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Abstract

We study the asymptotic behavior of the minimisers of the Landau-de Gennes
model for nematic liquid crystals in a two-dimensional domain in the regime of
small elastic constant. At leading order in the elasticity constant, the minimum-
energy configurations can be described by the simpler Oseen-Frank theory. Using
a refined notion of �-development we recover Landau-de Gennes corrections to
the Oseen-Frank energy. We provide an explicit characterisation of minimizing
Q-tensors at this order in terms of optimal Oseen-Frank directors and observe the
emerging biaxiality.We apply our results to distinguish between optimal configura-
tions in the class of conformal director fields of fixed topological degree saturating
the lower bound for the Oseen-Frank energy.

1. Introduction

Nematic liquid crystals are the simplest liquid crystalline phase as well as
the most widely used in applications. Among the theoretical models for nematic
liquid crystals, the most prevalent in the physics and mathematics literature are the
Oseen-Frank [15] and Landau-de Gennes theories [12]. The Oseen-Frank theory is
the simpler of the two, but fails to describe several characteristic features of nematic
liquid crystals, including the isotropic-nematic phase transition, non-orientability
of the director field, and the fine structure of defects. By incorporating additional
degrees of freedom, the Landau-de Gennes theory accounts for these features, but
is more difficult to solve and analyse.

The main focus of this paper is to establish a fine relation between the two theo-
ries, in the weak-elasticity regime and for two-dimensional domains. Employing a
refined notion of �-development we obtain an approximate expression for Landau-
de Gennes minimisers in terms of Oseen-Frank minimisers accurate to energies
through the first two orders in the elasticity constant. The results are applied to a
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family of boundary conditions of fixed topological degree which saturate a lower
bound on the leading-order Oseen-Frank energy. For these boundary conditions,
we provide explicit solutions in terms of the Green’s function for the Laplacian on
the domain, and show that the degeneracy in the Oseen-Frank energy is lifted at the
next order. Below we introduce both theories and discuss the mathematical status
of their relationship together with the results of this paper.

1.1. Landau-de Gennes and Oseen-Frank theories of liquid crystals

In the Oseen-Frank theory, the liquid crystalline material is assumed to be in the
nematic phase. Its configuration in a domain� ⊂ Rd , d = 2 or d = 3, is described
by a unit-vector field n : � → S

2, called the director field, which represents the
mean orientation of the rod-like constituents of the material and characterises its
optical properties. In the absence of external fields, the director field is taken to be
a minimiser of the Oseen-Frank energy

EOF [n] =
∫

�

K1|∇ · n|2 + K2|n · (∇ × n)|2 + K3|n × (∇ × n)|2, (1.1)

subject to Dirichlet boundary conditions n|∂� = nb, where the K j ’s are material-
dependent constants. For mathematical analysis, the one-constant approximation,
K1 = K2 = K3, is often adopted, according to which the Oseen-Frank energy
reduces to the Dirichlet energy, with harmonic maps as critical points.

One shortcoming of this description is that in certain domains, the director field
n is more appropriately represented by anRP2-valuedmap, stemming from the fact
that orientations n and −n are physically indistinguishable. In simply-connected
domains, a continuous RP2-valued map n can be lifted to a continuous S2-valued
map, in which case we say that n is orientable. However, in non-simply-connected
domains, this may not hold, in which case we say that n is non-orientable; see
[3] for further discussion, where the notion of orientability is extended to n ∈
W 1,p(�,RP2).

Another difficulty is the description of defect patterns. These are singularities
in the director field, which correspond physically to sharp changes in orientational
ordering on a microscopic length scale. It is well known that boundary conditions
can force the director field to have singularities. This occurs, for example, when� is
a three-dimensional domain with boundary homeomorphic to S2 and the boundary
map nb : ∂� → S

2 has nonzero degree. In this case, in spite of the singularity,
the infimum Oseen-Frank energy is finite. The difficulty is more acute when the
boundary data nb : ∂� → RP2 is non-orientable. In this case, the Oseen-Frank
energy is necessarily infinite.

The Landau-de Gennes theory resolves these difficulties by introducing addi-
tional degrees of freedom. The liquid crystalline material is described by a tensor
field Q : � → S0 taking values in the five-dimensional space of 3 × 3 real
symmetric traceless matrices, or Q-tensors, denoted

S0 = {
Q ∈ R3×3 : Q = Qt , tr Q = 0

}
, (1.2)
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where Qt and tr Q denote the transpose and trace of Q respectively. The Q-tensor
originates from a microscopic description; it represents the second (and lowest-
order nontrivial) moments of a probability distribution on the space of single-
particle orientations, S2, given that orientations n and −n are equally likely [12].

The Q-tensor field is taken to be a minimiser of an energy comprised of elastic
and bulk terms,

F [Q] = L

2

∫
�

|∇Q|2 +
∫

�

fbulk(Q), Q ∈ H1(�,S0), (1.3)

where L , the elastic constant, is a material parameter. For fbulk smooth and suffi-
ciently regular boundary conditions, standard results from the calculus of variations
imply that F has a smooth minimiser; singularities are absent in the Landau-
de Gennes theory. The bulk potential is required to be invariant under rotations
Q �→ RQRt , R ∈ SO(3), and is usually taken to be of the form introduced by de
Gennes,

fbulk(Q) = A

2
tr Q2 − B

3
tr Q3 + C

4
(tr Q2)2. (1.4)

1Here A, B, and C , are material parameters, possibly temperature-dependent, with
C > 0. From now on we will assume without loss of generality that the coefficients
L , A, B, and C , are non-dimensional; see, for example, [16] and the appendix of
[29] for suitable non-dimensionalisations. We will focus on the generic case B �= 0
but also discuss some aspects of the case B = 0.

In the class of spatially homogeneous Q-tensors the equilibrium configurations
correspond to the minimisers of fbulk . For A > 0, the zero Q-tensor is a local
minimiser, and becomes a global minimiser for A sufficiently large. The zero Q-
tensor corresponds to the isotropic, or orientationally disordered, phase. For A <

0, the minimisers of fbulk are, generically, a two-dimensional manifold within
the larger class of uniaxial Q-tensors, that is Q-tensors with a doubly degenerate
eigenvalue.

By identifying n, the normalised eigenvector orthogonal to the degenerate
eigenspace, as the director, uniaxial Q-tensors correspond to the nematic phase
as described within the Oseen-Frank theory. With A regarded as temperature-
dependent, theLandau-deGennes theory is seen to encompass theobserved isotropic-
nematic phase transition.

The sign of the degenerate eigenvalue of a uniaxial Q-tensor coincides with
the sign of B, and distinguishes two qualitatively different phases. In terms of
the probabilistic interpretation of the Q-tensor, a positive value of the degenerate
eigenvalue corresponds to an ensemble of orientations predominantly orthogonal
to the director n; this is the oblate uniaxial phase. A negative value corresponds to
an ensemble of orientations predominantly parallel to n; this is the prolate uniaxial
phase, which describes typical nematic liquid crystals. Since our focus is on the

1 More general bulk potentials g(tr Q2, tr Q3) have been studied in the literature; see,
for example, [2,14]. We expect the results presented here to apply more generally to bulk
potentials with a unique minimiser (modulo rotations) which is nondegenerate and uniaxial.
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nematic phase, we take A = −a2 < 0, B = −b2 < 0 and C = c2 > 0. The set of
minimisers of fbulk , which we call the limit manifold, is given by

S∗ := {
Q ∈ S0; Q = s+

(
n ⊗ n − 1

3 I
)
, n ∈ S

2
}
, (1.5)

where

s+ = b2 + √
b4 + 24a2c2

4c2
. (1.6)

The limit manifold is homeomorphic to the real projective plane RP2. In the non-
generic case b2 = 0 we have that the limit manifold is given by

S ∗
0 := {Q ∈ S0; |Q|2 = (2/3)s2+ = a2/c2}, (1.7)

which is homeomorphic to S4.
The minimum of the bulk energy is given by

f∗ := fbulk(S∗) = −a2

3
s2+ − 2b2

27
s3+ + c2

9
s4+. (1.8)

It is convenient to replace fbulk by

f̃bulk = fbulk − f∗, (1.9)

so that f̃bulk(Q) � 0 with f̃bulk(Q) = 0 if and only if Q ∈ S∗.

1.2. State of the art

The Landau-de Gennes theory is usually applied to a system inwhich the elastic
constant L can be treated as a small parameter. This is the case when the size of
the domain is much larger than a characteristic microscopic length scale (see, for
example, [16] and the appendix of [29]). With such systems in mind, we write
L = ε2 � 1 and rescale the energy (1.3) to obtain

Eε[Q] =
∫

�

1

2
|∇Q|2 + 1

ε2
f̃bulk(Q) , Q ∈ H1(�,S0) , (1.10)

so that deviation from the limit manifold is penalised. We restrict to differentiable
boundary conditions taking values in the limit manifold,

Qb = Q|∂� ∈ C1(∂�,S∗); (1.11)

indeed, boundary conditions violating this restriction induce a boundary layer of
width ε. We say that the boundary conditions are orientable if

Qb = s+
(
nb ⊗ nb − 1

3 I
)
, where nb ∈ C1(∂�,S2). (1.12)
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It is in the small-ε regime that the relationship between the Landau-de Gennes
and Oseen-Frank theories emerges. For orientable boundary conditions, if we for-
mally take ε = 0, the Landau-de Gennes energy (1.10) becomes

E0[Q] =
⎧⎨
⎩
1

2

∫
�

|∇Q|2 if Q ∈ H1(�,S∗),

+∞ otherwise.
(1.13)

Provided the domain is simply-connected, given Q ∈ H1(�,S∗), there exists
n ∈ H1(�,S2) such that Q(x) = s+(n(x) ⊗ n(x) − 1

3 I ). In this case, the limiting
energy E0[Q] can be expressed in terms of the director field as

EOF [n] = s2+
∫

�

|∇n(x)|2, (1.14)

which is, up to a multiplicative constant, the one-constant Oseen-Frank energy.
There has been much recent work in the mathematics literature analysing the

relationship between the two theories in the limit ε → 0. For three-dimensional
domains with orientable boundary conditions, it was shown in [28] that global min-
imisers Qε ∈ H1(�,S0) of Eε converge to global minimisers Q0 = s+(n0⊗n0−
1
3 I ) ∈ H1(�,S∗) of E0. Moreover, outside a finite set of point singularities of the
one-constant Oseen-Frank director n0, the convergence holds in strong norms on
compact sets. These resultswere extended in [8] to the case of non-orientable bound-
ary conditions; the principal new features are (i) the Landau-de Gennes energy is
logarithmically divergent in ε, (ii) the singular set contains one-dimensional curves
as well as isolated points, and (iii) the limit map Q0 is described by anRP2-valued
harmonicmap rather than an S2-valued harmonicmap. Results for two-dimensional
domains with more general boundary conditions and assumptions on the behaviour
of the energy are given in [4,7,17].

Given the leading-order behaviour of the Landau-de Gennes minimisers away
from singularities, one can pursue two distinct directions. The first concerns the
behaviour of a minimiser Qε near the singular set, where deviations from Q0 are
no longer small. This amounts to analysing the profiles of point and line defects,
an active area of research [4,7–11,13,17,19,21–24,26].

