ L1
loc(R+;Lα+3(T3)). Using estimate (4.4) of Lemma 4.2

we first have

Mα f (t) �
(

Mα f0 + e
3t

α+3

∫ t

0
‖u(s)‖α+3 ds

)α+3

�0 η(t).

We use the interpolation estimate (4.6) with k = α and � ∈ {0, 1} to obtain this
time

‖ρ f (t)‖
L

α+3
3 (T3)

+ ‖ j f (t)‖
L

α+3
4 (T3)

�0 η(t),

where the integration exponents are strictly larger than 3/2. Using (5.3) we can
estimate (u · ∇)u in some Lγ

loc(R+;Lr (T3)) for γ > 1 and r > 3/2 leading to the
following estimate on the source S:∫ t

0
‖S(s)‖γ

Lr (T3)
ds �0 η(t).

Since r > 3/2, using like before the maximal regularity of the heat operator we
eventually infer by the Sobolev embedding W2,r (T3) ↪→ L∞(T3)∫ t

0
‖w(s)‖γ

L∞(T3)
ds �0 η(t).

All in all, we have obtained that u = (u − w) + w ∈ L1
loc(R+;L∞(T3)). Finally

using Lemma 4.6 and the straightforward bound

‖ρ f (t)‖L∞(T3) + ‖ j f (t)‖L∞(T3) � Nq( f (t)),

we infer that both ρ f , j f belong to L∞
loc(R+;L∞(T3)) with the estimate

‖ρ f (t)‖L∞(T3) + ‖ j f (t)‖L∞(T3) �0 η(t).

Lemma 5.2. Recalling Notation 5.2, we have F ∈ L2
loc(R+; L2(T3)) and moreover

∫ t

0
‖F(s)‖2

L2(T3)
ds � min(E(0),E (0)) sup

s∈[0,t]
‖ρ f (s)‖L∞(T3).

Proof. By Cauchy–Schwarz’s inequality, we have, almost everywhere,

|F | =
∣∣∣∣
∫
R3

f (v − u) dv

∣∣∣∣ � ρ
1/2
f

(∫
R3

f |v − u|2 dv
)1/2

,

from which we infer, for almost all s � 0,

‖F(s)‖2
L2(T3)

� ‖ρ f (s)‖L∞(T3)D(s),

where D is the dissipation introduced in (1.5). The estimate follows thus from the
energy (1.10) and modulated energy (3.7) estimates.
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5.2. Parabolic Regularization for the Fluid

We state here a consequence of the parabolic regularization result of Propo-
sition 9.10 of the appendix. This roughly establishes the instantaneous gain of
two derivatives for the Navier–Stokes equation, if the right-hand side is square-
integrable. However, such an estimate can only be obtained if a suitable smallness
condition is satisfied.

Proposition 5.3. Assume that for some T > 0 there holds

‖u0‖2H1/2(T3)
+ C


∫ T

0
‖F(s)‖2

H−1/2(T3)
ds <

1

C2



, (5.4)

where C
 is the universal constant given by Proposition 9.10. Then one has for all
1/2 � t � T the estimate

‖∇u(t)‖2
L2(T3)

+
∫ t

1/2
‖�u(s)‖2

L2(T3)
ds � E(0)

(
1 + sup

[0,t]
‖ρ f (s)‖L∞(T3)

)
, (5.5)

where � depends only on C
.

Proof. If (5.4) is indeed satisfied, we can directly use the well-posedness frame-
work given by Proposition 9.10. Thanks to Lemma 5.2 we have also (9.5) which
here reduces to (5.5) because the decay of the energy (1.10) ensures A(t) � E(0).

5.3. Strong Existence Times

Thanks to Proposition 5.1, we know that ρ f and j f both belong to
L∞
loc(R+;L∞(T3)). We can therefore focus on the boundedness over [1,+∞).

For this purpose, the following notations will be convenient:

Definition 5.1. We set for t � 1

Mρ f (t) := sup
[1,t]

‖ρ f (s)‖L∞(T3), M j f (t) := sup
[1,t]

‖ j f (s)‖L∞(T3), (5.6)

Mρ f , j f (t) := Mρ f (t) + M j f (t). (5.7)

In order to use the regularization offered by Proposition 5.3, we need to ensure
that the smallness condition (5.4) remains satisfied. For this reason, we introduce
the following definition:

Definition 5.2. (Strong existence times) A real number T � 0 will be said to be a
strong existence time whenever (5.4) holds.

The following lemma asserts that within our set of assumptions, we have a
lower bound for strong existence times:

Lemma 5.4. The smallness condition (2.1) of Theorem 2.1 suffices to ensure that
T = 1 is a strong existence time in the sense of Definition 5.2.



1302 Daniel Han-Kwan, Ayman Moussa, & Iván Moyano

Proof. Using Lemma 5.2 and estimate and (5.2), we straightforwardly have

∫ 1

0
‖F(s)‖2

H−1/2(T3)
ds �

∫ 1

0
‖F(s)‖2

L2(T3)
ds

� min(E(0),E (0)) sup
s∈[0,1]

‖ρ f (s)‖L∞(T3)

�0 E (0),

and recalling the meaning of �0 (see Notation 5.1), one sees that the smallness
condition (2.1) is indeed sufficient.

6. Estimates on the Convection and the Brinkman Force

Our ultimate bootstrap argument requires high order estimates bearing on u, for
which, as in the proof of Proposition 5.1, we will see the Navier–Stokes equation
as

∂t u − �u = PF − P(u · ∇)u,

whereP is theLeray projector.Weuse themaximal regularity of the heat operator on
the previous identity to get estimates on D2u in terms of the Brinkman force F and
the the convection term (u · ∇)u. In this short section we explain in Proposition 6.1
the maximal regularity argument and give Lp

t L
q
x estimates for the source terms in

Lemma 6.2 and Lemma 6.3. As explained in Corollary 6.4, these estimates are
already sufficient to justify the L1

t W
1,∞
x regularity needed to express the condition

(4.16) (and a quantitative version with the required smallness will be provided
afterwards).

Proposition 6.1. Fix a, b, r ∈ (1,∞) and λ > 0. For any t � 1, and any exponent
1 � q � a, b there holds (with a possible infinite right-hand side)

∫ t

1
e−λs‖D2u(s)‖q

Lr (T3)
ds

�0 �(λ)
(
1 + ‖(u · ∇)u‖q

La(1/2,t;Lr (T3))
+ ‖F‖q

Lb(1/2,t;Lr (T3))

)
, (6.1)

where � : R+ → R+ is nonincreasing.

