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Abstract

This paper is concerned with quantitative homogenization of second-order
parabolic systems with periodic coefficients varying rapidly in space and time,
in non-self-similar scales. The homogenization problem involves two oscillating
scales. We obtain large-scale interior and boundary Lipschitz estimates as well
as interior 1'% and C>* estimates by utilizing higher-order correctors. We also
investigate the problem of convergence rates for initial-boundary value problems.
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1. Introduction

In this paper we shall be interested in the quantitative homogenization of a
parabolic operator with periodic coefficients varying rapidly in space and time, in
different scales. More precisely, we consider the parabolic operator

9 + Lo (1.1)
in R4*! where ¢ > 0 and
Lo =—div(A(x/e, 1/eM)V), (1.2)

with 0 < k& < oo. We will assume that the coefficient tensor A = A(y,s) =
(af}ﬁ (y, s)), with1 <i,j <dand1 < «, B < m,isreal, bounded measurable and
satisfies the ellipticity condition

lAllo <™ and  plgl? < af(y, 5)E0E? (1.3)
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for any & = (§7) € R™*4 and almost everywhere (y, s) € R4t where u > 0
(the summation convention is used throughout). We also assume that A is 1-periodic
in (y, s); that is

Ay +z,s+1) = A(y,s) for(z,1) € Z**" and almost everywhere (y, s) € R4H!.
(1.4)

The qualitative homogenization theory for the operator (1.1) has been known
since the 1970s (see for example [10]). As e — 0, the weak solution u, of the initial-
Dirichlet problem for the parabolic system (d; + L.)u, = F in Qr = Q x (0, T)
converges weakly in L20,T; H'(£)) and strongly in L2(27). Moreover, the limit
ug is a solution of the initial-Dirichlet problem for (3; + Lo)ug = F in Qr, where
Ly is a second-order elliptic operator with constant coefficients. Furthermore, the
(homogenized) coefficients of L as well as the first-order correctors depend on &,
but only for three separated cases: 0 < k <2;k =2;and 2 < k < o0.

In recent years there has been a great amount of interest in the quantitative
homogenization theory for partial differential equations, where one is concerned
with problems related to the large-scale regularity and convergence rates for solu-
tions u,. Major progress has been made for elliptic equations and systems in the
periodic and non-periodic settings (see [3-9,11,16,17,19,27,28] and references
therein). Some of these works have been extended to parabolic equations and sys-
tems in the self-similar case k = 2. In particular, we established the large-scale
Lipschitz and W!-? estimates in [13] and studied the problem of convergence rates
in L2(Qr) as well as error estimates for two-scale expansions in LZ(O, T: H'(Q))
in [14]. Also see related works in [22-24,30]. Most recently, in [15], we have
studied the asymptotic behavior of the fundamental solution and its derivatives
and established sharp estimates for the remainders. We refer the reader to [2] for
quantitative stochastic homogenization of parabolic equations.

If k # 2, the ¢ scaling in the coefficient tensor A(x /e, /) is not consistent
with the intrinsic scaling (x, 1) — (éx, 821) of the second-order parabolic equa-
tions. To the authors’ best knowledge, very few quantitative results are known in this
case. Direct extensions of the existing techniques developed for elliptic equations
fail due to the fact that the homogenization problem involves two oscillating scales
mentioned above. For more recent work as well as motivations on homogenization
problems with more than one oscillating scale, which are referred to as reiterated
homogenization, see [1,12,18,26,29] and references therein.

In this paper we develop a new approach to study homogenization of parabolic
equations and systems with non-self-similar scales. This allows us to establish
large-scale interior and boundary Lipschitz estimates for the parabolic operator
(1.1) with any 0 < k < oo, under conditions (1.3) and (1.4).

Let Q,(x0,t) = B(xg,r) x (tg — r2, 1p) denote a parabolic cylinder. The
following is one of the main results of the paper:

Theorem 1.1. Assume A = A(y,s) satisfies (1.3) and (1.4). Let u, be a weak
solution to

(0 + Le)ue = Fin Qg = Qr(x0, 1), (1.5)
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where R > ¢ + K2 and F € LP(Qg) for some p > d + 2. Then for any
e + gk/2 <r <R,

12 12 1/p
(][ |Vug|2) sC{(f |Vu8|2) +R(][ |F|P) } (1.6)
Or Or ORr

where C depends only on d, m, p, and .

The inequality (1.6) may be regarded as a large-scale interior Lipschitz estimate.
We also obtain large-scale C1'% and C>¢ excess-decay estimates, which are new
even for k = 2, for solutions of d; + L. (see Sections 4 and 5). Regarding the
condition R > r > £+¢&*/2, we mention that there exists u, such that Oy +Lu, =
0in R?*! and Vu, is e-periodic in x and e¥-periodic in 7 (the solution u, is given
by x; + 8)(}‘ (x/e,t/e?) with A = £72; see Section 2). Note that if the periodic
cell (0, &) x (—&, 0) for Vu, is contained in the parabolic cylinder Q, (0, 0),
then r2 > &% and 2r > J/de. This implies that r > (¢ + ek/z)/4. As a result, the
condition R > r > ¢ + &*/2 for (1.6) is more or less necessary without additional
smoothness assumptions on A.

The next theorem gives the large-scale boundary Lipschitz estimate, which is
new even in the case k = 2. Let © be a bounded C** domain in R for some
a € (0, 1). Define D, (xg, ty) = (B(xo, r)yn Q) X (ty — r2, o) and A, (xo, ty) =
(B(xo,7) NAR) x (tg — r?, 1y), where xo € 3Q and 7y € R.

Theorem 1.2. Assume A = A(y, s) satisfies (1.3) and (1.4). Suppose that (9; +
L)ug = F in Dp = Dpg(xg,ty) and us = f on Arp = Apg(xp, ty), where
e+e2 < R <1, F e LP(Dg) for some p > d +2, and f € C't¥(AR) for
some « € (0, 1). Then for any € + /2 <y < R,

(o)< eee)

1/p
+R_1 ||f||C1+"‘(AR) + R <][ |F|17) } s (17)
Dg

where C depends only on d, m, o, p, u, and Q2.

Under the additional Holder continuity condition on A, the large-scale esti-
mates in Theorems 1.1 and 1.2 imply the uniform interior and boundary Lipschitz
estimates for |Vug(xo, fo)|. In the case k = 2, this follows readily from a simple
blow-up argument by considering u, (ex, £2¢) and using the classical Lipschitz esti-
mates for parabolic operators with Holder continuous coeffcients. If k # 2, we may
consider the function u, (8x, §2¢) with either § = & or £¥/2. It leads to the problem of
uniform Lipschitz estimates for parabolic operators of forms, d; — div (A (x/e, 1) V)
and 9; — div (A (x,t/ E)V) , with locally periodic coefficients. The details will appear
elsewhere.

In this paper we also investigate the rate of convergence in L2(Q7) for the
initial-Dirichlet problem

O +LJus =F inQy and u,=f ond,Qr, (1.8)
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where 9,27 denotes the parabolic boundary of Q7.

Theorem 1.3. Let Q2 be a bounded C' domain in R¢ and 0 < T < oo. Assume
A = A(y, s) satisfies (1.3) and (1.4). Also assume that ||05Allcc < 00 for 0 <
k < 2 and |V?Alleo < 00 for k > 2. Let u, be a weak solution of (1.8) and
ug its homogenized solution (with the same data F and f). Suppose that ug €
L2(0, T; HX()) and d;uo € L*(27). Then

lue — uollL2¢0p)
k2 if 0 <k <4/3,

27k ifap3 <k <2, (1.9)
< C{||M0||L2(0,T;H2(Q)) + ||3t“0||L2(.Qr)} N ok
& if 2 <k <3,

£ if k=2o0r3 <k < oo,
forany O < & < 1, where C depends only ond, m, k, A, 2, and T.

The convergence rates eV for different k’s in (1.9) are obtained as a result
of the formula y = min(k/2,2 — k) for0 < k < 2; ¥y = 1 for k = 2; and
y = min(l, k — 2) for k > 2. In Theorem 1.3 we do not specify conditions on F
and f, but rather require that ug € L(0, T; H*(2)) and 9,u¢ € L*(Q27). Notice
that if Qis "', F € L*(Qr) and f = 0, then [|[V2uol|12(q,) + 1910l 12(q,) <
ClIFlz2(qq)- It follows that

lue —uollp2(py = CEV”F”LZ(QT)s (1.10)
where y € (0, 1] is given above.

Remark 1.4. Whether the convergence rate in (1.10) is sharp for 0 < k < 2 and
2 < k < 3 remains open. We point out that even though the homogenized equation
doesnotdepend on k for0 < k < 2 and for2 < k < oo, the sharp convergence rate
for (1.10) may depend on k. This is already clear in the trivial case A®* = A(t /)
for k close to 0. We also note that the convergence rate given by Theorem 1.3 is not
continuous in k atk = 2, and that the non-self-similar case k 7# 2 requires additional
smoothness conditions. These seem to be consistent with the known results in
reiterated homogenization. In particular, in the elliptic case with coefficient tensor
A% = A(x/e, x /8k) for 0 < k < 1, the convergence rate obtained in [25] for
Q = R? is ¢ with y = min(k, | — k) under the assumption that A(y, z) is
Lipschitz continuous in z.

We now describe our general approach to Theorems 1.1-1.3. The key insight
is to introduce a new scale A € (0, oo) and consider the operator

Lo = — div(Asx(x/e, 1/eH)V), (1.11)

where A, (y, s) = A(y, s/1). Observe that the coefficient tensor A is 1-periodic in
y and A-periodic in s. Moreover, for each X fixed, the scaling of the parameter ¢ in
Ay (x/e, t/€2) is consistent with the intrinsic scaling of the second-order parabolic
operator 0, +L, . As aresult, we may extend some of recently developed techniques
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for elliptic equations to the parabolic equation (9; + L, 5 )us = F, as in the case
k = 2. We point out that for the results to be useful, it is crucial that the bounding
constants C in the estimates of solutions u, , donotdepend on A (and ¢). This allows
us to use the observation £, = L, for A = ek=2 and prove Theorems 1.1 and
1.2. The approach also leads to large-scale C!"* and C>* excess-decay estimates
as well as a Liouville property, expressed in terms of correctors for 9; + L 1.