The second concerns the structure of deviations Qε − Q0 away from the
singular set. Formal asymptotics suggest that Qε ∼ Q0 + ε2Pε, where Pε is
O(ε0). This questionwas addressed in [29] for three-dimensional domainswith ori-
entable boundary conditions. Subject to rather restrictive conditions on Q0 (which
in particular exclude defects), it was shown that Pε approaches a limiting map
P0 ∈ C∞

loc(�,S0) ∩ Hs(�,S0) for any 0 < s < 1/2. Moreover, P0 splits natu-
rally into a sum P⊥

0 + P�
0 , where P�

0 takes values in the two-dimensional tangent
space TQ0S∗ ofS∗ at Q0, and P⊥

0 takes values in the three-dimensional orthogo-
nal complement of TQ0S∗. The transverse component P⊥

0 is given by an explicit
expression involving Q0 and its derivatives, while P�

0 is shown to satisfy a linear
inhomogeneous PDE.
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1.3. Contributions of present work

Our results also pertain to corrections toQε away from the singular set, and com-
plement those of [29]. Specifically, we consider simply-connected two-dimensional
domains with orientable boundary conditions (1.12) for which the boundary direc-
tor nb is planar, that is, nb · e3 = 0. By identifying the boundary ∂� with S

1,
we may regard a planar boundary director nb as a map from S

1 to itself, which
therefore may be assigned an integer-valued degree, m. We consider the case of
nonzero degree. We use energy-based methods to derive an explicit formula for the
transverse component of the first-order correction. While we obtain only bounds
for the tangential component, and not the linear PDE that it satisfies, we are able to
relax the restrictive assumptions on Q0 in [29]. Also, the �-convergence argument
is much simpler than the PDE analysis of [29], and has potential further application
to dynamics in terms of a corrected Oseen-Frank energy for the gradient flow.

Most importantly, the variational analysis brings to light a physically signifi-
cant difference between the energies associated with the transverse and tangential
components of P0. The transverse component, which affects the bulk potential, con-
tributes to the Landau-de Gennes energy at O(ε2), while the tangential component,
which affects only the elastic energy, contributes at higher order. This observation
suggests that the transverse component P⊥

0 assumes the same form for a wide class
of Q-tensor models in which the Oseen-Frank theory provides the leading-order
description. Insofar as the Landau-de Gennes model is necessarily approximate,
this suggests that the transverse component of the Q-tensor, while small, is robust
under perturbations; an additional O(εδ) contribution to the energy produces an
O(εδ) correction to P⊥

0 . The tangential component lacks this robustness; an O(εδ)

perturbation typically produces an O(ε−2+δ) deviation in P�
0 (cf. Remark 2.7).

The additional information contained in the transverse component P⊥
0 is man-

ifested through the resolution (cf. Remark 2.4)

P⊥
0 = c0Q0 + c1(p0 ⊗ p0 − q0 ⊗ q0) + c2(p0 ⊗ q0 + q0 ⊗ p0), (1.15)

where p0, q0 constitute an orthonormal basis for the plane perpendicular to the
director n0, and Q0 = s+(n0 ⊗ n0 − 1

3 I ). The c0-term preserves the eigenvalue
degeneracy in Q0, and can be regarded as a correction to s+. The c1- and c2-terms
produce a qualitative change in the Q-tensor; they break the eigenvalue degeneracy
and thereby introduce biaxiality. The difference between the two negative eigenval-
ues of Qε can be regarded as a measure of biaxiality, and is given to leading order
by ε2(c21 + c22)

1/2, while the orientation of the associated eigenvectors in the plane
orthogonal to n0 is determined by c2/c1. It has previously been established that a
critical point of the Landau-de Gennes energy is either everywhere uniaxial or else
almost everywhere biaxial [27,28]. The results presented here make this statement
quantitative.

Our principal application is to a special class of planar boundary conditions.
A standard argument establishes the lower bound 2π |m| for the Dirichlet energy
of an S

2-valued harmonic map n with degree-m planar boundary conditions. The
lower bound is achieved for a special family of boundary conditions, which are
parameterised by |m| arbitrarily located escape points (a1, . . . , a|m|) ∈ �|m| where
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the director field is vertical, that is, n(a j ) = ±e3. The director field n is conformal
with n · e3 sign-definite. Conformal director fields may be expressed explicitly in
terms of the Green’s function for the Laplacian on �. The associated textures are
seen to be similar to the well-known Schlieren patterns observed in liquid crystal
films (see Figure 1).

The degeneracy in the Oseen-Frank energy among these special boundary con-
ditions is lifted by the first-order correction from the Landau-de Gennes energy.
The expression for the first-order correction simplifies in the conformal case, and
is proportional to the integral of |∇Q0|4. Regarded as a potential on �|m|, the first-
order energy favours escape points moving to the boundary. This is illustrated in
the case of the two-disk, for which closed-form expressions are obtained.

For the special case b2 = 0 (as well as more general bulk potentials depending
only on tr Q2), our results can be extended to non-orientable boundary conditions.
In this case, the minimising set of fbulk is larger thanS∗; it contains all Q-tensors
with specified trace norm, andmay be identified with S4. For finite ε, the Landau-de
Gennes energy is equivalent to a Ginzburg-Landau functional on R5-valued maps,
which in the ε → 0 limit becomes the Dirichlet energy for S4-valued maps. For
both orientable and non-orientable planar boundary conditions, there is a unique
minimising S

4-valued harmonic map (in the orientable case, it is distinct from the
S∗-valued minimisers of (2.3)), and the first-order correction can be expressed in
terms of it. The �-convergence argument is simpler than in the b2 > 0 case.

1.4. Outline

The remainder of the paper is organised as follows. In Section 2 we state and
discuss our main results on the Landau-de Gennes corrections to the Oseen-Frank
energy for the non-degenerate case b2 �= 0. The proof of the �-development result
(cf. Theorem2.1) is given inSection 3. In Section 4,we state and proveTheorem4.1,
whichdealswith the degenerate caseb2 = 0 and allows for non-orientable boundary
conditions. Finally, in Section 5,we apply our results to distinguish between optimal
configurations in the class of conformal director fields of fixed topological degree
that saturate a lower bound on the Oseen-Frank energy.

2. Statement of Main Results

We are interested in studying the minimisers of the Landau-de Gennes energy
Eε in the physically relevant regime ε � 1 for the generic case b2 > 0. Through-
out we assume that the domain � ⊆ R2 is bounded and simply connected with
C1-boundary. We consider orientable planar boundary conditions with director
nb ∈ C1(∂�,S2), so that nb · e3 = 0; results for non-orientable planar boundary
conditions in the special case b2 = 0 are presented in Section 4.

Identifying the space of unit vectors orthogonal to e3 with S
1, and likewise

identifying the domain boundary ∂� with S1, we may regard nb as a map from S
1

to itself, whichmay be assigned an integer-valued degree. Given nb of nonvanishing
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degree, we denote by U the class of admissible Q-tensor fields

U :=
{
Q ∈ H1(�,S0), Q|∂� = Qb

}
, Qb := s+

(
nb ⊗ nb − 1

3 I
)
.

(2.1)

We consider the minimisation problem (cf. (1.10))

min
Q∈U

Eε[Q] = min
Q∈U

∫
�

1

2
|∇Q|2 + 1

ε2
f̃bulk(Q) . (2.2)

As a first step, we need to understand the behaviour of Problem (2.2) in the limit
ε → 0. Using methods of �-convergence we obtain the following result, whose
proof is standard and therefore omitted:

Proposition 2.1. As ε → 0, the following statements hold:

(i) For any family {Qε}ε>0 ⊂ U such that Eε[Qε] � C we have, possibly on
a subsequence, Qε ⇀ Q weakly in H1(�,S0) for some Q ∈ H1(�,S∗),
where S∗ is the limit manifold defined by (1.5).

(ii) The family (Eε)ε>0 �-converges to E0 in the weak topology of H1(�,S0),
where

E0[Q] =
⎧⎨
⎩
1

2

∫
�

|∇Q|2 if Q ∈ H1(�,S∗) ∩ U ,

+∞ otherwise.
(2.3)

(iii) The minimisers {Q∗
ε}ε>0 of the problem (2.2) converge strongly in H1(�,S0)

to the minimisers of the following harmonic map problem:

min
Q∈U ∗

E0[Q] , (2.4)

with U∗ ≡ H1(�,S∗) ∩ U .

Remark 2.1. In [31] (see also [25]), it is shown that Problem (2.4) has precisely
two solutions,

Q±
0 = s+

(
n±
0 ⊗ n±

0 − 1
3 I

)
, (2.5)

where n±
0 · e3 = 0 on ∂�, and n+

0 · e3 > 0 (resp n−
0 · e3 < 0) in �. The vector field

n±
0 is a smooth harmonic map with values in S2 (see, for instance [18]) and solves

the following minimisation problem:

min

{∫
�

|∇n|2 : n ∈ H1(�,S2), n = nb on ∂�

}
. (2.6)

From now on, we set n0 := n±
0 and Q0 := Q±

0 , meaning that all the results we
state hold for both n+

0 and n−
0 .
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2.1. A refined formulation of asymptotic �-expansion

The next step in understanding the link between the Landau-de Gennes and
Oseen-Frank theories is the asymptotic expansion of the Landau-de Gennes en-
ergy Eε. Using the approach of �-expansion we can obtain a correction to the
Oseen-Frank energy and quantify the difference between the two theories. Specif-
ically, with n0 := n±

0 ∈ C∞(�,S2) ∩ C1(�̄,S2) minimising (2.6), we define the
renormalised relative energy

Gε[Q] := 1

ε2
(Eε[Q] − E0[Q0]) , Q ∈ H1(�,S0), (2.7)

and proceed to investigate the behaviour of minimisers of Gε in U . Before stating
our main result about Gε, a few comments are in order.

The notion of�-expansion was introduced byAnzellotti and Baldo in [1]. Their
framework permits to derive selection criteria forminimiserswhen the leading order
�-limit manifests degeneracies in the energy landscape. However, our leading order
�-limit E0 is not subject to this phenomenon as it admits just the two minimisers
(2.5). This implies that the second-order �-limit will be infinite at every point but
Q±

0 . No matter which (reasonable) topology is considered, the energy will blow
up on families that do not converge to Q±

0 . In order to gain finer details on the
convergence behaviour of the minimising sequences, a slightly different approach
must be used. We proceed as follows:

• First, we observe that fairly extended arguments, that are nevertheless straight-
forward given the existing literature (see, for instance, [5,21,28,29]), allow to
show that if {Q∗

ε}ε>0 is a family of minimisers of Eε, there exists an ε0 > 0
such that

sup
0<ε<ε0

‖Q∗
ε‖W 1,∞(�,S0)

< ∞ , (2.8)

and, possibly for a subsequence, Q∗
ε → Q±

0 strongly in H1(�,S0) with Q±
0

one of the two minimisers of problem (2.4).
• Next, we use (2.8) to deduce fine properties of the minimisers. We consider all
possible families {Qε}ε>0 that behave in a similar way to minimising families
(see Definition 2.1 for the precise formulation), and we provide a description
of the limiting energy capable of distinguishing different sequences. Then, the
second-order �-limit follows as a particular instance of our analysis.

The previous considerations motivate the following terminology:

Definition 2.1. We say that a family {Qε}ε>0 ⊆ U is almost-minimising whenever
{Qε}ε>0 satisfies the uniform bound (2.8), and Gε[Qε] � C for some constant
C > 0 independent of ε.
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2.2. Main result: the case b2 > 0.

Ourmain result provides detailed information about the expansion of the energy
Eε and is stated in the next Theorem 2.1. Before stating it we need to introduce
some basic definitions, notation and terminology that will be used throughout.