Proof. Similarly towhatwe have done in the proof of Proposition 5.1, we introduce
w1 and w2 as the unique divergence-free solutions on [1/2,+∞) of

∂tw1 − �w1 = P(u · ∇)u,

∂tw2 − �w2 = PF,

with initial conditions w1(1/2) = w2(1/2) = 0 so that, denoting uh := u − (w1 +
w2), we have uh(t + 1/2) = et�u(1/2). Now, thanks to the maximal regularity of
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the heat operator (see Corollary 9.8) and the continuity of P on Lr (T3), we infer
for t � 1/2

(∫ t

1/2
‖D2w1(s)‖a

Lr (T3)
ds

)1/a

�
(∫ t

1/2
‖(u · ∇u)(s)‖a

Lr (T3)
ds

)1/a

, (6.2)

(∫ t

1/2
‖D2w2(s)‖b

Lr (T3)
ds

)1/b

�
(∫ t

1/2
‖F(s)‖b

Lr (T3)
ds

)1/b

. (6.3)

On the other hand, since uh(t + 1/2) = et�u(1/2), where we write

u(1/2, x) =:
∑
k∈Z3

cke2iπk·x ∈ L2(T3),

we have, for t � 1/2,

uh(t, x) =
∑
k∈Z3

cke−(2π |k|)2(t−1/2)e2iπk·x ,

and in particular, for t � 1 and � � 1,

‖uh(t)‖2
Ḣ

�
(T3)

=
∑
k∈Z3

|ck |2|k|2�e−(2π |k|)2(t−1/2)

�
∑
k∈Z3

|ck |2e−|k|2(t−1/2)

� ‖u(1/2)‖2
L2(T3)

e−(t−1/2),

so that for any � � 1 we obtain

∫ +∞
1

‖uh(s)‖q

Ḣ
�
(T3)

ds � ‖u(1/2)‖q
L2(T3)

∫ +∞
1

e−q(s−1/2)/2 ds � ‖u(1/2)‖q
L2(T3)

.

(6.4)

By the energy estimate (1.10), we have ‖u(1/2)‖L2(T3) �0 1, so using (6.4) for �

large enough, we infer

(∫ t

1
‖D2uh(s)‖q

Lr (T3)
ds

)1/q

�0 1. (6.5)

Using the decomposition u = w1 + w2 + uh and combining (6.2), (6.3) and (6.5),
we infer by Hölder’s inequality the estimate (6.1).

Lemma 6.2. There exists a ∈ (2, 4) and ra > 2 such that the following interpola-
tion estimate holds for t � 1:

‖(u · ∇)u‖La(1/2,t;Lra (T3)) �0 1 + Mρ f , j f (t). (6.6)
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Proof. The proof boils down to the interpolation inequality

‖(u · ∇)u‖La (1/2,t;Lra (T3)) � ‖u‖L∞(1/2,t;L6(T3))‖∇u‖
2
a

L2(1/2,t;L6(T3))
‖∇u‖1−

2
a

L∞(1/2,t;L2(T3))
.

Indeed, if the later is satisfied, since t is a strong existence time, we have thanks to
the regularization estimate (5.5) and the energy estimate (1.10), together with the
Sobolev embedding H1(T3) ↪→ L6(T3),

‖u‖L∞(1/2,t;L6(T3))+‖∇u‖L2(1/2,t;L6(T3))+‖∇u‖L∞(1/2,t;L2(T3)) �0 1+Mρ f , j f (t).

To justify the interpolation above, notice that for any a > 2, we have by Hölder
inequality and interpolation [(2, 6), (∞, 2)]θ ,

‖u · ∇u‖La (1/2,t;Lra (T3))�‖u‖L∞(1/2,t;L6(T3))‖∇u‖θ

L2(1/2,t;L6(T3))
‖∇u‖1−θ

L∞(1/2,t;L2(T3))
,

with the following equality:(
1

a
,
1

ra

)
=

(
0,

1

6

)
+ θ

(
1

2
,
1

6

)
+ (1 − θ)

(
0,

1

2

)
.

We deduce θ = 2/a. From the previous identity we also deduce the value of ra ,
because 1

ra
= 1

6 (1+ 2
a ) + 1

2 (1− 2
a ). In the limit case a = 2 we get ra = 3, so that

taking |a − 2| small enough we have indeed ra > 2 and a ∈ (2, 4).

Lemma 6.3. For any finite b > 4, the following estimate holds for some rb > 3
and all strong existence times t � 1 :

‖F‖Lb(1/2,t;Lrb (T3)) �0 1 + Mρ f , j f (t)
3
2− 2

b . (6.7)

Proof. Thanks to Lemma 5.2 and (5.2) we have

‖F‖L2(1/2,t;L2(T3)) � 1 + Mρ f (t)
1/2 � 1 + Mρ f , j f (t)

1/2. (6.8)

By interpolation [(2, 2); (∞, 6)]θ , we have
‖F‖Lb(1/2,t;Lrb (T3)) � ‖F‖θ

L2(1/2,t;L2(T3))
‖F‖1−θ

L∞(1/2,t;L6(T3))
, (6.9)

where θ and rb are defined by the equality ( 1b , 1
rb

) = θ( 12 ,
1
2 ) + (1− θ)(0, 1

6 ) from

which we get θ = 2/b and 1
rb

= 2
3b + 1

6 ; we notice that b > 4 implies rb > 3.
By the triangle inequality, we get

‖F‖L∞(1/2,t;L6(T3)) = ‖ j f − ρ f u‖L∞(1/2,t;L6(T3))

�0 (1 + Mρ f , j f (t))(1 + ‖u‖L∞(1/2,t;L6(T3))).

Using the Sobolev embedding H1(T3) ↪→ L6(T3) together with (5.5) and the
energy estimate (1.10) we have ‖u‖L∞(1/2,t;L6(T3)) �0 Mρ f , j f (t)

1/2 which implies

‖F‖L∞(1/2,t;L6(T3)) �0 1 + Mρ f , j f (t)
3/2.

Combining the previous estimate with (6.8) in (6.9) we therefore get

‖F‖Lb(1/2,t;Lrb (T3)) � 1 + Mρ f , j f (t)
3/2−θ ,

which is exactly (6.7) because b = 2/θ .
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Corollary 6.4. For any strong existence time t � 1, one has∇u ∈ L1(1, t; L∞(T3)).

Proof. Thanks to Proposition 5.1, the right-hand sides of estimates (6.6) and 6.8
are finite. By Lemmas 6.2 and 6.3, we can therefore take r > 3/2 in (6.1) and thus,
by Sobolev’s embedding and Hölder’s inequality, we finally obtain the claimed
regularity.

7. Exponential Decay of the Modulated Energy

In this section, we finish the proof of Theorem 2.2 by setting up a bootstrap
procedure. Define

t
 := sup

{
strong existence times t such that

∫ t

1
‖∇u(s)‖L∞(T3) ds < δ

}
.

(7.1)

where δ is given in Lemma 4.4. Thanks to the change of variables of Section 4, we
have that Mρ f , j f (t) �0 1 on for t < t
 (see Proposition 7.1). The main goal will
be to prove that t
 = +∞. In order to do so, we shall combine the higher order
estimates of Section 6with the exponential decay estimates provided byLemma3.4.

Proposition 7.1. We have t
 > 1. Moreover, for any t < t
, one has Mρ f , j f (t) �0
1.