The approach described above works equally well for the problem of conver-
gence rates. In addition to the observation £, , = L, for A = e¥=2 we also use the
fact that as A — oo, the homogenized coefficient matrix fﬁ for 9, + L, ) converges
to Ko\o, the homogenized coefficient matrix for d; + L, in the case 0 < k < 2. If
A — 0, then 74; — ZB , the homogenized coefficient matrix for d; + L, in the case
2 <k <o0.

The paper is organized as follows: in Section 2 we introduce the first-order
correctors x* and homogenized coefficients for d; + Ly, with & > 0 fixed, as well
as correctors and homogenized coefficients for £, in (1.1) withO < k < oco. We also
establish precise estimates of |1/4\A — A/:ol for A > 1, and of |XA — AT)l forO < A < 1,
under additional regularity assumptions on A. These estimates are used in the proof
of Theorem 1.3. In Section 3 we prove an approximation result for solutions of
(0r + Le3)uen = F in a parabolic cylinder. This is done by using e-smoothing
and dual correctors. The proof follows the approach used in [14] by the present
authors for the case A = 1. The proof of Theorem 1.1 is given in Section 4, where
we also establish a large-scale C!** estimate. In Section 5 we introduce second-
order correctors for the operator 9, + L ; and prove a large-scale C>% estimate.
The large-scale boundary Lipschitz estimate in Theorem 1.2 is proved in Section
6. We remark that the approaches used in Sections 4—6 are motivated by recently
developed techniques for studying the large-scale regularity in the homogenization
theory for elliptic equations and systems [3,4,6-8,11,16,17]. Finally, we give the
proof of Theorem 1.3 in Section 7, where we also obtain error estimates for a
two-scale expansion in L2(O, T: H! (RQ)).

The summation convention is used throughout. We will use fE u to denote the
L' average of u over the set E; that is f, u = %E‘ [ u. For notational simplicity
we will assume that m = 1 in the rest of the paper. However, no particular fact
pertaining to the scalar case is ever used. All results and proofs extend readily to
the case m > 1—the case of parabolic systems.

2. Correctors and Homogenized Coefficients

Let A = A(y, s) be a matrix satisfying conditions (1.3) and (1.4). For A > 0,
define

Ay = Ax(y,s) = A(y,s/2) for (y,s) € R (2.1)
The matrix A, is (1, A)-periodic in (y, s); that is

Ay 2,5+ A1) = Ay(y,s) for (z,1) € 24T,
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Let x* = x*(v,9) = (x{ (0, 9), .-, X7 (v, 9)), where x7 = x7(y, ) is the weak
solution of the parabolic cell problem

BSX]A _ diV(A,\VX])-”) = div(A,Vy;) in RAH
X} is (1, A)-periodic in (y, ),

A
// X} (v, 5)dyds =0,
0JTd

where T? = [0, 1)? = R?/Z¢. By the energy estimates,

A
F L varae<c. @3

where C depends only on d and p. Since

(2.2)

as/ X;(y.5)dy =0,
Td -

we obtain, by the integral condition in (2.2),

/T X ) dy =0. (2.4)

This, together with (2.3) and Poincaré’s inequality, gives

A
F e <c. @3)

where C depends only on d and p. Since x* and V x* are (1, A)-periodic in (y, s),
it follows from (2.3) and (2.5) that if r > 1 + /A,

172
<][ <|VX)”|2+|XA|2>) <C (2.6)
o,

for any Q, = QO,(x, t), where C depends only on d and u.
Let

A
Ay = ][/ (Ax + Ay V") dyds. 2.7)
0.JTd

Lemma 2.1. There exists C > 0, depending only on d and 1, such that |7\;| <C.
Moreover,

nlE? <&- Az (2.8)

forany & € RY.
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Proof. The inequality |Z;| < C follows readily from (2.3). To see (2.8), we note
that

A
sms=]£/Td/w<s-y+s-xk)-V(é-y+s-x*>dyds
A
zu][/ VE -y 4+ - PP dyds
0JTd

Py
= u][/ (&7 + 1€V X" dyds
0.J1d
> plg)?
for any £ € R?, where we have used the fact foqurd Vx*dyds =0. O

It is well known that for a fixed A > 0, the homogenized operator for the
parabolic operator

O + Loy = 0 — div(A;(x/e, 1/e))V) (2.9)
is given by 9, — div(f/\;V) [10]. In particular, if k = 2, the homogenized operator
for the operator in (1.1) is given by ; — div(A; V) with A = 1.

To introduce the homogenized operator for d; + L. in (1.1) for k # 2, we first

consider the case 0 < k < 2. Let x* = x®(y,s) = (X770, 8), ..., x3°(, 5)),
where X;?O = X}X’ (y, s) denotes the weak solution of the (elliptic) cell problem

— div(AVX®) = div(AVy;) inR
ch;o is 1-periodic in (y, ), (2.10)

/Td X7 (v, s)dy =0.

By the energy estimates and Poincaré’s inequality,

L (9670.9P 41670, 9R ) ay < . @.11)

for almost everywhere s € R, where C depends only on d and u. Let

1
Aoo:// (A+ AVx™)dyds. (2.12)
0JTd

It follows from (2.11) that |ZO\O| < C, where C depends only on d and p. By the
same argument as in the proof of Lemma 2.1, one may also show that

plE? < € - Aok (2.13)

for any & € RY. For 0 < k < 2, the homogenized operator for the parabolic
operator in (1.1) is given by 9; — div(Ax V) (see [10]).
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Next, we consider the case 2 < k < o0. Define
L 1
A=A(y) = / A(y,s)ds. 2.14)
0

Let x° = x°() = Y. .-, xY()), where x}) = X;?(y) is the weak solution
of the (elliptic) cell problem

— div (AVy?) = div(AVy;) inR,
X;') is 1-periodic in y, (2.15)

/dejodyzo.

As in the case 0 < k < 2, by the energy estimates and Poincaré’s inequality,

/T (v or+imP)ay =, (2.16)

where C depends only on d and . Let

Ao = /OI/W (A + AVXO) dyds = /Td (Z+ZVX°) dy. (217

It follows from (2.16) that |715| < C, where C depends only on d and p. By the
same argument as in the proof of Lemma 2.1, we obtain

wlE? <& Agk (2.18)

for any & € R?. For 2 < k < o0, the homogenized operator for d; + L, in (1.1) is
given by 9; — div(AgV) (see [10]).

In the remaining of this section we study the asymptotic behavior of the matrix
A,,as . — ooandas A — 0. We begin with a lemma on the higher integrability
of V.

Lemma 2.2. Let x* be defined by (2.2). Then there exists g > 2, depending on d

and |, such that
A 1/q
(f/ |V x*4 dyds) <cC, (2.19)
0J1d

where C depends only on d and .

Proof. Letu(y,s) = y; + x}- Then d;u — div(A; Vu) = 0 in R4t!. By Meyers-
type estimates for parabolic systems (see for example [2, Appendix]), there exist
q > 2 and C > 0, depending only on d and p, such that

1/q 12
(][ |Vu|? a’yds) <C <][ |Vu|? dyds> (2.20)
Or Qo
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forany Q, = Q,(x,t) = B(x,r) x (t — r2, 1). It follows that

1/q 1/2
(7[ |VX}|‘1dyds) 5c+c<][ |VX}|2dyds) .21
Qr Q2r

Choose r > 1 + /A so large that T x (0, 1) C Q,. Since VXJ).‘ is 1-periodic in y
and A-periodic in s, we obtain

A 1/q 1/q
(]ﬁ/wwx}wdyds) 5c<]{2 |VX}|’1dyds)

172
<C+cC (][ |v;<}|zdyds>
Q2r

<C,
where we have used (2.6) for the last step. O
Theorem 2.3. Assume A = A(y, s) satisfies conditions (1.3) and (1.4). Then
Ay — Ay ash— oo. (2.22)
Moreover, if |05 Allco < 00, then
Ay — Aol < CA71 135 Alloo (2.23)
for any . > 1, where C depends only on d and 1.

Proof. We first prove (2.23). Observe that
1
B= A= [ [ 40099 (00 a0 = 70,0} dys,
It follows by the Cauchy inequality that
1 172
|Ay — Axl = C (/O/Td IV {x 0 as) — x>0, 9} Izdde> . (224
By the definitions of x* and x*°,

10
s G 0s 29} = div[AQ, 9V (1] (0 29) = X0, )} =0 in T

This leads to
1
/o/w AL VX0, 9) = x P09} VX (s as) = x5 (v, )| dyds
- _1 /1/ i{xf\(y As)} - {X?‘(y As) — x5 (v, s)} dyds
A JoJpa s I o

1 [ a
= /O/T S0} [ 0089 — X0 9] dvds,
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where we have used the fact

'ra
/O/Td G029 =20 9) - (G (29 = 170, 9) fdyds = 0

for the last step. Hence, by (1.3) and the Cauchy inequality,

// IV{x} (v, As) = x7° (. )} 1> dyds

1/2
fx(// |X}(y,/\5)—xfo(y,s)|2dyds) <// 195 x5° (v, S)|2dyds)
0Jd

Since

1/2

/ x}(y,kS)dy=/ X°(y.5)dy =0,
Td Td

by Poincaré’s inequality, we obtain

12
(/ / V{2 (3, As) — ;’°<y,s>}|2dyds)
12
<—(// 10X (3, ) dyds) .

In view of (2.24) we have proved that

c/ 12
Ay — Anl < —(// |asx°°<y,s)|2dyds> , (2.25)
)\ 0 Td

where C depends only on d and (.
To bound the right-hand side of (2.25), we differentiate in s the elliptic equation
for X}’O to obtain

- div(AVBSX;-’O) = div(3;AVy;) + div(asAVX}’O).
It follows that
/ Va5 x3° (v, )7 dy < c/ 195 Ay, $)I* dy + C/ 195 Ay )P IV (v )1 dy.
Td Td Td

By Meyer’s estimates, there exists some ¢ > 2, depending only on d and p, such
that

/ VX7, 9)7dy < C,

where C depends only on d and p. Thus, by Holder’s inequality,

1 172 1 1/po
(// |vasx;’°|2dyds> 50(// |aSA|P0dyds> ,
0JTd 0JTd
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for po = —=L . In view of (2.25) this gives

q=2"
. c/ 1/po
IAA—AOOIS—<// IBsAI”"dde> , (2.26)
)\. 0 Td

by using Poincaré’s inequality. As a consequence, we obtain (2.23).