The set of Q-tensors,S0, is a five-dimensional linear space, with inner product
Q : P = tr (QP). The norm induced by the inner product is denoted by |Q| :=
(tr Q2)

1
2 . It will be convenient to introduce the following orthonormal basis for

S0:

F1 = 1√
2

(e1 ⊗ e1 − e2 ⊗ e2) ,

F2 = 1√
2

(e1 ⊗ e2 + e2 ⊗ e1) ,

F3 =
√
3

2

(
e3 ⊗ e3 − 1

3
I

)
,

F4 = 1√
2

(e1 ⊗ e3 + e3 ⊗ e1) ,

F5 = 1√
2

(e3 ⊗ e2 + e2 ⊗ e3) , (2.9)

with e1, e2, e3 standard basis of R3. A tensor Q ∈ S0 is called biaxial if all its
eigenvalues are distinct. We say that Q is uniaxial if it has a doubly degenerate
eigenvalue −λ/3. In this case, it can be represented uniquely as

Q = λ
(
n ⊗ n − 1

3 I
)
, (2.10)

where n ∈ S
2 is called the director and 2

3λ ∈ R is the (unique) non-degenerate
eigenvalue of Q. More specifically, Q is prolate uniaxial if λ > 0 and oblate uni-
axial if λ < 0. Finally, Q ∈ S0 is isotropic if it has a triply degenerate eigenvalue,
in which case Q = 0. If the largest (necessarily positive) eigenvalue of Q ∈ S0 is
nondegenerate, it is called the principal eigenvalue, and the associated normalised
eigenvector is called the principal eigenvector. The remaining two eigenvalues of Q
(which may be degenerate) and the associated orthonormal eigenvectors are called
the subprincipal eigenvalues and subprincipal eigenvectors.

We introduce a parameterised family of rotations in SO(3). For any n ∈ S
2 \

{−e3}, we define

Rn = I + [e3 × n]× + [e3 × n]2×
1 + n · e3 , (2.11)

where, for every ω ∈ R3, the symbol [ω]× denotes the antisymmetric matrix that
maps v ∈ R3 to ω × v. It is easy to check that Rn ∈ SO(3) and that Rn e3 = n.
Indeed, Rn may be uniquely characterised as the rotation about an axis orthogonal
to e3 by an angle 0 � θ < π that maps e3 into n. Note that, when n �= e3 the axis
of rotation is e3 × n, and the angle of rotation is cos−1(n · e3).
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Remark 2.2. Given a bounded domain � ⊂ R2, we note the following: for any
1 � p � ∞, if n ∈ W 1,p(�,S2) and 1 + n · e3 is bounded away from 0, then
Rn ∈ W 1,p(�,SO(3)).

In what follows, to shorten notation, we set Q[n] := s+
(
n ⊗ n − 1

3 I
)
for any

n ∈ S
2. Also, we set

Vρ :=
3∑
j=1

ρ j Fj , ∇n0 ⊗ ∇n0 :=
2∑

i=1

∂i n0 ⊗ ∂i n0. (2.12)

Here, ρ ∈ R3, and the Fj are the first three elements of the basis (2.9). Note that
any Vρ has e3 as eigenvector.

Theorem 2.1. As ε → 0, the following assertions hold:

(i) For any family {Qε}ε>0 ⊆ U such that Gε[Qε] � C we have, possibly on
a subsequence, Qε → Q±

0 := s+
(
n±
0 ⊗ n±

0 − 1
3 I

)
strongly in H1(�,S0),

where Q±
0 is one of the two minimisers of problem (2.4).

(ii) If {Qε}ε>0 is almost-minimising then, possibly on a subsequence, Qε → Q0 =
Q[n0] in H1(�,S0) and there exists a family of principal eigenvectors of Qε,
denoted as nε ∈ W 1,∞(�,S2), and a vector-valued function ρ ∈ L2(�,R3),
such that

‖nε − n0‖H1
0 (�,R3) � Cε (2.13)

and

P⊥
ε := 1

ε2
(Qε − Q[nε]) ⇀ Rn0VρR

t
n0 weakly in L2(�,S0), (2.14)

where Rn0 ∈ W 1,∞(�,SO(3)) is the field of rotation matrices given by (2.11).
(iii) Let {Qε}ε>0 beanalmost-minimising family such that Qε → Q0 in H1(�,S0).

For any family of principal eigenvectors nε ∈ W 1,∞(�,S2) satisfying (2.13),
and any P⊥

ε ∈ H1
0 (�,S0) satisfying (2.14) we have

lim inf
ε→0

Gε[Qε] � H0[n0, ρ] :=
∫

�

1

2
B0ρ · ρ + b0 · ρ. (2.15)

Here, B0 = diag(μ,μ, ν) with μ = b2s+, ν = 1
3b

2s+ + 2a2, and b0 ∈
L∞(�,R3) is defined by

b0 · e j := −2s+ (∇n0 ⊗ ∇n0) : (Rn0Fj R
t
n0), j = 1, 2,

b0 · e3 := √
6s+|∇n0|2.

(2.16)

Also, for everyρ ∈ L2(�,R3) there exists a recovery almost-minimising family
Qε = Q[nε] + ε2P⊥

ε satisfying (2.13), (2.14) for which limε→0 Gε[Qε] =
H0[n0, ρ].
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(iv) The unique minimiser of H0[n0, ·] is given by ρ0 := −B−1
0 b0. The corre-

sponding minimum value of the energy is given by

H0[n0, ρ0] = −s2+
∫

�

2

μ
|∇n0 ⊗ ∇n0|2 +

(
3

ν
− 1

μ

)
|∇n0|4. (2.17)

In particular, in the topology inducedby (2.13)and (2.14), the family of energies
{Gε}ε>0 �-converges to G0, where

G0[Q] =
{
H0[n0, ρ0] if Q = Q0,

+∞ otherwise.
(2.18)

Moreover, if Q∗
ε → Q0 in H1(�,S0) is a family of minimisers of {Eε}ε>0

with principal eigenvectors n∗
ε ∈ W 1,∞(�,S2), then Gε[Q∗

ε ] → H0[n0, ρ0],
and we have

1

ε

(
n∗

ε − n0
) → 0 strongly in H1

0 (�,S2), (2.19)

1

ε2

(
Q∗

ε − Q[n∗
ε ]
) → P⊥

0 := Rn0Vρ0 R
t
n0 strongly in L2(�,S0). (2.20)

The proof of Theorem 2.1 is given in Section 3. Key components include a
quadratic lower bound on the variation of the S

2-valued Dirichlet energy at n0
(Lemma 3.2) and a Q-tensor decomposition (Lemma 3.1) into a sum of two terms
with a common eigenbasis, one taking values on the limit manifold, and the other
taking values transverse to it. The fact that almost-minimisers Qε have uniformly
bounded finite W 1,∞-norm is used to bound Gε from below (in fact, finite W 1,4-
norm would suffice).

Remark 2.3. We note that P⊥
0 in (2.20) does not vanish on the boundary, so that

higher-order corrections to the minimiser Q∗
ε contain a boundary layer.

Remark 2.4. The expression for P⊥
0 can be written as (cf. (1.15))

P⊥
0 = c0Q0 + c1 (p0 ⊗ p0 − q0 ⊗ q0) + c2 (p0 ⊗ q0 + p0 ⊗ q0) , (2.21)

where p0 = Rn0e1 and q0 = Rn0e2 (so that n0, p0 and q0 constitute an orthonormal
frame), and

c0 = −2
√
6

ν
|∇n0|2 , (2.22)

c1 =
√
2s+
μ

(
|∇n0 · p0|2 − |∇n0 · q0|2

)
, (2.23)

c2 = 2
√
2s+
μ

(∇n0 · p0) · (∇n0 · q0). (2.24)

The coefficients c1 and c2 describe biaxiality;
the quantity ε2(c21 + c22) is the square of the difference of the two subprincipal

eigenvalues of the minimiser Q∗
ε , to leading order in ε.

The coefficient c0 describes an O(ε2) correction to the principal eigenvalue of
Q∗

ε .
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Remark 2.5. TheenergyH0[n0, ρ]distinguishes betweenvarious almost-minimising
families {Qε} and gives a non-trivial energy landscape. The �-limit H0 provides
a starting point for an asymptotic analysis of Q-tensor dynamics under gradient
flow. The fact that H0 depends only on ρ indicates that the director dynamics is
much slower than that of displacements transverse to the limit manifold. Specifi-
cally, for an initial condition with o(ε)-displacements from the optimal director and
O(ε2)-displacements from the limit manifold, the time scale for director dynamics
is nevertheless longer.

Remark 2.6. It is easy to generalise Theorem 2.1 to boundary conditions where
nb · e3 � 0 (or nb · e3 � 0). Moreover, if nb · e3 is strictly positive (or strictly
negative) at some point x0 ∈ ∂� then it is not necessary to assume that nb has
nonzero degree (indeed, the degree might not be well defined in this case).

Remark 2.7. An informal argument suggests that Theorem 2.1may extend tomore
general Q-tensor energy densities of the form |∇Q|2 + ε−2 f (Q) + εδg(Q,∇Q),
where f is any bulk potential minimised by prolate uniaxial Q-tensors of fixed
norm, and g represents an additional contribution to the energy. In order that the
generalisedmodel reduce to the (one-constant) Oseen-Frank description away from
defects, we require that δ > 0. Under suitable conditions on g, we expect the
transverse component P⊥

0 to be unaffected by this additional contribution, and
Theorem 2.1 still to hold but with a rate of convergence of ||nε − n0||H1 → 0
possibly depending on δ. The key point is that P⊥

0 should still be given by (2.20),
with μ and ν the nonvanishing eigenvalues of the Hessian of f at its minimum.

The argument may be illustrated by a finite-dimensional proxy for the Landau-
de Gennes energy, in which the tensor field Q is replaced by just two quantities: x ,
a proxy for the director displacement n − n0, where n is the principal eigenvector
of Q; and y, a proxy for the transverse component, Q − Q[n]. The proxy energy
is given by

Eε(x, y) =
(
1

2
px2 + qxy + 1

2
r y2 + by

)
+ μ

2ε2
y2 + εδg(x, y), (2.25)

where p, δ, μ > 0. The term ( 12 px
2 + qxy + 1

2r y
2 + by) corresponds to the

elastic energy expanded about its minimum – hence the absence of a term linear
in x and the requirement that p > 0. The term 1

2μy2/ε2 corresponds to the bulk
potential expanded about its minimum; the absence of terms in x2 and xy reflects
the rotational invariance of the bulk potential. To leading order in ε, the minimiser
(x∗

ε , y∗
ε ) is given by

x∗
ε = −εδ

r

∂

∂y
g(0, 0) + ε2

μr
b, y∗

ε = ε2
b

μ
. (2.26)

Thus, the “transverse component” y∗
ε is independent of g, while the “director dis-

placement” x∗
ε is driven by g, at least for δ < 2.
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3. �-Expansion: Proof of Theorem 2.1

3.1. Proof of (i): equi-coercivity of the energy functionals (compactness)

Here we prove statement (i) of Theorem 2.1. Consider a family {Qε}ε>0 ⊂ U
such that Gε[Qε] � C for some constant C > 0. It is clear that

Eε[Qε] =
∫

�

1

2
|∇Qε|2 + 1

ε2
f̃bulk(Qε) � Cε2 + E0[Q0]. (3.1)

In particular, {Eε[Qε]}ε>0 is bounded for ε sufficiently small. Since f̃bulk � 0,
there exist a (not relabeled) subfamily {Qε}ε>0 ⊂ U , and a tensor field Q∗ ∈
H1(�,S0), such that

Qε ⇀ Q∗ in H1(�,S0), f̃bulk(Qε) → 0 almost everywhere in �. (3.2)

From the above, Q∗ ∈ H1(�,S∗) and Qε → Q∗ strongly in L2(�,S0). By the
lower semicontinuity of the norm and the bound (3.1) we obtain

∫
�

|∇Q∗|2 � lim inf
ε→0

∫
�

|∇Qε|2 � lim
ε→0

(Cε2 + E0[Q0]) = E0[Q0]

=
∫

�

|∇Q0|2 , (3.3)

with Q0 ∈ argminQ∈U E0[Q]. Therefore,
Q∗ ∈ argminQ∈U E0[Q] and ‖∇Qε‖L2 → ‖∇Q∗‖L2 = ‖∇Q0‖L2 . (3.4)

Combining this information with (3.2) we conclude that Qε → Q∗ strongly in
H1(�,S0). Eventually, by Remark 2.1, Q∗ = s+

(
n±
0 ⊗ n±

0 − 1
3 I

)
where n±

0 is
one of the two minimisers of problem (2.6).