Proof. By a view of the proof of Lemma 5.4 (reducing E (0) if necessary), we
remark that for ε > 0 small enough, t = 1+ε is a strong existence time, and Corol-
lary 6.4 ensures that for t close enough to 1, the inequality

∫ t
1 ‖∇u(s)‖L∞(T3) ds < δ

is satisfied, ensuring t
 > 1.
For t ∈ [1, t
) we can invoke Lemma 4.7 with t0 = 1 and (5.1), to obtain that

Mρ f (t) �0 1 and

‖ j f (t)‖L∞(T3) �0 e−t
∫ t

1
es‖u(s)‖L∞(T3) ds.

Thanks to Sobolev’s embedding H2(T3) ↪→ L∞(T3) we infer
∫ t

1
es‖u(s)‖L∞(T3) ds �

∫ t

1
es‖u(s)‖L2(T3) ds +

∫ t

1
es‖D2u(s)‖L2(T3) ds,

and therefore (using Cauchy–Schwarz’s inequality)
∫ t

1
es‖u(s)‖L∞(T3) ds � (et − 1) sup

[1,t]
‖u(s)‖L2(T3)

+
(∫ t

1
e2s ds

)1/2 (∫ t

1
‖D2u(s)‖22 ds

)1/2

.

Thanks to (5.5) and the energy estimate (1.10) we eventually infer

e−t
∫ t

1
es‖u(s)‖L∞(T3) ds �0 1 + Mρ f (t),
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and we have already proved that Mρ f (t) �0 1. We deduce that M j f (t) �0 1 and
this concludes the proof.

We now combine Proposition 6.1 with Lemma 3.4.

Lemma 7.2. Assume that t
 < ∞. For any α ∈ [1/2, 1), c ∈ [1,∞) and any finite
a, b � max(1, cα), the following estimate holds (with a possible infinite right-hand
side):

(∫ t


1
‖∇u(s)‖c

Lp(T3)
ds

)1/c

�0 E (0)
1−α
2

(
1 + ‖(u · ∇)u‖α

La(1/2,t
;Lr (T3))
+ ‖F‖α

Lb(1/2,t
;Lr (T3))

)

(7.2)

for p ∈ [1,∞] and r ∈ (1,∞) satisfying

1

p
= 1

3
+ α

(
1

r
− 2

3

)
+ 1 − α

2
. (7.3)

Proof. Owing to Lemma 3.4, if t
 < +∞, there is, on [0, t
], an exponential
decay of the modulated energy with decay rate λ
. The Gagliardo–Nirenberg–
Sobolev estimate of Theorem 9.9 for ( j, m, q) = (1, 2, 2) allows us to write for
any α ∈ [1/2, 1) and s � 1

‖∇u(s)‖Lp(T3) � ‖D2u(s)‖α
Lr (T3)

‖u(s) − 〈u(s)〉‖1−α

L2(T3)
,

for p, r satisfying (7.3). By definition of the modulated energy and using its expo-
nential decay on [1, t
], we have, therefore,

‖∇u(s)‖Lp(T3) � E (0)
1−α
2 e−λs‖D2u(s)‖α

Lr (T3)
,

for λ = λ
(1 − α). We apply Proposition 6.1 to infer that for any exponent c such
that cα � a, b

∫ t


1
‖∇u(s)‖c

Lp(T3)
ds

�0 �(λ
)E (0)c 1−α
2

(
1 + ‖(u · ∇)u‖cα

La(1/2,t
;Lr (T3))
+ ‖F‖cα

Lb(1/2,t
;Lr (T3))

)
,

where � is nonincreasing. But by Lemma 3.4, λ
 itself is a nonincreasing function
of Mρ f (t


) �0 1, which yields (7.2).

Lemma 7.3. There exists γ > 0 such that, if t
 < +∞, then the following estimate
holds:

∫ t


1
‖∇u(s)‖L∞(T3) ds �0 E (0)γ . (7.4)
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Proof. We start by combining Lemma 7.2 with Lemma 6.2 and Lemma 6.3. Since
(by Proposition 7.1) Mρ f , j f �0 1 on [1, t
], these results give us for some b > 4 >

a > 2 and r = min(ra, rb) > 2, the following estimate:

(∫ t


1
‖∇u(s)‖c

Lp(T3)
ds

)1/c

�0 E (0)
1−α
2 , (7.5)

which holds for any α ∈ [1/2, 1) and p defined by (7.3), provided that that αc �
min(a, b).

It is important to note that p = ∞ is not yet reachable at this stage, due to the
constraint α ∈ [1/2, 1]. However, we can first use Lemma 7.2 with c = a < b in
(7.5). In that case, going back to (7.3), we see that the limit case α = 1 leads to the
equality

1

p
= 1

r
− 1

3
,

which, since r > 2, implies 1
p < 1

6 , that is p > 6. Taking α ∈ [1/2, 1) close
enough to 1, we therefore infer the existence of p > 6 such that

‖∇u‖La(1,t
;Lp(T3)) �0 E (0)(1−α)/2.

Since p > 6, we infer from Hölder’s inequality, for some r̃a > 3, that

( ∫ t


1/2
‖(u · ∇)u(s)‖a

Lr̃a (T3)
ds

)1/a
� ‖u‖L∞(1/2,t
;L6(T3))‖∇u‖La(1/2,t
;Lp(T3))

�0 E (0)(1−α)/2‖u‖L∞(1/2,t
;L6(T3)),

�0 E (0)(1−α)/2.

The point is that this last inequality can now replace Lemma 6.2 that we used earlier:
we can perform the same analysis as before with the advantage that, now r̃a > 3.
This yields that r̃ := min(rb, r̃a) > 3 and hence, taking

α̃ = 5

(
7 − 6

r̃

)−1

< 1,

we can check that α̃ ∈ [1/2, 1) and satisfies

0 = 1

3
+ α̃

(
1

r̃
− 2

3

)
+ 1 − α̃

2
.

Thus we invoke Lemma 7.2 another time with r = r̃ > 3, c = 1 and α̃ as above to
infer

∫ t


1
‖∇u(s)‖L∞(T3) ds �0 E (0)(1−α̃)/2

(
1 + E (0)(1−α)/2

)
,

which is an estimate of the form (7.4).
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We are finally in position to conclude the proof of Theorem 2.2.

Proof. Applying Proposition 7.1, the question thus reduces to ensure t
 = +∞.
Assuming t
 < +∞, we will reach a contradiction by proving (for a small enough
E (0)) the existence of t > t
 which is still a strong existence time and for which
the inequality (7.1) is satisfied.