Finally, to prove (2.22), we let D be a matrix satisfying conditions (1.3) and
(1.4). Also assume that D is smooth in (y, s). Let 5; and f):o be defined in the
same manner as A, and Ao, respectively. By using the energy estimates as well
as (2.19), it is not hard to show that

P 1 1/po
|AX—DA|sC<// |A—D|"0dyds> ,
0JTd

where C depends only on d and p. A similar argument also gives

o 1 1/po
|[Aso — Dol §C(// |A — D|P0 dyds) )
0.JTd

Thus, by applying the estimate (2.26) to the matrix D, we obtain
A — Al < 14, = D3l +1D5 = Dool + 1Dos — A

1 1/po C 1 1/po
<C (/ |A — D|P0 dyds) + — <// |0y D|PO dyds) .
0J1¢ A \JoJ1d

It follows that
P 1 1/po
limsup |[A) — Ax| < C (// |A — D|P0 dyds) )
A—> 00 0JTd

Since py = % < 00, by using convolution, we may approximate A in LP0(T?*1)

by a sequence of smooth matrices satisfying (1.3) and (1.4). As aresult, we conclude
that Ay > A asA — oo. 0O

Remark 2.4. 1t follows from the proof of Theorem 2.3 that

N 1/2
(][ / mw,s)—vX°°<y,s/A>|2dyds)
0.JTd

A 1/2
4 (f/ Gy s) — x°°<y,s/x>|2dyds)
0JTd

< CA7M35A | 0o-

By the periodicity this implies that if » > (1 + +/A)e, then

1/2
(][ IVx*(v/e,s/e%) — V™ (y/e, s/ (re?))| dyds)

Qr

172 227
+<][Q |x”<y/s,s/e2)—xw(y/e,s/a&)nzdyds) @27

< CA7 |85 A 0o
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The next theorem is concerned with the limit of 7\; as A — 0.
Theorem 2.5. Assume A = A(y, s) satisfies conditions (1.3) and (1.4). Then
A, — Ay ash— 0. (2.28)
Moreover, lf||V2A||OO < 00, then
|45 — Aol < CA{IV*Allso + IVAIZ ), (2.29)
where C depends only on d and L.

Proof. We first prove (2.29). Observe that

1
A== [ [ G990 0 A0 = £ 00) drds

1
_ / / (A(y, $) = ANV (v, 2s) dyds
0JTd

1
+ / AV ( / X (3. hs) ds — xo(y)> dy
Td 0

=L+ 1.

(2.30)

Write A(y, s) — A(y) = 9;A(y, 5), where
Ay.s) = /0 (Ay. 1) — A(y)dr.

Since A (v, s) is 1-periodic in (y, s), we may use an integration by parts and the
Cauchy inequality to obtain

2 1/2
[I1] < Cx (][/ |85VX)‘|2dyds> . (2.31)
0.JT1d
To bound the term /5 in (2.30), we observe that

1
— div </0 Ay, s)vX}(y, As) ds) = div (A(y)Vy;) = — div (Z(y)VX;-)(y)> .

It follows that

1
— div {Z(y)v (/0 X} (v, hs)ds — x}’(y))}

1
= div {/0 (A(y, s) —Z(y)) VXJ)-‘(y, AS) ds} .
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By the energy estimates we obtain
1
v </0 X7 (v, As)ds — x})(y)> ll22(ra)

1
<C| {/0 (A(y,5) — A() Vx} (. M)dS} 22 (re)

N 12
<Cx (7[/ IBSVX}IZdde) :
0.JTd

where, for the last step, we have used the integration by parts as in the estimate of
I1. As aresult, in view of (2.30) and (2.31), we have proved that

i 1/2
|A, — Aol < Ca (7[/ |BSVX)‘|2dyds> ) (2.32)
0JTd

To bound the right-hand side of (2.32), we differentiate in y the parabolic
equation for x ;X to obtain

sV — div(AV(VX)) = div(VA, - V) + div(VA, - Vy;). (2.33)
By the energy estimates,
A
]gfw IV2x}? dyds < CIVA|Z,. (2.34)

By differentiating (2.33) in y we have
sV xF — div(AV (VX))
= dlv(VA)\ V2 )+ le(VzAA VXJ)+ le(VAA V2 )
+ div(V?A; - Vy)).

Again, by the energy estimates,

A
][/ V2 x}1?dyds < C VA3, ][/ V2 x> dyds
0JTd

—i—C][/ IV2ALP IV} dyds

+Cf/ |V2A, % dyds
0.JTd

= c{Ivank +1v241%}.

It follows by the equation (2.33) that

A
F 1090 Paas < c{ivak + 1924}
0.JTd

which, together with (2.32), gives (2.29).



158 JUN GENG & ZHONGWEI SHEN

Finally, to see (2.28), we let D be a smooth matrix satisfying (1.3) and (1.4).
As in the proof of Theorem 2.3, we have

|A, — Ag| < |4, — D3| + 1D, — Dol + |Do — Ao

1 1/po
50(// |A—D|P0dyds) +cx{||v20||w+||v0||go}.
0JTd

By letting 2 — 0 and by approximating A in the L°(T“*!) norm by a sequence
of smooth matrices satisfying (1.3) and (1.4), we conclude that A, — Ag as
Ar—0. O

Remark 2.6. 1t follows from the proof of Theorem 2.5 that if r > ¢,

12
(][ IV (v/e. s/6%) — VxO(v/e) dyds)

1/2
+ (][ Ix*(y/e, s/€%) — x°(y/e))? dyds) (2.35)

r

< erfIV2 Al + IV A1

for 0 < A < 1, where C depends only on d and w.

3. Approximation

Let A, be the matrix given by (2.1) and £, ) = — div(A;L(x/s, I/SZ)V). Let
Lo, =— div(A 1 V), where the constant matrix A, is given by (2.7). The goal of
this section is to prove the following theorem:

Theorem 3.1. Suppose A satisfies conditions (1.3) and (1.4). Let u. ) be a weak
solution of

O + Leue ) =F  in Qo 3.1

wherer > (1 + «/X)s and F € LP(Qy,) for some p > d + 2. Then there exists a
weak solution of

0 + Louoy. = F in Oy, (3.2)

1/2 1/2
(][ |VM0,A|2) < C(][Q |Vus,x|2> : (3.3)
r 2r

1/2
][ |Vite s — Vg — (V™) Vug 5 |*
O

e[S f(f, ) oo ()

where o € (0, 1) and C > 0 depend only on d, u and p.

such that

and

34
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We begin by introducing the dual correctors ¢* for the operator d; + L ;. Let

B, = Ay + A Vi — A, (3.5)

where the corrector x* is given by (2.2). Note that B;, is (1, A)-periodic in (y, s).
Lemma 3.2. Let B, = (bl?‘j) be given by (3.5). Then there exist (1, A)-periodic

functions d’l);ij and ¢/i\(d+1)j’ withl <i, j, k <d,in HZLC(RdH) such that

3
A A A
bij = T Prij — OsPita+1)j»

3 (3.6)
J T Gy P
Moreover, ¢,i‘ij = —qbl.)‘kj and
g 2 2
]ﬁ/ﬂw (|¢’1)$1.,'| + |V¢/)$(d+1)j| ) <C, (3.7)
2
][/ B, 1* < CU+2)72, (3.8)
0.1

where C depends only on d and L.

Proof. The lemma was proved in [14] for the case & = 1. The case A # 1 is similar.
However, one needs to be careful with the dependence of the constants C on the
parameter A.

Let Ay denote the Laplacian operator in (y, s) € R? x R. By the definition
of A As

A
][/ B, (y,s)dyds = 0. 3.9)
0JTd
It follows that there exist (1, A)-periodic functions f;} € Hl%; . (R‘H‘l) such that
Adi1 flg = bl.*j inR! for 1 < i, j < d. Similarly, there exist (1, A)-periodic
functions f();1+1)j € H?Z, (R4H1) such that Ad+1f(}21+1)j = —X} in RY*! for 1 <

Jj < d. By the definition of X}\, we have

3
8—be =dsx} inR, (3.10)
1

which leads to

aft
Ag+i (a—y” + asf()£1+1)j) =0 inRM
1
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By the periodicity and Liouville Theorem we may conclude that

Bfl’> A . - md+l

8—+3Sf(d+])j is constant in R*! for 1 < j <d. (3.11)

Yi
This allows us to write
A A )
o= O NG G Ly o e
YOy | o oy B T

and

A
a0 [
A el

We now define ¢,’}i ; and ¢,’}( d+1)j by

PR
= oy "
Yk Vi
12
aph (3.12)
¢A _ Jd+hj 9 fk
kd+1)j — e sJkj

for 1 <i, j, k <d. This gives (3.6). It is easy to see that ¢,§ij = —¢ikkj.
Finally, to prove estimates (3.7) and (3.8), we use the Fourier series to write

A —2min-y—2mwimsi~!
bij(yvs) = Z an,meé TRy ZEmImSA
neZd,meZ
(n,m)#(0,0)
Then
f)L (v,5) = —L Z n,m —2min-y—2mwimsA~!
o 4’ In2 + Im 222
neZ“’,meZ
(n,m)#(0,0)

It follows by Parseval’s Theorem that

A
A2 2 42 2 oap2 12
7€/w(|v GP VAR 4 02 £ + V0, £A12)

A
ch|an,m|2=Cf/Td b}1* < C,
0

n,m

(3.13)

where C depends only on d and p. Also note that

A
]ﬁ/w 0, f517 < CA2, (3.14)

where C depends only on d and p. Similarly, using the estimate (2.5), we obtain

s
F L (9 B P+ 192y P 102 oy B4 190 Sl ) < € B1S)

The desired estimates (3.7) and (3.8) follow readily from (3.12)-(3.15). O
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We fix ¢ = @(y, s) = 01(y)02(s), where 6 € C5°(B(0, 1)), 6> € C5°(—1,0),

61,62 > 0,and [p, 01(y)dy = [ 62(s)ds = 1. Define

S5(f)(x 1) =/ FG = y.1 = )5y, 5) dyds,
]Rd“

where 8§ > 0 and gs(y, s) = 89 2p(y/8, s/8%).