3.2. Proof of (ii): parameterisation of almost-minimising families and
convergence estimates

Here we prove statement (ii) of Theorem 2.1. In agreement with Remark 2.1,
and to fix the ideas, we set n0 := n+

0 and Q0 := Q+
0 = s+

(
n0 ⊗ n0 − 1

3 I
)
.

Also, to shorten notation, we set Q[n] := s+
(
n ⊗ n − 1

3 I
)
for any n ∈ S

2, and

Vρ := ∑3
j=1 ρ j Fj for any vector ρ ∈ R3, where Fj are the first three elements of

the basis (2.9).
We show that any almost-minimising family {Qε}ε>0 ⊆ U admits a parame-

terisation in terms of two families of vector fields:

• the family {nε}ε>0 ⊆ W 1,∞(�,S2) of principal normalised eigenvectors of
{Qε}ε>0;

• the family of vector fields {ρε}ε>0 ⊆ W 1,∞
0 (�,R3) that characterises the dis-

placement between Qε and the limit manifold S∗ defined by (1.5).
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The parameterisation facilitates the fine control of the energy difference Eε[Qε] −
E0[Q0]; contributions to Eε[Qε] from ρε are controlled by the bulk potential, which
takes its minimum on the limit manifold, while contributions from nε are controlled
by the elastic energy, using Lemma 3.2 below. This separation is necessitated by
the fact that, by rotational invariance, the second variation ∇(2) fbulk of the bulk
potential onS∗ is only positive semidefinite, not positive definite. To linear order,
variations in nε are tangent to S∗ and lie in the null space of ∇(2) fbulk , while
variations in ρε are normal to S∗ and lie in the subspace on which ∇(2) fbulk is
positive definite.

Lemma 3.1. Let � ⊂ R2 be a bounded and simply-connected domain and n ∈
C1(�̄,S2).

Suppose that {Qε}ε>0 ⊆ U is uniformly bounded in W 1,∞(�,S0), and

Qε → Q[n] := s+
(
n ⊗ n − 1

3 I
)

strongly in H1(�,S0).

Then, for ε sufficiently small, the following hold:

(i) There exists a principal eigenvector nε ∈ W 1,∞(�,S2) of Qε such that for any
1 � p < ∞,

nε → n in W 1,p(�,S2), as well as in C(�̄,S2). (3.5)

(ii) There exists a vector-valued function ρε ∈ W 1,∞
0 (�,R3) such that

Qε = Q[nε] + ε2P⊥
ε , P⊥

ε := RnεVρε R
t
nε

. (3.6)

Here, Rnε is the rotation given by (2.11). Moreover, we have, for any 1 � p <

∞,

Rnε → Rn0 in W 1,p(�,SO(3)), ε2ρε → 0 in W 1,p
0 (�,R3). (3.7)

as well as, respectively, in C(�̄,SO(3)) and in C(�̄,R3).

Proof. Since Qε → Q[n] in H1(�,S0) with Qε uniformly bounded in
W 1,∞(�,S0), by interpolation it is clear that Qε → Q[n] in W 1,p(�,S0) for
every 1 � p < ∞, as well as in C(�̄,S0).
(i) The tensor field Q[n] has everywhere a principal eigenvalue equal to 2s+/3. It
follows that for ε sufficiently small, Qε has everywhere a principal eigenvalue λε

with principal eigenvector nε uniquely determined up to a sign. The fact that λε is
nondegenerate implies that the projector nε ⊗ nε can be expressed as a smooth
function of Qε (see for instance [30]). Thereby, Q[nε] ∈ W 1,∞(�,S0) and
Q[nε] → Q[n] in H1(�,S0), as well as uniformly. In particular, nε · n �= 0
for ε sufficiently small. We may then choose the sign of nε so that nε · n is every-
where positive. For this choice, nε ∈ W 1,∞(�,S2) and nε → n in W 1,p(�,S2),
1 � p < ∞, as well as in C(�̄,S2).
(ii) Consider the quantityUε := ε−2Rt

nε
(Qε − Q[nε]) Rnε . As nε is an eigenvector

of Qε and of nε ⊗ nε, it follows that e3 is an eigenvector of Uε. The unit vector e3
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is an eigenvector of Q ∈ S0 if, and only if, Q is a linear combination of F1, F2
and F3. Therefore Uε = Vρε with ρε · e j := Uε : Fj . Setting

P⊥
ε = RnεVρε R

t
nε

, (3.8)

we establish (3.6). Next, we prove that ρε ∈ W 1,p
0 (�,R3). It is clear from the

assumptions on Qε that ρε ∈ W 1,∞(�,R3). Now, Qε ∈ U implies Qε|∂� =
Q[n]|∂�; also, since nε is the principal eigenvector of Qε, nε|∂� = n|∂�; overall,
ρε|∂� = 0.

Finally, since Qε and Rnε approach Q[n] and Rn with respect to their W 1,p-

norms, as well as uniformly, it follows from (3.6) that ε2ρε → 0 in W 1,p
0 (�,R3)

as well as uniformly. ��

3.2.1. Strong minimality of S2-valued harmonic maps Wewill require a lower
bound on the Dirichlet energy of S2-valued maps sufficiently close to a minimising
harmonic map. The following is based on results from [21], and is of independent
interest; for completeness we give an account here. Let nb ∈ C1(∂�,S2) denote
planar boundary conditions of nonzero degree, and let

N0 :=
{
n ∈ H1(�,S2) : n|∂� = nb

}
.

Lemma 3.2. Let {nε}ε>0 ⊆ N0 and suppose nε → n0 in H1
0 (�,S2), where we

denote by n0 ∈ N0 a minimiser of the Dirichlet energy. There exists α > 0 such
that for all sufficiently small ε,

∫
�

|∇nε|2 − |∇n0|2 � α2‖nε − n0‖2H1
0 (�,R3)

. (3.9)

Proof. We first note that as −�n0 = |∇n0|2n0 and |nε| = |n0| = 1 in �, one has
∫

�

|∇nε|2 − |∇n0|2 =
∫

�

|∇(nε − n0)|2 − |∇n0|2|nε − n0|2. (3.10)

Now, we consider the second-order variation of the unconstrained Dirichlet energy,
namely, the functional W : H1

0 (�,R3) → R defined by

W [v] :=
∫

�

|∇v|2 − |∇n0|2|v|2. (3.11)

We will reason as in [25] to show that W [nε − n0] � 0 and then use an argument
inspired by one in [21] to obtain the coercivity of this functional, which together
with (3.10) will establish the result (3.9).

Since n0 is a harmonic map, we have

− �(n0 · e3) = |∇n0|2(n0 · e3). (3.12)

Also, due to Remark 2.1, without loss of generality, we may assume that n0 ·e3 > 0
in�. Thismeans that any ϕ ∈ C∞

c (�,R3) can bewritten in the form ϕ = (n0 ·e3)w
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for some w ∈ H1
0 (�,R3) ∩ L∞(�,R3); just set w := (n0 · e3)−1ϕ. Then, using

(3.12) and an integration by parts, we get

W [ϕ] =
∫

�

(n0 · e3)2|∇w|2 � 0. (3.13)

The last inequality shows in particular that

W [v] = 0 if, and only if, ∃γ ∈ R3 : v = (n0 · e3)γ in �. (3.14)

Next, consider the following constrained minimisation problem:

λ1 := inf
v∈H1

0 (�,R3)

{
W [v] : ‖v‖L2(�) = 1,−|v| � 2v · n0 � 0 in �

}
. (3.15)

Standard arguments show that λ1 is achieved by some v∗ ∈ H1
0 (�,R3) with

‖v∗‖2L2(�)
= 1. We claim that λ1 > 0. Indeed, assume for contradiction that

λ1 = W (v∗) = 0. Then, from (3.14), we get v∗ = (n0 · e3)γ for some fixed
γ ∈ R3, so that the constraint v∗ · n0 � 0 reads as

γ · n0 � 0. (3.16)

On the other hand, the boundary data nb has nonzero degree, and therefore for any
e ∈ S

1 × {0} ⊂ S
2, there exists a sequence (x j ) j∈N in � such that x j → xb ∈ ∂�

and n0(x j ) → e. Hence, from (3.16), γ · e � 0 for every e ∈ S
1 × {0}. Taking this

into account as well as the fact that (n0 · e3) > 0 in �, we must have γ = −re3 for
some positive r . But then, the condition−|v| � 2v ·n0 implies that 0 < n0 ·e3 � 1

2
in �, and this cannot happen because, otherwise, since n0 is continuous, we would
contradict the assumption that n0|∂� = nb has nonzero degree. Thus, we obtain

∫
�

|∇v|2 − |∇n0|2|v|2 � λ1

∫
�

|v|2 , (3.17)

with λ1 > 0, provided v ∈ H1
0 (�,R3) satisfies the inequality constraint −|v| �

2v · n0 � 0. This implies that
∫

�

|∇v|2 − |∇n0|2|v|2 � β

∫
�

|∇n0|2|v|2 (3.18)

where β = λ1/‖∇n0‖2L∞(�) > 0 (we recall that n0 is smooth), and thereby

1

1 + β

∫
�

|∇v|2 �
∫

�

|∇n0|2|v|2 . (3.19)

Substituting the preceding into (3.11), we get that

W [v] � β

1 + β

∫
�

|∇v|2. (3.20)

The claimed relation (3.9) follows on setting, α2 := β
1+β

, v := nε −n0, and noting
that the inequality constraint is satisfied for all sufficiently small ε. ��
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3.2.2. Convergence estimates The expression (2.7) of the energy Gε reads, in
extended form, as

Gε[Qε] = 1

2ε2

∫
�

|∇Qε|2 − |∇Q0|2 + 1

ε4

∫
�

f̃bulk(Qε). (3.21)

We consider separately the difference in the Dirichlet and bulk potential energies of
Qε and Q0. We first focus on the bulk energy and derive an equivalent expression
of the bulk potential in terms of a suitable quadratic form. Precisely, let {Qε}ε>0 ⊆
U be an almost-minimising family. According to Lemma 3.1, there exist nε ∈
W 1,∞(�,S2), ρε ∈ W 1,∞

0 (�,R3), such that

Qε = Q[nε] + ε2P⊥
ε , P⊥

ε := RnεVρε R
t
nε

. (3.22)

Hence, Qε = Rnε

(
V+ + ε2Vρε

)
Rt
nε
, with V+ := s+

(
e3 ⊗ e3 − 1

3 I
) ∈ S∗. From

the rotational invariance of f̃bulk it follows that f̃bulk(Qε) = f̃bulk
(
V+ + ε2Vρε

)
.