The first task is to exhibit strong existence times larger than t
. Thanks to
Proposition 7.1 and Proposition 5.1, recalling the meaning of the symbol �0 (see
Notation 5.1), we have the existence of nondecreasing function ϕ such for any
t ∈ [1, t
],

sup
s∈[0,1]

‖ρ f (s)‖L∞(T3) + Mρ f , j f (t)

� ϕ
(
‖u0‖H1/2(T3) + Mα f0 + E(0) + Nq( f0) + 1

)
. (7.6)

Recall that by assumption, we have ‖u0‖2H1/2(T3)
< 1

C2



. Using Lemma 5.2, we thus

infer that for all strong existence times t � t
,

‖u0‖2H1/2(T3)
+ C


∫ t

0
‖F(s)‖2

H−1/2(T3)
ds

� ‖u0‖2H1/2(T3)
+ C


∫ t

0
‖F(s)‖2

L2(T3)
ds

� ‖u0‖2H1/2(T3)
+ E (0)C


(
Mρ f , j f (t) + sup

s∈[0,1]
‖ρ(s)‖L∞(T3)

)
,

where we used the embedding L2(T3) ↪→ H− 1
2 (T3), with constant 1. Combining

this with (7.6), we get, for some nondecreasing function still denoted ϕ,

‖u0‖2H1/2(T3)
+ C


∫ t

0
‖F(s)‖2

H−1/2(T3)
ds

� ‖u0‖2H1/2(T3)
+ E (0)ϕ

(
‖u0‖H1/2(T3) + Mα f0 + E(0) + Nq( f0) + 1

)
,

Therefore, choosing E (0) small enough so that

ϕ
(

Nq( f0) + Mα f0 + E(0) + ‖u0‖H1/2(T3) + 1
)
E (0)

< min

(
1,

1

C2



− ‖u0‖2H1/2(T3)

)
,

we deduce that

‖u0‖2H1/2(T3)
+ C


∫ t


0
‖F(s)‖2

H−1/2(T3)
ds <

1

C2



,

hence proving by continuity the existence of strong existence times larger than t
.
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To check that (7.1) is satisfied after t
 we use Lemma 7.3 to infer the existence
of an universal onto nondecreasing continuous function ϕ : R+ → R+ such that
∫ t


1
‖∇u(s)‖L∞(T3) ds � ϕ

(
‖u0‖H1/2(T3) + Mα f0 + Nq( f0) + E(0) + 1

)
E (0)γ ,

and we observe that a smallness condition as (2.1) ensures
∫ t


1
‖∇u(s)‖L∞(T3) ds < δ.

Therefore we can find a strong existence time t > t
 such that
∫ t

1
‖∇u(s)‖L∞(T3) ds < δ.

This is a contradiction with the definition of t
 and finally concludes the proof.

8. Further Description of the Asymptotic State

Once the exponential decay of the modulated energy is established, Proposi-
tion 3.5 leads to the existence of a profile ρ∞ ∈ L∞(T3) which allows to describe
the asymptotic behavior of f in the space variable. The content of Proposition 3.5 is
quite implicit as the profile is obtained by an abstract argument. It is in fact possible
to describe ρ∞ in a finer way (but still, via implicit equations); this is the purpose
of Proposition 2.3 that we aim at proving in this last section.

Before doing this, it is interesting to compare the statement of Proposition 2.3
with the explicit asymptotic behavior of solutions to the linearized equation when
〈u0 + j f0〉 = 0, that is the Vlasov equation with friction

∂t f + v · ∇x f + divv(−v f ) = 0,

for which we recall that we have

W1 ( f (t, x, v), ρ̃0 ⊗ δ0)−→t→∞0,

with

ρ̃0(x) :=
∫
R3

f0 (x − v, v) dv.

From 2.9 , we therefore see that the deviation from the linearized behavior is small,
as

Y0∞,x,v − (x − v) = −
∫ +∞

0
u(τ,Yτ∞,x,v) dτ,

is small in L∞(T3 × R
3), as it is controlled by the initial modulated energy E (0)

and | detA (∞, x, v) | − 1 is also small in L∞(T3 × R
3), as we will see in the

upcoming proof.
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We will detail the proof of Proposition 2.3 only in the particular case 〈u0 +
j f0〉 = 0 for which the computations are a bit less tedious. The general case is a
straightforward generalization (see Remark 8.1).

Proof of Proposition 2.3 in the case 〈u0 + j f0〉 = 0

Proof. Recall the map �t,x : v �→ V(0; t, x, v) that we already used in Lemma 4.4
of Section 4.2 : this very lemma ensures that, for δ small enough (δeδ < 1/9 is
sufficient), if (2.6) is satisfied,�t,x is aC 1(R3)-diffeomorphism. In order to capture
the asymptotic profile of ρ f (t) we look at its action on a continuous function ψ :

∫
T3

ρ f (t, x) ψ(x) dx .

Since ρ f does not solve a transport equation we cannot link it to the initial density
ρ f (0), however we can write

∫
T3

ρ f (t, x) ψ(x) dx =
∫
T3×R3

f (t, x, v) ψ(x) dv dx

=
∫
T3×R3

e3t f0(X(0; t, x, v),V(0; t, x, v)) ψ(x) dv dx

= e3t
∫
T3×R3

f0(Y(0; t, x, v), v) ψ(x)| det Dv�t,x |−1 dv dx,

where Y(0; t, x, v) := X(0; t, x, �−1
t,x (v)). Recall that

�t,x (v) = etv −
∫ t

0
eτ u(τ,X(τ ; t, x, v) dτ,

hence (with the notation Y(τ ; t, x, v) := X(τ ; t, x, �−1
t,x (v)))

�−1
t,x (v) = e−tv +

∫ t

0
eτ−t u(τ,Y(τ ; t, x, v)) dτ, (8.1)

from which we infer

etDv�
−1
t,x (v) = I3 +

∫ t

0
eτ∇u(τ,Y(τ ; t, x, v))DvY(τ ; t, x, v)dτ.

All in all, introducing the variable z := (x, v) and denoting Ys
t,z := Y(s; t, z), we

have established∫
T3

ρ f (t, x) ψ(x) dx =
∫
T3×R3

f0(Y
0
t,z, v)ψ(x) |detA (t, z)| dz, (8.2)

where

A (t, z) := I3 +
∫ t

0
eτ∇u(τ,Yτ

t,z)DvY
τ
t,z dτ. (8.3)

In order to understand the behavior of ρ f (t) as t → +∞ it is therefore natural to
follow the curves t �→ Ys

t,z as t → +∞, and this is the purpose of
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Lemma 8.1. For δ > 0 small enough, the following holds: for all 0 � s � t and
z := (x, v) ∈ T

3 × R
3 we have

|Dx Ys
t,z | � 2, (8.4)

|esDvYs
t,z | � 4. (8.5)

Furthermore, the family of maps (s, z) �→ Ys
t,z converges inC 0(R+;C 1(T3×R

3)),
as t → +∞, to a map (s, z) �→ Ys∞,z that satisfies

Ys∞,z = x − e−sv −
∫ +∞

0

[
1[0,s](τ )eτ−s + 1τ�s

]
u(τ, Yτ∞,z) dτ.