Lemma3.3. Let g € L7 (R*!) and f € L2 (RI*Y). Then

1/2
||gSS(f)||L2(Rd+1) =C sup (f |g|2) ||f||L2(Rd+l),
(y,5)eRd+! Os(y,s)

12
gV Ss (Il L2ra+ty < cs™' sup (][ |g|2> I f I 2wa+1y,
(y,5)eRd+! 0s5(y,s)

where C depends only on d.

Proof. By Holder’s inequality,
1S5 (H 0l < /R (o 9)Pgs(x =y, 1 = 5) dyds.
It follows by Fubini’s Theorem that
/ 192152 dxdr
Rd+!1
< / 1F (. (/ g(x. )P ps(x — y.t — s)dxdr) dyds
Rd+1 Rd+1

<C sup (][ |g|2>||f||iz(Rd+l),
(y,5)eRd+1 0s(y,s)

(3.16)

(3.17)

(3.18)

where C depends only on d. This gives (3.17). The estimate (3.18) follows in a

similar manner. 0O

Lemma 3.4. Let S5 be defined by (3.16). Then

eV f = Ss(gV Ol 2wty < C8{||V(gvf)”L2(Rd+') + 1180: f Il L2 Ra+1)

+81@ )V Ol 2@en,
+ 81V f 2 |

where C depends only on d.

(3.19)
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Proof. Write S5 = Sal 582, where

SLP) ) = / flc— 08 /) dy,
R (3.20)

Sy D) = / f 1 —5)8720x(s/8%) ds.
R
By using the Plancherel Theorem, it is easy to see that

{ ILf = S3(Oll2@arty < COIV fll 2@t
If = S§(O N 2ary < C8 10, fll 2 ma+)s

where C depends only on d. It follows that

18V f = S5gV Pl pgarny < 18V f — SHEV Nl 2ggarny + 1S4V f)
- Sa(gi)“LZ(RdJrl)
< C8IV(gV Pll2arty + C82118:55(€V )l 2 gas).

To bound the last term in the inequalities above, we note that
(V)= (V[ +V(gdf)— (Vg f.
Using the estimates
1S5 (Wl 2ga+1y < Al 2ga+1y and  [[VS§ (M) 2qpa+1y < C8™ Il 2 gas),
we obtain

19:53 (&Y Pl 2ty < 1)V fll2rasty + C8™ gds £l 2cgasy
+1(V): fllL2ga+1).-

This completes the proof. O

Let
du e 0 ou
e 0,A 2( . x 0,1
We = — —e(x9) K +e& ( ’ ) —K ,
B Ug ) — U1 (X]) s< ax]' ) ¢l(d+1)] ax; s( axj )
(3.21)
where

(X])'L)E = X])‘L(X/Sa t/gz)a (¢?(d+])j)s = ¢l-)“(d+])j(x/8, t/gz),

and K is a linear operator to be specified later.
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Lemma 3.5. Suppose that
(0 + Lepue s = (0 + Louo,  in Q2 x (To, Th).
Let w, be defined by (3.21). Then
B + Los)we = — div ((;ﬁ — Ay (x/e, 1/6%))(Vuo — Kg(wm)))

+¢ div(A;L(x/s, 1165 x* (x /e, t/82)VKa(VM0‘A))
i i 2 i duo,»
+e ot {¢kij(x/3sl/€ )Bxi Ke( 0%, )}

9 duo, (3.22)
+82E {¢l?(d+l)j(x/8vt/82)3ng ( ™ X)}

J
o La 2 (g 2, 9 duo,.
—& e {aij(x/é‘, t/e”) (Wj‘ﬁ[(d.‘_l)k (x/e,t/e )BTCZKS -

0 9? duo,).
2 A PAPYS 2 >
—¢ o {aij(x/g, 1/€)Ppar(x/e /e )8xj8)qg K€< o )},

where A; = (alkj)

Proof. This is proved by a direct computation. See [14, Theorem 2.2] for the case
A=1. O

Lemma 3.6. Let Q, = B(0,r) x (—r2,0). Suppose U, is a weak solution of
0 + Lepugy = F in Qr for some F € L2(Q2). Then there exists a weak
solution of (9; + Lo x)uo,» = F in Q1 such that

1/2 1/2
(7[ IVMO,Alz) <C (f |wm|2> : (3.23)
0] o))
and for s = (1 + \/X)e,
) 1/2
(][ |V(u£,k —up — axl(x/s, t/ez)Kg(Vuo,;L))| dxdt)
01

12 12
<5 (f |wm|2) +<][ |F|2) ,
02 02

where o € (0, 1) and C > 0 depend only on d and . The operator K, is defined
by (3.27).

(3.24)

Proof. We start out by defining u ; to be the weak solution of the initial-Dirichlet
problem

(0 + Lo)uon = F in Qy,
(3.25)
ug,5 = Ue, ond, 01,
where 9, 01 denotes the parabolic boundary of the cylinder Q. Note that

0 + Lo,3) (o n — e ) = (Lej — Lo e,y
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in Q1 andug 3 —up; = 0ond, Q;.Itfollows from the standard regularity estimates
for parabolic operators with constant coefficients that

7[ IV (ug ) —uo )| < Cf Vg 114
01 01

for any 2 < g < oo, where C depends only on d, i and ¢. This gives

][ [Vug |7 < C][ [Vig 3|
01 01

for any 2 < g < oo. By the Meyers-type estimates for parabolic systems [2,
Appendix], there exist some ¢ > 2 and C > 0, depending on d and p, such that

(]él Ivug,uq)l/q <C {(éz |wm|2>l/2 n <][Qz |F|2)1/2} _

As a result, we obtain

1/q 1/2 1/2
(][ |VMO,A|q> <C {(7[ IVMa,Mz) + (7[ IFI2> } (3.26)
01 (05) 02

for some ¢ > 2 and C > 0, depending only on d and .

To prove (3.24), we let§ = (1 + \/X)e. We may assume § < 1/8; for otherwise
the estimate is trivial. Choose 15 € C8°(Rd+l) suchthat0 <ns <1, |[Vns| < C/4,
9rms| + V05| < C/8%,

ns=1 inQi—3 and ns=0 in Q1\Qi-2s.
Let w, be defined by (3.21), where the operator K, is given by
Ko (f) = Ss(ms f), (3.27)
with Ss defined in (3.16). Note that we = 0 in 9, Q1. It follows from Lemma 3.5

and energy estimates that

/ |Vw|* < C / |Vuos. — Ke(Vuo)|* + Ce? / XMV Ke(Vug )|
0 01 01

+Ce? [ D @) PIVK(Vug )P
Ql k,i,j

+C84/ Z|(¢£(d+1)j)s|2|8tKa(VM0,A)|2
Ok (3.28)

+C82/ D NV} PIVK (Vug 1)
01 2,k

+C84/ Z|(¢2\(d+1)k)8|2|V2K8(VM0,,\)|2
e
=h+h+L+1L+ 15+ .
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To bound /7, we use Lemma 3.4. This gives

I <2 / Vg, — 15 (Vo) > +2 / 1n5(Vuo.2) — Ss(n5(Vuo )|
01 0

1
<c / Vuo 2 + C82 / (1V%u0,12 + 1o ).
01\0Q1-35 Q1.2

By the standard regularity estimates for parabolic systems with constant coefficients
[20,21]

Vu ,$)|>dyds
/ (|V2MO,A|2+|3t’40,A|2)fc{/ |. 0,1 (y, )|~ dy 2+/ |F|2},
Q1-25 Q1-s |d15tp((y1 S), ale)' Q1

where dist, ((y,s), dp Q1) = inf {|x —yl+Is =t (x,0) € ale} denotes
the parabolic distance from (y, s) to 9, Q1. It follows that

Vu L 8)|% dyds
1150/ |Vuo,x|2+C82{/ Vito. . )Y 2+/ |F|2}
01\Q1-35 015 |disty((y, 5), 9, Q1) 0

5 (3.29)
1-2 4 2 2
<C§' ][ Vg 7 +cs][ |F|=,
01 01

where ¢ > 2 and we have used Holder’s inequality for the last step.
To bound I, I3 and I5, we use Lemma 3.3 and estimates (2.5) and (3.7) as well
as the observation VS5(f) = Ss5(V f). Note that (x*)¢, (¢;§l~j)€ and (V¢>2\(d+l)k)5

are g-periodic in x and szk-periodic int. Since § = (1 + \/X)s > ¢ and 82 > £22,
we obtain

7[ (162 + 165 P + 1V 10" ?)
0Os(x,1)
A
= C][/ (|X)L|2 + |¢1éij|2 + |V¢£\(d+1)k|2>
0.JTd
<C

for any (x, 1) € RI*!. It follows that

b+ L+ Is < Cs? / IV (15 (Vato ) P
01

2 2/q
<C8'a (f |vuo,m> +ca2][ |FI%.
01 0

To bound /s, we use the inequality (3.18) as well as the estimate (3.8). This leads
to

(3.30)

Ig < Ce*(1 + )»)28_2/ |V (115 Vo 5) |2

01

2 2/q
<C$ q<][ |Vu0,x|q> +c32][ |F|?.
0 0

(3.31)
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Finally, to handle 14, we use the observation

0 Ke(Vug,3) = 0rSs(ms Vo, )
= S5((9ns) Vg 3) + Ss(V(nsdrup 2)) — Ss(Vng)drug ). (3.32)

As in the case of I, we obtain

Iy = Ce*(1+ )7 / {1@m) V012 + 8721501042 + [(Tn5)0pu0,112

01
|2 2/q
<Cs i (7[ |wm|q) +C$2][ |F|2. (3.33)
01 01
Leto = % — ql > 0. In view of (3.29)—(3.32), we have proved that

2/q
][ |Vuw,|* < C§% <][ |Vuo,x|q> + C52][ |F|?
0 01 0
< Cs% {][ |V 3 |? +][ |F|? } ,
(03] (&)

where we have used (3.26) for the last step. To finish the proof, we let H, be the
last term in (3.21). It is easy to see that

(3.34)