A straightforward calculation yields

f̃bulk(Qε) = ε4

2
Bερε · ρε , (3.23)

where Bε := B0 + ε2(ρε · e3)B1 + ε4|ρε|2B2, with B0 = diag(μ,μ, ν) given by
(2.15), and

B1 =
√

8
3 s+c

2 I +
√

2
3b

2 diag
(
1, 1, 1

3

)
, B2 = c2

2 I. (3.24)

We note that μ and ν are the coefficients of the second variation of f̃bulk about its
minimum due to biaxial and uniaxial perturbations respectively. Moreover, from
Lemma 3.1, it follows that Bε → B0 uniformly. Since B0 = diag(μ,μ, ν) is
positive definite, it follows that Bε is positive definite for sufficiently small ε.

Next, we plug the representation of Qε given by (3.22) into the Dirichlet part
of Gε (cf. (3.21)), and we expand the energy. In doing this, we note that P⊥

ε is
in H1

0 (�,S0) because nε and n0 coincide on ∂�. After a simple calculation we
obtain the identity

1

2

∫
�

|∇Qε|2 − |∇Q0|2 = s2+
∫

�

|∇nε|2 − |∇n0|2

+ s+ε2
∫

�

∇(nε ⊗ nε) : ∇P⊥
ε + ε4

2

∫
�

|∇P⊥
ε |2,
(3.25)

Next, recalling that P⊥
ε = RnεVρε R

t
nε

is symmetric, we get

1

2

∫
�

∇(nε ⊗ nε) : ∇P⊥
ε =

2∑
i=1

∫
�

∂i nε ⊗ nε : ∂i P (3.26)

=
2∑

i=1

∫
�

[∂i (P⊥
ε nε) − P⊥

ε ∂i nε] · ∂i nε (3.27)
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= −
∫

�

∇nε ⊗ ∇nε : P⊥
ε + √

2/3
∫

�

(ρε · e3)|∇nε|2,
(3.28)

the last equality being a consequence of the fact that nε is an eigenvector of P⊥
ε ,

and of the constraint |nε| = 1. Eventually, introducing the vector-valued function
bε ∈ L∞(�,R3) defined by

bε · e j := −2s+∇nε ⊗ ∇nε : Rnε Fj R
t
nε

, j = 1, 2, (3.29)

bε · e3 := √
6s+|∇nε|2, (3.30)

we get −s+�(nε ⊗ nε) : P⊥
ε = bε · ρε. Overall, the energy Gε can be decomposed

in the form

Gε[Qε] = s2+
ε2

(
‖∇nε‖2L2 − ‖∇n0‖2L2

)
+ Hε[nε, ρε] + 1

2
ε2‖∇P⊥

ε ‖2L2 , (3.31)

with

Hε[nε, ρε] :=
∫

�

1

2
Bερε · ρε + bε · ρε. (3.32)

Combining the above representation (3.31) with Lemma 3.2, we obtain

Gε[Qε] � 1

ε2
α2s2+‖nε − n0‖2H1

0
+ Hε[nε, ρε] + 1

2
ε2‖∇P⊥

ε ‖2L2

� 1

ε2
α2s2+‖nε − n0‖2H1

0
+ β‖ρε‖2L2 − γ ‖bε‖2L2 + 1

2ε
2‖∇P⊥

ε ‖2L2 ,

(3.33)

for some β, γ > 0 independent of ε. Next, Lemma 3.1, assures that ‖bε‖L2 is
bounded independently of ε and, therefore, the bound Gε[Qε] � C implies that
‖nε − n0‖H1

0
� Cε, that is, (2.13). On the other hand, Lemma 3.1 also assures that

‖ρε‖L2 is bounded independently of ε, so there exists ρ ∈ L2(�,R3) such that

ρε ⇀ ρ weakly in L2(�,R3). (3.34)

This, used in (3.22), implies (2.14). This concludes the proof of part (ii) of Theo-
rem 2.1.

3.3. Proof of (iii): lower bound and the existence of recovery sequences

We note that (3.33) holds for any almost-minimising family Qε = Q[nε] +
ε2P⊥

ε having nε for principal eigenvectors. After that, taking into account that B0
is positive definite, by standard lower semicontinuity arguments we get

lim inf
ε→0

Gε[Qε] � lim inf
ε→0

Hε[nε, ρε] � Hε[n0, ρ] =
∫

�

1
2 B0ρ · ρ + b0 · ρ,

(3.35)
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where B0 and b0 are given by (2.15).
To proceed, we observe that since � is a Lipschitz domain, it admits a fam-

ily of Hopf cutoff functions [20], that is, compactly supported smooth functions
χε ∈ C∞

0 (�) such that, for any sufficiently small ε > 0, we have: χε(x) = 1 if
d(x, ∂�) � ε, χε → 1 strongly in L2(�), and ‖∇χε‖L∞(�) � Cε−1 for some
positive constantC > 0 independent of ε. Then we define, for any ρ ∈ L2(�,R3),

Qε = Q0 + ε2P⊥
ε , P⊥

ε = Rn0Vρε R
t
n0 , (3.36)

where ρε = χεζε, ζε ∈ C∞(�,R3) is such that ζε → ρ in L2(�,R3), and
‖∇ζε‖2L2(�)

� Cε−1. The convergence relations (2.13), (2.14) are trivially satisfied
because for any ε > 0 the directornε is the principal eigenvector of Qε . In particular,
a direct computation yields

lim
ε→0

Gε[Qε] = limε→0

(∫
�

1

2
(Bερ · ρ + bε · ρ) χε + ε2

2

∫
�

|∇P⊥
ε |2

)
.

(3.37)

Denoting by �ε:={x ∈ � : d(x, ∂�) < ε} the tubular neighbourhood of ∂� of
radius ε, we obtain for ε sufficiently small, the existence of a positive constant C0
depending only on n0 such that

ε2

2

∫
�

∣∣∣∇P⊥
ε

∣∣∣2 � C0

(
ε2

∫
�ε

|ζε∇χε|2 + ε2
∫

�

|χε∇ζε|2 + |χεζε|2
)

→ 0.

(3.38)

Combining the previous estimate with (3.37), and recalling the definition of Bε and
ξε, we infer that

lim
ε→0

Gε[Qε] = H0[n0, ρ]. (3.39)

This establishes (iii) of Theorem 2.1.

3.4. Proof of statement (iv): �- convergence and convergence estimates for the
minimisers

The �-convergence of Gε to H0[n0, ρ0], with ρ0 := −B−1
0 b0, is clear from

the lower bound (3.35) and the upper bound (3.39). It remains to prove the con-
vergence estimates for the minimisers. Let {Q∗

ε}ε>0 ⊆ W 1,∞(�,S0) be a family
of minimisers of Eε. According to Lemma 3.1, Q∗

ε may be expressed in terms
of its principal eigenvector, n∗

ε ∈ W 1,∞(�,S2), and the vector-valued function
ρ∗

ε ∈ W 1,∞
0 (�,R3). Precisely, we have

Q∗
ε = Q[n∗

ε ] + ε2P∗⊥
ε , P∗⊥

ε := Rn∗
ε
Vρ∗

ε
Rt
n∗

ε
, (3.40)

with ε2ρ∗
ε → 0 in W 1,p

0 (�,R3). Since Gε[Q∗
ε ] is bounded, it follows from the

same argument that led to (3.34), that, perhaps up to a subsequence, ρ∗
ε converges

weakly in L2(�,R3) to some ρ∗. In particular, we have

Bε → B0 strongly in L2(�,R3×3) , (3.41)
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ρ∗
ε ⇀ ρ∗ weakly in L2(�,R3), (3.42)

where Bε:=B0 + ε2(ρ∗
ε · e3)B1 + ε4|ρ∗

ε |2B2. Since B0 is positive definite, by the
lower semicontinuity of the norms and (3.31), we have that

lim inf
ε→0

Gε[Q∗
ε ] � lim inf

ε→0
Hε[n∗

ε , ρ
∗
ε ] � H0[n0, ρ∗]

=
∫

�

1

2
B0ρ

∗ · ρ∗ + b0 · ρ∗ � H0[n0, ρ0], (3.43)

with ρ0:=argminσ∈R3( 12 B0σ · σ + b0 · σ) = −B−1
0 b0, and b0 given by (2.16).

Also, by (iii), there exists an almost-minimising recovery family {Qε}ε>0 ⊆ U
such that limε→0 Gε[Qε] = H0[n0, ρ0]. Since Eε[Qε] � Eε[Q∗

ε ], it follows that
limε→0 Gε[Q∗

ε ] = H0[n0, ρ0] because
H0[n0, ρ0] = lim

ε→0
Gε[Qε] � lim sup

ε→0
Gε[Q∗

ε ] � lim inf
ε→0

Gε[Q∗
ε ] � H0[n0, ρ0].

(3.44)

From (3.31) and the preceding, we deduce that

Gε[Q∗
ε ] − H0[n0, ρ0] = s2+

ε2

(
‖∇n∗

ε‖2L2 − ‖∇n0‖2L2

)
+ 1

2
ε2‖∇P⊥

ε ‖2L2

+Hε[n∗
ε , ρ

∗
ε ] − H0[n0, ρ0]. (3.45)

On the other hand, since ρ0 = −B−1
0 b0, we have

Hε[n∗
ε , ρ

∗
ε ] − H0[n0, ρ0] =

∫
�

1

2
Bερ

∗
ε · ρ∗

ε + bε · ρ∗
ε −

∫
�

1

2
B0ρ0 · ρ0 + b0 · ρ0

= 1

2

∫
�

B−1
0 b0 · b0 − B−1

ε b∗
ε · b∗

ε

+1

2

∫
�

Bε

(
ρ∗

ε + B−1
ε b∗

ε

)
·
(
ρ∗

ε + B−1
ε b∗

ε

)
,

with b∗
ε defined as in (3.29), (3.30). Since nε → n0 strongly in W 1,p(�,S2), it

follows that b∗
ε → b0 strongly in L2(�,R3). Hence,

0 � 1

2

∫
�

B0

(
ρ∗ + B−1

0 b0
)

·
(
ρ0 + B−1

0 b0
)

� lim inf
ε→0

(
Hε[n∗

ε , ρ
∗
ε ] − H0[n0, ρ0]

)
.

Summarizing from the previous inequality and (3.45), we infer that

0 � lim
ε→0

(
Gε[Q∗

ε ] − H0[n0, ρ0]
)

� lim
ε→0

[
s2+
ε2

(
‖∇n∗

ε‖2L2 − ‖∇n0‖2L2

)
+ 1

2
ε2‖∇P⊥

ε ‖2L2

]

+1

2

∫
�

B0

(
ρ∗ + B−1

0 b0
)

·
(
ρ0 + B−1

0 b0
)

.
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As each term on the right-hand side is nonnegative, they separately vanish in the
limit ε → 0. In particular, ρ∗ = −B−1

0 b0 = ρ0 and, by Lemma 3.2, (n∗
ε −n0)/ε →

0 in H1(�,S2). This establishes the convergence estimates (2.19) and (2.20), and
completes the proof of Theorem 2.1.