Proof. We start by recalling

X(s; t, x, v) = x + (1 − et−s)v +
∫ t

s

(
eτ−s − 1

)
u(τ,X(τ ; t, x, v)) dτ,

from which, together with (8.1), we deduce the following formula for s � t :

Ys
t,z = x+(e−t − e−s)v+

∫ +∞

0

[
eτ−t1τ�t − eτ−s1τ�s − 1s�τ�t

]
u(τ,Yτ

t,z) dτ.

(8.6)

From the previous expression, we infer for s � t that

|DxY
s
t,z | � 1 + 2

∫ +∞

0
1τ�t |∇u(τ,Yτ

t,z)DxY
τ
t,z | dτ.

In particular, this implies

sup
0�τ�t

|DxY
τ
t,z | � 1 + 2 sup

0�τ�t
|DxY

τ
t,z |

∫ +∞

0
‖∇u(τ )‖L∞(T3) dτ,

which together with the assumption (2.6) implies, for s � t , that

|DxY
s
t,z | � sup

0�τ�t
|DxY

τ
t,z | � 1

1 − 2δ
,

which implies (8.4) for δ � 1/4. Similarly, and returning to (8.6), we have for s � t
that

|esDvY
s
t,z | = 2 + 2

∫ t

0
eτ‖∇u(τ )‖L∞(T3)|DvY

τ
t,z | dτ,

and we can proceed in the same way to obtain (8.5). To establish the existence
of (s, z) �→ Ys∞,z , we shall prove that (s, z) �→ Ys

t,z satisfies Cauchy’s criterion
as t → +∞, with respect to the local uniform metric. Since 〈u0 + j f0〉 = 0, we
have by Lemma 3.2 and by definition of the modulated energy that t �→ 〈u(t)〉
is integrable over R+ (due to its exponential decay). In particular, we infer the
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integrability over R+ of t �→ ‖u(t)‖L∞(T3) � |〈u(t)〉| + ‖∇u(t)‖L∞(T3), thanks to
the assumption (2.6). In particular, by dominated convergence we infer that

Ys
t,z = x − e−sv −

∫ +∞

0

[
eτ−s1τ�s + 1s�τ�t

]
u(τ,Yτ

t,z) dτ + o(1), (8.7)

where the notation o(1) refers a term going to 0 in L∞
loc(R+ ×T

3 ×R
3) in the limit

t → +∞.

Remark 8.1. In the general case 〈u0 + j f0〉 �= 0, t �→ 〈u(t)〉 is not integrable,
as it converges to 〈u0 + j f0〉/2. One needs to replace u(τ,Yτ

s,t ) by u(τ,Yτ
s,t ) −

〈u0 + j f0〉/2 in the integrand of (8.7) and, by doing so, adds a diverging drift term
to the equation. In a similar fashion as the proof of Proposition 3.5, this can be
counterbalanced by considering the renormalized characteristics Y(τ ; t, x +〈u0 +
j f0〉/2, v) instead of Y(τ, t, x, v). The equations for these shifted trajectories are a
bit different, but the convergence properties are proved in the same way, resulting
in the implicit equation (2.9).

In particular, taking the difference of this identity (8.7) at times t1 < t2,

|Ys
t2,z − Ys

t1,z | � 2
∫ +∞

0
1τ�t2 |u(τ,Yτ

t2,z)

− u(τ,Yτ
t1,z)| dτ +

∫ t2

t1
|u(τ,Yτ

t1,z))| dτ + o(1)

� 2
∫ +∞

0
1τ�t2‖∇u(τ )‖L∞(T3)|Yτ

t2,z − Yτ
t1,z | dτ

+
∫ t2

t1
‖u(τ )‖L∞(T3) dτ + o(1),

where o(1) refers here to the asymptotic t1 ∧ t2 → +∞, with the same uniformity
as before. Using once more the integrability of t �→ ‖u(t)‖L∞(T3), for any compact
K ⊂ R+ × T

3 × R
3, if

ϕ(t1, t2) := sup
(τ,z)∈K

|Yτ
t2,z − Yτ

t1,z |,

we have established

ϕ(t1, t2) � 2ϕ(t1, t2)
∫ +∞

0
‖∇u(τ )‖L∞(T3) dτ + o(1),

with a similar (uniform) asymptotic term o(1). From assumption (2.6), this proves

sup
(s,z)∈K

|Ys
t2,z − Ys

t1,z | = o(1),

which yields Cauchy’s criterion. We deduce the existence of (s, z) �→ Ys∞,z , as the
(local uniform) limit of (s, z) �→ Ys

t,z as t → +∞. By the dominated convergence
and continuity of u for positive times, Ys∞,z must satisfy the equation

Ys∞,z = x − e−sv −
∫ +∞

0

[
1[0,s](τ )eτ−s + 1τ�s

]
u(τ,Yτ∞,z) dτ. (8.8)
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For now Yτ∞,z is merely continuous (as a uniform limit) in all its variables, but
it turns out that the derivatives (s; t, z) �→ DzYs

t,z enjoys the same Cauchy
criterion as Ys

t,z . Indeed, going back to (8.6), we infer, using integrability of
τ �→ ‖∇u(τ )‖L∞(T3) over R+ and dominated convergence

DzY
s
t,z = −

∫ +∞

0

[
eτ−s1τ�s + 1s�τ�t

]
∇u(τ,Yτ

t,z)DzY
τ
t,z dτ + o(1) + rs,z,

where o(1) refers to the asymptotic t → +∞ and is locally uniform in s, z, while
rs,z is some irrelevant function which does not depend on t . For any t1 < t2 we
thus have that

|DzY
s
t2,z − DzY

s
t1,z | � 2

∫ +∞
0

1τ�t2 |∇u(τ,Yτ
t2,z)DzY

τ
t2,z − ∇u(τ,Yτ

t1,z)DzY
τ
t1,z | dτ

+
∫ t2

t1
|∇u(τ,Yτ

t1,z)DzY
τ
t1,z | dτ + o(1),

where o(1) refers to t1 ∧ t2 → +∞ and is locallly uniform in s, z. Owing to the
integrability of τ �→ ‖∇u(τ )‖L∞(T3) overR+ and the uniform bound on (s, t, z) �→
1s�tDzYs

t,z due to estimates (8.4) – (8.5), we infer

|DzY
s
t2,z − DzY

s
t1,z | � 2

∫ +∞

0
1τ�t2 |∇u(τ,Yτ

t2,z)
[
DzY

τ
t2,z − DzY

τ
t1,z

]| dτ

+
∫ +∞

0
1τ�t2 |

[∇u(τ,Yτ
t2,z) − ∇u(τ,Yτ

t1,z)
]
DzY

τ
t1,z | dτ + o(1).