/ \VH|* < Is + Ie.
01

This, together with (3.34), gives the estimate (3.24). O

We are now ready to give the proof of Theorem 3.1.
Proof of Theorem 3.1. By translation and dilation we may assume that » = 1 and
0> = B(0,2) x (—4,0). We may also assume that § = (1 + \/X)s < 1/8.
This reduces the problem to the case considered in Lemma 3.6. Observe that

K:(Vug;) = Ss(Vup,n) on Q1. Thus, in view of Lemma 3.6, it suffices to
show that

1/2
(][ }V{e(x*)f S,s(wo,k)} - (VXA)€VMO,,\|2) (3.35)
Q12

is bounded by the right-hand side of (3.24). Furthermore, since (9; + Lo 5 )uo. = F
in Q1, we have

12 12
19%0,1 205y < C <f |wo,x|2> +(][ |F|2) |
01 01

Also, recall that

TGN 220, + 1OV XNl 200, < C. (3.36)
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As aresult, it is enough to show that

172
(][ [(Vx™) (S5(Vuo,z) — Vuo,x)|2> (3.37)
01,2

is bounded by the right-hand side of (3.24). This, however, follows from (3.36) and
the estimate

1/2 1/p
1S5 (Va0 1) — Vato s lL(o1 ) < C5° {(f IVMO,AI2> 4 (][ |F|P> } ,
[ 01

(3.38)

d+2
R
Finally, we point out that (3.38) follows readily from the C'* estimates for

at + LO,)L’
[Vug(x, 1) — Vug(y, s)|

o 1/2 1/p
= (1 =yl +10—s"?) (][ |wo,x|2) + (][ |F|P>
0 01

(3.39)

where p >d+2ando =1 —

for any (x, 1), (y,s) € Q1/2. This completes the proof.

4. Large-Scale Lipschitz and C'** Estimates

In this section we establish the large-scale Lipschitz and C1¢ estimates for
9;+ L 5. As aconsequence, we obtain the same estimates for the parabolic operator
9 + Lo in (1.1). Let

Pho={P=P@.0: PG = o+ Bi(xj +exfx/e.1/e)

4.1
for some B = (Bo, Bi, ..., Ba) € RIT! ],

where the index j is summed from 1 to d. Note that (9; + £ ,)P = 0in R4+ for
any P € Pl)" e

Theorem 4.1. (C1-¢ estimate) Suppose A satisfies conditions (1.3) and (1.4). Let
ug ) be a weak solution of (9; + L¢))ue ) = F in Qr, where R > (1 + \/X)s
and F € LP(QR) for some p > d + 2. Then, for any (1 + \/X)s <r < R and

O<a<l—d%2,

) 1/2 RN 5 1/2
. (frwwg,x—f’n ) <c (%) {(fQ Vite 1] )
I/p
+R<][ |F|P) } 4.2)
Or

where C > 0 depends only on d, u, p and «.
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Proof. The proof relies on the approximation results in Theorem 3.1 and uses
classical regularity estimates for parabolic systems with constant coefficients. By
translation and dilation we may assume that R = 2 and O, = B(0, 2) x (—4,0).
Let

A+Vre<o0r<r <1,

where 8 € (0, 1/4) is to be chosen later. Let u ; be the weak solution of (9; +
Lo )uoy = F in Q,, given by Theorem 3.1. By the classical C I+ estimates for
parabolic systems with constant coefficients [20,21],

x|+ 1e]/2\ 2\
Vo1 (x, 1) = Vitg,1.(0, 0)] 56<f> (7[ Vg, | >
Jo,

. (frmp)”"}

forany (x, 1) € Qpj2, wherea, = 1= 2. Let P(x, 1) = B, (x;+ex ] (x/e, 1/67)

with B; = %24(0,0). Then

12
(7[ Vi (x. 1) + V" (x/e. 1 /%) Vug 5 (x. 1) — VP(x, )| dxdt)
Q9r

12 1/p
509“»{(7[ |wo,k|2> +r<][ |F|1’) }
o) 0,

for any (x, t) € Qg;. It follows that

1/2 1/p
(][ |V(ue,x—P)|2) +9r<][ |F|”)
Qﬂr QGr

1,2
<C <][ [Vugp — Vug — (VXA)SVMO,MZ)
Qé)r

1/2 1/p 1/p
+ CO%r (f |Vu0‘)h|2) —i—r(][ |F|") +0r(][ |F|”)
Qr Qr Qé)r
1 n o 1/2
< Cy -5 ﬂ + 0% <][ |vum|2>
r Q2r
1/p
+2r(][ |F|”> ,
QZr

where Cy depends only d, i and p. Fix 0 < a < o). We choose 6 € (0, 1/4) so
small that Cof*r < (1/2)60%. With 6 chosen, we assume that r > Cy(1 + Ve,
where Cy > 1 is so large that

Cob™ T C;7 < (1/2)6°.
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This leads to

12 1/p
(][ |V(us,x—P)|2> +9r<][ |F|”)
Qor Qor
12 1/p
<o d(f wwar) w2 (£ wre) .
Qo Qo

Since (s + L) P =0in R4*! for any P € P}, we obtain

1,8

1/2 1/p
inf (][ IV (ue — P)|2> +0r (][ |F|1’)
PEP?_S Qor Qor

12 1 4.3)
<6} inf (f IV (g, — P)|2) +2r (f |F|P>
PGPI)L,E Qo Qo
for any Co(1 + Ve <r < 1. By an iteration argument it follows that
1/2 g 1/p
inf (f |V (ue 5. — P)|2> +r (]l |F|”>
PeP}, . 0,
4.4)

1/2 1/p
<Cr*{ inf <][ |V(um—P)|2> +<][ |F|p>
PePl, [2)) (%))

for any (1 + ﬁ)s < r < 1. This gives the large-scale Cl* estimate (4.2). O

Theorem 4.2. (Lipschitz estimate) Suppose A satisfies conditions (1.3) and (1.4).
Let u; ) be a weak solution of (0; + L¢))ue ) = F in Qr, where R > (1 + «/X)e
and F € LP(QR) for some p > d + 2. Then, for any (1 + \/X)s <r <R,

1/2 1/2 1/p
(][ |wg,x|2) §C{<][Q |wg,x|2) +R(]{2 |F|") } 4.5)
r R R

where C > 0 depends only on d, ju and p.

Proof. By translation and dilation we may assume that R = 2 and Q0> = B(0, 2) x

(—4, 0). Define
12
h(r>=<][ |VHr|2> ,

where H, = E, - (x + ex’(x/e, t/e?)), with E, € R?, is a function in P, such

that
1/2 1/2
(f |V(um—Hr>|2) = inf (][ |V(u8,x—P>|2) :
0 PeP}, ,
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Let C(1 ++/A)e < r < 1/2. Note that

12
— inf |(E2r — Er) - x — Pol
" PR \J 0,

12
C . _ _ 2 _ -1
— inf |Hyr — Hy — Bol + ClEy — Err e,
" PR \J o,

|E2r _Er|

IA

IA

where C depends only on d and p. It follows that if r > Cie and C; > 1 is
sufficiently large, then

1/2
(G 2
|E>r — E| < — inf |Hor — Hy — fol
T BoeR \J 0,/

1/2
C(f |V(Hzr—Hr>|2> :

We remark that the last inequality follows from the fact thatu = Hy, — H, — fpis a
solution of the second-order parabolic system in divergence form (9; + L, ;)u = 0
in R?*!. Such a solution satisfies the Poincaré-type inequality,

inf / lu — Bol?® < Cr2/ [Vul?
ﬁOER Qr/2 Qr

(see for example [13, Lemma 2.2]). Hence,

1/2 1/2
|Ey — E;| < C (f IV (ue. 5, — Hzr>|2) +C (][ |V (tte 5, — Hr>|2>
Q2r r
1/2 1/p
<Cr* ) inf (][ IV (e — P)|2) + (][ |F|"> ,
PEPﬁE [)) 0>

where we have used (4.4) for the last step. By a simple summation this yields

1/2 1/p
h(r) < C|E;] SC{<f IVus,xlz) +<]L |F|p> }
02 02

which, together with (4.2), gives the large-scale Lipschitz estimate (4.5). O

A

(4.6)

IA

Proof of Theorem 1.1. Recall that if » = ¢¥=2, then L, ; = L.. Also note that in
this case, (1 + «/X)e =s+¢e? Asa result, Theorem 1.1 follows directly from
Theorem 4.2.

Remark 4.3. (C1* estimate) Let u, be a weak solution of (3, + L¢)u, = F in
Qpg, where R > ¢ + /2 and F e L?(Qpg) for some p > d + 2. It follows from

Theorem 4.1 that for & + g*/2 <r<RandO<a <1-— %,
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EcRd

1/2
inf (][ |Vu, — E — EVx*(x/e, l/82)|2>

r

'\ ). y 2012 12
< C<E> nf <][QR \Vu, — E — EVy*(x/e, 1/62)] )

I/p
+R<]l |F|”) } @.7)
Or

where A = ¢k~2and C depends only on d, 1, p and «. Note that V x* (x /¢, 1/€2)is
e-periodic in x and e*-periodic in 7. One may regard (4.7) as a C1¢ excess-decay
estimate for the operator 9; + L, in (1.1).

Let E, € R? be the constant for which the left-hand side of (4.7) obtains its
minimum. It follows from the proof of Theorem 4.2 that

172 1/p
IE|<C (f |Vue|2> +R<][ |F|") . (48)
Or Or
Let x°° be defined by (2.10). In view of (2.27) we have

1/2
(][ |VXA(X/8J/82)—VXOO(X/&I/Skﬂdedt) < C7 )95 A o

r

4.9)
This, together with (4.7) and (4.8), yields
1/2
inf ( [Vu, — E — EVx®(x/e, t/ek)|2dxdt>
EeR? \J o,
(4.10)

sc{(5) +e Al {(fg |wg\2)1/2 +R (fg |F|f’>w} ,

for 0 < k < 2. Similarly, for 2 < k < 0o, we obtain

1/2
inf <][ |Vu, — E — EVx%(x/e, t/ek)lzdxdt>
EeRd

r

o
=c{(%) +e AV Al + VAL ) (][
R Or
1/p
q +R<][ |F|p) .
Or

1/2
|wg|2)
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5. Higher-Order Correctors and C>“ Estimates

In this section we introduce the second-order correctors and establish the large-
scale C%® estimates for L.
Let A, = (a?‘.) and B, = (b,’},é) be the (1, A)-periodic matrices given by

ij
(2.1) and (3.5), respectively. For 1 < k, £ < d, the second-order corrector X,?@ =
Xl?zz (y, s) is defined to be the weak solution of the cell problem

. 0 b .
ds xiy — d‘V(AAvXkAz) = by + by + 8_)),(“?13)(/?) + a_y(a;\khf\) in R
1 1

X,i‘@ is (1, A)-periodic in (y, s), 5D

A
// X&dyds:O,
0.JTd

where (x ;‘) are the first-order correctors defined by (2.2). Since

A
// by, dyds =0,
0JTd

the solution to (5.1) exists and is unique. Also, observe that kaz = X}k. Moreover,

by the energy estimates,
A
F v =c 52)
0JTd

where C depends only on d and p.