4. The Case b2 = 0 and Non-orientable Boundary Conditions

Generally speaking, for non-orientable boundary conditions on a two-dimensional
domain, the Landau-de Gennes energy Eε[Qε] of a minimising sequence Qε di-
verges logarithmically as ε → 0 (cf. [8]), and an analysis different from the one
developed in this paper is required to describe the small-ε behaviour. However, in
the special case b2 = 0 in the Landau-de Gennes bulk potential, results similar to
those of Section 2 can be established. The key point is that b2 = 0 corresponds to
a degeneracy in the bulk potential, which reduces to a function of tr Q2 only:

f̃bulk =
( c

4ε

)2 (|Q|2 − a2

c2

)2

, (4.1)

with four-dimensional limit manifold

S ∗
0 := {Q ∈ S0; |Q|2 = (2/3)s2+ = a2/c2} (4.2)

homeomorphic to S4, as opposed to RP2 in the generic case.
In addition to taking boundary conditions to lie in the degenerate limit manifold

S ∗
0 , we restrict them to be planar prolate uniaxial, in analogy with the b2 �= 0 case.

This allows for a convenient generalisation of degree to non-orientable boundary
conditions, as follows: let BQ denote the set of planar prolate uniaxial Q-tensors
in S ∗

0 , and BD = {n ∈ S
2 | n · e3 = 0} denote the set of planar directors. The

parameterisation n �→ Q = s+(n ⊗ n − 1
3 I ) is a double covering of BQ by BD

(since n and −n parameterise the same Q-tensor). Since BD is homeomorphic to
S
1, it follows thatBQ is homeomorphic to the real projective line S1/Z2, which is

also homeomorphic to S1 via the map

eiθ ∈ S
1 �→ {eiθ/2, ei(π+θ/2)} ∈ S

1/Z2. (4.3)

Thus, boundary conditions Qb ∈ C1(∂�,BQ) may be assigned an integer degree,
deg Qb. If deg Qb is even, say equal to 2m, there exists a planar director nb ∈
C1(∂�,BD) such that deg nb = m; in this case, Qb is orientable. In the non-
orientable case, deg Qb = k is odd; any nb which parameterises Qb necessarily
has a discontinuity in sign, so that nb /∈ C1(∂�,BD). In this case, one says that
nb has half-integer degree k/2.

Throughout this section we assume that � is a bounded, simply-connected
domain with C1 boundary. The following result can be shown in a manner similar
to that of Proposition 2.1:

Theorem 4.1. Let Qb ∈ C1(∂�,BQ) and let U = {Q ∈ H1(�,S0) ; Q|∂� =
Qb}. Then, as ε → 0, the following statements hold:
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(i) Let C > 0. For any family {Qε}ε>0 ⊂ U such that Eε[Qε] � C we have, possi-
bly on a subfamily, Qε → Q weakly in H1(�,S0) for some Q ∈ H1(�,S ∗

0 ).
(ii) The family of energies (Eε)ε>0 �-converges to E0 in the weak topology of

H1(�,S0), where

E0[Q] =
⎧⎨
⎩

1
2

∫
�

|∇Q|2 if Q ∈ H1(�,S ∗
0 ) ∩ U ,

+∞ otherwise,
(4.4)

withS ∗
0 the limit manifold defined by (4.2).

(iii) The minimisers {Qε}ε>0 of the problem (2.2) converge strongly in H1(�,S0)

to the minimisers of the following harmonic map problem

min
Q∈U

E0[Q]. (4.5)

Remark 4.1. Note that a planar uniaxial Q-tensor Q = s+(n ⊗ n − 1
3 I ) has the

following expression in terms of the orthonormal basis (2.9):

Q =
5∑
j=1

c j Fj = s+√
2

(
(n21 − n22)F1 + 2n1n2F2 − 1√

3
F3

)
, (4.6)

where ni = n · ei , i = 1, 2. Thus, c4 and c5 vanish, while c3 is fixed and negative.
It follows that every element Qb ∈ C1(∂�,BQ) admits a representation of the
form Qb = √

2/3s+
∑3

j=1 cbj Fj , for some vector field cb ∈ C1(∂�,S2). After
that, standard arguments based on the maximum principle show the existence of a
unique minimiser of problem (4.5); it can be expressed as

Q0 = √
2/3s+ (c01F1 + c02F2 + c03F3) , (4.7)

where c0 ∈ H1(�,S2) solves the following minimisation problem:

min

{∫
�

|∇c |2 : c ∈ H1(�,S2), c = cb on ∂�

}
. (4.8)

In particular, c0 is an S2-valued harmonic map, that is, −�c0 = |∇c0|2c0. We note
that Q0 is biaxial unless one of the following conditions holds: i) c0·e3 = −1/

√
3, in

which case Q0 is planar uniaxial; ii) c0 ·e3 = −1, in which case Q0 = −√
2/3s+F3

is oblate uniaxial with director e3; or iii) c0 ·e3 = 1, in which case Q0 = √
2/3s+F3

is prolate uniaxial with director e3. In fact, the maximum principle implies that
c0 · e3 < 0 , so that the last possibility is excluded.

We need to go to the next-order term in the �-asymptotic expansion of the
energy Eε and define the renormalised relative energy as in (2.7),

Gε[Q] = 1

ε2
(Eε[Q] − E0[Q0]) , (4.9)

where Q0 is the unique minimiser of the problem (4.5); in particular, Q0 is a
harmonic map. Information about the expansion of the energy Eε is given by the
following result:
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Theorem 4.2. Let Q0 be a minimiser of E0 over U as in the problem (4.5). The
following assertions hold:

(i) Let C > 0. For any family {Qε}ε>0 ⊆ U such that Gε[Qε] � C, there exist
P ∈ H1

0 (�,S0), pointwise orthogonal to Q0, and ρ ∈ L2(�), for which,
possibly on a subsequence,

Qε → Q0 strongly in H1(�,S0) (4.10)

1

ε2
(Qε − Q0) : Q0 ⇀ ρ weakly in L2(�), (4.11)

1

ε
(Qε − Q0) ⇀ P weakly in H1

0 (�,S0) with P : Q0 = 0. (4.12)

(ii) For any {Qε}ε>0 ⊆ U such that (4.10),(4.11), and (4.12) hold, we have

lim inf
ε→0

Gε[Qε] � H [P, ρ], (4.13)

with

H [P, ρ] := 1

2

∫
�

|∇P|2 +
∫

�

c2

a2
|∇Q0|2ρ + c2

4

∫
�

(|P|2 + 2ρ)2.

(4.14)

Also, for any P ∈ H1
0 (�,S0)pointwise orthogonal to Q0, andanyρ ∈ L2(�),

there exists a recovery family {Qε}ε>0 ⊆ U such that (4.10), (4.11), (4.12)
hold, and

lim
ε→0

Gε[Qε] = H [P, ρ]. (4.15)

(iii) The family of energies {Gε}ε>0 �-converges to G0 in H1(�,S0), where

G0[Q] =
⎧⎨
⎩

− c2

4a4

∫
�

|∇Q0|4 if Q = Q0,

+∞ otherwise.
(4.16)

Moreover if (Qε)ε>0 is a family of minimisers of Eε on U then

1

ε2
(Qε − Q0) : Q0 → 1

2a2
|∇Q0|2 in L2(�,S0), (4.17)

1

ε
(Qε − Q0) → 0 in H1(�,S0). (4.18)

Proof. (i) If Qε satisfies Gε[Qε] � C , by the same argument used in the proof of
the Theorem 2.1, we get that necessarily Qε → Q0 strongly in H1(�,S0). After
that, let (Qε)ε>0 be such that Qε → Q in H1(�,S0). We set Pε:=(Qε −Q0)/ε

2,
so that Qε = Q0 + ε2Pε with Pε ∈ H1

0 (�,S0). Plugging the expression of Qε

into the energy Gε, and taking into account that Q0 is a harmonic map, we obtain
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Gε[Qε]

= 1

2

∫
�

ε2|∇Pε|2 +
∫

�

∇Q0 : ∇Pε + c2

4

∫
�

(ε2|Pε|2 + 2Q0 : Pε)
2 (4.19)

= 1

2

∫
�

ε2|∇Pε|2 +
∫

�

c2

a2
|∇Q0|2(Q0 : Pε) + c2

4

∫
�

(ε2|Pε|2 + 2Q0 : Pε)
2,

(4.20)

and, after some further computation,

Gε[Qε] =
∫

�

( c

2a2
|∇Q0|2 + c(Q0 : Pε) + c

2
ε2|Pε|2

)2 − c2

4a4

∫
�

|∇Q0|4

+ ε2

2

∫
�

|∇Pε|2 − c2

a2
|∇Q0|2|Pε|2. (4.21)

Using the decomposition trick (cf. Lemma A.1. in [23]) we claim that, for some
α > 0, the following estimate holds:

∫
�

|∇Pε|2 − c2

a2
|∇Q0|2|Pε|2 � α

∫
�

|∇Pε|2. (4.22)

Indeed, we know that q3 = Q0 : F3 solves −�q3 = c2

a2
|∇Q0|2q3 and, by the

maximum principle, q3 < 0 in � because min∂� q3 < 0. Thus, we can represent
any second-order perturbation in the form Pε = q3Uε withUε := q−1

3 Pε. Arguing
as in the proof of Lemma 3.2, we deduce the existence of a positive constant β such
that∫

�

|∇Pε|2 − c2

a2
|∇Q0|2|Pε|2 =

∫
�

|∇q3Uε + q3∇Uε|2 + �q3 q3 |Uε|2

=
∫

�

|q3|2|∇Uε|2 � β

∫
�

c2

a2
|∇Q0|2|Pε|2.

(4.23)

This, for α := β
1+β

, immediately implies the desired result (4.22).
Since Gε(Qε) � C , by (4.21) and (4.22), we obtain ‖εPε‖H1 � C and ‖Pε :

Q0‖L2 � C . Thereby, the existence of P ∈ H1
0 (�,S0), ρ ∈ L2(�) such that

Q0 : Pε ⇀ ρ weakly in L2(�), and εPε ⇀ P weakly in H1
0 (�,S0). Therefore,

also P : Q0 = 0.
(ii) The lower bound (4.13) follows from (4.21) and the lower semicontinuity of the
norms under weak convergence. Now, for any P ∈ H1

0 (�,S0) pointwise orthogo-
nal to Q0, and any ρ ∈ L2(�), we want to construct a recovery family {Qε}ε>0 ⊆
U such that (4.10), (4.11), (4.12) hold, and limε→0 Gε[Qε] = H [P, ρ]. To this
end we recall the construction for the case b �= 0 and define ξε = χεζε with
ζε ∈ C∞(�), ζε → ρ in L2, ‖∇ζε‖2L2 � Cε−1 and χε defined as in section 3.3.