Since (Ys
t,z)t → Ys∞,z pointwisely, the continuity of ∇u for positive times, its

belonging to L1(R+;L∞(T3)) and the aforementioned uniform boundedness of
(s, t, z) �→ 1s�tDzYs

t,z entail, by dominated convergence,

|DzY
s
t2,z − DzY

s
t1,z | � 2

∫ +∞
0

1τ�t2‖∇u(τ )‖L∞(T3)|DzY
τ
t2,z − DzY

τ
t1,z | dτ + o(1),

and we can then proceed as we have done for Ys
t,z to establish the local uniform

Cauchy criterion.
If f0 was assumed to be continuous in the space variable, we would now able

to pass to the limit into formula (8.2) ; indeed we would have then by dominated
convergence, using the bounds that we have established on (s, t, z) �→ esDvYs

t,z
and the integrability of v �→ supT3 f0(·, v),

∫
T3

ρ f (t, x)ψ(x) dx−→t→+∞
∫
T3×R3

f0(Y
0∞,z, v)ψ(x)| detA (∞, z)| dz,

with

A (∞, z) = I3 +
∫ +∞

0
eτ∇u(τ,Yτ∞,z)DvY

τ∞,z dτ.

Notice that here the convergence z �→ A (t, z) towards z �→ A (∞, z) is also
locally uniform in z. However, we are not in position to replace f0 by a regularized
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version; to do so we would need a uniqueness result for the whole coupling, and
such a result is only known in dimension 2 (see [17]). It turns out that the above
convergence holds, but to establish it we have to use another change of variable.
More precisely, in (8.2) we consider the change of variable x �→ �t,v(x) := Y0

t,x,v .
This is admissible thanks to Lemma 9.4 and the estimate

‖DxY
0
t,z − I3‖∞ � 1

9
, (8.9)

which itself is a consequence of (8.6), (8.4) and assumption (2.6), if δ is small
enough. We have therefore that

∫
T3

ρ f (t, x) ψ(x) dx

=
∫
T3×R3

f0(x, v) ψ(�−1
t,v (x))| detA (t,�−1

t,v (x), v) det Dx�
−1
t,v (x)| dz.

(8.10)

The long-time behavior of �−1
t,v (x) is given by

Lemma 8.2. For all v ∈ R
3 the map �∞,v : x �→ Y0∞,x,v is a C 1-diffeomorphism

fromT
3 onto itself and we have �−1

t,v (x) →t �−1∞,v(x) inC 1(T3×R
3), as t → +∞

and also | det Dx�
−1
t,v (x)| � 2 for all x, v, t .

Proof. First, we infer from (8.9) the same estimate (by uniform convergence)
for �∞,v , which is therefore also (thanks to Lemma 9.4) a C 1-diffeomorphism.
The same lemma gives also det�t,v � 1/2 for all t ∈ [1,∞]. Again, thanks to
Lemma9.4,we infer uniformly in t, x, v, |Dx�

−1∞,v(x)| � 9/8anddet Dx�t,v(x) �
1/2. For the convergence, we write

|�−1
t,v (x) − �−1∞,v(x)| = |�−1∞,v ◦ �∞,v ◦ �−1

t,v (x) − �−1∞,v(x)|
� 9

8
|�∞,v ◦ �−1

t,v (x) − x |

= 9

8
|�∞,v ◦ �−1

t,v (x) − �t,v ◦ �−1
t,v (x)|,

which goes to 0 locally uniformly in x, v thanks to Lemma 8.1. Since the inversion
map is C 1 on GL3(R), using the previous lower bound on the determinants, we
infer from the equatity Dx�

−1
t,v = (Dx�t,v)

−1 ◦�−1
t,v and the previous convergence

the announced convergence in C 1(T3 × R
3).

Since A (t, z) is uniformly bounded and continuous and converges (locally
uniformly) towards A (∞, z), we infer from Lemma 8.2 and the dominated con-
vergence theorem (using f0 ∈ L1(T3 × R

3)) that

∫
T3

ρ f (t, x) ψ(x) dx

−→t→+∞
∫
T3×R3

f0(x, v) ψ(�−1∞,v(x))| detA (∞,�−1∞,v(x), v) det Dx�
−1∞,v(x)| dz,
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and, using the change of variable x ← � �∞,v(x) (which is admissible thanks to
Lemma 8.2), we have eventually proved that

(ρ f (t))t⇀t→+∞ρ∞,

where

ρ∞(x) :=
∫
R3

f0(Y
0∞,x,v, v)| detA (∞, x, v)| dv,

which concludes the proof.
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9. Appendix

9.1. Wasserstein Distance

To simplify the presentation, X here will denote either T3 or T3 × R
3.

Definition 9.1. For m > 0 we denote by M1,m(X) the set of all measures μ such
that ∫

X
|z| dμ(z) < +∞, μ(X) = m.

Definition 9.2. Fix m > 0 and consider μ and ν in M1,m(X). The Wassertein
distance between μ and ν is

W1(μ, ν) := inf
γ∈�(μ,ν)

∫
X2

|z − z′| dγ (z, z′),

where�(μ, ν) denotes the collection of all measures on X × X with first and second
marginal respectively equal to μ and ν.

Proposition 9.1. (W1 metrizes the weak-
 convergence) Fix m > 0. Given (μn)n ∈
M1,m(X)N and μ ∈ M1,m(X), the two following facts are equivalent:

(i) For all f ∈ C 0
b (X),

∫
X
( f (z) + |z|) dμn(z)−→n→+∞

∫
X
( f (z) + |z|) dμ(z).
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(ii) (W1(μn, μ))n →n 0.

Proposition 9.2. (Monge-Kantorovitch duality) Fix m > 0 and consider μ and ν

in M1,m(X). Then

W1(μ, ν) = sup

{∫
X

φ(z)dμ(z) −
∫

X
φ(z)dν(z) : φ ∈ Lip(X), ‖∇φ‖∞ � 1

}
.

9.2. Exponential Decay

Lemma 9.3. Consider u : R+ → R+ a non-increasing integrable function satis-
fying, for some λ > 0 and almost all t � 0,

λ

∫ ∞

t
u(s) ds � u(t).

Then, for t � 0, it holds that

u(t) �u(0),λ e−λt .

Proof. If v(t) denotes the integral in the estimate, v ∈ W1,∞(R+) satisfies v′ �
−λv, so the standard version of the Gronwall Lemma implies v(t) � v(0)e−λt .
Since u � u(0) w.l.o.g. we can assume t � 1 and since u is non-increasing, we
have

u(t) �
∫ t

t−1
u(s) ds � v(t − 1) � v(0)e−λt � 1

λ
u(0)e−λt .

9.3. Perturbation of the Identity Map

We use in this work the following version of the inverse function theorem:

Lemma 9.4. For � = T
3 or � = R

3, if φ : � → � is C 1 and satisfies ‖∇φ‖∞ <

1, then f := Id + φ is a C 1-diffeomorphism of � onto itself satisfying ‖∇ f ‖∞ �
(1 − ‖∇φ‖∞)−1. If furthermore ‖∇φ‖∞ � 1/9, then det∇ f � 1/2.

