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Abstract

We consider the wave equation with Kelvin–Voigt damping in a bounded
domain. The exponential stability result proposed by Liu and Rao (Z Angew Math
Phys (ZAMP) 57:419–432, 2006) or Tebou (CRAcad Sci Paris Ser I 350: 603–608,
2012) for that system assumes that the damping is localized in a neighborhood of
the whole or a part of the boundary under some consideration. In this paper we
propose to deal with this geometrical condition by considering a singular Kelvin–
Voigt damping which is localized far away from the boundary. In this particular
case Liu and Liu (SIAM J Control Optim 36:1086–1098, 1998) proved the lack of
the uniform decay of the energy. However, we show that the energy of the wave
equation decreases logarithmically to zero as time goes to infinity. Our method is
based on the frequency domain method. The main feature of our contribution is to
write the resolvent problem as a transmission system to which we apply a specific
Carleman estimate.
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1. Introduction and main results

There are several mathematical models representing physical damping. The
most often encountered type of damping in vibration studies are linear viscous
damping [1,3,14,15] and Kelvin–Voigt damping [10,12,16–18], which are special
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Fig. 1. The domain �

cases of proportional damping. Viscous damping usually models external friction
forces such as air resistance acting on the vibrating structures and is thus called
"external damping", while Kelvin–Voigt damping originates from the internal fric-
tion of the material of the vibrating structures and in thus called "internal damping"
or "material damping". This type of material is encountered in real life when one
uses patches to suppress vibrations, the modeling aspect of which may be found in
[2]. This type of questionwas examined in the one-dimensional setting in [16]where
it was shown that the longitudinal motion of an Euler-Bernoulli beammodeled by a
locally damped wave equation with Kelvin–Voigt damping is not exponentially sta-
ble when the junction between the elastic part and the viscoelastic part of the beam
is not smooth enough. Later on, the wave equation with Kelvin–Voigt damping
in the multidimensional setting was examined in [18]; in particular, those authors
showed the exponential decay of the energy by assuming that the damping region is
a neighborhood of the whole boundary. Later on, it was shown that the exponential
decay of the energy could be obtained with just imposing that the damping is a
neighborhood of part of the boundary [21].

Let � ⊂ R
n , n � 2 be a connected bounded domain with a sufficiently smooth

boundary � = ∂�. Let ω be a nonempty and open subset of � with smooth
boundary I = ∂ω (see Fig. 1).

Consider the damping wave system

∂2t u − �u − div(a(x)∇∂t u) = 0, � × (0,+∞), (1.1)

u = 0, ∂� × (0,+∞), (1.2)

u(x, 0) = u0, ∂t u(x, 0) = u1(x), �, (1.3)

where a(x) = d 1ω(x) and d > 0 is a constant.
System (1.1)–(1.3), involving a constructive viscoelastic dampingdiv(a(x)∇ut ),

models the vibrations of an elastic body which has one part made of viscoelastic
material. In the case of global viscoelastic damping (a > 0), the wave equation
(1.1)–(1.3) generates an analytic semigroup, the spectrum of which is contained
in a sector of the left half complex plan (see [8]). While the situation of local vis-
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coelastic damping is more delicate due to the unboundedness of the viscoelastic
damping and the discontinuity of the materials.

In [16], it was proved that the energy of a one-dimensional wave equation with
local viscoelastic damping does not decay uniformly if the damping coefficient a is
discontinuous across the interface of the materials. Because of the discontinuity of
the materials across the interface, the dissipation is badly transmitted from the vis-
coelastic region to the elastic region, where the energy decays slowly. Nevertheless,
this does not contradict the well-known “geometric optics” condition in [3], since
the viscoelastic damping is unbounded in the energy space. The loss of uniform
stability is caused by the discontinuity of material properties across the interface
and the unboundedness of the viscoelastic damping. In this paper, we prove a loga-
rithmical decay of energy. Our idea is to transform the resolvent problem of system
(1.1)–(1.2) to a transmission system to be able to quantify the discontinuity of the
material properties across the interface through the so-called Carleman estimate.
Note that recently the same problem was treated in [10], where it was proved that
the energy is polynomially decreasing over the time but only in the one-dimensional
case (even for a transmission system).

We define the natural energy of u solution of (1.1)–(1.3) at instant t by

E(u, t) = 1

2
‖(u(t), ∂t u(t))‖2

H1
0 (�)×L2(�)

, ∀ t � 0.

Simple formal calculations give

E(u, t) − E(u, 0) = − d
∫ t

0

∫
ω

|∇∂t u(x, s)|2 dx ds,∀t � 0,

and therefore the energy is a non-increasing function of the time variable t .

Theorem 1.1. For any k ∈ N
∗ there exists C > 0 such that for any initial data

(u0, u1) ∈ D(Ak) the solution u(x, t) of (1.1) starting from (u0, u1) satisfying

E(u, t) � C

(ln(2 + t))2k
‖(u0, u1)‖2D(Ak )

, ∀ t > 0,

where (A,D(A)) is defined in Section 2.

This paper is organized as follows: in Section 2, we give the proper functional
setting for systems (1.1)–(1.3), and prove that this system is well-posed. In Sec-
tion 3, we establish some Carleman estimate which corresponds to the system
(1.1)–(1.3). Finally, in Section 4, we study the stabilization for (1.1)–(1.3) by the
resolvent method and give the explicit decay rate of the energy of the solutions of
(1.1)–(1.3).

2. Well-posedness and strong stability

We define the energy space by H = H1
0 (�) × L2(�) which is endowed with

the usual inner product

〈(u1, v1); (u2, v2)〉 =
∫

�

∇u1(x).∇u2(x) dx +
∫

�

v1(x)v2(x) dx .
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We next define the linear unbounded operator A : D(A) ⊂ H −→ H by

D(A) = {(u, v) ∈ H : v ∈ H1
0 (�), �u + div(a∇v) ∈ L2(�)}

and

A(u, v)t = (v,�u + div(a∇v))t .

Then, putting ṁv = ∂t u, we canwrite (1.1)–(1.3) as the followingCauchy problem:

d

dt
(u(t), v(t))t = A(u(t), v(t))t , (u(0), v(0)) = (u0(x), u1(x)).

Theorem 2.1. The operator A generates a C0-semigroup of contractions on the
energy space H.

Proof. Firstly, it is easy to see that for all (u, v) ∈ D(A), we have

Re 〈A(u, v); (u, v)〉 = −
∫

�

a|∇v(x)|2 dx,

which shows that the operator A is dissipative.
Next, for any given ( f, g) ∈ H, we solve the equationA(u, v) = ( f, g), which

is recast m the following way:
{

v = f,
�u + div(a∇ f ) = g.

(2.1)

It is well known that by Lax–Milgram’s theorem the system (2.1) admits a unique
solution u ∈ H1

0 (�). Moreover, by multiplying the second line of (2.1) by u and
integrating over � and using Poincaré inequality and Cauchy–Schwarz inequality
we find that there exists a constant C > 0 such that

∫
�

|∇u(x)|2 dx � C

(∫
�

|∇ f (x)|2 dx +
∫

�

|g(x)|2 dx

)
.