For any P ∈ H1
0 (�,S0) such that P : Q0 = 0 we set, as a recovery family,

Qε:=Q0 + εP + 3

2s2+
ε2ξεQ0. (4.24)
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Plugging this expression into (4.20) we infer

Gε(Qε) = 1

2

∫
�

|∇(P + εξεQ0)|2

+
∫

�

c2

a2
|∇Q0|2ξε + c2

4

∫
�

(
|P + 3ε

2s2+
ξεQ0|2 + 2ξε

)2

. (4.25)

Finally, taking the limit as ε → 0 we conclude.
(iii) It is clear that if Q �= Q0 we can take Qε = Q to recover Gε[Qε] → ∞. It
is also clear that if Qε is a family of minimisers of Eε ,then (i) holds. Minimising
(4.16) with respect to P and ρ, we obtain P = 0 and ρ = 1

2a2
|∇Q0|2. Moreover

the minimal energy is

minG0(ρ) = − c2

4a4

∫
�

|∇Q0|4.
In order to obtain (4.17) and (4.18), we combine (4.20) with the results stated in
(ii). ��

5. Applications to Conformal Director Fields

Our previous results provide refined information on minimisers of the Landau-
de Gennes energy for any fixed planar boundary conditions of nonzero degree.
In this section we apply Theorem 2.1 and Theorem 4.2 to two families of planar
boundary conditions nb of independent interest. In particular, we consider a class
of boundary data for which Q0, the leading-order Landau-de Gennes minimiser,
is, up to a normalisation factor, an S

4-valued harmonic map.
In both cases (b = 0 and b �= 0), Q0 is related to a conformal (and therefore

harmonic) S2-valued map. However, the relationship is different in the two cases.
In the case b2 �= 0, Q0 is given by Q[n0], where n0 is a conformal director field.
In the case b2 = 0, Q0 is given up to normalisation by c01F1 + c02F2 + c03F3,
where c0 : � → S

2 is conformal. These conformal families are parameterised by
the positions of interior escape points, where n0 or c is vertical, that is, parallel to
e3.

The above class of boundary conditions is interesting for several reasons. First,
the leading-order Oseen-Frank energy saturates a topological lower bound, and is
the same for all boundary conditions within the family. Therefore it is impossible to
distinguish between minimal Q-tensor configurations generated by these boundary
conditions using only the leading-order approximation. The first-order correction
breaks this degeneracy, and provides a mechanism to describe how the Landau-de
Gennes energy depends on the position of escape points (defined by the boundary
conditions) for Q-tensor fields that are harmonic at leading order. Also, rather
explicit results are available for both the leading- and next-order Landau-de Gennes
minimiser in terms of the Green’s function of the Laplacian on �. Interestingly,
for these special boundary conditions, the biaxial component of the next-order
correction vanishes; biaxiality appears only at order higher than O(ε2). Results
for the case b2 �= 0 are stated in Section 5.1, and proofs are given in Section 5.2.
Results for the case b2 = 0 are stated in Section 5.3.
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5.1. Harmonic Q-tensors and conformal director fields-main results

We begin by establishing a connection between harmonic uniaxial Q-tensors
and conformal director fields.

Definition 5.1. A director field n ∈ H1(�,S2) is conformal if

∂2n = σn × ∂1n, (5.1)

with σ ≡ 1 or σ ≡ −1 in �.

If � is equipped with the Euclidean metric and S2 equipped with its standard Rie-
mannian metric, then (5.1) is equivalent to the usual definition of conformal maps
as isometries up to a scale factor; the sign σ determines whether n is orientation-
preserving (σ = 1) or reversing (σ = −1).

Proposition 5.1. If n ∈ H1(�,S2) is conformal, then n is an S2-valued harmonic
map.

Theproof involves showing thatn conformal implies thatn is aweakly harmonic
map. One then appeals to a result of Heléin [18] that weakly harmonic maps over
two-dimensional domains are real analytic.

A director field n may be identified with a complex-valued function w on �

via stereographic projection between S
2 and the extended complex plane C

∗, as
follows:

w = n1 + in2
1 + n3

, n =
(
2Rew, 2 Imw, 1 − |w|2)

1 + |w|2 . (5.2)

Then n being conformal is equivalent to w being either meromorphic (σ = 1) or
antimeromorphic (σ = −1).

We identify S
4 with the space of Q-tensors of unit norm.

Definition 5.2. A Q-tensor field Q ∈ H1(�,S4) is a (weakly) S4-valued harmonic
map if

�Q = −|∇Q|2Q in D ′(�,S0). (5.3)

As with director fields, if Q is a weakly harmonic map, it is real analytic [18].

Proposition 5.2. Let n ∈ H1(�,S2) and define Q ∈ H1(�,S4) by

Q = √
3/2

(
n ⊗ n − 1

3 I
)
. (5.4)

Then Q is an S
4-valued harmonic map if and only if n is conformal.

The proof is given in Section 5.2. Below, in a slight abuse of terminology we will
say

Definition 5.3. A Q-tensor field Q ∈ H1(�,S0) is harmonic if |Q| is everywhere
constant and Q/|Q| is an S

4-valued harmonic map.
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Next, we use the connection between harmonic uniaxial Q-tensors and con-
formal director fields to determine the planar boundary conditions of given de-
gree that minimise the leading-order Landau-de Gennes energy. Given a ∈ �, let
ga ∈ C∞(�) denote the solution of the Laplace equation

�ga = 0, ga|∂�(x) = log |x − a|. (5.5)

Thus, log |x −a|− ga is the Green’s function for the Laplacian on�with Dirichlet
boundary conditions.

Inwhat follows, it will be convenient to regard� as a subset ofC rather thanR2;
expressions such as 1/(x − a) for x, a ∈ � should be understood in this context.
Since � is simply connected, ga has a harmonic conjugate, which is determined up
to an additive constant. Let ha denote a harmonic conjugate of ga . Then ga + iha
is holomorphic on �. Let m ∈ Z and a = (a(1), . . . , a(|m|)) ∈ �|m| denote an
|m|-tuple of points in �, not necessarily distinct. We define

w0;a := eiα

⎡
⎣ |m|∏

j=1

x − a( j)

exp
(
ga( j) + iha( j)

)
⎤
⎦
sgnm

(5.6)

for some α ∈ R.

Theorem 5.1. Let nb ∈ C1(∂�,S1) be a planar boundary director field of degree
m �= 0, and let Qb = s+(nb ⊗ nb − 1

3 I ). The following assertions hold:

(i) For Q ∈ H1(�,S0) with Q|∂� = Qb, we have that

E0[Q] � 2s2+π |m|, (5.7)

with equality if, and only if, Q = s+(n0 ⊗ n0 − 1
3 I ) with n0 conformal and

n0 ·e3 sign-definite (that is, n0 ·e3 is either strictly positive or strictly negative).
(ii) The director field n0 is conformal with n0 · e3 sign-definite if, and only if, its

stereographic projection (5.2) is given by w0;a or by 1/w0;a for some a ∈ �|m|
(the two alternatives for n0 are related by reflection in e3 ). The planar boundary
conditions satisfied by n0 are given by

nb;a = cosφa e1 + sin φa e2, where φa = argw0;a. (5.8)

The points a are precisely the escape points where n0 = e3 (if n has stere-
ographic projection w0;a) or n0 = −e3 (if n has stereographic projection
1/w0;a).

Thus, amongst degree-m planar boundary conditions, the leading-orderLandau-
deGennes energy achieves itsminimum,namely2π |m|s2+, for the 2|m|-dimensional
family nb;a, and is independent of the positions a of the escape points. The proof
of Theorem 5.1 is given in Section 5.2.

Given a ∈ �|m|, let Q∗
ε;a denote a minimiser of the Landau-de Gennes energy

subject to boundary conditions (1.12) with boundary director nb;a given by (5.8).
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From Proposition 2.1 and Theorem 5.1, we have that Q∗
ε;a → Q[n0;a] as ε → 0.

From Theorems 2.1 and 5.1, we have that

1

s2+
Eε[Qε;a] = 2π |m| + ε2WLdG(a) + o(ε2), where WLdG(a)

= −3

ν
‖∇n0;a‖4L4 . (5.9)

The above energy expression provides a tool to distinguish between various con-
formal configurations using locations of escape points. Let us examine how the
first-order energy, WLdG(a), depends on a. Since the L2-norm of ∇n0;a is fixed
(its square is equal to 2π |m|), it follows thatWLdG(a) decreases as∇n0;a becomes
more concentrated. Concentration occurs as the escape points move towards the
boundary, since n0;a = ±e3 at escape points while n0;a · e3 = 0 at the boundary.

One can show that as the distance δ := min j dist (a( j), ∂�) goes to zero,
WLdG(a) diverges as δ−2. This is compatible with Theorem 2.1, which concerns
the behaviour of the energy as ε → 0 for fixed boundary conditions. To analyse
the energy for ε, δ → 0 simultaneously, one would need to go to higher order in
the �-expansion and include a boundary-layer analysis.

In the case of the two-disk � = D2, ga and ha are given by

ga(x) + iha(x) = 1

1 − ax
. (5.10)

In this case, if a = 0, that is, if the escape points coincide at the origin, then the
conformal boundary condition nb is m-radial [22,26], and

nb = cos(mϕ + α) e1 + sin(mϕ + α) e2, (5.11)

where ϕ is the polar angle coordinate on R2 and α is a constant.

Remark 5.1. LetQ∗
ε denote aLandau-deGennesminimiserwith conformal leading-

order Oseen-Frank director n0. It follows from (2.21)–(2.24) andDefinition 5.1 that
Q∗

ε −Q[n∗
ε ] is proportional to Q[n∗

ε ] to leading order; that is, the induced biaxiality
in Q∗

ε does not appear at O(ε2) but at higher order.

Let us indicate a generalisation of Theorem 5.1. The space of director fields n ∈
H1(�,S2) satisfying planar boundary conditions can be partitioned into homotopy
classes (r, s) labeled by a pair of integers. For n differentiable, r and s correspond
respectively to a signed count of the preimages of regular values of n in the northern
and southern hemispheres of S2, with the sign given by the sign of the determinant
of the Jacobian at the preimage. The director field with stereographic projection
w0;a belongs to the class (m, 0) for m > 0 and to (0,−m) for m < 0. Its reflection
in e3, which has stereographic projection 1/w0;a, belongs to the class (−m, 0) for
m > 0 and to (0,m) for m < 0. For a general class (r, s), the degree of the planar
boundary conditions is given by m = r − s. It is straightforward to show (for C1-
boundary conditions) that for n in the class (r, s), the one-constant Oseen-Frank
energy EOF (n) is bounded below by 2πs2+(|r | + |s|) - this generalises the first
assertion in Theorem 5.1.
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(a) Conformal director – global minimiser (b) Conformal director – local minimiser

Fig. 1. Schlieren textures in conformal director fields. The colour scale corresponds to the
quantity [n1n2/(n21 +n22)]2, where n j := n · e j ; this quantity is proportional to the intensity
of light passing through a nematic film with director n(x, y) placed between polarisers with
polarisation axes e1 and e2. Random conformal director fields were constructed from (a)
Eq. (5.6) and (b) Eq. (5.12) by setting g = h = 0, corresponding to an infinite planar domain,
with escape points chosen at random in a large region of the plane, one portion of which is
shown in the figures. In (a), the director is equal to +e3 at all escape points, while in (b),
the director is randomly taken to be +e3 or −e3 at escape points. Note that in (b), contours
(lines of constant hue) can join pairs of escape points, but not in (a). This can be understood
in terms of the analytic representations (5.6) and (5.12). Contour lines correspond to lines
on which argw is fixed, which are also lines of steepest descent of |w|. Escape points with
n = e3 or n = −e3 correspond respectively to zeros or poles of w. A zero and a pole of w
can be joined by a line of steepest descent, but two zeros of w cannot, nor can two poles

The second assertion may be generalised as follows: for r and s non-negative,
conformal directors in the homotopy class (r, s) that saturate the lower bound are
given by

w0;b,c(x) = eiα
|r |∏
j=1

x − b( j)

exp
(
gb( j) + ihb( j)

)
|s|∏
k=1

exp
(
gc(k) + ihc(k)

)
x − c(k)

, (5.12)

where b and c are respectively |r |- and |s|-tuples of points in �. The b( j)’s are
the points where n0 = e3, and the c(k)’s are the points where n0 = −e3. For
r (resp. s) negative, the first (resp. second) product in (5.12) is replaced by its
complex conjugate. These are local minimizers of the Dirichlet energy with respect
to their boundary conditions (they are global minimisers for r = 0 or s = 0).
Director fields corresponding to (5.6) and (5.12) are shown in Figure 1.