9.4. Maximal Regularity

The maximal regularity estimate for the heat equation, on the whole space, can be
stated in the following way:

Theorem 9.5. For p, q ∈ (1,∞), and ϕ ∈ S(R × R
3) such that ϕ(0, ·) = 0, it

holds that

‖�ϕ‖Lp(R+;Lq (R3)) �p,q ‖∂tϕ − �ϕ‖Lp(R+;Lq (R3)).
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This estimate is for instance a consequence of [22]. Naturally, one expects an
analogous estimate on the torus, butwe did notmanage to exhibit a precise reference
in the literature. For the sake of completeness we give therefore a proof of the
following corollary:

Corollary 9.6. For p, q ∈ (1,∞) and ψ ∈ S(R×R
3) which is Z3-periodic in the

space variable and such that ψ(0, ·) = 0, we have

‖�ψ‖Lp(R+;Lq (T3)) �p,q ‖∂tψ − �ψ‖Lp(R+;Lq (T3)).

Proof. Let’s use the Dirac comb �� := ∑
n∈Z3 δn as a getway between functions

defined on R
3 and Z

3-periodic functions (identified as functions defined on the
torus T3). In the sequel C denotes the open unit cube (0, 1)3.

Lemma 9.7. For any g ∈ S(R3) which is Z3-periodic there exists h ∈ D(C) such
that g = �� 
 h. Furthermore, for any such function h, and for any ∈ [1,∞] there
holds ‖g‖Lq (R3) = ‖h‖Lq (T3).

Proof. Fix a non-zero θ ∈ D(C), then h := gθ/(�� 
 θ) is a well-defined element
of D(C) satisfying g = �� 
 h = ∑

n∈Z3 τnh. Since h ∈ D(C), the functions τnh
have disjoint supports which justifies the equality of the Lq -norms.

Obviously the previous lemma holds also when adding a time variable. In particular
we have the existence of ϕ ∈ S(R × R

3), such that ϕ(0, ·) = 0, ϕ(t, ·) ∈ D(C)

for all t and ψ = �� 
 ϕ (here the convolution is to be understood in the space
variable only). From this representation formula we also deduce �ψ = �� 
 �ϕ

and ∂tψ −�ψ = �� 
 (∂tϕ −�ϕ), where the spatial support of �ϕ and ∂tϕ −�ϕ

are still included in C : the previous lemma applies therefore to write

‖�ψ‖Lp(R+;Lq (T3)) = ‖�ϕ‖Lp(R+;Lq (R3))

�p,q ‖∂tϕ − �ϕ‖Lp(R+;Lq (R3)) = ‖∂tψ − �ψ‖Lp(R+;Lq (T3)),

where the inequality is obtained from (9.5).
In the current article we will use the following consequence of Corollary 9.6, which
is obtained by a standard approximation argument:

Corollary 9.8. For p, q ∈ (1,∞) and T > 0 if S ∈ Lp(0, T ; Lq(T3)), the unique
tempered solution u of

∂t u − �u = S, u|t=0 = 0, (9.1)

satisfies
‖�u‖Lp(0,T ;Lq (T3)) �p,q ‖S‖Lp(0,T ;Lq (T3)). (9.2)

9.5. Interpolation

The following classical interpolation estimate can be for instance found in [9,
Thm 1.5.2].

Theorem 9.9. (Gagliardo-Nirenberg-Sobolev) Consider 1 � p, q, r � ∞ and
m ∈ N. Assume that j ∈ N and α ∈ R satisfy
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1

p
= j

3
+

(
1

r
− m

3

)
α + 1 − α

q
,

j

m
� α � 1,

with the exception α < 1 if m − j − 3/r ∈ N. Then, the following holds. For any
g ∈ Lq(T3), if Dm g ∈ Lr (T3), then D j g ∈ Lp(T3) and we have the following
estimate for g

‖D j g‖Lp(T3) � ‖Dm g‖α
Lr (T3)

‖g‖1−α

Lq (T3)
+ ‖g‖Lq (T3),

where the constant behind � does not depend on g. If 〈D j g〉 = 0, then the term
‖g‖Lq (T3) in the right-hand side can be dispensed with.

9.6. Parabolic Regularization for the Navier–Stokes Equations with a Source
Term

The main result of this section is Proposition 9.10, which gives higher order energy
estimates for the Navier-Stokes system together with a form of regularization along
time. These estimates seem to be folklore but we give here the proof for the sake
of completeness.

Proposition 9.10. There exists a universal constant C
 > 0 such that the following
holds: consider u0 ∈ H1/2

div (T3), F ∈ L2
loc(R+; H−1/2(T3)) and T > 0 such that

‖u0‖2H1/2(T3)
+ C


∫ T

0
‖F(s)‖2

H−1/2(T3)
ds � 1

C2



. (9.3)

Then, there exists on [0, T ] a unique Leray solution of the Navier-Stokes system with
source F and with initial data u0. This solution u belongs to L∞([0, T ]; H1/2(T3))∩
L2(0, T ; H3/2(T3)) and satisfies for almost everywhere 0 � t � T

‖u(t)‖2
H1/2(T3)

+
∫ t

0
‖∇u(s)‖2

Ḣ
1/2

(T3)
ds

� ‖u0‖2H1/2(T3)
+ C


∫ t

0
‖F(s)‖2

H−1/2(T3)
ds. (9.4)

Furthermore, if F ∈ L2
loc(R+; L2(T3)), we have, for almost everywhere 1/2 � t �

T ,

‖∇u(t)‖2
L2(T3)

+
∫ t

1/2
‖�u(s)‖2

L2(T3)
ds � A(t) +

∫ t

0
‖F(s)‖2

L2(T3)
ds, (9.5)

where � depends only on C
, and A is defined by

A(t) := 1

2
sup
[0,t]

‖u(s)‖2
L2(T3)

+
∫ t

0
‖∇u(s)‖2

L2(T3)
ds. (9.6)
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Proof. The proof proceeds in two different steps. First, if such a Leray solution of
the Navier-Stokes exists, because of the interpolation estimate

‖ · ‖4
Ḣ
1
(T3)

� ‖ · ‖2
Ḣ
1/2

(T3)
‖ · ‖2

Ḣ
3/2

(T3)
,

we have in particular u ∈ L4(0, T ;H1(T3)). This is a known case of weak-strong
uniqueness, see for instance the stability result [8, Theorem 3.3]. The second step
is to prove that such a solution indeed exists. This follows by a simple compactness
argument, using Proposition 9.11 and Proposition 9.12 below, choosing for γ an
appropriate regularization of t �→ 2t10�t�1/2 + 1t>1/2.

In order to prove the existence of a solution as in Proposition 9.10, we rely on the
following standard approximation procedure: we consider, for χ ∈ C∞(T3), the
regularized system

∂t u + (̃uχ · ∇)u − �u + ∇ p = F, (9.7)

div u = 0, (9.8)

u(0, ·) = u0, (9.9)

where ũχ := u 
 χ . When u0 and F are smooth, the existence of a unique smooth
solution to system (9.7)–(9.9) is standard.