It follows that for all (u, v) ∈ D(A), we have

‖(u, v)‖H � C‖( f, g)‖H.

This implies that 0 ∈ ρ(A) and by the contraction principle, we easily get R(λI −
A) = H for sufficiently small λ > 0. The density of the domain of A follows
from [19, Theorem 1.4.6]. Then, thanks to the Lumer-Phillips Theorem (see [19,
Theorem 1.4.3]), the operator A generates a C0-semigroup of contractions on the
Hilbert H. �
Theorem 2.2. The semigroup etA is strongly stable in the energy space H, that is,

lim
t→+∞ ‖etA(u0, v0)

t‖H = 0, ∀ (u0, v0) ∈ H.
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Proof. To show that the semigroup (etA)t�0 is strongly stable we only have to
prove that the intersection of σ(A) with iR is an empty set. Since the resolvent of
the operatorA is not compact (see [16,18]) but 0 ∈ ρ(A)we only need to prove that
(iμI − A) is a one-to-one correspondence in the energy space H for all μ ∈ R

∗.
The proof will be done in two steps: in the first step we will prove the injective
property of (iμI −A) and in the second step we will prove the surjective property
of the same operator.

i) Let (u, v) ∈ D(A) such that

A(u, v)t = iμ(u, v)t . (2.2)

Then taking the real part of the scalar product of (2.2) with (u, v), we get

Re(iμ‖(u, v)‖2H) = Re 〈A(u, v), (u, v)〉 = −d
∫

ω

|∇v|2dx = 0,

which implies that

∇v = 0 in ω. (2.3)

Inserting (2.3) into (2.2), we obtain
⎧⎨
⎩

μ2u + �u = 0 in �\ω,

∇u = 0 in ω

u = 0 on �.

(2.4)

We denote by w j = ∂x j u and we derive the first and the second equations of
(2.4), one gets

{
μ2w j + �w j = 0 in �,

w j = 0 in ω.

Hence, from the unique continuation theorem we deduce that w j = 0 in � and
therefore u is constant in � and since u|� = 0 we follow that u ≡ 0. We have thus
proved that Ker(iμI − A) = 0.

ii) Now, given ( f, g) ∈ H, we solve the equation

(iμI − A)(u, v) = ( f, g);
or, equivalently,

{
v = iμu − f
μ2u + �u + iμ div(a∇u) = div(a∇ f ) − iμ f − g.

(2.5)

Let us define the operator

Au = −(�u + iμ div(a∇u)), ∀ u ∈ H1
0 (�).

It is easy to show that A is an isomorphism from H1
0 (�) onto H−1(�). Then the

second line of (2.5) can be written as follows:

u − μ2A−1u = A−1 [g + iμ f − div(a∇ f )] . (2.6)
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If u ∈ Ker(I − μ2A−1), then μ2u − Au = 0. It follows that

μ2u + �u + iμdiv(a∇u) = 0. (2.7)

Multiplying (2.7) by u and integrating over �, by Green’s formula we obtain

μ2
∫

�

|u(x)|2 dx −
∫

�

|∇u(x)|2 dx − idμ

∫
ω

|∇u(x)|2 dx = 0.

This shows that

d
∫

ω

|∇u(x)|2 dx = 0,

which implies that ∇u = 0 in ω.
Inserting this last equation into (2.7) we get

μ2u + �u = 0, in �.

Once again, using the unique continuation theorem as in the first step, where we
recall that u|� = 0, we get u = 0 in �. This implies that Ker(I − μ2A−1) =
{0}. On the other hand, thanks to the compact embeddings H1

0 (�) ↪→ L2(�)

and L2(�) ↪→ H−1(�), we see that A−1 is a compact operator in H1
0 (�).

Now, thanks to Fredholm’s alternative, the operator (I − μ2A−1) is bijective in
H1
0 (�), hence the equation (2.6) has a unique solution in H1

0 (�), which yields that
the operator (iμI − A) is surjective in the energy space H. The proof is thus
complete. �

3. Carleman estimate

For any s ∈ R we define the Sobolev space with a parameter τ , Hs
τ (Rn) by

u(x, τ ) ∈ Hs
τ (Rn) ⇐⇒ 〈ξ, τ 〉s û(ξ, τ ) ∈ L2(Rn); 〈ξ, τ 〉2 = |ξ |2 + τ 2,

where τ is a large enough parameter and û denote the partial Fourier transformwith
respect to x . The class of symbols of order m defined by

Sm
τ =

{
a(x, ξ, τ ) ∈ C∞(U × R

n); |∂α
x ∂

β
ξ a(x, ξ, τ )| � Cα,β〈ξ, τ 〉m−|β|}

and the class of tangential symbols of order m by

T Sm
τ =

{
a(x, ξ ′, τ ) ∈ C∞(U × R

n−1); |∂α
x ∂

β

ξ ′a(x, ξ ′, τ )| � Cα,β〈ξ ′, τ 〉m−|β|} ,

where U is an open set of Rn and τ is a large parameter. We denote by Om (resp.
T Om) the set of pseudo-differential operators A = op(a),a ∈ Sm

τ (resp.a ∈ T Sm
τ ).

We shall use the symbol � = 〈ξ ′, τ 〉 = (|ξ ′|2 + τ 2)
1
2 .

Consider a bounded smooth open setU ofRn with boundary ∂U = γ .We setU1
and U2 two smooth open subsets of U with boundaries ∂U1 = γ0 and ∂U2 = γ ∪γ0
such that γ ∩γ 0 = ∅. We denote by ν(x) the unit outer normal to U2 if x ∈ γ0 ∪γ .
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For τ a large parameter andϕ1 andϕ2 twoweight functions of classC∞ inU1 and
U2 respectively such that ϕ1|γ0 = ϕ2|γ0 we denote by ϕ(x) = diag(ϕ1(x), ϕ2(x))

and let α be a non-null complex number.
We set the differential operator

P = diag(P1,P2) = diag

(
−� + τ 2

1 + ατ
,−� − τ 2

)
,

and its conjugate operator

P(x, D, τ ) = eτϕPe−τϕ = diag(P1(x, D, τ ), P2(x, D, τ )),

with

P1(x, D, τ ) = eτϕ1P1e
−τϕ1 and P2(x, D, τ ) = eτϕ2P2e

−τϕ2 .

The principal symbols of the operators P(x, D, τ ), P1(x, D, τ ) and P2(x, D, τ )

are, respectively, p(x, ξ, τ ), p1(x, ξ, τ ) and p2(x, ξ, τ ), and are given as follows:

p(x, ξ, τ )

= diag(p1(x, ξ, τ ), p2(x, ξ, τ ))

= diag(|ξ |2 + 2iτξ∇ϕ1 − τ 2|∇ϕ1|2, |ξ |2 + 2iτξ∇ϕ2 − τ 2|∇ϕ2|2 − τ 2).

In a small neighborhoodW of a point x0 ofγ0,weplace ourselves in normal geodesic
coordinates and we denote by xn the variable that is normal to the interface γ0 and
by x ′ the reminding spacial variables, that is, x = (x ′, xn). The interface γ0 is now
given by γ0 = {x ; xn = 0} and we denote this by

W1 = {x ∈ R
n, xn > 0} ∩ W, and W2 = {x ∈ R

n, xn < 0} ∩ W.