Lemma 5.1. Let

u(y, ) = vkve + yixt (v, ) + vexe (v, 8) + xpo (v, 5).

Then

—

(8 — div(AV))u = (3 — div(&; V) Gye) = —afy — afy

o~

in R4 where A, = (a,i‘e).

Proof. This follows from a direct computation, using the definitions of x ]}‘ and XI?('
O

Let Py(x, t) = Bo + cot + cxxr + crexxxe and

Pe(x,1) = o + cot + ci{xi + exp(x/e. t/e)}
+ cie {ka +exixg (x/e, 1/e) +exox (x/e 1)) (53)

+ &% xue(x /e, f/82)},
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where By, co, ck, cke = cor € R. It follows from Lemma 5.1 by rescaling that
(O + Lea)Pe = (3 + Loa)Po = co — 2cxeap, inRIH!

‘We shall use sz’ . to denote the set of all functions P.(x, ¢) in the form of (5.3)
such that (9; + L )P, = 0. Let Cg (QR) denote the space of Holder continuous
functions u = u(x, t) such that

|u(x, 1) —u(y,s)|
(Ix =yl +1r —s]1/2)°

lullcoory == R? SUP{ (x, 1), (v, 8)

€ Qrand (x,1) # (y,s)} < 00,

where o € (0, 1).

Theorem 5.2. (C% estimate) Suppose A satisfies conditions (1.3) and (1.4). Let
ug ) be a weak solution of (9; + L¢))ue ) = F in Qr, where R > (1 + \/X)s
and F € C°(QR) for some o € (0, 1). Then, for any (1 + «/X)s <r < Rand
0<a<o,

1/2
inf <][ |V(u€,A—P)|2)
PEP£8 0,

7\ 4o . 2 172
sc(5) Lt (£ Vs PIR) +RIFICop -
R Pep}, \Jop

where C depends only on d, o, u, and «.

(5.4)

Proof. By translation and dilation we may assume that R = 2 and Q0> = B(0, 2) x
(—4, 0). By subtracting co from u, ; , we may also assume that F'(0, 0) = 0, which
implies I F”LOQ(Qr) < C”F”crr(Qr). Let (1 + \/X)S < 0r <r < 1, where 6 €
(0, 1/4) is to be chosen later. Let ug ; be the weak solution of (d; + Lo 3 )uo ) = F
in Q,, given by Theorem 3.1. By the classical C>*¢ estimates for parabolic systems
with constant coefficients [20,21],

aug dug,, 82140)»
P, 1) — 2Ok gy — ZHOE ‘
‘ ax; (x. 1) 0x; ©.0) 0x; xi( )%
9 9 B 9 92
= | TR 0 = SR 0) | S, 0) = SR 0,0) - 2 (0, 0)x
X 3)6,' 3)(,' 8x,~ 3)61'3)6,'

12
< colte :(f IVuo,Alz) + V||F||C“(Qr)]

1/2
<co'te :(fQ IVua,/\|2> + V||F||C”(Q,-)} (5.5)
2r

for any (x, t) € Qg,, Wwhere we have used (3.3) for the last inequality. Let

Py(x, 1) = cot + ¢ixi + cijXiXj,
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where

dug s 1 82uox
= 910,1(0,0), ¢; = ——=(0,0), and ¢;j = 5 —-=
co = 0;u0,5.(0,0), ¢ ax; 0,0), and c;; 2 9x;0x;

(0, 0). (5.6)
Note that

0 + Lo Po=co— 2Cija?j = (0, + Lo,n)u0(0,0) = F(0,0) =0, (5.7)

and by (5.5),

1/2
IV (uo.1 — Po)llLo(0y) < COT {(][ IVMO,MZ) +r||F||ca(Qr>}.
Or
(5.8)

This, together with the inequality (3.4), gives

1/2
(][ |Vitg; — VP — (VXA)S(VPONZ)
Qor (59)

o 1/2
5C{91+"+((1+rﬂ) H<][Q |VU8,A|2) +VIIF||ca<er)}-

Let P, = P.(x,t) be given by (5.3) with the same coefficients as those of Py
in (5.6). Then (9; + L) P. = (3 + Lo.2) Po = 0, and

|VP, — VPy — (VY (VPY)| < elere Vil (x/e, t/e)]. (5.10)

In view of (5.9), we obtain

1/2
(][Q IV (e, — Ps)|2)
or
3 5.11)
(14+1e 2
<c {OHU n (f 7[Q Vg s |? +riFlco
v Lor

where we have used (5.2) and the assumption that 0r > (1 + \/X)e.
To proceed, we let

172
W(r) = inf (][ |V(us,)\—P)|2> +riiFlcog-

A
PePz‘s

It follows from (5.11) that

W (or) < Co {9”" + (@) } W(2r)

for (1 + \/X)e < Or < r < 1, where Cp depends only on d, u and o. Fix
a € (0,0). Choose 6 € (0, 1/4) so small that Cof'T° < (1/2)(0/2)' . With 6
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chosen, we may choose C1 > 1 so large that Con” < (1/2)(0/2)”"‘. As aresult,
for Ci(1 + vVA)e < 0r <r < 1, we have

Wr) < (6/2)' 7w @2r).

By a simple iteration argument this gives W (r) < Cr!T*Ww(2) for any (1 + Ve <
r<2. 0

Remark 5.3. (Liouville property) By letting A = =2 in Theorem 5.2 we obtain a
C?* excess-decay estimate for 9, + L in (1.1) for any 0 < k < co. The estimate
may be used to establish a Liouville property for the operator. Indeed, let u, be a
solution of (8; + Lo)us = 0 in R? x (—o0, tg) for some fy € R. Suppose there
exist C, > 0 and o € (0, 1) such that

1/2
<][ Iuglz) < C,R*™ (5.12)
Or(0,1)

for any R > 1. By Caccioppoli’s inequality it follows that

12
(][ |wg|2) < CR'*
Qr(0,19)

for any R > 1. This, together with (5.4), implies that u, = P in R? x (—00, tg)
for some P € P},.

6. Boundary Lipschitz Estimates

In this section we establish large-scale boundary Lipschitz estimates for the
operator d; + L j, where L, ) = — diV(AA (x/e, t/sz)V). As a consequence, we
obtain the large-scale boundary Lipschitz estimate for 9, + L, in Theorem 1.2.

Throughout this section we will assume that €2 is a bounded C!*% domain for
some « € (0, 1). Let

D (x0, 10) = (B(x0, ) N Q) x (1o — 1, to),

5 (6.1)
Ar(x0,19) = (B(xo,r) NIRQ) x (to — r*, 1),

where xg € 9 and fp € R.Fora € (0, 1) and A, = A, (xo, tp), we use C”"‘(Ar)
to denote the parabolic C'*% space of functions on A, with the scale-invariant
norm,

I fllciveca,y == I fllLea,) + 7l Vian fllLeo(a,) + 7l Vian fllcea,) + 1F 14a

1
C * (M)

where ||gllce(a,) is the smallest constant Cyp such that
8(x. 1) — g(y. )| < Cor™*(Ix — y| + [t — 5|'/?)"

for any (x, 1), (v,s) € Ay, and
”f”clﬂ =inf{C: |f(y,7) = f(y,9)l

Z(Ap

< Cr_l_a|7: — s||¥ for any (y, 7), (y,s) € Ar} .
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Theorem 6.1. Assume A = A(y, s) satisfies (1.3) and (1.4). Suppose that (9; +
Leyugy = F in D = Dg(xo, to) and uz) = f on Agp = Ag(xo, to), where
xp € 02, (1 + \/X)s < R < 1,and F € L?(Dg) for some p > d + 2. Then, for
any (1 ++/A)e <r <R,

1/2
(7[ |w€,k|2>
, 1/2 1/p
<C (][ |Vu5,,\|) +R1||f||cl+a(AR)+R<][ |F|P) ,
Dpg Dg

where C depends only on d, u, p, o, and Q.

(6.2)

To prove Theorem 6.1, we localize the boundary of €. Let 1 : R¢~! — R be
a C1 function such that ¥ (0) = 0 and IVl c1ore-1y < M. Define

T,
I

[ xg) o '] < rand Y (x) < xq < 100V/d(M + 1)} x (=r2,0),
[ G ] <7} x (=r2,0),

(6.3)

where 0 < r < oo
We begin with an approximation lemma.

Lemma 6.2. Assume A satisfies (1.3) and (1.4). Suppose that (3; + L 3)ue ) = F
in Tor and ug ) = f on Iy, for some 0 < r < 1. Then there exists a function uo ),
such that (0; + Lo )uo = Fin T, ugp = f on I, and

12
< \ua,x—uo,ﬂz)
T,
o
(1 + Ve 12 12
§c< f eal?) 1 f ety + 2 7[ r2) L
r Ty Ty

6.4)
where o € (0, 1) and C > 0 depend only on d, i, p, and M.

Proof. The proof is similar to that of Theorem 3.1. By dilation we may assume
r = 1. Let u ; be the weak solution to the initial-Dirichlet problem,

0 + Loa)uor=F inTy and wup) =ue) on 9,T1.