5.2. Applications to conformal director fields: proofs

Proof of Proposition 5.1. Note that n conformal implies that ∂2n = σn × ∂1n and
∂1n = −σn × ∂2n. Therefore, for φ ∈ D(�,R3), we have that
∫

�

�n · φ = σ

∫
�

(∂1φ × n) · ∂2n − (∂2φ × n) · ∂1n
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= σ

∫
�

(∂1(φ × n) − φ × ∂1n) · ∂2n − (∂2(φ × n) − φ × ∂2n) · ∂1n.

(5.13)

We note that m := φ × n ∈ H1
0 (�,R3), so that

∫
�

∂1m · ∂2n − ∂2m · ∂1n = 0. (5.14)

From (5.13) and (5.14),∫
�

�n · φ = 2σ
∫

�

(φ × ∂2n) · ∂1n = −2σ
∫

�

(∂1n × ∂2n) · φ. (5.15)

The fact that n is conformal implies that ∂1n × ∂2n = 1
2σ |∇n|2n, from which

it follows that n is a weakly harmonic map, that is, �n = −|∇n|2n. From the
regularity result of Hélein [18], it follows that n is real analytic. ��
Proof of Proposition 5.2. First, suppose that n ∈ H1(�,S2) is conformal. From
Proposition 5.1, we have that n is a real analytic S2-valued harmonic map. Let

Q = √
3/2

(
n ⊗ n − 1

3 I
) ∈ C∞(�,S4). (5.16)

Using the harmonic map equation for n, we have that

�Q = √
3/2 (�n ⊗ n + 2∇n ⊗ ∇n + n ⊗ �n) (5.17)

= −√
6
(
|∇n|2n ⊗ n − ∇n ⊗ ∇n

)
. (5.18)

Also, n conformal implies that ∂1n · ∂2n = 0 and |∂1n| = |∂2n|. Therefore, if
λ := |∇n|/√2 �= 0, then the three unit-vectors λ−1∂1n, λ−1∂2n and n constitute
an orthonormal frame. It follows that

∇n ⊗ ∇n = 1
2 |∇n|2(I − n ⊗ n). (5.19)

Substituting (5.19) into (5.18), we get that

�Q = −3
√
3/2|∇n|2 (n ⊗ n − 1

3 I
) = −3|∇n|2Q = −|∇Q|2Q, (5.20)

as |∇Q|2 = 3|∇n|2. Thus, Q is an S
4-valued harmonic map.

Next, let Q ∈ H1(�,S4) be given by (5.16) with n ∈ H1(�,S2), and suppose
Q is an S4-valued harmonic map. Then Q is real analytic [18], which implies that
n is real analytic. From the harmonic map equation for Q, we get that

�n ⊗ n + 2∇n ⊗ ∇n + n ⊗ �n = −3|∇n|2 (n ⊗ n − 1
3 I

)
. (5.21)

Applying both sides of the preceding equation to n and using the identities ∂i n ·n =
0, i = 1, 2 and �n · n = −|∇n|2, which follow from |n| = 1, we get that n is
a harmonic map, that is, �n = −|∇n|2n. Substitution of this relation into (5.21)
yields

2∇n ⊗ ∇n = |∇n|2(I − n ⊗ n). (5.22)
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Applying both sides of the preceding equation to ∂1n and ∂2n yields the pair of
vector equations

α∂1n + β∂2n = β∂1n + γ ∂2n = 0, (5.23)

where α = |∂1n|2 − 1
2 |∇n|2, β = ∂1n · ∂2n, and γ = |∂2n|2 − 1

2 |∇n|2. The
solvability conditions are α = β = γ = 0, which are equivalent to the condition
(5.1) for n to be conformal. ��
Proof of Theorem 5.1. (i) Without loss of generality we may assume that Q ∈
H1(�,S∗), since otherwiseE0(Q) = +∞. Since� is simply connected, it follows
that Q = s+(n⊗n− 1

3 I ) for some n ∈ H1(�,S2). Sincewe are seeking to establish
a lower bound for the energy, we can assume without loss of generality that Q is
global minimiser of E0. From Remark 2.1, it follows that n is a minimising S

2-
valued harmonic map, and without loss of generality wemay assume that n ·e3 > 0.
The classical regularity result of Hélein [18] on two-dimensional harmonic maps
implies that n is smooth up to the boundary. The following bound is standard (see,
for instance, [6]):

E0[Q] = s2+
∫

�

|∂1n|2 + |∂2n|2 � 2s2+
∫

�

|∂1n| |∂2n|

� 2s2+
∣∣∣∣
∫

�

n · (∂1n × ∂2n)

∣∣∣∣ = 2s2+ |A [n(�)]| , (5.24)

where A (n(�)) denotes the oriented area n(�) ⊂ S
2. For completeness, we pro-

vide an argument. Let us introduce spherical polar coordinates for n,

n = sin θ cosϕ e1 + sin θ sin ϕ e2 + cos θe3, (5.25)

and similarly for the C1-boundary conditions, nb = n|∂� = cosϕbe1 + sin ϕbe2.
We may express the oriented area in terms of spherical polar coordinates as

A [n(�)] =
∫

�

n · (∂1n × ∂2n) =
∫

�

sin θ (∂1θ∂2ϕ − ∂2θ∂1ϕ) . (5.26)

Let

F = (1 − cos θ)(∂2ϕe1 − ∂1ϕe2). (5.27)

Since n is smooth, F is smooth; this is in spite of the fact that ∇ϕ may have
singularities where θ = 0 or θ = π , since F vanishes if θ = 0 while θ = π is
excluded by n · e3 > 0. Noting that sin θ (∂1θ∂2ϕ − ∂2θ∂1ϕ) = ∇ · F , we apply
the divergence theorem in (5.26) to obtain

A [n(�)] =
∫

∂�

F · ν =
∫

∂�

ϕ′
b = 2πm, (5.28)

where ν denotes the unit normal on ∂�, ϕ′
b denotes the tangential derivative of

ϕb, and m is the degree of exp(iϕ), regarded as an S
1-valued map on ∂�. This

establishes the lower bound (5.7).
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The first inequality in (5.24) is saturated if and only if |∂1n| = |∂2n|, and the
second inequality is saturated if and only if ∂1n and ∂2n are orthogonal. As n is
orthogonal to both ∂1n and ∂2n, these two conditions are equivalent to the condition

∂2n = σn × ∂1n, σ = ±1. (5.29)

The last inequality in (5.24) is saturated if and only if σ is constant, that is, with
regard to Definition 5.1 if and only n is conformal.
(ii) We are given that n ∈ C∞(�,S2) is a conformal minimising S

2-valued
harmonic map with degree-m planar C1-boundary conditions nb = cosϕbe1 +
cosϕbe2. We will obtain an explicit formula for n in terms of its escape points,
that is, points where n is parallel to e3, and thereby determine the special form
that nb must assume. For definiteness, we take m positive and (cf. Remark 2.1)
n · e3 > 0, which together imply that σ = 1 in (5.29). The adjustments required
for the alternative cases are explained at the end.

For a ∈ �, we denote by ga the solution of the Laplace equation (5.5), and
we let ha denote a harmonic conjugate of ga . Then ga + iha is holomorphic on
�. Let w denote the stereographic projection of n, as in (5.2). It is straightforward
to verify that the conformal condition (5.29) is equivalent to the Cauchy-Riemann
equations

Re ∂1w = Im ∂2w, Re ∂2w = − Im ∂1w. (5.30)

Also, n ·e3 > 0 implies thatw is bounded. Therefore,w is complex holomorphic on
�. We have that Im

∫
∂�

d logw = ∫
∂�

ϕ′
b = 2πm. It follows that w has precisely

m zeros in �, counted with multiplicity. Let a = (a(1), . . . , a(m)) ∈ �m denote
these zeros, and let

f = w

m∏
j=1

exp
(
ga( j) + iha( j)

)
x − a( j)

. (5.31)

Then f is holomorphic and nonvanishing on�. It follows that log f is holomorphic
on �, so that Re log f is harmonic, that is, �(Re log f ) = 0. Also, since |w| = 1
on ∂�, it follows that Re log f vanishes on ∂�. But then Re log f must vanish
identically, which implies that Im log f is constant, that is, f = exp(iα) for some
α ∈ R. Therefore,

w = eiα
m∏
j=1

x − a( j)

exp
(
ga( j) + iha( j)

) , (5.32)

which is equivalent to (5.6) form > 0 and n ·e3 > 0. The boundary condition (5.8)
is obtained by setting x ∈ ∂� and stereographic projection.

The transformation m �→ −m while leaving n · e3 unchanged is achieved by
w �→ w; we note that w is antiholomorphic. The transformation (n1, n2, n3) �→
(n1, n2,−n3) while leaving m unchanged is achieved by w �→ 1/w; we note that
1/w is antimeromorphic with poles but no zeros. Finally, simultaneously changing
the signs of m and n · e3 is achieved by w �→ 1/w. ��
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Remark 5.2. The lower bound (5.7) can be established for general H1 maps (thus
bypassing the regularity result of Helein [18]) by performing the arguments in the
proof for smooth maps and using the density of smooth maps into H1 maps for 2d
domains (see Schoen and Uhlenbeck [32]).

5.3. The case b2 = 0

For b2 = 0, we have from Eq. (4.7) that the Landau-de Gennes minimiser is
given to leading order by

√
2/3 s+

∑3
j=1(c0 · e j )Fj , where c0 ∈ H1(�,S2) is

(weakly) harmonic. In analogy with the b2 �= 0 case, we can obtain explicit results
for a special family of planar boundary conditions for which c0 is conformal. In
this case, the escape points, which parameterise the family, are points where Q0 is
oblate uniaxial (rather than prolate uniaxial) with director e3.

Theorem 5.2. Let� ⊂ R2 be a bounded, simply-connected domainwithC1 bound-
ary, and let Qb ∈ C1(∂�,BQ) be a degree-k uniaxial planar Q-tensor field on
the boundary ∂�.

(i) For Q ∈ H1(�,S0) with Q|∂� = Qb, we have that

E0[Q] � 4

9
s2+π |k|, (5.33)

with equality if and only if

Q = √
2/3s+

3∑
j=1

(c0 · e j )Fj (5.34)

and c0 is conformal with c0 · e3 < 0.
(ii) The field c0 is conformal with c0 ·e3 < 0 if and only its stereographic projection

(5.2) is given by

w0;a(x) = √
3

|k|∏
j=1

exp
(
ga( j) + iha( j)

)
x − a( j)

, a = (a(1), . . . , a(|k|)) ∈ �|k|,

(5.35)

for k > 0, and by w0;a for k < 0. The corresponding boundary conditions are
given by Qb;a = s+(nb;a ⊗ nb;a − 1

3 I ), where

nb;a = cosφa e1 + sin φa e2, φa = 1
2 sgn k

|k|∑
j=1

arg(x − a( j)) − ha( j) .

(5.36)

The proof is essentially the same as for Theorem 5.1, and hence is omitted.
We note the two different ways in which an S2-valued harmonic map is associated
with a Q-tensor field, namely quadratically via (2.10) for uniaxial Q-tensors when
b2 �= 0, and linearly via (4.7) when b = 0. The latter allows for the representation
of non-orientable boundary conditions.
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