The operators P1 and P2 can be identified locally as operators of the following
form:

P1(x, D) = D2
xn

+ R1(xn, x ′, Dx ′) + τ 2

1 + ατ

and

P2(x, D) = D2
xn

+ R2(xn, x ′, Dx ′) − τ 2,

where R1 and R2 are two tangential operators, with the C∞ coefficients and with
principal symbol r1(x, ξ ′) and r2(x, ξ ′), respectively, where the quadratic form
rk(x, ξ ′), k = 1, 2 satisfies

∃ C > 0, ∀ (x, ξ ′) ∈ Wk × R
n−1, rk(x, ξ ′) � C |ξ ′|2, k = 1, 2.

We can assume that x0 = (0, 0) and that W is symmetric with respect to
xn �→ −xn so, according to Bellassoued [5], we can reduce the problem of
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transmission in only one side of the interface γ0 (herewe choose reduce the problem
in W1). Then the operator P1 and P2 defined in W1 are given as follows:

P1(x, D) = D2
xn

+ R(+xn, x ′, Dx ′) + τ 2

1 + ατ

and

P2(x, D) = D2
xn

+ R(−xn, x ′, Dx ′) − τ 2,

whereR(±xn, x ′, Dx ′) denote a tangential operators.We denote also the tangential
operator, with the C∞ coefficients defined in W1 by

R(x, Dx ′) = diag(R(+xn, x ′, Dx ′),R(−xn, x ′, Dx ′)),

with the principal symbol r(x, ξ ′) = diag(r(+xn, x ′, ξ ′), r(−xn, x ′, ξ ′)), where
r(±xn, x ′, ξ ′) are quadratic forms which satisfy

∃ C > 0, ∀ (x, ξ ′) ∈ W1 × R
n−1, r(±xn, x ′, ξ ′) � C |ξ ′|2.

We assume that ϕ satisfies

|∇ϕk(x)| > 0, ∀ x ∈ W 1, k = 1, 2, (3.1)

∂xn ϕ1(x ′, 0) < 0 and ∂xn ϕ2(x ′, 0) > 0 (3.2)(
∂xn ϕ1(x ′, 0)

)2 − (
∂xn ϕ2(x ′, 0)

)2
> 1. (3.3)

The principal symbol p(x, ξ, τ ) of P(x, D, τ ) is now given by

p(x, ξ, τ ) = diag(p1(x, ξ, τ ), p2(x, ξ, τ ))

= (
ξ + iτ(∂xn ϕ)

)2 + r(x, ξ ′ + iτ(∂x ′ϕ)) − diag(0, τ 2) ∈ S2
τ ,

where we assume that it satisfies the following sub-ellipticity condition:

∃ c > 0, ∀ (x, ξ) ∈ W 1 × R
n, pk(x, ξ, τ ) = 0 �⇒ {Re(pk), Im(pk)} (x, ξ, τ )

� c〈ξ, τ 〉3. (3.4)

We defined on the boundary {xn = 0} ∩ W the operators

{
op(b1)w = w1 − w2 on {xn = 0} ∩ W
op(b2)w = (

Dxn + iτ∂xn ϕ1
)
w1 + (

Dxn + iτ∂xn ϕ2
)
w2 on {xn = 0} ∩ W.

We denote by ‖v‖ = ‖v‖L2(W1)
the correspondent scalar product denoted by

(v1, v2). For s ∈ R we use ‖v‖2s = ‖op(�s)v‖2 and |v|2s = ‖v|xn=0‖2s such that
when s = 0, the norm |v|0 with the scalar product (v1, v2)0 = (v1|xn=0, v2|xn=0)

will be denoted simply |v|. Finally, we denote |v|21,0,τ = |v|21 + |Dxn v|2.
Before proving the Carleman estimate we recall the following theorem given

by [15, Proposition 1] and [20, Theorem 2.1]:
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Proposition 3.1. Let ϕ satisfies (3.1)–(3.4). Then there exist C > 0 and τ0 > 0
such that for any τ � τ0 we have the following estimate:

τ 3‖w‖2 + τ‖∇w‖2 � C
(
‖P(x, D, τ )w‖2 + τ |w|21,0,τ

)
(3.5)

and

τ 3‖w‖2 + τ‖∇w‖2 + τ |w|21,0,τ
� C

(
‖P(x, D, τ )w‖2 + τ |op(b1)w|21 + τ |op(b2)w|2

)
, (3.6)

for any w ∈ C∞
0 (K ) where K ⊂ W 1 is a compact subset.

Noting that the Carleman estimate (3.5) is precisely given in proof of Proposition
1 page 482 of [15] and the estimate (3.6) is precisely given in the end of the proof
of Theorem 2.1 page 984 of [20].

Now we are ready to state our local Carleman estimate whose main ingredients
are estimates (3.5) and (3.6). In fact, the Carleman estimate established here is an
estimate analogous to the previous one but with another scale of Sobolev spaces.

Theorem 3.1. Let ϕ satisfies (3.1)–(3.4). There exist C > 0 and τ0 > 0 such that
for any τ � τ0 we have the following estimate:

τ 3‖w‖2 + τ‖∇w‖2 + τ 2|w|21
2

+ τ 2|Dxn w|2− 1
2

� C
(
‖P(x, D, τ )w‖2 + τ 2|op(b1)w|21

2
+ τ |op(b2)w|2

)
, (3.7)

for any w ∈ C∞
0 (K ) where K ⊂ W 1 is a compact subset.

Proof. We can write the operator P(x, D, τ ) as follows:

P(x, D, τ ) = D2
xn

+ R + τc0(x)Dxn + τC1(x) + τ 2c′
0(x),

where c0, c′
0 ∈ T O0, C1 ∈ T O1 and R ∈ T O2 with R = ∑n−1

j,k=1 a j,k Dx j Dxk .
Let v ∈ C∞

0 (W1). Then we have

‖(D2
xn

+ R)op(�− 1
2 )v‖2 � C

(
‖Pop(�− 1

2 )v‖2 + τ 2‖op(� 1
2 )v‖2

+ τ 2‖Dxnop(�
− 1

2 )v‖2 + τ 4‖op(�− 1
2 )v‖2

)
.
(3.8)

We can estimate the three last terms of the right hand side of (3.8) as follows:

τ 2‖Dxnop(�
− 1

2 )v‖2 + τ 4‖op(�− 1
2 )v‖2 � C(τ‖Dxn v‖2 + τ 3‖v‖2),

and

τ 2‖op(� 1
2 )v‖2 = τ 2

(
1√
τ
op(�)v,

√
τv

)
� C

(
τ‖op(�)v‖2 + τ 3‖v‖2

)

� Cτ‖op(�)v‖2. (3.9)
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Then, following (3.8), we obtain

‖(D2
xn

+ R)op(�− 1
2 )v‖2

� C
(
‖Pop(�− 1

2 )v‖2 + τ‖op(�)v‖2 + τ 3‖v‖2 + τ‖Dxn v‖2
)

. (3.10)

Combining (3.5) and (3.10) and using the fact that τ(‖op(�)v‖2 + ‖Dxn v‖2) ∼
τ 3‖v‖2 + τ‖∇v‖2, we obtain

‖(D2
xn

+ R)op(�− 1
2 )v‖2 � C

(
‖Pop(�− 1

2 )v‖2 + ‖Pv‖2 + τ |v|21,0,τ
)

.