It follows by the Meyers-type estimates and Caccioppoli’s inequality for parabolic
systems that

1/q 1/q
(7[ |Vuo,k|'1) <c (7[ m,u‘f)
T T
12 12
<C {(][ |Me,x|2> + <][ |F|2> + ||f||c'+a(12)} ;
T )

(6.5)
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where ¢ > 2 and C > 0 depend only on d, i, « and M. To see (6.4), we define
wg as in (3.21). Using the same argument as in the proof of Theorem 3.1, we may

show that
1/2 1/q
( |Vw£|2> <Cs° < |VMO,A|q> ) (6.6)
T T

where § = (1 + \/_)8 ando = E — - > 0. Since w; = 0 on 9,1, it follows from
Poincaré’s inequality and (6.5) that

6.7)

1/2 1/2
S C(SG {(][ |u8’k|2) + (f |F|2) + ||f||c1+oz(12)} .
T )

This yields (6.4), as [[we — (ug 2 — u0.2) || L2(7,) 1s also bounded by the right-hand
side of (6.7). 0O

For a function u in 7}, define
/2
W(rsu) = ?E‘é‘é {(7[ u—E- x—ﬂol) +||u—E-x—ﬁo||Cl+a(,r)}.
(6.8)

Lemma 6.3. Suppose that (9; + Lo )u = F in Ty, where 0 < r < land F €
LP(T,) for some p > d + 2. Then there exists 6 € (0, 1/4), depending only on d,
W, «, p, and M, such that

l/p 1 l/p
W Or; u)+0r <][ |F|p> -V (r; u)+r<][ |F|p> . (6.9)
Tyr 2 T,

Proof. Choose o € (0, 1) such that 0 < min(x, 1 — %). The proof uses the

boundary C'* estimate for second-order parabolic systems with constant coef-
ficients in C1:@ cylinders. Let Eg = Vu(0,0) and Sy = u(0, 0). Then, for any
(-x’ t ) € Tr/2,

lu(x, 1) = Eo - x = fol

1/251 2 1/2 2 1/p
< C(lx| +|t|'/Hte (][ |u|) + lullcreaca,) +7 (7[ lFl”) ;
T, T,

where C depends only on d, i, o, p, and M. It follows that the left-hand side of
(6.9) is bounded by

COGU 1/2 L/p
{(f |M|2) +||M||Cl+a(Ar)+r2 ][ |F|p .
r T, T,
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Since (8; 4+ L) (E - x + Bo) = 0 for any E € R and By € R, we may replace u
by u — E - x — fo. As aresult, we see that the left-hand side of (6.9) is bounded by

1/p
Cp0° {\Il(r;u)-i—r(][ |F|p> }
T,

To finish the proof, we choose 6 € (0, 1/4) so small that Co6° < (1/2). O

Lemma 6.4. Suppose that (0; + L )ue ) = F in T and ug ) = f on I, where
(1++2)e < 1and F € LP(T») for some p > d + 2. Let 6 € (0, 1/4) be given by
Lemma 6.3. Then for any (1 + «/X)s <r<l,

1/p
W(Or: ug ) + 07 (][ |F|")
Tor
l/p
W(r;uea) +r <]L |F|p>
1+vne\ [1 1/2
+C(¥> {—(][ Iua,xlz)
r r T2r
l/p .
+r (ﬁ |F|p> +V_ ||f||cl+oc([2r) .
2r

where C depends only on d, i, p, @ and M.

| =

=<

(6.10)

Proof. Fix (1 + Ve <r < 1. Let uo, be the solution of (3, + Lo,3)uo,» = F in
T, with up, = f on I, given by Lemma 6.2. Observe that

l/p
W(Or;ug,) + Or <][ |F|p>
T9r
r 1/2
W (Or; ug,) + 0r (][ IFI”> + — (][ e, 5 — uo,xlz)
Tﬂr 0]" THr
1 , 1/p Co ) 1/2
=¥ (r;upy) +r | F| +— [tee, 5 — 1o,
2 T, r T,
1 ) 1/p Co ) 172
S VY@ ugy) +r |F| +— lteg,n — uol ,
2 T, r T,

where we have used Lemma 6.3 for the second inequality. This, together with
Lemma 6.2, gives (6.10). O

IA

IA

The proof of the next lemma may be found in [27, pp.157-158].

Lemma 6.5. Let H(r) and h(r) be two nonnegative and continuous functions on
the interval [0, 1]. Let 0 < § < (1/4). Suppose that there exists a constant Cq such
that

max H(t) < CoHQr) and max |h(t) — h(s)| < CoH2r) (6.11)

r<t<2r r<t,s<2r
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for any r € [§, 1/2]. Suppose further that
1
H(or) < SH() + Con(d/r {H@r) +h2r) 6.12)

foranyr €[4, 1/2], where 6 € (0, 1/4) and n(t) is a nonnegative and nondecreas-
ing function on [0, 1] such that n(0) = 0 and

1
/ 10 4 < oo, (6.13)
0 t
Then
Jmax {Hr) +h(r)} < C{HO) + h(D)}, (6.14)

where C depends only on Cy, 6, and the function n(t).
We are now ready to give the proof of Theorem 6.1

Proof of Theorem 6.1. By translation and dilation we may assume that (xo, fo) =
(0, 0) and R = 1. Moreover, it suffices to show that for (1 + +/A)e < r < 2,

12
(7[ |wg,x|2)
T,
NE 1/p
<C ( |Vite 2| ) + 1 fllerraqry + (][ |F|p> ., (6.15)
T )

where (0, + L¢ ) ue p = Fin T and u, ) = f on I. To this end, we apply Lemma
6.5 with

1/p
H(r) =V (r;uen) +r <][ |F|”>
and h(t) = |E,|, where E, is a vector in R4 such that
1 N\ 2
W (r; ue,n) = - ﬂl()g%{( . lue s — Er - x — Bol ) +If—Er-x— ,30|c1+m(1,)} .

Note that, by (6.10),
1 5\
H@Or) < ~H(r) + Co <—> {H(Zr) 4 h(zr)}
2 r

for r € [8, 1], where § = (1 + ﬁ)e. This gives (6.12) with n(r) = ¢°, which
satisfies (6.13).
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It is easy to see that H (r) satisfies the first inequality in (6.11). To verify the
second, we note that, forr <t,s < 2r,

|h(t) — h(s)| < |E; — Ej]

1/2
— inf E E —
rﬂloneR<][ [(E; — Eg) - x ﬂol)

172
Z inf —E . x—
rﬁloneR<][ lug s (X ﬁol)

1/2
+ € it (][ e — E, x—ﬂol)

r BoeR

< C{H(®) + H(s)}
= CH(2r),

I/\

| /\

where C depends only on d, « and M. Thus, by Lemma 6.5, we obtain

172
1nf <][ |us;\—ﬂ|2) <H@)+h(r)

r BeR
<c{H@) +hD)}

12
<C {(][T |Ms,x|2> + I fllcr+ery
1
1/p
+ (][ |F|"> .
T

By Caccioppoli’s inequality for parabolic systems (see for example [2, Appendix]),

1/2 12 1/p
(f |Vus,x|2> SC{(][ |Me,x|2> +|If||c1+a(11>+<][ |F|f’) }
Trp2 4 I

Since (9; + L¢5)(Bo) = 0 for any By € R, we may replace u, , in the right-
hand side of the inequality above by u, ; — Bo. This, together with Poincaré-type
inequality for parabolic systems, yields (6.15). O

Proof of Theorem 1.2. Since L, = L, ; for A = £¥=2, Theorem 1.2 follows readily
from Theorem 6.1.

7. Convergence Rates

In this section we investigate the problem of convergence rates for the initial-
Dirichlet problem,

0 + Lepuey) =F in Qr,

(7.1)
ugy = f on 9,9,
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where € is a bounded domain in R and Q7 = Q x (0, 7). As a consequence, we
obtain rates of convergence for the operator 9; + L, in (1.1).
Let ug, ;. be the solution of the homogenized problem for (7.1),

{ @+ Louos = F  inQr,

(7.2)
upn = f on d,Q27.

Let w, be the two-scale expansion given by (3.21). As before, the operator K is
defined by K.(f) = Ss(ns f) with § = (1 + \/X)s. The cut-off function ns =
né(x)ng(t) is chosen so that 0 < ns < 1, |[Vns| < C/8, |;ns| + |V?ns| < C/82,
and

ns=1 inQy\Qr3s and ns =0 in Q7 s,

where Qr , denotes the (parabolic) boundary layer
_ C i 2
Qr, = ({x €Q: dist(x, 0Q) < p} x (0, T)) U (sz x (0, p )) (1.3)

forO0 < p <ec.

Lemma 7.1. Let  be a bounded Lipschitz domain in RY. Let Qr,p be defined by
(7.3). Then

1981202y, < Cv/B {198l 200 + IV28ll202p) + Ihgli2@p | (T:4)
where C depends only ond, Q and T.
Proof. Let Q, = {x e Q :dist(x, 0RQ) < p}. Then
IVe(. D2, = CV/PIIVEC Dl (o)
It follows that
1981 2@, x0.ry = CVB {198l 2@ + 1928l 22 |-

To estimate [ Vg |l 22(@\@,)x (0,p2))» We choose a cut-off function 6 € C°(£2) such
that 0 <6 < 1,0 = 1o0n Q\2,, and |[VO| < C/p. By Fubini’s Theorem we may
also choose ty € (T /2, T) such that

2 2 2
[Vg(x, )" dx < — |[Vg|*dxdt.
Q T Jo,
Note that for any ¢ € (0, p?),
1
| venpodx = [ WetmPomar+| [7f a9 Poco) dras
Q Q t JQ

2
5?/ |Vg|2+/ |v2g||a,g|+2/ VellangllVol.
Qr

Qr Qr
where we have used an integration by parts in x for the last step. By integrating the
inequality above in the variable ¢ over the interval (0, pz), we obtain

0?
//|Vg|2edxdrscp/ {1982 +1v2¢ + 10,812,
0 Ja Qr

where we also used the Cauchy inequality. This completes the proof. O
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Lemma 7.2. Let Q be a bounded Lipschitz domain in R? and 0 < T < oc. Let

ug ) be a weak solution of (7.1) and uy ; the homogenized problem (7.2). Let w,
be defined by (3.21). Then, for any ¥ € L*(0, T; H} (),

T
Bwe, ¥) -1y i) +/A 1/eHVw, -V
‘/0 < w '//>H ()% H} (R) o )L(X/S l‘/S) w 1/’ (75)

= {0l 2.1y + Mol e {819V 2@y + 821V 20, ) )
where § = (1 + \/X)s and C depends only ond, u, Q and T.