Proposition 9.11. Consider a nondecreasing function γ ∈ C 1
b (R) vanishing at

0 and such that ‖γ ‖W1,∞(R) � 1. There exists C > 0 and an onto nondecreas-

ing continuous function ϕ : R+ → R+, such that for any u0 ∈ C∞
div(T

3),
F ∈ C∞(R+ × T

3) and any χ ∈ C∞(T3) such that ‖χ‖1 = 1, the unique
solution u of (9.7)–(9.9) satisfies for t � 0,

γ (t)‖∇u(t)‖2
L2(T3)

+
∫ t

0
γ (s)‖�u(s)‖2

L2(T3)
ds

�
(

A(t) +
∫ t

0
γ (s)‖F(s)‖2

L2(T3)
ds

)
�(h(t)), (9.10)

where the constant behind � is universal, �(z) := (1 + z)ez, A is given by (9.6)
and

h(t) := C
∫ t

0
‖∇u(s)‖2

L3(T3)
ds. (9.11)

Proof. We multiply the equation by −γ (t)�u, and use adequate integrations by
parts together with Young’s and Hölder’s inequality, to get

1

2

d

dt

{
γ (t)‖∇u(t)‖2

L2(T3)

}
+ γ (t)

2
‖�u(t)‖2

L2(T3)

� 1

2
γ ′(t)‖∇u(t)‖2

L2(T3)

+γ (t)

2
‖F(t)‖2

L2(T3)
+γ (t)‖�u(t)‖L2(T3)‖u(t)‖L6(T3)‖∇u(t)‖L3(T3). (9.12)
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We use then another time Young’s inequality and the Sobolev embedding
H1(T3) ↪→ L6(T3) to write

d

dt

{
γ (t)‖∇u(t)‖2

L2(T3)

}
+ γ (t)‖�u(t)‖2

L2(T3)

� γ ′(t)‖∇u(t)‖2
L2(T3)

+ γ (t)‖F(t)‖2
L2(T3)

+ γ (t)‖u(t)‖2
H1(T3)

‖∇u(t)‖2
L3(T3)

.

Using the definition (9.6) of A(t) and the fact that ‖γ ‖W1,∞(R) � 1, we infer,

introducing �(t) := γ (t)‖∇u(t)‖2
L2(T3)

�′(t) + γ (t)‖�u(t)‖2
L2(T3)

� ‖∇u(t)‖2
L2(T3)

+A(t)‖∇u(t)‖2
L3(T3)

+γ (t)‖F(t)‖2
L2(T3)

+�(t)‖∇u(t)‖2
L3(T3)

,

which implies by Gronwall’s inequality (since �(0) = 0), using once again the
definition of A(t),

�(t) +
∫ t

0
γ (s)‖�u(s)‖2

L2(T3)
ds

�
(
A(t)(1 + h(t)) +

∫ t

0
γ (s)‖F(s)‖2

L2(T3)
ds

)
exp(h(t)),

where h is given by (9.11), for some univeral constant C > 0 ; this last estimate
can be recasted into (9.10).

Recall the notation ‖ · ‖Ḣs
(T3) for the L

2 norm associated with the multiplier |ξ |s .
Proposition 9.12. There exists a universal constant C
 such that the following
holds. For any u0 ∈ C∞

div(T
3), F ∈ C∞(R+ ×T

3) and any χ ∈ C∞(T3) such that
‖χ‖1 = 1, if, for some T > 0, one has

‖u0‖2H1/2(T3)
+ C


∫ T

0
‖F(s)‖2

H−1/2(T3)
ds � 1

C2



, (9.13)

then the unique solution u of (9.7)–(9.9) satisfies for t ∈ [0, T ],

‖u(t)‖2
H1/2(T3)

+
∫ t

0
‖∇u(s)‖2

Ḣ
1/2

(T3)
ds � ‖u0‖2H1/2(T3)

+C


∫ t

0
‖F(s)‖2

H−1/2(T3)
ds.

In particular, recalling the definition (9.11), on [0, T ] we have h � C/C
 where C
is the universal constant given in Proposition 9.11.

Proof. Let us first recall the fundamental energy estimate

d

dt
‖u‖2

L2(T3)
+ ‖u‖2

Ḣ
1
(T3)

� ‖F‖2
H−1(T3)

. (9.14)

Consider� theFouriermultiplier associatedwith |ξ |.After taking the scalar product
with �u, thanks to Plancherel’s formula, Hölder’s inequality, to the continuity of
the Leray projector P on L3/2(T3), we can also obtain
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d

dt
‖u‖2

Ḣ
1/2

(T3)
+ ‖∇u‖2

Ḣ
1/2

(T3)

� ‖�u‖L3(T3)‖∇u‖L3(T3)‖u‖L3(T3) + ‖�u‖
Ḣ
1/2

(T3)
‖F‖

Ḣ
−1/2

(T3)
.

Using Young’s inequality and combining with (9.14) we infer

d

dt
‖u‖2

H1/2(T3)
+‖∇u‖2

Ḣ
1/2

(T3)
� ‖�u‖L3(T3)‖∇u‖L3(T3)‖u‖L3(T3)+‖F‖2

H−1/2(T3)
.

We therefore have

d

dt
‖u‖2

H1/2(T3)
+‖∇u‖2

Ḣ
1/2

(T3)
� ‖�u‖L3(T3)‖∇u‖L3(T3)‖u‖L3(T3)+‖F‖2

H−1/2(T3)
.

We have, by Sobolev embedding,

‖g − 〈g〉‖L3(T3) � ‖g‖
Ḣ
1/2

(T3)
,

‖g‖L3(T3) � ‖g‖H1/2(T3).

Since �u and ∇u have a vanishing mean, we therefore have

d

dt
‖u‖2

H1/2(T3)
+ ‖∇u‖2

Ḣ
1/2

(T3)
� ‖∇u‖2

Ḣ
1/2

(T3)
‖u‖H1/2(T3) + ‖F‖2

H−1/2(T3)
.

This is a differential inequality of the form

x ′(t) + y(t) � C
(

x(t)1/2y(t) + z(t)
)
,

where C is some universal constant and

x(t) = ‖u(t)‖2
H1/2(T3)

, y(t) = ‖∇u(t)‖2
Ḣ
1/2

(T3)
, z(t) = ‖F(t)‖2

Ḣ
−1/2

(T3)
.

(9.15)

After integration, we thus have

x(t) +
∫ t

0
y(s) ds � x(0) +

∫ t

0
y(s)

(
Cx(s)1/2 − 1

)
ds + C

∫ t

0
z(s) ds.

In particular, if, for some T > 0, one has (this precisely corresponds to the assump-
tion (9.3))

x(0) + C
∫ T

0
z(s) ds � 1

C2 , (9.16)

then by a standard continuity argument we can show that the inequality x(t)1/2 �
1/C which is true for t = 0 remains valid up to t = T , entailing on [0, T ],

x(t) +
∫ t

0
y(s) ds � x(0) + C

∫ t

0
z(s) ds, (9.17)

which corresponds to the desired inequality, recalling (9.15).
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