(3.11)

We can write

Pop(�− 1
2 )v

= op(�− 1
2 )Pv + [P, op(�− 1

2 )]v = op(�− 1
2 )Pv + [R, op(�− 1

2 )]v
+τ [c0(x)Dxn , op(�

− 1
2 )]v + τ [C1(x), op(�− 1

2 )]v + τ 2[c′
0(x), op(�− 1

2 )]v.

(3.12)

Since [R, op(�− 1
2 )] ∈ T O 1

2 , then, following (3.5), we have
∥∥∥[R, op(�− 1

2 )]v
∥∥∥2 � C‖op(� 1

2 )v‖2 � C‖op(�)v‖2

� C
(
‖Pv‖2 + τ |v|21,0,τ

)
. (3.13)

Since [c0(x)Dxn , op(�
− 1

2 )] ∈ T O− 1
2 Dxn , then following (3.5), we have

τ 2
∥∥∥[c0(x)Dxn , op(�

− 1
2 )]v

∥∥∥2 � Cτ 2‖op(�− 1
2 )Dxn v‖2

� Cτ‖Dxn v‖2 � C
(
‖Pv‖2 + τ |v|21,0,τ

)
.

(3.14)

Since [C1(x), op(�− 1
2 )] ∈ T O− 1

2 , then following (3.5), we have

τ 2
∥∥∥[C1(x), op(�− 1

2 )]v
∥∥∥2 � Cτ 2‖op(�− 1

2 )v‖2 � Cτ‖v‖2

� C
(
‖Pv‖2 + τ |v|21,0,τ

)
. (3.15)

Since [c′
0(x), op(�− 1

2 )] ∈ T O− 3
2 , then following (3.5), we have

τ 4
∥∥∥[c′

0(x), op(�− 1
2 )]v

∥∥∥ � Cτ 4‖op(�− 3
2 )v‖2

� Cτ 3‖v‖2 � C
(
‖Pv‖2 + τ |v|21,0,τ

)
. (3.16)

From (3.12)–(3.16), one gets

‖Pop(�− 1
2 )v‖2 � C

(
‖Pv‖2 + τ |v|21,0,τ

)
. (3.17)
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Then the combination of (3.11) and (3.17) gives

‖(D2
xn

+ R)op(�− 1
2 )v‖2 � C

(
‖Pv‖2 + τ |v|21,0,τ

)
. (3.18)

On the other hand, by integration by parts we find that

‖(D2
xn

+ R)op(�− 1
2 )v‖2

= ‖D2
xn
op(�− 1

2 )v‖2

+ ‖Rop(�− 1
2 )v‖2 + 2Re(D2

xn
op(�− 1

2 )v, Rop(�− 1
2 )v)

= ‖D2
xn
op(�− 1

2 )v‖2 + ‖Rop(�− 1
2 )v‖2 (3.19)

+ 2Re
(

i
(
Dxn v, Rop(�−1)v

)
0 + i

(
Dxn v, [op(�− 1

2 ), R]op(�− 1
2 )v

)
0

)

+ 2Re
(
RDxnop(�

− 1
2 )v, Dxnop(�

− 1
2 )v

)
+ 2Re

(
Dxnop(�

− 1
2 )v, [Dxn , R]op(�− 1

2 )v
)
.

Let χ0 ∈ C∞
0 (Rn+) be a positive function such that χ0 ≡ 1 in support of v. Then by

integration by parts and using the fact that (1 − χ0)v ≡ 0, we obtain
∥∥∥op(� 3

2 )v

∥∥∥2

= (op(�2)op(�
1
2 )v, op(�

1
2 )v) = τ 2

∥∥∥op(� 1
2 )v

∥∥∥2

+
n−1∑
j=1

(
D2

x j
op(�

1
2 )v, op(�

1
2 )v

)

= τ 2
∥∥∥op(� 1

2 )v

∥∥∥2 +
n−1∑
j=1

(
Dx j op(�

1
2 )v, Dx j op(�

1
2 )v

)

= τ 2
∥∥∥op(� 1

2 )v

∥∥∥2 +
n−1∑
j=1

(
χ0Dx j op(�

1
2 )v, Dx j op(�

1
2 )v

)
(3.20)

+
n−1∑
j=1

(
[(1 − χ0), Dx j op(�

1
2 )]v, Dx j op(�

1
2 )v

)

Since [(1−χ0), Dx j op(�
1
2 )] ∈ T O 1

2 and Dx j op(�
1
2 ) ∈ T O 3

2 for j = 1, . . . , n −
1, we show that

∣∣∣∣∣∣
n−1∑
j=1

(
[(1 − χ0), Dx j op(�

1
2 )]v, Dx j op(�

1
2 )v

)∣∣∣∣∣∣ � C‖op(�)v‖2. (3.21)

We recall that
∑n−1

j,k=1 χ0a j,k Dx j vDxk v � cχ0
∑n−1

j=1 |Dx j v|2 for some constant

c > 0, and using the fact that [χ0, a j,k Dx j op(�
1
2 )] ∈ T O 1

2 and Dxkop(�
1
2 ) ∈
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T O 3
2 , we obtain

n−1∑
j=1

(
χ0Dx j op(�

1
2 )v, Dx j op(�

1
2 )v

)

� C
n−1∑
j,k=1

(
χ0a j,k Dx j op(�

1
2 )v, Dxkop(�

1
2 )v

)
(3.22)

� C
n−1∑
j,k=1

(
[χ0, a j,k Dx j op(�

1
2 )]v, Dxkop(�

1
2 )v

)

+ C
n−1∑
j,k=1

(
a j,k Dx j op(�

1
2 )v, Dxkop(�

1
2 )v

)

� C
n−1∑
j,k=1

(
a j,k Dx j op(�

1
2 )v, Dxkop(�

1
2 )v

)
+ C‖op(�)v‖2.

Integrating by parts the first term of the right hand side of (3.22) with R =∑n−1
j,k=1 a j,k Dx j Dxk , one gets

n−1∑
j,k=1

(
a j,k Dx j op(�

1
2 )v, Dxkop(�

1
2 )v

)

= (Rop(�
1
2 )v, op(�

1
2 )v) (3.23)

+
n−1∑
j,k=1

(
[Dxk , a j,k]Dx j op(�

1
2 )v, op(�

1
2 )v

)
.