Proof. In view of Lemma 7.1, the case A = 1 follows from [14, Lemma 3.5]. The
case A # 1 is proved in a similar manner. Indeed, by (3.22), the left-hand side of
(7.5) is bounded by

C/Q [Vuo,n — Ke(Vuo ) IV | +C8/Q (XM IIVKs (Vg ) V|
+C5/Q Z |(¢2ij)8||VK6(V“0,A)||V1/’|

T ki,j

+Ce? / > 1@ ) 110K e (Vo )NV

Qg

+Ce | D 1V ) NIV (Vi )1V |
Qr k. j

+Cé? / 2 @i ) NIV Ke (Va0 )1V
QT k,j
=h+h+L+1+15+ 1

The estimates of /; for j = 1, ..., 6 are exactly the same as in the proof of Lemma
3.5 in [14]. Also see the proof of Lemma 3.6 in Section 3. We point out that in the
cases of I4 and I, the estimate

1/2
sup (f |(¢,§(d+1),-)8|2> <C(+n)
Os(x,1)

(x,1)eRd+!
is used. We omit the details. O
The next theorem gives an error estimate for the two-scale expansion
Be(x, 1) = e p. — o — ex™(x/e,1/6*) Ko (Vitg,2) (7.6)
in L2(0, T; H'(Q)).

Theorem 7.3. Let w, be defined by (7.6). Under the same conditions as in Lemma
7.2, we have

A

IVl 2y < CVB {0l 2o,y + 1m0l e | 3

where § = (1 + «/X)a

IA

1 and C depends onlyond, u, Q and T.
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Proof. Let ¢y = w, in (7.5), where w; is given by (3.21). Since w, = 0 on 9,7,

we see that fOT(a,ws, we) > 0. It follows that |[Vwell12(q,) is bounded by the
right-hand side of (7.7). It is not hard to show that |V (w, — w‘g)”LZ(QT) is also
bounded by the right-hand side of (7.7). This gives the inequality (7.7). O

We now move on to the convergence rate of u. 5 — ug_ in Lz(QT).

Theorem 7.4. Suppose A satisfies (1.3) and (1.4). Let  be a bounded C'' domain
inRY. Letu ¢.2. be aweak solution of (7.1) and ug_ the solution of the homogenized
problem (7.2). Then

e = w0l 2y = C8{luollizo iy + 10uosl 2op | (7:8)

where 8 = (1 + ~/A)e and C depends only ond, u, 2 and T.

Proof. Inview of Lemma 7.1, this theorem was proved in [14, Theorem 1.1] for the
case A = 1. With Lemma 7.2 at our disposal, the case 1 # 1 follows by a similar
duality argument. We omit the details. O

Finally, we study the problem of convergence rates for the parabolic operator
0y + L, where L, = — diV(A(x/s, t/sk)V) and 0 < k < oo. Note that the case
k = 2 is already treated in Theorems 7.3 and 7.4 with A = 1.

For the case k # 2, we use the fact that £, = L, with A = ¢%=2. Recall that
the homogenized operator for 3; + L, is given by 8, — le(A V) for0 <k <2,
and by 9; — dlv(AOV) for 2 < k < oo, where AOo and Ao are defined in (2.12)
and (2.17), respectively.

Theorem 7.5. Assume A satisfies (1.3) and (1.4). Also assume that ||0sAllcc < M
Let 0 < k < 2. Let u; be the weak solution of the initial-Dirichlet problem,

due — div(A(x/e, t/eVue)=F inQr and u.=f ond,Qr,(1.9)

where 2 is a bounded C*' domain in R? and 0 < T < oo. Let uq be the solution
of the homogenized problem. Then

lue = uoll 2, < C(e*/?

+ 27 ol 20,7, 29y + 100l 20y | (7.10)

for 0 < e <1, where C depends only ond, u, 2, T, and M.

Proof. Let A = =2 and uo,). be the solution of the initial-Dirichlet problem,
oy — div(A;Vug,) = F inQr and wuoy = f ond,Qr. (7.11)

Note that (1 + \/X)s = g+k? <2652 for 0 < ¢ < 1. It follows by Theorem 7.4
that

2
luee = w0l 2@y < €2 {0l 20720 + 10102 120 |- (7112)
Next, we observe that ug 3 — uo = 0 on 9,27 and

0i (uo.1 — uo) — div (A V(uo — uo)) = div((Ax — Axc) Vo)
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in Q7. Since Qis C!'!, it follows by the standard regularity estimates for parabolic
systems with constant coefficients that

10 (uo — uo, ) 12y + o — wosllL20.7: H2 ()
< ClA; — AlIVZuoll 2

< CA 735 Alloo IV u0ll 120y )

where we have used (2.23) for the last step. This, together with (7.12), yields the
estimate (7.10). 0O

The next theorem treats the case 2 < k < oo.

Theorem 7.6. Assume A satisfies (1.3) and (1.4). Also assume that | V*Allse < M.
Let 2 < k < 00. Let ug be the weak solution of the initial-Dirichlet problem (7.9),
where 2 is a bounded C*1 domain in R? and 0 < T < oco. Let ug be the solution
of the homogenized problem. Then

[lee — uOllLZ(QT) <C(e+ Sk_z){HMOHLZ(()’T;HZ(Q)) + ”E)IMOHLZ(QT)} (713)
for0 < e < 1, where C depends only ond, u, 2, T, and M.

Proof. The proof is similar to that of Theorem 7.5. The only modification is that
in the place of (2.24), we use the estimate (2.29) to bound |A; — Ag|. Also, note
that || VA||s may be bounded by a constant depending on p and M. We omit the
details. O

Proof of Theorem 1.3. Let 0 < & < 1. Note that e27% < ¢%/2if 0 < k < 4/3, and
gh/2 < g2-k if4/3 <k < 2. Also, & < e*2if2 <k <3,and ¥ 2 < ¢ifk > 3.
Thus, by Theorems 7.5 and 7.6,

lue — uollL2¢0p)
gk/? if0 < k < 4/3,

— C uollrL2(0,1;H2(2 atll() L2(Qr } ’ 2
: @ “@n Sk_ if2 <k < 37

& ifk=2o0r3 <k < ooc.

Remark 7.7. The results on convergence rates in Theorems 7.5 and 7.6 also hold
for initial-Neumann problems. The proof is almost identical to the case of the
initial-Dirichlet problem. See [14] for the case k = 2.

Using Theorem 7.3 we may obtain an error estimate in L%, T; H'(Q)) fora
two-scale expansion for 9; + L. in (1.1) in terms of its own correctors. The case
k = 2 is contained in Theorem 7.3 with A = 1. For k # 2, we let

(7.14)

ue —ug —ex(x/s, t/ek)ES(Vuo) if0 <k <2,
Ve = ~
‘ Ug — Uy — sxo(x/s)Kg(Vuo) if2 <k < o0.
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In (7.14), x*° and XO are the correctors defined by (2.10) and (2.15), respectively,
for 9; + L. Since they satisfy the estimates (2.11) and (2.16), only smoothing in
the space variable is needed for the operator K - More precisely, we let K (f) =
Sal (ns f), where

S5 (N, 1) = /]R S fa =y 0870 (y/8) dy,

8§ = ¢ + ¢*/2, and the cut-off function ns is the same as in K.

Theorem 7.8. Suppose that A and Q2 satisfy the same conditions as in Theorem
7.5. Let u, be the weak solution of (7.9) and uq the homogenized solution. Let v,
be given by (7.14). Then

HVU&‘HLZ(QT)
ek/4 if 0 <k <8/5,

27k ir8/s <k <2, (7.15)
< C{”uO”LZ(O,T:HZ(Q)) + HatuO”LZ(QT)} . gk_z lf 2 <k < 5/2

el/? if 5/2 <k < 0.
Proof. The proof uses Theorem 7.3 and the estimates of u( , — u¢ in the proof of

Theorems 7.5 and 7.6, where ug  is the solution of (7.11) with A = g2k,
Let & = 2. Suppose 0 < k < 2. In view of (7.7) it suffices to bound

1= V{ex*(x/e,1/6HKe(Vuo) — ex (/e 1/ Re (Vo) |2y -
Note that

I < [(Vx"(x/e.t/e?) = Vx™®(x/e, /") Ke(Vuo )l 2y
VXX /e, 1/6) (Ko (Vug 1) — Ke(Vuo)) 12y
+ellx*(x/e, t/e*)VKe(Vuo )l 120
+ellx™® /e, 1/ VK (Vuo)l 120

=L+DL+ 1L+ 1.

To bound 17, we use the inequality (3.17). This gives

12
I <C sup (][ |VX)‘(X/8J/€2)—VXOO(X/S,t/sszdde) Va0l L2
Qs

(_v.s)e]R’Hl
< CA M35 Alloo VU011l 12 (2
< Ce* X3, Allo I Va0l 20y (7.16)

where we have used (2.27) for the second inequality. To estimate />, we assume that
the function 6, is chosen so that 8y = 61 %011, where 01 € C(‘)’O(B(O, 1),611 >0



186 JUN GENG & ZHONGWEI SHEN

and [ps 011 = 1. Thisallows us to write S} = S}'o S}, where S}!(f) = f*(011)s.
As a result, we obtain

L < CIIS3[S5" (15 Vuo)] — S3' (s Vuo)ll 2oy
< 818,85 (s Vuo)ll 120y

= C8% 1153 {(B3ms) (Vuo) + V(nsdruo) — (Vns)dpuo}ll 2y
< 82 IVuoll gy, + 1V2u0ll 2y + 100l 200 -
It is not hard to see that
B+ 1 = Ce| IV 0sVuo) 2@y + 1905 Vu0) 120 |
= 8 {1Vuoll 2@y + IVl 200 |-
In summary, we have proved that

IVl 2y < CLeM* + e Hlluoll 20,7 110y + 1801l 120 }
(7.17)

for 0 < k < 2. A similar argument gives

IVvell 2@y < CLe'* + &2 lluoll L20.7: 11 @) + 130l 122y }
(7.18)

for 2 < k < oo. The error estimate (7.15) follows readily from (7.17)
and (7.18). O
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