Since [Dxk , a j,k]Dx j op(�
1
2 ) ∈ T O 3

2 ,
∣∣∣∣∣∣

n−1∑
j,k=1

(
[Dxk , a j,k]Dx j op(�

1
2 )v, op(�

1
2 )v

)∣∣∣∣∣∣ � C‖op(�)v‖2. (3.24)

Since,

(Rop(�
1
2 )v, op(�

1
2 )v)

= (Rop(�− 1
2 )v, op(�

3
2 )v) + ([op(�), R]op(�− 1

2 )v, op(�
1
2 )v),

(3.25)

and using the fact that [op(�), R]op(�− 1
2 ) ∈ T O 3

2 , plus the Cauchy–Schwarz
inequality, we obtain∣∣∣(Rop(�

1
2 )v, op(�

1
2 )v)

∣∣∣
� C

(
ε‖op(� 3

2 )v‖2 + 1

ε
‖Rop(�− 1

2 )v‖2 + ‖op(�)v‖2
)

. (3.26)



Wave Equation with Singular Kelvin–Voigt Damping 589

Combining (3.20)–(3.26), we obtain, for ε small enough that

‖Rop(�− 1
2 )v‖2 � C

(
‖op(� 3

2 )v‖2 − τ‖op(�)v‖2
)

, (3.27)

where we have used (3.9) again. The same computation shows that

Re
(

RDxnop(�
− 1

2 )v, Dxnop(�
− 1

2 )v
)

� C
(
‖Dxnop(�

1
2 )v‖2 − τ‖Dxn v‖2

)
. (3.28)

Since [op(�− 1
2 ), R]op(�− 1

2 ) ∈ T O0 and Rop(�−1) ∈ T O1, we have

∣∣∣
(

Dxn v, Rop(�−1)v
)
0

∣∣∣ +
∣∣∣
(

Dxn v, [op(�− 1
2 ), R]op(�− 1

2 )v
)
0

∣∣∣
� C

(
|Dxn v|2 + |v|21

)
� C |v|21,0,τ , (3.29)

and
∣∣∣
(

Dxnop(�
− 1

2 )v, [Dxn , R]op(�− 1
2 )v

)∣∣∣ � C
(
‖v‖2 + ‖∇v‖2

)
. (3.30)

Putting (3.18) and (3.27)–(3.30) into (3.19), we find

‖D2
xn
op(�− 1

2 )v‖2 + ‖Dxnop(�
1
2 )v‖2 + ‖op(� 3

2 )v‖2

� C
(
‖Pv‖2 + τ 3‖v‖2 + τ‖∇v‖2 + τ |v|21,0,τ

)
. (3.31)

Following (3.6) and (3.31), we deduce that

‖D2
xn
op(�− 1

2 )v‖2 + ‖Dxnop(�
1
2 )v‖2 + ‖op(� 3

2 )v‖2 + τ |v|21,0,τ
� C

(
‖Pv‖2 + τ |op(b1)v|21 + τ |op(b2)v|2

)
. (3.32)

Let χ ∈ C∞
0 (Rn) be such that χ ≡ 1 in the support of w. We set v =

χop(�− 1
2 )w and we write

Pv = op(�− 1
2 )Pw + [P, op(�− 1

2 )]w + P[χ, op(�− 1
2 )]w

= op(�− 1
2 )Pw + [P, op(�− 1

2 )]w + D2
xn

[χ, op(�− 1
2 )]w

+ R[χ, op(�− 1
2 )]w

+ τc0(x)Dxn [χ, op(�− 1
2 )]w + τC1(x)[χ, op(�− 1

2 )]w
+ τ 2c′

0(x)[χ, op(�− 1
2 )]w.

(3.33)

We have [χ, op(�− 1
2 )] ∈ T O− 3

2 , so
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∥∥∥D2
xn

[χ, op(�− 1
2 )]w

∥∥∥2

� C

(∥∥∥D2
xn
op(�− 3

2 )w

∥∥∥2 +
∥∥∥Dxnop(�

− 3
2 )w

∥∥∥2 +
∥∥∥op(�− 3

2 )w

∥∥∥2
)

,

(3.34)

and

τ 2
∥∥∥c0(x)Dxn [χ, op(�− 1

2 )]w
∥∥∥2

� Cτ 2
(∥∥∥Dxnop(�

− 3
2 )w

∥∥∥2 +
∥∥∥op(�− 3

2 )w

∥∥∥2
)

. (3.35)

Since R[χ, op(�− 1
2 )] ∈ T O 1

2 , C1(x)[χ, op(�− 1
2 )] ∈ T O− 1

2 and c′
0(x)[χ,

op(�− 1
2 )] ∈ T O− 3

2 , we obtain∥∥∥R[χ, op(�− 1
2 )]w

∥∥∥2 + τ 2
∥∥∥C1(x)[χ, op(�− 1

2 )]w
∥∥∥2

+τ 4
∥∥∥c′

0(x)[χ, op(�− 1
2 )]w

∥∥∥2 � C
∥∥∥op(� 1

2 )w

∥∥∥2 . (3.36)

Since we can write

[P, op(�− 1
2 )]

= [R, op(�− 1
2 )] + τ [c0(x)Dxn , op(�

− 1
2 )] + τ [C1(x), op(�− 1

2 )]
+τ 2[c′

0(x), op(�− 1
2 )],

by using (3.13)–(3.16), we obtain
∥∥∥[P, op(�− 1

2 )]w
∥∥∥2 � C

(∥∥∥op(� 1
2 )w

∥∥∥2 + τ−1
∥∥Dxn w

∥∥2
)

. (3.37)

Inserting (3.34)–(3.37) into (3.33), we find that

‖Pv‖2
� C

(
τ−1‖Pw‖2 + τ−1‖op(�)w‖2 .

+τ−1‖Dxn w‖2 + τ−1‖D2
xn
op(�−1)w‖2

)
. (3.38)

We have

op(b1)v = op(b1)χop(�
− 1

2 )w = op(�− 1
2 )op(b1)w + op(b1)[χ, op(�− 1

2 )]w
+[op(b1), op(�− 1

2 )]w.

Sinceop(b1) ∈ T O0, thenop(b1)[χ, op(�− 1
2 )] ∈ T O− 3

2 and [op(b1), op(�− 1
2 )] ∈

T O− 3
2 , which gives

τ |op(b1)v|21 = τ |op(�)op(b1)v|2

� C
(
τ |op(� 1

2 )op(b1)w|2 + |op(�− 1
2 )w|2

)

� C
(
τ |op(� 1

2 )op(b1)w|2 + τ−2|op(� 1
2 )w|2

)
.

(3.39)



Wave Equation with Singular Kelvin–Voigt Damping 591

We have

op(b2)v = op(b2)χop(�
− 1

2 )w = op(�− 1
2 )op(b2)w + op(b2)[χ, op(�− 1

2 )]w
+[op(b2), op(�− 1

2 )]w.

Since op(b2) ∈ Dxn + T O1, it is clear that op(b2)[χ, op(�− 1
2 )] ∈ T O− 3

2 Dxn +
T O− 1

2 and [op(b2), op(�− 1
2 )] ∈ T O− 3

2 Dxn + T O− 1
2 , hence

τ |op(b2)v|2
� Cτ

(
|op(�− 1

2 )op(b2)w|2 + |op(�− 1
2 )w|2 + |Dxnop(�

− 3
2 )w|2

)

� C
(
τ |op(�− 1

2 )op(b2)w|2 + τ−1|op(� 1
2 )w|2 + τ−1|Dxnop(�

− 1
2 )w|2

)
.

(3.40)

Moreover, we can write

op(�)v = op(�)χop(�− 1
2 )w = op(�

1
2 )w + op(�)[χ, op(�− 1

2 )]w,

since op(�)[χ, op(�− 1
2 )] ∈ T O− 1

2 . Then we get

τ |op(�)v|2 � τ |op(� 1
2 )w|2 − Cτ |op(�− 1

2 )w|2 � τ |op(� 1
2 )w|2

−Cτ−1|op(� 1
2 )w|2,

and for τ large enough, we obtain

τ |op(� 1
2 )w|2 � Cτ |op(�)v|2. (3.41)

By using (3.41) similarly, we can prove that for τ large enough, we have

τ |Dxnop(�
− 1

2 )w|2 � Cτ |Dxn v|2 + Cτ |v|21. (3.42)

Recalling that

τ |v|21,0,τ = τ |v|21 + τ |Dnv|2 = τ |op(�)v|2 + τ |Dnv|2,
and combining (3.41) and (3.42), we obtain

τ |op(� 1
2 )w|2 + τ |Dxnop(�

− 1
2 )w|2 � Cτ |v|21,0,τ . (3.43)

Since we have

op(�
3
2 )v = op(�

3
2 )χop(�− 1

2 )w = op(�)w + op(�
3
2 )[χ, op(�− 1

2 )]w,

where op(�
3
2 )[χ, op(�− 1

2 )] ∈ T O0, we obtain

‖op(�)w‖2 − C‖w‖2 � ‖op(� 3
2 )v‖2. (3.44)

Similarly, we can also prove that

‖Dxn w‖2 − C
(
‖Dxnop(�

−1)w‖2 + ‖op(�−1)w‖2
)

� ‖Dxnop(�
1
2 )v‖2,

(3.45)
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and

‖D2
xn
op(�−1)w‖2 − C

(‖D2
xn
op(�−2)w‖2

+‖Dxnop(�
−2)w‖2 + ‖op(�−2)w‖2)

� ‖D2
xn
op(�− 1

2 )v‖2. (3.46)

Combining (3.44)–(3.46), we find that

‖D2
xn
op(�−1)w‖2 + ‖Dxn w‖2 + ‖op(�)w‖2

� ‖D2
xn
op(�− 1

2 )v‖2 + ‖Dxnop(�
1
2 )v‖2 + ‖op(� 3

2 )v‖2. (3.47)

Inserting (3.38)–(3.40), (3.43) and (3.47) into (3.32), we obtain

‖D2
xn
op(�−1)w‖2 + ‖Dxn w‖2 + ‖op(�)w‖2 + τ |op(� 1

2 )w|2

+ τ |Dxnop(�
− 1

2 )w|2

� C
(
τ−1‖Pw‖2 + τ−1‖op(�)w‖2 + τ−1‖Dxn w‖2 + τ−1‖D2

xn
op(�−1)w‖2

+ τ |op(� 1
2 )op(b1)w|2 + τ−2|op(� 1

2 )w|2 + τ |op(�− 1
2 )op(b2)w|2 + τ−1|op(� 1

2 )w|2

+ τ−1|Dxnop(�
− 1

2 )w|2
)
.

For τ large enough, we get

‖Dxn w‖2 + ‖op(�)w‖2 + τ |op(� 1
2 )w|2 + τ |Dxnop(�

− 1
2 )w|2

� C
(
τ−1‖Pw‖2 + τ |op(� 1

2 )op(b1)w|2 + τ |op(�− 1
2 )op(b2)w|2

)
,

which obviously leads to the Carleman estimate. This ends the proof. �
For u = (u1, u2) ∈ H1(U1) × H1(U2), we define the tangential operators

op(B1) and op(B2) by

op(B1)u = u1|γ0 − u2|γ0 and op(B2)u = ∂νu1|γ0 − ∂νu2|γ0 . (3.48)

We note that op(B1) measures the continuity of the displacement of u through the
interface γ0, where op(B2) describes the difference of the flux through γ0 of the
two sides of the interface.

Corollary 3.1. Let ϕ satisfy (3.1)–(3.4). There exist C > 0 and τ0 > 0 such that
for any τ � τ0 we have the following estimate:

τ 3‖eτϕu‖2 + τ‖eτϕ∇u‖2 � C
(
‖eτϕP(x, D)u‖2

+τ 2|eτϕop(B1)u|21
2

+ τ |eτϕop(B2)u|2
)

, (3.49)

for any u ∈ C∞
0 (K ) where K ⊂ W 1 is a compact subset.
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Proof. Lettingw = eτϕu and recalling that P(x, D, τ )w = eτϕP(x, D)u, op(b1)w =
eτϕ1 .op(B1)u and op(b2)w = eτϕ1 .op(B2)u, then using the fact that ϕ1 and ϕ2 have
the same trace on γ0 and the estimate (3.7), we obtain (3.49). �

Now we can state the global Carleman estimate in U1 and U2 (defined at the
beginning of this section on page 5), which is given by the following theorem:

Theorem 3.2. Assume that ϕ satisfies

|∇ϕk(x)| > 0, ∀ x ∈ Uk, k = 1, 2,

except in a set Wk of finite number of points of Uk (3.50)

∂νϕ2|γ (x) < 0, (3.51)

∂νϕk|γ0(x) > 0, k = 1, 2, (3.52)(
∂νϕ1|γ0(x)

)2 − (
∂νϕ2|γ0(x)

)2
> 1, (3.53)

and the sub-ellipticity condition

∃ c > 0, ∀ (x, ξ) ∈ Uk × R
n, pk(x, ξ) = 0

�⇒ {Re(pk), Im(pk)} (x, ξ, τ ) � c〈ξ, τ 〉3. (3.54)

Then there exist C > 0 and τ0 > 0 such that we have the following estimate:

τ 3‖eτϕu‖2L2(U)
+ τ‖eτϕ∇u‖2L2(U)

(3.55)

� C
(
‖eτϕPu‖2L2(U)

+ τ 2‖eτϕop(B1)u‖2
H

1
2 (γ0)

+ τ‖eτϕop(B2)u‖2L2(γ0)

)
,

for all τ � τ0 and u = (u1, u2) ∈ H2(U1) × H2(U2) such that u2|γ = 0 and
uk = 0 at the neighborhood of Wk , k = 1, 2.

In Theorem 3.2, the fact that u is vanishing around the critical points of the
weight function ϕ means that a part of the data is lost, as we can see in the next
section. To deal with this our idea here is composed of three steps: in the first step,
we apply Theorem 3.2with a state vanishing around the critical point (using a cutoff
function) of the weight function. In a second step, we do the same thing as in the
first step, but this time with a second (well-made) weight function with new and
different critical points. For the last step, we just add the two estimates in order to
recover the missing information around the critical points (this is possible thanks
to the properties of the weight function that we have made).

4. Stabilization result

In this section, we will prove the logarithmic stability of the system (1.1). To
this end, we establish a particular resolvent estimate. More precisely, we will show
that for some constant C > 0, we have

‖(A − iμ I )−1‖L(H) � CeC|μ|, ∀ |μ| � 1, (4.1)



594 Kaïs Ammari, Fathi Hassine & Luc Robbiano

and then by Burq’s result [7] and the remark of Duyckaerts [9, section 7] (see
also [4,6]), we obtain the expected decay rate of the energy.

Let μ be a real number such that |μ| is large, and assume that

(A − iμ I )(u, v)t = ( f, g)t , (u, v) ∈ D(A), ( f, g) ∈ H, (4.2)

which can be written as follows:
{

v − iμu = f in �

�u + div(a(x)∇v) − iμv = g in �,

or, equivalently, as
{

v = f + iμu in �

�u + iμdiv(a(x)∇u) + μ2u = g + iμ f − div(a(x)∇ f ) in �.
(4.3)

Multiplying the second line of (4.3) by u and integrating over �, then, by Green’s
formula, we obtain

∫
�

(g − iμ f )u dx + d
∫

ω

∇ f.∇u dx

= μ2
∫

�

|u|2 dx −
∫

�

|∇u|2 dx − idμ

∫
ω

|∇u|2 dx . (4.4)

Taking the imaginary part of (4.4) and using the Cauchy–Schwarz inequality and
Poincaré inequality, we find that

d|μ|
∫

ω

|∇u|2 dx � C

(
μ2

∫
�

|∇ f |2 dx +
∫

�

|g|2 dx

)
. (4.5)

By setting u = u1 1ω + u2 1�\ω̄, v = v1 1ω + v2 1�\ω̄, f = f1 1ω + f2 1�\ω̄ and
g = g1 1ω + g2 1�\ω̄, system (4.3) is transformed into the following transmission
equation:

⎧⎪⎪⎨
⎪⎪⎩

v1 = iμu1 + f1 in ω

v2 = iμu2 + f2 in �\ω
�((1 + idμ)u1 + d f1) + μ2u1 = g1 + iμ f1 in ω

�u2 + μ2u2 = g2 + iμ f2 in �\ω,

(4.6)

with the transmission conditions
{

u1 = u2 on I
∂ν((1 + idμ)u1 + d f1) = ∂νu2 on I,

(4.7)

and the boundary condition

u2 = 0 on �, (4.8)

where ν(x) denote the outer unit normal to � \ ω on � and on I (see Fig. 1).
To prove Theorem 1.1 we need the following technical lemma:
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Lemma 4.1. Let O be a bounded open set of Rn. Then there exist C > 0 and
μ0 > 0, such that, for any w and F satisfying

�w + μ2

1 + idμ
w = F in O,

and for all |μ| > μ0, we have the following estimate:

‖w‖2H1 � C
(
‖∇w‖2L2(O)

+ ‖F‖2L2(O)

)
. (4.9)

Proof. We need to distinguish two cases:
Inside O: Letting χ ∈ C∞

0 (O), we have, by integration by parts,

∫
O

(
�w + μ2

1 + idμ
w

)
.χ2w dx = μ2

1 + idμ
‖χw‖2L2(O)

−
∫
O

|χ∇w|2 dx

−2
∫
O

∇χ.∇wχw dx .

Then we obtain

μ2√
1 + d2μ2

‖χw‖2L2(O)

� C
(
‖F‖L2(O).‖χ2w‖L2(O) + ‖∇w‖2L2(O)

+ ‖∇w‖L2(O).‖χw‖L2(O)

)
.

Using Cauchy–Schwarz inequality, and for |μ| large enough, one gets that

‖χw‖2L2(O)
� C

(
‖∇w‖2L2(O)

+ ‖F‖2L2(O)

)
, (4.10)

hence the result inside O.
In the neighborhood of the boundary: Let x = (x ′, xn) ∈ R

n−1 × R. Then

∂O = {x ∈ R
n, xn = 0}.

Let ε > 0 such that 0 < xn < ε. Then we have

w(x, ε) − w(x ′, xn) =
∫ ε

xn

∂xn w(x ′, t) dt.

It follows that

|w(x ′, xn)|2 � 2|w(x ′, ε)|2 + 2

(∫ ε

xn

|∂xn w(x ′, t)| dt

)2

.

Using the Cauchy–Schwarz inequality, we obtain

|w(x ′, xn)|2 � 2|w(x ′, ε)|2 + 2ε
∫ ε

xn

|∂xn w(x ′, t)|2 dt.
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Integrating with respect to x ′, we obtain
∫

|x ′|<ε

|w(x ′, xn)|2 dx ′ � 2
∫

|x ′|<ε

|w(x ′, ε)|2 dx ′

+2ε
∫

|x ′|<ε

∫
|xn |<ε

|∂xn w(x ′, t)|2 dt dx ′.

(4.11)

Using the trace theorem, we have

∫
|x ′|<ε

|w(x ′, ε)|2 dx ′ � C
∫

|x ′|<2ε,|xn−ε|< ε
2

(
|w(x)|2 + |∇w(x)|2

)
dx .

(4.12)

We introduce the following cut-off functions:

χ1(x) =
{
1 if 0 < xn <

ε

2
0 if xn > ε,

and

χ2(x) =
⎧⎨
⎩
1 if

ε

2
< xn <

3ε

2
0 if xn <

ε

4
, xn > 2ε.

Combining (4.11) and (4.12), we obtain, for ε small enough, that

‖χ1w‖2 � C
(
‖χ2w‖2 + ‖∇w‖2

)
. (4.13)

From (4.10), we have

‖χ2w‖2 � C
(
‖∇w‖2 + ‖F‖2

)
. (4.14)

Inserting (4.14) into (4.13), we find that

‖χ1w‖2 � C
(
‖∇w‖2 + ‖F‖2

)
, (4.15)

hence the result in the neighborhood of the boundary.
Following (4.10), we can write

‖(1 − χ1)w‖2 � C
(
‖∇w‖2 + ‖F‖2

)
. (4.16)

Adding (4.15) and (4.16), we obtain (4.9). �
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Nowwe can prove Theorem 1.1. We setw1 = (1+ idμ)u1+d f1 andw2 = u2,
then the system (4.6)–(4.8) can be recast as follows:

⎧⎨
⎩

�w1 + μ2

1 + idμ
w1 = �1 in ω

�w2 + μ2w2 = �2 in � \ ω,

(4.17)

with the transmission conditions{
w1 = w2 + φ on I
∂νw1 = ∂νw2 on I,

(4.18)

and the boundary condition

w2 = 0 on �, (4.19)

where we have denoted that �1 = g1 + iμ
1+idμ

f1, �2 = g2 + iμ f2 and φ =
d f1 + idμu1.

We denote by Br a ball of radius r > 0 in ω and Bc
r its complement such that

B4r ⊂ ω. Let’s introduce the cut-off function χ ∈ C∞(ω) by

χ(x) =
{
1 in Bc

3r
0 in B2r .

Next, we denote w̃1 = χw1, then, from the first line of (4.17), one sees that

�w̃1 + μ2

1 + idμ
w̃1 = �̃1 in ω, (4.20)

where �̃1 = χ�1 − [�,χ ]w1. We denote �1 = ω \ Br and �2 = � \ ω.
According to [7], [11] or [13], we can find four weight functions ϕ1,1, ϕ1,2, ϕ2,1

and ϕ2,2, a finite number of points xi
j,k where B(xi

j,k, 2ε) ⊂ � j for all j, k = 1, 2

and i = 1, . . . , Ni,k such that, by denoting U j,k = �k

⋂(⋃N j,k

i=1
B(xi

j,k, ε)

)c

,

the weight function ϕk = diag(ϕ1,k, ϕ2,k) verifies the assumption (3.50)–(3.54) in

U1,k ∪U2,k with γ = � and γ0 = I. Moreover, ϕ j,k < ϕ j,k+1 in
⋃N j,k

i=1 B(xi
j,k, 2ε)

for all j, k = 1, 2, where we have denoted ϕ j,3 = ϕ j,1.

Letχ j,k (for j, k = 1, 2) four cut-off functions equal to 1 in
(⋃N j,k

i=1 B(xi
j,k, 2ε)

)c

and supported in
(⋃N j,k

i=1 B(xi
j,k, ε)

)c
(in order to eliminate the critical points of

the weight functions ϕ j,k). We set w1,1 = χ1,1w̃1, w1,2 = χ1,2w̃1, w2,1 = χ2,1w2
and w2,2 = χ2,2w2. Then from system (4.18) and equations (4.8) and (4.20), for
k = 1, 2, we obtain⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�w1,k + μ2

1 + idμ
w1,k = �1,k in ω

�w2,k + μ2w2,k = �2,k in � \ ω

w1,k = w2,k + φ on I
∂νw1,k = ∂νw2,k on I
w2,k = 0 on �,

(4.21)
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where {
�1,k = χ1,k�̃1 − [�,χ1,k]w̃1
�2,k = χ2,k�2 − [�,χ2,k]w2.

(4.22)

Applying the Carleman estimate (3.55) to the system (4.21) with τ = |μ|, for
k = 1, 2 we have

τ 3
∑
j=1,2

‖eτϕ j,k w j,k‖2L2(U j,k)
+ τ

∑
j=1,2

‖eτϕ j,k ∇w j,k‖2L2(U j,k)

� C
(
‖eτϕ1,k �1,k‖2L2(U1,k )

+ ‖eτϕ2,k �2,k‖2L2(U2,k )
+ τ 2‖eτϕ1,k φ‖2

H
1
2 (I)

)
.

Recalling the expression of �1,k and �2,k in (4.22), we can write

τ 3
∑
j=1,2

‖eτϕ j,k w j,k‖2L2(U j,k )
+ τ

∑
j=1,2

‖eτϕ j,k ∇w j,k‖2L2(U j,k )

� C
(
‖eτϕ1,k �1‖2L2(U1,k )

+ ‖eτϕ2,k �2‖2L2(U2,k )
+ ‖eτϕ1,k [�,χ1,k]w̃1‖2L2(U1,k )

+‖eτϕ1,k [�,χ ]w1‖2L2(U1,k )
+ ‖eτϕ2,k [�,χ2,k]w2,k‖2L2(U2,k )

+τ 2‖eτϕ1,k φ‖2
H

1
2 (I)

)
.

Adding the two last estimates and using the property of the weight functions ϕ j,1 <

ϕ1,2 in
⋃N j,1

i=1 B(xi
j,1, 2ε) and ϕ j,2 < ϕ j,1 in

⋃N j,2
i=1 B(xi

j,2, 2ε) for all j = 1, 2, we
can absorb first order the terms [�,χ1,k]w̃1 and [�,χ2,k]w2 at the right hand side
into the left hand side for τ > 0 sufficiently large, so mainly we obtain

τ

∫
�1

(
e2τϕ1,1 + e2τϕ1,2

)
|∇w1|2 dx + τ

∫
�2

(
e2τϕ2,1 + e2τϕ2,2

)
|∇w2|2 dx

� C

( ∫
�1

(
e2τϕ1,1 + e2τϕ1,2

)
|�1|2 dx + τ

∫
�2

(
e2τϕ2,1 + e2τϕ2,2

)
|�2|2 dx

+
∫

�1

(
e2τϕ1,1 + e2τϕ1,2

)
|[�,χ ]w1|2 dx

+τ 2
(

‖eτϕ1,1φ‖2
H

1
2 (I)

+ ‖eτϕ1,2φ‖2
H

1
2 (I)

) )
.

Since we can write φ = idμ
1+idμ

w1 + d
1+idμ

f1, using the trace theorem, Green’s
formula and the fact that the operator [�,χ ] is of the first order with support in ω,

we find that

τ

∫
ω

(
e2τϕ1,1 + e2τϕ1,2

)
|∇w1|2 dx + τ

∫
�\ω

(
e2τϕ2,1 + e2τϕ2,2

)
|∇w2|2 dx

� C

( ∫
ω

(
e2τϕ1,1 + e2τϕ1,2

)
|�1|2 dx + τ

∫
�\ω

(
e2τϕ2,1 + e2τϕ2,2

)
|�2|2 dx

+τ 4
∫

ω

(
e2τϕ1,1 + e2τϕ1,2

)
|w1|2 dx + τ 2

∫
ω

(
e2τϕ1,1 + e2τϕ1,2

)
|∇w1|2 dx
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+τ 4
∫

ω

(
e2τϕ1,1 + e2τϕ1,2

)
| f1|2 dx + τ 2

∫
ω

(
e2τϕ1,1 + e2τϕ1,2

)
|∇ f1|2 dx

)
.

(4.23)

Using the expressions of �1 and �2, taking the maximum of ϕ1,1, ϕ1,2, ϕ2,1 and
ϕ2,2 in the right hand side of (4.23) and their minimum in the left hand side, and
Lemma 4.1 we have

‖∇w1‖2L2(ω)
+ ‖∇w2‖2L2(�\ω)

�CeCτ
(
‖ f1‖2L2(ω)

+ ‖∇ f1‖2L2(ω)
+ ‖ f2‖2L2(�\ω)

+ ‖g1‖2L2(ω)
+ ‖g2‖2L2(�\ω)

+ ‖∇w1‖2L2(ω)

)
.

We evoke u1 and u2 through the expression of w1 and w2 to get

‖∇u1‖2L2(ω)
+ ‖∇u2‖2L2(�\ω)

�CeCτ
(
‖ f1‖2L2(ω)

+ ‖∇ f1‖2L2(ω)
+ ‖ f2‖2L2(�\ω)

+ ‖g1‖2L2(ω)
+ ‖g2‖2L2(�\ω)

+ ‖∇u1‖2L2(ω)

)
.

Using the Poincaré inequality, we have

‖∇u‖2L2(�)
� Cec|μ| (‖∇ f ‖2L2(�)

+ ‖g‖2L2(�)
+ ‖∇u‖2L2(ω)

)
. (4.24)

The combination of the two estimates (4.5) and (4.24) leads to

‖∇u‖2L2(�)
� Cec|μ| (‖∇ f ‖2L2(�)

+ ‖g‖2L2(�)

)
. (4.25)

We can obtain the same estimate as (4.25) with the v variable with the L2 norm
instead of u by again using the Poincaré inequality and recalling the expression of
v in the first line of (4.3); namely, we have

‖v‖2L2(�)
� Cec|μ| (‖∇ f ‖2L2(�)

+ ‖g‖2L2(�)

)
. (4.26)

Thus, the estimate (4.1) is obtained by the combination of the two estimates (4.25)
and (4.26).
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